WorldWideScience

Sample records for aluminum oxide aao

  1. Fabrication of YBCO nanowires with anodic aluminum oxide (AAO) template

    Energy Technology Data Exchange (ETDEWEB)

    Dadras, Sedigheh, E-mail: dadras@alzahra.ac.ir; Aawani, Elaheh

    2015-10-15

    We have fabricated YBCO nanowires by using anodic aluminum oxide (AAO) template and sol–gel method, to investigate the fundamental properties of the one-dimensional nanostructure YBCO high-temperature superconductor and enhance its applications. The field-emission scanning electron microscopy and X-ray diffraction pattern results have shown forming of Y-123 nanowires in the template. As an outcome, the YBCO nanowires, prepared by dipping AAO template into YBCO sol method, have average diameter of about 38 nm and length of 1 μm; this is an optimum nanowire sample with larger diameter and length. The resistance–temperature measurement indicates that the onset critical temperature of these samples occurs at 91 K, and the resistance of the optimum sample at onset transition is 10 times lower than the other sample.

  2. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W; Nielsch, K; Goesele, U [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany)

    2007-11-28

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H{sub 4}C{sub 3}O{sub 4}) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and {approx}100 mA cm{sup -2}. Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D{sub int}) for a given anodization potential (U) during malonic acid anodization.

  3. Electrically conducting polymer nanostructures confined in anodized aluminum oxide templates (AAO

    Directory of Open Access Journals (Sweden)

    I. Blaszczyk-Lezak

    2016-03-01

    Full Text Available Intrinsically or extrinsically conducting polymers are considered good candidates for replacement of metals in specific applications. In order to further expand their applications, it seems necessary to examine the influence of confinement effects on the electric properties of nanostructured conducting polymers in comparison to the bulk. The present study reports a novel way to fabricate and characterize high quality and controllable one-dimensional (1D polymer nanostructures with promising electrical properties, with the aid of two examples polyaniline (PANI and poly(vinylidene fluoride with multiwall carbon nanotubes (PVDF-MWCNT as representative of intrinsically and extrinsically conducting polymers, respectively. In this work, porous anodic aluminum oxide (AAO templates have been used both as a nanoreactor to synthesize 1D PANI nanostructures by polymerization of the ANI monomer and as a nanomold to prepare 1D PVDFMWCNT nanorods by melt infiltration of the precursor PVDF-MWCNT film. The obtained polymer nanostructures were morphologically and chemically characterized by SEM and Confocal Raman Spectroscopy, respectively, and the electrical properties determined by Broadband Dielectric Spectroscopy (BDS in a non-destructive way. SEM study allowed to establish the final nanostructure of PANI and PVDF-MWCNT and confirmed, in both cases, the well-aligned and uniform rodlike polymer nanostructures. Confocal Raman Microscopy has been performed to study the formation of the conducting emeraldine salt of PANI through all the length of AAO nanocavities. Finally, the electrical conductivity of both types of polymer nanostructures was easily evaluated by means of Dielectric Spectroscopy.

  4. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    Science.gov (United States)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  5. Influence of wet etching time cycles on morphology features of thin porous Anodic Aluminum oxide (AAO) template for nanostructure's synthesis

    Science.gov (United States)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Al-Diabat, Ahmad M.; Bououdina, M.

    2015-12-01

    This study examines the influence of chemical wet etching time cycles on the morphological features of thin porous AAO template. Pore widening via wet-etching treatment at room temperature was found to modify the pore quality of AAO template and reduces the barrier layer on the bottom of AAO pore array in order to facilitate uniform electrodeposition of nanostructures onto AAO template. High quality AAO pore arrays with different mean pore diameters (64, 70, and 87 nm) were prepared under controllable pore-widening time cycles of 10, 30 and 45 min at room temperature, respectively. The AAO templates and the produced Cu nanorods were characterized using FESEM, EDX, XRD and AFM. The results indicate that the morphology of the aligned arrays of Cu nanorods is strongly affected by the duration of etching and the removal of AAO template. This study showed that the optimum etching duration required to maintain the aligned nanorods without any fracture is approximately 5 min. In addition, the regular hemispherical concave Al surface ensuring the self-ordering of AAO pore can be established when striping is employed for 45 min. Thus, it can be inferred that the duration of wet etching treatment (striping) of Al oxide film performed after the first-step anodization plays a vital role in the final arrangement of nanopores.

  6. FRICTION PROPERTIES OF OIL-INFILTRATED POROUS AAO FILM ON AN ALUMINUM SUBSTRATE

    Institute of Scientific and Technical Information of China (English)

    C.X. Jiang; J.P. Tu; S.Y. Guo; M.F. Fu; X.B. Zhao

    2005-01-01

    The porous anodic aluminum oxide (AAO) film on a pure aluminum substrate was prepared by a two-step anodization in a 0.3M oxalic acid solution and pore-enlargement treatment in the phosphoric acid aqueous solution at 50℃. The diameter of highly ordered pore on the AAO film was about 90nm, and the thickness of the AAO film was 3μm. The mineral oil was infiltrated in the ordered nanometer sized pores of AAO film on an aluminum substrate due to the capillarity effect. The friction coefficient was measured using a ball-on-disk tribotester.The tests were conducted at loads range from 490 to 2450mN and at sliding velocities beably improved the wear resistance. As compared to the porous AAO film, the oil-infiltrated specimen had low friction coefficient. With increasing the applied load and sliding velocity,the friction coefficient of the oil-infiltrated film decreased. It indicates that the oil-infiltrated AAO film produced a new way to modify the friction and wear of aluminum alloy.

  7. 超薄 AAO 模板法辅助生长高密度有序金纳米点阵列%Fabrication of High-Density and Ordered Au Nanodot Arrays by Ultra-Thin Anodic Aluminum Oxide (AAO) Membranes

    Institute of Scientific and Technical Information of China (English)

    杨震; 张璋; 黄康荣; 周青伟; 刘利伟

    2013-01-01

    在高真空状态下采用孔径为40 nm的超薄阳极氧化铝( AAO)模板作为掩膜进行金的热蒸镀,制备了平均粒径为35.5 nm、填充密度为1.45×1010 cm-2的金纳米点阵列.探索了高密度有序纳米点阵列的制备工艺.通过扫描电子显微镜(SEM)和原子力显微镜(AFM)对金纳米点阵列进行表面形貌表征,证明超薄AAO模板法明显改善了金纳米点阵列分布的尺寸均匀度和有序度.%High-density Au nanodot arrays have attracted a lot of interests because of their potential applications in catalyst and biosensor .This article focused on the research of the manufacture of high-density and well-ordered Au nanodot arrays with size of 40 nm ultra-thin Anodic Aluminum Oxide ( AAO) membrane ( the result of our experi-mental exploration ) being the mask .Well-ordered Au nanodot arrays have fabricated by high-vacuum Au thermal e-vaporation with the help of AAO masks bonded on the desired substrates .The diameters of Au nanodots have been highly controlled with 35.5 nm, the packing-density could achieve to as high as 1.45 ×1010 cm-2 .The morphology of the Au nanodot arrays has been investigated by the SEM and AFM .The SEM images confirmed that the uniformi-ty of the size distribution and structural ordering of Au nanodot arrays had been improved by the two -step anodiza-tion of AAO.

  8. Quantificational Etching of AAO Template

    Institute of Scientific and Technical Information of China (English)

    Guojun SONG; Dong CHEN; Zhi PENG; Xilin SHE; Jianjiang LI; Ping HAN

    2007-01-01

    Ni nanowires were prepared by electrodeposition in porous anodized aluminum oxide (AAO) template from a composite electrolyte solution. Well-ordered Ni nanowire arrays with controllable length were then made by the partial removal of AAO using a mixture of phosphoric acid and chromic acid (6 wt pct H3PO4:1.8 wt pct H3CrO4). The images of Ni nanowire arrays were studied by scanning electron microscopy (SEM) to determine the relationship between etching time and the length of Ni nanowire arrays. The results indicate that the length of nanowires exposed from the template can be accurately controlled by controlling etching time.

  9. Porous Anodic Aluminum Oxide with Serrated Nanochannels

    Science.gov (United States)

    Li, Dongdong; Zhao, Liang; Lu, Jia G.

    2010-03-01

    Self-assembled nanoporous anodic aluminum oxide (AAO) membrane with straight channels has long been an important tool in synthesizing highly ordered and vertically aligned quasi-1D nanostructures for various applications. Recently shape-selective nanomaterials have been achieved using AAO as a template. It is envisioned that nanowires with multi-branches will significantly increase the active functional sites for applications as sensors, catalysts, chemical cells, etc. Here AAO membranes with serrated nanochannels have been successfully fabricated via a two-step annodization method. The serrated channels with periodic intervals are aligned at an angle of ˜25^circ along the stem channels. The formation of the serrated channels is attributed to the evolution of oxygen gas bubbles and the resulted plastic deformation in oxide membrane. In order to reveal the inside channel structure, Platinum are electrodeposited into the AAO template. The as-synthesized serrated Pt nanowires demonstrate a superior electrocatalytic activity. This is attributed to the enhanced electric field strength around serrated tips as shown in the electric field simulation by COMOSL. Moreover, hierarchical serrated/straight hybrid structures can be constructed using this simple and novel self assembly technique.

  10. Effect of electrolyte temperature on the thickness of anodic aluminium oxide (AAO layer

    Directory of Open Access Journals (Sweden)

    P. Michal

    2016-07-01

    Full Text Available Effect of electrolyte temperature on the thickness of resulting oxide layer has been studied. Unlike previous published studies this article was aimed to monitor the relationship between electrolyte temperature and resulting AAO layer thickness in interaction with other input factors affecting during anodizing process under special process condition, i.e. lower concentration of sulphuric acid, oxalic acid, boric acid and sodium chloride. According to Design of Experiments (DOE 80 individual test runs of experiment were carried out. Using statistical analysis and artificial intelligence for evaluation, the computational model predicting the thickness of oxide layer in the range from 5 / μm to 15 / μm with tolerance ± 0,5 / μm was developed.

  11. Nanoporous Pirani sensor based on anodic aluminum oxide

    Science.gov (United States)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  12. Micro/nano-hybrid lens for enhancing light extraction using micro-milling and anodic aluminium oxide (AAO)

    International Nuclear Information System (INIS)

    In the recent past there has been much research towards increasing the transmission of light in optical systems by reducing the Fresnel reflection of radiation, as the reflection of light from surfaces seriously decreases the performance of an optical device. These drawbacks have been overcome by mainly two methods, which are anti-reflective coating and anti-reflective nanostructure formation. In this study, we developed a simple fabrication process for Al micro/nano hybrid lens (MNHL) moulds for efficient light extraction using micro-milling and anodic aluminum oxide (AAO). From these moulds, two different types of polymer MNHL were fabricated using hot-embossing; one was a polymer MNHL that was covered with nanostructures over the entire surface, and the other was one for which only the microlens surface was covered with nanostructures. Two different types of polymer MNHLs were evaluated and compared with each other concerning the light extraction performance. The MNHL with nanostructures only on the microlens surface exhibited a higher light extraction performance than the other by 20.7%. It is expected that the fabricated MNHL can be used for the amplification of small signals when observing the presence of bio-molecules dyed with a fluorescent material. (paper)

  13. Effect of anneal pre-treatment of polycrystalline aluminum sheets on synthesis of highly-ordered anodic aluminum oxide membranes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Anodic aluminum oxide (AAO) membranes with large ordered pore domains were successfully prepared by adopting the anneal pre-treatment of polycrystalline alu- minum sheets. A statistical method with Gaussian distribution was introduced to quantitatively study the size of the domain with ordered pores. The largest average area of ordered pore domains was 2.6 μm2±0.11 μm2. The corresponding AAO membrane was synthesized by aluminum sheets annealed at 893 K for 24 h.

  14. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Directory of Open Access Journals (Sweden)

    Gerrard Eddy Jai Poinern

    2011-02-01

    Full Text Available The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  15. Fabrication of Nanostructured PLGA Scaffolds Using Anodic Aluminum Oxide Templates

    CERN Document Server

    Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan

    2008-01-01

    PLGA (poly(lactic-co-glycolic acid)) is one of the most used biodegradable and biocompatible materials. Nanostructured PLGA even has great application potentials in tissue engineering. In this research, a fabrication technique for nanostructured PLGA membrane was investigated and developed. In this novel fabrication approach, an anodic aluminum oxide (AAO) film was use as the template ; the PLGA solution was then cast on it ; the vacuum air-extraction process was applied to transfer the nano porous pattern from the AAO membrane to the PLGA membrane and form nanostures on it. The cell culture experiments of the bovine endothelial cells demonstrated that the nanostructured PLGA membrane can double the cell growing rate. Compared to the conventional chemical-etching process, the physical fabrication method proposed in this research not only is simpler but also does not alter the characteristics of the PLGA. The nanostructure of the PLGA membrane can be well controlled by the AAO temperate.

  16. Nanoporous anodic aluminum oxide as a promising material for the electrostatically-controlled thin film interference filter

    International Nuclear Information System (INIS)

    This study presents the approach to implement the electrostatically-controlled thin film optical filter by using a nanoporous anodic aluminum oxide (np-AAO) layer as the key suspended micro structure. The bi-stable optical filter operates in the visible spectral range. In this work, the presented bi-stable optical filter has averaged reflectivity of 60%, and the central wavelengths are 580 and 690 nm respectively for on and off states. The presented np-AAO layer offers the following merits for the thin film optical filter: (1) material properties of np-AAO film, such as refractive index, elastic modulus and dielectric constant, can be easily changed by a low temperature pore-widening process, (2) in-use stiction of the suspended np-AAO structure can be reduced by the small contact area of nanoporous textures, (3) driving (pull-in) voltage can be reduced due to a large dielectric constant (εAAO is 7.05) and small stiffness of np-AAO film and (4) dielectric charging can be reduced by the np-AAO material; thus the offset voltage is small. The study reports the design, fabrication and experimental results of the bi-stable optical filter to demonstrate the advantages of the presented device. The np-AAO material also has the potential for applications of other electrostatic drive micro devices. (paper)

  17. A molecular beacon biosensor based on the nanostructured aluminum oxide surface.

    Science.gov (United States)

    Che, Xiangchen; He, Yuan; Yin, Haocheng; Que, Long

    2015-10-15

    A new class of molecular beacon biosensors based on the nanostructured aluminum oxide or anodic aluminum oxide (AAO) surface is reported. In this type of sensor, the AAO surface is used to enhance the fluorescent signals of the fluorophore-labeled hairpin DNA. When a target DNA with a complementary sequence to that of the hairpin DNA is applied on the sensor, the fluorophores are forced to move away from the AAO surface due to the hybridization between the hairpin DNA and the target DNA, resulting in the significant decrease of the fluorescent signals. The observed signal reduction is sufficient to achieve a demonstrated detection limit of 10nM, which could be further improved by optimizing the AAO surface. The control experiments have also demonstrated that the bioassay used in the experiments has excellent specificity and selectivity, indicating the great promise of this type of sensor for diagnostic applications. Since the arrayed AAO micropatterns can be fabricated on a single chip in a cost-effective manner, the arrayed sensors could provide an ideal technical platform for studying fundamental biological process and monitoring disease biomarkers.

  18. Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications.

    Science.gov (United States)

    Hong, Chitsung; Tang, Tsung-Ta; Hung, Chi-Yu; Pan, Ru-Pin; Fang, Weileun

    2010-07-16

    This paper reports the implementation and integration of a self-assembled nanoporous anodic aluminum oxide (np-AAO) film and liquid crystal (LC) on an ITO-glass substrate for liquid crystal display (LCD) panel applications. An np-AAO layer with a nanopore array acts as the vertical alignment layer to easily and uniformly align the LC molecules. Moreover, the np-AAO nanoalignment layer provides outstanding material properties, such as being inorganic with good transmittance, and colorless on ITO-glass substrates. In this application, an LCD panel, with the LC on the np-AAO nanoalignment layer, is successfully implemented on an ITO-glass substrate, and its performance is demonstrated. The measurements show that the LCD panel, consisting of an ITO-glass substrate and an np-AAO layer, has a transmittance of 60-80%. In addition, the LCD panel switches from a black state to a bright state at 3 V(rms), with a response time of 62.5 ms. In summary, this paper demonstrates the alignment of LC on an np-AAO layer for LCD applications.

  19. Surface enhanced Raman scattering of biospecies on anodized aluminum oxide films

    Science.gov (United States)

    Zhang, C.; Smirnov, A. I.; Hahn, D.; Grebel, H.

    2007-06-01

    Traditionally, aluminum and anodized aluminum oxide films (AAO) are not the platforms of choice for surface-enhanced raman scattering (SERS) experiments despite of the aluminum's large negative permittivity value. Here we examine the usefulness of aluminum and nanoporous alumina platforms for detecting soft biospecies ranging from bacterial spores to protein markers. We used these flat platforms to examine SERS of a model protein (cytochrome c from bovine heart tissue) and bacterial cells (spores of Bacillus subtilis ATCC13933 used as Anthrax simulant) and demonstrated clear Raman amplification.

  20. Formation of unidirectional nanoporous structures in thickly anodized aluminum oxide layer

    Institute of Scientific and Technical Information of China (English)

    Hyun-Chae NA; Taek-Jin SUNG; Seok-Heon YOON; Seung-Kyoun HYUN; Mok-Soon KIM; Young-Gi LEE; Sang-Hyun SHIN; Seok-Moon CHOI; Sung YI

    2009-01-01

    A series of anodic aluminum oxide(AAO) was grown on the commercially pure 1050 aluminum sheet by controlling electrolyte temperature (2-15 ℃) and anodizing time (0.5-6 h), using a fixed applied current density of 3 A/dm2 in diluted sulfuric acid electrolyte. A crack-free thick AAO with the thickness of 105-120 ìm and containing unidirectional nano sized pores (average pore diameter of 5-7 nm) is successfully achieved in the specimens anodized for 2 h, irrespective of electrolyte temperature. When anodizing time reaches 6 h, very thick AAO with the thickness of 230-284 ìm is grown, and average diameter of unidirectional pores is in the range of 6-24 nm. The higher values in both the AAO thickness and pore diameter are attained for the specimens anodized at higher temperatures of 10-15 ℃. A crack is observed to exist in the AAO after anodizing up to 4 h and more. A higher fraction (more than 9%) of the crack is shown in the specimens anodized at higher temperatures of 10-15 ℃ for 6 h and a considerable amount of giant cracks are contained.

  1. Characterization of Anodic Aluminum Oxide Membrane with Variation of Crystallizing Temperature for pH Sensor.

    Science.gov (United States)

    Yeo, Jin-Ho; Lee, Sung-Gap; Jo, Ye-Won; Jung, Hye-Rin

    2015-11-01

    We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively. PMID:26726567

  2. Effects of anodic aluminum oxide membrane on performance of nanostructured solar cells

    Science.gov (United States)

    Dang, Hongmei; Singh, Vijay

    2015-05-01

    Three nanowire solar cell device configurations have been fabricated to demonstrate the effects of the host anodized aluminum oxide (AAO) membrane on device performance. The three configurations show similar transmittance spectra, indicating that AAO membrane has negligible optical absorption. Power conversion efficiency (PCE) of the device is studied as a function of the carrier transport and collection in cell structures with and without AAO membrane. Free standing nanowire solar cells exhibit PCE of 9.9%. Through inclusion of AAO in solar cell structure, interface defects and traps caused by humidity and oxygen are reduced, and direct contact of CdTe tentacles with SnO2 and formation of micro shunt shorts are prevented; hence PCE is improved to 11.1%-11.3%. Partially embedded nanowire solar cells further reduce influence of non-ideal and non-uniform nanowire growth and generate a large amount of carriers in axial direction and also a small quantity of carriers in lateral direction, thus becoming a promising solar cell structure. Thus, including AAO membrane in solar cell structure provides favorable electro-optical properties as well as mechanical advantages.

  3. Burning characteristics of individual aluminum/aluminum oxide particles

    OpenAIRE

    Ruttenberg, Eric C.

    1996-01-01

    Approved for public release; distribution is unlimited An experimental investigation was conducted in which the burning characteristics of individual aluminum/aluminum oxide particles were measured using a windowed combustion bomb at atmospheric pressure and under gravity-fall conditions. A scanning electron microscope (SEM) was used to measure the size distribution of the initial aluminum particles and the aluminum oxide residue. Analysis of the residue indicated that the mass of aluminum...

  4. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.

    Science.gov (United States)

    Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua

    2010-12-20

    We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors. PMID:21197062

  5. Electromechanical Breakdown of Barrier-Type Anodized Aluminum Oxide Thin Films Under High Electric Field Conditions

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Yao, Xi

    2016-02-01

    Barrier-type anodized aluminum oxide (AAO) thin films were formed on a polished aluminum substrate via electrochemical anodization in 0.1 mol/L aqueous solution of ammonium pentaborate. Electromechanical breakdown occurred under high electric field conditions as a result of the accumulation of mechanical stress in the film-substrate system by subjecting it to rapid thermal treatment. Before the breakdown event, the electricity of the films was transported in a highly nonlinear way. Immediately after the breakdown event, dramatic cracking of the films occurred, and the cracks expanded quickly to form a mesh-like dendrite network. The breakdown strength was significantly reduced because of the electromechanical coupling effect, and was only 34% of the self-healing breakdown strength of the AAO film.

  6. Fabrication and characterization of nanostructured Mg-doped CdS/AAO nanoporous membrane for sensing applications

    Science.gov (United States)

    Shaban, Mohamed; Mustafa, Mona; Hamdy, Hany

    2016-04-01

    In this study, Mg-doped CdS nanostructure was deposited onto anodic aluminum oxide (AAO) membrane substrate using sol-gel spin coating method. The AAO membrane was prepared by a two-step anodization process combined with pore widening process. The morphology, chemical composition, and structure of the spin- coated CdS nanostructure have been studied. The morphology of the fabricated AAO membrane and the deposited Mg-doped CdS nanostructure was investigated using scanning electron microscopy (SEM). The SEM of AAO illustrates a typical hexagonal and smooth nanoporous alumina membrane with interpore distance of ~ 100 nm, the pore diameter of ~ 60 nm. SEM of Mgdoped CdS shows porous nanostructured film of CdS nanoparticles. This film well adherents and covers the AAO substrate. The energy dispersive X-ray (EDX) pattern exhibits the signals of Al, O from AAO membrane and Mg, Cd, and S from the deposited CdS. This indicates the high purity of the fabricated membrane and the deposited Mg-doped CdS nanostructure. Using X-ray diffraction (XRD) pattern, Scherrer equation was used to calculate the average crystallite size. Additionally, the texture coefficients and density of dislocations were calculated. The fabricated CdS/AAO was applied to detect glucose of different concentrations. The proposed method has some advantages such as simple technology, low cost of processing, and high throughput. All of these factors facilitate the use of the prepared films in sensing applications.

  7. Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis

    Science.gov (United States)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Maryam, W.; Ahmad, M. A.; Bououdina, M.

    2015-12-01

    Highly-ordered and hexagonal-shaped nanoporous anodic aluminum oxide (AAO) of 1 μm thickness of Al pre-deposited onto Si substrate using two-step anodization was successfully fabricated. The growth mechanism of the porous AAO film was investigated by anodization current-time behavior for different anodizing voltages and by visualizing the microstructural procedure of the fabrication of AAO film by two-step anodization using cross-sectional and top view of FESEM imaging. Optimum conditions of the process variables such as annealing time of the as-deposited Al thin film and pore widening time of porous AAO film were experimentally determined to obtain AAO films with uniformly distributed and vertically aligned porous microstructure. Pores with diameter ranging from 50 nm to 110 nm and thicknesses between 250 nm and 1400 nm, were obtained by controlling two main influential anodization parameters: the anodizing voltage and time of the second-step anodization. X-ray diffraction analysis reveals amorphous-to-crystalline phase transformation after annealing at temperatures above 800 °C. AFM images show optimum ordering of the porous AAO film anodized under low voltage condition. AAO films may be exploited as templates with desired size distribution for the fabrication of CuO nanorod arrays. Such nanostructured materials exhibit unique properties and hold high potential for nanotechnology devices.

  8. The fabrication of Ag nanoflake arrays via self-assembly on the surface of an anodic aluminum oxide template

    International Nuclear Information System (INIS)

    Vertical-aligned Ag nanoflake arrays are fabricated on the surface of an anodic aluminum oxide (AAO) template under a hydrothermal condition for the first time. The porous surface of AAO templates and the precursor solution may play key roles in the process of fabricating Ag nanoflakes. The rim of pores can provide many active sites for nucleation and growth, and then nanoflake arrays gradually form through self-assembly of Ag on the surface of AAO membranes. The product is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and a growth mechanism of nanoflake is deduced. This work demonstrates that it is possible to make ordered nanoarrays without dissolving templates using the hydrothermal method, and this interesting Ag nanoflake arrays may provide a wider range of nanoscale applications.

  9. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  10. Formation of Anodic Aluminum Oxide with Branched and Meshed Pores.

    Science.gov (United States)

    Kim, Byeol; Lee, Jin Seok

    2016-06-01

    Anodic aluminum oxide (AAO), with a self-ordered hexagonal array, is important for various applications in nanofabrication including as the fabrication of nanotemplates and other nanostructures. With the consideration, there have been many efforts to control the characteristic parameters of porous anodic alumina by adjustment of the anodizing conditions such as the electrolyte, temperature, applied potential, and Al purity. In particular, impurities in Al are changing the morphology of an alumina film; however, the formation mechanism has not yet been explained. In this work, we anodized a high purity (99.999%, Al(high)) and low purity (99.8%, Al(low)) aluminum foil by a two-step anodization process in an oxalic acid solution or phosphoric acid. It was found that the purity of aluminum foil has influenced the morphology of the alumina film resulting in branched and meshed pores. Also, electrochemical analysis indicated that the branched and meshed pores in the low-purity Al foil formed by the presence of impurities. Impurities act as defects and change the general growth mechanism for pore formation by inducing an electric field imbalance during anodization. This work contributes to the research field of topographical chemistry and applied fields including nanofabrication. PMID:27427755

  11. Oxidation kinetics of aluminum diboride

    Science.gov (United States)

    Whittaker, Michael L.; Sohn, H. Y.; Cutler, Raymond A.

    2013-11-01

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3-B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments.

  12. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  13. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates.

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-20

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation.

  14. Oxidation dynamics of aluminum nanorods

    International Nuclear Information System (INIS)

    Aluminum nanorods (Al-NRs) are promising fuels for pyrotechnics due to the high contact areas with oxidizers, but their oxidation mechanisms are largely unknown. Here, reactive molecular dynamics simulations are performed to study thermally initiated burning of oxide-coated Al-NRs with different diameters (D = 26, 36, and 46 nm) in oxygen environment. We found that thinner Al-NRs burn faster due to the larger surface-to-volume ratio. The reaction initiates with the dissolution of the alumina shell into the molten Al core to generate heat. This is followed by the incorporation of environmental oxygen atoms into the resulting Al-rich shell, thereby accelerating the heat release. These results reveal an unexpectedly active role of the alumina shell as a “nanoreactor” for oxidation

  15. Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics.

    Science.gov (United States)

    Chen, Jing; Feng, Shaolong; Gao, Fang; Grant, Edward; Xu, Jie; Wang, Shuo; Huang, Qian; Lu, Xiaonan

    2015-04-01

    We have developed a silver nanofilm-coated porous anodic aluminum oxide (AAO) as a surface-enhanced Raman scattering (SERS)-active substrate for the detection of trace level of chloramphenicol, a representative antibiotic in food systems. The ordered aluminum template generated during the synthesis of AAO serves as a patterned matrix on which a coated silver film replicates the patterned AAO matrix to form a 2-dimensional ordered nanostructure. We used atomic force microscopy and scanning electron microscopy images to determine the morphology of this nanosubstrate, and characterized its localized surface plasmon resonance by ultraviolet-visible reflection. We gauged the SERS effect of this nanosubstrate by confocal micro-Raman spectroscopy (782-nm laser), finding a satisfactory and consistent performance with enhancement factors of approximately 2 × 10(4) and a limit of detection for chloramphenicol of 7.5 ppb. We applied principal component analysis to determine the limit of quantification for chloramphenicol of 10 ppb. Using electromagnetic field theory, we developed a detailed mathematical model to explain the mechanism of Raman signal enhancement of this nanosubstrate. With simple sample pretreatment and separation steps, this silver nanofilm-coated AAO substrate could detect 50 ppb chloramphenicol in milk, indicating good potential as a reliable SERS-active substrate for rapid detection of chemical contaminants in agricultural and food products.

  16. Oxidation kinetics of aluminum diboride

    International Nuclear Information System (INIS)

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3–B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB2 in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time–temperature plots, (b) conversion as a function of time, (c) Arrhenius plots used to calculate activation energies, and (d) activation energy

  17. Synthesis of carbon nanotube arrays using ethanol in porous anodic aluminum oxide template

    Institute of Scientific and Technical Information of China (English)

    YU Guojun; WANG Sen; GONG Jinlong; ZHU Dezhang; HE Suixia; LI Yulan; ZHU Zhiyuan

    2005-01-01

    Carbon nanotube (CNT) arrays confined by porous anodic aluminum oxide (AAO) template were synthesized using ethanol as reactant carbon source at low pressure. Images by scanning electron microscope (SEM) and low magnification transmission electron microscopy (TEM) show that these CNTs have highly uniform outer diameter and length, absolutely controlled by the diameter and depth of nano-channel arrays of the AAO. High resolution transmission electron microscopy (HRTEM) imaging indicates that the graphitization of the CNT walls is better than the results reported on this kind of template-based CNT arrays, although it is not so good as that of multiwalled carbon nanotubes (MWCNTs) synthesized by catalysis. CNTs synthesized using acetylene as reactant gas show much less graphitization than those prepared using ethanol by comparing the results of HRTEM and Raman spectroscopy. The etching effects of decomposed OH radicals on the amorphous carbon and the roughness of AAO nano-channel arrays on the CNTs growth were employed to explain the graphitization and growth of the CNTs.

  18. Wetting characteristics of the anodic aluminum oxide template and fabrication of cracks using ultraviolet curable resin solution

    Science.gov (United States)

    Sung Yoon, Jae; Phuong, NguyenThi; Hwan Kim, Jeong; Choi, Doo-Sun; Whang, Kyung-hyun; Yoo, Yeong-eun

    2014-03-01

    We have investigated the wetting characteristics of the anodic aluminum oxide (AAO) template with ultraviolet curable polymer resin. The wettability of the template depends on the pore size on the surface, where it is improved with smaller pores and vice versa. Plasma treatment on the surface of the template is used to improve the wettability and the adhesion of the cured polymer to the template. And we also introduce the cracks on the polymer layer for possible application as nano-sized cavities. The resin within the pore is cleaved during the curing process so that cavities or cracks could be made which are much smaller than the original pores of the AAO template.

  19. Electrodeposited Ni,Fe,Co and Cu single and multilayer nanowire arrays on anodic aluminum oxide template

    Institute of Scientific and Technical Information of China (English)

    Bobomurod HAMRAKULOV; In-Soo KIM; M.G.LEE; B.H.PARK

    2009-01-01

    The Ni, Fe, Co and Cu single and multilayer nanowire arrays to make perpendicular magnetic recording media were fabricated with nanoporous anodic aluminum oxide (AAO) templates from Watt solution and additives by the DC electrodeposition. The results show that the diameters of Ni, Fe, Co and Cu single and multilayer nanowires in AAO templates are 40-80 nm and the lengths are about 30 μm with the aspect ratio of 350-750. The magnetic properties of the prepared nanowires are different under different electrodepositing conditions. The remanences (Br) of Ni/Cu/Fe multilayer nanowires are lower than those of others multilayer nanowires, and coercivity (Hc) of Ni/Cu/Fe multilayer nanowires are lower than those of others multilayer nanowires. These are compatible with the required conditions of high density magnetic media devices that should have the low coercivity to easily success magnetization and high remanence to keep magnetization after removal of magnetic field.

  20. Enhanced Efficiency of GaAs Single-Junction Solar Cells with Inverted-Cone-Shaped Nanoholes Fabricated Using Anodic Aluminum Oxide Masks

    Directory of Open Access Journals (Sweden)

    Kangho Kim

    2013-01-01

    Full Text Available The GaAs solar cells are grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD and fabricated by photolithography, metal evaporation, annealing, and wet chemical etch processes. Anodized aluminum oxide (AAO masks are prepared from an aluminum foil by a two-step anodization method. Inductively coupled plasma dry etching is used to etch and define the nanoarray structures on top of an InGaP window layer of the GaAs solar cells. The inverted-cone-shaped nanoholes with a surface diameter of about 50 nm are formed on the top surface of the solar cells after the AAO mask removal. Photovoltaic and optical characteristics of the GaAs solar cells with and without the nanohole arrays are investigated. The reflectance of the AAO nanopatterned samples is lower than that of the planar GaAs solar cell in the measured range. The short-circuit current density increased up to 11.63% and the conversion efficiency improved from 10.53 to 11.57% under 1-sun AM 1.5 G conditions by using the nanohole arrays. Dependence of the efficiency enhancement on the etching depth of the nanohole arrays is also investigated. These results show that the nanohole arrays fabricated with an AAO technique may be employed to improve the light absorption and, in turn, the conversion efficiency of the GaAs solar cell.

  1. AAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition.

    Science.gov (United States)

    Yao, Zhao; Wang, Cong; Li, Yang; Kim, Nam-Young

    2015-01-01

    Highly ordered nanoporous anodic aluminum oxide (AAO) thin films were fabricated in oxalic acid under a constant voltage via a two-step anodization process. To investigate the high-aspect-ratio (7.5:1) filling process, both sputtering and atomic layer deposition (ALD) were used to form TiO2 nanowires. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that mushroom-like TiO2 structures were sputtered onto the AAO template surface, and the ALD-coated TiO2 exhibited fine filling results and clear crystal grain boundaries. Large-scale and free-standing TiO2 nanowire arrays were liberated by selectively removing the aluminum substrate and AAO template via a wet etching process with no collapsing or agglomeration after the drying process. ALD-deposited TiO2 nanowire arrays that were 67 nm in diameter and 400 nm high were transferred from the AAO template. The ALD process enabled the rapid, simple synthesis of highly ordered TiO2 nanowire arrays with desired parameters such as diameter, density, and thickness determined using diverse AAO templates.

  2. Magnetoresistive multilayers deposited on the AAO membranes

    Energy Technology Data Exchange (ETDEWEB)

    Malkinski, Leszek M. [Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148 (United States)]. E-mail: lmalkins@uno.edu; Chalastaras, Athanasios [Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148 (United States); Vovk, Andriy [Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148 (United States); Jung, Jin-Seung [Department of Chemistry, Kangnung National University, Kangnung 210702 (Korea, Republic of) ; Kim, Eun-Mee [Department of Chemistry, Kangnung National University, Kangnung 210702 (Korea, Republic of) ; Jun, Jong-Ho [Department of Applied Chemistry, Kunkuk University, Chungju 151747 (Korea, Republic of) ; Ventrice, Carl A. [Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148 (United States)

    2005-02-01

    Silicon and GaAs wafers are the most commonly used substrates for deposition of giant magnetoresistive (GMR) multilayers. We explored a new type of a substrate, prepared electrochemically by anodization of aluminum sheets, for deposition of GMR multilayers. The surface of this AAO substrate consists of nanosized hemispheres organized in a regular hexagonal array. The current applied along the substrate surface intersects many magnetic layers in the multilayered structure, which results in enhancement of giant magnetoresistance effect. The GMR effect in uncoupled Co/Cu multilayers was significantly larger than the magnetoresistance of similar structures deposited on Si.

  3. Fabrication of nanostructure via self-assembly of nanowires within the AAO template

    Directory of Open Access Journals (Sweden)

    Brust Mathias

    2006-01-01

    Full Text Available AbstractThe novel nanostructures are fabricated by the spatial chemical modification of nanowires within the anodic aluminum oxide (AAO template. To make the nanowires better dispersion in the aqueous solution, the copper is first deposited to fill the dendrite structure at the bottom of template. During the process of self-assembly, the dithiol compound was used as the connector between the nanowires and nanoparticles by a self-assembly method. The nanostructures of the nano cigars and structure which is containing particles junction are characterized by transmission electron microscopy (TEM. These kinds of novel nanostructure will be the building blocks for nanoelectronic and nanophotonic devices.

  4. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  5. CORRELATION BETWEEN ASO AND AAO

    Institute of Scientific and Technical Information of China (English)

    LIU Na; ZHANG Qing-hua; CHEN Hong-xia

    2004-01-01

    Using a 34 years database consisting of sea level pressure and sea ice concentration,the relationship between Antarctic Oscillation(AAO)and Antarctic Sea-ice Oscillation(ASO)was investigated.Firstly,Empirical Orthogonal Function(EOF)analysis depicts the spatial variability of AAO and ASO and Antarctic Sea-ice Oscillation Index(ASOI)was defined for the first time.Secondly,power spectrum and head-lag correlation analysis show that ASO and AAO have the same periods of quasi-three years,quasi-one year and quasi-half a year.Corresponding to AAO,ASO has an evident anti-oscillation after one and half a year.

  6. Remarkable enhancement of upconversion luminescence on 2-D anodic aluminum oxide photonic crystals.

    Science.gov (United States)

    Wang, He; Yin, Ze; Xu, Wen; Zhou, Donglei; Cui, Shaobo; Chen, Xu; Cui, Haining; Song, Hongwei

    2016-05-21

    Lanthanide-doped upconversion nanoparticles (UCNPs) are attracting extensive attention due to their unique physical properties and great application potential. However, the lower luminescence quantum yield/strength is still an obstacle for real application. Local field modulation is a promising method to highly enhance the upconversion luminescence (UCL) of the UCNPs. In this work, a novel kind of two-dimensional photonic crystal (2D-PC), anodic aluminum oxides (AAOs), was explored to improve the UCL of NaYF4:Yb(3+),Er(3+) nanoplates (NPs). An optimum enhancement factor (EF) of 65-fold was obtained for the overall intensity of Er(3+) under 980 nm excitation, and 130-fold for the red emission. Systematic studies indicate that UCL enhancement mainly originates from the enlargement of the excitation field by scattering and reflection of AAO PCs. It should also be highlighted that the modulation of 2D-PC on the UCL of NaYF4:Yb(3+),Er(3+) NPs demonstrates weak size-dependent and thickness-dependent behavior, which is well consistent with the stimulated electromagnetic field distribution by the finite difference time domain (FDTD) method. PMID:27139324

  7. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  8. Synthesis of ordered Sinanowire arrays in porous anodic aluminum oxide templates

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Highly ordered polycrystalline Si nanowire arrays were synthesized in porous anodic aluminum oxide (AAO) templates by the chemical vapor deposition (CVD)method. The morphological structure, the crystal character of Si nanowire arrays and the individual nanowire were analyzed by the transmission electron microscopy (TEM),scanning electron microscopy (SEM), atom force microscopy (AFM) and the X-ray diffraction spectrum (XRD), respectively. It is shown that most fabricated silicon nanowires (SiNWs) tend to be assembled parallelly in bundles and constructed with highly orientated arrays. This method provides a simple and low cost fabricating craftwork and the diameters and lengths of SiNWs can be controlled, the large area Si nanowire arrays can be achieved easily under such a way.The curling and twisting SiNWs are fewer than those by other synthesis methods.

  9. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    Directory of Open Access Journals (Sweden)

    Yüzer Hayrettin

    2010-01-01

    Full Text Available Abstract A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX methods and X-Ray diffraction (XRD. It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially.

  10. Fabrication and applications of nanocomposite structures using anodized aluminum oxide membranes

    Science.gov (United States)

    Gapin, Andrew Isaac

    As the field of nanotechnology continues to advance and device feature sizes scale down to ever smaller dimensions, it is becoming increasingly important to develop quick and efficient methods for large-scale production at the nanoscale. Creating such a template would have widespread uses in areas such as magnetic data storage, chemical sensors, and mask technology. One promising approach to realizing this goal may lie in utilizing the self-ordering behavior found in porous anodized aluminum oxide (AAO). This material offers many advantages such as the ability to customize the pore diameter and spacing and easy device integration based on its compatibility with silicon substrates. The pores of the AAO templates can be filled with many different materials via electrochemical deposition or other methods to produce numerous potential devices. In this work, current research results detailing the fabrication of AAO templates and their use in creating ˜100 nm tall CoPt, Ni, and composite Ni/CoPt nanowires is demonstrated. The synthesis of such nanostructures may ultimately be advantageous for new types of patterned magnetic recording media. The Ni nanowires exhibit relatively soft magnetic coercivity of 242 Oe, while the CoPt nanowires show a very high coercivity of at least 10.97 kOe, measured in the perpendicular direction along the nanowires axis. The composite soft magnet/hard magnet Ni/CoPt nanowires exhibit intermediate perpendicular coercivities depending on the relative amounts of Ni and CoPt. The Ni 80nm/CoPt20nm nanowires showed a coercivity of 1.96 kOe, the Ni50nm/CoPt50nm nanowires had a coercivity of 3.59 kOe, and the Ni20nm/CoPt80nm nanowires had a coercivity of 5.10 kOe. This marked decrease in the coercivity is significant because it could facilitate easier magnetic data writing. Analysis of the magnetic properties of the various nanowire structures and their dependence on the processing parameters is presented. A method for utilizing the AAO structure

  11. Nanoscale aluminum concaves for light-trapping in organic thin-films

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr;

    2016-01-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation...

  12. The breakage of nanopore in AAO template

    Science.gov (United States)

    Jia, X. R.; Wang, H.; Zhen, Y.

    2016-07-01

    In the present work, AAO template is fabricated in oxalic acid solution under a constant voltage by several steps. By the Bernoulli principle, the pressure on the wall of hole increases which lead to the breakage of nanopore as a result of the reducing effective migration rate of Al3+. The quantity of the breakage of nanopore rises with the increase of the concentration of Al3+. Further, nanopore is closed by oxide due to the decrease of effective migration rate of Al3+. Finally, a “nanoflower-like” shape can be observed in experiments.

  13. Monolithic Approach to Oxide Dispersion Strengthened Aluminum Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nassau Stern Company is investigating an approach for manufacturing oxide dispersion strengthened (ODS) aluminum in bulk rather than powder form. The approach...

  14. Study on Light Extraction from GaN-based Green Light-Emitting Diodes Using Anodic Aluminum Oxide Pattern and Nanoimprint Lithography

    OpenAIRE

    Shengxiang Jiang; Yulong Feng; Zhizhong Chen; Lisheng Zhang; Xianzhe Jiang; Qianqian Jiao; Junze Li; Yifan Chen; Dongsan Li; Lijian Liu; Tongjun Yu; Bo Shen; Guoyi Zhang

    2016-01-01

    An anodic aluminum oxide (AAO) patterned sapphire substrate, with the lattice constant of 520 ± 40 nm, pore dimension of 375 ± 50 nm, and height of 450 ± 25 nm was firstly used as a nanoimprint lithography (NIL) stamp and imprinted onto the surface of the green light-emitting diode (LED). A significant light extraction efficiency (LEE) was improved by 116% in comparison to that of the planar LED. A uniform broad protrusion in the central area and some sharp lobes were also obtained in the ang...

  15. Highly Transparent and Flexible Triboelectric Nanogenerators with Subwavelength-Architectured Polydimethylsiloxane by a Nanoporous Anodic Aluminum Oxide Template.

    Science.gov (United States)

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lee, Soo Hyun; Yu, Jae Su

    2015-09-23

    Highly transparent and flexible triboelectric nanogenerators (TENGs) were fabricated using the subwavelength-architectured (SWA) polydimethylsiloxane (PDMS) with a nanoporous anodic aluminum oxide (AAO) template as a replica mold. The SWA PDMS could be utilized as a multifunctional film for a triboelectric layer, an antireflection coating, and a self-cleaning surface. The nanopore arrays of AAO were formed by a simple, fast, and cost-effective electrochemical oxidation process of aluminum, which is relatively impressive for fabrication of the TENG device. For electrical contacts, the SWA PDMS was laminated on the indium tin oxide (ITO)-coated polyethylene terephthalate (PET) as a bottom electrode, and the bare ITO-coated PET (i.e., ITO/PET) was used for the top electrode. Compared to the ITO/PET, the SWA PDMS on the ITO/PET improved the transmittance from 80.5 to 83% in the visible wavelength region and also had high transmittances of >85% at wavelengths of 430-455 nm. The SWA PDMS also exhibited the hydrophobic surface with a water contact angle (θCA) of ∼115°, which can be useful for self-cleaning applications. The average transmittance (Tavg) of the entire TENG device was observed to be ∼70% over a broad wavelength range. At an external pushing frequency of 0.5 Hz, for the TENG device with the ITO top electrode, open-circuit voltage (VOC) and short-circuit current (ISC) values of ∼3.8 V and ∼0.8 μA were obtained instantaneously, respectively, which were higher than those (i.e., VOC ≈ 2.2 V, and ISC ≈ 0.4 μA) of the TENG device with a gold top electrode. The effect of external pushing force and frequency on the output device performance of the TENGs was investigated, including the device robustness. A theoretical optical analysis of SWA PDMS was also performed. PMID:26301328

  16. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance. PMID:26393523

  17. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  18. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    Science.gov (United States)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  19. Electrodeposition of Vanadium Oxide/Manganese Oxide Hybrid Thin Films on Nanostructured Aluminum Substrates

    OpenAIRE

    Rehnlund, David; Valvo, Mario; Edström, Kristina; Nyholm, Leif

    2014-01-01

    Electrodeposition of functional coatings on aluminum electrodes in aqueous solutions often is impeded by the corrosion of aluminum. In the present work it is demonstrated that electrodeposition of vanadium, oxide films on nanostructured aluminum substrates can be achieved in acidic electrolytes employing a novel strategy in which a thin interspacing layer of manganese oxide is first electrodeposited on aluminum microrod substrates. Such deposited films, which were studied using SEM, XPS, XRD,...

  20. Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite

    Science.gov (United States)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2015-06-01

    An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).

  1. Hangzhou Jinjiang Group Shanxi Fusheng Aluminum Phase I 800,000 t/a Aluminum Oxide Project Started Operation

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On October 19,the Shanxi Province Pinglu County Phase I 800,000t/a Aluminum Oxide Project of Shanxi Fusheng Aluminum Co.,Ltd,a subordinate of Hangzhou Jinjiang Group,started operation.This is the fourth Aluminum oxide project constructed and operated by Jinjiang Group.

  2. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  3. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  4. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    OpenAIRE

    Sun, Jie; Sun, Yingchun

    2007-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system pH value played an important role in this experiment. The growth rate is 12 nm/h at room temperature. Post-growth annealing not only densifies and purifies the films, but results in film crystallization a...

  5. Preparation of well-aligned carbon nanotubes/silicon nanowires core-sheath composite structure arrays in porous anodic aluminum oxide templates

    Institute of Scientific and Technical Information of China (English)

    李梦轲; 陆梅; 王成伟; 力虎林

    2002-01-01

    The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiNWs) were deposited in the hollow cavities of CNTs. By using this method, CNTs/SiNWs core-sheath composite structure arrays were synthesized successfully. Growing structures and physical properties of the CNTs/SiNWs composite structure arrays were analyzed and researched by the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectrum (XRD), respectively. The field emission (FE) behavior of the CNTs/SiNWs composite structure arrays was studied based on Fowler- Nordheim tunneling mechanism and current-voltage (I -V) curve. And the photoluminescence (PL) was also characterized. Significantly, the CNTs/SiNWs core-sheath composite structure nanowire fabricated by AAO template method is characteristic of a metal/semiconductor (M/S) behavior and can be utilized to synthesize nanoscale PN junction or Schottky diode device. This process also could be useful for the fabrication of SiNWs and other nanoscale core-sheath composite structure nanowires with chemically inert interfaces for nanoscale electronic and device applications where surface oxidation is undesirable. The diameters and lengths of nanoscale composite structure arrays can be dominated easily, and the experimental result shows that the curling and twisting structures are fewer than those prepared by other synthesized methods.

  6. Effect of various de-anodizing techniques on the surface stability of non-colored and colored nanoporous AAO films in acidic solution

    Science.gov (United States)

    Awad, Ahmed M.; Shehata, Omnia S.; Heakal, Fakiha El-Taib

    2015-12-01

    Anodic aluminum oxide (AAO) is well known as an important nanostructured material, and a useful template in the fabrication of nanostructures. Nanoporous anodic alumina (PAA) with high open porosity was prepared by adopting three de-anodizing regimes following the first anodizing step and preceding the second one. The de-anodizing methods include electrolytic etching (EE) and chemical etching using either phosphoric acid (PE) or sodium hydroxide (HE) solutions. Three of the obtained AAO samples were black colored by electrodeposition of copper nanoparticles in their pores. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to characterize the electrochemical performance of the two sets of the prepared samples. In general, the data obtained in aggressive aerated 0.5 M HCl solution demonstrated dissimilar behavior for the three prepared samples despite that the second anodizing step was the same for all of them. The data indicated that the resistance and thickness of the inner barrier part of nano-PAA film, are the main controlling factors determining its stability. On the other hand, coloring the film decreased its stability due to the galvanic effect. The difference in the electrochemical behavior of the three colored samples was discussed based on the difference in both the pore size and thickness of the outer porous part of PAA film as supported by SEM, TEM and cross-sectional micrographs. These results can thus contribute for better engineering applications of nanoporous AAO.

  7. SEM and XPS studies of nanohole arrays on InP(1 0 0) surfaces created by coupling AAO templates and low energy Ar + ion sputtering

    Science.gov (United States)

    Robert-Goumet, C.; Monier, G.; Zefack, B.; Chelda, S.; Bideux, L.; Gruzza, B.; Awitor, O. K.

    2009-10-01

    The aim of the present study is to demonstrate the feasibility to form well-ordered nanoholes on InP(1 0 0) surfaces by low Ar + ion sputtering process in UHV conditions from anodized aluminum oxide (AAO) templates. This process is a promising approach in creating ordered arrays of surface nanostructures with controllable size and morphology. To follow the Ar + ion sputtering effects on the AAO/InP surfaces, X-ray photoelectron spectroscopy (XPS) was used to determine the different surface species. In 4d and P 2p core level spectra were recorded on different InP(1 0 0) surfaces after ions bombardment. XPS results showed the presence of metallic indium on both smooth InP(1 0 0) and AAO/InP(1 0 0) surfaces. Finally, we showed that this experiment led to the formation of metallic In dropplets about 10 nm in diameter on nanoholes patterned InP surface while the as-received InP(1 0 0) surface generated metallic In about 60 nm in diameter.

  8. Al膜平整度对硅基AAO有序度的影响%Effect of Flatness of Al Film on Fabrication of AAO Template on Silicon Substrate

    Institute of Scientific and Technical Information of China (English)

    李芹; 张海明; 胡国锋; 高波; 朱彦君; 李菁

    2011-01-01

    Using vacuum electron beam evaporation technology, two kinds of different smoothness of Al films had been prepared through changing the rate of evaporation Al on P-type Si substrate.The A1 films were treated with a one-step anodization process in oxalic acid, and then research findings showed that anodic oxidation film flatness had an effect on A1 silicon-based AAO(anodic aluminum oxide) order degrees. The results showed that the flatness of Al film largely determined the order of silicon-based AAO. The higher the smoothness of silicon-based A1 films is, the better the silicon-based AAO degree of order is obtained. In addition, the results display that the order degree of the silicon-based AAO has been significantly improved by using two-step anodization.%利用真空电子束蒸发技术,通过改变Al的蒸发速率在P型晶向的单晶硅片上制备了两种不同平整度的Al膜,在草酸中对它们分别进行一次阳极氧化,研究Al膜平整度对硅基AAO(多孔硅基氧化铝)有序度的影响.结果表明,硅基AAO的有序度对Al膜的平整度有很大的依赖性,硅基Al膜的平整度越高,所获得的硅基AAO的有序度就越好.另外,对平整度较差的Al膜进行二次阳极氧化可以显著地改善硅基AAO的有序度.

  9. Preparation of well-aligned carbon nanotubes/silicon nanowires core-sheath composite structure arrays in porous anodic aluminum oxide templates

    Institute of Scientific and Technical Information of China (English)

    李梦轲; 力虎林; 陆梅; 王成伟

    2002-01-01

    The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiNWs) were deposited in the hollow cavities of CNTs. By using this method, CNTs/SiNWs core-sheath composite structure arrays were synthesized successfully. Growing structures and physical properties of the CNTs/SiNWs composite structure arrays were analyzed and researched by the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectrum (XRD), respectively. The field emission (FE) behavior of the CNTs/SiNWs composite structure arrays was studied based on Fowler-Nordheim tunneling mechanism and current-voltage (/-V) curve. And the photoluminescence (PL) was also characterized. Significantly, the CNTs/SiNWs core-sheath composite structure nanowire fabricated by AAO template method is characteristic of a metal/semiconductor (M/S) behavior and can be

  10. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  11. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  12. Alkaline oxide conversion coatings for aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  13. Shuttle Redesigned Solid Rocket Motor aluminum oxide investigations

    Science.gov (United States)

    Blomshield, Fred S.; Kraeutle, Karl J.; Stalnaker, Richard A.

    1994-10-01

    During the launch of STS-54, a 15 psi pressure blip was observed in the ballistic pressure trace of one of the two Space Shuttle Redesigned Solid Rocket Motors (RSRM). One possible scenario for the observed pressure increase deals with aluminum oxide slag formation in the RSRM. The purpose of this investigation was to examine changes which may have occurred in the aluminum oxide formation in shuttle solid propellant due to changes in the ammonium perchlorate. Aluminum oxide formation from three propellants, all having the same formulation, but containing ammonium perchlorate from different manufacturers, will be compared. Three methods have been used to look for possible differences among the propellants. The first method was to examine window bomb movies of the propellants burning at 100, 300 and 600 psia. The motor operating pressure during the pressure blip was around 600 psia. The second method used small samples of propellant which were fired in a combustion bomb which quenched the burning aluminum particles soon after they left the propellant surface. The bomb was fired in both argon and Nitrogen atmospheres at various pressures. Products from this device were examined by optical microscopy. The third method used larger propellant samples fired into a particle collection device which allowed the aluminum to react and combust more completely. This device was pressurized with Nitrogen to motor operating pressures. The collected products were subdivided into size fractions by screening and sedimentation and analyzed optically with an optical microscope. the results from all three methods indicate very small changes in the size distribution of combustion products.

  14. Thermocurrent dosimetry with high purity aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al/sub 2/O/sub 3/) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces.

  15. Thermally stimulated luminescence studies in combustion synthesized polycrystalline aluminum oxide

    Indian Academy of Sciences (India)

    K R Nagabhushana; B N Lakshminarasappa; D Revannasiddaiah; Fouran Singh

    2008-08-01

    Synthesis of materials by combustion technique results in homogeneous and fine crystalline product. Further, the technique became more popular since it not only saved time and energy but also was easy to process. Aluminum oxide phosphor was synthesized by using urea as fuel in combustion reaction. Photoluminescence (PL) and thermally stimulated luminescence (TSL) characteristics of -irradiated aluminum oxide samples were studied. A broad PL emission with a peak at ∼ 465 nm and a pair of strong and sharp emissions with peaks at 679 and 695 nm were observed in -rayed samples. The PL intensity was observed to increase with increase in -ray dose. Two prominent and well resolved TSL glows with peaks at 210°C and 365°C were observed in all -irradiated Al2O3 samples. The TSL intensity was also found to increase with increase in -ray dose. The TSL glow curves indicated second order kinetics.

  16. Oxide mediated spectral shifting in aluminum resonant optical antennas.

    Science.gov (United States)

    Schwab, Patrick M; Moosmann, Carola; Dopf, Katja; Eisler, Hans-Jürgen

    2015-10-01

    As a key feature among metals showing good plasmonic behavior, aluminum extends the spectrum of achievable plasmon resonances of optical antennas into the deep ultraviolet. Due to degradation, a native oxide layer gives rise to a metal-core/oxide-shell nanoparticle and influences the spectral resonance peak position. In this work, we examine the role of the underlying processes by applying numerical nanoantenna models that are experimentally not feasible. Finite-difference time-domain simulations are carried out for a large variety of elongated single-arm and two-arm gap nanoantennas. In a detailed analysis, which takes into account the varying surface-to-volume ratio, we show that the overall spectral shift toward longer wavelengths is mainly driven by the higher index surrounding material rather than by the decrease of the initial aluminum volume. In addition, we demonstrate experimentally that this shifting can be minimized by an all-inert fabrication and subsequent proof-of-concept encapsulation.

  17. Catalytic Behaviour of Mesoporous Cobalt-Aluminum Oxides for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Ankur Bordoloi

    2014-01-01

    Full Text Available Ordered mesoporous materials are promising catalyst supports due to their uniform pore size distribution, high specific surface area and pore volume, tunable pore sizes, and long-range ordering of the pore packing. The evaporation-induced self-assembly (EISA process was applied to synthesize mesoporous mixed oxides, which consist of cobalt ions highly dispersed in an alumina matrix. The characterization of the mesoporous mixed cobalt-aluminum oxides with cobalt loadings in the range from 5 to 15 wt% and calcination temperatures of 673, 973, and 1073 K indicates that Co2+ is homogeneously distributed in the mesoporous alumina matrix. As a function of the Co loading, different phases are present comprising poorly crystalline alumina and mixed cobalt aluminum oxides of the spinel type. The mixed cobalt-aluminum oxides were applied as catalysts in CO oxidation and turned out to be highly active.

  18. Atomic layer deposited aluminum oxide barrier coatings for packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi, E-mail: terhi.hirvikorpi@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Vaehae-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Mustonen, Tuomas, E-mail: tuomas.mustonen@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Iiskola, Eero, E-mail: eero.iiskola@kcl.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Karppinen, Maarit, E-mail: maarit.karppinen@tkk.f [Laboratory of Inorganic Chemistry, Department of Chemistry, Helsinki University of Technology, P.O. Box 6100, FI-02015 TKK (Finland)

    2010-03-01

    Thin aluminum oxide coatings have been deposited at a low temperature of 80 {sup o}C on various uncoated papers, polymer-coated papers and boards and plain polymer films using the atomic layer deposition (ALD) technique. The work demonstrates that such ALD-grown Al{sub 2}O{sub 3} coatings efficiently enhance the gas-diffusion barrier performance of the studied porous and non-porous materials towards oxygen, water vapor and aromas.

  19. Effect of aluminum metal surface on oxidation of iodide under gamma irradiation conditions

    International Nuclear Information System (INIS)

    The effects of aluminum surface on I- oxidation under gamma irradiation were investigated. Without irradiation, only O2 oxidized I- at pH < 2, and aluminum expedited the oxidation reaction. With irradiation, the radiolysis products from water and air oxidized I- into I3-. At pH < 2, O2 generated by water radiolysis additionally oxidized I-. However, at pH > 6, the H2O2 radiolysis product reduced I3- into I-. A smaller amount of I3- was observed in pH 1.9 and 3.3 solutions in contact with aluminum under irradiation because oxidants preferentially oxidize aluminum rather than I-. Moreover, for pH < 6.0, even less I3- was formed by aluminum exposed to air because air radiolysis products also preferentially oxidized aluminum. (author)

  20. Anodic Oxidation in Aluminum Electrode by Using Hydrated Amorphous Aluminum Oxide Film as Solid Electrolyte under High Electric Field.

    Science.gov (United States)

    Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi

    2016-05-01

    Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures.

  1. Prediction of new thermodynamically stable aluminum oxides

    CERN Document Server

    Liu, Yue; Wang, Shengnan; Zhu, Qiang; Dong, Xiao; Kresse, Georg

    2015-01-01

    Recently, it has been shown that under pressure, unexpected and counterintuitive chemical compounds become stable. Laser shock experiments (A. Rode, unpublished) on alumina (Al2O3) have shown non-equilibrium decomposition of alumina with the formation of free Al and a mysterious transparent phase. Inspired by these observations, with have explored the possibility of the formation of new chemical compounds in the system Al-O. Using the variable-composition structure prediction algorithm USPEX, in addition to the well-known Al2O3, we have found two extraordinary compounds Al4O7 and AlO2 to be thermodynamically stable in the pressure range 330-443 GPa and above 332 GPa, respectively. Both of these compounds at the same time contain oxide O2- and peroxide O22- ions, and both are insulating. Peroxo-groups are responsible for gap states, which significantly reduce the electronic band gap of both Al4O7 and AlO2.

  2. Radioluminescence of rare-earth doped aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, M.; Molina, P. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Barros, V. S.; Khoury, H. J.; Elihimas, D. R., E-mail: msantiag@exa.unicen.edu.ar [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, Recife, PE 50740-540 (Brazil)

    2011-10-15

    Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al{sub 2}O{sub 3} samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  3. Core–Shell Electrospun Hollow Aluminum Oxide Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Jonathan W. Rajala

    2015-10-01

    Full Text Available In this work, core–shell electrospinning was employed as a simple method for the fabrication of composite coaxial polymer fibers that became hollow ceramic tubes when calcined at high temperature. The shell polymer solution consisted of polyvinyl pyrollidone (PVP in ethanol mixed with an aluminum acetate solution to act as a ceramic precursor. The core polymer was recycled polystyrene to act as a sacrificial polymer that burned off during calcination. The resulting fibers were analyzed with X-ray diffraction (XRD and energy dispersive spectroscopy (EDS to confirm the presence of gamma-phase aluminum oxide when heated at temperatures above 700 °C. The fiber diameter decreased from 987 ± 19 nm to 382 ± 152 nm after the calcination process due to the polymer material being burned off. The wall thickness of these fibers is estimated to be 100 nm.

  4. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    Institute of Scientific and Technical Information of China (English)

    SUN,Jie(孙捷); SUN,Ying-Chun(孙迎春)

    2004-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system's pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al2(SO4)3]=0.0837 mol·L-1, [NaHCO3]=0.214 mol·L-1, 15 ℃. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well, Excellent quality of A12O3 films in this work is supported by electron dispersion spectroscopy,Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.

  5. Irradiation behavior of uranium oxide - Aluminum dispersion fuel

    International Nuclear Information System (INIS)

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO2-Al dispersion fuel. The aluminum-fuel interaction models were developed based on U3O8-Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products and as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show that, with the assumption that the correlations derived from U3O8 are valid for UO2, the LEU UO2-Al with a 42% fuel volume loading (4 g U/cm3 ) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 1027 fissions m-3 (∼63% 235U burnup). (author)

  6. Low temperature solid oxide fuel cells with proton-conducting Y:BaZrO3 electrolyte on porous anodic aluminum oxide substrate

    International Nuclear Information System (INIS)

    This paper presents the architecture of a nano thin-film yttrium-doped barium zirconate (BYZ) solid-oxide fuel cell that uses nanoporous anodic aluminum oxide (AAO) as a supporting and gas-permeable substrate. The anode was fabricated by sputtering 300 nm platinum thin film that partially covered the AAO surface pores, followed by an additional conformal platinum coating to tune the pore size by atomic layer deposition. Two different nano-porous anode structures with a pore size of 10 nm or 50 nm were deposited. Proton-conducting BYZ ceramic electrolyte with increasing thicknesses of 300, 600, and 900 nm was deposited on top of the platinum anode by pulsed laser deposition, followed by a 200 nm layer of porous Pt sputtered on BYZ electrolyte as a cathode. The open circuit voltage (OCV) of the fuel cells was characterized at 250 °C with 1:1 volumetric stoichiometry of a methanol/water vapor mixture as the fuel. The OCVs were 0.17 V with a 900 nm-thick BYZ electrolyte on 50 nm pores and 0.3 V with a 600 nm-thick BYZ electrolyte on 10 nm pores, respectively, but it increased to 0.8 V for a 900 nm-thick BYZ electrolyte on 10 nm pores, indicating that increasing the film thickness and decreasing a surface pore size help to reduce the number of electrolyte pinholes and the gas leakage through the electrolyte. A maximum power density of 5.6 mW/cm2 at 250 °C was obtained from the fuel cell with 900 nm of BYZ electrolyte using methanol vapor as a fuel. - Highlights: • A low temperature ceramic fuel cell on nano-porous substrate was demonstrated. • A thin-film yttrium doped barium zirconate (BYZ) was deposited as an electrolyte. • An open circuit voltage (OCV) was measured to verify the BYZ film quality. • An OCV increased by increasing BYZ film thickness and decreasing pore size of anode. • The current–voltage performance was measured using vaporized methanol fuel at 250 °C

  7. Low temperature solid oxide fuel cells with proton-conducting Y:BaZrO{sub 3} electrolyte on porous anodic aluminum oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seungbum [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Su, Pei-Chen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Cha, Suk Won, E-mail: swcha@snu.ac.kr [School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of)

    2013-10-01

    This paper presents the architecture of a nano thin-film yttrium-doped barium zirconate (BYZ) solid-oxide fuel cell that uses nanoporous anodic aluminum oxide (AAO) as a supporting and gas-permeable substrate. The anode was fabricated by sputtering 300 nm platinum thin film that partially covered the AAO surface pores, followed by an additional conformal platinum coating to tune the pore size by atomic layer deposition. Two different nano-porous anode structures with a pore size of 10 nm or 50 nm were deposited. Proton-conducting BYZ ceramic electrolyte with increasing thicknesses of 300, 600, and 900 nm was deposited on top of the platinum anode by pulsed laser deposition, followed by a 200 nm layer of porous Pt sputtered on BYZ electrolyte as a cathode. The open circuit voltage (OCV) of the fuel cells was characterized at 250 °C with 1:1 volumetric stoichiometry of a methanol/water vapor mixture as the fuel. The OCVs were 0.17 V with a 900 nm-thick BYZ electrolyte on 50 nm pores and 0.3 V with a 600 nm-thick BYZ electrolyte on 10 nm pores, respectively, but it increased to 0.8 V for a 900 nm-thick BYZ electrolyte on 10 nm pores, indicating that increasing the film thickness and decreasing a surface pore size help to reduce the number of electrolyte pinholes and the gas leakage through the electrolyte. A maximum power density of 5.6 mW/cm{sup 2} at 250 °C was obtained from the fuel cell with 900 nm of BYZ electrolyte using methanol vapor as a fuel. - Highlights: • A low temperature ceramic fuel cell on nano-porous substrate was demonstrated. • A thin-film yttrium doped barium zirconate (BYZ) was deposited as an electrolyte. • An open circuit voltage (OCV) was measured to verify the BYZ film quality. • An OCV increased by increasing BYZ film thickness and decreasing pore size of anode. • The current–voltage performance was measured using vaporized methanol fuel at 250 °C.

  8. Nanoscale aluminum concaves for light-trapping in organic thin-films

    Science.gov (United States)

    Goszczak, Arkadiusz Jarosław; Adam, Jost; Cielecki, Paweł Piotr; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2016-07-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may be used as an efficient method for enhancing the power conversion efficiency of organic solar cells.

  9. Standard specification for nuclear-grade aluminum oxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification applies to pellets of aluminum oxide that may be ultimately used in a reactor core, for example, as filler or spacers within fuel, burnable poison, or control rods. In order to distinguish between the subject pellets and “burnable poison” pellets, it is established that the subject pellets are not intended to be used as neutron-absorbing material. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

  10. Chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Aluminum oxide pellets are used in a reactor core as filler or spacers within fuel, burnable poison, or control rods. In order to be suitable for this purpose, the material must meet certain criteria for impurity content. The test methods in the standard are designed to show whether or not a given material meets these specifications. The following analytical procedures are described in detail: boron by titrimetry; separation of boron by mass spectrometry; isotopic composition by mass spectrometry; separation of halides by pyrohydrolysis; fluoride by ion-selective electrode; chloride, bromide, and iodide by amperometric microtitrimetry; trace elements by emission spectroscopy. (JMT)

  11. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size

    Energy Technology Data Exchange (ETDEWEB)

    Vinardell, M. P., E-mail: mpvinardellmh@ub.edu; Sordé, A. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain); Díaz, J. [Universitat de Barcelona CCiT, Scientific and Technological Centers (Spain); Baccarin, T.; Mitjans, M. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain)

    2015-02-15

    Al{sub 2}O{sub 3} is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military, and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm, and nanowire 2–6 × 200–400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats, and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50 % hemolysis (HC{sub 50}) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al{sub 2}O{sub 3}, but not on Al{sub 2}O{sub 3}. The drop in HC{sub 50} correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation. Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.

  12. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size

    International Nuclear Information System (INIS)

    Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military, and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm, and nanowire 2–6 × 200–400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats, and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50 % hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation. Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide

  13. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    Science.gov (United States)

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte. PMID:25125114

  14. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  15. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

    Directory of Open Access Journals (Sweden)

    Sanghoon Ji

    2015-08-01

    Full Text Available Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC; BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C.

  16. Aluminum Oxide Formation On Fecral Catalyst Support By Electro-Chemical Coating

    Directory of Open Access Journals (Sweden)

    Yang H.S.

    2015-06-01

    Full Text Available FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

  17. Amorphous coatings deposited on aluminum alloy by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2005-01-01

    Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 μm/min if the current density is 0.9 mA/mm2. XRD results show that the PEO coatings are amorphous in the current density range of 0.3 - 0.9mA/mm2. EDS results show that the coatings are composed of O, Si and Al elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.

  18. Simulation, optimization and testing of a novel high spatial resolution X-ray imager based on Zinc Oxide nanowires in Anodic Aluminium Oxide membrane using Geant4

    International Nuclear Information System (INIS)

    In this work, a new generation of scintillator based X-ray imagers based on ZnO nanowires in Anodized Aluminum Oxide (AAO) nanoporous template is characterized. The optical response of ordered ZnO nanowire arrays in porous AAO template under low energy X-ray illumination is simulated by the Geant4 Monte Carlo code and compared with experimental results. The results show that for 10 keV X-ray photons, by considering the light guiding properties of zinc oxide inside the AAO template and suitable selection of detector thickness and pore diameter, the spatial resolution less than one micrometer and the detector detection efficiency of 66% are accessible. This novel nano scintillator detector can have many advantages for medical applications in the future

  19. Aluminum ions accelerated the oxidative stress of copper-mediated melanin formation

    Science.gov (United States)

    Di, Junwei; Bi, Shuping

    2003-11-01

    A comparison between the effects of aluminum and cupric ions on the dopachrome (DC) conversion and the cooperation effect of the both ions in the DOPA oxidation to melanin pathway has been studied by UV-Vis spectrophotometric method. Both aluminum and cupric ions catalyze the DC conversion reaction, which is an important step in the melanin synthesis pathway. However, cupric ions catalyze the conversion of DC to yield 5,6-dihydroxyindole-2-carboxylic acid (DHICA) but the product of DC conversion catalyzed by aluminum is 5,6-dihydroxyindole (DHI). DOPA oxidation catalyzed by aluminum and cupric ions is studied in the presence of hydrogen peroxide. The results from our experiments provide evidence that aluminum can markedly increase the oxidative stress of copper-mediated the melanin formation and influence the properties of the melanin by means of changing the ratio of DHICA/DHI in the acidic environment (pH 5.5).

  20. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al{sub 2}O{sub 3} on Li ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kashish [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States); Routkevitch, Dmitri; Varaksa, Natalia [InRedox, Longmont, Colorado 80544 (United States); George, Steven M., E-mail: Steven.George@Colorado.Edu [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-01-15

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the pores of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability. This S

  1. Fabrication of Corrosion Resistance Micro-Nanostructured Superhydrophobic Anodized Aluminum in a One-Step Electrodeposition Process

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2016-02-01

    Full Text Available The formation of low surface energy hybrid organic-inorganic micro-nanostructured zinc stearate electrodeposit transformed the anodic aluminum oxide (AAO surface to superhydrophobic, having a water contact angle of 160°. The corrosion current densities of the anodized and aluminum alloy surfaces are found to be 200 and 400 nA/cm2, respectively. In comparison, superhydrophobic anodic aluminum oxide (SHAAO shows a much lower value of 88 nA/cm2. Similarly, the charge transfer resistance, Rct, measured by electrochemical impedance spectroscopy shows that the SHAAO substrate was found to be 200-times larger than the as-received aluminum alloy substrate. These results proved that the superhydrophobic surfaces created on the anodized surface significantly improved the corrosion resistance property of the aluminum alloy.

  2. RF Magnetron Sputtering Aluminum Oxide Film for Surface Passivation on Crystalline Silicon Wafers

    Directory of Open Access Journals (Sweden)

    Siming Chen

    2013-01-01

    Full Text Available Aluminum oxide films were deposited on crystalline silicon substrates by reactive RF magnetron sputtering. The influences of the deposition parameters on the surface passivation, surface damage, optical properties, and composition of the films have been investigated. It is found that proper sputtering power and uniform magnetic field reduced the surface damage from the high-energy ion bombardment to the silicon wafers during the process and consequently decreased the interface trap density, resulting in the good surface passivation; relatively high refractive index of aluminum oxide film is benefic to improve the surface passivation. The negative-charged aluminum oxide film was then successfully prepared. The surface passivation performance was further improved after postannealing by formation of an SiOx interfacial layer. It is demonstrated that the reactive sputtering is an effective technique of fabricating aluminum oxide surface passivation film for low-cost high-efficiency crystalline silicon solar cells.

  3. The Software System for the AAO's HERMES Spectrograph

    Science.gov (United States)

    Shortridge, K.; Farrell, T.; Vuong, M.; Birchall, M.; Heald, R.

    2013-10-01

    The AAO's HERMES spectrograph will start operation in 2013. Its primary project will be a Galactic Archaeology survey that aims to reconstruct the early history of our Galaxy through precise measurements of the chemical abundances of one million stars. This paper describes some of the software aspects of the HERMES project: how it has evolved from the earlier AAO 2dF system, the extensive use of simulation for testing, the overall observing system, and the data reduction pipeline.

  4. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Zhenjiang Watercraft College, Zhenjiang 212000, Jiangsu (China); Wu, Jie [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Qu, Yao; Yang, Chaolin; Wang, Bin; Wu, Xianying [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-14

    A plasma electrolytic oxidation (PEO) process was performed on the 2024 aluminum alloy in silicate electrolyte to fabricate ceramic coatings under a constant voltage. Optical emission spectroscopy (OES) was employed to evaluate the characteristics of plasma discharge during PEO process. The plasma electron temperature and density were obtained by analyzing the spectral lines of OES, and the atomic ionization degree in discharge zone was calculated in terms of Saha thermal ionization equation. The illumination intensity of plasma discharge and the temperature in the interior of alloy were measured. Combining the surface morphology and cross-sectional microstructure with the optical emission spectra and illumination at different discharge stage, a discharge model in the growth of PEO ceramic coatings was proposed. It is found that there are two discharge modes of type A with small spark size and type B with large spark size, and the latter only appears in the intermediate stage of PEO process. The illumination intensity has a maximum value in the initial stage of oxidation with many sparks of discharge type A. The electron temperature in plasma discharge zone is about 3000 K–7000 K and atomic ionization degree of Al is about 2.0 × 10{sup −5}–7.2 × 10{sup −3}, which depend on discharge stage. The discharge type B plays a key role on the electron temperature and atomic ionization degree. The electron density keeps stable in the range of about 8.5 × 10{sup 21} m{sup −3}–2.6 × 10{sup 22} m{sup −3}. - Highlights: • The characteristics of PEO plasma discharge was evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • Discharge model for the growth of PEO coatings was proposed. • Temperature in the interior of alloy during PEO process was measured.

  5. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance.

    Science.gov (United States)

    Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu

    2015-01-28

    Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5° for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces. PMID:25529561

  6. Fractal dimension analysis of aluminum oxide particle for sandblasting dental use.

    Science.gov (United States)

    Oshida, Y; Munoz, C A; Winkler, M M; Hashem, A; Itoh, M

    1993-01-01

    Aluminum oxide particles are commonly used as a sandblasting media, particularly in dentistry, for multiple purposes including divesting the casting investment materials and increasing effective surface area for enhancing the mechanical retention strengths of succeedingly applied fired porcelain or luting cements. Usually fine aluminum oxide particles are recycled within the sandblasting machine. Ceramics such as aluminum oxides are brittle, therefore, some portions of recycling aluminum oxide particles might be brittle fractured. If fractured sandblasting particles are involved in the recycling media, it might result in irregularity metallic materials surface as well as the recycling sandblasting media itself be contaminated. Hence, it is necessary from both clinical and practical reasons to monitor the particle conditions in terms of size/shape and effectiveness of sandblasting, so that sandblasting dental prostheses can be fabricated in optimum and acceptable conditions. In the present study, the effect of recycling aluminum oxide particles on the surface texture of metallic materials was evaluated by Fractal Dimension Analysis (FDA). Every week the alumina powder was sampled and analyzed for weight fraction and contaminants. Surface texture of sandblasted standard samples was also characterized by FDA. Results indicate very little change in particle size, while the fractal dimension increased. Fractal dimension analysis showed that the aluminum oxide particle as a sandblasting media should be replaced after 30 or 40 min of total accumulated operation time.

  7. Passivation effects of atomic-layer-deposited aluminum oxide

    Directory of Open Access Journals (Sweden)

    Kotipalli R.

    2013-09-01

    Full Text Available Atomic-layer-deposited (ALD aluminum oxide (Al2O3 has recently demonstrated an excellent surface passivation for both n- and p-type c-Si solar cells thanks to the presence of high negative fixed charges (Qf ~ 1012−1013 cm-2 in combination with a low density of interface states (Dit. This paper investigates the passivation quality of thin (15 nm Al2O3 films deposited by two different techniques: plasma-enhanced atomic layer deposition (PE-ALD and Thermal atomic layer deposition (T-ALD. Other dielectric materials taken into account for comparison include: thermally-grown silicon dioxide (SiO2 (20 nm, SiO2 (20 nm deposited by plasma-enhanced chemical vapour deposition (PECVD and hydrogenated amorphous silicon nitride (a-SiNx:H (20 nm also deposited by PECVD. With the above-mentioned dielectric layers, Metal Insulator Semiconductor (MIS capacitors were fabricated for Qf and Dit extraction through Capacitance-Voltage-Conductance (C-V-G measurements. In addition, lifetime measurements were carried out to evaluate the effective surface recombination velocity (SRV. The influence of extracted C-V-G parameters (Qf,Dit on the injection dependent lifetime measurements τ(Δn, and the dominant passivation mechanism involved have been discussed. Furthermore we have also studied the influence of the SiO2 interfacial layer thickness between the Al2O3 and silicon surface on the field-effect passivation mechanism. It is shown that the field effect passivation in accumulation mode is more predominant when compared to surface defect passivation.

  8. Impact analysis of temperature, reflux ratio and dissolved oxygen to nitrogen and phosphorus removal in A/A/O oxidation ditch system%温度、回流比和DO值对A/A/O氧化沟工艺脱氮除磷的影响分析

    Institute of Scientific and Technical Information of China (English)

    赵卫星

    2012-01-01

      A/A/O oxidation ditch was widely used in sewage treatment with its feature: short process control, sludge performance and or-ganic compounds ,nitrogen and phosphorus removal. Impact analysis of temperature reflux ratio and dissolved oxygen to nitrogen and phosphorus removal in A/A/O oxidation ditch system. When these effective factors achieved overall balance output indicators was well as excepted.%  A/A/O氧化沟工艺以其流程简短、污泥性能好、去除有机物和脱氮除磷等特点,被广泛用于处理生活污水[1]。本文综合分析了温度、回流比和DO值等因素对脱氮除磷的影响,认为上述因素达到综合平衡时,出水指标才达到预期处理效果。

  9. A perspective of microplasma oxidation (MPO) and vapor deposition coatings in surface engineering of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2004-01-01

    Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.

  10. Interaction of ester functional groups with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy.

    Science.gov (United States)

    van den Brand, J; Blajiev, O; Beentjes, P C J; Terryn, H; de Wit, J H W

    2004-07-20

    The bonding of two types of ester group-containing molecules with a set of different oxide layers on aluminum has been investigated using infrared reflection absorption spectroscopy. The different oxide layers were made by giving typical surface treatments to the aluminum substrate. The purpose of the investigation was to find out what type of ester-oxide bond is formed and whether this is influenced by changes in the composition and chemistry of the oxide. The extent by which these bonded ester molecules resisted disbondment in water or substitution by molecules capable of chemisorption was also investigated. The ester groups were found to show hydrogen bonding with hydroxyls on the oxide surfaces through their carbonyl oxygens. For all oxides, the ester groups showed the same nu(C = O) carbonyl stretching vibration after adsorption, indicating very similar bonding occurs. However, the oxides showed differences in the amount of molecules bonded to the oxide surface, and a clear relation was observed with the hydroxyl concentration present on the oxide surface, which was determined from XPS measurements. The two compounds showed differences in the free to bonded nu(C = O) infrared peak shift, indicating differences in bonding strength with the oxide surface between the two types of molecules. The bonding of the ester groups with the oxide surfaces was found to be not stable in the presence of water and also not in the presence of a compound capable of chemisorption with the aluminum oxide surface. PMID:15248718

  11. Improving the direct electron transfer in monolithic bioelectrodes prepared by immobilization of FDH enzyme on carbon-coated anodic aluminum oxide films

    Directory of Open Access Journals (Sweden)

    Alberto eCastro-Muñiz

    2016-02-01

    Full Text Available The present work reports the preparation of binderless carbon-coated porous films and the study of their performance as monolithic bioanodes. The films were prepared by coating anodic aluminum oxide (AAO films with a thin layer of nitrogen-doped carbon by chemical vapor deposition. The films have cylindrical straight pores with controllable diameter and length. These monolithic films were used directly as bioelectrodes by loading the films with D-fructose dehydrogenase (FDH, an oxidoreductase enzyme that catalyzes the oxidation of D-fructose to 5-keto-D-fructose. The immobilization of the enzymes was carried out by physical adsorption in liquid phase and with an electrostatic attraction method. The latter method takes advantage of the fact that FDH is negatively charged during the catalytic oxidation of fructose. Thus the immobilization was performed under the application of a positive voltage to the CAAO film in a FDH-fructose solution in McIlvaine buffer (pH 5 at 25 ºC. As a result, the FDH modified electrodes with the latter method show much better electrochemical response than that with the conventional physical adsorption method. Due to the singular porous structure of the monolithic films, which consists of an array of straight and parallel nanochannels, it is possible to rule out the effect of the diffusion of the D-fructose into the pores. Thus the improvement in the performance upon using the electrostatic attraction method can be ascribed not only to a higher uptake, but also to a more appropriate molecule orientation of the enzyme units on the surface of the electrodes.

  12. Improving the direct electron transfer in monolithic bioelectrodes prepared by immobilization of FDH enzyme on carbon-coated anodic aluminum oxide films

    Science.gov (United States)

    Castro-Muñiz, Alberto; Hoshikawa, Yasuto; Komiyama, Hiroshi; Nakayama, Wataru; Itoh, Tetsuji; Kyotani, Takashi

    2016-02-01

    The present work reports the preparation of binderless carbon-coated porous films and the study of their performance as monolithic bioanodes. The films were prepared by coating anodic aluminum oxide (AAO) films with a thin layer of nitrogen-doped carbon by chemical vapor deposition. The films have cylindrical straight pores with controllable diameter and length. These monolithic films were used directly as bioelectrodes by loading the films with D-fructose dehydrogenase (FDH), an oxidoreductase enzyme that catalyzes the oxidation of D-fructose to 5-keto-D-fructose. The immobilization of the enzymes was carried out by physical adsorption in liquid phase and with an electrostatic attraction method. The latter method takes advantage of the fact that FDH is negatively charged during the catalytic oxidation of fructose. Thus the immobilization was performed under the application of a positive voltage to the CAAO film in a FDH-fructose solution in McIlvaine buffer (pH 5) at 25 ºC. As a result, the FDH modified electrodes with the latter method show much better electrochemical response than that with the conventional physical adsorption method. Due to the singular porous structure of the monolithic films, which consists of an array of straight and parallel nanochannels, it is possible to rule out the effect of the diffusion of the D-fructose into the pores. Thus the improvement in the performance upon using the electrostatic attraction method can be ascribed not only to a higher uptake, but also to a more appropriate molecule orientation of the enzyme units on the surface of the electrodes.

  13. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    Science.gov (United States)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  14. Optical Anisotropy and Porosity of Anodic Aluminum Oxide Characterized by Spectroscopic Ellipsometry

    NARCIS (Netherlands)

    Kooij, E. Stefan; Wormeester, Herbert; Galca, Aurelian C.; Poelsema, Bene

    2003-01-01

    Anodic oxidation of aluminum results in a mesoporous oxide film. The thin-film geometry of our samples enables straightforward optical modeling of ellipsometry spectra of fully anodized films, using only three physically relevant parameters. The system of randomly distributed, but aligned cylindrica

  15. Anomalous hexagonal superstructure of aluminum oxide layer grown on NiAl(110) surface

    Science.gov (United States)

    Krukowski, Pawel; Chaunchaiyakul, Songpol; Minagawa, Yuto; Yajima, Nami; Akai-Kasaya, Megumi; Saito, Akira; Kuwahara, Yuji

    2016-11-01

    A modified method for the fabrication of a highly crystallized layer of aluminum oxide on a NiAl(110) surface is reported. The fabrication method involves the multistep selective oxidation of aluminum atoms on a NiAl(110) surface resulting from successive oxygen deposition and annealing. The surface morphology and local electronic structure of the novel aluminum oxide layer were investigated by high-resolution imaging using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy. In contrast to the standard fabrication method of aluminum oxide on a NiAl(110) surface, the proposed method produces an atomically flat surface exhibiting a hexagonal superstructure. The superstructure exhibits a slightly distorted hexagonal array of close-packed bright protrusions with a periodicity of 4.5 ± 0.2 nm. Atomically resolved STM imaging of the aluminum oxide layer reveals a hexagonal arrangement of dark contrast spots with a periodicity of 0.27 ± 0.02 nm. On the basis of the atomic structure of the fabricated layer, the formation of α-Al2O3(0001) on the NiAl(110) surface is suggested.

  16. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongya; Dong, Guangneng, E-mail: donggn@mail.xjtu.edu.cn; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-30

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm{sup 2} for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  17. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    Science.gov (United States)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  18. 阳极氧化法制备多孔氧化铝膜的形成过程研究%Investigation on the growth sequence of porous anodic aluminum oxide films by two-step anodization

    Institute of Scientific and Technical Information of China (English)

    刘海凤; 路丙强; 梁冬林; 魏水强; 苟凯佩; 王凡; 文衍宣

    2012-01-01

    采用阳极氧化技术,研究了电压对多孔氧化铝膜生长过程的影响.使用扫描电镜( SEM)对在草酸-水-乙醇体系中形成的多孔氧化铝膜形貌进行观测.结果表明,在第二步氧化过程中,在40V氧化电压下,多孔氧化铝膜的有序度和孔径随反应时间延长而降低;在80 V下,经过长时间反应,AAO膜表面腐蚀严重,难以获得平整的多孔结构.预氧化过程所形成的薄氧化层有效保护了多孔氧化铝表面,同时对多孔结构具有短距离诱导作用.改变氧化电压、电解质浓度和反应时间,有序孔排列的结构参数也有所改变.高电场下,孔道的相互作用促进了其生长分化,形成了两种不同的孔道结构.%The detailed growth processes of porous anodic aluminum oxide films influenced by the applied voltage were studied via anodization method. The appearance of the porous anodic aluminum oxide films formed in oxalic acid-water-ethanol solution was studied by SEM. At the second anodization step, the ordering degree and pore size of oxide films decreased at 40 V, while the rough surface of AAO by severe corrosion was obtained at 80 V. Whereas, the surface oxide layer generated by pre-anodization provided effective protection at the early stage of high-voltage anodization, and guided the formation of ordered pores array in short range. The structural parameters of ordered pores array were dependent on the applied voltage, electrolyte concentration and reaction time. At high applied voltage, the cause of interaction forces between neighboring pores enhances the differentiation of pore growth, and hence two different pores growth behaviors in the internal and surface of AAO membrane are observed.

  19. Porous Spherical Cellulose Composites Coated by Aluminum (Ⅲ) Oxide and Silicone: Preparation,Characterization and Adsorption Behavior

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Porous spherical cellulose composite (PSCA) coated by aluminum (Ⅲ) oxide was prepared andmodified by organosilicone. SEM images of the surface morphology of the bead cellulose shows that it hasspherical shape and abundant porous structure on its surface. The mapping images of aluminum and silicon ofthe composite (PSCAS) present aluminum( Ⅲ ) oxide and silicone are uniformly dispersed on the surface. Theadsorption behavior of PSCAS toward metal ions was determined.

  20. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide

    International Nuclear Information System (INIS)

    Zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films were deposited via atmospheric pressure plasma enhanced chemical vapor deposition. A second-generation precursor, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N′-diethylethylenediamine) zinc, exhibited significant vapor pressure and good stability at one atmosphere where a vaporization temperature of 110 °C gave flux ∼ 7 μmol/min. Auger electron spectroscopy confirmed that addition of H2O to the carrier gas stream mitigated F contamination giving nearly 1:1 metal:oxide stoichiometries for both ZnO and AZO with little precursor-derived C contamination. ZnO and AZO thin film resistivities ranged from 14 to 28 Ω·cm for the former and 1.1 to 2.7 Ω·cm for the latter. - Highlights: • A second generation precursor was utilized for atmospheric pressure film growth. • Addition of water vapor to the carrier gas stream led to a marked reduction of ZnF2. • Carbonaceous contamination from the precursor was minimal

  1. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    M. Ovundur

    2015-03-01

    Full Text Available This study was initiated to compare the tribological performances of a 5754 quality aluminum alloy after hard anodic oxidation and micro arc oxidation processes. The structural analyses of the coatings were performed using XRD and SEM techniques. The hardness of the coatings was determined using a Vickers micro-indentation tester. Tribological performances of the hard anodized and micro arc oxidized samples were compared on a reciprocating wear tester under dry sliding conditions. The dry sliding wear tests showed that the wear resistance of the oxide coating generated by micro arc oxidation is remarkably higher than that of the hard anodized alloy.

  2. Cerium oxide as conversion coating for the corrosion protection of aluminum

    Directory of Open Access Journals (Sweden)

    JELENA GULICOVSKI

    2013-11-01

    Full Text Available CeO2 coatings were formed on the aluminum after Al surface preparation, by dripping the ceria sol, previously prepared by forced hydrolysis of Ce(NO34. The anticorrosive properties of ceria coatings were investigated by the electrochemical impedance spectroscopy (EIS during the exposure to 0.03 % NaCl. The morphology of the coatings was examined by the scanning electron microscopy (SEM. EIS data indicated considerably larger corrosion resistance of CeO2-coated aluminum than for bare Al. The corrosion processes on Al below CeO2 coating are subjected to more pronounced diffusion limitations in comparison to the processes below passive aluminum oxide film, as the consequence of the formation of highly compact protective coating. The results show that the deposition of ceria coatings is an effective way to improve corrosion resistance for aluminum.

  3. Enhancement of oxidation resistance of NBD 200 silicon nitride ceramics by aluminum implantation

    Science.gov (United States)

    Mukundhan, Priya

    Silicon nitride (Si3N4) ceramics are leading candidates for high temperature structural applications. They have already demonstrated functional capabilities well beyond the limits of conventional metals and alloys in advanced diesel and turbine engines. However, the practical exploitation of these benefits is limited by their oxidation and associated degradation processes in chemically aggressive environments. Additives and impurities in Si3N4 segregate to the surface of Si3N 4 and accelerate its high temperature oxidation process. This study aims to investigate the oxidation behavior of Norton NBD 200 silicon nitride (hot isostatically pressed with ˜1 wt.% MgO) and its modification by aluminum surface alloying. NBD 200 samples tribochemically polished to a mirror finish (10 nm) were implanted with 5, 10, 20 and 30 at.% aluminum at multienergies and multi-doses to achieve a uniform implant depth distribution to 200 nm. Unimplanted and aluminum-implanted samples were oxidized at 800°--1100°C in 1 atm O2 for 0.5--10 hours. Oxidation kinetics was determined using profilometry in conjunction with etch patterning. The morphological, structural and chemical characteristics of the oxide were characterized by various analytical techniques such as scanning electron microscope and energy dispersive x-ray analysis, secondary ion mass spectrometry and x-ray photoelectron spectroscopy. Oxidation of NBD 200 follows parabolic kinetics in the temperature range investigated and the process is diffusion-controlled. The oxide layers are enriched with sodium and magnesium from the bulk of the Si3N 4. The much higher oxidation rate for NBD 200 silicon nitride than for other silicon nitride ceramics with a similar amount of MgO is attributed to the presence of sodium. The rate-controlling mechanism is the outward diffusion of Mg2+ from the grain boundaries to the oxide scale. Aluminum implantation alleviates the detrimental effects of Na+ and Mg2+; not only is the rate of oxidation

  4. In-situ measurement of the electrical conductivity of aluminum oxide in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; White, D.P.; Snead, L.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    A collaborative DOE/Monbusho irradiation experiment has been completed which measured the in-situ electrical resistivity of 12 different grades of aluminum oxide during HFIR neutron irradiation at 450{degrees}C. No evidence for bulk RIED was observed following irradiation to a maximum dose of 3 dpa with an applied dc electric field of 200 V/mm.

  5. Propagation of nonequilibrium phonons in aluminum-oxide ceramics fabricated by cold isostatic pressing

    International Nuclear Information System (INIS)

    Propagation of slightly nonequilibrium phonons in aluminum-oxide ceramics fabricated by cold isostatic pressing has been studied. Assuming that phonon propagation in ceramic grains is ballistic, we have analyzed characteristics of the phonon scattering and drawn some conclusions about the nature of grain boundaries

  6. Standard specification for nuclear-grade aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This specification applies to pellets composed of mixtures of aluminum oxide and boron carbide that may be ultimately used in a reactor core, for example, in neutron absorber rods. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  7. Chinalco Joined Hands With Shenhua To Build 4 Million Tonnes of Aluminum Oxide Project in Hebei

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In the afternoon of September 11,Governor of Hebei Province Zhang Qingwei met with the delegation led by Chinalco Chairman Ge Honglin and General Manager of Shenhua Group Ling Wen in Shijiazhuang,and attended the cooperation agreement signing ceremony for aluminum oxide project between the

  8. Fabrication, structural characterization and sensing properties of polydiacetylene nanofibers templated from anodized aluminum oxide

    Science.gov (United States)

    Polydiacetylene (PDA), a unique conjugated polymer, has shown its potential in the application of chem/bio-sensors and optoelectronics. In this work, we first infiltrated PDA monomer (10, 12-pentacosadiynoic acid, PCDA) melted into the anodized aluminum oxide template, and then illuminated the infil...

  9. Plasma-enhanced Chemical Vapor Deposition of Aluminum Oxide Using Ultrashort Precursor Injection Pulses

    NARCIS (Netherlands)

    Dingemans, G.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the precurs

  10. Evolution of Surface Oxide Film of Typical Aluminum Alloy During Medium-Temperature Brazing Process

    Institute of Scientific and Technical Information of China (English)

    程方杰; 赵海微; 王颖; 肖兵; 姚俊峰

    2014-01-01

    The evolution of the surface oxide film along the depth direction of typical aluminum alloy under medium-temperature brazing was investigated by means of X-ray photoelectron spectroscopy (XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the en-richment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloy-ing elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during medium-temperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.

  11. DC electrodeposition of NiGa alloy nanowires in AAO template

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, K. [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Sanjabi, S., E-mail: sanjabi@modares.ac.ir [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Alemipour, Z. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2015-12-01

    NiGa alloy nanowires were electrodeposited from an acidic sulfate bath into nanoporous anodized alumina oxide (AAO). This template was fabricated by two-step anodizing. The effects of bath composition and current density were explored on the Ga content of electrodeposited nanowires. The Ga content in the deposits was increased by increasing both Ga in the bath composition and electrodepositing current density. The NiGa alloy nanowires were synthesized for Ga content up to 2–4% without significant improving the magnetic properties. Above this threshold Ga clusters were formed and decreased the magnetic properties of the nanowires. For Ga content of the alloy above 30%, the wires were too short and incomplete. X-ray diffraction patterns reveal that the significant increase of Ga content in the nanowires, changes the FCC crystal structure of Ni to an amorphous phase. It also causes a sizeable increase in the Ga cluster size; these both lead to a significant reduction in the coercivity and the magnetization respectively. - Highlights: • NiGa alloy nanowires were electrodeposited from acidic sulphate baths into nanoporous anodized alumina oxide (AAO) template. • The Ga content was increased by increasing the Ga in the bath composition and electrodeposition current density. • The magnetic parameters such as coercivity and magnetization were not changed for the alloy nanowire with Ga content less than 4%.

  12. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    García, L.V.; Mendivil, M.I.; Roy, T.K. Das; Castillo, G.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}. • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe{sub 2}O{sub 3}, 20–40 nm) and aluminum oxide (Al{sub 2}O{sub 3}, 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2} with a concentration of 5 and 7 wt% of Fe{sub 2}O{sub 3} presented the MgFe{sub 2}O{sub 4} spinel-type phase. With the addition of Al{sub 2}O{sub 3} nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2}, there were the formations of MgAl{sub 2}O{sub 4} spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed.

  13. [The color of implants of aluminum oxide ceramics].

    Science.gov (United States)

    Willmann, G

    1990-12-01

    Ceramic implants are manufactured from aluminium oxide ceramics (Al2O3) doped with magnesium oxide (MgO). The yellow or brown discoloration following gamma-sterilization does not constitute a material defect, but rather a property of the material. This chromic effect is explained in the following article. PMID:2078648

  14. Aluminum Nitride Formation From Aluminum Oxide/Phenol Resin Solid-Gel Mixture By Carbothermal Reduction Nitridation Method

    Directory of Open Access Journals (Sweden)

    Mylinh Dang Thy

    2015-06-01

    Full Text Available Hexagonal and cubic crystalline aluminum nitride (AlN particles were successfully synthesized using phenol resin and alpha aluminum oxide (α-Al2O3 as precursors through new solid-gel mixture and carbothermal reduction nitridaton (CRN process with molar ratio of C/Al2O3 = 3. The effect of reaction temperature on the decomposition of phenol resin and synthesis of hexagonal and cubic AlN were investigated and the reaction mechanism was also discussed. The results showed that α-Al2O3 powder in homogeneous solid-gel precursor was easily nitrided to yield AlN powder during the carbothermal reduction nitridation process. The reaction temperature needed for a complete conversion for the precursor was about 1700°C, which much lower than that when using α-Al2O3 and carbon black as starting materials. To our knowledge, phenol resin is the first time to be used for synthesizing AlN powder via carbothermal reduction and nitridation method, which would be an efficient, economical, cheap assistant reagent for large scale synthesis of AlN powder.

  15. Modelling the growth process of porous aluminum oxide film during anodization

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2015-11-01

    Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.

  16. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas

    2013-10-01

    The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 ÀC very little oxidation took place; at 850 ÀC oxidation occurred after an induction period, while at 950 ÀC oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 ÀC rapid passivation of the surface of the aluminum foil occurred, while at 1250 ÀC and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

  17. Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid

    International Nuclear Information System (INIS)

    In this paper, we have investigated luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid. For the first time we have measured weak luminescence during anodization of aluminum in this electrolyte (so-called galvanoluminescence GL) and showed that there are wide GL bands in the visible region of the spectrum and observed two dominant spectral peaks. The first one is at about 425 nm, and the second one shifts with anodization voltage. As the anodization voltage approaches the breakdown voltage, a large number of sparks appear superimposed on the anodic GL. Several intensive band peaks were observed under breakdown caused by electron transitions in W, P, Al, O, H atoms. Furthermore, photoluminescence (PL) of anodic oxide films and anodic-spark formed oxide coatings were performed. In both cases wide PL bands in the range from 320 nm to 600 nm were observed.

  18. Combined flame and electrodeposition synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays.

    Science.gov (United States)

    Dong, Zhizhong; Al-Sharab, Jafar F; Kear, Bernard H; Tse, Stephen D

    2013-09-11

    A nanostructured thermite composite comprising an array of tungsten-oxide (WO2.9) nanowires (diameters of 20-50 nm and lengths of >10 μm) coated with single-crystal aluminum (thickness of ~16 nm) has been fabricated. The method involves combined flame synthesis of tungsten-oxide nanowires and ionic-liquid electrodeposition of aluminum. The geometry not only presents an avenue to tailor heat-release characteristics due to anisotropic arrangement of fuel and oxidizer but also eliminates or minimizes the presence of an interfacial Al2O3 passivation layer. Upon ignition, the energetic nanocomposite exhibits strong exothermicity, thereby being useful for fundamental study of aluminothermic reactions as well as enhancing combustion characteristics. PMID:23899165

  19. Effects of aluminum and extremely low frequency electromagnetic radiation on oxidative stress and memory in brain of mice.

    Science.gov (United States)

    Deng, Yuanxin; Zhang, Yanwen; Jia, Shujie; Liu, Junkang; Liu, Yanxia; Xu, Weiwei; Liu, Lei

    2013-12-01

    This study was aimed to investigate the effect of aluminum and extremely low-frequency magnetic fields (ELF-MF) on oxidative stress and memory of SPF Kunming mice. Sixty male SPF Kunming mice were divided randomly into four groups: control group, ELF-MF group (2 mT, 4 h/day), load aluminum group (200 mg aluminum/kg, 0.1 ml/10 g), and ELF-MF + aluminum group (2 mT, 4 h/day, 200 mg aluminum/kg). After 8 weeks of treatment, the mice of three experiment groups (ELF-MF group, load aluminum group, and ELF-MF + aluminum group) exhibited firstly the learning memory impairment, appearing that the escaping latency to the platform was prolonged and percentage in the platform quadrant was reduced in the Morris water maze (MWM) task. Secondly are the pathologic abnormalities including neuronal cell loss and overexpression of phosphorylated tau protein in the hippocampus and cerebral cortex. On the other hand, the markers of oxidative stress were determined in mice brain and serum. The results showed a statistically significant decrease in superoxide dismutase activity and increase in the levels of malondialdehyde in the ELF-MF group (P < 0.05 or P < 0.01), load aluminum group (P < 0.01), and ELF-MF + aluminum group (P < 0.01). However, the treatment with ELF-MF + aluminum induced no more damage than ELF-MF and aluminum did, respectively. In conclusion, both aluminum and ELF-MF could impact on learning memory and pro-oxidative function in Kunming mice. However, there was no evidence of any association between ELF-MF exposure with aluminum loading.

  20. The thickness of native oxides on aluminum alloys and single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Evertsson, J., E-mail: jonas.evertsson@sljus.lu.se [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Bertram, F. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Zhang, F. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Rullik, L.; Merte, L.R.; Shipilin, M. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Soldemo, M.; Ahmadi, S. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Vinogradov, N.; Carlà, F. [ESRF, B.P. 220, 38043 Grenoble (France); Weissenrieder, J.; Göthelid, M. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Pan, J. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Mikkelsen, A. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Nilsson, J.-O. [Sapa Technology, Kanalgatan 1, 612 31 Finspång (Sweden); Lundgren, E. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden)

    2015-09-15

    Highlights: • We have determined the native oxide film thickness on several Al samples. • The results obtained from XRR and XPS show excellent agreement. • The results obtained from EIS show consistently thinner oxide films. • The oxides on the alloys are thicker than the oxides on the single crystals. - Abstract: We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liquid water conditions. The results obtained using X-ray reflectivity and X-ray photoelectron spectroscopy demonstrate good agreement. However, the oxide thicknesses determined from the electrochemical impedance spectroscopy show a larger discrepancy from the above two methods. In the present contribution the reasons for this discrepancy are discussed. We also address the effect of the substrate type and the presence of water on the resultant oxide thickness.

  1. Hysteresis in Lanthanide Aluminum Oxides Observed by Fast Pulse CV Measurement

    Directory of Open Access Journals (Sweden)

    Chun Zhao

    2014-10-01

    Full Text Available Oxide materials with large dielectric constants (so-called high-k dielectrics have attracted much attention due to their potential use as gate dielectrics in Metal Oxide Semiconductor Field Effect Transistors (MOSFETs. A novel characterization (pulse capacitance-voltage method was proposed in detail. The pulse capacitance-voltage technique was employed to characterize oxide traps of high-k dielectrics based on the Metal Oxide Semiconductor (MOS capacitor structure. The variation of flat-band voltages of the MOS structure was observed and discussed accordingly. Some interesting trapping/detrapping results related to the lanthanide aluminum oxide traps were identified for possible application in Flash memory technology. After understanding the trapping/detrapping mechanism of the high-k oxides, a solid foundation was prepared for further exploration into charge-trapping non-volatile memory in the future.

  2. The Relationship Between Ambiently Formed Oxides and the Tribological Behavior of Aluminum Bronze

    Science.gov (United States)

    Poggie, Robert Andre

    1992-01-01

    The relationship between ambiently formed oxides and the tribological behavior of aluminum bronze has been investigated. As the aluminum content of Al-bronze increases from zero to eight weight percent, the mechanical properties, oxidation kinetics, and tribological behavior of the alloy are significantly affected. This research has shown that the friction and wear behavior of Al-bronze depends primarily on the composition and mechanical stability of the ambiently formed surface oxide. Adhesive transfer of Al-bronze to the slider counterfaces increased with increasing aluminum content which corresponded to increased damage to the alloy surfaces and the formation of wear debris. The majority of surface damage (plastic deformation and galling) of the Cu-4 and 6 w/o Al alloys occurred during the initial portion (run-in) of wear testing. The Cu-1 w/o Al alloy wore via an oxidative wear mechanism throughout the course of wear testing. Galling, severe plastic deformation, the formation of metallic wear debris, and adhesive transfer were not observed for the Cu-1 AL w/o alloy. XPS and SEM analysis of the Cu-1 w/o Al alloy showed the worn surfaces to consist of a smooth and adherent Cu_2O layer. Long term ambient oxidation of the Cu-4 and 6 w/o Al alloys resulted in a layered oxide structure with Cu(OH)_2 at the surface followed by CuO, Cu_2O, Al_2O_3, and, lastly, the metallic substrate. The differences in elastic moduli, crystal structures, and composition between the copper alloy and the Al _2O_3 enriched surface oxide decreases the mechanical integrity of the surface oxide. The tensile and compressive stresses generated at the surface of the Al-bronze samples via frictional interaction with the opposing slider is sufficient to cause a large differential in strain across the oxide-metal interface and disruption of the brittle, Al_2O _3 enriched surface oxide. The exposed metal immediately repassivates itself by reforming a surface oxide or forming an adhesive bond with

  3. Large pore volume mesoporous aluminum oxide synthesized via nano-assembly

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new nano-assembly approach has been proposed for the preparation of macropore volume mesoporous aluminum oxide supports. Secondary nano-assembly and a frame structure mechanism for large pore volume mesoporous supports have been proposed. In a primary nano-assembly supersoluble micelle,aluminum hydroxide nanoparticles were precipitated in situ in surfactants with a volume balance (VB) less than 1,followed by secondary nano-assembly in linear and cylindrical shapes. The secondary nano-assembly of cylindrical aluminum hydroxides was calcined to form nano cylindrical aluminum oxides. For the formation of macropore volume mesoporous supports,we utilized a frame structure mechanism of mesoporous support,in which the exterior surface of the carrier may not be continuous. This macropore volume support has been used for the hydrotreatment of a residual oil catalyst,which possesses the following physical characteristics:pore volume 1.8―2.7 mL·g-1,specific surface area 180―429 m2·g-1,average pore diameter 17―57 nm,average pore diameter more than 10 nm (81%―94%),porosity 87%―93%,and crush strength 7.7―25 N·mm-1.

  4. Modeling of oxidation of aluminum nanoparticles by using Cabrera Mott Model

    Science.gov (United States)

    Ramazanova, Zamart; Zyskin, Maxim; Martirosyan, Karen

    2012-10-01

    Our research focuses on modeling new Nanoenergetic Gas-Generator (NGG) formulations that rapidly release a large amount of gaseous products and generates shock and pressure waves. Nanoenergetic thermite reagents include mixtures of Al and metal oxides such as bismuth trioxide and iodine pentoxide. The research problem is considered a spherically symmetric case and used the Cabrera Mott oxidation model to describe the kinetics of oxide growth on spherical Al nanoparticles for evaluating reaction time which a process of the reaction with oxidizer happens on the outer part of oxide layer of aluminum ions are getting in contact with an oxidizing agent and react. We assumed that a ball of Al of radius 20 to 50 nm is covered by a thin oxide layer 2-4 nm and is surrounded by abundant amount of oxygen stored by oxidizers. The ball is rapidly heated up to ignition temperature to initiate self-sustaining oxidation reaction. As a result highly exothermic reaction is generated. In the oxide layer of excess concentrations of electrons and ions are dependent on the electric field potential with the corresponding of the Gibbs factors and that it conducts to the solution of a nonlinear Poisson equation for the electric field potential in a moving boundary domain. Motion of the boundary is determined by the gradient of a solution on the boundary. We investigated oxidation model numerically, using the COMSOL software utilizing finite element analysis. The computing results demonstrate that oxidation rate increases with the decreasing particle radius.

  5. Effects of Iron and Aluminum Oxides and Kaolinite on Adsorpion and Activities on Invertase

    Institute of Scientific and Technical Information of China (English)

    HUANGQIAOYUN; JIANGMINGHUA; 等

    1998-01-01

    Experiments were conducted to study the influences of synthetic bayerite,non-crystalline aluminum oxide(N-AlOH) ,geoethite,non-crystalline iron oxide (N-FeOH) and kaolinite on the adsorption,activity,kinetics and thermal stability of invertase.Adsorption of invertase on iron,aluminum oxides fitted Langmuir equation,The amount of invertase held on the minerals followed the sequence kaolinite>goethite>N-AlOH>bayerite>N-FeOH.No correlation was found between enzyme adsorption and the specific surface area of minerals exmined.The differences in the surface structure of minerals and the arrangement of enzymatic molecules on mineral surfaces led to the different capacities of minerals for enzyme adsorption. The adsorption of invertase on bayerite,N-AlOH,goethite ,H-FeOH and kaolinite was differently affected by pH.The order for the activity of invertase adsorbed on minerals was N-FeOH>N-AlOH>bayerite> goethite> kalinite.The inhibition effect of minerals on enzyme activity was kaolinite> crystalline oxides> non -crystalline oxides.The pH optimum of iron oxide-and aluminum oxide-invertase complexes was sililar to that of free enzyme(pH4.0),whereas the pH optimum of kaolinite-invertase complex was one pH unit highr than that of free enzyme.The affinity to substrate and the maximum reaction velocity as well as the thermal stability of combined inverthase were lower than those of the free enzyme.

  6. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Boron by Titrimetry 7 to 13 Separation of Boron for Mass Spectrometry 14 to 19 Isotopic Composition by Mass Spectrometry 20 to 23 Separation of Halides by Pyrohydrolysis 24 to 27 Fluoride by Ion-Selective Electrode 28 to 30 Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 31 to 33 Trace Elements by Emission Spectroscopy 34 to 46 1.3 The values stated in SI units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (F...

  7. Optical Properties of Au Nanoparticles Coated on Surface of Glass or Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    FENG Jinyang; WU Can; MA Xiao; ZHANG Hongquan; ZHAO Xiujian

    2012-01-01

    Au nanoparticles coated on the surface of glass (Sample A) or on anodic aluminum oxide template surface (Sample B) were prepared using titanium dioxide sol-gel doped with chloroauric acid and with a reduction process.FE-SEM,UV-Vis spectrum and Fluorescence spectrum tests show that Au nanoparticles have been distributed randomly on the surface of glass,while deposition occurs on the surface of regular hollows for anodic aluminum oxide template.A sharp absorption peak appears at the wavelength of 536 nm for sample B,while there is a red shift,with a broader peak for sample A.A distinct fluorescence emission at the wavelength of 633 nm is detected for sample A,but no noticeable fluorescence emission has been found for Sample B.The results indicate that the microstructure and optical properties of Au nanoparticles can be modulated by different substrate.

  8. Synthesis of iridescent Ni-containing anodic aluminum oxide films by anodization in oxalic acid

    Science.gov (United States)

    Xu, Qin; Ma, Hong-Mei; Zhang, Yan-Jun; Li, Ru-Song; Sun, Hui-Yuan

    2016-02-01

    Ni-containing anodic aluminum oxide films with highly saturated colors were synthesized using an ac electrodeposition method, and the optical and magnetic characteristics of the films were characterized. Precisely controllable color tuning could be obtained using wet-chemical etching to thin and widen the anodic aluminum oxide films pores isotropically before Ni deposition. Magnetic measurements indicate that such colored composite films not exhibit obvious easy magnetization direction. The resulted short (200 nm in length) and wide (50 nm in diameter) Ni nanowires present only fcc phase. The magnetization reversal mechanism is in good agreement with the symmetric fanning reversal mode which is discussed in detail. Such films may find applications in decoration, display and multifunctional anti-counterfeiting applications.

  9. Interactions between nitric oxide and plant hormones in aluminum tolerance

    OpenAIRE

    He, Huyi; He, Longfei; Gu, Minghua

    2012-01-01

    Nitric oxide (NO) is involved, together with plant hormones, in the adaptation to Al stress in plants. However, the mechanism by which NO and plant hormones interplay to improve Al tolerance are still unclear. We have recently shown that patterns of plant hormones alteration differ between rye and wheat under Al stress. NO may enhance Al tolerance by regulating hormonal equilibrium in plants, as a regulator of plant hormones signaling. In this paper, some unsolved issues are discussed based o...

  10. Effect of conditions of thermal treatment on the porous structure of an aluminum oxide-containing nanofibrous aerogel

    Science.gov (United States)

    Markova, E. B.; Krasil'nikova, O. K.; Grankina, T. Yu.; Serov, Yu. M.

    2016-08-01

    The effect the conditions of thermal treatment have on a specific surface and the number of primary adsorption centers is studied. The relationship between changing adsorption characteristics and changes in the structure of nanofibrous aluminum oxide is considered.

  11. Computer simulation of the photoluminescence of nanostructured aluminum oxide excited with pulsed synchrotron radiation

    OpenAIRE

    Kortov, V. S.; Spiridonova, T. V.; Zvonarev, S. V.

    2013-01-01

    An algorithm and a program are developed to calculate the photoluminescence (PL) parameters for bulk single-crystal and nanoscale dielectrics excited with pulsed synchrotron radiation. The luminescence spectra of F and F+centers and the PL decay kinetics in single-crystal and nanoscale aluminum-oxide samples containing oxygen anion vacancies are calculated for various nanoparticle sizes. It is shown that a noticeable broadening of the bands and a decrease in the afterglow time is observed for...

  12. Radial Combustion Propagation in Iron(III) Oxide/Aluminum Thermite Mixtures

    OpenAIRE

    Durães, Luísa; Campos, José; Portugal, António

    2006-01-01

    The self-sustained thermite reaction between iron oxide (Fe2O3) and aluminum is a classical source of energy. In this work the radial combustion propagation on thin circular samples of stoichiometric and over aluminized Fe2O3/Al thermite mixtures is studied. The radial geometry allows an easy detection of sample heterogeneities and the observation of the combustion behavior in their vicinity. The influence of factors like reactant mixtures stoichiometry, samples green density and system geome...

  13. Structure and properties of ceramic coatings formed on aluminum alloys by microarc oxidation

    Institute of Scientific and Technical Information of China (English)

    LIU Wan-hui; BAO Ai-lian; LIU Rong-xiang; WU Wan-liang

    2006-01-01

    The thick and hard ceramic coatings were deposited on 2024 Al alloy by microarc oxidation in the electrolytic solution.Microstructure, phase composition and wear resistance of the oxide coatings were investigated by SEM, XRD and friction and wear tester. The microhardness and thickness of the oxide coatings were measured. The results show that the ceramic coating is mainly composed of α-Al2O3 and γ-Al2O3. During oxidation, the temperature in the microarc discharge channel is very high to make the local coating molten. From the surface to interior of the coating, microhardness increases gradually. The microhardness of the ceramic coating is HV1 800, and the microarc oxidation coatings greatly improve the antiwear properties of aluminum alloys.

  14. Fabrication of a Zinc Aluminum Oxide Nanowire Array Photoelectrode for a Solar Cell Using a High Vacuum Die Casting Technique

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2014-01-01

    Full Text Available Zinc aluminum alloy nanowire was fabricated by the vacuum die casting. Zinc aluminum alloy was melted, injected into nanomold under a hydraulic pressure, and solidified as nanowire shape. Nanomold was prepared by etching aluminum sheet with a purity of 99.7 wt.% in oxalic acid solution. A nanochannel within nanomold had a pore diameter of 80 nm and a thickness of 40 μm. Microstructure and characteristic analysis of the alumina nanomold and zinc-aluminum nanowire were performed by scanning electron microscope, X-ray diffraction analysis, and energy dispersive X-ray spectroscopy. Zinc aluminum oxide nanowire array was produced using the thermal oxidation method and designed for the photoelectrode application.

  15. Effect of aluminum oxide on the compressive strength of pellets

    Institute of Scientific and Technical Information of China (English)

    Jian-liang Zhang; Zhen-yang Wang; Xiang-dong Xing; Zheng-jian Liu

    2014-01-01

    Analytical-reagent-grade Al2O3 was added to magnetite ore during the process of pelletizing, and the methods of mercury intru-sion, scanning electron microscopy, and image processing were used to investigate the effect of Al2O3 on the compressive strength of the pellets. The results showed that, as the Al2O3 content increased, the compressive strength of the pellets increased slightly and then decreased gradually. When a small amount of Al2O3 was added to the pellets, the Al2O3 combined with fayalite (2FeO·SiO2) and the aluminosilicate (2FeO·2Al2O3·5SiO2) was generated, which releases some iron oxide and reduces the inhibition of fayalite to the solid phase of consolidation. When Al2O3 increased sequentially, high melting point of Al2O3 particles hinder the oxidation of Fe3O4 and the recrystallization of Fe2O3, making the internal porosity of the pellets increase, which leads to the decrease in compressive strength of the pellets.

  16. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts

    Science.gov (United States)

    Willhite, Calvin C.; Karyakina, Nataliya A.; Yokel, Robert A.; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M.; Arnold, Ian M. F.; Momoli, Franco; Krewski, Daniel

    2016-01-01

    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al” assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+2 and Al(H2O)6+3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2•− and OH•. Thus, it is the Al+3-induced formation of oxygen radicals that accounts for the oxidative damage that

  17. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts.

    Science.gov (United States)

    Willhite, Calvin C; Karyakina, Nataliya A; Yokel, Robert A; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M; Arnold, Ian M F; Momoli, Franco; Krewski, Daniel

    2014-10-01

    oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer's disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances.

  18. Sorption of phenanthrene by dissolved organic matter and its complex with aluminum oxide nanoparticles

    International Nuclear Information System (INIS)

    Intent of this study was to explore the potential application of polymerin, the polymeric, dissolved organic matter fraction from olive oil wastewaters, in technologies aimed at remediating hydrophobic organic compounds (HOCs) point-source pollution. Phenanthrene binding with polymerin was investigated. Moreover, the effect of addition of micro and nanoscale aluminum oxides (Al2O3) was studied, as well as sorption of polymerin on the oxides. Phenanthrene binding capacity by polymerin was notably higher than the sorption capacities for both types of Al2O3 particles. Polymerin sorption on nanoparticles was nearly 100 times higher than microparticles. In a three-phase system, using microparticles, higher phenanthrene sorption was found by adding into water polymerin, oxides and phenanthrene simultaneously. In contrast, using nanoparticles, a considerable enhancement of phenanthrene sorption was shown by adding phenanthrene to a pre-formed and dried polymerin-oxide complex. These findings support the application of polymerin, especially associated with Al2O3 nanoparticles, in remediation of water contaminated with HOCs. This work highlights the significant role of nanoparticles. - Size of aluminum oxides significantly affects sorption of polymerin and phenanthrene

  19. Reaction behavior between the oxide film of LY12 aluminum alloy and the flux

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 董健; 吕晓春; 顾文华

    2004-01-01

    In this paper, the brazing mechanism of LY12 aluminum alloy at middle range temperature was presented. The CsF-AlF3 non-corrosive flux was utilized to remove the complex oxide film on the surface of LY12 aluminum alloy. The results revealed that the oxide film was removed by the improved CsF-AlF3 flux accompanied with the occurrence of reaction as well as dissolution and the compounds CsF played an important role to remove the oxide film. Actually, the high activity of flux, say, the ability to remove the oxide film, was due to the presence of the compounds, such as NH4F,NH4AlF4 and composite molten salt. The production of HF was the key issue to accelerate the reaction and enhance to eliminate the oxide film by dissolution. It was found that the rare earth element La at small percentage was not enriched at the interface. Moreover, the rare earth fluoride enhanced the dissolution behavior.

  20. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric

    KAUST Repository

    Nayak, Pradipta K.

    2013-07-18

    We report high performance solution-deposited indium oxide thin film transistors with field-effect mobility of 127 cm2/Vs and an Ion/Ioff ratio of 106. This excellent performance is achieved by controlling the hydroxyl group content in chemically derived aluminum oxide (AlOx) thin-film dielectrics. The AlOx films annealed in the temperature range of 250–350 °C showed higher amount of Al-OH groups compared to the films annealed at 500 °C, and correspondingly higher mobility. It is proposed that the presence of Al-OH groups at the AlOx surface facilitates unintentional Al-doping and efficient oxidation of the indium oxide channel layer, leading to improved device performance.

  1. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    Science.gov (United States)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  2. The influence of titanium and iron oxides on the coloring and friability of the blue fired aluminum oxide as an abrasive material

    OpenAIRE

    E. R. Passos; J. A. Rodrigues

    2016-01-01

    Abstract The quality of abrasive grains is crucial to increase the lifespan of roughing, polishing and cutting tools. The purpose of the work herein was to evaluate the variables of the blue fired aluminum oxide heat treatment process. This heat treatment process improves the physical properties of the brown fused aluminum oxide and results in a blue coloring, which uniquely identifies it within the abrasives industry. The work herein includes information beginning with the electro-fusion pro...

  3. Synthesis and structure analysis of aluminum doped zinc oxide powders

    Institute of Scientific and Technical Information of China (English)

    NIE DengPan; XUE Tao; ZHANG Yu; LI XiangJun

    2008-01-01

    Hexagonal Al-doped zinc oxide (ZnO) powders with a nominal composition of Zn1-xAlxO (0≤x≤0.028) were synthesized by the co-precipitation method. The contents of the Al element in the samples were measured by the inductively coupled plasma-optical emission spectroscopy (ICP-OES) technique. The structures of the Zn1-xAlxO (0≤x≤0.028) compounds calcined at 1000 and 1200℃ have been deter-mined using the Rietveld full-profile analysis method. Rietveld refinements of the diffraction data indi-cated that the addition of Al initially has a considerably positive effect on the decreasing of the lattice parameters a and c of Zn1-xAlxO, but the effect becomes very slight and even negative with the further increase of the Al content. The solid solubility limit of Al in ZnO (mole fraction y) is 2.21%, resulting in Zn0.978Al0.22O. It seems that when the Al content is excessive, Al prefers to form a ZnAl2O4 compound with ZnO, but not to incorporate into the ZnO lattice to occupy the Zn2+ cites. Two phases, [ZnO] (or Al-doped ZnO) and [ZnAl2O4], are obviously segregated in Zn1-xAlxO while the value of x is larger than 0.024. The UV-Vis absorption spectra show that the Al-doped ZnO exhibits a red-shift in the absorption edge without reduced transmission compared with pure ZnO, which also confirms that Al ions enter the ZnO lattice and form a Zn1-xAlxO solid solution.

  4. Synthesis and structure analysis of aluminum doped zinc oxide powders

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hexagonal Al-doped zinc oxide (ZnO) powders with a nominal composition of Zn1-xAlxO (0≤x≤0.028) were synthesized by the co-precipitation method. The contents of the Al element in the samples were measured by the inductively coupled plasma-optical emission spectroscopy (ICP-OES) technique. The structures of the Zn1-xAlxO (0≤x≤0.028) compounds calcined at 1000 and 1200℃ have been deter- mined using the Rietveld full-profile analysis method. Rietveld refinements of the diffraction data indi- cated that the addition of Al initially has a considerably positive effect on the decreasing of the lattice parameters a and c of Zn1-xAlxO, but the effect becomes very slight and even negative with the further increase of the Al content. The solid solubility limit of Al in ZnO (mole fraction y) is 2.2l%, resulting in Zn0.978Al0.22O. It seems that when the Al content is excessive, Al prefers to form a ZnAl2O4 compound with ZnO, but not to incorporate into the ZnO lattice to occupy the Zn2+ cites. Two phases, [ZnO] (or Al-doped ZnO) and [ZnAl2O4], are obviously segregated in Zn1-xAlxO while the value of x is larger than 0.024. The UV-Vis absorption spectra show that the Al-doped ZnO exhibits a red-shift in the absorption edge without reduced transmission compared with pure ZnO, which also confirms that Al ions enter the ZnO lattice and form a Zn1-xAlxO solid solution.

  5. The influence of titanium and iron oxides on the coloring and friability of the blue fired aluminum oxide as an abrasive material

    Directory of Open Access Journals (Sweden)

    E. R. Passos

    2016-03-01

    Full Text Available Abstract The quality of abrasive grains is crucial to increase the lifespan of roughing, polishing and cutting tools. The purpose of the work herein was to evaluate the variables of the blue fired aluminum oxide heat treatment process. This heat treatment process improves the physical properties of the brown fused aluminum oxide and results in a blue coloring, which uniquely identifies it within the abrasives industry. The work herein includes information beginning with the electro-fusion process of bauxite (the manufacturing of the brown fused aluminum oxide to the Blue Fired process. It also compares the fracture resistance index between these materials. This index is the inverse of the friability. Besides the content of titanium and iron oxides, process variables such as time, temperature and atmospheric conditions are important to monitor in order to reach standard requirements. Experimental evidence measuring these parameters is presented in the article herein. The blue coloring of this aluminum oxide is explained by the optical phenomena of electron transition, and not by the formation of aluminum titanate, as some technical literature has stated. Furthermore, it was proved that the coloring of blue fired material should not be used exclusively as an indicator of the optimal abrasive characteristics of this class of aluminum oxide.

  6. Surface reaction mechanisms during ozone and oxygen plasma assisted atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Rai, Vikrant R; Vandalon, Vincent; Agarwal, Sumit

    2010-09-01

    We have elucidated the reaction mechanism and the role of the reactive intermediates in the atomic layer deposition (ALD) of aluminum oxide from trimethyl aluminum in conjunction with O(3) and an O(2) plasma. In situ attenuated total reflection Fourier transform infrared spectroscopy data show that both -OH groups and carbonates are formed on the surface during the oxidation cycle. These carbonates, once formed on the surface, are stable to prolonged O(3) exposure in the same cycle. However, in the case of plasma-assisted ALD, the carbonates decompose upon prolonged O(2) plasma exposure via a series reaction kinetics of the type, A (CH(3)) --> B (carbonates) --> C (Al(2)O(3)). The ratio of -OH groups to carbonates on the surface strongly depends on the oxidizing agent, and also the duration of the oxidation cycle in plasma-assisted ALD. However, in both O(3) and O(2) plasma cycles, carbonates are a small fraction of the total number of reactive sites compared to the hydroxyl groups.

  7. Study on wear behavior of plasma electrolytic oxidation coatings on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CUI Shihai; HAN Jianmin; LI Weijing; KANG Suk-Bong; LEE Jung-Moo

    2006-01-01

    Thick and hard ceramic coatings were fabricated on A356 aluminum alloy by using plasma electrolytic oxidation(PEO) technique.The microstructure and phase composition of the PEO coatings were examined by using SEM and XRD method.It is found that the PEO coatings are mainly composed of crystalline α-Al2O3 and mullite.The dry sliding wear test of PEO coatings were carried out on a ring-on-ring wear machine.Results shows that there is hardly no wear loss of polished PEO coatings while the wear rate of uncoated aluminum alloy is 4.3×10-5 mm3·(N·m)-1 at a speed of 0.52 m·s-1 and a load of 40 N.

  8. Method of making highly porous, stable aluminum oxides doped with silicon

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi-Mardkhe, Maryam; Woodfield, Brian F.; Bartholomew, Calvin H.; Huang, Baiyu

    2016-03-22

    The present invention relates to a method for making high surface area and large pore volume thermally stable silica-doped alumina (aluminum oxide) catalyst support and ceramic materials. The ability of the silica-alumina to withstand high temperatures in presence or absence of water and prevent sintering allows it to maintain good activity over a long period of time in catalytic reactions. The method of preparing such materials includes adding organic silicon reagents to an organic aluminum salt such as an alkoxide in a controlled quantity as a doping agent in a solid state, solvent deficient reaction followed by calcination. Alternatively, the organic silicon compound may be added after calcination of the alumina, followed by another calcination step. This method is inexpensive and simple. The alumina catalyst support material prepared by the subject method maintains high pore volumes, pore diameters and surface areas at very high temperatures and in the presence of steam.

  9. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-11-01

    Full Text Available Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent.

  10. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    Science.gov (United States)

    Patel, Suhag; Matticks, John; Howell, Carina

    2014-03-01

    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  11. Effect of environment on iodine oxidation state and reactivity with aluminum.

    Science.gov (United States)

    Smith, Dylan K; McCollum, Jena; Pantoya, Michelle L

    2016-04-28

    Iodine oxide is a highly reactive solid oxidizer and with its abundant generation of iodine gas during reaction, this oxidizer also shows great potential as a biocidal agent. A problem with using I2O5 in an energetic mixture is its highly variable reactive behavior. This study isolates the variable reactivity associated with I2O5 as a function of its chemical reaction in various environments. Specifically, aluminum fuel and iodine oxide powder are combined using a carrier fluid to aid intermixing. The carrier fluid is shown to significantly affect the oxidation state of iodine oxide, thereby affecting the reactivity of the mixture. Four carrier fluids were investigated ranging in polarity and water miscibility in increasing order from hexane accounts for the increase in reactivity seen in the mixtures processed in polar fluids. These results explain the chemical mechanisms underlying the variable reactivity of I2O5 that are a function of the oxide's highly reactive nature with its surrounding environment. These results will significantly impact the selection of carrier fluid in the synthesis approach for iodine containing reactive mixtures. PMID:27052472

  12. Preparation and Characterization of Fe Nanowire Arrays Embedded in Porous Anodic Aluminum Oxide Templates

    Institute of Scientific and Technical Information of China (English)

    迟广俊; 姚素薇

    2004-01-01

    Fe nanowire arrays are prepared by electrodeposition in porous anodic aluminum oxide template from a composite electrolyte solution. These nanowires have an uniform diameter of approximate 25 nm and a length in excess of 2.5μm.The micrographs and crystal structures of Fe nanowlres are studied by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction(XRD). It is found that each nanowire is essentially a single crystal and has a different orientation in each array. Hysteresis loops of Fe nanowire array show that its easy magnetization direction is perpendicular to the sample plane.

  13. Study on phosphating treatment of aluminum alloy: role of yttrium oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shenglin

    2009-01-01

    Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2-4H2O (hopeite) and AIPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by po-larization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s.

  14. Effect of environment on iodine oxidation state and reactivity with aluminum.

    Science.gov (United States)

    Smith, Dylan K; McCollum, Jena; Pantoya, Michelle L

    2016-04-28

    Iodine oxide is a highly reactive solid oxidizer and with its abundant generation of iodine gas during reaction, this oxidizer also shows great potential as a biocidal agent. A problem with using I2O5 in an energetic mixture is its highly variable reactive behavior. This study isolates the variable reactivity associated with I2O5 as a function of its chemical reaction in various environments. Specifically, aluminum fuel and iodine oxide powder are combined using a carrier fluid to aid intermixing. The carrier fluid is shown to significantly affect the oxidation state of iodine oxide, thereby affecting the reactivity of the mixture. Four carrier fluids were investigated ranging in polarity and water miscibility in increasing order from hexane X-ray photoelectric spectroscopy (XPS) and differential scanning calorimetry (DSC). Results are compared with thermal equilibrium simulations. Flame speeds increased with polarity of the fluid used to intermix the powder and ranged from 180 to 1202 m s(-1). The I2O5 processed in the polar fluids formed hydrated states of iodine oxide: HIO3 and HI3O8; and, the nonpolar and dry-mixed samples formed: I2O4 and I4O9. During combustion, the hydrated iodine oxides rapidly dehydrated from HIO3 to HI3O8 and from HI3O8 to I2O5. Both steps release 25% of their mass as vapor during combustion. Increased gas generation enhances convective energy transport and accounts for the increase in reactivity seen in the mixtures processed in polar fluids. These results explain the chemical mechanisms underlying the variable reactivity of I2O5 that are a function of the oxide's highly reactive nature with its surrounding environment. These results will significantly impact the selection of carrier fluid in the synthesis approach for iodine containing reactive mixtures.

  15. Adhesive modification of indium-tin-oxide surface for template attachment for deposition of highly ordered nanostructure arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gu, W. [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Liao, L.S., E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Cai, S.D.; Zhou, D.Y.; Jin, Z.M.; Shi, X.B.; Lei, Y.L. [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2012-08-01

    Polyvinyl alcohol (PVA), a very cheap polymer with one hydroxyl group in each repeating unit, was spun coated on the surface of an indium-tin-oxide (ITO) substrate to improve the adhesion between the substrate and a nanoporous anodic aluminum oxide (AAO) template layer for a template-directed fabrication of nanostructures. Compared with dihydroxy-terminated polystyrene (PS-dOH) and a silane coupling agent (KH550), PVA was a superior binder because of its abundant hydroxyl groups for adhesion enhancement and its low cost for applications. As an example, a highly ordered CdSe nanorod array free standing on the ITO substrate was electrochemically deposited by using an ultrathin AAO layer as the template on the PVA modified surface. It was demonstrated that the PVA modified ITO can be reliably used for the template-directed fabrication of nanostructures.

  16. A study of the initial oxidation of evaporated thin films of aluminum by AES, ELS, and ESD

    Science.gov (United States)

    Bujor, M.; Larson, L. A.; Poppa, H.

    1982-01-01

    The room temperature, low pressure, oxidation of evaporated aluminum thin films has been studied by AES, ELS, and ESD. ESD was the most sensitive of the three methods to characterize a clean aluminum surface. Two oxidation stages were distinguished in the 0-3000 L oxygen exposure range. Between 0 and 50 L, the chemisorption of oxygen atoms was characterized by a fast decrease of the 67 eV AES Al peak and the 10 eV surface plasmon peak, and by a simultaneous increase of the oxygen AES and ESD signals. After 50 L, a change in slope in all AES and ESD signal variations was attributed to the slow growth of a thin layer of aluminum oxide, which after 3000 L was still only a few angstroms thick.

  17. Effects of rare earth oxide additives on the thermal behaviors of aluminum nitride ceramics

    Institute of Scientific and Technical Information of China (English)

    YAO Yijun; WANG Ling; LI Chuncheng; JIANG Xiaolong; QIU Tai

    2009-01-01

    The effects of Y_2O_3 and Er_2O_3 on the sintering behaviors, thermal properties and microstructure of AIN ceramics were investigated. The ex-perimental results show that the sintering temperature can be decreased; the relative density and thermal behavior can be improved by adding rare earth oxide in AIN ceramics. For AIN ceramics with 3 wt.% Er_2O_3 additive, the relative density is 98.8%, and the thermal conductivity reaches 106 W·m~(-1)·K~(-1). The microstructure research found that no obvious aluminum erbium oxide was found in AIN ceramics doped with 3 wt.% Er_2O_3, which favored the improvement of the thermal conductivity of AIN ceramics.

  18. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Directory of Open Access Journals (Sweden)

    M. Morales-Masis

    2014-09-01

    Full Text Available Improving the conductivity of earth-abundant transparent conductive oxides (TCOs remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H2-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H2-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  19. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Science.gov (United States)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  20. Effects of iron and aluminum oxides and clay content on penetration resistance of five Greek soils

    Directory of Open Access Journals (Sweden)

    Stefanos Stefanou

    2013-07-01

    Full Text Available The effect of amorphous and crystalline iron (Fe and aluminum (Al oxides and oxy-hydroxides as well as clay on soil penetration resistance of five Greek soils, as a function of soil water suction was studied for the whole range of soil moisture. The soils tested were of loamy texture and were collected from cultivated and non-cultivated areas of north and central Greece (Macedonia and Thessaly. The study aimed at understanding the role of the above mentioned soil components on penetration resistance. The findings showed that the increase of iron and aluminum oxides and oxy-hydroxides content resulted in an increase of soil penetration resistance and the relationships between them were significant. Crystalline iron forms found to have a more profound effect on penetration resistance as compared to amorphous iron forms. Finally, positive and significant relationships were also found between penetration resistance and clay content. However, it is not entirely clear which of the two soil components plays the most important role in penetration resistance changes in soils.

  1. An investigation of the electrical behavior of thermally-sprayed aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, C.J.; Seals, R.D.; White, R.L.; Murray, W.P.; Cooper, M.H.

    1996-09-01

    Electrical properties of plasma-sprayed aluminum oxide coatings were measured at temperatures up to 600 C. High purity (> 99.5 wt% pure Al{sub 2}O{sub 3}) alumina powders were plasma-sprayed on stainless steel substrates over a range of power levels, using two gun configurations designed to attain different spray velocities. Key electrical properties were measured to evaluate the resultant coatings as potential insulating materials for electrostatic chucks (ESCs) being developed for semiconductor manufacturing. Electrical resistivity of all coatings was measured under vacuum upon heating and cooling over a temperature range of 20 to 600 C. Dielectric constants were also measured under the same test conditions. X-ray diffraction was performed to examine phase formation in the coatings. Results show the important of powder composition and careful selection and control of spray conditions for optimizing electrical behavior in plasma-sprayed aluminum oxide, and point to the need for further studies to characterize the relationship between high temperature electrical properties, measured plasma-spray variables, and specific microstructural and compositional coating features.

  2. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  3. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Comparative Assessment of Antimicrobial Efficiency of Ionic Silver, Silver Monoxide, and Metallic Silver Incorporated onto an Aluminum Oxide Nanopowder Carrier

    OpenAIRE

    Agnieszka Maria Jastrzębska; Ewa Karwowska; Andrzej R. Olszyna; Antoni R. Kunicki

    2013-01-01

    The present paper provides comparative assessment of antimicrobial efficiency of ionic silver (Ag+), silver monoxide (Ag2O), and metallic silver (Ag) incorporated onto an aluminum oxide nanopowder carrier (Al2O3). The deposition of Ag+ ions, Ag2O nanoparticles, and Ag nanoparticles on an different phases of aluminum oxide nanopowder carrier was realized using consecutive stages of dry sol-gel method. The Al2O3-Ag+, Al2O3-Ag2O, and Al2O3-Ag nanopowders were widely characterized qualitatively a...

  5. Murine pulmonary responses after sub-chronic exposure to aluminum oxide-based nanowhiskers

    Directory of Open Access Journals (Sweden)

    Adamcakova-Dodd Andrea

    2012-06-01

    Full Text Available Abstract Background Aluminum oxide-based nanowhiskers (AO nanowhiskers have been used in manufacturing processes as catalyst supports, flame retardants, adsorbents, or in ceramic, metal and plastic composite materials. They are classified as high aspect ratio nanomaterials. Our aim was to assess in vivo toxicity of inhaled AO nanowhisker aerosols. Methods Primary dimensions of AO nanowhiskers specified by manufacturer were 2–4 nm x 2800 nm. The aluminum content found in this nanomaterial was 30% [mixed phase material containing Al(OH3 and AlOOH]. Male mice (C57Bl/6 J were exposed to AO nanowhiskers for 4 hrs/day, 5 days/wk for 2 or 4 wks in a dynamic whole body exposure chamber. The whiskers were aerosolized with an acoustical dry aerosol generator that included a grounded metal elutriator and a venturi aspirator to enhance deagglomeration. Average concentration of aerosol in the chamber was 3.3 ± 0.6 mg/m3 and the mobility diameter was 150 ± 1.6 nm. Both groups of mice (2 or 4 wks exposure were necropsied immediately after the last exposure. Aluminum content in the lung, heart, liver, and spleen was determined. Pulmonary toxicity assessment was performed by evaluation of bronchoalveolar lavage (BAL fluid (enumeration of total and differential cells, total protein, activity of lactate dehydrogenase [LDH] and cytokines, blood (total and differential cell counts, lung histopathology and pulmonary mechanics. Results Following exposure, mean Al content of lungs was 0.25, 8.10 and 15.37 μg/g lung (dry wt respectively for sham, 2 wk and 4 wk exposure groups. The number of total cells and macrophages in BAL fluid was 2-times higher in animals exposed for 2 wks and 6-times higher in mice exposed for 4 wks, compared to shams (p p  Conclusions Sub-chronic inhalation exposures to aluminum-oxide based nanowhiskers induced increased lung macrophages, but no inflammatory or toxic responses were observed.

  6. Effect of interfacial oxide thickness on the photocatalytic activity of magnetron-sputtered TiO2 coatings on aluminum substrate

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Petit, Jean-Pierre; Shabadi, Rajashekhara;

    2015-01-01

    measurements showed a maximum UV-light absorption by titanium dioxide occurring slightly prior to the energy of the maximum photocurrent. The photocurrent of titanium dioxide decreases with increasing thickness of the aluminum oxide interface layer. Aluminum oxide acts as an insulator; disfavoring the electron...

  7. Effect of interfacial oxide thickness on the photocatalytic activity of magnetron-sputtered TiO2coatings on aluminum substrate

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Petit, Jean-Pierre; Shabadi, Rajashekhara;

    2015-01-01

    measurements showed a maximum UV-light absorption by titanium dioxide occurring slightly prior to the energy of the maximum photocurrent. The photocurrent of titanium dioxide decreases with increasing thickness of the aluminum oxide interface layer. Aluminum oxide acts as an insulator; disfavoring the electron...

  8. Oxidation Behavior of In-Flight Molten Aluminum Droplets in the Twin-Wire Electric Arc Thermal Spray Process

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Brian G. Williams

    2005-05-01

    This paper examines the in-flight oxidation of molten aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. The oxidation reaction of aluminum in air is highly exothermic and is represented by a heat generation term in the energy balance. Aerodynamic shear at the droplet surface enhances the amount of in-flight oxidation by: (1) promoting entrainment and mixing of the surface oxides within the droplet, and (2) causing a continuous heat generation effect that increases droplet temperature over that of a droplet without internal circulation. This continual source of heat input keeps the droplets in a liquid state during flight. A linear rate law based on the Mott-Cabrera theory was used to estimate the growth of the surface oxide layer formed during droplet flight. The calculated oxide volume fraction of an average droplet at impact agrees well with the experimentally determined oxide content for a typical TWEA-sprayed aluminum coating, which ranges from 3.3 to 12.7%. An explanation is provided for the elevated, nearly constant surface temperature (~ 2000 oC) of the droplets during flight to the substrate and shows that the majority of oxide content in the coating is produced during flight, rather than after deposition.

  9. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    International Nuclear Information System (INIS)

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance gm change, threshold voltage VT change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature

  10. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  11. Oxidative stress in blood and testicle of rat following intraperitoneal administration of aluminum and indium.

    Science.gov (United States)

    Maghraoui, S; Clichici, Simona; Ayadi, A; Login, C; Moldovan, R; Daicoviciu, D; Decea, N; Mureşan, A; Tekaya, L

    2014-03-01

    Aluminum (Al) and indium (In) have embryotoxic, neurotoxic and genotoxic effects, oxidative stress being one of the possible mechanisms involved in their cytotoxicity. We have recently demonstrated that indium intraperitoneal (ip) administration induced histological disorganization of testicular tissue. In the present research we aimed at investigating the effect of Al and In ip administration on systemic and testicular oxidative stress status. Studies were performed on Wistar rats ip injected with Al, In or physiological solution for two weeks. Our results showed that In significantly decreased the absolute weight of testicles. Measurements of lactate dehydrogenase (LDH) and paraoxonase (PON) activities showed that In induced a significant augmentation in the first parameter but no changes were observed in the second. Both Al and In caused oxidative stress in testicles by increasing malondialdehyde (MDA) and protein carbonyls (PC) production. Concomitantly, thiol group (-SH) and glutathione (GSH) level were enhanced in the testicles. In the blood, while concentrations of MDA was not changed, those of GSH was significantly decreased in the Al and In groups. Our results indicated that Al and In cause oxidative stress both in blood and testicles but In has cytotoxic effect as well as negative impact on testicle weights. These findings could explain the testicular histological alterations previously described after In ip administration.

  12. Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process.

    Science.gov (United States)

    Qian, Linbo; Chen, Baoliang

    2014-01-15

    Interactions of aluminum with primary and oxidized biochars were compared to understand the changes in the adsorption properties of aged biochars. The structural characteristics of rice straw-derived biochars, before and after oxidation by HNO3/H2SO4, were analyzed by element composition, FTIR, and XPS. The adsorption of Al to primary biochars was dominated by binding to inorganic components (such as silicon particles) and surface complexation of oxygen-containing functional groups via esterification reactions. Oxidization (aging) introduced carboxylic functional groups on biochar surfaces, which served as additional binding sites for Al(3+). At pH 2.5-3.5, the Al(3+) binding was significantly greater on oxidized biochars than primary biochars. After loading with Al, the -COOH groups anchored to biochar surfaces were transformed into COO(-) groups, and the negative surface charge diminished, which indicated that Al(3+) coordinated with COO(-). Biochar is suggested as a potential adsorbent for removing Al from acidic soils. PMID:24364719

  13. Highly Ordered Zinc Oxide Nanotubules Synthesized within the Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen; LI HuLin

    2001-01-01

    @@ Zinc oxide (ZnO) is a wide-band-gap semiconductor, which has a broad range of applications, e.g., in pigment, rubber additives, gas sensors, varistors and transducers1. It has recently been demonstrated that nanophase zinc oxide can be used in photocells of the Gatzel type2, which results in improved current generation efficiency. The properties of high aspect ratios and small sizes of zinc oxide nanotubules or nanowires are expected to improve the luminescence efficiency of the electro-optical devices and the sensitivity of the chemical sensors3.

  14. Highly Ordered Zinc Oxide Nanotubules Synthesized within the Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhen

    2001-01-01

    Zinc oxide (ZnO) is a wide-band-gap semiconductor, which has a broad range of applications, e.g., in pigment, rubber additives, gas sensors, varistors and transducers1. It has recently been demonstrated that nanophase zinc oxide can be used in photocells of the Gatzel type2, which results in improved current generation efficiency. The properties of high aspect ratios and small sizes of zinc oxide nanotubules or nanowires are expected to improve the luminescence efficiency of the electro-optical devices and the sensitivity of the chemical sensors3.  ……

  15. In-Line Sputtered Gallium and Aluminum Codoped Zinc Oxide Films for Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Shang-Chou Chang

    2014-01-01

    Full Text Available Gallium and aluminum codoped zinc oxide (GAZO films were deposited at different temperatures by in-line sputtering. Aluminum is thermally unstable compared to other elements in GAZO films. The grains of GAZO films increase with deposition temperature. Coalescence between grains was observed for GAZO films deposited at 250°C. The deposition temperature exhibits positive influence on crystallinity, and electrical and optical properties of GAZO films. The carrier concentration and mobility of GAZO films increase, while the electrical resistivity of GAZO films decreases with deposition temperature. The average optical transmittance of GAZO films rises with deposition temperature. In-line sputtering demonstrates a potential method with simplicity, mass production, and large-area deposition to produce GAZO films with good electrical and optical quality. The electrical resistivity of 4.3 × 10−4 Ω cm and the average optical transmittance in the visible range from 400 to 800 nm of 92% can be obtained for GAZO films deposited at 250°C. The hybrid organic solar cells (OSC were fabricated on GAZO-coated glass substrates. Blended poly(3-hexylthiophene (P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM were the photoactive materials in OSC. The power conversion efficiency of OSC is 0.65% for the OSC with the 250°C deposited GAZO electrode.

  16. Chemical Bath Deposition of Aluminum Oxide Buffer on Curved Surfaces for Growing Aligned Carbon Nanotube Arrays.

    Science.gov (United States)

    Wang, Haitao; Na, Chongzheng

    2015-07-01

    Direct growth of vertically aligned carbon nanotube (CNT) arrays on substrates requires the deposition of an aluminum oxide buffer (AOB) layer to prevent the diffusion and coalescence of catalyst nanoparticles. Although AOB layers can be readily created on flat substrates using a variety of physical and chemical methods, the preparation of AOB layers on substrates with highly curved surfaces remains challenging. Here, we report a new solution-based method for preparing uniform layers of AOB on highly curved surfaces by the chemical bath deposition of basic aluminum sulfate and annealing. We show that the thickness of AOB layer can be increased by extending the immersion time of a substrate in the chemical bath, following the classical Johnson-Mehl-Avrami-Kolmogorov crystallization kinetics. The increase of AOB thickness in turn leads to the increase of CNT length and the reduction of CNT curviness. Using this method, we have successfully synthesized dense aligned CNT arrays of micrometers in length on substrates with highly curved surfaces including glass fibers, stainless steel mesh, and porous ceramic foam. PMID:26053766

  17. High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials.

    Science.gov (United States)

    Riley, Conor T; Smalley, Joseph S T; Post, Kirk W; Basov, Dimitri N; Fainman, Yeshaiahu; Wang, Deli; Liu, Zhaowei; Sirbuly, Donald J

    2016-02-17

    Aluminum-doped zinc oxide (AZO) is a tunable low-loss plasmonic material capable of supporting dopant concentrations high enough to operate at telecommunication wavelengths. Due to its ultrahigh conformality and compatibility with semiconductor processing, atomic layer deposition (ALD) is a powerful tool for many plasmonic applications. However, despite many attempts, high-quality AZO with a plasma frequency below 1550 nm has not yet been realized by ALD. Here a simple procedure is devised to tune the optical constants of AZO and enable plasmonic activity at 1550 nm with low loss. The highly conformal nature of ALD is also exploited to coat silicon nanopillars to create localized surface plasmon resonances that are tunable by adjusting the aluminum concentration, thermal conditions, and the use of a ZnO buffer layer. The high-quality AZO is then used to make a layered AZO/ZnO structure that displays negative refraction in the telecommunication wavelength region due to hyperbolic dispersion. Finally, a novel synthetic scheme is demonstrated to create AZO embedded nanowires in ZnO, which also exhibits hyperbolic dispersion.

  18. Influence of the atmospheric species water, oxygen, nitrogen and carbon dioxide on the degradation of aluminum doped zinc oxide layers

    NARCIS (Netherlands)

    Theelen, M.; Dasgupta, S.; Vroon, Z.; Kniknie, B.; Barreau, N.; Berkum, J. van; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbon dioxide (CO2), oxygen (O2), nitrogen (N 2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical,

  19. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    Science.gov (United States)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  20. Synthesis and properties of iridescent Zn-containing anodic aluminum oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaoxuan; Sun, Huiyuan, E-mail: huiyuansun@126.com; Liu, Lihu; Hou, Xue; Liu, Huiyuan

    2015-07-01

    A simple method of fabricating Zn-containing anodic aluminum oxide films for multifunctional anticounterfeit technology is reported. The resulting membranes were characterized with UV–vis illumination studies, natural light illumination color experiments, and electron microscopy analysis. Deposition of Zn in the nanopore region can enhance the color saturation of the thin alumina film with different colors dramatically. Both the anodization time and etching time have great influence on the structural color. The mechanisms for the emergence of this phenomenon are discussed and theoretical analysis further demonstrates the experimental results. - Highlights: • Iridescent PAA@Zn nanocomposite films were successfully fabricated. • A simple organics-assisted method is applied to making a series of fancy and multicolor patterns. • The color varies with the angle of incidence of the light used to view the film as is expected with Bragg–Snell formula. • Such colored films could be used in multifunctional anti-counterfeiting applications.

  1. Screen Cage Ion Plating (SCIP) and scratch testing of polycrystalline aluminum oxide

    Science.gov (United States)

    Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.

    1992-01-01

    A screen cage ion plating (SCIP) technique was developed to apply silver films on electrically nonconducting aluminum oxide. It is shown that SCIP has remarkable throwing power; surfaces to be coated need not be in direct line of sight with the evaporation source. Scratch tests, employing a diamond stylus with a 200 micro m radius tip, were performed on uncoated and on silver coated alumina. Subsequent surface analysis show that a significant amount of silver remains on the scratched surfaces, even in areas where high stylus load produced severe crack patterns in the ceramic. Friction coefficients were lowered during the scratch tests on the coated alumina indicating that this modification of the ion planting process should be useful for applying lubricating films of soft metals to electrical insulating materials. The very good throwing power of SCIP also strongly suggests general applicability of this process in other areas of technology, e.g., electronics, in addition to tribology.

  2. Effect of magnesium in aluminum alloys on characteristics of microarc oxidation coatings

    Institute of Scientific and Technical Information of China (English)

    LIU Yao-hui; LI Song; YU Si-rong; ZHU Xian-yong; XU Bai-ming

    2006-01-01

    Microarc oxidation(MAO) coatings were prepared on the surface of aluminum alloys with different contents of magnesium. The morphologies and surface roughness of the coatings were characterized by Confocal laser scanning microscopy(CLSM). Phase and chemical composition of the MAO coatings were analyzed by X-ray diffractometry(XRD) and X-ray photoelectron spectroscopy(XPS). The experimental results show that the coatings formed on different substrates have two-layer morphologies and are mainly composed of Al2O3 and Al-Si-O phases. In addition, the content of Al2O3 increases with increasing the content of magnesium. XPS results prove that magnesium from substrate indeed participates in the MAO process and is incorporated into the coating in the form of MgO. The coating formed on Al-3Mg substrate has the smallest mass loss and the lowest friction coefficient of 0.17-0.19.

  3. Taguchi Optimization for Combustion Synthesis of Aluminum Oxide Nano-particles

    Institute of Scientific and Technical Information of China (English)

    EDRISSI Mohammad; NOROUZBEIGI Reza

    2008-01-01

    Nano-structured aluminum oxide powders were prepared by a combustion synthesis method utilizing serine as a new fuel. The product was sonicated to obtain nano powders. A Taguchi L-4 statistical design of combustion syn- thesis was utilized to optimize the production of γ-alumina powder. The product was characterized by XRD, BET, SEM, EDX and LLS. Nano crystalline γ-alumina with crystal sizes between 4.26 and 5.47 nm and α-Al2O3 powders with crystal sizes 24.51 and 28.62 nm were obtained by the combustion synthesis. The specific surface area was measured by a BET method to be 75.21 m2/g. The average particle size after sonication of product, observed by LLS, was 79.32 nm.

  4. Photoluminescence and Raman studies in swift heavy ion irradiated polycrystalline aluminum oxide

    Indian Academy of Sciences (India)

    K R Nagabhushana; B N Lakshminarasappa; Fouran Singh

    2009-10-01

    Polycrystalline aluminum oxide is synthesized by combustion technique and XRD studies of the sample revealed the -phase. The synthesized sample is irradiated with 120 MeV swift Au9+ ions for the fluence in the range from 1 × 1011 to 1 × 1013 ions cm-2. A broad photoluminescence (PL) emission with peak at ∼447 nm and two sharp emissions with peak at ∼ 679 and ∼ 695 nm are observed in pristine when sample was excited with 326 nm. However, in the irradiated samples the PL intensity at ∼ 447, 679 and 695 nm decreases with increase in ion fluence. The -Al2O3 gives rise to seven Raman modes with Raman intensity with peaks at ∼ 253, 396, 417, 546, 630, 842, 867 cm-1 observed in pristine. The intensity of these modes decreases with increase in ion fluence. However, the Raman modes observed at lower fluences are found to disappear at higher fluence.

  5. Microstructures and Composition of Ceramic Coatings on Aluminum Produced by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Microstructures and phase composition of the ceramic coatings formed on pure aluminum by heteropolar pulsed current ceramic synthesizing system for different periods were investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). Results show that the amount of the discharge channels in the ceramic coating sminish while the aperture largen in the micro-arc oxidation process, and the surface of the ceramic coatingmelted and solidified in the process.XRD studies of ceramic coatings deposited for different time show that these coatings consist mainly of α-Al2 O3, γ-Al2 O3 , θ-Al2 O3 and a little amorphous phase, and phase composition of compact and porous ceramic coatings don' t have much difference but have a little change of the content of α-Al2 O3 and amorphous phase.

  6. Contribution of Iron and Aluminum Oxides to Electrokinetic Characteristics of Variable Charge Soils in Relation to Surface Charge

    Institute of Scientific and Technical Information of China (English)

    ZHANGHONG; ZHANGXIAO-NIAN

    1992-01-01

    The contribution of iron and aluminum oxides to electrokinetic characteristics of variable charge soils was studied through determination of electrophoretic mobilities of the red soils treated with either removal of iron oxides or coating of aluminum oxides,and of those deferrated under natural conditions.After removal of the iron oxides,zeta potentials of the latosol and the red earth decreased obviously with a shift of IEP to a lower pH,from 6.4 to 5.3 and 4.1 to 2.4 for the former and the latter,respectively,and the electrokinetic change for the latosol was greater than for the red earth.Zeta potentials of the kaolinite sample increased markedly after coated with iron oxides.The striking effect of iron oxides on electrokinetix properties of the soils was also demonstrated by the electrokinetic differences between the samples from the red and white zones of a plinthitic horizon formed naturally,and between the samples from the gley and bottom horizons of a paddy soil derived from a red earth.The coatings of aluminum oxides on the latosol and the yellow earth made their zeta potentials rise pronouncedly and their IEFs move toward higher pHs,from 6.2 to 6.8 and 4.3 to 5.3 for the former and the latter,respectively.The samples with different particle sizes also exhibited some electrokinetic variation.The experiment showed that the effects of iron and aluminum oxides were closely related to the pH and type of the soils.

  7. Copper-aluminum oxide catalysts for total oxidation of toluene synthesized by thermal decomposition of co-precipitated precursors

    Energy Technology Data Exchange (ETDEWEB)

    Białas, Anna [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Kuśtrowski, Piotr, E-mail: kustrows@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Dudek, Barbara; Piwowarska, Zofia; Wach, Anna [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Michalik, Marek [Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków (Poland); Kozak, Marek [Division of Petroleum Processing, Oil and Gas Institute, Łukasiewicza 1, 31-429 Kraków (Poland)

    2014-08-20

    Highlights: • Cu–Al oxides obtained by coprecipitation are active catalysts in toluene combustion. • Advantage of the catalyst is low copper content and alkali-free precipitating agent. • The stable oxide form built of CuO and CuAl{sub 2}O{sub 4} is attained at 900 °C. • The optimum atomic Cu:Al ratio, ensuring maximum toluene conversion, is about 0.6. • The most active sample contains small CuO crystallites dispersed on the surface. - Abstract: Copper–aluminum containing precursors with various Cu/Al molar ratios (from 0.32–1.28) were prepared by co-precipitation in the presence of ammonium carbonate. The thermal stability of the obtained materials was investigated by thermal analysis, which revealed three crucial decomposition steps, finally resulting in the formation of mixed Cu–Al oxides. The changes in structure and texture of the samples at each decomposition step were examined by X-ray diffraction (XRD), diffuse reflectance UV–vis spectroscopy (UV–vis-DRS) and low temperature sorption of nitrogen. It was found that the entire removal of structural carbonates requires a calcination temperature as high as 900 °C. The samples after thermal treatment at this temperature varied in the phase composition of the bulk (determined by XRD) as well as of the surface (determined by X-ray photoelectron spectroscopy). All samples contained the CuAl{sub 2}O{sub 4} phase. Furthermore, an increase in Cu content led to the appearance of an increasing amount of CuO. Copper oxide in the form of relatively small crystallites turned out to be the catalytically active phase in the total oxidation of toluene.

  8. An anode with aluminum doped on zinc oxide thin films for organic light emitting devices

    International Nuclear Information System (INIS)

    Doped zinc oxides are attractive alternative materials as transparent conducting electrode because they are nontoxic and inexpensive compared with indium tin oxide (ITO). Transparent conducting aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by DC reactive magnetron sputtering method. Films were deposited at a substrate temperature of 150-bar oC in 0.03 Pa of oxygen pressure. The electrical and optical properties of the film with the Al-doping amount of 2 wt% in the target were investigated. For the 300-nm thick AZO film deposited using a ZnO target with an Al content of 2 wt%, the lowest electrical resistivity was 4x10-4Ωcm and the average transmission in the visible range 400-700 nm was more than 90%. The AZO film was used as an anode contact to fabricate organic light-emitting diodes. The device performance was measured and the current efficiency of 2.9 cd/A was measured at a current density of 100 mA/cm2

  9. Oxide and proton conductivity in aluminum-doped tricalcium oxy-silicate

    Energy Technology Data Exchange (ETDEWEB)

    Porras-Vazquez, J.M.; De la Torre, A.G.; Losilla, E.R.; Aranda, M.A.G. [Dept. Quimica Inorganica, Cristalografia y Mineralogia, Universidad de Malaga, Campus Teatinos, 29071-Malaga (Spain)

    2007-06-15

    Aluminum doping in tricalcium silicate, Ca{sub 3}(SiO{sub 4})O, has been studied by high-resolution laboratory X-ray powder diffraction and the Rietveld method. Two nominal series have been designed and studied. Oxygen-fixed Ca{sub 3-x/2}Al{sub x/2}(Si{sub 1-x/2}Al{sub x/2}O{sub 4})O series has been prepared as single-phase up to x = 0.03. However, oxygen-variable Ca{sub 3}(Si{sub 1-x}Al{sub x}O{sub 4})O{sub 1-x/2}{open_square}{sub x/2} series has not been stabilized for any composition. The samples show oxide anion conductivity with a small p-type electronic contribution under oxidizing conditions. Typical total conductivities for these solids are 10{sup -} {sup 5}-10{sup -} {sup 4}S cm{sup -} {sup 1} at 1100 K. The oxide ion transference numbers are very high, {proportional_to} 0.98, under reducing conditions, i.e. dry 5%H{sub 2}-N{sub 2}/air gradient. The oxide ion transference numbers are slightly lower, {proportional_to} 0.91 under oxidizing conditions, i.e. dry O{sub 2}/air gradient. These compounds display a very important proton contribution to the overall conductivities under humidified atmospheres. The proton transference number ranges between 0.72 and 0.55 at 873 and 1023 K, respectively. (author)

  10. Nanoscale aluminum dimples for light-trapping in organic thin-films

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr;

    -beam evaporation of a few nanometers of aluminum followed by a micrometer layer of aluminum formed via sputter deposition. The samples are then anodized to form nano-scale pores of controlled sizes. The anodization of the prepared samples occurs in an electrochemical cell in H2SO4, H2C2O4 and H3PO4 solutions....... Electrolyte solution variation and anodization parameters (sample temperature, voltage) control, allows for AAO pore diameter and interpore distance tuning. The fabricated AAO is selectively etched in H2CrO4/H3PO4 mixtures, in order to reveal the underlying aluminum nanoscale dimples, which are present...

  11. Functionalizing Aluminum Oxide by Ag Dendrite Deposition at the Anode during Simultaneous Electrochemical Oxidation of Al.

    Science.gov (United States)

    Rafailović, Lidija D; Gammer, Christoph; Rentenberger, Christian; Trišović, Tomislav; Kleber, Christoph; Karnthaler, Hans Peter

    2015-11-01

    A novel synthesis strategy is presented for depositing metallic Ag at the anode during simultaneous electrochemical oxidation of Al. This unexpected result is achieved based on galvanic coupling. Metallic dendritic nanostructures well-anchored in a high surface area supporting matrix are envisioned to open up a new avenue of applications. PMID:26398487

  12. Anodic Aluminum Oxide Membrane-Assisted Fabrication of β-In2S3Nanowires

    Directory of Open Access Journals (Sweden)

    Chen Chih-Jung

    2009-01-01

    Full Text Available Abstract In this study, β-In2S3nanowires were first synthesized by sulfurizing the pure Indium (In nanowires in an AAO membrane. As FE-SEM results, β-In2S3nanowires are highly ordered, arranged tightly corresponding to the high porosity of the AAO membrane used. The diameter of the β-In2S3nanowires is about 60 nm with the length of about 6–8 μm. Moreover, the aspect ratio of β-In2S3nanowires is up to 117. An EDS analysis revealed the β-In2S3nanowires with an atomic ratio of nearly S/In = 1.5. X-ray diffraction and corresponding selected area electron diffraction patterns demonstrated that the β-In2S3nanowire is tetragonal polycrystalline. The direct band gap energy (Eg is 2.40 eV from the optical measurement, and it is reasonable with literature.

  13. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H., E-mail: HXu14@bama.ua.edu [Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Liu, C.; Silberschmidt, V.V. [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Pramana, S.S. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); White, T.J. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Centre for Advanced Microscopy, Australian National University, Canberra, ACT 2601 (Australia); Chen, Z. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Acoff, V.L. [Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2011-08-15

    Nanoscale interfacial evolution in Cu-Al wire bonds during isothermal annealing from 175 deg. C to 250 deg. C was investigated by high resolution transmission electron microscopy (HRTEM). The native aluminum oxide film ({approx}5 nm thick) of the Al pad migrates towards the Cu ball during annealing. The formation of intermetallic compounds (IMC) is controlled by Cu diffusion, where the kinetics obey a parabolic growth law until complete consumption of the Al pad. The activation energies to initiate crystallization of CuAl{sub 2} and Cu{sub 9}Al{sub 4} are 60.66 kJ mol{sup -1} and 75.61 kJ mol{sup -1}, respectively. During IMC development, Cu{sub 9}Al{sub 4} emerges as a second layer and grows together with the initial CuAl{sub 2}. When Al is completely consumed, CuAl{sub 2} transforms to Cu{sub 9}Al{sub 4}, which is the terminal product. Unlike the excessive void growth in Au-Al bonds, only a few voids nucleate in Cu-Al bonds after long-term annealing at high temperatures (e.g., 250 {sup o}C for 25 h), and their diameters are usually in the range of tens of nanometers. This is due to the lower oxidation rate and volumetric shrinkage of Cu-Al IMC compared with Au-Al IMC.

  14. Aluminum-induced oxidative stress and neurotoxicity in grass carp (Cyprinidae--Ctenopharingodon idella).

    Science.gov (United States)

    Fernández-Dávila, María Lourdes; Razo-Estrada, Amparo Celene; García-Medina, Sandra; Gómez-Oliván, Leobardo Manuel; Piñón-López, Manuel Jesús; Ibarra, Rocio Guzmán; Galar-Martínez, Marcela

    2012-02-01

    Aluminum is used in a large number of anthropogenic processes, leading to aquatic ecosystems pollution. Diverse studies show that in mammals this metal may produce oxidative stress, is neurotoxic, and is involved in the development of neurodegenerative disorders, such as Alzhaimer's and Parkinson's diseases. Nevertheless, there are only few studies with respect to Al-induced neurotoxicity on aquatic fauna, particularly on fishes of economical interest, such as the grass carp (Ctenopharingodon idella). This study evaluates Al-induced toxicity on the grass carp C. idella. Specimens were exposed to the maximum concentration allowed in order to protect aquatic life (0.1 mg L⁻¹), for 12, 24, 48, 72 and 96 h. After the exposure time, lipid peroxidation degree, superoxide dismutase and catalase activity, as well as dopamine, adrenaline and noradrenaline levels were evaluated. Al concentration in organisms and water was also measured, in order to determine the bioconcentration factor. Results show that Al bioconcentrates in grass carp inducing oxidative stress (increment of 300 and 455 percent on lipid peroxidation degree and SOD activity, and decrement of 49 percent on CAT activity) and neurotoxicity (increment of 55 and 155 percent on dopamine and adrenaline levels and decrement of 93 percent on noradrenaline level). PMID:21993346

  15. Impact of water corrosion on nanoscale conductance on aluminum doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Hun; Lee, Hyunsoo; Choi, Sunghyun [Graduate School of EEWS (WCU) and Nanocentury KI, KAIST, Daejeon, 305-701 (Korea, Republic of); Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon, 305-701 (Korea, Republic of); Bae, Kyoung Hwan [The Thin Film Coating Team, KCC Corporation, Marbook Dong 83, Ki-Heung Gu, Yong-In City, 459-708 (Korea, Republic of); Park, Jeong Young, E-mail: jeongypark@kaist.ac.kr [Graduate School of EEWS (WCU) and Nanocentury KI, KAIST, Daejeon, 305-701 (Korea, Republic of)

    2013-11-29

    One major cause of failure in solar cell modules is associated with the degradation of conductive layers by the ingress of water. In this study, the corrosive interactions between water and transparent conducting oxides, including aluminum-doped ZnO (AZO) and indium tin oxide (ITO), were studied. The AZO layer exhibited ∼ 90% increase in sheet resistance from 17.5 to 33 ohm/square after an accelerated moisture test where the samples were stored at 80 °C and 100% humidity, while the conductivity of the ITO layer remained essentially unchanged. In order to elucidate the water-induced degradation mechanism of AZO, the structure and composition were characterized with conductive atomic force microscopy, energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS) before and after the moisture test. It was found that the grain boundary of AZO exhibits a higher local conductance compared to that in the middle of the grain. A decrease in local conductance at the grain boundary after the moisture test was observed, which is attributed to depletion of the Zn, based on XPS and EDS analyses. - Highlights: • The moisture treatment lowers the local conductance of Al-doped ZnO (AZO). • Conductive atomic force microscopy shows the nanoelectronic properties of AZO. • Locally conductive areas are distributed along the grain boundaries. • The ratio of Zn to O along the grain boundaries was higher than that inside the grain.

  16. Silicon effects on formation of EPO oxide coatings on aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, N9B 3P4 (Canada); Nie, X. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, N9B 3P4 (Canada)]. E-mail: xnie@uwindsor.ca

    2006-01-03

    Electrolytic plasma processes (EPP) can be used for cleaning, metal-coating, carburizing, nitriding, and oxidizing. Electrolytic plasma oxidizing (EPO) is an advanced technique to deposit thick and hard ceramic coatings on a number of aluminum alloys. However, the EPO treatment on Al-Si alloys with a high Si content has rarely been reported. In this research, an investigation was conducted to clarify the effects of silicon contents on the EPO coating formation, morphology, and composition. Cast hypereutectic 390 alloys ({approx} 17% Si) and hypoeutectic 319 alloys ({approx} 7% Si) were chosen as substrates. The coating morphology, composition, and microstructure of the EPO coatings on those substrates were investigated using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). A stylus roughness tester was used for surface roughness measurement. It was found that the EPO process had four stages where each stage was corresponding to various coating surface morphology, composition, and phase structures, characterised by different coating growth mechanisms.

  17. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission

    Science.gov (United States)

    Wing, Waylin J.; Sadeghi, Seyed M.; Gutha, Rithvik R.; Campbell, Quinn; Mao, Chuanbin

    2015-09-01

    We investigate the shape and size effects of gold metallic nanoparticles on the enhancement of exciton-plasmon coupling and emission of semiconductor quantum dots induced via the simultaneous impact of metal-oxide and plasmonic effects. This enhancement occurs when metallic nanoparticle arrays are separated from the quantum dots by a layered thin film consisting of a high index dielectric material (silicon) and aluminum oxide. Our results show that adding the aluminum oxide layer can increase the degree of polarization of quantum dot emission induced by metallic nanorods by nearly two times, when these nanorods have large aspect ratios. We show when the aspect ratio of these nanorods is reduced to half, the aluminum oxide loses its impact, leading to no improvement in the degree of polarization. These results suggest that a silicon/aluminum oxide layer can significantly enhance exciton-plasmon coupling when quantum dots are in the vicinity of metallic nanoantennas with high aspect ratios.

  18. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission

    International Nuclear Information System (INIS)

    We investigate the shape and size effects of gold metallic nanoparticles on the enhancement of exciton-plasmon coupling and emission of semiconductor quantum dots induced via the simultaneous impact of metal-oxide and plasmonic effects. This enhancement occurs when metallic nanoparticle arrays are separated from the quantum dots by a layered thin film consisting of a high index dielectric material (silicon) and aluminum oxide. Our results show that adding the aluminum oxide layer can increase the degree of polarization of quantum dot emission induced by metallic nanorods by nearly two times, when these nanorods have large aspect ratios. We show when the aspect ratio of these nanorods is reduced to half, the aluminum oxide loses its impact, leading to no improvement in the degree of polarization. These results suggest that a silicon/aluminum oxide layer can significantly enhance exciton-plasmon coupling when quantum dots are in the vicinity of metallic nanoantennas with high aspect ratios

  19. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission

    Energy Technology Data Exchange (ETDEWEB)

    Wing, Waylin J.; Sadeghi, Seyed M., E-mail: seyed.sadeghi@uah.edu; Gutha, Rithvik R.; Campbell, Quinn [Department of Physics, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Mao, Chuanbin [Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2015-09-28

    We investigate the shape and size effects of gold metallic nanoparticles on the enhancement of exciton-plasmon coupling and emission of semiconductor quantum dots induced via the simultaneous impact of metal-oxide and plasmonic effects. This enhancement occurs when metallic nanoparticle arrays are separated from the quantum dots by a layered thin film consisting of a high index dielectric material (silicon) and aluminum oxide. Our results show that adding the aluminum oxide layer can increase the degree of polarization of quantum dot emission induced by metallic nanorods by nearly two times, when these nanorods have large aspect ratios. We show when the aspect ratio of these nanorods is reduced to half, the aluminum oxide loses its impact, leading to no improvement in the degree of polarization. These results suggest that a silicon/aluminum oxide layer can significantly enhance exciton-plasmon coupling when quantum dots are in the vicinity of metallic nanoantennas with high aspect ratios.

  20. Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Pengyu [Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Nanling Campus of Jilin University, Changchun Jilin 130025 (China)], E-mail: linpengyu2000@yahoo.com.cn; Zhou Hong; Li Wei; Li Wenping; Sun Na [Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Nanling Campus of Jilin University, Changchun Jilin 130025 (China); Yang Rong [Public Mathematics Teaching and Research Center, College of Mathematics, Qianwei Campus of Jilin University, Changchun Jilin 130012 (China)

    2008-09-15

    This paper focused on the interactive effect of cerium (Ce) addition and aluminum (Al) content in magnesium alloy on ignition point and oxidation resistance. Ce content played an important role in improving the oxidation resistance of Mg alloy. Ignition point ascended with increasing Ce content. 0.25 wt% Ce content in Mg alloys could greatly improve tightness of the oxide film of Mg alloys. However, when Ce content in the alloy exceeded its solid solubility, ignition point descended. Furthermore, Al content in the alloy also influenced the ignition point. The higher the Al content was, the lower the ignition point.

  1. Reduction of interface states by hydrogen treatment at the aluminum oxide/4H-SiC Si-face interface

    Directory of Open Access Journals (Sweden)

    Hironori Yoshioka

    2016-10-01

    Full Text Available Processes to form aluminum oxide as a gate insulator on the 4H-SiC Si-face are investigated to eliminate the interface state density (DIT and improve the mobility. Processes that do not involve the insertion or formation of SiO2 at the interface are preferential to eliminate traps that may be present in SiO2. Aluminum oxide was formed by atomic layer deposition with hydrogen plasma pretreatment followed by annealing in forming gas. Hydrogen treatment was effective to reduce DIT at the interface of aluminum oxide and SiC without a SiO2 interlayer. Optimization of the process conditions resulted in DIT for the metal oxide semiconductor (MOS capacitor of 1.7×1012 cm−2eV−1 at 0.2 eV, and the peak field-effect mobility of the MOS field-effect transistor (MOSFET was approximately 57 cm2V−1s−1.

  2. Effect of Polar Environments on the Aluminum Oxide Shell Surrounding Aluminum Particles: Simulations of Surface Hydroxyl Bonding and Charge.

    Science.gov (United States)

    Padhye, Richa; Aquino, Adelia J A; Tunega, Daniel; Pantoya, Michelle L

    2016-06-01

    Density functional theory (DFT) calculations were performed to understand molecular variations on an alumina surface due to exposure to a polar environment. The analysis has strong implications for the reactivity of aluminum (Al) particles passivated by an alumina shell. Recent studies have shown a link between the carrier fluid used for Al powder intermixing and the reactivity of Al with fluorine containing reactive mixtures. Specifically, flame speeds show a threefold increase when polar liquids are used to intermix aluminum and fluoropolymer powder mixtures. It was hypothesized that the alumina lattice structure could be transformed due to hydrogen bonding forces exerted by the environment that induce modified bond distances and charges and influence reactivity. In this study, the alumina surface was analyzed using DFT calculations and model clusters as isolated systems embedded in polar environments (acetone and water). The conductor-like screening model (COSMO) was used to mimic environmental effects on the alumina surface. Five defect models for specific active -OH sites were investigated in terms of structures and vibrational -OH stretching frequencies. The observed changes of the surface OH sites invoked by the polar environment were compared to the bare surface. The calculations revealed a strong connection between the impact of carrier fluid polarity on the hydrogen bonding forces between the surface OH sites and surrounding species. Changes were observed in the OH characteristic properties such as OH distances (increase), atomic charges (increase), and OH stretching frequencies (decrease); these consequently improve OH surface reactivity. The difference between medium (acetone) and strong (water) polar environments was minimal in the COSMO approximation. PMID:27175545

  3. Self-assembled synthesis of 3D Cu(In1 - xGax)Se2 nanoarrays by one-step electroless deposition into ordered AAO template

    Science.gov (United States)

    Zhang, Bin; Zhou, Tao; Zheng, Maojun; Xiong, Zuzhou; Zhu, Changqing; Li, Hong; Wang, Faze; Ma, Li; Shen, Wenzhong

    2014-07-01

    Quaternary nanostructured Cu(In1 - xGax)Se2 (CIGS) arrays were successfully fabricated via a novel and simple solution-based protocol on the electroless deposition method, using a flexible, highly ordered anodic aluminium oxide (AAO) substrate. This method does not require electric power, complicated sensitization processes, or complexing agents, but provides nearly 100% pore fill factor to AAO templates. The field emission scanning electron microscopy (FE-SEM) images show that we obtained uniformly three-dimensional nanostructured CIGS arrays, and we can tailor the diameter and wall thicknesses of the nanostructure by adjusting the pore diameter of the AAO and metal Mo layer. Their chemical composition was determined by energy-dispersive spectroscopy analysis, which is very close to the stoichiometric value. The Raman spectroscopy, x-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) further confirm the formation of nanostructured CIGS with prominent chalcopyrite structure. The nanostructured CIGS arrays can support the design of low-cost, highlight-trapping, and enhanced carrier collection nanostructured solar cells.

  4. Evaluation of the microstructural and photocatalytic properties of aluminum-doped zinc oxide coatings deposited by plasma spraying

    International Nuclear Information System (INIS)

    Aluminum-doped zinc oxide (AZO) material produced from a nanopowder agglomerate was deposited as a plasma-sprayed coating, and the resulting microstructural and photocatalytic properties of these coatings were investigated. The microstructure of the AZO coatings was analyzed by X-ray diffraction and scanning electron microscopy. Additionally, the photocatalytic degradation of methylene blue caused by the AZO coatings was estimated via ultraviolet–visible spectroscopy. The results of this study demonstrate that the AZO coatings deposited by plasma spraying can influence the photocatalytic degradation of methylene blue. - Highlights: • We doped aluminum (Al) in a zinc oxide (ZnO) coating using plasma spraying. • More significant recrystallization was observed after plasma spraying. • The surface of the Al-doped ZnO coating exhibited a microplatelet microstructure. • The Al-doped ZnO coating displayed high photocatalytic activities

  5. Pomegranate Alleviates Oxidative Damage and Neurotransmitter Alterations in Rats Brain Exposed to Aluminum Chloride and/or Gamma Radiation

    International Nuclear Information System (INIS)

    Aluminum and gamma radiation, both are potent neurotoxins and have been implicated in many human neuro degenerative diseases. The present study was designed to investigate the role of pomegranate in alleviating oxidative damage and alteration of neurotransmitters in the brain of rats exposed to aluminum chloride (AlCl3), and/or gamma radiation (IR). The results revealed that rats whole body exposed to γ- rays, (1 Gy/week up to 4 Gy), and/or administered aluminum chloride (35 mg/kg body weight), via gavages for 4 weeks, resulted in brain tissue damage, featuring by significant increase of the level of thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP), associated with significant decrease of superoxide dismutase (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content indicating occurrence of oxidative stress. A significant decrease of serotonin (5-HT) level associated with a significant increase of 5-hydroxyindole acetic acid (5-HIAA), in addition to a significant decrease in dopamine (DA), norepinephrine (NE) and epinephrine (EPI) contents recorded at the 1st, 7th and 14th day post-irradiation, indicating alterations in the metabolism of brain monoamines. On the other hand, the results exhibited that, supplementation of rats with pomegranate, via gavages, at a dose of 3 ml /kg body weight/ day, for 4 weeks along with AlCl3 with or without radiation has significantly ameliorated the changes occurred in the mentioned parameters and the values returned close to the normal ones. It could be concluded that pomegranate, by its antioxidant constituents might antagonize brain oxidative damage and minimize the severity of aluminum (Al), and/or radiation-induced neurotransmitters disorders

  6. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    CERN Document Server

    Czapski, M; Tardivat, C; Stora, T; Bouville, F; Leloup, J; Luis, R Fernandes; Augusto, R Santos

    2013-01-01

    New silicon carbide (SiC) and aluminum oxide (Al2O3) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLORA codes. (C) 2013 Elsevier B.V. All rights reserved.

  7. Distribution of electric field near the surface of the aluminum oxide particle in the dust-electron thermal plasma

    International Nuclear Information System (INIS)

    We obtained the equation, which describes the distribution of electrical field in an equilibrium dust-electron plasma taking into account parameters of the electron gas inside the dust particles. The inclusion of these parameters performed on the basis of the model of ''solid- state plasma'', considering the condensed particle system as the ion core and the free electron gas. These calculations are performed for aluminum oxide particles

  8. Removal of trivalent chromium from aqueous solution using aluminum oxide hydroxide.

    Science.gov (United States)

    Bedemo, Agaje; Chandravanshi, Bhagwan Singh; Zewge, Feleke

    2016-01-01

    Water is second most essential for human being. Contamination of water makes it unsuitable for human consumption. Chromium ion is released to water bodies from various industries having high toxicity which affects the biota life in these waters. In this study aluminum oxide hydroxide was tested for its efficiency to remove trivalent chromium from aqueous solutions through batch mode experiments. Chromium concentrations in aqueous solutions and tannery waste water before and after adsorption experiments were determined using flame atomic absorption spectrometry. The effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(III) were studied. The study revealed that more than 99 % removal of Cr(III) was achieved over wide range of initial pH (3-10). The optimum conditions for the removal of Cr(III) were found to be at pH 4-6 with 40 g/L adsorbent dose at 60 min of contact time. The adsorption capacity was assessed using Langmuir and Freundlich isotherms. The equilibrium data at varying adsorbent dose obeyed the two isotherms. The adsorbent was found to be efficient for the removal of Cr(III) from tannery waste effluent. PMID:27547663

  9. Neutron spectrum measurements in the aluminum oxide filtered beam facility at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Neutron spectrum measurements were performed on the aluminum oxide filter installed in the Brookhaven Medical Research Reactor (BMRR). For these measurements, activation foils were irradiated at the exit port of the beam facility. A technique based on dominant resonances in selected activation reactions was used to measure the epithermal neutron spectrum. The fast and intermediate-energy ranges of the neutron spectrum were measured by threshold reactions and 10B-shielded 235U fission reactions. Neutron spectral data were derived from the activation data by two approaches: (1) a short analysis which yields neutron flux values at the energies of the dominant or primary resonances in the epithermal activation reactions and integral flux data for neutrons above corresponding threshold or pseudo-threshold energies, and (2) the longer analysis which utilized all the activation data in a full-spectrum, unfolding process using the FERRET spectrum adjustment code. This paper gives a brief description of the measurement techniques, analysis methods, and the results obtained

  10. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  11. Sex-Dependent Depression-Like Behavior Induced by Respiratory Administration of Aluminum Oxide Nanoparticles.

    Science.gov (United States)

    Zhang, Xin; Xu, Yan; Zhou, Lian; Zhang, Chengcheng; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Ding, Zhen; Chen, Xiaodong; Li, Xiaobo; Chen, Rui

    2015-12-01

    Ultrafine aluminum oxide, which are abundant in ambient and involved occupational environments, are associated with neurobehavioral alterations. However, few studies have focused on the effect of sex differences following exposure to environmental Al₂O₃ ultrafine particles. In the present study, male and female mice were exposed to Al₂O₃ nanoparticles (NPs) through a respiratory route. Only the female mice showed depression-like behavior. Although no obvious pathological changes were observed in mice brain tissues, the neurotransmitter and voltage-gated ion channel related gene expression, as well as the small molecule metabolites in the cerebral cortex, were differentially modulated between male and female mice. Both mental disorder-involved gene expression levels and metabolomics analysis results strongly suggested that glutamate pathways were implicated in sex differentiation induced by Al₂O₃ NPs. Results demonstrated the potential mechanism of environmental ultrafine particle-induced depression-like behavior and the importance of sex dimorphism in the toxic research of environmental chemicals. PMID:26690197

  12. Sex-Dependent Depression-Like Behavior Induced by Respiratory Administration of Aluminum Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2015-12-01

    Full Text Available Ultrafine aluminum oxide, which are abundant in ambient and involved occupational environments, are associated with neurobehavioral alterations. However, few studies have focused on the effect of sex differences following exposure to environmental Al2O3 ultrafine particles. In the present study, male and female mice were exposed to Al2O3 nanoparticles (NPs through a respiratory route. Only the female mice showed depression-like behavior. Although no obvious pathological changes were observed in mice brain tissues, the neurotransmitter and voltage-gated ion channel related gene expression, as well as the small molecule metabolites in the cerebral cortex, were differentially modulated between male and female mice. Both mental disorder-involved gene expression levels and metabolomics analysis results strongly suggested that glutamate pathways were implicated in sex differentiation induced by Al2O3 NPs. Results demonstrated the potential mechanism of environmental ultrafine particle-induced depression-like behavior and the importance of sex dimorphism in the toxic research of environmental chemicals.

  13. Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA Lithium-Ion 18650 Battery Cells

    Directory of Open Access Journals (Sweden)

    James Michael Hooper

    2016-04-01

    Full Text Available This paper outlines a study undertaken to determine if the electrical performance of Nickel Cobalt Aluminum Oxide (NCA 3.1 Ah 18650 battery cells can be degraded by road induced vibration typical of an electric vehicle (EV application. This study investigates if a particular cell orientation within the battery assembly can result in different levels of cell degradation. The 18650 cells were evaluated in accordance with Society of Automotive Engineers (SAE J2380 standard. This vibration test is synthesized to represent 100,000 miles of North American customer operation at the 90th percentile. This study identified that both the electrical performance and the mechanical properties of the NCA lithium-ion cells were relatively unaffected when exposed to vibration energy that is commensurate with a typical vehicle life. Minor changes observed in the cell’s electrical characteristics were deemed not to be statistically significant and more likely attributable to laboratory conditions during cell testing and storage. The same conclusion was found, irrespective of cell orientation during the test.

  14. Prediction model for oxide thickness on aluminum alloy cladding during irradiation

    International Nuclear Information System (INIS)

    An empirical model predicting the oxide film thickness on aluminum alloy cladding during irradiation has been developed as a function of irradiation time, temperature, heat flux, pH, and coolant flow rate. The existing models in the literature are neither consistent among themselves nor fit the measured data very well. They also lack versatility for various reactor situations such as a pH other than 5, high coolant flow rates, and fuel life longer than ∼1200 hrs. Particularly, they were not intended for use in irradiation situations. The newly developed model is applicable to these in-reactor situations as well as ex-reactor tests, and has a more accurate prediction capability. The new model demonstrated with consistent predictions to the measured data of UMUS and SIMONE fuel tests performed in the HFR, Petten, tests results from the ORR, and IRIS tests from the OSIRIS and to the data from the out-of-pile tests available in the literature as well. (author)

  15. The effect of plasma electrolytic oxidation on the mean stress sensitivity of the fatigue life of the 6082 aluminum alloy

    Science.gov (United States)

    Winter, L.; Morgenstern, R.; Hockauf, K.; Lampke, T.

    2016-03-01

    In this work the mean stress influence on the high cycle fatigue behavior of the plasma electrolytic oxidized (PEO) 6082 aluminum alloy (AlSi1MgMn) is investigated. The present study is focused on the fatigue life time and the susceptibility of fatigue-induced cracking of the oxide coating and their dependence on the applied mean stress. Systematic work is done comparing conditions with and without PEO treatment, which have been tested using three different load ratios. For the uncoated substrate the cycles to failure show a significant dependence on the mean stress, which is typical for aluminum alloys. With increased load ratio and therefore increased mean stress, the fatigue strength decreases. The investigation confirms the well-known effect of PEO treatment on the fatigue life: The fatigue strength is significantly reduced by the PEO process, compared to the uncoated substrate. However, also the mean stress sensitivity of the fatigue performance is reduced. The fatigue limit is not influenced by an increasing mean stress for the PEO treated conditions. This effect is firstly shown in these findings and no explanation for this effect can be found in literature. Supposedly the internal compressive stresses and the micro-cracks in the oxide film have a direct influence on the crack initiation and growth from the oxide film through the interface and in the substrate. Contrary to these findings, the susceptibility of fatigue-induced cracking of the oxide coating is influenced by the load ratio. At tension-tension loading a large number of cracks, which grow partially just in the aluminum substrate, are present. With decreasing load ratio to alternating tension-compression stresses, the crack number and length increases and shattering of the oxide film is more pronounced due to the additional effective compressive part of the load cycle.

  16. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li, Guolong, E-mail: lglysu@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zou, Jie [China Aviation Industry Chengdu Engine (Group) Co. Ltd., Chengdu 610503 (China); Cai, Jingrui; He, Donglei; Ma, Haojie; Liu, Fangfei [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2013-12-15

    In this paper, we investigate the microstructure and corrosion behavior of the micro-arc oxidation (MAO) coating on 6061 aluminum alloy that pre-treated by high-temperature oxidation (HTO). Microstructure, chemical and corrosion behaviors of the fabricated MAO ceramic coatings were studied by using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and electrochemical corrosion tests. The results reveal that the pre-fabricated HTO film remarkably affects the formation of the MAO coating, leads to an enriched content of Mg, and decreases the compactness of the coating. The corrosion resistance of the 6061 aluminum alloy has been significantly improved by treatments of HTO, normal MAO (NMAO) and HTO pre-treated MAO (HTO-MAO), and the NMAO coating exhibits the best corrosion performance. The content of Mg in HTO pre-fabricated film is remarkedly higher than that in the substrate, which greatly influences the formation of the MAO coating.

  17. Mechanochemical reactions and strengthening in epoxy-cast aluminum iron-oxide mixtures

    Science.gov (United States)

    Ferranti, Louis, Jr.

    2007-12-01

    -viscoplastic deformation and brittle fracture behaviors. Significant elastic and plastic deformation during both loading and unloading stages is observed, with approximately 50% elastic recovery of total axial strain occurring rapidly (tens of microseconds) after impact. Coupling high-speed camera images and velocity interferometry measurements shows that the elastic recovery coincides with peak axial strain and the elastic and plastic wave interaction. The incorporation of nano-scale aluminum particles enhances the dynamic stress-strain response and significantly improves the composites' resilience to impact as compared to pure epoxy, and with the use of micron-scale aluminum particles. Post-mortem analysis of recovered Taylor impacted specimens indicates evidence of early stages of strain-induced reactions occurring at select stress, strain, and strain rates. The observed reaction products correlate with results of thermal analysis, which include DTA and in situ high temperature x-ray diffraction (HTXRD). Central to this study was the interaction of metal-oxide powder mixtures with the epoxy matrix and how their chemical and mechanical properties balance to form a structural energetic material system. The study focuses on describing the underlying principles governing the deformation and fracture behavior, processing characteristics of epoxy-cast Al+Fe2O3 powder mixtures, mechanochemical sensitivity, and reaction response. In order to accomplish this, the effects of size, morphology, and distribution of particles were evaluated based on mechanical and chemical response to high pressures and combined stress-strain states using time-resolved measurements.

  18. Influence of the surface pre-treatment of aluminum on the processes of formation of cerium oxides protective films

    Science.gov (United States)

    Andreeva, R.; Stoyanova, E.; Tsanev, A.; Stoychev, D.

    2016-03-01

    It is known that there is special interest in the contemporary investigations on conversion treatment of aluminum aimed at promoting its corrosion stability, which is focused on electrolytes on the basis of salts of metals belonging to the group of rare-earth elements. Their application is especially attractive, as it enables a successful substitution of the presently applied highly efficient, but at the same time toxic Cr6+-containing electrolytes. The present paper presents a study on the influence of the preliminary alkaline activation and acidic de-oxidation of the aluminum surface on the processes of immersion formation of protective cerium oxides films on Al 1050. The results obtained show that their deposition from simple electrolytes (containing only salts of Ce3+ ions) on the Al surface, treated only in alkaline solution, occurs at a higher rate, which leads to preparing thicker oxide films having a better protective ability. In the cases when the formation of oxide films is realized in a complex electrolyte (containing salts of Ce3+ and Cu2+ ions), better results are obtained with respect to the morphology and protective action of cerium oxides film on samples that have been consecutively activated in alkaline solution and deoxidized in acidic solution. Electrochemical investigations were carried out in a model corrosion medium (0.1 M NaCl); it was shown that the cerium protective films, deposited by immersion, have a cathodic character with regard to the aluminum support and inhibit the occurrence of the depolarizing corrosion process -- the reaction of oxygen reduction.

  19. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    Science.gov (United States)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000

  20. Characterization of Nano-scale Aluminum Oxide Transport Through Porous Media

    Science.gov (United States)

    Norwood, Sasha Norien

    Land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers. Although nutrient rich, biosolids have been found to contain high concentrations of unregulated and/or unrecognized emerging contaminants (e.g., pharmaceuticals, personal care products) while containing a significant fraction of inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of these nano-sized colloidal materials through the soil column and into our surface and groundwater bodies. Transport of emerging pollutants of concern through the soil column, at minimum, is impacted by colloidal properties (e.g., chemical composition, shape, aggregation kinetics), solution chemistry (e.g., pH, ionic strength, natural organic matter), and water flow velocity. The purpose of this current research was to characterize the long-term transport behavior of aluminum oxide nanoparticles (Al 2O3) through a natural porous media with changes in pH, aqueous-phase concentration, pore-water velocity and electrolyte valence. Additionally, deposition rates during the initial stages of deposition were compared to several models developed based on colloid filtration theory and DLVO stability theory. Benchtop column laboratory experiments showed that, under environmentally relevant groundwater conditions, Al2O3 nanoparticles are mobile through saturated porous media. Mobility increased under conditions in which the nanoparticles and porous media were of like charge (pH 9). Changes in linear pore water velocity, under these same high pH conditions, showed similar transport behavior with little mass retained in the system. Deposition is believed to be kinetically controlled at pH 9, as evidenced by the slightly earlier breakthrough as flow rate increased and was further supported by observed concentration effects on the arrival wave

  1. Rapid susceptibility testing and microcolony analysis of Candida spp. cultured and imaged on porous aluminum oxide.

    Directory of Open Access Journals (Sweden)

    Colin J Ingham

    Full Text Available BACKGROUND: Acquired resistance to antifungal agents now supports the introduction of susceptibility testing for species-drug combinations for which this was previously thought unnecessary. For pathogenic yeasts, conventional phenotypic testing needs at least 24 h. Culture on a porous aluminum oxide (PAO support combined with microscopy offers a route to more rapid results. METHODS: Microcolonies of Candida species grown on PAO were stained with the fluorogenic dyes Fun-1 and Calcofluor White and then imaged by fluorescence microscopy. Images were captured by a charge-coupled device camera and processed by publicly available software. By this method, the growth of yeasts could be detected and quantified within 2 h. Microcolony imaging was then used to assess the susceptibility of the yeasts to amphotericin B, anidulafungin and caspofungin (3.5 h culture, and voriconazole and itraconazole (7 h culture. SIGNIFICANCE: Overall, the results showed good agreement with EUCAST (86.5% agreement; n = 170 and E-test (85.9% agreement; n = 170. The closest agreement to standard tests was found when testing susceptibility to amphotericin B and echinocandins (88.2 to 91.2% and the least good for the triazoles (79.4 to 82.4%. Furthermore, large datasets on population variation could be rapidly obtained. An analysis of microcolonies revealed subtle effects of antimycotics on resistant strains and below the MIC of sensitive strains, particularly an increase in population heterogeneity and cell density-dependent effects of triazoles. Additionally, the method could be adapted to strain identification via germ tube extension. We suggest PAO culture is a rapid and versatile method that may be usefully adapted to clinical mycology and has research applications.

  2. Atomic layer deposited lithium aluminum oxide: (In)dependency of film properties from pulsing sequence

    Energy Technology Data Exchange (ETDEWEB)

    Miikkulainen, Ville, E-mail: ville.miikkulainen@helsinki.fi; Nilsen, Ola; Fjellvåg, Helmer [Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1126 Blindern, NO-0318 Oslo (Norway); Li, Han; King, Sean W. [Intel Corporation, 5200 NE Elam Young Parkway, Hillsboro, Oregon 97124 (United States); Laitinen, Mikko; Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä (Finland)

    2015-01-01

    Atomic layer deposition (ALD) holds markedly high potential of becoming the enabling method for achieving the three-dimensional all-solid-state thin-film lithium ion battery (LiB). One of the most crucial components in such a battery is the electrolyte that needs to hold both low electronic conductivity and at least fair lithium ion conductivity being at the same time pinhole free. To obtain these desired properties in an electrolyte film, one necessarily has to have a good control over the elemental composition of the deposited material. The present study reports on the properties of ALD lithium aluminum oxide (Li{sub x}Al{sub y}O{sub z}) thin films. In addition to LiB electrolyte applications, Li{sub x}Al{sub y}O{sub z} is also a candidate low dielectric constant (low-k) etch stop and diffusion barrier material in nanoelectronics applications. The Li{sub x}Al{sub y}O{sub z} films were deposited employing trimethylaluminum-O{sub 3} and lithium tert-butoxide-H{sub 2}O for Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, respectively. The composition was aimed to be controlled by varying the pulsing ratio of those two binary oxide ALD cycles. The films were characterized by several methods for composition, crystallinity and phase, electrical properties, hardness, porosity, and chemical environment. Regardless of the applied pulsing ratio of Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, all the studied ALD Li{sub x}Al{sub y}O{sub z} films of 200 and 400 nm in thickness were polycrystalline in the orthorhombic β-LiAlO{sub 2} phase and also very similar to each other with respect to composition and other studied properties. The results are discussed in the context of both fundamental ALD chemistry and applicability of the films as thin-film LiB electrolytes and low-k etch stop and diffusion barriers.

  3. Preparation of Chromium Oxide Coatings on Aluminum Borate Whiskers by a Hydrothermal Deposition Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Aluminum borate whiskers (9Al2O32B2O3) can be used to reinforce aluminum alloys to produce light and strong composites. However, the adverse interfacial reactions between the whiskers and the aluminum alloys inhibit their practical uses; therefore, a protective coating is needed on whiskers. In this work, aluminum borate whiskers were coated with chromium-coating deposits in a hydrothermal solution containing CrCl3, Na2C4H4O6, NaPH2O2, and H3BO3. The presence of the impurity P in the hydrothermal deposits can be avoided by reducing the amount of NaPH2O2 in the coating solution. Thermodynamic analysis was used to discuss the behavior of ions in the coating process. The subsequent heating of the hydrothermal products in air at 800 ℃ yielded smooth Cr2O3 films with a thickness of 0.060.07 μm.

  4. Hydrogen absorption in solid aluminum during high-temperature steam oxidation

    Science.gov (United States)

    Andreev, L. A.; Gelman, B. G.; Zhukhovitskiy, A. A.

    1979-01-01

    Hydrogen is emitted by aluminum heated in a vacuum after high-temperature steam treatment. Wire samples are tested for this effect, showing dependence on surface area. Two different mechanisms of absorption are inferred, and reactions deduced.

  5. Reversible post-breakdown conduction in aluminum oxide-polymer capacitors

    OpenAIRE

    CHEN, Qian; Gomes, HL; Rocha, PRF; De Leeuw,; Meskers, SCJ Stefan

    2013-01-01

    Aluminum/Al2O3/polymer/metal capacitors submitted to a low-power constant current stress undergo dielectric breakdown. The post-breakdown conduction is metastable, and over time the capacitors recover their original insulating properties. The decay of the conduction with time follows a power law (1/t) α . The magnitude of the exponent α can be raised by application of an electric field and lowered to practically zero by optical excitation of the polyspirofluorene polymer. The metastable condu...

  6. Syntheses, structures, and ionic conductivities of perovskite-structured lithium–strontium–aluminum/gallium–tantalum-oxides

    Energy Technology Data Exchange (ETDEWEB)

    Phraewphiphat, Thanya, E-mail: thanya@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Iqbal, Muhammad, E-mail: iqbal@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Suzuki, Kota, E-mail: ksuzuki@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Matsuda, Yasuaki, E-mail: matsuda@chem.mie-u.ac.jp [Department of Chemistry, Mie University, 1577 Kurimamachiyacho, Tsu, Mie 514-8507 (Japan); Yonemura, Masao, E-mail: masao.yonemura@kek.jp [High Energy Accelerator Research Organization, Tokai-mura, Naka-gun, Ibaraki 319-1106 (Japan); Hirayama, Masaaki, E-mail: hirayama@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Kanno, Ryoji, E-mail: kanno@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan)

    2015-05-15

    The ionic conductivities of new perovskite-structured lithium–strontium–aluminum/gallium–tantalum oxides were investigated. Solid solutions of the new perovskite oxides, (Li{sub x}Sr{sub 1−x})(Al{sub (1−x)/2}Ta{sub (1+x)/2})O{sub 3} and (Li{sub x}Sr{sub 1−x})(Ga{sub (1−x)/2}Ta{sub (1+x)/2})O{sub 3}, were synthesized using a ball-milled-assisted solid-state method. The partial substitution of the smaller Ga{sup +3} for Ta{sup +5} resulted in new compositions, the structures of which were determined by neutron diffraction measurements using a cubic perovskite structural model with the Pm−3m space group. Vacancies were introduced into the Sr(Li) sites by the formation of solid solutions with compositions (Li{sub x}Sr{sub 1−x−y}☐{sub y})(Ga{sub [(1−x)/2]−y}Ta{sub [(1+x)/2]+y})O{sub 3}, where the composition range of 0≤y≤0.20 was examined for x=0.2 and 0.25. The highest conductivity, 1.85×10{sup −3} S cm{sup −1} at 250 °C, was obtained for (Li{sub 0.25}Sr{sub 0.625}☐{sub 0.125})(Ga{sub 0.25}Ta{sub 0.75})O{sub 3} (x=0.25, y=0.125). Enhanced ionic conductivities were achieved by the introduction of vacancies at the A-sites. - Graphical abstract: Novel lithium-conducting oxides with the cubic perovskite structure (Li{sub x}Sr{sub 1−x−y}☐{sub y})(Ga{sub [(1−x)/2]−y}Ta{sub [(1+x)/2]+y})O{sub 3} provide a specific solid-solution region with various x and y values, exhibiting the highest ionic conductivity (1.85 S cm{sup −1} at 250 °C) for (Li{sub 0.25}Sr{sub 0.625}☐{sub 0.125})(Ga{sub 0.25}Ta{sub 0.75})O{sub 3} (x=0.25, y=0.125 in (Li{sub x}Sr{sub 1−x−y}☐{sub y})(Ga{sub [(1−x)/2]−y}Ta{sub [(1+x)/2]+y})O{sub 3}). The vacancies (☐) introduced into the A-sites contribute to the enhancement of lithium diffusion in the perovskite structure because of the enlargement of the bottleneck size and suppression of the interaction between lithium and oxygen. - Highlights: • The perovskite-structured novel Li

  7. Syntheses, structures, and ionic conductivities of perovskite-structured lithium–strontium–aluminum/gallium–tantalum-oxides

    International Nuclear Information System (INIS)

    The ionic conductivities of new perovskite-structured lithium–strontium–aluminum/gallium–tantalum oxides were investigated. Solid solutions of the new perovskite oxides, (LixSr1−x)(Al(1−x)/2Ta(1+x)/2)O3 and (LixSr1−x)(Ga(1−x)/2Ta(1+x)/2)O3, were synthesized using a ball-milled-assisted solid-state method. The partial substitution of the smaller Ga+3 for Ta+5 resulted in new compositions, the structures of which were determined by neutron diffraction measurements using a cubic perovskite structural model with the Pm−3m space group. Vacancies were introduced into the Sr(Li) sites by the formation of solid solutions with compositions (LixSr1−x−y☐y)(Ga[(1−x)/2]−yTa[(1+x)/2]+y)O3, where the composition range of 0≤y≤0.20 was examined for x=0.2 and 0.25. The highest conductivity, 1.85×10−3 S cm−1 at 250 °C, was obtained for (Li0.25Sr0.625☐0.125)(Ga0.25Ta0.75)O3 (x=0.25, y=0.125). Enhanced ionic conductivities were achieved by the introduction of vacancies at the A-sites. - Graphical abstract: Novel lithium-conducting oxides with the cubic perovskite structure (LixSr1−x−y☐y)(Ga[(1−x)/2]−yTa[(1+x)/2]+y)O3 provide a specific solid-solution region with various x and y values, exhibiting the highest ionic conductivity (1.85 S cm−1 at 250 °C) for (Li0.25Sr0.625☐0.125)(Ga0.25Ta0.75)O3 (x=0.25, y=0.125 in (LixSr1−x−y☐y)(Ga[(1−x)/2]−yTa[(1+x)/2]+y)O3). The vacancies (☐) introduced into the A-sites contribute to the enhancement of lithium diffusion in the perovskite structure because of the enlargement of the bottleneck size and suppression of the interaction between lithium and oxygen. - Highlights: • The perovskite-structured novel Li–Sr–Al/Ga–Ta oxides were investigated. • The Ga cation offers a larger bottleneck by increasing the B−O bond length. • The greater conductivity was observed upon Ga-containing perovskite. • The ionic conductivity was improved by the introduction of vacancies into A-site

  8. Comparison of the kinetic laws of the dissolution of bauxite and aluminum and iron(III) oxides and hydroxides in hydrochloric acid

    Science.gov (United States)

    Gololobova, E. G.; Gorichev, I. G.; Lainer, Yu. A.; Kozlov, K. V.

    2013-07-01

    The influence of the temperature and concentration of a hydrochloric acid solution on the dissolution kinetics of aluminum and iron(III) oxides and hydroxides and a natural sample of aluminum-containing raw materials, bauxite, is studied. The rate W of the transition of iron(III) ions from bauxite is higher than the rate of aluminum ion transition. The dependence of the fraction of a dissolved solid phase on time τ of dissolution of the oxides and hydroxides is determined, α = 1 — exp(- Asinh( Wτ)). The solubility of iron(III) chloride increases and that of aluminum chloride decreases as the HCl concentration increases. An empirical equation is proposed for the description of the dependence of the process rate on a series of parameters,.

  9. Effecting Factors on Thickness of Oxide Aluminum Membrane%多孔阳极氧化铝膜厚度影响因素

    Institute of Scientific and Technical Information of China (English)

    王晓燕; 翟秀静; 张延安; 符岩; 郑双

    2011-01-01

    以H2SO4为电解液对高纯铝箔进行阳极氧化,用涡流测厚仪分析制备工艺参数对多孔氧化铝膜厚度的影响.结果表明,在一定电解液浓度及电解电压下,氧化铝膜厚度随电解液浓度及电解电压的增加而增大,但过高的电解液浓度及电解电压均会造成氧化铝膜的快速击穿.氧化铝膜厚度随电解时间的增加而增大,但初期的增长速度较快,后期随电解时间的增加变化缓慢.在一定温度范围内氧化铝膜的厚度随温度的升高而增加.%High-pure aluminum foil is oxidized in anodic with H2SO4 as electrolyte. The effect of the technological parameters on thickness of oxide aluminum membrane is investigated by using eddy current sensor thickness. The results show that the thickness of oxide aluminum membrane is increased with the increase of electrolyte concentration and voltage, but the exorbitant electrolyte concentration and electrolysis voltage are prone to rapid breakdown of aluminum foil. The thickness of oxide aluminum membrane is increased with the increase of the electrolysis time, however the growth speed of oxide aluminum membrane thickness is firstly fast and then becomes slow. Within a certain range of temperature, the thickness of oxide aluminum membrane is increased with the increase of the electrolysis temperature.

  10. Structural, Optical, and Dielectric Properties of Aluminum Oxide Nanofibers Synthesized by a Lower-Temperature Sol-Gel Approach

    Science.gov (United States)

    Riaz, Saira; Sajid-ur-Rehman; Abutalib, Mymona; Naseem, Shahzad

    2016-10-01

    Alumina (Al2O3) is the most versatile and important ceramic material, having applications in various fields including electronic devices. It is stable at high temperatures and is chemically inert. The sol-gel method, a relatively lower-temperature technique, has been used to synthesize aluminum oxide nanofibers. The molarity of the sol concentration was varied as 0.7 M, 0.8 M, 0.9 M, 1.0 M, and 1.1 M. The structural, optical, and dielectric properties of the as-synthesized nanofibers were characterized. x-ray diffraction (XRD) analysis results confirmed formation of α-Al2O3 phase of aluminum oxide, notably without any heat treatment or use of water as solvent. The crystallite size and unit cell volume of the nanofibers increased as the sol concentration was increased to 0.9 M, but further increase in sol concentration resulted in reduction of crystallite size and increase in dislocations. Scanning electron microscopy (SEM) results revealed uniform distribution of nanofibers (˜25 nm to 30 nm) under all conditions. Nanofibers prepared using sol concentration of 0.9 M showed high transmission (˜89%) in the visible and infrared regions. The energy bandgap varied from 3.69 eV to 4.1 eV with the variation in molar concentration. Lower bandgap correlated with defect-induced states in the bandgap. The high refractive index is indicative of high density of aluminum oxide nanofibers. High grain-boundary resistance (1.455 MΩ) and high dielectric constant (˜15.76) along with low tangent loss were observed at molar concentration of 0.9 M.

  11. Structural, Optical, and Dielectric Properties of Aluminum Oxide Nanofibers Synthesized by a Lower-Temperature Sol-Gel Approach

    Science.gov (United States)

    Riaz, Saira; Sajid-ur-Rehman; Abutalib, Mymona; Naseem, Shahzad

    2016-07-01

    Alumina (Al2O3) is the most versatile and important ceramic material, having applications in various fields including electronic devices. It is stable at high temperatures and is chemically inert. The sol-gel method, a relatively lower-temperature technique, has been used to synthesize aluminum oxide nanofibers. The molarity of the sol concentration was varied as 0.7 M, 0.8 M, 0.9 M, 1.0 M, and 1.1 M. The structural, optical, and dielectric properties of the as-synthesized nanofibers were characterized. x-ray diffraction (XRD) analysis results confirmed formation of α-Al2O3 phase of aluminum oxide, notably without any heat treatment or use of water as solvent. The crystallite size and unit cell volume of the nanofibers increased as the sol concentration was increased to 0.9 M, but further increase in sol concentration resulted in reduction of crystallite size and increase in dislocations. Scanning electron microscopy (SEM) results revealed uniform distribution of nanofibers (˜25 nm to 30 nm) under all conditions. Nanofibers prepared using sol concentration of 0.9 M showed high transmission (˜89%) in the visible and infrared regions. The energy bandgap varied from 3.69 eV to 4.1 eV with the variation in molar concentration. Lower bandgap correlated with defect-induced states in the bandgap. The high refractive index is indicative of high density of aluminum oxide nanofibers. High grain-boundary resistance (1.455 MΩ) and high dielectric constant (˜15.76) along with low tangent loss were observed at molar concentration of 0.9 M.

  12. Hybrid aluminum and indium conducting filaments for nonpolar resistive switching of Al/AlOx/indium tin oxide flexible device

    Science.gov (United States)

    Yuan, Fang; Wang, Jer-Chyi; Zhang, Zhigang; Ye, Yu-Ren; Pan, Liyang; Xu, Jun; Lai, Chao-Sung

    2014-02-01

    The nonpolar resistive switching characteristics of an Al/AlOx/indium tin oxide (ITO) device on a plastic flexible substrate are investigated. By analyzing the electron diffraction spectroscopy results and thermal coefficient of resistivity, it is discovered that the formation of aluminum and indium conducting filaments in AlOx film strongly depends on the polarity of the applied voltage. The metal ions arising from the Al and ITO electrodes respectively govern the resistive switching in corresponding operation polarity. After 104 times of mechanical bending, the device can perform satisfactorily in terms of resistance distribution, read sequence of high and low resistive states, and thermal retention properties.

  13. Gas-Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum-Vanadium-Molybdenum.

    Science.gov (United States)

    Lotfi, Samira; Boffito, Daria C; Patience, Gregory S

    2015-10-26

    Lignin is a complex polymer that is a potential feedstock for aromatic compounds and carboxylic acids by cleaving the β-O-4 and 5-5' linkages. In this work, a syringe pump atomizes an alkaline solution of lignin into a catalytic fluidized bed operating above 600 K. The vanadium heterogeneous catalysts convert all the lignin into carboxylic acids (up to 25 % selectivity), coke, carbon oxides, and hydrogen. Aluminum-vanadium-molybdenum mostly produced lactic acid (together with formic acid, acrylic acid, and maleic anhydride), whereas the vanadium pyrophosphate catalyst produced more maleic anhydride. PMID:26361086

  14. Highly flexible transparent thin film heaters based on silver nanowires and aluminum zinc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hahn-Gil; Kim, Jin-Hoon; Song, Jun-Hyuk; Jeong, Unyong; Park, Jin-Woo, E-mail: jwpark09@yonsei.ac.kr

    2015-08-31

    In this work, we developed highly flexible transparent film heaters (f-TFHs) composed of Ag nanowire networks (AgNWs) and aluminum zinc oxide (AZO). Uniform AgNWs were roll-to-roll coated on polyethylene terephthalate (PET) substrates using the Mayer rod method, and AZO was sputter-deposited atop the AgNWs at room temperature. The sheet resistance (R{sub s}) and transparency (T{sub opt}) of the AZO-coated AgNWs changed only slightly compared with the uncoated AgNWs. AZO is thermally less conductive than the heat pipes, but increases the thermal efficiency of the heaters blocking the heat convection through the air. Based on Joule heating, a higher average film temperature (T{sub ave}) is attained at a fixed electric potential drop between electrodes (ϕ) as the R{sub s} of the film decreases. Our experimental results revealed that T{sub ave} of the hybrid f-TFH is higher than AgNWs when the ratio of the area coverage of AgNWs to AZO is over a certain value. When a ϕ as low as 3 V/cm was applied to 5 cm × 5 cm f-TFHs, the maximum temperature of the hybrid film was over 100 °C, which is greater than that of AgNWs by more than 30 °C. Furthermore, uniform heating throughout the surfaces is achieved in the hybrid films while heating begins in small areas where densities of the nanowires (NWs) are the highest in the bare network. The non-uniform heating decreases the lifetime of f-TFHs by forming hot spots. Cyclic bending test results indicated that the hybrid films were as flexible as the AgNWs, and the R{sub s} of the hybrid films changes only slightly until 5000 cycles. Combined with the high-throughput coating technology presented here, the hybrid films will provide a robust and scalable strategy for large-area f-TFHs with highly enhanced performance. - Highlights: • We developed highly efficient flexible thin film heaters based on Ag nanowires and AZO composites. • In the composite, AZO plays an important role as an insulation blanket to block heat loss to

  15. Modeling the Normal Spectral Emissivity of Aluminum 1060 at 800-910 K During the Growth of Oxide Layer

    Science.gov (United States)

    Shi, Deheng; Zou, Fenghui; Zhu, Zunlue; Sun, Jinfeng

    2015-04-01

    This work strives to model the normal spectral emissivity of aluminum 1060 during the growth of oxide layer in air over the temperatures ranging from 800 to 910 K. For this reason, the normal spectral emissivity of aluminum 1060 has been measured over a 6 h heating period at a definite temperature. In our experiment, the radiance coming from the specimen is received by an InGaAs photodiode detector, which works at 1.5 μm with the bandwidth of 20 nm. The temperature of specimen surface is measured by averaging the two platinum-rhodium thermocouples, which are symmetrically welded in the front surface of specimen near the measuring area viewed by the detector. The strong oscillations of normal spectral emissivity have been observed and discussed, which are affirmed to be connected with the thickness of oxide layer on the specimen surface, and originate from the interference effect between the radiation coming from the oxide layer on the specimen surface and the radiation stemming from the substrate. The uncertainty of normal spectral emissivity contributed only by the surface oxidization is about 4.6-10.6%, and the corresponding uncertainty of temperature contributed only by the surface oxidization is about 3.5-8.4 K. The analytical model between the normal spectral emissivity and the heating time is evaluated at a definite temperature. A simple functional form with the exponential and logarithmic functions can be employed to reproduce well the variation of normal spectral emissivity with the heating time at a definite temperature, including the reproduction of strong oscillations.

  16. Pulmonary fibrosis in aluminum oxide workers. Investigation of nine workers, with pathologic examination and microanalysis in three of them

    International Nuclear Information System (INIS)

    Epidemiologic surveys have indicated an excess of nonmalignant respiratory disease in workers exposed to aluminum oxide (Al2O3) during abrasives production. However, clinical, roentgenographic, histologic, and microanalytic description of these workers are lacking. This is a report of nine Al2O3-exposed workers with abnormal chest roentgenograms (profusion greater than or equal to 1/0, ILO/UC) from a plant engaged in the production of Al2O3 abrasives from alundum ore. Mean duration of exposure was 25 yr, and time since first exposure was 28 yr. in a subgroup of three, the severity of symptoms, reduction in the forced vital capacity (67% predicted) and diffusing capacity (51% predicted), and progressive roentgenographic changes (profusion greater than or equal to 2/2) prompted open lung biopsy. Lung tissue was analyzed by scanning electron microscopy and electron microprobe analysis. In each of the three biopsies, interstitial fibrosis with honeycombing was seen on routine section. In one biopsy, silica and asbestos fiber counts were at the low end of the range seen with silicosis and asbestosis; however, the absence of asbestos bodies and silicotic nodules suggested that the fibrosis was due to another cause. Metals occurred in amounts several orders of magnitude above background, and the majority was aluminum as Al2O3 and aluminum alloys. The findings in these nine workers suggests a common exposure as the possible cause. The nonspecific pathologic findings, absence of asbestos bodies and silicotic nodules, and the striking number of aluminum-containing particles suggest that Al2O3 is that common exposure. The possibility of mixed dust fibrosis should also be considered

  17. Laser Melt Injection in Aluminum Alloys : On the Role of the Oxide Skin

    NARCIS (Netherlands)

    Vreeling, J.A.; Ocelík, V.; Pei, Y.T.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2000-01-01

    In this paper the method of laser melt injection of SiC particles into an aluminum substrate is investigated both experimentally and theoretically. An extremely small operational parameter window was found for successful injection processing. It is shown that the final injection depth of the particl

  18. The biocompatibility and anti-biofouling properties of magnetic core-multishell Fe@C NWs-AAO nanocomposites.

    Science.gov (United States)

    Lindo, André M; Pellicer, Eva; Zeeshan, Muhammad A; Grisch, Roman; Qiu, Famin; Sort, Jordi; Sakar, Mahmut S; Nelson, Bradley J; Pané, Salvador

    2015-05-28

    Soft-magnetic core-multishell Fe@C NWs-AAO nanocomposites were synthesized using anodization, electrodeposition and low-pressure chemical vapour deposition (CVD) at 900 °C. High chemical and mechanical stability is achieved by the conversion from amorphous to θ- and δ-Al2O3 phases above 600 °C. Moreover, the surface properties of the material evolve from bioactive, for porous AAO, to bioinert, for Fe@C NW filled AAO nanocomposite. Although the latter is not cytotoxic, cells do not adhere onto the surface of the magnetic nanocomposite, thus proving its anti-biofouling character.

  19. Comprehensive study and design of scaled metal/high-k/Ge gate stacks with ultrathin aluminum oxide interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Asahara, Ryohei; Hideshima, Iori; Oka, Hiroshi; Minoura, Yuya; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi; Watanabe, Heiji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ogawa, Shingo [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Toray Research Center Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Yoshigoe, Akitaka; Teraoka, Yuden [Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2015-06-08

    Advanced metal/high-k/Ge gate stacks with a sub-nm equivalent oxide thickness (EOT) and improved interface properties were demonstrated by controlling interface reactions using ultrathin aluminum oxide (AlO{sub x}) interlayers. A step-by-step in situ procedure by deposition of AlO{sub x} and hafnium oxide (HfO{sub x}) layers on Ge and subsequent plasma oxidation was conducted to fabricate Pt/HfO{sub 2}/AlO{sub x}/GeO{sub x}/Ge stacked structures. Comprehensive study by means of physical and electrical characterizations revealed distinct impacts of AlO{sub x} interlayers, plasma oxidation, and metal electrodes serving as capping layers on EOT scaling, improved interface quality, and thermal stability of the stacks. Aggressive EOT scaling down to 0.56 nm and very low interface state density of 2.4 × 10{sup 11 }cm{sup −2}eV{sup −1} with a sub-nm EOT and sufficient thermal stability were achieved by systematic process optimization.

  20. Equation of state of aluminum-iron oxide-epoxy composite

    Science.gov (United States)

    Jordan, Jennifer L.; Ferranti, Louis; Austin, Ryan A.; Dick, Richard D.; Foley, Jason R.; Thadhani, Naresh N.; McDowell, David L.; Benson, David J.

    2007-05-01

    We report on the measurements of the shock equation of state (Hugoniot) of an Al/Fe2O3/epoxy composite, prepared by epoxy cast curing of powder mixtures. Explosive loading, with Baratol, trinitrotoluene (TNT), and Octol, was used for performing experiments at higher pressures, in which case shock velocities were measured in the samples and aluminum, copper, or polymethyl methacrylate (PMMA) donor material, using piezoelectric pins. The explosive loading of the metal donors (aluminum and copper) will be discussed. Gas gun experiments provide complementary lower pressure data in which piezoelectric polyvinylidene fluoride (PVDF) stress gauges were used to measure the input and propagated stress wave profiles in the sample and the corresponding shock propagation velocity. The results of the Hugoniot equation of state are compared with mesoscale finite-element simulations, which show good agreement.

  1. Structure and formation mechanism of rolled-in oxide areas on aluminum lithographic printing sheets

    International Nuclear Information System (INIS)

    The subsurface area introduced during rolling on the 1100 aluminum alloy series alters its surface properties, which makes it more susceptible to corrosion. A combination of different transmission electron microscopy techniques is employed to observe the orientation of small grain structures and the distribution elements in the subsurface layer. This approach provided valuable insight into the formation mechanism of the layer and the phenomena taking place during rolling.

  2. Nano structured porous anodized aluminium oxide by using C2H2O4 for electronic applications: Study of the cell potential effects on formation of porous alumina

    International Nuclear Information System (INIS)

    In this research, a nano porous anodized aluminium oxide AAO thin film was successfully grown onto oxide layer on silicon substrate. The anodization of Si/ SiO2/ Al substrate was conducted in a vigorous stirring oxalic acid bath solution. The rate of growth, morphology and also the kinetic study of the AAO thin film were investigated. The resulting array, pores structure and pores density of AAO strongly depends on an applied voltage of the anodizing process. (author)

  3. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense.

    Science.gov (United States)

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Dubey, R S

    2013-05-01

    Aluminum toxicity is a major constraint to crop production in acid soils. The present study was undertaken to examine the comparative ameliorating effects of salicylic acid, Ca and Mg on Al toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Al treatment (0.5 mM AlCl3) caused decrease in plant vigour, loss of root plasma membrane integrity, increased contents of O 2 (∙-) , H2O2, lipid peroxidation, protein carbonyls and decline in the level of protein thiol. Al treatment caused significant changes in activity of antioxidative enzymes in rice seedlings. Exogenously added salicylic acid (60 μM), Ca (1 mM) and Mg (0.25 mM) significantly alleviated Al toxicity effects in the seedlings marked by restoration of growth, suppression of Al uptake, restoration of root plasma membrane integrity and decline in O 2 (∙-) , H2O2, lipid peroxidation and protein carbonyl contents. Salicylic acid, Ca and Mg suppressed Al-induced increase in SOD, GPX and APX activities while it elevated Al-induced decline in CAT activity. By histochemical staining of O 2 (∙-) using NBT and H2O2 using DAB, it was further confirmed that added salicylic acid, Ca or Mg decreased Al-induced accumulation of O 2 (∙-) and H2O2 in the leaf tissues. Results indicate that exogenously added salicylic acid, Ca or Mg alleviates Al toxicity in rice seedlings by suppressing Al uptake, restoring root membrane integrity, reducing ROS level and ROS induced oxidative damage and regulating the level of antioxidative enzyme activities. Further salicylic appears to be superior to Mg and Ca in alleviating Al toxicity effects in rice plants.

  4. Entropic nature of the adsorption of sodium dodecylbenzenesulfonate on nanoparticles of aluminum and iron oxides in aqueous medium

    Science.gov (United States)

    Mansurov, R. R.; Safronov, A. P.; Lakiza, N. V.

    2016-06-01

    The adsorption of anionic surfactant sodium dodecylbenzenesulfonate (SDBS) from aqueous solution on the hydrophilic surfaces of aluminum oxide and iron oxide nanoparticles is studied via UV spectrophotometry, electrophoretic light scattering, and isothermal microcalorimetry. It is shown that the isotherms of the adsorption of SDBS on the surfaces of both oxides in the area of concentrations up to 0.6 mmol/L is linear. It is found that the positive zeta potential of the surfaces of the particles falls to zero and shifts toward the range of negative values due to adsorption. The adsorption of SDBS is characterized by positive enthalpy values over the investigated range of concentrations, while the loss of energy during adsorption indicates it is of an entropic nature. It is concluded that the probable cause of the increase in entropy is the dehydration of SDBS molecules during on surface adsorption. The obtained results are discussed in terms of the formation of hemimicelles of surfactant on the hydrophilic surfaces of metal oxide nanoparticles in an aqueous medium.

  5. Density control and wettability enhancement by functionalizing carbon nanotubes with nickel oxide in aluminum-carbon nanotube system.

    Science.gov (United States)

    Kim, Tae-Hoon; Park, Min-Ho; Song, Kwan-Woo; Bae, Jee-Hwan; Lee, Jae-Wook; Lee, Choong Do; Yang, Cheol-Woong

    2013-11-01

    Excellent mechanical properties of carbon nanotubes (CNTs) make them ideal reinforcements for synthesizing light weight, high strength metal matrix composite. Aluminum is attractive matrix due to its light weight and Al/CNT composites are promising materials for various industrial applications. Powder metallurgy and casting techniques are normally used for bulk fabrications of composites. Casting process which can mass-produce delicate product is more suitable than existing powder metallurgy in view point of application in industries. In CNT-metal matrix composites, however, composite bulk fabrication has been limited because of the large density gap and poor wettability between the metal and CNTs. This study suggests a method for alleviating such problems. It was found that the wettability between aluminum and CNT could be enhanced by functionalizing the CNTs with nickel oxide. This functionalization of CNTs with heavier element also reduces the density gap between the matrix and reinforcements. It is suggested that this method could possibly be used in a casting process to enable mass fabrication of CNT-metal matrix composites.

  6. Oxidative removal of acetaminophen using zero valent aluminum-acid system:Efficacy, influencing factors, and reaction mechanism

    Institute of Scientific and Technical Information of China (English)

    Honghua Zhang; Beipei Cao; Wanpeng Liu; Kunde Lin; Jun Feng

    2012-01-01

    Commercial available zero valent aluminum under air-equilibrated acidic conditions (ZVA1/H+/air system) demonstrated an excellent capacity to remove aqueous organic compounds.Acetaminophen (ACTM),the active ingredient of the over-the-counter drug Tylenol(R),is widely present in the aquatic environment and therefore the treatment of ACTM-contaminated water calls for further research.Herein we investigated the oxidative removal of ACTM by ZVAl/H+/air system and the reaction mechanism.In acidic solutions (pH < 3.5),ZVAl displayed an excellent capacity to remove ACTM.More than 99% of ACTM was eliminated within 16 hr in pH 1.5 reaction solutions initially containing 2.0 g/L aluminum and 2.0 mg/L ACTM at 25 ± 1℃.Higher temperature and lower pH facilitated ACTM removal.The addition of different iron species Fe0,Fe2+ and Fe3+ into ZVAl/H+/air system dramatically accelerated the reaction likely due to the enhancing transformation of H2O2 to HO·via Fenton's reaction.Furthermore,the primary intermediate h.ydroquinone and the anions formate,acetate and nitrate,were identified and a possible reaction scheme was proposed.This work suggested that ZVA1/H+/air system may be potentially employed to treat ACTM-contaminated water.

  7. Analysis of Intermetallic Phases Formed on Surface Vapor Oxidized H13 Hot Work Steels in Molten Aluminum

    Institute of Scientific and Technical Information of China (English)

    WANGRong; WUXiao-chun; MINYong-an

    2004-01-01

    In this paper, the author dipped surface vapor oxidized H13 steel specimens into 700℃ molten aluminum liquid for a certain period of time. Analyze the intermetallic phases formed on the H 13 samples surface with optical microscope and X-ray diffraction method. The observation of immersion test sample's cross-section shows that Fe304 film will protect die substrate from molten aluminum erosion. The identification of the intermetallic phases reveals that they consist of 2 parts, which is named as the composite layer and the compact layer. Further investigations are made in order to know the phase constituents of the 2 layers, they are Al8Fe2Si (outer composite layer), (AlCuMg) and Al5Fe2 (compact layer), respectively. The experimental results show that on the same specimen, a convex surface with bigger radius of curvature is more likely to be molten and the melting loss speed is also faster than a flat and smooth surface. The thickness of compact layer on a smooth surface is much bigger than that of the convex surface. Therefore, the author supposes the compact layer is favorable in stabilizing the die surface material from further melting loss, as their formation on the die surface, the melting loss speed will decrease.

  8. Analysis of Intermetallic Phases Formed on Surface Vapor Oxidized H13 Hot Work Steels in Molten Aluminum

    Institute of Scientific and Technical Information of China (English)

    WANG Rong; WU Xiao-chun; MIN Yong-an

    2004-01-01

    In this paper, the author dipped surface vapor oxidized H13 steel specimens into 700℃ molten aluminum liquid for a certain period of time. Analyze the intermetallic phases formed on the H13 samples surface with optical microscope and X-ray diffraction method. The observation of immersion test sample's cross-section shows that Fe3O4 film will protect die substrate from molten aluminum erosion. The identification of the intermetallic phases reveals that they consist of 2parts, which is named as the composite layer and the compact layer. Further investigations are made in order to know the phase constituents of the 2 layers, they are Al8Fe2Si (outer composite layer), (AlCuMg) and Al5Fe2 (compact layer),respectively. The experimental results show that on the same specimen, a convex surface with bigger radius of curvature is more likely to be molten and the melting loss speed is also faster than a flat and smooth surface. The thickness of compact layer on a smooth surface is much bigger than that of the convex surface. Therefore, the author supposes the compact layer is favorable in stabilizing the die surface material from further melting loss, as their formation on the die surface, the melting loss speed will decrease.

  9. The influence of atmospheric species on the degradation of aluminum doped zinc oxide and Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Theelen, M.J.; Foster, C.; Dasgupta, S.; Vroon, Z.A.E.P.; Barreau, N.; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbondioxide (CO2), oxygen (O2), nitrogen (N2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical, c

  10. Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Theelen, M.; Boumans, T.; Stegeman, F.; Colberts, F.; Illiberi, A.; Berkum, J. van; Barreau, N.; Vroon, Z.; Zeman, M.

    2014-01-01

    Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before

  11. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  12. Simulation study of a highly efficient, high resolution X-ry sensor based on self-organizing aluminum oxide

    CERN Document Server

    Muehlbauer, Joerg; Reims, Nils; Krueger, Peter; Schreiber, Juergen; Mukhurov, Nikolai I; Uhlmann, Norman

    2012-01-01

    State of the art X-ray imaging sensors comprise a trade-off between the achievable efficiency and the spatial resolution. To overcome such limitations, the use of structured and scintillator filled aluminum oxide (AlOx) matrices has been investigated. We used Monte-Carlo (MC) X-ray simulations to determine the X-ray imaging quality of these AlOx matrices. Important factors which influence the behavior of the matrices are: filling factor (surface ratio between channels and 'closed' AlOx), channel diameter, aspect ratio, filling material etc. Therefore we modeled the porous AlOx matrix in several different ways with the MC X-ray simulation tool ROSI [1] and evaluated its properties to investigate the achievable performance at different X-ray spectra, with different filling materials (i.e. scintillators) and varying channel height and pixel readout. In this paper we focus on the quantum efficiency, the spatial resolution and image homogeneity.

  13. Compression Molded Ultra High Molecular Weight Polyethylene-Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Hybrid Composites for Hard Tissue Replacement

    Institute of Scientific and Technical Information of China (English)

    Ankur Gupta; Garima Tripathi; Debrupa Lahiri; Kantesh Balani

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is widely used for articulating surfaces in total hip and knee replacements.In the present work,UHMWPE based polymer composites were synthesized by synergistic reinforcing of bioactive hydroxyapatite (HA),bioinert aluminum oxide (Al2O3),and carbon nanotubes (CNTs) using compression molding.Phase and microstructural analysis suggests retention of UHMWPE and reinforcing phases in the compression molded composites.Microstructural analysis elicited variation in densification due to the size effect of the reinforcing particles.The hybrid composites exhibited hardness,elastic modulus and toughness comparable to that of UHMWPE.The interfacial effect of reinforcement phases has evinced the effectiveness of Al2O3 over HA and CNT reinforcements,depicting synergistic enhancement in hardness and elastic modulus.Weak interfacial bonding of polymer matrix with HA and CNT requires utilization of coupling agents to achieve enhanced mechanical properties without deteriorating cytocompatible properties.

  14. The effect of oxygen flow rate on refractive index of aluminum oxide film deposited by electron beam evaporation technique

    Directory of Open Access Journals (Sweden)

    R Shakouri

    2016-02-01

    Full Text Available The effects of oxygen flow rate on refractive index of aluminum oxide film have been investigated. The Al2O3 films are deposited by electron beam on glass substrate at different oxygen flow rates. The substrate was heated to reach  and the temperature was constant during the thin film growth. The transmittance spectrum of samples was recorded in the wavelength 400-800 nm.  Then, using the maxima and minima of transmittance the refractive index and the extinction coefficient of samples were determined. It has been found that if we reduce the oxygen flow, while the evaporation rate is kept constant, the refractive index of Al2O3 films increases. On the other hand, reduced oxygen pressure causes the Al2O3 films to have some absorption.

  15. Effects of acetic acid on microstructure and electrochemical properties of nano cerium oxide films coated on AA7020-T6 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    H. Hasannejad; T. Shahrabi; M. Aliofkhazraei

    2009-01-01

    Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), crack-flee films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase.

  16. Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal–organic framework/reduced graphene oxide composite

    Science.gov (United States)

    Wu, Zhibin; Yuan, Xingzhong; Zhong, Hua; Wang, Hou; Zeng, Guangming; Chen, Xiaohong; Wang, Hui; Zhang, Lei; Shao, Jianguang

    2016-05-01

    In this study, the composite of aluminum metal–organic framework MIL-68(Al) and reduced graphene oxide (MA/RG) was synthesized via a one–step solvothermal method, and their performances for p–nitrophenol (PNP) adsorption from aqueous solution were systematically investigated. The introduction of reduced graphene oxide (RG) into MIL-68(Al) (MA) significantly changes the morphologies of the MA and increases the surface area. The MA/RG-15% prepared at RG-to-MA mass ratio of 15% shows a PNP uptake rate 64% and 123% higher than MIL-68(Al) and reduced graphene oxide (RG), respectively. The hydrogen bond and π – π dispersion were considered to be the major driving force for the spontaneous and endothermic adsorption process for PNP removal. The adsorption kinetics, which was controlled by film–diffusion and intra–particle diffusion, was greatly influenced by solution pH, ionic strength, temperature and initial PNP concentration. The adsorption kinetics and isotherms can be well delineated using pseudo–second–order and Langmuir equations, respectively. The presence of phenol or isomeric nitrophenols in the solution had minimal influence on PNP adsorption by reusable MA/RG composite.

  17. Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study

    Indian Academy of Sciences (India)

    Arun Kumar Varanasi; Phani Kanth Sanagavarapu; Arghya Bhowmik; Mridula Dixit Bharadwaj; Balasubramanian Narayana; Umesh V Waghmare; Dipti Deodhare; Alind Sharma

    2013-12-01

    First-principles prediction of enhancement in the electrochemical potential of LiCoO2 with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO4 and LiCoPO4. Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO2, LiFePO4 and LiCoPO4. While Al substitution for transition metal results in increase in electrochemical potential of LiCoO2, it leads to reduction in LiFePO4 and LiCoPO4. Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO2, it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential.

  18. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen;

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...... hydroxide. Numerical simulations of the electromagnetic field around the probe-sample interaction region are used to explain the experimental observations. With an aluminum-coated fiber probe, lines of 35 nm in width were transferred into the amorphous silicon layer. (C) 1997 American Institute of Physics....

  19. Effects of Cryogenic Forging and Anodization on the Mechanical Properties and Corrosion Resistance of AA6066–T6 Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Teng-Shih Shih

    2016-03-01

    Full Text Available In this study, AA6066 alloy samples were cryogenically forged after annealing and then subjected to solution and aging treatments. Compared with conventional 6066-T6 alloy samples, the cryoforged samples exhibited a 34% increase in elongation but sacrificed about 8%–12% in ultimate tensile strength (UTS and yield stress (YS. Such difference was affected by the constituent phases that changed in the samples’ matrix. Anodization and sealing did minor effect on tensile strength of the 6066-T6 samples with/without cryoforging but it decreased samples’ elongation about 8%–10%. The anodized/sealed anodic aluminum oxide (AAO film enhanced the corrosion resistance of the cryoforged samples.

  20. Thermal oxidation of single crystal aluminum antimonide and materials having the same

    Science.gov (United States)

    Sherohman, John William; Yee, Jick Hong; Coombs, III, Arthur William; Wu, Kuang Jen J.

    2012-12-25

    In one embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a partial vacuum atmosphere at a temperature conducive for air adsorbed molecules to desorb, surface molecule groups to decompose, and elemental Sb to evaporate from a surface of the AlSb crystal and exposing the AlSb crystal to an atmosphere comprising oxygen to form a crystalline oxide layer on the surface of the AlSb crystal. In another embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a non-oxidizing atmosphere at a temperature conducive for decomposition of an amorphous oxidized surface layer and evaporation of elemental Sb from the AlSb crystal surface and forming stable oxides of Al and Sb from residual surface oxygen to form a crystalline oxide layer on the surface of the AlSb crystal.

  1. Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution

    Science.gov (United States)

    Lv, Damei; Ou, Junfei; Xue, Mingshan; Wang, Fajun

    2015-04-01

    Superhydrophobic surface (SHS) was fabricated on aluminum via surface roughening by NaClO and surface passivation by hexadecyltrimethoxysilane. The long-term durability for storing the sample in air and the chemical stability for contacting the sample with NaCl solution were investigated. The short-term corrosion resistance for immersing the sample in NaCl solution for 1 h was investigated by potentiodynamic polarization, and the long-term corrosion resistance for immersing the sample in NaCl solution for 7 days was investigated by variation analyses on surface wettability, surface morphology, and surface chemistry. All experimental results suggested that the so-obtained SHS possessed good stability and good corrosion resistance under the testing conditions.

  2. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  3. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment.

    Science.gov (United States)

    Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A

    2015-09-01

    We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed. PMID:26271017

  4. Graphene Oxide/Polyacrylamide/Aluminum Ion Cross-Linked Carboxymethyl Hemicellulose Nanocomposite Hydrogels with Very Tough and Elastic Properties.

    Science.gov (United States)

    Kong, Weiqing; Huang, Danyang; Xu, Guibin; Ren, Junli; Liu, Chuanfu; Zhao, Lihong; Sun, Runcang

    2016-06-01

    Development of high-strength hydrogels has recently attracted ever-increasing attention. In this work, a new design strategy has been proposed to prepare graphene oxide (GO)/polyacrylamide (PAM)/aluminum ion (Al(3+) )-cross-linked carboxymethyl hemicellulose (Al-CMH) nanocomposite hydrogels with very tough and elastic properties. GO/PAM/Al-CMH hydrogels were synthesized by introducing graphene oxide (GO) into PAM/CMH hydrogel, followed by ionic cross-linking of Al(3+) . The nanocomposite hydrogels were characterized by means of FTIR, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray analysis (SEM-EDX) along with their swelling and mechanical properties. The maximum compressive strength and the Young's modulus of GO3.5 /PAM/Al-CMH0.45 hydrogel achieved values of up to 1.12 and 13.27 MPa, increased by approximately 6488 and 18330 % relative to the PAM hydrogel (0.017 and 0.072 MPa). The as-prepared GO/PAM/Al-CMH nanocomposite hydrogels possess high strength and great elasticity giving them potential in bioengineering and drug-delivery system applications. PMID:27062081

  5. Effect of aluminum addition on electrical properties, dielectric characteristics, and its stability of (Pr, Co, Cr, Y)-added zinc oxide-based varistors

    Indian Academy of Sciences (India)

    Choon-W Nahm

    2010-06-01

    The electrical properties, dielectric characteristics, and its stability against d.c. accelerated aging stress of (Pr, Co, Cr, Y)-added zinc oxide-based varistors were investigated for different aluminum concentrations under a sintering temperature of 1280°C. As the aluminum concentration increased, the average grain size () increased in the range of 4.3–5.5 m and the sintered density increased in the range of 5.63–5.67 g/cm3. As the aluminum concentration increased, the breakdown field decreased in the range of 6327–710 V/cm and the maximum nonlinear coefficient (46.9) was obtained for 0.005 mol% in aluminum concentration, further additions impaired the nonlinear properties. As the aluminum concentration increased, the apparent dielectric constant increased in the range of 500.5–1327.4 and dissipation factor increased in the range of 0.00493–0.0724. The varistor added with 0.001 mol% Al exhibited the highest stability for – characteristics in which % 1\\ mA is +1.4% and % is –5.7%, under stress state of 0.95 1\\ mA/150° C/24 h.

  6. Nanoscale carbon tubules deposited in anodic aluminium oxide template:a study of soft x-ray transmission

    Institute of Scientific and Technical Information of China (English)

    Liu Li-Feng; Zhou Zhen-Ping; Yuan Hua-Jun; Ci Li-Jie; Liu Dong-Fang; Gao Yan; Wang Jian-Xiong; Wang Gang; Zhou Wei-Ya; Zhu Pei-Ping; Cui Ming-Qi; Zheng Lei; Zhu Jie; Zhao Yi-Dong; Song Li; Yan Xiao-Qin

    2004-01-01

    Well-aligned, catalyst-free nanoscale carbon tubules array was prepared by organic compound vapour deposition method using anodic aluminium oxide (AAO) as a template. The experiment of soft x-ray channelling in such carbon tubules array deposited in AAO template was performed at Beijing Synchrotron Radiation Facility. The transmission of x-rays in carbon tubules array with AAO template support was found even higher than that in bare AAO template at high-energy part of energy spectrum though the porous area of the former was smaller than that of the latter. A qualitative explanation is presented to interpret our results.

  7. Oxidation and decomposition mechanisms of air sensitive aluminum clusters at high heating rates

    Science.gov (United States)

    DeLisio, Jeffery B.; Mayo, Dennis H.; Guerieri, Philip M.; DeCarlo, Samantha; Ives, Ross; Bowen, Kit; Eichhorn, Bryan W.; Zachariah, Michael R.

    2016-09-01

    Molecular near zero oxidation state clusters of metals are of interest as fuel additives. In this work high heating rate decomposition of the Al(I) tetrameric cluster, [AlBr(NEt3)]4 (Et = C2H5), was studied at heating rates of up to 5 × 105 K/s using temperature-jump time-of-flight mass spectrometry (T-jump TOFMS). Gas phase Al and AlHx species were rapidly released during decomposition of the cluster, at ∼220 °C. The activation energy for decomposition was determined to be ∼43 kJ/mol. Addition of an oxidizer, KIO4, increased Al, AlO, and HBr signal intensities, showing direct oxidation of the cluster with gas phase oxygen.

  8. Flux calibration of the AAO/UKST SuperCOSMOS H-alpha Survey

    CERN Document Server

    Frew, David J; Parker, Quentin A; Pierce, Mark J; Gunawardhana, M L P; Reid, W A

    2013-01-01

    The AAO/UKST SuperCOSMOS H-alpha Survey (SHS) of the southern Galactic plane was, when completed in 2003, a powerful new addition to wide-field surveys. It has a combination of areal coverage, spatial resolution and flux sensitivity in a narrow imaging band which still marks it out today as an excellent resource for the astronomical community. The 233 separate fields are available online in digital form, with each field covering 25 square degrees. The SHS has been the motivation for equivalent surveys in the north, and new digital H-alpha surveys now beginning in the south such as VPHAS+. The SHS has been the foundation of many important follow-up discovery projects in the southern sky with the Macquarie/AAO/Strasbourg H-alpha (MASH) planetary nebula project being a particularly successful example. However, the full astrophysical potential of the SHS has been hampered by lack of a clear route to acceptable flux calibration from the base photographic data. We have determined the calibration factors for 170 sep...

  9. Selection of crucible oxides in molten titanium and titanium aluminum alloys by thermo-chemistry calculations

    OpenAIRE

    Kostov A.; Friedrich B

    2005-01-01

    Titanium and its alloys interstitially dissolve a large amount of impurities such as oxygen and nitrogen, which degrade the mechanical and physical properties of alloys. On the other hand crucible oxides based on CaO, ZrO2 Y2O3, etc., and their spinels (combination of two or more oxides) can be used for melting titanium and its alloys. However, the thermodynamic behavior of calcium, zirconium, yttrium on the one side, and oxygen on the other side, in molten Ti and Ti-Al alloys have not been m...

  10. Studies on anodic oxide coating with low absorptance and high emittance on aluminum alloy 2024

    Energy Technology Data Exchange (ETDEWEB)

    Siva Kumar, C. [Department of Post-graduate studies in Chemistry, Central College, Bangalore (India); Sharma, A.K. [Thermal Process Section, ISRO Satellite Centre, Vimanapura Post, Bangalore (India); Mahendra, K.N.; Mayanna, S.M. [Department of Post-graduate studies in Chemistry, Central College, Bangalore (India)

    2000-01-01

    Anodization of AA 2024 in sulfuric acid bath containing glycerol, lactic acid and ammonium metavenadate has been studied to develop white anodic oxide coating. Investigation on the influence of various operating parameters - coating thickness, current density and ammonium metavenadate concentration on the optical properties was carried out to optimize the process. Infrared, atomic absorption spectroscopic techniques and scanning electron micrograph were used to characterize the coating. The obtained oxide coating provides a ratio of solar absorptance ({alpha}) to infrared emittance ({epsilon}), as low as 0.2. The optical properties and hardness values measured under optimum experimental conditions support its use as a thermal control coating.

  11. Pretreatment with H2O2 Alleviates Aluminum-induced Oxidative Stress in Wheat Seedlings

    Institute of Scientific and Technical Information of China (English)

    Fang Jie Xu; Chong Wei Jin; Wen Jing Liu; Yong Song Zhang; Xian Yong Lin

    2011-01-01

    Hydrogen peroxide(H2O2)is a key reactive oxygen species(ROS)in signal transduction pathways Ieading to activation of plant defenses against biotic and abiotic stresses.In this study,we investigated the effects of H2O2 pretreatment on aluminum (Al)induced antioxidant responses in root tips of two wheat(Triticum aestivum L.)genotypes,Yangmai-5(Al-sensitive)and Jian-864(Al-tolerant).Al increased and root elongation inhibition in Yangmai-5 than in Jian-864.However,H2O2 pretreatment alleviated Alinduced deleterious effects in both genotypes.Under Al stress,H2O2 pretreatment increased the activities of superoxide dismutase,catalase,peroxidase,ascorbate peroxidase and monodehydroascorbate reductase,glutathione reductase and giutathione peroxidase as well as the levels of ascorbate and glutathione more significantly in Yangmai-5 than in Jian-864.Furthermore,H2O2 pretreatment also increased the total antioxidant capacity evaluated as the 2,2-diphenyl-1-picrylhydrazyl-radical scavenging activity and the ferric reducing/antioxidant power more significantly in Yangmai-5 than in Jian-864.Therefore,we conclude that H2O2 pretreatment improves wheat Al acclimation during subsequent Al exposure by enhancing the antioxidant defense capacity,which prevents ROS accumulation,and that the enhancement is greater in the Al-sensitive genotype than in the Al-tolerant genotype.

  12. The Effect of Microarc Oxidation (MAO Modes on Corrosion Behavior of High-Silicon Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    S.К. Kiselyeva

    2014-07-01

    Full Text Available The investigation studies the properties of hardened surface layers, developed with the microarc oxidation method (MAO on ingots of a Al-Si alloy. It has been proved that properties of the developed surfaces (microhardness, thickness, porosity and corrosion properties depend on the concentration of electrolyte components.

  13. Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material

    International Nuclear Information System (INIS)

    Cobalt oxide (Co3O4) nanotubes have been successfully synthesized by chemically depositing cobalt hydroxide in anodic aluminum oxide (AAO) templates and thermally annealing at 500 oC. The synthesized nanotubes have been characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The electrochemical capacitance behavior of the Co3O4 nanotubes electrode was investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 6 mol L-1 KOH solution. The electrochemical data demonstrate that the Co3O4 nanotubes display good capacitive behavior with a specific capacitance of 574 F g-1 at a current density of 0.1 A g-1 and a good specific capacitance retention of ca. 95% after 1000 continuous charge-discharge cycles, indicating that the Co3O4 nanotubes can be promising electroactive materials for supercapacitor.

  14. Fractionation of fulvic acid by iron and aluminum oxides: influence on copper toxicity to Ceriodaphnia dubia

    Science.gov (United States)

    Smith, Kathleen S.; James F. Ranville; Emily K. Lesher; Daniel J. Diedrich; Diane M. McKnight; Ruth M. Sofield

    2014-01-01

    This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.

  15. The effect of Bi{sup 3+} and Li{sup +} co-doping on the luminescence characteristics of Eu{sup 3+}-doped aluminum oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rosales, I., E-mail: ipadilla@cinvestav.mx [Centro de Investigación y de Estudios Avanzados del IPN, Nanociencias y Nanotecnología, Av. IPN 2508, Col. San Pedro Zacatenco, CP 07360 México D.F. (Mexico); Martinez-Martinez, R. [Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima Km. 2.5, CP 69000 Huajuapan de León, Oax, México (Mexico); Cabañas, G. [Centro de Investigación y de Estudios Avanzados del IPN, Nanociencias y Nanotecnología, Av. IPN 2508, Col. San Pedro Zacatenco, CP 07360 México D.F. (Mexico); Falcony, C. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, Col. San Pedro Zacatenco, CP 07360 México D.F. (Mexico)

    2015-09-15

    The incorporation of Bi{sup 3+} and Li{sup +} as co-dopants in Eu{sup 3+}-doped aluminum oxide films deposited by the ultrasonic spray pyrolysis technique and its effect on the luminescence characteristics of this material are described. Both Bi{sup 3+} and Li{sup +} do not introduce new luminescence features but affect the luminescence intensity of the Eu{sup 3+} related emission spectra as well as the excitation spectra. The introduction of Bi{sup 3+} generates localized states in the aluminum oxide host that result in a quenching of the luminescence intensity, while Li{sup +} and Bi{sup 3+} co-doping increase the luminescence intensity of these films. - Highlights: • Li and Bi co-doping increase the luminescence. • Bi creates localized states in the Al{sub 2}O{sub 3} host. • Li was incorporated as a co-activator.

  16. Aluminum-, Calcium- And Titanium-Rich Oxide Stardust In Ordinary Chondrite Meteorites

    CERN Document Server

    Nittler, Larry R; Gallino, Roberto; Hoppe, Peter; Nguyen, Ann N; Stadermann, Frank J; Zinner, Ernst K

    2008-01-01

    We report isotopic data for a total of 96 presolar oxide grains found in residues of several unequilibrated ordinary chondrite meteorites. Identified grain types include Al2O3, MgAl2O4, hibonite (CaAl12O19) and Ti oxide. This work greatly increases the presolar hibonite database, and is the first report of presolar Ti oxide. O-isotopic compositions of the grains span previously observed ranges and indicate an origin in red giant and asymptotic giant branch (AGB) stars of low mass (<2.5 MSun) for most grains. Cool bottom processing in the parent AGB stars is required to explain isotopic compositions of many grains. Potassium-41 enrichments in hibonite grains are attributable to in situ decay of now-extinct 41Ca. Inferred initial 41Ca/40Ca ratios are in good agreement with model predictions for low-mass AGB star envelopes, provided that ionization suppresses 41Ca decay. Stable Mg and Ca isotopic ratios of most of the hibonite grains reflect primarily the initial compositions of the parent stars and are gener...

  17. DEGRADATION OF SM2ZR2O7 THERMAL BARRIER COATING CAUSED BY CALCIUM-MAGNESIUM-ALUMINUM-SILICON OXIDE (CMAS) DEPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Honglong; Sheng, Zhizhi; Tarwater, Emily; Zhang, Xingxing; Dasgupta, Sudip; Fergus, Jeffrey

    2015-03-16

    Rare earth zirconates are promising materials for use as thermal barrier coatings in gas turbine engines. Among the lanthanide zirconate materials, Sm2Zr2O7 with the pyrochlore structure has lower thermal conductivity and better corrosion resistance against calcium-magnesium-aluminum-silicon oxide (CMAS). In this work, after reaction with CMAS, the pyrochlore structure transforms to the cubic fluorite structure and Ca2Sm8(SiO4)6O2 forms in elongated grain.

  18. On the kinetics of the aluminum-water reaction during exposure in high-heat flux test loops: 1, A computer program for oxidation calculations

    International Nuclear Information System (INIS)

    The ''Griess Correlation,'' in which the thickness of the corrosion product on aluminum alloy surfaces is expressed as a function of time and temperature for high-flux-reactor conditions, was rewritten in the form of a simple, general rate equation. Based on this equation, a computer program that calculates oxide-layer thickness for any given time-temperature transient was written. 4 refs

  19. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  20. Integrative functional transcriptomic analyses implicate specific molecular pathways in pulmonary toxicity from exposure to aluminum oxide nanoparticles.

    Science.gov (United States)

    Li, Xiaobo; Zhang, Chengcheng; Bian, Qian; Gao, Na; Zhang, Xin; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Xia, Yankai; Chen, Rui

    2016-09-01

    Gene expression profiling has developed rapidly in recent years and it can predict and define mechanisms underlying chemical toxicity. Here, RNA microarray and computational technology were used to show that aluminum oxide nanoparticles (Al2O3 NPs) were capable of triggering up-regulation of genes related to the cell cycle and cell death in a human A549 lung adenocarcinoma cell line. Gene expression levels were validated in Al2O3 NPs exposed A549 cells and mice lung tissues, most of which showed consistent trends in regulation. Gene-transcription factor network analysis coupled with cell- and animal-based assays demonstrated that the genes encoding PTPN6, RTN4, BAX and IER play a role in the biological responses induced by the nanoparticle exposure, which caused cell death and cell cycle arrest in the G2/S phase. Further, down-regulated PTPN6 expression demonstrated a core role in the network, thus expression level of PTPN6 was rescued by plasmid transfection, which showed ameliorative effects of A549 cells against cell death and cell cycle arrest. These results demonstrate the feasibility of using gene expression profiling to predict cellular responses induced by nanomaterials, which could be used to develop a comprehensive knowledge of nanotoxicity. PMID:26830206

  1. Atomic force microscopy identification of Al-sites on ultrathin aluminum oxide film on NiAl(110)

    Science.gov (United States)

    Li, Yan Jun; Brndiar, J.; Naitoh, Y.; Sugawara, Y.; Štich, I.

    2015-12-01

    Ultrathin alumina film formed by oxidation of NiAl(110) was studied by non-contact atomic force microscopy in an ultra high vacuum at room temperature with the quest to provide the ultimate understanding of structure and bonding of this complicated interface. Using a very stiff Si cantilever with significantly improved resolution, we have obtained images of this system with unprecedented resolution, surpassing all the previous results. In particular, we were able to unambiguously resolve all the differently coordinated aluminum atoms. This is of importance as the previous images provide very different image patterns, which cannot easily be reconciled with the existing structural models. Experiments are supported by extensive density functional theory modeling. We find that the system is strongly ionic and the atomic force microscopy images can reliably be understood from the electrostatic potential which provides an image model in excellent agreement with the experiments. However, in order to resolve the finer contrast features we have proposed a more sophisticated model based on more realistic approximants to the incommensurable alumina interface.

  2. Preparation and characterization of solid-state sintered aluminum-doped zinc oxide with different alumina contents

    Indian Academy of Sciences (India)

    Yu-Hsien Chou; J L H Chau; W L Wang; C S Chen; S H Wang; C C Yang

    2011-06-01

    Aluminum-doped zinc oxide (AZO) ceramics with 0−2.5 wt.% alumina (Al2O3) content were prepared using a solid-state reaction technique. It was found that AZO grains became finer in size and more irregular in shape than undoped ZnO as the Al2O3 content increased. Addition of Al2O3 dopant caused the formation of phase transformation stacking faults in ZnO grains. The second phase, ZnAl2O4 spinel, was observed at the grain boundaries and triple junctions, and inside the grains. In this study, a 3-inch circular Al2O3 (2 wt.%)-doped ZnO ceramic target sintered at 1500°C for 6 h has a relative density of 99.8% with a resistivity of 1.8 × 10-3 -cm. The AZO film exhibits optical transparency of 90.3% in the visible region and shows an electrical resistivity of 2.5 × 10-3 -cm.

  3. Deposition of duplex Al 2O 3/aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation

    Science.gov (United States)

    Gu, Weichao; Shen, Dejiu; Wang, Yulin; Chen, Guangliang; Feng, Wenran; Zhang, Guling; Fan, Songhua; Liu, Chizi; Yang, Size

    2006-02-01

    Plasma electrolytic oxidation (PEO) is a cost-effective technique that can be used to prepare ceramic coatings on metals such as Ti, Al, Mg, Nb, etc., and their alloys, but this promising technique cannot be used to modify the surface properties of steels, which are the most widely used materials in engineering. In order to prepare metallurgically bonded ceramic coatings on steels, a combined technique of arc spraying and plasma electrolytic oxidation (PEO) was adopted. In this work, metallurgically bonded ceramic coatings on steels were obtained using this method. We firstly prepared aluminum coatings on steels by arc spraying, and then obtained the metallurgically bonded ceramic coatings on aluminum coatings by PEO. The characteristics of duplex coatings were analyzed by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The corrosion and wear resistance of the ceramic coatings were also studied. The results show that, duplex Al 2O 3/aluminum coatings have been deposited on steel substrate after the combined treatment. The ceramic coatings are mainly composed of α-Al 2O 3, γ-Al 2O 3, θ-Al 2O 3 and some amorphous phase. The duplex coatings show favorable corrosion and wear resistance properties. The investigations indicate that the combination of arc spraying and plasma electrolytic oxidation proves a promising technique for surface modification of steels for protective purposes.

  4. Oxidation study on as-bonded intermetallic of copper wire-aluminum bond pad metallization for electronic microchip

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Sahaya Anand, T., E-mail: anand@utem.edu.my [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Yau, Chua Kok [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); University of Technical Malaysia Supported by Infineon Technology - Malaysia - Sdn. Bhd., Melaka (Malaysia); Huat, Lim Boon [Department of Innovation, Infineon Technology - Malaysia - Sdn. Bhd., FTZ Batu Berendam, 75350 Melaka (Malaysia)

    2012-10-15

    In this work, influence of Copper free air ball (FAB) oxidation towards Intermetallic Compound (IMC) at Copper wire-Aluminum bond pad metallization (Cu/Al) is studied. Samples are synthesized with different Copper FAB oxidation condition by turning Forming Gas supply ON and OFF. Studies are performed using Optical Microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and line-scan Energy Dispersive X-ray (EDX). SEM result shows there is a cross-sectional position offset from center in sample synthesized with Forming Gas OFF. This is due to difficulty of determining the position of cross-section in manual grinding/polishing process and high occurrence rate of golf-clubbed shape of oxidized Copper ball bond. TEM inspection reveals that the Copper ball bond on sample synthesized with Forming Gas OFF is having intermediate oxidation. Besides, the presence of IMC at the bonding interface of Cu/Al for both samples is seen. TEM study shows voids form at the bonding interface of Forming Gas ON sample belongs to unbonded area; while that in Forming Gas OFF sample is due to volume shrinkage of IMC growth. Line-scan EDX shows the phases present in the interfaces of as-bonded samples are Al{sub 4}Cu{sub 9} ({approx}3 nm) for sample with Forming Gas ON and mixed CuAl and CuAl{sub 2} ({approx}15 nm) for sample with Forming Gas OFF. Thicker IMC in sample with Forming Gas OFF is due to cross-section is positioned at high stress area that is close to edge of ball bond. Mechanical ball shear test shows that shear strength of sample with Forming Gas OFF is about 19% lower than that of sample with Forming Gas ON. Interface temperature is estimated at 437 Degree-Sign C for as-bonded sample with Forming Gas ON by using empirical parabolic law of volume diffusion. -- Highlights: Black-Right-Pointing-Pointer 3 nm Al{sub 4}Cu{sub 9} are found in sample prepared with Forming Gas ON. Black-Right-Pointing-Pointer 15 nm mixed CuAl + CuAl{sub 2} are found

  5. Yttrium aluminum garnet (YAG) obtained by rare-earth mixed oxide (RE{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.F.; Daguano, J.K.M.F.; Rodrigues Junior, D., E-mail: claudinei@demar.eel.usp.b [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Santos, C. [Centro Universitario de Volta Redonda (MEMAT/UNIFOA), RJ (Brazil); Suzuki, P.A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Silva, O.M.M. [Centro Tecnico Aeroespacial (CTA-IAE), Sao Jose dos Campos, SP (Brazil). Inst. de Atividades Espaciais. Div. de Materiais

    2010-07-01

    In this work, the substitution of commercial Y{sub 2}O{sub 3} by a rare earth mixed oxide, RE{sub 2}O{sub 3}, to form Yttrium aluminum Garnet-Y{sub 3}Al{sub 5}O{sub 12}, was investigated. Al{sub 2}O{sub 3}:Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}:RE{sub 2}O{sub 3} powder-mixtures, in a molar ratio of 60:40, were milled and subsequently cold uniaxially-pressed. Compacts were sintered at 1000, 1400 or 1600 deg C, for 120 minutes. RE{sub 2}O{sub 3} oxide was characterized by high-resolution synchrotron X-ray diffraction (HRXRD) and compared to Y{sub 2}O{sub 3}. X-ray diffraction pattern of the RE{sub 2}O{sub 3} indicates a true solid solution formation. Rietveld refinement of the sintered YAG and (RE)AG reveled a similar crystal structure to the YAGs obtained by the use of Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} or Al{sub 2}O{sub 3}-RE{sub 2}O{sub 3} respectively. Microstructural analysis of both, YAG or (RE)AG, revealed similar grain sizes of about 2.5 {mu}m besides mechanical properties, with hardness of 400HV and fracture toughness of 3.8MPa.m1/2. It could be, thus, demonstrated that pure Y{sub 2}O{sub 3} can be substituted by the rare-earth solid solution, RE{sub 2}O{sub 3}, in the formation YAGs, presenting similar microstructural and mechanical properties. (author)

  6. Influence of sodium silicate concentration on structural and tribological properties of microarc oxidation coatings on 2017A aluminum alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Aytekin, E-mail: apolat@nigde.edu.t [Department of Mechanical Engineering, Nigde University, Nigde 51100 (Turkey); Makaraci, Murat [Department of Mechanical Engineering, Kocaeli University, Kocaeli (Turkey); Usta, Metin [Department of Materials Science and Engineering, Gebze Institute of Technology, Kocaeli (Turkey)

    2010-08-20

    In this paper, thick and hard oxide coatings resistant to wear were produced on 2017A-T6 Al alloy by the microarc oxidation (MAO) technique in an alkali electrolyte consisting of different sodium silicate concentrations (0-8 g/l). The coatings were characterized by means of optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and surface profilometry. Microhardness, scratch adhesion and pin-on-disk sliding wear tests were also performed to evaluate the tribological properties of the coatings. The influence of sodium silicate concentration on the structural and tribological properties of the MAO coatings was discussed. Results reveal that increasing sodium silicate concentration from 0 to 8 g/l in the electrolyte caused an increase in the electrolyte conductivity (from 7.71 to 18.1 mS/cm) and a decrease in positive final voltage (from 627 to 590 V) in the MAO process. In response to the increase in sodium silicate concentration, the thickness, surface roughness (R{sub a}) and critical load (L{sub c}) corresponding to adhesive failure of the coatings were increased simultaneously from 74 to 144 {mu}m, and 4.4 to 6.58 {mu}m, and 127.76 to 198.54 N, respectively. At the same time, the phase structure and composition of the coatings also varied by the participation of silicate ions in the reactions and their incorporation into the coating structure. Moreover, it was observed that the coating formed in the low sodium silicate concentration (4 g/l) had higher surface hardness (2020 HV) and improved wear resistance than the one (1800 HV) formed in the high sodium silicate concentration (8 g/l). The coatings produced in three different electrolytic solutions provided an excellent wear resistance and a load carrying capacity compared to the uncoated aluminum alloy.

  7. Oxidation and corrosion behavior of titanium aluminum nitride coatings by arc ion plating

    Institute of Scientific and Technical Information of China (English)

    LI Ming-sheng; FENG Chang-jie; ZHANG Zhi-feng; WANG Fu-hui

    2006-01-01

    Composite metastable TiN and Ti1-xAlxN coatings with different Al content were deposited on 1Cr11Ni2W2MoV stainless steel for aero-engine compressor blades by arc ion plating. The results show that all coatings have a B1NaCl structure and the preferred orientation changes from (111) to (220) with increasing Al content; the lattice parameter of Ti1-xAlxN decreases with the increase of Al content. The oxidation-resistance of (Ti,Al)N coatings is significantly improved owing to the formation of Al-riched oxide on the surface of the coatings. The nitride coatings can significantly improve the corrosion-resistance of 1Cr11Ni2W2MoV stainless steel under the synergistic of water vapor and NaCl, and the corrosion-resistance becomes better when the Al content increases, because not only the quick formation of thin alumina layer prevents the further corrosion but also the formation of alumina seals the pinholes or defects in the coatings, which prevents the occurrence of localized nodules-like corrosion.

  8. High temperature oxidation behavior of gamma-nickel+gamma'-nickel aluminum alloys and coatings modified with platinum and reactive elements

    Science.gov (United States)

    Mu, Nan

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000°C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455°C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain beta-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used beta-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt+Hf-modified gamma-Ni+gamma'-Ni 3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase gamma-Ni and gamma'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al 2O3 formation by suppressing the NiO growth on both gamma-Ni and gamma'-Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures (˜970°C) in the very early stage of oxidation. It

  9. Kinetic of sintering of polyethilene glycol and lanthanum dopped aluminum oxide obtained by the sol-gel method

    Directory of Open Access Journals (Sweden)

    Novaković Tatjana B.

    2011-01-01

    Full Text Available Sintering and crystallization of low-density polyethylene glycol (PEG and lanthanum, La(III-doped Al2O3 aerogels prepared from aluminum isopropoxide were investigated. The sintering behavior of non-doped and doped aerogels was examined by following the change of specific surface area with isothermal heat-treatment. The specific surface area and crystalline phases of non-doped and PEG+La(III-doped aerogels were determined, and the effects of dopants on the sintering and crystallization of Al2O3 aerogels are discussed. Isothermal sintering experiments showed that the sintering mechanism of non-doped and PEG+La(III-doped Al2O3 aerogels is surface diffusion. The specific surface areas of alumina samples decrease rapidly during the initial period of sintering, and more slowly with prolonged sintering time. The change of the porous structure is correlated with the phase transformation of γ-Al2O3 during calcinations of Al2O3 aerogels. The surface area of non-doped Al2O3 aerogels came to about 20 m2g-1 with heat-treatment at 1100°C because of crystallization of α-Al2O3 after densification. In the case of heattreatment at 1200°C, the largest surface area was observed for PEG+La(III doped Al2O3 aerogels and the XRD pattern showed only low ordered θ-Al2O3. These indicate that the addition of PEG+La(III to boehmite sol prevents Al2O3 aerogels from sintering and crystallizing to the α-Al2O3 phase. Even after 20 h at 1000°C, PEG+La (III-doped alumina samples maintain a rather good specific surface area (108 m2 g-1 in comparison to the non-doped, containing mainly θ-Al2O3 and minor amounts of δ-Al2O3. Aluminum-oxides with these structural and textural properties are widely used as a coatings and catalyst supports in the field of various catalysis.

  10. Flux calibration of the AAO/UKST SuperCOSMOS Hα Survey

    Science.gov (United States)

    Frew, David J.; Bojičić, Ivan S.; Parker, Quentin A.; Pierce, Mark J.; Gunawardhana, M. L. P.; Reid, W. A.

    2014-05-01

    The AAO/UKST SuperCOSMOS Hα Survey (SHS) was, when completed in 2003, a powerful addition to extant wide-field surveys. The combination of areal coverage, spatial resolution and sensitivity in a narrow imaging band, still marks it out today as an excellent resource for the astronomical community. The 233 separate fields are available online in digital form, with each field covering 25 deg2. The SHS has been the motivation for equivalent surveys in the north, and new digital Hα surveys now beginning in the south such as VPHAS+. It has been the foundation of many important discovery projects with the Macquarie/AAO/Strasbourg Hα planetary nebula project being a particularly successful example. However, the full potential of the SHS has been hampered by lack of a clear route to acceptable flux calibration from the base photographic data. We have determined the calibration factors for 170 individual SHS fields, and present a direct pathway to the measurement of integrated Hα fluxes and surface brightnesses for resolved nebulae detected in the SHS. We also include a catalogue of integrated Hα fluxes for >100 planetary and other nebulae measured from the SHS, and use these data to show that fluxes, accurate to ±0.10-0.14 dex (˜25-35 per cent), can be obtained from these fields. For the remaining 63 fields, a mean calibration factor of 12.0 counts pixel-1 R-1 can be used, allowing the determination of reasonable integrated fluxes accurate to better than ±0.2 dex (˜50 per cent). We outline the procedures involved and the caveats that need to be appreciated in achieving such flux measurements. This paper forms a handy reference source that will significantly increase the scientific utility of the SHS.

  11. Adsorption of titanium, chromium, and copper atoms on thin aluminum and magnesium oxide film surfaces

    Science.gov (United States)

    Tvauri, I. V.; Turiev, A. M.; Tsidaeva, N. I.; Gazzaeva, M. E.; Vladimirov, G. G.; Magkoev, T. T.

    2012-04-01

    Methods of Auger electron spectroscopy (AES), spectroscopy of characteristic electron energy losses (SCEEL), slow electron diffraction (SED), and contact potential difference (CPD) in ultrahigh vacuum are used to investigate the adsorption-emission properties and stability of two-component film systems formed by putting of Ti, Cr, and Cu atoms on MgO-Mo(011) and Al2O3-Mo(011) surfaces. All atoms have the properties of electronegative adsorbates. Continuous adatom monolayers are formed on the Al2O3-Mo(011) system surface, and three-dimensional islands are formed on the MgO-Mo(011) surface. The properties of monoatomic films on the oxide layer surface are close to those observed for bulk materials. No radical changes of the system properties are detected with increasing dielectric layer thickness. The thermal stability of the newly formed structures decreases in the order Ti, Cr, Cu, Al2O3(MgO), and Mo(011).

  12. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2013-02-06

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature of the laser deposition process on LaAlO3 (100) substrates. The change in surface termination of the LaAlO3 substrate with temperature induces a change in AZO film orientation. The anisotropic nature of electrical conductivity and Seebeck coefficient of the AZO films showed a favored thermoelectric performance in c-axis oriented films. These films gave the highest power factor of 0.26 W m−1 K−1 at 740 K.

  13. Research progress of the characteristics of oxidation reaction for nano-aluminum powders%纳米铝粉氧化反应特性研究进展

    Institute of Scientific and Technical Information of China (English)

    李鑫; 赵凤起; 徐司雨; 姚二岗; 安亭; 李猛; 巨荣辉

    2014-01-01

    纳米铝粉具有高的表面活性,在不同氧化剂中表现出不同的热反应性能,有必要对纳米铝粉在氧化剂中氧化反应特性作深入研究。详细综述了纳米铝粉在空气中的氧化反应特性,主要内容包括纳米铝粉室温Caberra-Mott氧化失活机理,纳米铝粉动态氧化过程3个阶段,纳米铝粉由相变和内外压差引起壳层破裂的点火燃烧机理;分析并比较了纳米铝粉动态氧化与点火燃烧之间的区别;讨论了纳米铝粉在水中低温与高温下的氧化反应特性,纳米铝粉在其他氧化剂中的氧化反应特性;指出纳米铝粉在不同氧化剂中氧化反应特性的研究方向;分析认为该研究不仅为纳米铝粉活性保护提供依据,而且对纳米铝粉在推进剂及炸药中的应用研究具有理论指导意义。%Nano-aluminum powders possess a high surface activity and exhibit different thermal reaction properties in different oxidants,so it is necessary to further study the thermal performance of nano-aluminum powders in different oxidation agents. The characteristics of oxidation reaction for nano-aluminum powders in the air were summarized in details,and the main contents are as follows:the mechanism of Caberra-Mott oxidation at room temperature,three stages of dynamic oxidation reaction,the mechanism of ignition and combustion caused by shell rupture due to phase transition or inner and outer pressure difference. The distinction be-tween dynamic oxidation reaction and the mechanism of ignition and combustion was analyzed and compared. The characteristics of oxidation reaction for nano-aluminum powders in water at low and high temperature as well as in other oxidants were discussed.It is believed that the study for oxidation reaction not only provides a basis for the protection of nano-aluminum powders,but has theoreti-cal significance for the application of nano-aluminum powders in propellants and explosives.

  14. Interstitial Oxide Ion Distribution and Transport Mechanism in Aluminum-Doped Neodymium Silicate Apatite Electrolytes.

    Science.gov (United States)

    An, Tao; Baikie, Tom; Orera, Alodia; Piltz, Ross O; Meven, Martin; Slater, Peter R; Wei, Jun; Sanjuán, María L; White, T J

    2016-04-01

    Rare earth silicate apatites are one-dimensional channel structures that show potential as electrolytes for solid oxide fuel cells (SOFC) due to their high ionic conductivity at intermediate temperatures (500-700 °C). This advantageous property can be attributed to the presence of both interstitial oxygen and cation vacancies, that create diffusion paths which computational studies suggest are less tortuous and have lower activation energies for migration than in stoichiometric compounds. In this work, neutron diffraction of Nd(28+x)/3AlxSi6-xO26 (0 ≤ x ≤ 1.5) single crystals identified the locations of oxygen interstitials, and allowed the deduction of a dual-path conduction mechanism that is a natural extension of the single-path sinusoidal channel trajectory arrived at through computation. This discovery provides the most thorough understanding of the O(2-) transport mechanism along the channels to date, clarifies the mode of interchannel motion, and presents a complete picture of O(2-) percolation through apatite. Previously reported crystallographic and conductivity measurements are re-examined in the light of these new findings. PMID:27015162

  15. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    Science.gov (United States)

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  16. Electrode patterning and annealing processes of aluminum-doped zinc oxide thin films using a UV laser system

    Science.gov (United States)

    Hsiao, Wen-Tse; Tseng, Shih-Feng; Huang, Kuo-Cheng; Chiang, Donyau

    2013-01-01

    This study presents the hybrid processing (patterning and annealing) of aluminum-doped zinc oxide (AZO) films in a one-step process using a diode-pumped-solid-state (DPSS) ultraviolet (UV) laser system. The focused laser beam had a diameter of 30 μm and the positive defocused laser beam had a diameter of 1 mm. Both beams were adjusted using a UV laser-processing system. AZO films were deposited on Corning Eagle 2000® optical glass sheets with a thickness of 0.7 mm using a sputtering method. The deposited films were approximately 200 nm. The optoelectronic properties of machined (patterning and annealing) AZO films depend on the laser pulse frequency and galvanometer scanning speed. The surface morphology, roughness, optical transmittance, and resistivity of the films after the laser patterning and annealing processes were measured using a three-dimensional confocal laser scanning microscope, a field emission scanning electron microscope (FE-SEM), a spectrophotometer, and a four-point probe instrument, respectively. Experimental results indicate that the ablation depth increased as the pulse repetition frequency increased. The ablation depth also decreased as the galvanometric scanning speed increased. The transmittance spectra of the film changes slightly after laser annealing, and the average transmittance in the visible region is approximately 83%. All resistivity values of laser-patterned and annealed AZO films decreased significantly. The structural properties grain size was calculated firm the X-ray diffraction (XRD) spectra using the Scherrer equation that increased from 7.4 nm to 12 nm as the annealing scanning speed decreased from 800 mm/s to 400 mm/s. The root mean square (RMS) values of annealed AZO films treated with a laser scanning speed of 500 mm/s with a pulse repetition frequency of 40 kHz, 55 kHz, and 70 kHz were 1.1 nm, 1.2 nm, and 1.8 nm, respectively.

  17. Control Preparation of Nano γ Phase Aluminum Oxide by Explosive Temperature%爆温控制合成γ型纳米氧化铝

    Institute of Scientific and Technical Information of China (English)

    李瑞勇; 李晓杰; 闫鸿浩

    2011-01-01

    本文旨在通过改变混合炸药的爆温来控制爆轰合成的纳米氧化铝的晶型.根据研究方案,采用600 g硝酸铝粉末和400 g炸药黑索金粉末为原材料,通过搅拌把两者均匀混合配制出混合炸药.经过计算该粉状混合炸药的理论爆温约为945℃,该温度接近于低温稳定的7型氧化铝生成和存在的温度区间,所以该混合炸药发生爆轰反应时应该产生γ型纳米氧化铝.为了验证理论分析,将该混合炸药放在直径为3 m的专用爆炸罐里面进行了爆轰反应实验.利用X射线衍射仪(XRD)和透射电子显微镜(TEM)对收集到的爆轰产物进行了检测.检测结果表明爆轰产物确实是y型纳米氧化铝,氧化铝颗粒为标准的球形,颗粒尺寸约为20 nm.因此,可以通过理论计算改变混合炸药的爆温来控制纳米氧化铝的晶型.%The phase of nano aluminum oxide prepared by detonation synthesis was controlled by changing the explosive temperature of the mixed explosion. According to the research scheme, the mixed explosion was made through uniformly mixing 600 g aluminum nitrate powder with 400 g explosive hexogen.The theoretical explosive temperature of the mixed explosion was 945 ℃ by theoretical calculation, which was close to the temperature interval of formation and existence of γ phase aluminum oxide. Therefore,nano γphase aluminum oxide should be prepared through detonation of the mixed explosion. In order to prove the theoretical presumption, detonation experiment was conducted in a special spherical tank with 3 m diameter and the explosion product was characterized by transmission electron microscope (TEM) and X-ray diffraction (XRD). The results indicate that the product is nano γ phase aluminum oxide actually and the granule of aluminum oxide is spherical, with the particle dimension of about 20 nm. It is thus verified that the phase of aluminum oxide can be controlled by changing the explosive temperature of the mixed

  18. 铝合金微弧氧化技术研究概况%Research situation of micro-arc oxidation of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    石小超; 陈朝章; 徐晋勇; 高成; 王贵

    2012-01-01

    综述了铝合金微弧氧化技术的原理及陶瓷膜的特点.着重分析总结电流密度、电压与频率、占空比等电参量因素对陶瓷膜性能的影响,介绍铝合金微弧氧化中常用的电解液组成,简要描述微弧氧化陶瓷膜的硬度、耐磨、断裂、耐腐蚀等性能.%Treatment principle of aluminum alloy and the formation characteristics of the ceramic membrane by micro - arc oxidation (MAO) technique are reviewed. The effects of electrical parameters, such as current density, voltage and frequency, duty cycle on the performance of micro - arc oxidation ceramic coating are emphasized. Electrolyte composition of micro - arc oxidation on aluminum alloys is introduced. The hardness, wear resistance, fracture resistance, corrosion resistance and other properties of the micro-arc oxidation ceramic coating are briefly described.

  19. Fabrication of CoPd alloy nanowire arrays on an anodic aluminum oxide/Ti/Si substrate and their enhanced magnetic properties

    International Nuclear Information System (INIS)

    An anodic aluminum oxide/Ti/Si substrate was successfully synthesized by the anodization of an aluminum film on a Ti/Si substrate and then used as a template to grow 10 nm diameter CoPd alloy nanowires. X-ray diffraction and energy-dispersed X-ray patterns indicated that Co0.97Pd0.03 nanowire arrays with a preferential orientation of (0 0 2) were formed during electrodeposition. High coercivity (about 1700 Oe) and squareness (about 0.85) were obtained in the samples when the magnetic field was applied parallel to the axis of the nanowires; these values are much larger than those of pure Co nanowire arrays with the same diameters

  20. Aluminum Migration and Intrinsic Defect Interaction in Single-Crystal Zinc Oxide

    Science.gov (United States)

    Johansen, K. M.; Vines, L.; Bjørheim, T. S.; Schifano, R.; Svensson, B. G.

    2015-02-01

    Vacancy-mediated migration of Al in single-crystal zinc oxide (ZnO) is investigated using secondary-ion mass spectrometry (SIMS) combined with hybrid density-functional theory (DFT) calculations. A thin film of Al-doped ZnO is deposited by sputtering onto the single-crystal bulk material and heat treated at temperatures in the range of 900 °C - 1300 °C . The migration of Al is found to be Zn-vacancy mediated. In order to elucidate the physical processes involved, an alternative model based on reactive diffusion is developed. The model includes the time evolution of the concentration of Al atoms on the Zn site (AlZn ), Zn vacancies (vZn), and a complex between the two, where the influence of the charge state of vZn on its formation energy is incorporated through the free carrier concentration. The modeling results exhibit close agreement with the experimental data and the AlZnvZn complex is found to diffuse with an activation energy of 2.6 eV and a preexponential factor of 4 ×10-2 cm2 s-1 . The model is supported by the results from hybrid DFT calculations combined with thermodynamical modeling, which also suggest that a complex between AlZn and vZn is promoted in n -doped material. The charge state of this complex is effectively -1 , and it thus acts as a compensating acceptor, limiting full utilization of the shallow AlZn donor. Furthermore, the DFT calculations also predict a high formation energy for both substitutional Al on the O site (AlO ) and interstitial Al (Ali), and are therefore of minor importance for Al migration in ZnO. The close coupling between the hybrid DFT calculations and the developed diffusion model enable benchmarking of the accuracy of several parameters extracted from the DFT calculations. Furthermore, since the diffusion model hinges strongly on defect concentrations, it couples directly to results from measurements by other experimental techniques than those used in this paper and provides an opportunity for independent verification

  1. Metal Ion Imbalance-Related Oxidative Stress Is Involved in the Mechanisms of Liver Injury in a Rat Model of Chronic Aluminum Exposure.

    Science.gov (United States)

    Yang, Yang; Wang, Hong; Guo, Yuanxin; Lei, Wenjuan; Wang, Jianfeng; Hu, Xinyue; Yang, Junqing; He, Qin

    2016-09-01

    The objective of the study is to investigate the effects of chronic aluminum overload on rat liver function and its induction of pathological changes in metal ion levels and oxidative stress in hepatic tissues. Wistar rats were intragastrically administered aluminum gluconate (200 mg Al(3+)/Kg) once a day, 5 days a week, for 20 weeks. HE staining was used to visualize pathological changes in rat liver tissue. A biochemical method was adopted to detect ALT, AST, ALP, and GGT levels, as well as liver SOD activity and blood plasma MDA content. A plasma atomic emission spectrophotometer was used to detect Al, Mn, Fe, Zn, and Cu ion contents in liver tissue. Our results showed obvious vacuolar degeneration, granular degeneration, and spotty necrosis in chronic Al-overload rat hepatocytes. The levels of ALT, AST, ALP, and GGT were significantly increased. Liver SOD activity was significantly decreased, and MDA content was significantly increased. In Al-overload rat liver, Al, Mn, Fe, and Cu contents were significantly increased, and in Al-overload rat serum, Mn, Fe, Zn, and Cu contents were significantly decreased. However, the Al level in Al-overload rat serum was not significantly different from that in control rat serum. These results suggest that chronic aluminum overload causes obvious damage to rat liver and causes imbalances in Al, Mn, Fe, Zn, and Cu levels in rat liver and serum. Metal ion imbalance-related oxidative stress may be involved in the mechanism of chronic liver injury caused by aluminum overload. PMID:26811106

  2. Oxide film microstructure: the link between surface preparation processes and strength/durability of adhesively bonded aluminum. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsia, K. Jimmy; Pearlstein, Arne J.; Scheeline, Alexander; Shang, Jian Ku

    2000-11-30

    Strength and durability of adhesive bonding of aluminum alloys structures are intrinsically determined by the surface microstructures and interfacial failure micromechanisms. The current project presents a multidisciplinary approach to addressing critical issues controlling the strength and durability of adhesive bonds of aluminum alloys. Three main thrust areas have been pursued: surface treatment technology development to achieve desirable surface microstructures; relationship between surface structure and properties of adhesive bonds; and failure mechanisms of adhesively bonded components.

  3. DUPLEX Al2O3/DLC COATING ON 15SiCp/2024 ALUMINUM MATRIX COMPOSITE USING COMBINED MICROARC OXIDATION AND FILTERED CATHODIC VACUUM ARC DEPOSITION

    OpenAIRE

    WENBIN XUE; HUA TIAN; JIANCHENG DU; MING HUA; XU ZHANG; YONGLIANG LI

    2012-01-01

    Microarc oxidation (MAO) treatment produces a thick Al2O3 coating on the 15SiCp/2024 aluminum matrix composite. After pretreatment of Ti ion implantation, a thin diamond-like carbon film (DLC) was deposited on the top of polished Al2O3 coating by a pulsed filtered cathodic vacuum arc (FCVA) deposition system with a metal vapor vacuum arc (MEVVA) source. The morphology and tribological properties of the duplex Al2O3/DLC multiplayer coating were investigated by Raman spectroscopy, scanning elec...

  4. Dispersion fraction enhances cellular growth of carbon nanotube and aluminum oxide reinforced ultrahigh molecular weight polyethylene biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Anup Kumar; Balani, Kantesh, E-mail: kbalani@iitk.ac.in

    2015-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al{sub 2}O{sub 3}) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al{sub 2}O{sub 3} has shown to alter the wettability (from contact angle of ∼ 88° ± 2° to ∼ 118° ± 4°) and surface energy (from ∼ 23.20 to ∼ 17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT–Al{sub 2}O{sub 3} reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT–Al{sub 2}O{sub 3} reinforced UHMWPE biopolymer composites. - Highlights: • The cellular response of UHMWPE upon MWCNT and Al{sub 2}O{sub 3} reinforcement is highlighted. • Wettability decreases with Al{sub 2}O{sub 3} and

  5. High-temperature CO2 capture cycles of hydrated limestone prepared with aluminum (hydr)oxides derived from kaolin

    International Nuclear Information System (INIS)

    Highlights: • Hydrated limestone exhibited a higher reactivity and stability. • Microstructure of hydrated limestone was significantly improved. • Hydrated limestone still suffered less loss-incapacity. • Hydrated limestone sorbents with kaolin-based binders were prepared and characterized. • Sorbents prepared from hydrated limestone and Al(OH)3 binder are a promising sorbent. - Abstract: A simple and convenient process was used to improve the utilization of natural limestone and kaolin for calcium looping technology and environmental applications. The calcined natural limestone modified with the distilled water (denoted as Limestone-W), was systematically studied and compared with the other CaO sorbents (calcium acetate, calcium D-gluconate and calcined natural limestone). These CaO-based sorbents were tested for their CO2 capture behavior through 20 carbonation/calcination cycles in a thermo-gravimetric analyzer (TGA). Their morphology, pore structure and phase composition before and after carbonation/calcination cycles were determined by scanning electron microscopy, nitrogen adsorption, and X-ray diffraction. The first-cycle and multicycle sorption results revealed that the Limestone-W sorbent exhibited a relatively faster reaction rate and higher cyclic CO2 capture. The characterization data indicated that the Limestone-W was composed of a special calcium oxide structure with lower crystalline and higher porosity nanoparticles, which appeared to be the main reasons for its higher CO2 capture capability. However, the Limestone-W still suffered loss of reactivity, even though it was less pronounced than the other CaO sorbent. To avoid this unfavorable effect, a thermally stable inert material (aluminum hydroxide derived from kaolin) was incorporated into the Limestone-W structure. This new sorbent revealed higher stability because the formation of a stable framework of Ca12Al14O33 particles hindered densification and sintering of the CaO phase. It was

  6. Investigation of the weldability of iron-aluminum-chromium overlay coatings for corrosion protection in oxidizing/sulfidizing environments

    Science.gov (United States)

    Regina, Jonathan R.

    The current study investigated the effect of chromium additions on the hydrogen cracking susceptibility of Fe-Al weld overlay claddings containing chromium additions. It was found that the weldability of FeAlCr claddings was a function of both the aluminum and chromium concentrations of the weld coatings. Weld overlay compositions that were not susceptible to hydrogen cracking were identified and the underlying mechanism behind the hydrogen cracking phenomenon was investigated further. It was concluded that the cracking behavior of the FeAlCr welds depended strongly on the microstructure of the weld fusion zone. Although it was found that the cracking susceptibility was influenced by the presence of Fe-Al intermetallic phases (namely Fe3 Al and FeAl), the cracking behavior of FeAlCr weld overlay claddings also depended on the size and distribution of carbide and oxide particles present within the weld structure. These particles acted as hydrogen trapping sites, which are areas where free hydrogen segregates and can no longer contribute to the hydrogen embrittlement of the metal. It was determined that in practical applications of these FeAlCr weld overlay coatings, carbon should be present within these welds to reduce the amount of hydrogen available for hydrogen cracking. Based on the weldability results of the FeAlCr weld claddings, coating compositions that were able to be deposited crack-free were used for long-term corrosion testing in a simulated low NOx environment. These alloys were compared to a Ni-based superalloy (622), which is commonly utilized as boiler tube coatings in power plant furnaces for corrosion protection. It was found that the FeAlCr alloys demonstrated superior corrosion resistance when compared to the Ni-based superalloy. Due to the excellent long-term corrosion behavior of FeAlCr weld overlays that were immune to hydrogen cracking, it was concluded that select FeAlCr weld overlay compositions would make excellent corrosion resistant

  7. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dazheng; Zhang, Chunfu, E-mail: cfzhang@xidian.edu.cn; Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue, E-mail: yhao@xidian.edu.cn [State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, No. 2 South Taibai Road, Xi' an 710071 (China)

    2014-06-16

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C{sub 61} butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  8. NaCl盐膜对铝青铜高温氧化行为的影响%Effect of NaCl Film on Oxidation Behavior of Aluminum Bronze at High Temperature

    Institute of Scientific and Technical Information of China (English)

    李占鑫

    2009-01-01

    采用金相检验、X射线衍射、扫描电镜/能谱及热重分析法研究了涂有NaCl盐膜的铝青铜在700~900℃的氧化行为.结果表明,在NaCl盐膜的作用下,铝青铜中的铝较铜先腐蚀,所形成的氧化膜结构疏松,易开裂和剥落,从而加速铝的氧化过程.此外,还讨论了NaCl加速铝青铜氧化的机制.%The oxidation behavior of aluminum bronze coated with a NaCl film was studied by means of metallosco-py,XRD,SEM/EDS and thermogravimetry. The results show that because of the effect of NaCl film the aluminum will be eroded earlier than the copper in aluminum bronze and the oxide film produced will be loose and easy to crack and spall, with the oxidation of aluminum bronze accelerated. In addition, the mechanism for NaCl film to ac-celerate the oxidation of aluminum bronze was discussed, too.

  9. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel

    Directory of Open Access Journals (Sweden)

    Omid Ali Akbari

    2015-11-01

    Full Text Available This article aims to study the impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. To this aim, compulsory convection heat transfer of water–aluminum oxide nanofluid in a rib-roughened microchannel has been numerically studied. The results of this simulation for rib-roughened three-dimensional microchannel have been evaluated in contrast to the smooth (unribbed three-dimensional microchannel with identical geometrical and heat–fluid boundary conditions. Numerical simulation is performed for different nanoparticle volume fractions for Reynolds numbers of 10 and 100. Cold fluid entering the microchannel is heated in order to apply constant flux to external surface of the microchannel walls and then leaves it. Given the results, the fluid has a higher heat transfer with a hot wall in surfaces with ribs rather than in smooth ones. As Reynolds number, number of ribs, and nanoparticle volume fractions increase, more temperature increase happens in fluid in exit intersection of the microchannel. By investigating Nusselt number and friction factor, it is observed that increase in nanoparticle volume fractions causes nanofluid heat transfer properties to have a higher heat transfer and friction factor compared to the base fluid used in cooling due to an increase in viscosity.

  10. Multidimensional analysis of autonomous aerial observation systems (AAOS) for scientific, civil, and defense applications

    Science.gov (United States)

    Hutchinson, Mark A.; Hamill, Doris L.; Harrison, F. W.; Yetter, Jeffrey A.; Lawrence, Roland W.; Healy, Edward A.; Wright, Henry S.

    2004-12-01

    Better knowledge of the atmosphere, ocean and land are needed by a wide range of users spanning the scientific, civil and defense communities. Observations to provide this knowledge will require aerial systems with greater operational flexibility and lower life-cycle costs than are currently available. Persistent monitoring of severe storms, sampling and measurements of the Earth"s carbon cycle, wildfire monitoring/management, crop assessments, ozone and polar ice changes, and natural disaster response (communications and surveillance) are but a few applications where autonomous aerial observations can effectively augment existing measurement systems. User driven capabilities include high altitude, long range, long-loiter (days/weeks), smaller deployable sensor-ships for in-situ sampling, and sensors providing data with spectral bandwidth and high temporal and three-dimensional spatial resolution. Starting with user needs and considering all elements and activities required to acquire the needed observations leads to the definition of autonomous aerial observation systems (AAOS) that can significantly complement and extend the current Earth observation capability. In this approach, UAVs are viewed as only one, albeit important, element in a mission system and overall cost and performance for the user are the critical success factors. To better understand and meet the challenges of developing such AAOSs, a systems oriented multi-dimensional analysis has been performed that illuminates the enabling and high payoff investments that best address the needs of scientific, civil, and defense users of Earth observations. The analysis further identifies technology gaps and serves to illustrate how investments in a range of mission subsystems together can enable a new class of Earth observations.

  11. Evidências da formação de monocamada de óxido de alumínio sobre sílica, através de reações de enxerto Evidence of aluminum oxide monolayer formation on a silica gel surface using grafting reactions

    Directory of Open Access Journals (Sweden)

    Julia M. D. Cónsul

    2005-06-01

    Full Text Available Aluminum oxide was dispersed on a commercial silica gel surface, using successive grafting reactions. The reaction products were characterized by N2 adsorption-desorption isotherms, scanning electron microscopy and infrared spectroscopy. The progressive incorporation of aluminum, up to 5.5% (w/w, does not produce agglomeration of alumina, since changes in the original pore size distribution of the silica matrix were not observed. The aluminum oxide covers homogeneously the silica surface.

  12. Influence of pulsed mechanical activation of hematite-graphite-aluminum powder mixtures on the reduction of iron oxides

    Science.gov (United States)

    Bodrova, L. E.; Vatolin, N. A.; Pastukhov, E. A.; Petrova, S. A.; Popova, E. A.; Zakharov, R. G.

    2011-11-01

    To decrease the temperature of direct iron reduction by carbon and aluminum, short-term pulsed mechanical activation (PMA) of an Fe2O3 + Cgr + Al powder mixture is perfumed during sound-frequency shock loading by a flat activating plunger. The PMA efficiency for powders in comparable with mechanical activation in high-energy ball mills in a decrease in the activation time and retaining the chemical purity of a powder composition.

  13. Modeling and Predicting the Effect of Surface Oxidation on the Normal Spectral Emissivity of Aluminum 5052 at 800 K to 910 K

    Science.gov (United States)

    Shi, Deheng; Zou, Fenghui; Zhu, Zunlue; Sun, Jinfeng

    2016-01-01

    In this study, we tried to develop a model to predict the effect of surface oxidization on the normal spectral emissivity of aluminum 5052 at a temperature range of 800 to 910 K and wavelength of 1.5 \\upmu m. In experiments, specimens were heated in air for 6 h at certain temperatures. Two platinum-rhodium thermocouples were symmetrically welded onto the front surface of the specimens near the measuring area for accurate monitoring of the temperature at the specimen surface. The temperatures measured by the two thermocouples had an uncertainty of 1 K. The normal spectral emissivity values were measured over the 6-h heating period at temperatures from 800 K to 910 K in increments of 10 K. Strong oscillations in the normal spectral emissivity were observed at each temperature. These oscillations were determined to form by the interference between the radiation stemming from the oxide layer and radiation from the substrate. The present measurements were compared with previous experimental results, and the variation in the normal spectral emissivity at given temperatures was evaluated. The uncertainty of the normal spectral emissivity caused only by the surface oxidization was found to be approximately 12.1 % to 21.8 %, and the corresponding uncertainty in the temperature caused only by the surface oxidization was approximately 9.1 K to 15.2 K. The model can reproduce the normal spectral emissivity well, including the strong oscillations that occur during the initial heating period.

  14. Decontamination of discharged aluminum brass condenser tubes of a BWR. Evolving the chemical formulation for copper oxide dissolution

    International Nuclear Information System (INIS)

    Chemical formulations for copper oxide dissolution have been evaluated primarily for the minimum ionic load resulting in the spent formulation along with other desirable qualities. Peroxydisulfuric acid prepared freshly through ion exchange route has shown almost stoichiometric dissolution of the copper oxide as per the acidic oxidative action with efficient kinetics. Stability of the prepared formulation for its application and its effective oxidizing behaviour and aqueous cupric ion stabilizing by its redox product has been established experimentally. (author)

  15. Duplex Al2O3/DLC Coating on 15SiCp/2024 Aluminum Matrix Composite Using Combined Microarc Oxidation and Filtered Cathodic Vacuum Arc Deposition

    Science.gov (United States)

    Xue, Wenbin; Tian, Hua; Du, Jiancheng; Hua, Ming; Zhang, Xu; Li, Yongliang

    2012-08-01

    Microarc oxidation (MAO) treatment produces a thick Al2O3 coating on the 15SiCp/2024 aluminum matrix composite. After pretreatment of Ti ion implantation, a thin diamond-like carbon film (DLC) was deposited on the top of polished Al2O3 coating by a pulsed filtered cathodic vacuum arc (FCVA) deposition system with a metal vapor vacuum arc (MEVVA) source. The morphology and tribological properties of the duplex Al2O3/DLC multiplayer coating were investigated by Raman spectroscopy, scanning electron microscopy (SEM) and SRV ball-on-disk friction tester. It is found that the duplex Al2O3/DLC coating had good adhesion and a low friction coefficient of less than 0.07. As compared to a single Al2O3 or DLC coating, the duplex Al2O3/DLC coating on aluminum matrix composite exhibited a better wear resistance against ZrO2 ball under dry sliding, because the Al2O3 coating as an intermediate layer improved load support for the top DLC coating on 15SiCp/2024 composite substrate, meanwhile the top DLC coating displayed low friction coefficient.

  16. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor.

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2015-11-30

    A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10(-6) M is established.

  17. COPOLYMERIZATION OF CARBON DIOXIDE AND CYCLOHEXENE OXIDE CATALYZED BY ALUMINUM PORPHYRIN-QUATERNARY AMMONIUM SALT IN THE PRESENCE OF BULKY LEWIS ACID

    Institute of Scientific and Technical Information of China (English)

    Yu-sheng Qin; Xian-hong Wang; Xiao-jiang Zhao; Fo-song Wang

    2008-01-01

    Chloro(5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide (Et4NBr) in combinationwith bulky Lewis acid was used for the copolymerization of CO2 and cyclohexene oxide (CHO). Bulky Lewis acid havingsubstituents at the ortho positions of the phenolate ligands, like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate),significantly shortened the induction period and raised the catalytic activity, the corresponding turnover frequency reached44.9 h-1 in 9 h, which was 23.8% higher than that from (TPP)AICI/EtaNBr binary catalyst. The resulting polycarbonate hascarbonate linkage over 93% with number average molecular weight of (4.5-6.5)×103 and polydispersity index below 1.10.

  18. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor

    Directory of Open Access Journals (Sweden)

    Aschalew Kassu

    2015-11-01

    Full Text Available A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10−6 M is established.

  19. Effect of Al2O3 Micro-powder Additives on the Properties of Micro-arc Oxidation Coatings Formed on 6061 Aluminum Alloy

    Science.gov (United States)

    Wang, Ping; Wu, Ting; Xiao, You Tao; Pu, Jun; Guo, Xiao Yang; Huang, Jun; Xiang, Chun Lang

    2016-09-01

    Al2O3 micro-powder was suspended in the basis electrolyte to form micro-arc oxidation (MAO) coatings on 6061 aluminum alloy by MAO. During the stage of micro-arc oxidation, Al2O3 micro-powder with negative surface charge was melted by the micro-arc around the anode and incorporated into the MAO coatings. With the continuous addition of Al2O3 micro-powder, the oxidation voltages rose up firstly and then decreased. The surface and cross-sectional morphologies showed that the size of micropores decreased and the MAO coatings surface got loosened following the variation in Al2O3 micro-powder concentration. As a consequence of the changing coating structure, the corrosion resistance of the coatings decreased apparently. The micro-hardness of the coatings increased firstly and then decreased, opposite to the trend of the average friction coefficient. It revealed the minimum average friction coefficient of MAO coatings and maximum adhesion between the coatings and substrate when 2.0 g/L Al2O3 micro-powder was added into electrolyte. There were visible cracks and peelings on the coating surface merely at 4.0 g/L after thermal shock tests. The x-ray diffraction results indicated that the addition of Al2O3 micro-powder had less effect on the phase composition of MAO coatings.

  20. Effects of pH, surface finish and thermal treatment on the corrosion of AlFeNi aluminum alloy. Characterization of oxide layers

    Science.gov (United States)

    Nabhan, D.; Kapusta, B.; Billaud, P.; Colas, K.; Hamon, D.; Dacheux, N.

    2015-02-01

    The aluminum alloy AlFeNi used as fuel cladding for the Jules Horowitz Reactor (JHR) may undergo corrosion in the reactor environment. In order to qualify the corrosion behavior of the fuel elements of the JHR in accidental conditions, several specimens of AlFeNi have been corroded at 250 °C for different durations (9-34 days) in distilled water at various pH (4.9, 5.2 and 5.6) chosen to simulate that currently considered for the JHR. On all specimens, the only crystalline corrosion product formed is boehmite (AlOOH). The corrosion film is composed of three oxide layers which show through thickness chemical composition variations. The iron-nickel precipitates pre-existing in the metal matrix are present in the inner and intermediate oxide layers though oxidized. For long corrosion times, some of the iron and nickel particles are released in the water and some precipitation is observed at the surface of the oxide layer. The effect of surface finish (as received or polished) and thermal treatment (annealed and not annealed) on the oxide growth rate has also been investigated. For durations over 25 days, pH = 5.6 appears to be more favorable than pH = 5.2 and 4.9 in terms of oxide thickness and weight gain limitation. This effect of pH is however reduced on unpolished specimens. The effect of surface finish on the corrosion behavior as measured by optical microscopy appears to be strong, especially for pH = 4.9 where polished samples exhibited an accelerated evolution of the oxide thickness and of the mass gain. This could be due to the combined effect of a strong acid solution (pH = 4.9) and of the local microstructural changes formed at the interface through polishing. The effect of thermal treatment on the behavior of unpolished AlFeNi specimens during corrosion tests in the conditions investigated was found to be small. In this study, microstructural and chemical analyses were performed on the corroded specimens in order to get a better understanding of the

  1. Effects of pH, surface finish and thermal treatment on the corrosion of AlFeNi aluminum alloy. Characterization of oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Nabhan, D., E-mail: diana.nabhan@cea.fr [Département des matériaux pour le nucléaire, CEA Saclay, 91191 Gif sur Yvette (France); Kapusta, B.; Billaud, P.; Colas, K.; Hamon, D. [Département des matériaux pour le nucléaire, CEA Saclay, 91191 Gif sur Yvette (France); Dacheux, N. [ICSM, UMR 5257 CNRS/CEA/UM2/ENSCM, Site de Marcoule, Bât 426, BP 17171, 30207 Bagnols/Cèze (France)

    2015-02-15

    The aluminum alloy AlFeNi used as fuel cladding for the Jules Horowitz Reactor (JHR) may undergo corrosion in the reactor environment. In order to qualify the corrosion behavior of the fuel elements of the JHR in accidental conditions, several specimens of AlFeNi have been corroded at 250 °C for different durations (9–34 days) in distilled water at various pH (4.9, 5.2 and 5.6) chosen to simulate that currently considered for the JHR. On all specimens, the only crystalline corrosion product formed is boehmite (AlOOH). The corrosion film is composed of three oxide layers which show through thickness chemical composition variations. The iron–nickel precipitates pre-existing in the metal matrix are present in the inner and intermediate oxide layers though oxidized. For long corrosion times, some of the iron and nickel particles are released in the water and some precipitation is observed at the surface of the oxide layer. The effect of surface finish (as received or polished) and thermal treatment (annealed and not annealed) on the oxide growth rate has also been investigated. For durations over 25 days, pH = 5.6 appears to be more favorable than pH = 5.2 and 4.9 in terms of oxide thickness and weight gain limitation. This effect of pH is however reduced on unpolished specimens. The effect of surface finish on the corrosion behavior as measured by optical microscopy appears to be strong, especially for pH = 4.9 where polished samples exhibited an accelerated evolution of the oxide thickness and of the mass gain. This could be due to the combined effect of a strong acid solution (pH = 4.9) and of the local microstructural changes formed at the interface through polishing. The effect of thermal treatment on the behavior of unpolished AlFeNi specimens during corrosion tests in the conditions investigated was found to be small. In this study, microstructural and chemical analyses were performed on the corroded specimens in order to get a better understanding of the

  2. Design and Operation of Multi-mode AAO/ABF Process at Fuyong Sewage Treatment Plant in Shenzhen%深圳福永污水厂多模式AAO/ABF工艺设计与运行

    Institute of Scientific and Technical Information of China (English)

    鄢卫东

    2013-01-01

    The recent treatment capacity of Fuyong Sewage Treatment Plant is 12. 5 × 10 m /d, the secondary treatment uses multi-mode AAO process, and the advanced treatment uses the automatic backwash fdter ( ABF). The effluent quality meets the first class A criteria specified in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant ( GB 18918 - 2002). The process flow, design parameters, technical characteristics and running effect of the project were introduced. sewage treatment plant; AAO; nitrogen and phosphorus removal; automatic%深圳福永污水处理厂近期处理规模为12.5×104 m3/d,二级处理采用了多模式AAO工艺,深度处理采用自动反冲洗滤池(ABF),出水水质满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级A标准.详细介绍了该工程工艺流程及设计参数、技术特点和运行效果.

  3. Role of melt behavior in modifying oxidation distribution using an interface incorporated model in selective laser melting of aluminum-based material

    Science.gov (United States)

    Gu, Dongdong; Dai, Donghua

    2016-08-01

    A transient three dimensional model for describing the molten pool dynamics and the response of oxidation film evolution in the selective laser melting of aluminum-based material is proposed. The physical difference in both sides of the scan track, powder-solid transformation and temperature dependent physical properties are taken into account. It shows that the heat energy tends to accumulate in the powder material rather than in the as-fabricated part, leading to the formation of the asymmetrical patterns of the temperature contour and the attendant larger dimensions of the molten pool in the powder phase. As a higher volumetric energy density is applied (≥1300 J/mm3), a severe evaporation is produced with the upward direction of velocity vector in the irradiated powder region while a restricted operating temperature is obtained in the as-fabricated part. The velocity vector continuously changes from upward direction to the downward one as the scan speed increases from 100 mm/s to 300 mm/s, promoting the generation of the debris of the oxidation films and the resultant homogeneous distribution state in the matrix. For the applied hatch spacing of 50 μm, a restricted remelting phenomenon of the as-fabricated part is produced with the upward direction of the convection flow, significantly reducing the turbulence of the thermal-capillary convection on the breaking of the oxidation films, and therefore, the connected oxidation films through the neighboring layers are typically formed. The morphology and distribution of the oxidation are experimentally acquired, which are in a good agreement with the results predicted by simulation.

  4. Microstructural and mechanical properties of nanometric magnesium oxide particulate-reinforced aluminum matrix composites produced by powder metallurgy method

    International Nuclear Information System (INIS)

    In this research, aluminum alloy (A356.1) matrix composites reinforced with 1.5, 2.5 and 5 Vol.% nanoscale MgO particles were fabricated via powder metallurgy method. Pure atomized aluminum powder with an average particle size of 1μm and MgO particulate with an average particle size between 60 to 80 nm were used. The specimens were pressed by Cold Isostatic Press machine (CIP), and were subsequently sintered at various sintering temperatures, viz. 575, 600 and 625 .deg. C. Optimum amount of reinforcement and sintering temperature were determined by evaluating the density, microstructure and mechanical properties of composites. The composites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Hardness and compression tests were carried out in order to identify mechanical properties. Reinforcing the Al matrix alloy with MgO particles improved the hardness and compressive strength of the alloy to a maximum value of 44 BHN and 288 MPa, respectively. The most improved compressive strength was obtained with the specimen including 2.5% of MgO sintered at 625 .deg. C. According to the experiments, a sintering temperature of 625 .deg. C showed better results than other temperatures. A good distribution of the dispersed MgO particulates in the matrix alloy was achieved

  5. Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; HAN Jing; YU Shengxue

    2006-01-01

    In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied.The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings.Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface.There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase.And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.

  6. 微波消解-火焰原子吸收光谱法测定氧化铝中的氧化钠%Determination of Sodium Oxide in Aluminum Oxide by Microwave Digestion-flame Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    薛心禄

    2012-01-01

    氧化铝中氧化钠含量的测定,一般采用高温熔结,用水浸出钠盐后,用原予吸收火焰光度法测定,该方法的测定周期比较长,而且高温熔结时对铂金皿的损耗比较大。文章提出了试样用磷酸和硫酸混合溶液,在高压微波消解器中进行处理,将样品在较短的时间内消解,并在试液中加入一定量的氯化铯,消除钠的电离干扰,采用原子吸收光谱法直接测定,测试结果与标准样品推荐值比较,结果令人满意。%The sodium oxide content in aluminum oxide is usually determined by atomic absorption spectrophotometry with high temperature melting and leaching, which is time consuming and damage platinum bowl. The paper proposed forward to determine with sample of mixed phosphoric acid and sulfuric acid solution to process in the high pressure microwave digestion device. The samples were digested in a relatively short time, and added a certain amount of cesium chloride in the test solution. Used for eliminate ionization interference of sodium to directly determine sodium oxide in aluminum oxide by Atomic Absorption Spectrophotometer. Under the comparison of test results and recommended values of standard samples, it was satisfactory.

  7. Research on Preparation and Catalytic Performance of Zinc Oxide Powder Doped with Aluminum%掺铝氧化锌粉末的制备及其催化性能研究

    Institute of Scientific and Technical Information of China (English)

    许晨晨; 姚悦; 秦宗宏

    2015-01-01

    Zinc oxide powder doped with aluminum was prepared by the sol-gel method. Zinc oxide samples doped with different proportion aluminum were prepared through adding different amount of aluminum salt. XRD was used to test whether aluminum was doped in lattices of Zinc oxide powders. SEM was used to measure ap-pearances of zinc oxide powders doped with aluminum and reflects gatherings and distribution of particles. The laser particle analyser was used to measure sizes of particles. Zinc oxide samples degrade methyl red and bromo-cresol green by light. The best doped ratio of Zinc oxide was determined by observing degradation efficiencies of methyl red and bromocresol green. Result shows aluminum is doped in crystals. Degradation ratios of methyl red and bromocresol green are the highest efficiency ,when the mole ratio of mixed aluminum is 5%,calcination temperature is 500 ℃,and calcination time is 3 h.%采用溶胶凝胶法制备掺铝氧化锌粉末,通过控制铝盐的添加量来制备不同掺杂比例的掺铝氧化锌粉末,使用XRD来测试铝是否掺杂在氧化锌的晶格中,利用SEM来反映掺铝氧化锌粉末的外观以及颗粒分布聚集情况,用激光粒度分布仪来测其颗粒大小。并用所制备的氧化锌粉末样品对甲基红和溴甲酚绿进行光催化,使其降解,通过观察降解的效果,选择最佳的掺杂比例。结果表明,铝元素是掺杂在晶体中,且掺铝摩尔比为5%,煅烧温度为500℃,煅烧时间为3 h,其降解甲基红、溴甲酚绿效率最高。

  8. Aluminum Hydroxide

    Science.gov (United States)

    ... penicillamine (Cuprimine, Depen), prednisone (Deltasone, Orasone), products containing iron, tetracycline (Sumycin, Tetracap, and others), ticlopidine (Ticlid), and vitamins.be aware that aluminum hydroxide may interfere with other medicines, making them less ...

  9. Effects of electrical discharge surface modification of superalloy Haynes 230 with aluminum and molybdenum on oxidation behavior

    International Nuclear Information System (INIS)

    The effects of the electrical discharge alloying (EDA) process on improving the high temperature oxidation resistance of the Ni-based superalloy Haynes 230 have been investigated. The 85 at.% Al and 15 at.% Mo composite electrode provided the surface alloying materials. An Al-rich layer is produced on the surface of the EDA specimen alloyed with positive electrode polarity, whereas, many discontinuous piled layers are attached to the surface of the EDA superalloy when negative electrode polarity is selected. The oxidation resistance of the specimen alloyed with positive electrode polarity is better than that of the unalloyed superalloy, and the effective temperature of oxidation resistance of the alloyed layer can be achieved to 1100 oC. Conversely, the oxidation resistance of the other EDA specimen alloyed with negative electrode polarity is even worse than that of the unalloyed superalloy

  10. Predictive model for Pb(II) adsorption on soil minerals (oxides and low-crystalline aluminum silicate) consistent with spectroscopic evidence

    Science.gov (United States)

    Usiyama, Tomoki; Fukushi, Keisuke

    2016-10-01

    Mobility of Pb(II) in surface condition is governed by adsorption processes on soil minerals such as iron oxides and low-crystalline aluminum silicates. The adsorption effectiveness and the surface complex structures of Pb(II) vary sensitively with solution conditions such as pH, ionic strength, Pb(II) loading, and electrolyte anion type. This study was undertaken to construct a quantitative model for Pb(II) on soil minerals. It can predict the adsorption effectiveness and surface complex structures under any solution conditions using the extended triple layer model (ETLM). The Pb(II) adsorption data for goethite, hydrous ferric oxide (HFO), quartz, and low-crystalline aluminum silicate (LCAS) were analyzed with ETLM to retrieve the surface complexation reactions and these equilibrium constants. The adsorption data on goethite, HFO and quartz were referred from reports of earlier studies. Those data for LCAS were measured under a wide range of pH, ionic strength and Pb(II) loadings in NaNO3 and NaCl solutions. All adsorption data can be reasonably regressed using ETLM with the assumptions of inner sphere bidentate complexation and inner sphere monodentate ternary complexation with electrolyte anions, which are consistent with previously reported spectroscopic evidence. Predictions of surface speciation under widely various solution conditions using ETLM revealed that the inner sphere bidentate complex is the predominant species at neutral to high pH conditions. The inner sphere monodentate ternary complex becomes important at low pH, high surface Pb(II) coverage, and high electrolyte concentrations, of which the behavior is consistent with the spectroscopic observation. Comparisons of the obtained adsorption constants on goethite, HFO and quartz exhibited good linear relations between the reciprocals of dielectric constants of solids and adsorption constants. Those linear relations support predictions of the adsorption constants of all oxides based on Born

  11. Corrosion barriers for silver-based telescope mirrors: comparative study of plasma-enhanced atomic layer deposition and reactive evaporation of aluminum oxide

    Science.gov (United States)

    Fryauf, David M.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.

    2015-10-01

    Astronomical telescopes continue to demand high-endurance high-reflectivity silver (Ag) mirrors that can withstand years of exposure in Earth-based observatory environments. We present promising results of improved Ag mirror robustness using plasma-enhanced atomic layer deposition (PEALD) of aluminum oxide (AlOx) as a top barrier layer. Transparent AlOx is suitable for many optical applications; therefore, it has been the initial material of choice for this study. Two coating recipes developed with electron beam ion-assisted deposition (e-beam IAD) of materials including yttrium fluoride, titanium nitride, oxides of yttrium, tantalum, and silicon are used to provide variations in basic Ag mirror structures to compare the endurance of reactive e-beam IAD barriers with PEALD barriers. Samples undergo high temperature/high humidity environmental testing in a controlled environment of 80% humidity at 80°C for 10 days. Environmental testing shows visible results suggesting that the PEALD AlOx barrier offers robust protection against chemical corrosion and moisture permeation. Ag mirror structures were further characterized by reflectivity/absorption before and after deposition of AlOx barriers.

  12. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    Science.gov (United States)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  13. Ultra-trace determination of arsenic species in environmental waters, food and biological samples using a modified aluminum oxide nanoparticle sorbent and AAS detection after multivariate optimization

    International Nuclear Information System (INIS)

    We describe a simple and efficient method for solid phase extraction and speciation of trace quantities of arsenic. It is based on the use of functionalized aluminum oxide nanoparticles and does not require any oxidation or reduction steps. The experimental parameters affecting extraction and quantitation were optimized using fractional factorial design methods. Adsorbed arsenic was eluted from the sorbent with 1 M hydrochloric acid and determined by graphite furnace atomic absorption spectrometry. Preconcentration factors up to 750 were achieved depending on the sample volume. Studies on potential interferences by various anions and cations showed the method to be highly selective. Under optimum conditions, the calibration plots are linear in the 5.0 to 280 ng L−1 and 8.0 to 260 ng L−1 concentration ranges for As(III) and total arsenic, respectively. The detection limits (calculated for S/N ratios of 3) are 1.81 and 1.97 ng L−1 for As(III) and total arsenic, respectively. The method was successfully applied to the determination and speciation of arsenic in (spiked) environmental, food and biological samples and gave good recoveries. The method was validated using a certified geological reference material. (author)

  14. Influence of growth temperature on electrical, optical, and plasmonic properties of aluminum:zinc oxide films grown by radio frequency magnetron sputtering

    Science.gov (United States)

    Dondapati, Hareesh; Santiago, Kevin; Pradhan, A. K.

    2013-10-01

    We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (Ts). The films were found to be crystalline with the electrical resistivity close to 1.1 × 10-3 Ω cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at Ts of 400 °C, however, a slight decrease in the bandgap was noticed above 400 °C, which can be explained by Burstein-Moss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at ˜110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels.

  15. Effect of chronic accumulation of aluminum on renal function, cortical renal oxidative stress and cortical renal organic anion transport in rats.

    Science.gov (United States)

    Mahieu, Stella T; Gionotti, Marisa; Millen, Néstor; Elías, María Mónica

    2003-11-01

    The aim of the present work was to study the nephrotoxicity of aluminum lactate administered for 3 months (0.57 mg/100 g bodyweight aluminum, i.p., three times per week) to male Wistar rats. Renal function was studied after 6 weeks of treatment (urine was obtained from rats in metabolic cages) and at the end of the treatment using clearance techniques. Another group of rats was used as kidneys donors at the end of treatment. The renal cortex was separated and homogenized to determine glutathione (GSH) level, glutathione S-transferase (GST) activity and lipid peroxidation (LPO) level. Renal cortex slices were also used to study the p-aminohippuric acid (PAH) accumulation during steady-state conditions and the kinetics of uptake process. Clearance results, at the end of the treatment, indicated that renal functions in treated-rats were not different from those measured in control rats, although the renal concentration parameters differ when they were measured in treated rats after 24 h of food and water deprivation. Balances of water and sodium were also modified at both 1.5 and 3 months of treatment. The activity of alkaline phosphatase (AP) relative to inulin excreted in urine was significantly impaired: controls 2.2+/-0.6 IUI/mg, Al-treated 5.1+/-0.5 IU/mg, Prats. Renal accumulation of PAH, estimated as slice-to-medium ratio, decreased significantly in the Al-treated rats: control rats 3.06+/-0.02 ( n=12), Al-treated rats 2.26+/-0.04 ( n=12), Prats, while the apparent affinity remained unchanged. All these results indicate that aluminum accumulation in renal tissue affects cellular metabolism, promotes oxidative stress and induces alterations in renal tubular PAH transport, together with an impairment in sodium and water balance only detected under conditions of water deprivation, without other evident changes in glomerular filtration rate or other global functions measured by clearance techniques at least at this time of chronic toxicity.

  16. Decomposition kinetics of AgO cathode material for silver oxide/aluminum battery%铝氧化银电池正极材料AgO的分解动力学研究

    Institute of Scientific and Technical Information of China (English)

    吕霖娜; 林沛; 韩雪荣

    2011-01-01

    The instability of silver (Ⅱ). Oxide electrodes used in silver oxide/aluminum reserve batteries is the well-known cause of capacity loss and the delayed activation in reserve batteries after stored in the dry and inactivated state for the extended periods of time. The decomposition kinetics of the thermodynamically unstable AgO component of silver oxide cathodes used in silver/aluminum reverse batteries was determined by a rapid and accelerated-aging thermogravimetry (TG) technique. The calculated decomposition rates of AgO could be used to predict the storage life time of primary, and reserve silver oxide/aluminum reserve batteries.%氧化银的不稳定性是导致铝氧化银贮备电池在于态、未激活的状态下长期储存容量减少、激活时间延长的主要原因.通过加速老化实验测得电化学方法制备的氧化银的分解动力学参数,并通过建立模型计算氧化银的分解速率,以此来预测铝氧化银贮备电池中氧化银电极的储存寿命.

  17. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    Energy Technology Data Exchange (ETDEWEB)

    Melo, E. G., E-mail: emerdemelo@usp.br; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I. [Electronic Systems Engineering Department, University of São Paulo, CEP 05508-010 São Paulo, SP (Brazil); Carvalho, D. O. [UNESP - São Paulo State University, CEP 13874-149 São João da Boa Vista, SP (Brazil); Ferlauto, A. S. [Department of Physics, Federal University of Minas Gerais, CEP 31270-901 Belo Horizonte, MG (Brazil)

    2016-01-14

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials. Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.

  18. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    International Nuclear Information System (INIS)

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials. Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions

  19. Luminescence of the B{sup 2}{Sigma}{sup +}-X{sup 2}{Sigma}{sup +} band system of AlO during plasma electrolytic oxidation of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinovic, S., E-mail: sstevan@ff.bg.ac.rs [Faculty of Physics, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Peric, M. [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Petkovic, M. [Faculty of Physics, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Vasilic, R. [Faculty of Environmental Governance and Corporate Responsibility, Educons University, Vojvode Putnika bb, Sremska Kamenica (Serbia); Kasalica, B.; Belca, I. [Faculty of Physics, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Radic-Peric, J. [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2011-11-30

    Highlights: > Plasma electrolytic oxidation (PEO) of aluminum in citric acid. > Luminescence of the B{sup 2}{Sigma}{sup +}-X{sup 2}{Sigma}{sup +} band system of AlO during PEO. > The measured intensity distributions are employed to estimate the mean plasma temperature. > The composition of plasma containing aluminum and oxygen is calculated. - Abstract: Two broad luminescence peaks with clearly pronounced structure, extending from roughly 18,200 to 18,800 cm{sup -1} and from 19,000 to 19,700 cm{sup -1} with the maxima at approximately 18,500 and 19,500 cm{sup -1}, respectively, are obtained during plasma electrolytic oxidation of aluminum. They are assigned to the v'-v'' = -1 and -2 band sequences of the B{sup 2}{Sigma}{sup +}-X{sup 2}{Sigma}{sup +} emission transition of AlO. The measured intensity distributions are employed to estimate the population of vibrational levels of the upper electronic state, and consequently the mean plasma temperature. The composition of plasma containing aluminum and oxygen under assumption of thermodynamic equilibrium is calculated in the temperature up to 11,000 K in order to explain the appearance of the observed spectral features.

  20. Synthesis and characterization of aluminum and Al/REE pillared clays and supported palladium catalysts for benzene oxidation

    Institute of Scientific and Technical Information of China (English)

    ZUO Shufeng; ZHOU Renxian; QI Chenze

    2011-01-01

    Volatile organic compounds (VOCs) are considered as a major pollutant in indoor and outdoor air. More stringent environmental regulations have been implemented in order to reduce the VOC emissions. One of the techniques available for destructive removal of VOCs is catalytic oxidation. In the present work, Al/Rare Earths (REE: Y, Ce, La, Pr and Nd) pillared clays (PILCs) were used to support 0.2 wt.% of palladium for the complete oxidation of low concentration of benzene. The supports and catalysts were characterized by XRD, N2 adsorption/desorption, FTIR spectroscopy, HRTEM and H2-TPR techniques. The results indicated that after Al and Al/REE pillaring, the basal spacing, SBET, Amic and Vmic of Al and AlREE-PILC had a considerable increase compared with those of Na-mmt. Activity tests of deep oxidation of benzene showed that the catalytic activity of Pd catalysts supported on Al and AlREE-PILC were much higher than that on initial clays,which was due to the fact that optimized structure of PILCs, such as large basal spacing, high SBET and porosity, improved Pd dispersion and increased the active sites of Pd. Especially for Pd/AlCe-PILC, the temperature of complete oxidation was about 280 C, exhibiting the highest catalytic activity.

  1. 铝合金阳极氧化无镍封孔工艺研究%The study of Aluminum alloy anodic oxidation and nickel hole sealing process

    Institute of Scientific and Technical Information of China (English)

    刘岩; 刘桂宏; 朱鸿昌; 张万龙; 高敏亮; 王亮; 王梅丰

    2015-01-01

    铝阳极氧化膜在不同封孔溶液中封闭后,其使用寿命和耐蚀性会各不相同。采用了磷铬酸失重法、电化学极化曲线法、交流阻抗法研究了铝合金阳极氧化膜在氟锆酸钾、HX-588封闭剂、钼酸钠、亚硝酸钠和纯水的高温水溶液封闭后的耐蚀性,比较其间的差异,并找出其变化规律,反映出五种溶液的封闭效果。数据表明:封闭效果优劣排序依次为HX-588封闭剂、氟锆酸钾、钼酸钠、亚硝酸钠、纯水。说明氟锆酸钾可以作为一种绿色无镍封孔剂进行工业生产。%The service life and corrosion resistance of sealed Aluminum anodic oxide film in different hole sealing solution will be different. The corrosion resistance of the sealed Aluminum oxide film in Zirconium fluoride acid potassium,HX-588 sealing agent,sodium molybdate,sodium nitrite and pure water of high temperature solution were studied by phosphorus-chromium acid weight-loss method and electrochemical polarization-curve method,electrochemical impedance spectros-copy,compare their differences and find out its change rule,reflects the sealing effect of 5 kinds of solution. The statistic shows that the sequence of sealing effect from excellent is HX-588 sealants,zirconium fluoride acid potassium,sodium mo-lybdate,sodium nitrite,pure water. That zirconium fluoride potassium can serve as a kind of green and nickel hole sealing a-gent for industrial production.

  2. Properties of alumina coating formed by microarc oxidation technique on 6061 aluminum alloy; Eigenschaften von mittels Microarc-Oxidations-Verfahren erzeugten Aluminiumbeschichtungen auf der Aluminiumlegierung 6061

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Aytekin; Usta, Metin [Gebze Institute of Technology, Kocaeli (Turkey). Dept. of Materials Science and Engineering; Makaraci, Murat [Kocaeli Univ. (Turkey). Dept. of Mechanical Engineering; Tas, Zakir [Bozok Univ., Yozgat (Turkey); Ata, Ali

    2008-12-15

    In this study, thick and hard alumina coatings were produced on 6061-T6 Al alloy substrates for different oxidation times and current densities by using of microarc oxidation (MAO) technique in an alkali-silicate electrolytic solution. The influence of oxidation time and current density on the kinetics, phase composition, hardness, surface roughness and structure of the coating were investigated. It is found that the kinetics of coating mainly depends on applied current density and oxidation time. The XRD results revealed that the coatings are composed of mainly {alpha}-Al{sub 2}O{sub 3}, {gamma}-Al{sub 2}O{sub 3} and mullite phase. The relative ratio of harder and denser {alpha}-Al{sub 2}O{sub 3} phase increases with increasing current density and oxidation time. For the same coating time, the position of maximum hardness of coatings moves away from the substrate-coating interface to the coating surface with increasing current density. The surface roughness of coating is a function of coating thickness and increases with increasing deposition time and current density. The surface micro hardness of Al 6061-T6 alloy substrate was increased up to 2200 HV hardness after the coating. (orig.)

  3. Influence of composition and processing parameters on the properties of solution-processed aluminum phosphate oxide (AlPO) thin films

    Science.gov (United States)

    Norelli, Kevin M.; Plassmeyer, Paul N.; Woods, Keenan N.; Glassy, Benjamin A.; Knutson, Christopher C.; Beekman, Matt; Page, Catherine J.

    2016-05-01

    The effects of precursor solution concentration, composition, and spin-processing parameters on the thickness and electrical properties of ultra-smooth aluminum oxide phosphate (Al2O3-3x(PO4)2x or "AlPO") thin films prepared using aqueous solutions are reported. Compositions were verified by electron probe micro-analysis and range from Al2O1.5(PO4) to AlPO4 (x = P:Al from 0.5 to 1.0). Film thicknesses were determined using X-ray reflectivity measurements and were found to depend systematically on solution concentration, P:Al ratio, and spin-speed. Metal-insulator-semiconductor devices were fabricated to determine electrical properties as a function of composition. As the P:Al ratio increased from 0.5 to 1.0, the dielectric constant decreased from 6.0 to 4.6, leakage currents increased from 0.45 to 65 nA cm-2 at 1 MV cm-1 and dielectric breakdown (defined as leakage currents >10 μA cm-2) decreased from 9.74 to 2.84 MV cm-1. These results establish composition, concentration, and spin-speed for the production of AlPO films with targeted thicknesses and electrical properties.

  4. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala, Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2010-02-15

    Aluminum-doped zinc oxide films were deposited at 100 C on polyethylene terephthalate by radio-frequency magnetron sputtering. The sputtering parameters such as RF power and Argon working pressure were varied from 25 to 125 W and from 1.1 to 0.2 Pa, respectively. The structural properties of as-deposited films were analysed by X-ray diffraction, showing that all the deposited films were polycrystalline, with hexagonal structure and a strong preferred c-axis orientation (0 0 2). Full width at half maximum and grain sizes were around 0.27 and ranged from 24 to 32 nm, respectively. The strain state of the samples was also estimated from X-ray diffraction measurements, obtaining compressive stresses from 0.29 to 0.05 GPa. Resistivity as low as 1.1 x 10{sup -3} {omega} cm was achieved for the film deposited at 75 W and 0.2 Pa, sample that showed a low strain state of -0.06 GPa. High optical transmittance ({proportional_to}80%) was exhibited when films were deposited at RF powers below 100 W. Band gap energies ranged from 3.36 to 3.39 eV and a refractive index of 1.80{+-}0.05, constant in the visible region, was also obtained. (author)

  5. Effects of target angle on the properties of aluminum doped zinc oxide films prepared by DC magnetron sputtering for thin film solar cell applications.

    Science.gov (United States)

    Park, Hyeongsik; Iftiquar, S M; Thuy, Trinh Than; Jang, Juyeon; Ahn, Shihyun; Kim, Sunbo; Lee, Jaehyeong; Jung, Junhee; Shin, Chonghoon; Kim, Minbum; Yi, Junsin

    2014-10-01

    An aluminum doped zinc oxide (AZO) films for front contacts of thin film solar cells, in this work, were prepared by DC magnetron sputtering with different target angles. Effects of target angles on the structural and electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. The surface became more irregular with increasing the target angle due to larger grains. The self-surface textured morphology, which is a favorable property as front layer of solar cell, exhibited at target angle of 72.5 degrees. We obtained the films with various opto-electronic properties by controlling target angle from 32.5 degrees to 72.5 degrees. The spectral haze increased substantially with the target angle, whereas the electrical resistivity was increased. The conversion efficiency of amorphous silicon solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density and fill factor, compared to cell with relatively flat AZO films. PMID:25942853

  6. 人工合成铁、铝矿对As(V)吸附的研究%Study on arsenate adsorption by synthetic iron and aluminum oxides/hydroxides

    Institute of Scientific and Technical Information of China (English)

    吴萍萍; 曾希柏

    2011-01-01

    Batch experiments were used to investigate arsenate adsorption by synthetic iron and aluminum oxides/hydroxides.The effects of adsorption time and pH on the adsorption behavior were also studied.The results showed that, As(V)adsorption by four iron and aluminum oxides/hydroxides increased with initial As(V) concentrations (0.1~100 mg/L), in which ferrihydrite showed a rising adsorption trend in the whole concentration range, with the adsorption amount of 22.56 mg/g at the initial As(V) of 100 mg/L.While the rapid increase in lower initial concentration and slow change in higher initial concentrations for the adsorption capacities of goethite, gibbsite, and hematite were obtained.When the initial As(V)reached 100mg/L, the least adsorption capacity of 4.75mg/g was received for hematite.Furthermore, the Freundlich equation fitted the data better than the Langmuir equation.The adsorption capacity of ferrihydrite is the highest, followed by goethite and gibbsite, and hematite shows lower adsorption capacity.With the increase of adsorption time, As(V) adsorption amount of four synthetic iron and aluminum oxides/hydroxides increased gradually, especially for ferrihydrite, reaching 96.3% of adsorption equilibrium in 10 minutes.The adsorption amount of goethite and gibbsite reached 97.4% and 97.2% of the equilibrium at 48h, respectively, while hematite required 96 hours to reach the equilibrium.Except ferrihydrite, four equations fitted the kinetic data better, especially the two-constant equation.The effect of pH on As(V) adsorption was associated to As(V) initial concentrations.In lower initial concentrations, adsorption of four synthetic iron and aluminum oxides/hydroxides decreased only under extremely alkaline conditions (pH>10), and when the initial concentrations were higher, adsorption amount dropped sharply with pH increasing.%采用批实验方法研究了人工合成铁、铝矿物对As(V)的吸附,考察吸附时间及溶液pH值对As(V)吸附的影

  7. Influence of Oxygen Gas Ratio on the Properties of Aluminum-Doped Zinc Oxide Films Prepared by Radio Frequency Magnetron Sputtering.

    Science.gov (United States)

    Kim, Minha; Jang, Yong-Jun; Jung, Ho-Sung; Song, Woochang; Kang, Hyunil; Kim, Eung Kwon; Kim, Donguk; Yi, Junsin; Lee, Jaehyeong

    2016-05-01

    Aluminum-doped zinc oxide (AZO) thin films were deposited on glass and polyimide substrates using radio frequency magnetron sputtering. We investigated the effects of the oxygen gas ratio on the properties of the AZO films for Cu(In,Ga)Se2 thin-film solar cell applications. The structural and optical properties of the AZO thin films were measured using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and UV-Visible-NIR spectrophotometry. The oxygen gas ratio played a crucial role in controlling the optical as well as electrical properties of the films. When oxygen gas was added into the film, the surface AZO thin films became smoother and the grains were enlarged while the preferred orientation changed from (0 0 2) to (1 0 0) plane direction of the hexagonal phase. An improvement in the transmittance of the AZO thin films was achieved with the addition of 2.5-% oxygen gas. The electrical resistivity was highly increased even for a small amount of the oxygen gas addition.

  8. Effects of cathodic component of current on porosity and hardness characteristics of micro plasma oxidation(MPO) coatings on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Samir Hamid Awad; QIAN Han-cheng

    2005-01-01

    Micro plasma oxidation(MPO) has recently been investigated as a novel,rapid and effective means to provide modified surfaces with improved properties of load bearing and wear resistance on light alloys particularly aluminum alloys.MPO is a multifactor-controlled process,these factors must be controlled to produce high quality coatings.The main research emphasis in MPO coating development over the past years seems to be the attainment of higher hardness levels and thick coatings.The porosity of MPO coating is the most complex phenomenon affecting the distribution,levels and the measurements of the hardness;and it is controlled by suitable selection of important parameters such as the electrical conditions.Ceramics coatings were synthesized on Al substrate by MPO to examine the effects of adding a cathodic phase alternated with anodic-cathodic current on the porosity and hardness characteristics of coatings by X-ray diffraction(XRD),scanning electron microscopy(SEM),and microhardness tester.The coatings produced by the combined mode are more dense and less porous than that by the anodic-cathodic mode.Microhardness test shows that the coatings produced by the combined mode exhibit both the highest hardness,and less reduction percentage in hardness with increasing the coatings thickness.These improvements become more significant for the polished and thicker coatings.

  9. Characteristics of low-resistivity aluminum-doped zinc oxide films deposited at room temperature by off-axis radio-frequency sputtering on flexible plastic substrates

    Science.gov (United States)

    Wang, Li-Min; Wang, Chih-Yi; Jheng, Ciao-Ren; Wu, Syu-Jhan; Sai, Chen-Kai; Lee, Ya-Ju; Chiang, Ching-Yu; Shew, Bor-Yuan

    2016-08-01

    The crystalline structure, morphology, composition, electrical transport, and optical properties of aluminum-doped zinc oxide (AZO) films are studied for applications in transparent electronics and optoelectronic devices. AZO thin films of c-axis-oriented growth and with different thickness were deposited on PET flexible plastic substrates at room temperature by rf magnetron sputtering. A larger grain size with a decreased strain ɛ value is observed in a thicker film, while changes in composition for films with different thicknesses are insignificant. Moreover, the resistivity of film decreases with increasing thickness, and the low-temperature electrical transport properties can be described by the scenario of quantum corrections to conductivity. With the room-temperature growth conditions, the resistivity of 4.5 × 10-4 Ω cm, carrier concentration of 6.4 × 1020 cm-3, and transmittance of 80 % for the 1100-nm-thick film are obtained. In addition, the optical bandgap energy decreases with increasing film thickness, which can be attributed to the bandgap renormalization and crystallite size effects.

  10. Effect of the Milling Time of the Precursors on the Physical Properties of Sprayed Aluminum-Doped Zinc Oxide (ZnO:Al Thin Films

    Directory of Open Access Journals (Sweden)

    María De La Luz Olvera

    2012-08-01

    Full Text Available Aluminum doped zinc oxide (ZnO:Al thin films were deposited on soda-lime glass substrates by the chemical spray technique. The atomization of the solution was carried out by ultrasonic excitation. Six different starting solutions from both unmilled and milled Zn and Al precursors, dissolved in a mix of methanol and acetic acid, were prepared. The milling process was carried out using a planetary ball mill at a speed of 300 rpm, and different milling times, namely, 15, 25, 35, 45, and 60 min. Molar concentration, [Al]/[Zn] atomic ratio, deposition temperature and time, were kept at constant values; 0.2 M, 3 at.%, 475 °C, and 10 min, respectively. Results show that, under the same deposition conditions, electrical resistivities of ZnO:Al thin films deposited from milled precursors are lower than those obtained for films deposited from unmilled precursors. X-ray diffraction analysis revealed that all films display a polycrystalline structure, fitting well with the hexagonal wurtzite structure. Changes in surface morphology were observed by scanning electron microscopy (SEM as well, since films deposited from unmilled precursors show triangular shaped grains, in contrast to films deposited from 15 and 35 min milled precursors that display thin slices with hexagonal shapes. The use of milled precursors to prepare starting solutions for depositing ZnO:Al thin films by ultrasonic pyrolysis influences their physical properties.

  11. Aluminum-doped zinc oxide sol–gel thin films: Influence of the sol's water content on the resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Nehmann, Julia B., E-mail: nehmann@isfh.de [Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1, 31860 Emmerthal (Germany); Ehrmann, Nicole; Reineke-Koch, Rolf [Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1, 31860 Emmerthal (Germany); Bahnemann, Detlef W. [Institute for Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Callinstrasse 3A, 30167 Hannover (Germany)

    2014-04-01

    Thin films of indium tin oxide (ITO) have gained substantial interest due to their optical and electrical properties. Since ITO is an expensive material and indium is a rare element, considerable attempts have been made to replace it by, e.g., aluminum-doped zinc oxide (ZnO:Al). The production of ZnO:Al is less cost-intensive, especially if the sol–gel technique is applied, while its properties are comparable to those of ITO. In this study, we demonstrate that the electrical properties of ZnO:Al thin films can be improved considerably by the addition of small amounts of ultrapure water to the dip coating solution during the preparation. The lowest resistivity obtained with a film prepared from a sol containing 0.2 M water is 2.8·10{sup −3Ω}cm. Optical modeling thus indicates an improvement of the free carrier mobility of films prepared from sols in the presence of additional water. The films prepared have an average thickness of 340 nm and a solar transmittance above 85% after annealing in a forming gas atmosphere. Clearly, the addition of water to the sol has a positive impact on the resistivity of the final ZnO:Al thin film. We suggest the observed increase of the free carrier mobility to be due to an improved electron transfer at the grain boundaries between the spherical nanoparticles. - Highlights: • We prepared ZnO:Al thin films with additional water in the sol by dip coating. • We found a positive impact of the water in the sol on the resistivity of the film. • The free carrier concentration and mobility increased with additional 0.2 M water. • The refractive indices demonstrate a denser structure related to the water content.

  12. Aluminum-doped zinc oxide sol–gel thin films: Influence of the sol's water content on the resistivity

    International Nuclear Information System (INIS)

    Thin films of indium tin oxide (ITO) have gained substantial interest due to their optical and electrical properties. Since ITO is an expensive material and indium is a rare element, considerable attempts have been made to replace it by, e.g., aluminum-doped zinc oxide (ZnO:Al). The production of ZnO:Al is less cost-intensive, especially if the sol–gel technique is applied, while its properties are comparable to those of ITO. In this study, we demonstrate that the electrical properties of ZnO:Al thin films can be improved considerably by the addition of small amounts of ultrapure water to the dip coating solution during the preparation. The lowest resistivity obtained with a film prepared from a sol containing 0.2 M water is 2.8·10−3Ωcm. Optical modeling thus indicates an improvement of the free carrier mobility of films prepared from sols in the presence of additional water. The films prepared have an average thickness of 340 nm and a solar transmittance above 85% after annealing in a forming gas atmosphere. Clearly, the addition of water to the sol has a positive impact on the resistivity of the final ZnO:Al thin film. We suggest the observed increase of the free carrier mobility to be due to an improved electron transfer at the grain boundaries between the spherical nanoparticles. - Highlights: • We prepared ZnO:Al thin films with additional water in the sol by dip coating. • We found a positive impact of the water in the sol on the resistivity of the film. • The free carrier concentration and mobility increased with additional 0.2 M water. • The refractive indices demonstrate a denser structure related to the water content

  13. Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations

    Science.gov (United States)

    Song, Xiaowei; Fagiani, Matias R.; Gewinner, Sandy; Schöllkopf, Wieland; Asmis, Knut R.; Bischoff, Florian A.; Berger, Fabian; Sauer, Joachim

    2016-06-01

    We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D2-tagged AlO1-4- and Al2O3-6- are measured in the region from 400 to 1200 cm-1. Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al2O3-6- anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO3-. Terminal Al-O stretching modes are found between 1140 and 960 cm-1. Superoxo and peroxo stretching modes are found at higher (1120-1010 cm-1) and lower energies (850-570 cm-1), respectively. Four modes in-between 910 and 530 cm-1 represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al-(O)2-Al ring.

  14. Ultrathin aluminum oxide films: Al-sublattice structure and the effect of substrate on ad-metal adhesion

    Energy Technology Data Exchange (ETDEWEB)

    JENNISON,DWIGHT R.; BOGICEVIC,ALEXANDER

    2000-03-06

    First principles density-functional slab calculations are used to study 5 {angstrom} (two O-layer) Al{sub 2}O{sub 3} films on Ru(0001) and Al(111). Using larger unit cells than in a recent study, it is found that the lowest energy stable film has an even mix of tetrahedral (t) and octahedral (o) site Al ions, and thus most closely resembles the {kappa}-phase of bulk alumina. Here, alternating zig-zag rows of t and o occur within the surface plane, resulting in a greater average lateral separation of the Al-ions than with pure t or o. A second structure with an even mix of t and o has also been found, consisting of alternating stripes. These patterns mix easily, can exist in three equivalent directions on basal substrates, and can also be displaced laterally, suggesting a mechanism for a loss of long-range order in the Al-sublattice. While the latter would cause the film to appear amorphous in diffraction experiments, local coordination and film density are little affected. On a film supported by rigid Ru(0001), overlayers of Cu, Pd, and Pt bind similarly as on bulk truncated {alpha}-Al{sub 2}O{sub 3}(0001). However, when the film is supported by soft Al(111), the adhesion of Cu, Pd, and Pt metal overlayers is significantly increased: Oxide-surface Al atoms rise so only they contact the overlayer, while substrate Al metal atoms migrate into the oxide film. Thus the binding energy of metal overlayers is strongly substrate dependent, and these numbers for the above Pd-overlayer systems bracket a recent experimentally derived value for a film on NiAl(110).

  15. TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Science and Research Department, Chinese People' s Armed Police Academy, Langfang 065000 (China); Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu Lailei; Jiang Guirong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li Liang [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer Transmission electron microscopy (TEM) was firstly used to analyze the phase composition of the ceramic coatings. Black-Right-Pointing-Pointer The phase composition of the ceramic coatings is mainly amorphous phase and crystal Al{sub 2}O{sub 3} oxides. Black-Right-Pointing-Pointer The cross-section micro-hardness of the treated samples was investigated, the hardness of the ceramic coatings is about HV1300. Black-Right-Pointing-Pointer The wear resistance of the PEO samples is about 3 times higher than that of the heat treated 45 steel. - Abstract: The hybrid method of PEO and hot-dipping aluminum (HDA) was employed to deposit composite ceramic coatings on the surface of Q235 steel. The composition of the composite coatings was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The cross-section microstructure and micro-hardness of the treated specimens were investigated and analyzed with scanning electron microscopy (SEM) and microscopic hardness meter (MHM), respectively. The wear resistance of the ceramic coatings was investigated by a self-made rubbing wear testing machine. The results indicate that metallurgical bonding can be observed between the ceramic coatings and the steel substrate. There are many micro-pores and micro-cracks, which act as the discharge channels and result of quick and non-uniform cooling of melted sections in the plasma electrolytic oxidation ceramic coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. The grain size of the {kappa}-Al{sub 2}O{sub 3} crystal is quite non-uniform. The hardness of the ceramic coatings is about HV1300 and 10 times higher than that of the Q235 substrate, which was favorable to the better wear resistance of the ceramic

  16. Adhesive strength and structure of micro-arc oxidation ceramic coatings grown in-situ on LY12 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    WU Zhen-dong; JIANG Zhao-hua; YAO Zhong-ping

    2006-01-01

    The ceramic coatings containing zirconium dioxide were grown in-situ on LY12 aluminium alloy by micro-arc oxidation in mixed zirconate and phosphate solution. The phase composition and morphology of the coatings were studied by XRD and SEM.The adhesive strength of ceramic coatings was assessed by thermal shock test and tensile test. The results show that the coating is composed of m-ZrO2, t-ZrO2, and a little γ-Al2O3. Along the section of the coating, t-ZrO2 is more onboth sides than that in the middle, while m-ZrO2 is more in the middle than that on both sides. Meantime the coating is also composed of a dense layer and a loose layer. The coating has excellent thermal shock resistance under 550 ℃ and 600 ℃. And tensile tests show the adhesive strength of the dense layer of the coating with the substrate is more than 17.5 MPa.

  17. A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning.

    Science.gov (United States)

    Ryu, Won-Hee; Gittleson, Forrest S; Li, Jinyang; Tong, Xiao; Taylor, André D

    2016-08-10

    Understanding the catalyzed formation and evolution of lithium-oxide products in Li-O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li-O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies. PMID:27326464

  18. Aluminum-based metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  19. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route

    Science.gov (United States)

    Shi, Jingjing; Lai, Lincong; Zhang, Ping; Li, Hailong; Qin, Yumei; Gao, Yuanchunxue; Luo, Lei; Lu, Jun

    2016-09-01

    Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al3+ ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al3+ films. The electrochromic performance of the films were evaluated by means of UV-vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, the ratio of Ni3+/Ni2+ also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni3+ making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film.

  20. The formation of tungsten doped Al2O3/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis

    Science.gov (United States)

    Stojadinović, Stevan; Vasilić, Rastko; Radić, Nenad; Tadić, Nenad; Stefanov, Plamen; Grbić, Boško

    2016-07-01

    Tungsten doped Al2O3/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na2WO4·2H2O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al2O3, ZnO, metallic tungsten and WO3. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al2O3/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al2O3/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al2O3/ZnO coatings is higher thanof undoped Al2O3/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na2WO4·2H2O. Tungsten in Al2O3/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the coatings, indicating slower recombination of electron-hole pairs.

  1. [Removal and Recycle of Phosphor from Water Using Magnetic Core/Shell Structured Fe₃O₄ @ SiO₂Nanoparticles Functionalized with Hydrous Aluminum Oxide].

    Science.gov (United States)

    Lai, Li; Xie, Qiang; Fang, Wen-kan; Xing, Ming-chao; Wu, De-yi

    2016-04-15

    A novel magnetic core/shell structured nano-particle Fe₃O₄@ SiO₂phosphor-removal ahsorbent functionalized with hydrous aluminum oxides (Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O) was synthesized. Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O was characterized by XRD, TEM, VSM and BET nitrogen adsorption experiment. The XRD and TEM results demonstrated the presence of the core/shell structure, with saturated magnetization and specific surface area of 56.00 emu · g⁻¹ and 47.27 m² · g⁻¹, respectively. In batch phosphor adsorption experiment, the Langmuir adsorption maximum capacity was 12.90 mg · g⁻¹ and nearly 96% phosphor could be rapidly removed within a contact time of 40 mm. Adsorption of phosphor on Fe₃O₄@ SiO₂@ Al₂O₃ · nH₂O was highly dependent on pH condition, and the favored pH range was 5-9 in which the phosphor removal rate was above 90%. In the treatment of sewage water, the recommended dosage was 1.25 kg · t⁻¹. In 5 cycles of adsorption-regeneration-desorption experiment, over 90% of the adsorbed phosphor could be desorbed with 1 mol · L⁻¹ NaOH, and Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O could be reused after regeneration by pH adjustment with slightly decreased phosphor removal rate with increasing recycling number, which proved the recyclability of Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O and thereby its potential in recycling of phosphor resources. PMID:27548967

  2. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    Science.gov (United States)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  3. Effect of Surface Oxidization on the Spectral Normal Emissivity of Aluminum 3A21 at the Wavelength of 1.5 m Over the Temperature Range from 800 K to 910 K

    Science.gov (United States)

    Shi, Deheng; Zou, Fenghui; Wang, Shuai; Zhu, Zunlue; Sun, Jinfeng

    2015-04-01

    This study explores the dependence of the spectral emissivity on the temperature ranging from 800 K to 910 K for an oxidizing surface of aluminum 3A21. In this experiment, the infrared radiation stemming from the specimen is received by an InGaAs photodiode detector, which operates at the wavelength of 1.5 m with a bandwidth of about 20 nm. The temperature of the specimen surface is determined by averaging the two R-type platinum-rhodium thermocouples, which are tightly welded on the specimen surface. The spectral emissivity is reported before the first measurement over the temperature range from 800 K to 910 K. The variation of the spectral emissivity with the heating time is evaluated at a given temperature. The variation of the spectral emissivity with temperature is discussed for a given heating time. Oscillations of the spectral emissivity have been observed, which are affirmed to be connected with the thickness of the oxidization layer on the specimen surface, and formed by the interference effect between the radiation coming from the oxidization layer and the radiation stemming from the substrate. The effect of surface oxidization on the spectral emissivity of aluminum 3A21 is evaluated, and compared with that of SPHC steel. Analytical expressions of the spectral emissivity of aluminum 3A21 versus the temperature are derived at some given heating times. A conclusion is obtained that the experimental results obtained at a given heating time from 800 K to 910 K abide by the same functional form.

  4. Trends and ENSO/AAO Driven Variability in NDVI Derived Productivity and Phenology alongside the Andes Mountains

    Directory of Open Access Journals (Sweden)

    Francisco J. Meza

    2013-03-01

    Full Text Available Increasing water use and droughts, along with climate variability and land use change, have seriously altered vegetation growth patterns and ecosystem response in several regions alongside the Andes Mountains. Thirty years of the new generation biweekly normalized difference vegetation index (NDVI3g time series data show significant land cover specific trends and variability in annual productivity and land surface phenological response. Productivity is represented by the growing season mean NDVI values (July to June. Arid and semi-arid and sub humid vegetation types (Atacama desert, Chaco and Patagonia across Argentina, northern Chile, northwest Uruguay and southeast Bolivia show negative trends in productivity, while some temperate forest and agricultural areas in Chile and sub humid and humid areas in Brazil, Bolivia and Peru show positive trends in productivity. The start (SOS and length (LOS of the growing season results show large variability and regional hot spots where later SOS often coincides with reduced productivity. A longer growing season is generally found for some locations in the south of Chile (sub-antarctic forest and Argentina (Patagonia steppe, while central Argentina (Pampa-mixed grasslands and agriculture has a shorter LOS. Some of the areas have significant shifts in SOS and LOS of one to several months. The seasonal Multivariate ENSO Indicator (MEI and the Antarctic Oscillation (AAO index have a significant impact on vegetation productivity and phenology in southeastern and northeastern Argentina (Patagonia and Pampa, central and southern Chile (mixed shrubland, temperate and sub-antarctic forest, and Paraguay (Chaco.

  5. Method of forming aluminum oxynitride material and bodies formed by such methods

    Science.gov (United States)

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  6. Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas

    Science.gov (United States)

    Wang, Feng; Wang, Wei; Ran, Ran; Tade, Moses O.; Shao, Zongping

    2014-12-01

    Al2O3 and SnO2 additives are introduced into the Ni-YSZ cermet anode of solid oxide fuel cells (SOFCs) for operation on simulated biogas. The effects of incorporating Al2O3/SnO2 on the electrical conductivity, morphology, coking resistance and catalytic activity for biogas reforming of the cermet anode are systematically studied. The electrochemical performance of the internal reforming SOFC is enhanced by introducing an appropriate amount of Al2O3 into the anode, but it becomes worse with excess alumina addition. For SnO2, a negative effect on the electrochemical performance is demonstrated, although the coking resistance of the anode is improved. For fuel cells operating on biogas, stable operation under a polarization current for 130 h at 750 °C is achieved for a cell with an Al2O3-modified anode, while cells with unmodified or SnO2-modified Ni-YSZ anodes show much poorer stability under the same conditions. The improved performance of the cell with the Al2O3-modified anode mainly results from the suppressed coking and sintering of the anode and from the formation of NiAl2O4 in the unreduced anode. In sum, modifying the anode with Al2O3 may be a useful and facile way to improve the coking resistance and electrochemical performance of the nickel-based cermet anodes for SOFCs.

  7. Metal-ceramic adhesion: Synthesis of aluminum and chromium mixed metal oxides and extended Hueckel modeling of metal-metal oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Boorse, R.S.

    1993-01-01

    Methods of chemical synthesis and theoretical calculation was used to form new materials that have improved adhesion of a thin metal film to a ceramic. Two goals of this investigation were to develop new synthesis of metal-ceramic couples with improved adhesion between the two components and a fundamental understanding of the chemical factors that affect adhesion. Extended Hueckel calculations were performed on a series of Pt- and NiPt-NiO metal-ceramic couples to examine bonding. The calculations showed an 5 fold increase in adhesion energy in NiPt-NiO over Pt-NiO. Bonding across the interface is found to decrease with increased electron donation as interfacially antibonding orbitals are filled. The synthesis of (Al[sub 1[minus]x]Cr[sub x])[sub 2]O[sub 3] mixed metal oxide powders and coatings by sol-gel methodology utilizing three chromium precursors is reported. Thus, Al[Cr(CO)[sub 3]C[sub 5]H[sub 5

  8. The Technological Improvements of Aluminum Alloy Coloring by Electrolysis

    Institute of Scientific and Technical Information of China (English)

    LI Nai-jun

    2004-01-01

    The technological process of coloring golden-tawny on aluminum alloy by electrolysis was improved in this paper. The optimum composition of electrolyte was found, the conditions of deposition and anodic oxidation by electrolysis were studied. The oxidative membrane on aluminum alloy was satisfying, the colored aluminum alloy by electrolysis is uniformity,bright and beautiful, and the coloring by electrolysis is convenient and no pollution.

  9. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses

    Directory of Open Access Journals (Sweden)

    Pan CH

    2014-08-01

    Full Text Available Chih-Hong Pan,1,2,* Wen-Te Liu,3,4,* Mauo-Ying Bien,4,5 I-Chan Lin,6 Ta-Chih Hsiao,7 Chih-Ming Ma,8 Ching-Huang Lai,2 Mei-Chieh Chen,9 Kai-Jen Chuang,10,11 Hsiao-Chi Chuang3,4 On behalf of the Taiwan CardioPulmonary Research (T-CPR Group 1Institute of Labor, Occupational Safety and Health, Ministry of Labor, 2School of Public Health, National Defense Medical Center, 3Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, 4School of Respiratory Therapy, College of Medicine, 5Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, 6Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, Taipei, 7Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 8Department of Cosmetic Application and Management, St Mary’s Junior College of Medicine, Nursing and Management, Sanxing, 9Department of Microbiology and Immunology, College of Medicine, 10Department of Public Health, School of Medicine, College of Medicine, 11School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan *These authors contributed equally to this work Abstract: Although the health effects of zinc oxide nanoparticles (ZnONPs on the ­respiratory system have been reported, the fate, potential toxicity, and mechanisms in biological cells of these particles, as related to particle size and surface characteristics, have not been well elucidated. To determine the physicochemical properties of ZnONPs that govern cytotoxicity, we investigated the effects of size, electronic properties, zinc concentration, and pH on cell viability using human alveolar-basal epithelial A549 cells as a model. We observed that a 2-hour or longer exposure to ZnONPs induced changes in cell viability. The alteration in cell viability was associated with the zeta potentials and pH values of the ZnONPs. Proteomic profiling of A549 exposed to Zn

  10. 多孔阳极氧化铝模板组装Fe纳米线及其表征%Preparation and Characterization of Fe Nanowire Arrays Embedded in Porous Anodic Aluminum Oxide Templates

    Institute of Scientific and Technical Information of China (English)

    迟广俊; 姚素薇

    2004-01-01

    Fe nanowire arrays are prepared by electrodeposition in porous anodic aluminum oxide template from a composite electrolyte solution. These nanowires have an uniform diameter of approximate 25 nm and a length in excess of 2.5μm. The micrographs and crystal structures of Fe nanowires are studied by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction(XRD). It is found that each nanowire is essentially a single crystal and has a different orientation in each array. Hysteresis loops of Fe nanowire array show that its easy magnetization direction is perpendicular to the sample plane.

  11. Effect of Na2WO4 on Growth Process and Corrosion Resistance of Micro-arc Oxidation Coatings on 2A12 Aluminum Alloys in CH3COONa Electrolyte

    Science.gov (United States)

    Lin, Zhaoqing; Yu, Huijun; He, Siyu; Wang, Diangang; Chen, Chuanzhong

    2016-01-01

    Ceramic coatings were deposited on 2A12 aluminum alloys using micro-arc oxidation (MAO) technology in CH3COONa-Na2WO4 electrolyte. The MAO process was studied by recording the current-time curve. The influences of Na2WO4 concentrations on the coatings in CH3COONa electrolyte were investigated. The results show that the Na2WO4 concentrations affect the MAO process and performances of the coatings directly. Na2WO4 in excess is harmful for the formation of Al2O3 in this electrolyte. The corrosion resistance was enhanced with the decrease of Na2WO4 concentration.

  12. Changes of bacterial diversity and tetracycline resistance in sludge from AAO systems upon exposure to tetracycline pressure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Manhong, E-mail: egghmh@163.com; Qi, Fangfang; Wang, Jue; Xu, Qi; Lin, Li

    2015-11-15

    Highlights: • High-throughput sequencing was used to compare sludge bacteria with and without TC. • Bacterial diversity increased with TC addition despite of various oxygen conditions. • Total TRGs proliferated with TC addition in three kinds of sludge. • The concentration of efflux pump genes was the highest in the three groups of TRGs. - Abstract: Two lab-scale anaerobic-anoxic-oxic (AAO) systems were used to investigate the changes in tetracycline (TC) resistance and bacterial diversity upon exposure to TC pressure. High-throughput sequencing was used to detect diversity changes in microorganisms at the level of class in sludge from different bioreactors with and without TC. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the abundances of eight tetracycline resistance genes (TRGs), tetA, tetB, tetC, tetE, tetM, tetO, tetS and tetX. The results showed that the diversities of the microbial communities of anoxic, anaerobic and aerobic sludge all increased with the addition of TC. TC substantially changed the structure of the microbial community regardless of oxygen conditions. Bacteroidetes and Proteobacteria were the dominant species in the three kinds of sludge and were substantially enriched with TC pressure. In sludge with TC added, almost all target TRGs proliferated more than those in sludge without TC except tetX, which decreased in anaerobic sludge with TC addition. The concentration of efflux pump genes, tet(A–C, E), was the highest among the three groups of TRGs in the different kinds of sludge.

  13. Changes of bacterial diversity and tetracycline resistance in sludge from AAO systems upon exposure to tetracycline pressure

    International Nuclear Information System (INIS)

    Highlights: • High-throughput sequencing was used to compare sludge bacteria with and without TC. • Bacterial diversity increased with TC addition despite of various oxygen conditions. • Total TRGs proliferated with TC addition in three kinds of sludge. • The concentration of efflux pump genes was the highest in the three groups of TRGs. - Abstract: Two lab-scale anaerobic-anoxic-oxic (AAO) systems were used to investigate the changes in tetracycline (TC) resistance and bacterial diversity upon exposure to TC pressure. High-throughput sequencing was used to detect diversity changes in microorganisms at the level of class in sludge from different bioreactors with and without TC. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the abundances of eight tetracycline resistance genes (TRGs), tetA, tetB, tetC, tetE, tetM, tetO, tetS and tetX. The results showed that the diversities of the microbial communities of anoxic, anaerobic and aerobic sludge all increased with the addition of TC. TC substantially changed the structure of the microbial community regardless of oxygen conditions. Bacteroidetes and Proteobacteria were the dominant species in the three kinds of sludge and were substantially enriched with TC pressure. In sludge with TC added, almost all target TRGs proliferated more than those in sludge without TC except tetX, which decreased in anaerobic sludge with TC addition. The concentration of efflux pump genes, tet(A–C, E), was the highest among the three groups of TRGs in the different kinds of sludge

  14. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction

    Science.gov (United States)

    Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng

    2016-08-01

    Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m2 g‑1), a high mass activity (398 mA mg‑1) and specific activity (0.98 mA cm‑2), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.

  15. Confinement effects on the crystallization of poly(ethylene oxide) nanotubes.

    Science.gov (United States)

    Maiz, Jon; Martin, Jaime; Mijangos, Carmen

    2012-08-21

    In this work, we show the effects of nanoconfinement on the crystallization of poly(ethylene oxide) (PEO) nanotubes embedded in anodized aluminum oxide (AAO) templates. The morphological characteristics of the hollow 1D PEO nanostructures were evaluated by scanning electron microscopy (SEM). The crystallization of the PEO nanostructures and bulk was studied with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The crystallization of PEO nanotubes studied by DSC is strongly influenced by the confinement showing a strong reduction in the crystallization temperature of the polymer. X-ray diffraction (XRD) experiments confirmed the isothermal crystallization results obtained by DSC, and studies carried out at low temperatures showed the absence of crystallites oriented with the extended chains perpendicular to the pore wall within the PEO nanotubes, which has been shown to be the typical crystal orientation for one-dimensional polymer nanostructures. In contrast, only planes oriented 33, 45, and 90° with respect to the plane (120) are arranged parallel to the pore's main axis, indicating preferential crystal growth in the direction of the radial component. Calculations based on classical nucleation theory suggest that heterogeneous nucleation prevails in the bulk PEO whereas for the PEO nanotubes a surface nucleation mechanism is more consistent with the obtained results. PMID:22834683

  16. Gating of Permanent Molds for ALuminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  17. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    Science.gov (United States)

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  18. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  19. The comparison of possibilities at using of different electrolytes in the process of anodizing aluminum

    Directory of Open Access Journals (Sweden)

    M. Gombar

    2014-01-01

    Full Text Available The contribution researches and solves the suitability of utilize of electrolyte, consisting of the oxalic acid, boric acid, sodium chloride and aluminium cations in the process of anodizing aluminium in operating conditions of electrolyte T = 22 °C, t = time of oxidation and the size of at least 210 an applied voltage U = 12 V. The appropriate use of the electrolyte is judged by the thickness of the anodic aluminium oxide layer (AAO formed on the basis of the monitoring and the resulting quality of the sample surface.

  20. 丙二酸溶液中的铝阳极氧化研究%Aluminum anodization in malonic acid electrolyte

    Institute of Scientific and Technical Information of China (English)

    任建军; 左禹

    2013-01-01

    在丙二酸电解液中进行了铝阳极氧化,并采用扫描电镜(SEM)、X射线衍射(XRD)及显微硬度仪对氧化膜的构型、物质结构、耐酸性、显微硬度等进行了表征.结果表明,丙二酸电解液的黏度随浓度的升高而增大,电解液黏度较大时,氧化膜的生长速率会明显降低;电流密度较大、氧化时间较长时能显著提高氧化膜构型的规整度;氧化膜膜厚的增长速率呈现出先增大后降低的规律;在相同的氧化条件下,电解液浓度较大时,得到的氧化膜的厚度也较大.在800℃以上对丙二酸氧化膜加热,原来无定型的氧化铝会结晶生成γ-Al2O3;氧化膜结晶后其耐酸性会显著提高.丙二酸电解液的浓度对氧化膜的显微硬度没有显著影响,氧化膜硬度对膜厚的依赖存在一个极限值,约为27μm.%Anodic aluminum oxide (AAO) films have been prepared in malonic acid electrolytes. The film morphology , crystalline structure, and resistance to acidic dissolution were studied by scanning electron microscopy (SEM) , X-ray diffraction (XRD) , and the hardness was investigated by micro-hardness testing. It was found that the electrolyte viscosity increased with increasing concentration and that higher electrolyte viscosities resulted in a marked decrease in film growth rate. When applying high current densities for long anodizing durations, AAO films with a relatively high degree of order can be produced. The growth rate of the film layer initially increased and then decreased gradually; under similar anodizing conditions, thicker film layers were formed with higher electrolyte concentrations. The amorphous film material was transformed into γ-Al2O3 by heat-treatment above 800 °C and the resistance to acid dissolution increased remarkably when the AAO film was crystallized. The electrolyte concentration had no evident effect on film hardness and the film hardness attained a relatively stable value when the film

  1. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  2. A liquid aluminum corrosion resistance surface on steel substrate

    International Nuclear Information System (INIS)

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of α-Al2O3, followed by a thinner layer of FeAl3, and then a much thicker one of Fe2Al5 on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion

  3. Electrochemical study of aluminum corrosion in boiling high purity water

    Science.gov (United States)

    Draley, J. E.; Legault, R. A.

    1969-01-01

    Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

  4. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  5. Graphene-aluminum nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bartolucci, Stephen F., E-mail: stephen.bartolucci@us.army.mil [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Paras, Joseph [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Rafiee, Mohammad A. [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Rafiee, Javad [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina; Kapoor, Deepak [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Koratkar, Nikhil, E-mail: koratn@rpi.edu [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-10-15

    Highlights: {yields} We investigated the mechanical properties of aluminum and aluminum nanocomposites. {yields} Graphene composite had lower strength and hardness compared to nanotube reinforcement. {yields} Processing causes aluminum carbide formation at graphene defects. {yields} The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  6. Investigation of trap properties in high-k/metal gate p-type metal-oxide-semiconductor field-effect-transistors with aluminum ion implantation using random telegraph noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Tsung-Hsien; Chang, Shoou-Jinn, E-mail: changsj@mail.ncku.edu.tw; Fang, Yean-Kuen; Huang, Po-Chin [Institute of Microelectronics and Department of Electrical Engineering, Advanced Optoelectronic Technology Center, Center for Micro/Nano Science and Technology, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan (China); Lai, Chien-Ming; Hsu, Chia-Wei; Chen, Yi-Wen; Cheng, Osbert [Central R and D Division, United Microelectronics Corporation, Ltd., Tainan Science-Based Industrial Park, Tainan 74145, Taiwan (China); Wu, Chung-Yi; Wu, San-Lein [Department of Electronic Engineering, Cheng Shiu University, 840 Chengcing Road, Niaosong, Kaohsiung 833, Taiwan (China)

    2014-08-11

    In this study, the impact of aluminum ion implantation (Al I/I) on random telegraph noise (RTN) in high-k/metal gate (HK/MG) p-type metal-oxide-semiconductor field-effect-transistors (pMOSFETs) was investigated. The trap parameters of HK/MG pMOSFETs with Al I/I, such as trap energy level, capture time and emission time, activation energies for capture and emission, and trap location in the gate dielectric, were determined. The configuration coordinate diagram was also established. It was observed that the implanted Al could fill defects and form a thin Al{sub 2}O{sub 3} layer and thus increase the tunneling barrier height for holes. It was also observed that the trap position in the Al I/I samples was lower due to the Al I/I-induced dipole at the HfO{sub 2}/SiO{sub 2} interface.

  7. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2015-02-01

    In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.

  8. Research on Properties of Ceramic Coating on 2Al2 Aluminum Alloy bv Plasma Microarc Oxidation%2Al2铝合金微弧氧化膜性能研究

    Institute of Scientific and Technical Information of China (English)

    郭虹; 宫廷; 黄树涛; 周丽

    2011-01-01

    Microarc oxidation (MAO) coating on 2A12 aluminum alloy was prepared in Na2SiO3 and Na2WO4 electrolytes, and the surface morphology, cross-sectional microstructure, wear resistance and micro-hardness and ceramic coatings have been studied in detail. The results show that the microarc oxidation surface treatment can form a dense ceramic coating on 2A12 aluminum alloy, which has good adhesion with aluminum alloy substrate. The concentration of Na2WO4solution has significant influence on the color, surface morphology, density and micro-hardness of ceramic coating, but not much influence on the thickness of the ceramic coating. Additionally, the addition of Na2WO4 into the base Na2SiO3 electrolyte resulted in the increase of the micro-hardness of the ceramic coating, furthermore, the micro-hardness of the ceramic coating increased with the increasing distance from the interface.%采用Na2 WO4和Na2SO3电解液对2Al2铝合金进行微弧氧化,研究了微弧氧化陶瓷膜表面形貌、截面组织、显微硬度及耐磨性等性能.结果表明,微弧氧化表面处理可以在2Al2铝合金表面形成致密并与基体结合良好的陶瓷膜,Na2WO4溶液浓度对陶瓷膜颜色、表面形貌、致密度和显微硬度都有影响,但对于陶瓷膜成膜厚度没有显著影响.同时,在Na2SiO3电解液中添加Na2WO4将会导致陶瓷膜显微硬度的增加,而且随着与界面距离的增大,陶瓷膜显微硬度逐渐增加.

  9. Guangdong Aluminum to Raise RMB 3 billion for New Production Base in Guizhou

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>On July 7, a loan signing ceremony was held between the Guangdong Aluminum Group, China Construction Bank, Hua Xia Bank and Guangzhou Bank Consortium. It is reported that these banks will provide Guangdong Aluminum Group with RMB 30 billion for an alu-minum oxide and supporting bauxite mining project in Guizhou.

  10. Paint-Bonding Improvement for 2219 Aluminum Alloy

    Science.gov (United States)

    Daech, Alfred F.; Cibula, Audrey Y.

    1987-01-01

    Bonding of adhesives and primers to 2219 aluminum alloy improved by delaying rinse step in surface-treatment process. Delaying rinse allows formation of rougher surface for stronger bonding and greater oxide buildup.

  11. Anodic oxidation of 6063 aluminum alloy with intermittent high current density%6063铝合金的大电流密度间歇式阳极氧化

    Institute of Scientific and Technical Information of China (English)

    黄元盛; 陈焕明

    2014-01-01

    The 6063 aluminum alloy was treated by anodic oxidation with high current density and intermittent current .The effects of anodic oxidation process on microstructure, thickness and properties of the oxide layer were investigated.The results show that with the anodic oxidation solution used in the experiment, the proper process parameters for anodic oxidation are determined with current density of 42-53 A/dm2 , on-off time ratio of 1∶1, and each conduction time of 0.5 s.The oxide layer prepared by the proper process parameters has micropores in the surface layer while the inner layer has no micropores , and the interface between film and substrate has high density .The maximum thickness and microhardness of the oxide layer can reach above 75 μm and 735 HV0.5 respectively, and the oxide layer shows excellent corrosion resistance in NaCl solution .%采用大电流密度间歇式电流阳极氧化工艺对6063铝合金进行氧化处理,研究了阳极氧化工艺对氧化层组织、厚度和性能的影响。结果表明,在试验用阳极氧化溶液下,确定了合理的阳极氧化工艺参数为:电流密度42~53 A/dm2,通断电时间比为1∶1,每次通电0.5 s。采用此工艺制得的氧化层表层有微孔,而内层未见有微孔,膜/基界面致密度高,氧化层的最大厚度达75μm以上,最大硬度达735 HV0.5,氧化层耐NaCl溶液腐蚀能力极好。

  12. Aspects of aluminum toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, C.D.; Savory, J.; Wills, M.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  13. Novel routes to metalloorganics containing aluminum from minerals

    Science.gov (United States)

    Narayanan, Ramasubramanian

    Novel pathways for synthesizing Al metalloorganics directly from widely available oxides and oxo-hydroxides of aluminum are developed. The Al metalloorganics are then used to produce low-cost precursors for ceramics and polymers containing Al. Alumatrane, an unique, air-stable, aluminum alkoxide is prepared in one step from aluminum hydroxide in quantitative yields. Subsequently, alumatrane was used to prepare and characterize all group II dialuminate ceramics (MAlsb2Osb4, M = Mg, Ca, Sr, Ba). Similarly, an air-stable alkoxide of silicon was synthesized directly from SiOsb2, and is used in conjunction with alumatrane to produce precursors for aluminosilicate ceramics (MAlSiOsb4, M = K, Li, Na). Aluminum formate is synthesized, in differing efficiencies, from different crystalline minerals of Al, by direct dissolution in formic acid. A few other aluminum carboxylates are also synthesized, either directly from minerals or from aluminum formates, thus expanding the scope of the acid dissolution of aluminum hydroxides. Aluminum allyloxypropanoate (AAP) (Al(Osb2CCHsb2CHsb2OCH{=}CHsb2)sb2(OH)), an aluminum carboxylate with a polymerizable group has been synthesized from aluminum formate. This, has been incorporated into methyl methacrylate (MMA) polymers to impart fire retardancy. The increase in char yields as a result of AAP incorporation, indicate improved fire retardancy. Fire retardant characteristics of alumatrane has also been investigated, in MMA polymers and in a polyurethane polymer, taking char yields as a measure of fire retardance efficiency.

  14. Is the Aluminum Hypothesis Dead?

    OpenAIRE

    Lidsky, Theodore I.

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  15. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  16. 无压浸渗法制备氧化态SiC颗粒增强铝基复合材料%Fabrication of Oxidized SiC Particles Reinforced Aluminum Matrix Composite by Pressureless Infiltration Technique

    Institute of Scientific and Technical Information of China (English)

    张强; 姜龙涛; 武高辉

    2012-01-01

    The oxidation behavior of SiC particles in the temperature range from l000℃ to 1200℃ was investi-gated. The dependence of weight gain and oxidation time was parabolic and the oxidation behavior was controlled by diffusion process, with a oxidation activation energy of 219 kJ/mol. Using oxidized SiC particles as reinforce-ment and aluminum alloy containing Si and Mg as matrix, a SiCp/Al composite was fabricated by pressureless infil-tration technique. The microstructure and interfacial morphology were analyzed and the pressureless infiltration mechanisms were discussed. The particles were distributed uniformly in the composite, without particles agglom-eration. Interfacial reactions were found in the composite and the product was identified as MgAl2O4, formed by the reactions between surface oxide layer of SiC particles and Mg, Al in the matrix. The interfacial reactions enhanced the wettability and promoted the spontaneous infiltration process.%研究了SiC颗粒在1000~1200℃的氧化行为,其氧化增重率与保温时间符合抛物线规律,氧化增重受扩散过程控制,氧化激活能为219 kJ/mol.采用预氧化处理的SiC颗粒为增强体,含Si、Mg的铝合金为基体,通过无压浸渗方法制备了SiCp/Al复合材料,分析了复合材料的微观组织与界面形貌,探讨了无压浸渗机理.复合材料中颗粒分布均匀,无偏聚现象.材料制备过程中存在界面反应,SiC颗粒表面的氧化层与铝合金中的Mg、Al反应形成了一定数量的MgAl2O4.界面反应的存在提高了润湿性,促进了无压自发浸渗.

  17. Uniform superhydrophobic surfaces using micro/nano complex structures formed spontaneously by a simple and cost-effective nonlithographic process based on anodic aluminum oxide technology

    International Nuclear Information System (INIS)

    This paper presents a uniform micro/nano double-roughened superhydrophobic surface with a high static contact angle (CA) and low contact angle hysteresis (CAH). The proposed micro/nano complex structured surfaces were self-fabricated simply and efficiently using a very simple and low-cost nonlithographic sequential process, which consists of aluminum (Al) sputtering, anodization of the Al layer and pore widening, without specific equipment and additional subsequent processes. The wetting properties of the fabricated surfaces were characterized by measuring the static CAs and the CAHs after plasma polymerized fluorocarbon coating with a low surface energy. The measured static CA and CAH were 154 ± 2.3° and 5.7 ± 0.8°, respectively, showing that the fabricated double-roughened surfaces exhibit superhydrophobic behaviors clearly. In addition, the proposed double-scaled surfaces at a wafer-level exhibited uniform superhydrophobic behaviors across the wafer with an apparent CA and CAH of 153.9 ± 0.8° and 4.9 ± 1.3°, respectively.

  18. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  19. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution.

    Science.gov (United States)

    Pal, Umapada; Sandoval, Alberto; Madrid, Sergio Isaac Uribe; Corro, Grisel; Sharma, Vivek; Mohanty, Paritosh

    2016-11-01

    Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes. While all the mixed oxide nanoparticles revealed high and fast adsorption of cationic dyes, the particles containing Ti and Si turned out to be the best. The adsorption kinetics and equilibrium adsorption behavior of the adsorbate - adsorbent systems could be well described by pseudo-second-order kinetics and Langmuir isotherm model, respectively. Estimated thermodynamic parameters revealed the adsorption process is spontaneous, driven mainly by the electrostatic force between the cationic dye molecules and negative charge at nanoparticle surface. Highest dye adsorption capacity (162.96 mg MB/g) of the mixed oxide nanostructures containing Ti and Si is associated to their high specific surface area, and the presence of surface Si-O(δ-) groups, in addition to the hydroxyl groups of amorphous titania. Mixed oxide nanoparticles containing 75% Ti and 25% Si seen to be the most efficient adsorbents for removing cationic dye molecules from wastewater. PMID:27529381

  20. Regeneración ósea guiada utilizando membrana de óxido de aluminio en combinación con implantes oseointegrados Guided bone regeneration using aluminum oxide membrane in combination with osseointegrated implants

    Directory of Open Access Journals (Sweden)

    M. Isa Majluf

    2007-08-01

    Full Text Available La reabsorción ósea de los maxilares ha sido una de las mayores complicaciones al momento de rehabilitar a pacientes con implantes oseointegrados. El siguiente estudio evaluó la efectividad de la membrana de óxido de aluminio (alúmina, en la regeneración ósea de rebordes colapsados y alvéolos en los que se colocaron implantes. De un total de cinco pacientes seleccionados, se estudiaron siete sitios de los cuales tres correspondieron a un solo paciente. En cada sitio (alvéolo o reborde colapsado se colocó un implante de titanio del sistema HIS y una membrana no biodegradable de óxido de aluminio (Allumina®, la cual fue retirada a las 14 semanas. Todos los pacientes fueron sometidos al mismo procedimiento quirúrgico. La ganancia promedio en mm obtenidos en orden decreciente fue la siguiente: ANM: 1.7mm, ANME: 1.6mm, AND: 1.1mm, AV: 1.0mm, AP: 0.5mm. Los resultados radiográficos ratificaron los resultados clínicos en cuanto a neoformación ósea, observándose además una favorable densidad ósea periimplantaria. El análisis estadístico (basado en los resultados clínicos t-student fue significativo para todos los parámetros evaluados con excepción de AP.Alveolar bone loss has been a very important cause of complications in osseointegrated implant rehabilitation of edentulous patients. This paper evaluates the effectiveness of aluminum oxide membrane (Allumina in the collapsed alveolar ridge where implants were used. Seven sites were studied in 5 patients. In each of these sites a HIS implant plus a non-biodegradable oxide aluminum membrane (Allumina®, was placed for 14 weeks. All patients were treated with the same surgical protocol. The average gain (in mm obtained in decreasing order was as follows: ANM: 1.7 mm, ANME: 1.6 mm, AND: 1.1mm, AV: 1.0mm, AP: 0.5mm. The clinical results were radiographically verified and these showed bone neoformation, in addition to favorable peri-implant bone density. The t-Student statistical

  1. Aluminum phosphate ceramics for waste storage

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  2. Clinical biochemistry of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  3. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  4. Efeito da temperatura no desempenho catalítico de óxidos de ferro contendo cobre e alumínio The effect of temperature on the catalytic performance of iron oxide with copper and aluminum

    Directory of Open Access Journals (Sweden)

    Genira Carneiro de Araujo

    2002-05-01

    Full Text Available Aluminum and copper doped hematite was evaluated in the high temperature shift (HTS reaction at several temperatures in order to find catalysts that can work in different operational conditions. It was found that the catalysts work in kinetic regime in the range of 300-400 ºC. Both copper and aluminum increases the activity and selectivity. Aluminum acts as textural promoter whereas copper acts as structural one. The most promising catalyst is that with both copper and aluminum which showed higher activity and selectivity than a commercial sample. This catalyst has the advantages of being non toxic and can work at low temperatures.

  5. 在离子液体中用阳极氧化铝模板电沉积制备稀土镧纳米线%Synthesis of La nano wires by anodic aluminum oxide template in ionic liquids

    Institute of Scientific and Technical Information of China (English)

    苏轶坤; 姚营; 辛亮亮; 汤皎宁

    2006-01-01

    采用二次阳极氧化法获得纳米多孔阳极氧化铝(AAO)模板,在尿素-NaBr-KBr-甲酰胺离子液体中,用AAO模板电沉积稀土镧纳米线.扫描电子显微镜(SEM)结果显示,自制AAO模板孔洞分布均匀,孔径基本一致(约60~70 nm) ,孔口呈六边形.经过XRD、EDS和SEM对电沉积样品的成分和形貌进行表征和分析,显示在AAO模板中有镧纳米线的存在.

  6. Purifying Aluminum by Vacuum Distillation

    Science.gov (United States)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  7. Enhancing low-field magnetoresistance of La0.67Ca0.33MnO3 films deposited on anodized aluminium-oxide membranes

    Institute of Scientific and Technical Information of China (English)

    Tang Wei-Hua; Li Pei-Gang; Lei Ming; Guo Yan-Feng; Chen Lei-Ming; Li Ling-Hong; Song Peng-Yun; Chen ChinPing

    2006-01-01

    In this paper we report a new method to fabricate nanostructured films.La0.67Ca0.33MnO3(LCMO)nanostructured films have been fabricated by using pulsed electron beam deposition (PED) on anodized aluminium oxide (AAO)membranes.The magnetic and electronic transport properties are investigated by using the Quantum Design physics properties measurement system (PPMS) and magnetic properties measurement system (MPMS).The resistance peak temperature (Tp) is about 85 K and the Curie temperature(Tc) is about 250 K for the LCMO film on an AAO membrane with a pore diameter of 20 nm.Large magnetoresistance ratio (MR) is observed near Tp.The MR is as high as 85 %under 1T magnetic field.The great enhancement of MR at low magnetic fields could be attributed to the lattice distortion and the grain boundary that are induced by the nanopores on the AAO membrane.

  8. 铝掺杂氧化锌薄膜的扫描电镜形貌观察条件研究%Study:Conditions for Morphology of Aluminum-doped Zinc Oxide Thin Film by Scanning Electron Microscope

    Institute of Scientific and Technical Information of China (English)

    王琴; 张科; 胡子阳; 诸跃进

    2015-01-01

    In this paper, the morphology of transparent conductive aluminum-doped zinc oxide (AZO) thin film is observed using Hitach SU70 Scanning Electron Microscope(SEM). Based upon the characteristics of AZO thin film, the various testing conditions are investigated and the influence of a variety of testing conditions on the morphology of the film is discussed. The results indicate that the accelerating voltage is 5 kV, the work distance is 10mm, the detector is Mix-detector and the electronic strength is set at high mode. Satisfying all the conditions stated afore, the best SEM images will be obtained.%利用日立 SU70场发射扫描电镜对铝掺杂氧化锌(AZO)透明导电薄膜进行形貌观察。针对AZO 薄膜特点,使用多种测试条件探讨了不同测试条件对薄膜形貌的影响。通过测试结果对比,获得了测定薄膜形貌的最佳条件。结果显示:加速电压为5 kV,工作距离为10 mm,探测器为混合探测器(Mix),电子强度为 high 模式时,得到的扫描电镜图片最佳。

  9. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  10. Optical properties of dyes with/without metal nanoparticles doped in a highly ordered nanostructure

    Institute of Scientific and Technical Information of China (English)

    SUN Li-ping; LI Yu-dong; QI Ji-wei; XU Jing-jun; SUN Qian

    2011-01-01

    Highly ordered nanocomposite arrays of Rh6G-Au-AAO are formed by filling anodized aluminum oxide (AAO) with Rhodamine 6G (Rh6G) and gold nanoparticles. The optical properties of Rh6G-Au-AAO are studied by visible absorptive and fluorescent spectroscopy. Compared with the fluorescence spectra of Rh6G-Au in the solution environment, the fluorescence peak intensities of Rh6G-Au-AAO are significantly enhanced, the maximum enhancement rate is 5.5, and a constant blue shift of~ 12 nm of peak positions is presented. The effects come from the spatial confinement of AAO and the inhibition of the fluorescence quenching effect induced by gold nanoparticles. The results show that the nanocomposite structures of fluorescence molecules-metal nanoparticles-AAO have a considerable potential in engineering molecular assemblies and creating functional materials of superior properties for future nanophotonics.

  11. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  12. Controlling hole-transport in aluminum tris (8-hydroxyquinoline), Alq3-based organic light emitting diodes to improve the device lifetime by an oxidized transport layer

    Science.gov (United States)

    Mathai, Mathew K.; Papadimitrakopoulos, Fotios; Hsieh, Bing R.

    2004-06-01

    A salt containing polymer, called an oxidized transport layer (OTL), was investigated for hole injection and transport into Alq3-based multilayered organic light emitting diode (OLED) devices. The OTL comprises an aryldiamine containing hole transport polymer binder with a corresponding low molecular weight radical cation salt. We demonstrate herein that the OTL behaves like a tunable resistor for holes, and its hole-transport properties can be controlled by the salt concentration and thickness of the OTL. Based on a careful analysis of the current density-voltage (J-V) device characteristics as a function of the above parameters, electron/hole currents were balanced to minimize oxidative degradation of Alq3. It was found that an OLED device (ITO/OTL/NPB/Alq3/CsF/Al) with a 5000 Å thick OTL at 5% salt concentration operated with a half-life exceeding 1000 h at a constant current of 10 mA/cm2. Similar devices with 2.5% and 10% salt doping showed an order of magnitude lower half-life attributed to unbalanced carrier concentrations. Moreover, by demonstrating that the majority of the field drops across the Alq3 layer, the doping level as opposed to OTL thickness was established as the primary contributor controlling hole transport in these OLEDs. This beneficial behavior is, however, observed only above a certain OTL thickness in the vicinity of 5000 Å.

  13. Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition

    International Nuclear Information System (INIS)

    In this work, two kinds of one-dimensional ZnO nanowires (NWs) and nanotubes (NTs) were synthesized by using electrochemical deposition with the aid of a high aspect ratio anodic alumina oxide (AAO) template. ZnO NWs and NTs were characterized by using X-ray diffraction, field emission scanning microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. An AAO template was fabricated by two-step anodization in 0.3 M oxalic acid with a voltage of 80 V. The thickness and channel diameter of the AAO template were about 150 μm and 120–150 nm, respectively. The morphologies of the ZnO nanostructures synthesized under 20 vol.% H2O2 with various electrolyte concentrations of 0.1 M and 0.5 M ZnSO4, were NTs and NWs, respectively. Both NTs and NWs were uniform in size, which corresponded to the sizes of AAO pores. The thickness of the NTs walls can be controlled based on the deposition time and current density. The crystallinity of the ZnO NTs and NWs annealing in the air were restricted by AAO pore. The growth of the ZnO NTs and NWs was caused by heterogeneous nucleation, and different growth rates through the wall of the AAO will result in different nanostructures, with the growth of the NTs being slower than that of the NWs. - Highlights: • Templated electrodeposition of ZnO nanotubes (NTs) and nanowires (NWs) • ZnO NTs and NWs fabricated using anodic alumina oxide templates • The growth mechanism of ZnO NTs and NWs is modeled

  14. Characterization of salt cake from secondary aluminum production.

    Science.gov (United States)

    Huang, Xiao-Lan; Badawy, Amro El; Arambewela, Mahendranath; Ford, Robert; Barlaz, Morton; Tolaymat, Thabet

    2014-05-30

    Salt cake is a major waste component generated from the recycling of secondary aluminum processing (SAP) waste. Worldwide, the aluminum industry produces nearly 5 million tons of waste annually and the end-of-life management of these wastes is becoming a challenge in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 39 SAP waste salt cake samples collected from 10 different facilities across the U.S. were determined. The results showed that aluminum (Al), aluminum oxide, aluminum nitride and its oxides, spinel and elpasolite are the dominant aluminum mineral phases in salt cake. The average total Al content was 14% (w/w). The overall percentage of the total leachable Al in salt cake was 0.6% with approximately 80% of the samples leaching at a level less than 1% of the total aluminum content. The extracted trace metal concentrations in deionized water were relatively low (μgL(-1) level). The toxicity characteristic leaching procedure (TCLP) was employed to further evaluate leachability and the results indicated that the leached concentrations of toxic metals from salt cake were much lower than the EPA toxicity limit set by USEPA.

  15. Enhancement of electron injection into a light-emitting polymer from an aluminum oxide cathode modified by a self-assembled monolayer

    Science.gov (United States)

    Vaynzof, Yana; Dennes, T. Joseph; Schwartz, Jeffrey; Kahn, Antoine

    2008-09-01

    A self-assembled monolayer (SAM) of octylphosphonate was deposited on an AlOx electrode using the tethering by aggregation and growth (T-BAG) procedure. Ultraviolet photoemission spectroscopy (UPS) measurements showed a decrease in the substrate work function from 3.8to3.3eV. Poly[9,9'-dioctylfluorene-co-bis-N ,N'-(4-butylphenyl)-diphenylamine] (TFB) films spin coated on the bare and the SAM-modified oxide surfaces were investigated by UPS. A shift in molecular levels, corresponding to a reduction in the electron injection barrier, was observed for the SAM-modified electrode. This barrier lowering was confirmed by current-voltage measurements showing a corresponding increase in electron current through the TFB/SAM/AlOx device.

  16. Effect of shock compression on aluminum particles in condensed media

    International Nuclear Information System (INIS)

    Specimens consisting of either spherical or flake aluminum particles saturated with liquid heptane were subjected to reflected shock pressures on the order of 20-30 GPa. Postmortem analysis of the spherical powder shows that while average size does not significantly change, surface morphology is no longer spherical but sharp edged with evidence of shear and particle break-up. A similar analysis for flakes shows break down to finer particles one order less than the original flake size. This suggests that the oxide layer was damaged and that bare aluminum was exposed, thus increasing aluminum particle sensitivity to reaction

  17. New Process for Grain Refinement of Aluminum. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Joseph A. Megy

    2000-09-22

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

  18. Morphology of Platinum Nanowire Array Electrodeposited Within Anodic Aluminium Oxide Template Characterized by Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    孔令斌; 陆梅; 李梦轲; 郭新勇; 力虎林

    2003-01-01

    Uniform platinum nanowires were synthesized by electrodepositing the platinum under a very low altering current frequency (20Hz) and increasing voltage (5-15 V) in the pores of anodic aluminium oxide (AAO) template.Atomic force microscopy observation indicates that the template membranes we obtained have hexagonally closepacked nanochannels. The platinum nanowires have highly ordered arrays after partially dissolving the aluminium oxide membrane. With the increasing dissolving time, the platinum nanowire array collapsed. A concave topography of the aluminium substrate was observed after the aluminium oxide membrane was dissolved completely and the platinum nanowires were released from the template. Platinum nanowires were also characterized by transmission electron microscopy and the phase structure of the Al/AAO/Pt composite was proven by x-ray diffraction.

  19. Aluminum, parathyroid hormone, and osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  20. Study on the Desulfurization of Hot Metal with Composite Reagent of Calcium Oxide and Aluminum%铁水钙铝复合脱硫的机理分析及研究

    Institute of Scientific and Technical Information of China (English)

    魏国; 孙瑜; 何奕波; 沈峰满

    2012-01-01

    向铁水中加入Al可降低铁水中氧而促进脱硫反应,同时改善脱硫动力学条件.为降低脱硫成本,对钙铝复合脱硫的机理和效果进行了研究.试验结果证实:在CaO基脱硫剂中加入适量铝粉,通过钙铝复合脱硫可以提高CaO的脱硫率;Al添加量为5.0 g/kg时,脱硫率比单独使用CaO提高31.4%.Al添加量为0.6 g/kg时,20 min内可将铁水中硫含量降低到0.02%以下.通过计算,得到了不同Al添加量下的脱硫速率常数.%Al addition can not only promote the desulfurization by deoxidation in the hot metal,but also improve the kinetic conditions of desulfurization with lime.To reduce the cost of desulfurization treatment,theoretical and experimental studies have been conducted for hot metal desulfurization with composite reagent of calcium oxide and aluminum.The experiment results show that,with the addition of a certain amount Al in CaO-based desulfurizer,the desulfurization rate can be improved.With 5 g/kgFe Al addition,the desulfurization ratio can be increased by 31.4%.With 0.6 g/kgFe Al addition,the sulfur content in hot metal can be reduced to below 0.02% within 20 min.The rate constant of desulfurization reaction was also calculated for different amounts of Al addition.

  1. Preparation Al{sub 2}O{sub 3}/ZrO{sub 2} composite coating in an alkaline phosphate electrolyte containing K{sub 2}ZrF{sub 6} on aluminum alloy by microarc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Tang Mingqi, E-mail: tangmq400@163.com [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China) and College of Mechanical, North China University of Water Conservancy and Electric Power, Zhengzhou 450011 (China); Li Weiping; Liu Huicong [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Zhu Liqun, E-mail: zhulq@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2012-05-15

    Al{sub 2}O{sub 3}/ZrO{sub 2} composite coating was prepared on 2A70 aluminum alloy by microarc oxidation (MAO) in a phosphate electrolyte containing K{sub 2}ZrF{sub 6}. The effects of K{sub 2}ZrF{sub 6} in the electrolyte on the coating thickness, surface morphology, elemental composition and abrasive resistance were investigated. The results indicated that the MAO coating thickness increase due to the addition of K{sub 2}ZrF{sub 6} in the electrolyte. In the electrolyte containing 6.0 g/L K{sub 2}ZrF{sub 6}, the coating was the most uniform and compact. The MAO coating formed in the electrolyte without K{sub 2}ZrF{sub 6} was mainly composed of {gamma}-Al{sub 2}O{sub 3} and a little {alpha}-Al{sub 2}O{sub 3}. Zirconium in the form of t-ZrO{sub 2} was detected in the MAO coatings formed in the electrolyte containing K{sub 2}ZrF{sub 6}, and the Zr content increases with increasing concentration of K{sub 2}ZrF{sub 6}. A {gamma}-Al{sub 2}O{sub 3} and t-ZrO{sub 2} nanocomposite coating was formed in the electrolyte containing 6.0 g/L K{sub 2}ZrF{sub 6}, and which exhibited the highest abrasive resistance.

  2. 给水厂废弃铁铝泥对湖泊沉积物好氧氨氧化作用的影响%Influence of ferric and aluminum residuals on ammonia oxidation in lake sediment

    Institute of Scientific and Technical Information of China (English)

    刘娟凤; 王昌辉; 王志新; 裴元生

    2015-01-01

    给水厂废弃铁铝泥(Ferric and aluminum residuals,FARs)可用于控制湖泊沉积物磷释放.因此,在实际应用之前对FARs的风险进行评估非常重要.本研究通过室内富集实验,考察FARs对沉积物中氨氧化菌(ammonia-oxidizing bacteria,AOB)活性、丰度和多样性的影响.结果表明:投加FARs后,沉积物对氨氮的去除能力微弱提高.富集后沉积物中AOB丰度增加,投加FARs的沉积物中AOB丰度达到1.32×108 copies· g-1,而未投加FARs的沉积物中AOB丰度为1.14× 108 copies·g-1.此外,amoA基因的系统发育分析表明富集前后沉积物中的AOB均附属于Nitrosospira和Nitrosomonas两个种属,并且投加FARs沉积物中AOB的多样性略高于未投加的.综上结果表明,FARs回用于湖泊富营养化控制的同时,将有益于沉积物中好氧氨氧化作用的进行.

  3. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification

    Science.gov (United States)

    Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun

    2016-03-01

    In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m-2 h-1 bar-1. Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for

  4. The Nondestructive Determination of the Aluminum Content in Pressed Skulls of Aluminum Dross

    Science.gov (United States)

    Kevorkijan, Varuzan; Škapin, Srečo Davor; Kovačec, Uroš

    2013-02-01

    During production of primary and secondary aluminum, various amounts (in some cases up to 200 kg) of aluminum dross, a mixture consisting of molten aluminum metal and different oxide compounds (the nonmetallic phase), are skimmed per tonne of molten metal. To preserve the maximum aluminum content in hot dross for further extraction, it is necessary to cool the dross immediately after skimming. One way to do this is to press the skimmed hot dross in a press. In this process, the skimmed dross is transformed into so-called pressed skulls, with characteristic geometry convenient for storage, transport, or further in-house processing. Because of its high aluminum content—usually between 30% and 70%—pressed skulls represent a valuable source of aluminum and hence are in great demand in the aluminum recycling industry. Because pressed skulls are generally valued on a free-metal recovery basis, which is influenced by the yield of recovery, or in other words, by the quality of the recycling process, it was recognized as important and useful to develop a method of fast and cost-effective nondestructive measurement of the free aluminum content in pressed skulls, independent of the technology of pressed skulls recycling. In the model developed in this work, the aluminum content in pressed skulls was expressed as a function of the pressed skulls density, the density of the nonmetallic phase, and the volume fraction of closed pores. In addition, the model demonstrated that under precisely defined conditions (i.e., skulls from the dross of the same aluminum alloy and skimmed, transported, cooled, and pressed in the same way and under the same processing conditions), when other parameters except the pressed skulls density remain constant, the aluminum content in pressed skulls can be expressed as a linear function of the pressed skulls density. Following the theoretical considerations presented in this work, a practical industrial methodology was developed for nondestructive

  5. A survey of 16S rRNA and amoA genes related to autotrophic ammonia-oxidizing bacteria of the ß-subdivision of the class proteobacteria in contaminated groundwater

    NARCIS (Netherlands)

    Ivanova, I.A.; Stephen, J.R.; Chang, Y.J.; Bruggemann, J.; Long, P.E.; McKinley, J.P.; Kowalchuk, G.A.; White, D.C.; MacNaughton, S.J.

    2000-01-01

    In this study, we investigated the size and structure of autotrophic ammonia oxidizer (AAO) communities in the groundwater of a contamination plume originating from a mill- tailings disposal site. The site has high levels of dissolved N from anthropogenic sources, and exhibited wide variations in th

  6. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  7. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  8. China’s Aluminum Resources

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The aluminum industry makes one of the keyindustries in China’s industrial and agriculturalmodernization and features a high degree ofrelevance with all industries.Of all the 124existing industries in China,113 use aluminum,representing an industrial relevance rate of91%.The consumption of aluminum is also ofhigh relevance with China’s GDP.

  9. Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum

    Science.gov (United States)

    Hsu, Fu-Yuan

    2016-06-01

    In aluminum gravity casting, as liquid aluminum fell through a vertical sprue and impacted on the horizontal flat surface, a phenomenon known as hydraulic jump ( i.e., flow transition from super-critical to sub-critical flows) was observed. As the jump was transformed, a reverse eddy motion on the surface of the jump was created. This motion entrained aluminum oxide film from the surface into aluminum melt. This folded film (so-called "bifilm" defect) was engulfed by the melt and caused its quality to deteriorate. To understand this phenomenon, aluminum casting experiments and computational modeling were conducted. In the casting experiment, a radius ( R j) to the point where the circular hydraulic jump occurred was measured. This is the circular region of `irregular surface feature', a rough oxidized surface texture near the center area of the castings. To quantify contents of the bifilm defects in the outer region of the jump, the samples in this region were sectioned and re-melted for doing re-melted reduced pressure test (re-melt RPT). An "area-normalized" bifilm index map was plotted to analyze bifilms' population in the samples. The flow transition in the hydraulic jump of liquid aluminum depended on three pressure heads: inertial, gravitational, and surface-tension pressures. A new theoretical equation containing surface tension for describing the flow transition of liquid metal was proposed.

  10. Pingguo Aluminum Faces Dilemma

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Chinalco Guangxi Pinggjuo Branch is an exemplary company of Chinalco. Many of its indicators including technology, management standard, and profit rank in leading position in the industry, but such a pace-setter company is also facing the dilemma of overstock of Alumina products, and loss in electrolytic aluminum business.

  11. Applied Electrochemistry of Aluminum

    DEFF Research Database (Denmark)

    Li, Qingfeng; Qiu, Zhuxian

    Electrochemistry of aluminum is of special importance from both theoretical and technological point of view. It covers a wide range of electrolyte systems from molten fluoride melts at around 1000oC to room temperature molten salts, from aqueous to various organic media and from liquid to solid...

  12. Structures of ceramics coatings on steel fabricated by hot-dipping and micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Firstly, an aluminum coating was produced metallurgically on mild steel by hot-dipping, then an aluminum oxide coating was formed self-growingly from the aluminum coating by micro-arc oxidation treatment. The structures of the composite coatings were investigated by means of SEM, TEM and XRD. The results show that the composite coating consists of three layers which are Fe-Al alloy, aluminum coating and aluminum oxide orderly outward from the steel substrate. There are amorphous phases, k-Al2O3 and θ-Al2O3 mainly in the aluminum oxide.

  13. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water.

    Science.gov (United States)

    Du, Junyi; Sabatini, David A; Butler, Elizabeth C

    2014-04-01

    Simple aluminum (hydr)oxides and layered double hydroxides were synthesized using common chemicals and equipment by varying synthesis temperature, concentrations of extra sulfate and citrate, and metal oxide amendments. Aluminum (hydr)oxide samples were aged at either 25 or 200°C during synthesis and, in some cases, calcined at 600 °C. Despite yielding increased crystallinity and mineral phase changes, higher temperatures had a generally negative effect on fluoride adsorption. Addition of extra sulfate during synthesis of aluminum (hydr)oxides led to significantly higher fluoride adsorption capacity compared to aluminum (hydr)oxides prepared with extra citrate or no extra ligands. X-ray diffraction results suggest that extra sulfate led to the formation of both pseudoboehmite (γ-AlOOH) and basaluminite (Al4SO4(OH)10⋅4H2O) at 200 °C; energy dispersive X-ray spectroscopy confirmed the presence of sulfur in this solid. Treatment of aluminum (hydr)oxides with magnesium, manganese, and iron oxides did not significantly impact fluoride adsorption. While layered double hydroxides exhibited high maximum fluoride adsorption capacities, their adsorption capacities at dissolved fluoride concentrations close to the World Health Organization drinking water guideline of 1.5 mg L(-1) were much lower than those for the aluminum (hydr)oxides.

  14. Manipulation of stored charge in anodic aluminium oxide/SiO2 dielectric stacks by the use of pulsed anodisation

    Science.gov (United States)

    Lu, Zhong; Ouyang, Zi; Grant, Nicholas; Wan, Yimao; Yan, Di; Lennon, Alison

    2016-02-01

    A method of fabricating anodic aluminium oxide (AAO) with the capability of manipulating its stored charge is reported. This method involves the use of a pulsed current source to anodise aluminium layers instead of the typically used constant current/voltage source, with the test structures experiencing positive and negative cycles periodically. By tuning the positive cycle percentage, it is demonstrated that the effective stored charge density can be manipulated in a range from -5.2 × 1011 to 2.5 × 1012 q/cm2 when the AAO is formed over a 12 nm SiO2 layer. An investigation of the stored charge distribution in the dielectric stacks indicates a positive fixed charge at the SiO2/Si interface, a negative fixed charge at the AAO/SiO2 interface and a positive bulk charge within the AAO layer. The effective stored charge density and interface states were found to be affected by annealing conditions and it is suggested that oxygen annealing can reduce the bulk positive charge while post-metallisation anneal is most effective in reducing silicon interface defects. Charge manipulation using pulsed anodisation is shown to reduce carrier recombination on boron-diffused silicon surfaces highlighting the potential of the process to be used to tune the electrical properties of dielectric layers so that they can reduce surface recombination on silicon surfaces having different dopant polarity and concentrations.

  15. A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask

    Directory of Open Access Journals (Sweden)

    Sheng-Po Wu

    2010-01-01

    Full Text Available An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO2 nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO2 chemoresistive gas sensor demonstrates 2-fold higher (~33% improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors.

  16. AAO Observer - August 2011 Edition

    CERN Document Server

    Brough, Sarah

    2011-01-01

    This edition of the Australian Astronomical Observatory Observer contains articles on the commissioning of the new SAMI instrument giving the first hexabundle galaxy spectra; galaxy parameter variations across and through the 6dFGS Fundamental Plane; an introduction to the new Dragonfly stellar interferometer; an update on the RAdial VElocity (RAVE) survey at half a million spectra; the Magellanic Quasars Survey; the Integrated Photonic Spectrograph's first look at the heart of the Scorpion; using AAOMega to measure the age of the young open cluster IC2602; making MANIFEST fibres for the Giant Magellan Telescope and a Voyage through Filaments of Galaxies. The Observer also contains thoughts on diversity in the astronomy community and reports on the recent Supernovae and their Host Galaxies conference and the 2011 Science Meets Parliament. In addition there are the usual features of the AUSGO Corner, Epping News and Letter from Coona.

  17. Hydrogen in aluminum during alkaline corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Saikat; Ai, Jiahe [Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Hebert, Kurt R., E-mail: krhebert@iastate.ed [Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Ho, K.M.; Wang, C.Z. [US DOE, Ames Laboratory, Ames, IA 50011 (United States)] [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

    2010-07-30

    The thermodynamic state of hydrogen in aluminum during alkaline corrosion was investigated, using a two-compartment hydrogen permeation cell with an Al/Pd bilayer membrane. The open-circuit potential of the Pd layer in a pH 7.0 buffer solution was monitored to sense the hydrogen chemical potential, {mu}{sub H}. At pH 12.5-13.5, the measurements established a minimum {mu}{sub H} of 0.55 eV relative to the ideal gas reference, equivalent to a H{sub 2} gas pressure of 5.7 GPa. Statistical mechanics calculations show that vacancy-hydrogen defects are stable in Al at this condition. A dissolution mechanism was proposed in which H at very high {mu}{sub H} is produced by oxidation of interfacial aluminum hydride. The mechanism explains the observed rapid accumulation of H in the metal by extensive formation of vacancy-hydrogen defects.

  18. Atomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes In Vitro and Reduces Lung Fibrosis in Mice In Vivo

    Science.gov (United States)

    Taylor, Alexia J.; McClure, Christina D.; Shipkowski, Kelly A.; Thompson, Elizabeth A.; Hussain, Salik; Garantziotis, Stavros; Parsons, Gregory N.; Bonner, James C.

    2014-01-01

    Background Multi-walled carbon nanotubes (MWCNTs) pose a possible human health risk for lung disease as a result of inhalation exposure. Mice exposed to MWCNTs develop pulmonary fibrosis. Lung macrophages engulf MWCNTs and produce pro-fibrogenic cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and osteopontin (OPN). Atomic layer deposition (ALD) is a novel process used to enhance functional properties of MWCNTs, yet the consequence of ALD-modified MWCNTs on macrophage biology and fibrosis is unknown. Methods The purpose of this study was to determine whether ALD coating with aluminum oxide (Al2O3) would alter the fibrogenic response to MWCNTs and whether cytokine expression in human macrophage/monocytes exposed to MWCNTs in vitro would predict the severity of lung fibrosis in mice. Uncoated (U)-MWCNTs or ALD-coated (A)-MWCNTs were incubated with THP-1 macrophages or human peripheral blood mononuclear cells (PBMC) and cell supernatants assayed for cytokines by ELISA. C57BL6 mice were exposed to a single dose of A- or U-MWCNTs by oropharyngeal aspiration (4 mg/kg) followed by evaluation of histopathology, lung inflammatory cell counts, and cytokine levels at day 1 and 28 post-exposure. Results ALD coating of MWCNTs with Al2O3 enhanced IL-1β secretion by THP-1 and PBMC in vitro, yet reduced protein levels of IL-6, TNF-α, and OPN production by THP-1 cells. Moreover, Al2O3 nanoparticles, but not carbon black NPs, increased IL-1β but decreased OPN and IL-6 in THP-1 and PBMC. Mice exposed to U-MWCNT had increased levels of all four cytokines assayed and developed pulmonary fibrosis by 28 days, whereas ALD-coating significantly reduced fibrosis and cytokine levels at the mRNA or protein level. Conclusion These findings indicate that ALD thin film coating of MWCNTs with Al2O3 reduces fibrosis in mice and that in vitro phagocyte expression of IL-6, TNF-α, and OPN, but not IL-1β, predict MWCNT-induced fibrosis in the lungs of mice in vivo

  19. 铝基二氧化铅-碳化钨-氧化铈复合电极的电化学性能%Electrochemical performance of aluminum-based lead dioxide-tungsten carbide-cerium(Ⅳ) oxide composite electrode

    Institute of Scientific and Technical Information of China (English)

    王淑雪; 廖登辉

    2013-01-01

    A PbO2-WC-CeO2 composite electrode was prepared on aluminum substrate by composite electrodeposition. The process flow mainly includes degreasing, alkaline etching, pickling, zinc immersing for two times, flash nickel plating, lead plating, anodic oxidation, and composite electroplating. The corrosion resistance, energy-saving ability, and catalytic activity of the novel PbO2-WC-CeO2 composite electrode and traditional Pb-Ag(0.75) alloy electrode were compared by measuring and analyzing the Tafel curves, oxygen evolution curves, cell voltage, exchange current density, and accelerated corrosion test results in electrolytic zinc solution consisting of ZnSO4-7H2O 250-300 g/L, Na2SO4 250 g/L, and H3BO3 15-20 g/L. It is confirmed on a laboratory level that the corrosion resistance, energy saving performance, and catalytic activity of the novel Al-based PbO2-WC-CeO2 composite electrode are greatly improved as compared with the traditional Pb-Ag(0.75) alloy electrode.%采用复合电沉积法制备了铝基PbO2-WC-CeO2复合电极材料,其工艺流程主要包括除油、酸浸、碱浸、两次浸锌、闪镀镍、镀铅、阳极氧化和复合电镀.通过测定和分析电极在电解锌溶液(ZnSO4·7H2O 250~300 g/L,Na2SO4 250 g/L,H3BO3 15~20 g/L)中的Tafel曲线、析氧曲线、槽电压、交换电流密度和强效腐蚀试验等比较了新型PbO2-WC-CeO2复合电极与传统Pb-Ag(0.75)合金电极的耐腐蚀性能、节能性能和催化活性.从实验室水平证明了相对于传统Pb-Ag(0.75)合金电极,新型铝基PbO2-WC-CeO2电极在耐腐蚀性、节能和催化活性方面均有很大改善.

  20. Evaluation of the corrosion of aluminum tubes under conditions of natural imersion in aqueous medium

    International Nuclear Information System (INIS)

    This work evaluates the corrosion of aluminum tubes under conditions of natural immersion in aqueous medium. Local attack was observed on the surface of the tubes for all temperatures studied. It was found that the mass flucturation of the samples tested in deionized water at room temperatures is practically inexistent. However, at temperatures of 45 and 600C the aluminum react rapidly with water forming a film of hydrated oxide of aluminum known as bayerite. It was verified that the contact of graphite and particles containing high content of Cu with aluminum forms a galvanic couple which should be avoided. (Author)

  1. Comments on process of duplex coatings on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Samir H.A.; QIAN Han-cheng(钱翰城); XIA Bo-cai(夏伯才); WU Shi-ming(吴仕明)

    2004-01-01

    Despite the great achievements made in improvement of wear resistance properties of aluminum alloys,their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on aluminum alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.

  2. Thermal Stress Behavior of Aluminum Nanofilms under Heat Cycling

    International Nuclear Information System (INIS)

    In-situ thermal stress in aluminum nanofilms with silicon oxide glass (SOG) passivation was investigated by using synchrotron radiation at the SPring-8. Aluminum films of varying thickness (10, 20, 50 nm) were deposited on thermally oxidized silicon wafers by RF magnetron sputtering. Each specimen was heated in air over two cycles between room temperature and 300 deg. C. The following results were obtained: (1) {111} planes of aluminum nanofilm crystals were oriented parallel to the substrate normal; (2) the intensity of 111 diffraction was almost independent of temperature except in the case of the 50-nm-thick film; (3) the FWHM of 111 diffraction was almost independent of temperature at any given film thickness; and (4) for all films, the thermal stress varied linearly with heating temperature, and the hysteresis between the heating and cooling steps disappeared

  3. Hydrogen-induced initiation of corrosion in aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Sergey N. Rashkeev; K. W. Sohlberg; S. P. Zhuo; S. T. Pantelides

    2007-05-01

    Corrosion resistance of aluminum alloys is related to the presence of a thin, passivating aluminum oxide film on the surface. In this paper, we perform first-principles quantum-mechanical calculations to provide atomic scale understanding of the initiation of corrosion in Al. Our results support the hypothesis that hydrogen plays an important role at different stages of the Al corrosion process. In particular, atomic hydrogen can penetrate into the oxide film and cause structural damage in both the oxide and at the Al/Al2O3 interface. The corrosion is then initiated by a breakdown of the oxide film and a subsequent pit development on the surface of the metal exposed to the environment.

  4. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  5. Use of high-thermal conductive aluminum nitride based ceramics in vacuum UHF electronic devices

    Directory of Open Access Journals (Sweden)

    Chasnyk V. I.

    2013-06-01

    Full Text Available Analysis of properties and characteristics of the alumina, beryllium oxide and aluminum nitride based ceramic materials used in UHF electronic devices has been made. It was shown that the complex of parameters including structural and functional characteristics of the high-thermal conductive aluminum nitride ceramics prevail over all types of alumina ceramics and is not lower than the same characteristics of the beryllium oxide ceramics especially at the temperatures higher than 450 °C. The examples of the prevailing use of the aluminum nitride ceramics inside vacuum UHF-region devices: TWT’s and klystrons.

  6. Research on fabrication and properties of nanoporous GaN epilayers

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaolong; YU Guanghui; WANG Xinzhong; LIN Chaotong; LEI Benliang; QI Ming; NOUET Gérard; RUTERANA Pierre; CHEN Jun

    2006-01-01

    Gallium nitride (GaN) epilayers with nanopore arrays were fabricated by inductive coupled plasma (ICP) etching using anodic aluminum oxide (AAO) as mask.Nanoporous AAO templates were formed by anodizing the Al films deposited on GaN epilayers.The diameter of the perforations in the AAO masks could be easily controlled by tuning the technique parameters of AAO fabrication process.Cl2/Ar and Cl2/He were employed as etching gas.Scanning electron microscopy (SEM) analysis shows that vertical nanoporous arrays with uniform distribution can directly be transferred from AAO masks to GaN films in some proper conditions.Photoluminescence (PL) spectra, X-ray diffraction (XRD) and Raman spectroscopy were applied to assess properties of the nanoporous GaN films with different average pore diameters and interpore distances.

  7. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  8. Orthogonal functionalization of nanoporous substrates: control of 3D surface functionality.

    OpenAIRE

    Thomas D. Lazzara; Kliesch, Torben-Tobias; Janshoff, Andreas; Steinem, Claudia

    2011-01-01

    Anodic aluminum oxide (AAO) membranes with aligned, cylindrical, nonintersecting pores were selectively functionalized in order to create dual-functionality substrates with different pore-rim and pore-interior surface functionalities, using silane chemistry. We used a two-step process involving an evaporated thin gold film to protect the underlying surface functionality of the pore rims. Subsequent treatment with oxygen plasma of the modified AAO membrane removed the unprotected organic funct...

  9. Rapid and Sensitive Detection of Lung Cancer Biomarker Using Nanoporous Biosensor Based on Localized Surface Plasmon Resonance Coupled with Interferometry

    OpenAIRE

    Jae-Sung Lee; Sae-Wan Kim; Eun-Yoon Jang; Byoung-Ho Kang; Sang-Won Lee; Gopalan Sai-Anand; Seung-Ha Lee; Dae-Hyuk Kwon; Shin-Won Kang

    2015-01-01

    We propose a nanobiosensor to evaluate a lung cancer-specific biomarker. The nanobiosensor is based on an anodic aluminum oxide (AAO) chip and functions on the principles of localized surface plasmon resonance (LSPR) and interferometry. The pore-depth of the fabricated nanoporous AAO chip was 1 µm and was obtained using a two-step electrochemical anodization process. The sensor chip is sensitive to the refractive index (RI) changes of the surrounding medium and also provides simple and label-...

  10. Gating of Permanent Molds for Aluminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-01-01

    This report summarizes a two-year project, DE-FC07-011D13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was to determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings. Equipment and procedure for real time X-Ray radiography of molten aluminum flow into permanent molds have been developed. Other studies have been conducted using water flow and behavior of liquid aluminum in sand mold using real time photography. This investigation utilizes graphite molds transparent to X-Rays making it possible to observe the flow pattern through a number of vertically oriented grating systems. These have included systems that are choked at the base of a rounded vertical sprue and vertical gating systems with a variety of different ingates into the bottom of a mold cavity. These systems have also been changed to include gating systems with vertical and horizontal gate configurations. Several conclusions can be derived from this study. A sprue-well, as designed in these experiments, does not eliminate the vena contracta. Because of the swirling at the sprue-base, the circulating metal begins to push the entering metal stream toward the open runner mitigating the intended effect of the sprue-well. Improved designs of

  11. Neurofibrillary pathology and aluminum in Alzheimer's disease

    OpenAIRE

    Shin, R. W.; Lee, V. M. Y; Trojanowski, J Q

    1995-01-01

    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  12. Structure and Property of Micro-arc Oxidation Coating Modified by Laser Melting and Solidifying on Aluminum Alloy%激光重熔改性铝合金微弧氧化膜层的组织与性能

    Institute of Scientific and Technical Information of China (English)

    喻杰; 韦东波; 王岩; 吕鹏翔; 狄士春

    2013-01-01

    为了改善微弧氧化(MAO)膜层多孔疏松的组织和性能,对其进行了激光重熔处理,并制备了两种实验膜层:(1)选择双向电流脉冲和Na2SiO3-KOH体系的工作液,在6082铝合金基体上制备平均厚度为18 μm的MAO膜层;(2)采用Nd∶YAG激光器对上述MAO膜层进行激光重熔(LSM)处理,获得MAO+LSM膜层.利用扫描电子显微镜(SEM)、X射线衍射仪、超显微硬度计和电化学分析仪分别检测上述两种膜层的微观形貌、相组成、表面硬度和耐蚀性能.结果表明:激光重熔后的膜层由内往外分为致密层、中间层和重熔层,组织致密、气孔率低的重熔层取代了MAO疏松层,MAO+LSM膜层中α-Al2O3相的比例得到提高,硬度和耐蚀性能也进一步得到改善,且保持了MAO膜层与基体的结合方式.%In order to improve performance and microstructure of micro-arc oxidation (MAO) coating,especially loose and porous characteristic,a laser melting and solidifying process (LSM) was introduced.Two kinds of samples were prepared:(1) MAO coatings,18 μm average thickness,were produced on 6082 aluminum alloy by bipolar current pulse in Na2SiO3-KOH solution.(2) a melting process using a Nd∶YAG laser was employed to modify above-mentioned MAO coatings to obtain MAO+LSM coating.Microstructure of two kinds of coatings (MAO coating and MAO+LSM coating) were examined by scanning electron microscopy.X-ray diffraction was used to determine the phase composition of the coatings.Coating hardness was tested by ultra-micro hardness tester,and corrosion performance was investigated by polarization test instrument.The results show that the MAO+LSM coating is composed of dense layer,intermediate layer and melting layer from inside to surface.The loose layer of MAO film is replaced by a dense and low porosity melting layer after LSM treatment.The occupancy of α-Al2O3 phase in MAO+LSM is improved compared with MAO coating.Hardness and anticorrosion performance of MAO

  13. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  14. Thermal coatings for titanium-aluminum alloys

    Science.gov (United States)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  15. Fabrication and magnetic characteristics of vertical feco nanowire arrayed in Al2O3 insulator of honeycomb bulkhead structure.

    Science.gov (United States)

    Park, Dong-Jin; Kim, Sun-Hee; Lee, Kun-Jae; Lee, Jung-Ho; Choa, Yong-Ho

    2006-11-01

    High-density and uniform-sized FeCo alloy nanowires were prepared by electro deposition of Fe2+ and Co2+ into Anodic aluminum oxide (AAO) templates with two different diameters. These templates were fabricated with three-step anodization method. The additional anodization after the 2nd anodization step resulted in the decrease of the thickness of bottom barrier layer. It found an optimum condition to obtain a successful electrodeposition of Fe2+ and Co2+ into AAO templates. The nanowires with the diameters of 25 nm and 80 nm were homogeneously embedded in the AAO templates and their magnetic properties were strongly affected by diameters of nanowire. PMID:17252777

  16. Fabrication of independent nickel microstructures with anodizing of aluminum,laser irradiation, and electrodeposition

    Institute of Scientific and Technical Information of China (English)

    T. Kikuchi; M. Sakairi; H. Takahashi

    2003-01-01

    Independent microstructures made of Ni metal were fabricated by five sequential processes: porous anodic oxide film for-mation, pore sealing, laser irradiation, Ni electroplating, and removal of the aluminum substrate and anodic oxide films. Aluminumplates and rods were anodized in an oxalic acid solution to form porous type anodic oxide films, and then immersed in boiling dis-tilled water for pore sealing. The anodized and pore-sealed specimens were irradiated with a pulsed neodymium-doped yttrium alu-minum garnet (Nd-YAG) laser beam in a Ni plating solution to remove anodic oxide film locally by rotating and moving up / downwith an XYZθ-stage. Nickel was deposited at the area where film had been removed by cathodic polarization in the solution beforeremoving the aluminum substrate and anodic oxide films in NaOH solutions. Cylindrical or plain network structures were fabricated successfully.

  17. Hualu Aluminum Will Construct Large Coal-Power-Aluminum Aluminum Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The reporter learned from relevant departments of Baiyin City that in order to further push forward industrial upgrading,fulfill expansion and consolidation of the enterprise,Gansu Hualu Aluminum Co.,Ltd(Hualu Aluminum)will implement Out-Of-City-Into-Park project,

  18. Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling

    Directory of Open Access Journals (Sweden)

    Takehito Hiraki

    2014-07-01

    Full Text Available The removability of impurities during the aluminum remelting process by oxidation was previously investigated by our research group. In the present work, alternative impurity removal with chlorination has been evaluated by thermodynamic analysis. For 43 different elements, equilibrium distribution ratios among metal, chloride flux and oxide slag phases in the aluminum remelting process were calculated by assuming the binary systems of aluminum and an impurity element. It was found that the removability of impurities isn’t significantly affected by process parameters such as chloride partial pressure, temperature and flux composition. It was shown that Ho, Dy, Li, La, Mg, Gd, Ce, Yb, Ca and Sr can be potentially eliminated into flux by chlorination from the remelted aluminum. Chlorination and oxidation are not effective to remove other impurities from the melting aluminum, due to the limited parameters which can be controlled during the remelting process. It follows that a proper management of aluminum scrap such as sorting based on the composition of the products is important for sustainable aluminum recycling.

  19. Aluminum Zintl anion moieties within sodium aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  20. Selenium adsorption to aluminum-based water treatment residuals

    Energy Technology Data Exchange (ETDEWEB)

    Ippolito, James A.; Scheckel, Kirk G.; Barbarick, Ken A.; (US-Agriculture); (EPA); (CSU)

    2009-09-02

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR in an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.

  1. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.;

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  2. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  3. Ultrahigh vacuum system with aluminum

    International Nuclear Information System (INIS)

    A bakeable vacuum chamber (1500C continuous) consists of aluminum alloy beam pipe (6063-T6) and bellows (5052-F) with an aluminum alloy flange (2219-T87) and a metal seal [Helicoflex-HN: pure aluminum (1050) O-ring with an elastic core (Ni base super alloy Inconel 750) which supplies the sealing force] has been constructed. The beam pipe and the flange (6063-T6/2219-T87), and the bellows and the flange (5052-F/2219-T87) were welded by an alternate current (50 Hz) TIG process using an aluminum alloy filler wire (4043). The mechanical properties of the aluminum alloy (2219-T87) is suitable for using the Helicoflex O-ring but the groove surface for the gasket is weak for scratching. Cromium-nitride coating by ion plating method was carried out on the aluminum surface of the gasket groove [thickness: 16 μm, micro Vickers hardness: 1800]. Ordinary stainless steel vacuum system can be replaced by the aluminum vacuum system in an accelerator. (author)

  4. Particulate and gaseous emissions when welding aluminum alloys.

    Science.gov (United States)

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  5. Passivation and Stabilization of Aluminum Nanoparticles for Energetic Materials

    Directory of Open Access Journals (Sweden)

    Matthew Flannery

    2015-01-01

    Full Text Available In aircraft applications, fuel is used not only as a propellant but also as a coolant and improving both the thermal conductivity and combustion enthalpy of the fuel is beneficial in these applications. These properties can be enhanced by dispersing aluminum nanoparticles into the fuel; however, the nanoparticles require stabilization from agglomeration and passivation from oxidation in order for these benefits to be realized in aircraft applications. To provide this passivation and stabilization, aluminum nanoparticles were encapsulated with a coating by the plasma enhanced chemical vapor deposition (PE-CVD method from toluene precursors. The thermal conductivity, combustion and ignition properties, and stability of the nanoparticles dispersed in RP-2 fuel were subsequently evaluated. In addition, the effect of dispersing aluminum nanoparticles in RP-2 fuel on the erosion rate of fuel nozzles was evaluated. The dispersion of PE-CVD coated aluminum nanoparticles at a concentration of 3.0% by volume exhibited a 17.7% and 0.9% increase in thermal conductivity and volumetric enthalpy of combustion, respectively, compared to the baseline RP-2 fuel. Additionally, particle size analysis (PSA of the PE-CVD coated aluminum nanofuel exhibited retention of particle size over a five-month storage period and erosion testing of a 1 mm stainless steel nozzle exhibited a negligible 1% change in discharge coefficient after 100 hours of testing.

  6. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  7. Aluminum coatings deposition by oxy-fuel detonation spraying

    International Nuclear Information System (INIS)

    This paper presents the possibility of control by phase composition of gaseous detonation sprayed coatings from aluminum powders due to variation and control of intensity of oxidation and combustion of initial Al particle. Thermal sprayed aluminum coatings have good corrosion resistance, but for some area of application they don't have acceptable complex of properties. The actual problem is also increase of strength of aluminum matrix in composite manufacturing by thermal spraying. The cooling rate of Al particles at plasma spraying as result of experimental determination of dendrite sizes is 10/sup 6/ - 10/sup 8/ degree C/s. But strengthening as result of microcrystal structure formation is withdrawing by presence of large pores and cracks between solidified particles. Therefore, it is necessary to search of thermal spray methods for obtaining more dense structure of coatings. Oxy-fuel detonation spraying (OFDS) is allowed to deposit coatings simultaneously from large and small particles. Moreover, in case of OFDS it is possible to use reaction of AI-particles oxidation and to obtain oxide-metal coatings. During oxidation of Al particles the surface film of aluminum is formed. Aluminum -aluminum oxide alloys are the strongest and most stable aluminum alloys above about 127 to 158 degree C. Their stability results from the extremely low solid solubility of Al/sub 2/O/sub 3/ The heat of chemical reaction may render on processes of heating, melting and overheating of particles. The possibility of control by phase composition of oxy fuel detonation sprayed coatings from aluminum powders as result of control of intensity of oxidation and combustion of initial Al particles are shown. The special schemes of gaseous detonation spraying are proposed. The experiments were done for OFDS of three types of powders of pure AI: (1) fine aluminum powder; (2) Al powder with particle size 100 - 250 macro m; (3) Al powder particle size 40 macro m. The composition of gas mixture was

  8. Prospecting sugarcane genes involved in aluminum tolerance

    Directory of Open Access Journals (Sweden)

    Rodrigo D. Drummond

    2001-12-01

    Full Text Available Aluminum is one of the major factors that affect plant development in acid soils, causing a substantial reduction in yield in many crops. In South America, about 66% of the land surface is made up of acid soils where high aluminum saturation is one of the main limiting factors for agriculture. The biochemical and molecular basis of aluminum tolerance in plants is far from being completely understood despite a growing number of studies, and in the specific case of sugarcane there are virtually no reports on the effects of gene regulation on aluminum stress. The objective of the work presented in this paper was to prospect the sugarcane expressed sequence tag (SUCEST data bank for sugarcane genes related to several biochemical pathways known to be involved in the responses to aluminum toxicity in other plant species and yeast. Sugarcane genes similar to most of these genes were found, including those coding for enzymes that alleviate oxidative stress or combat infection by pathogens and those which code for proteins responsible for the release of organic acids and signal transducers. The role of these genes in aluminum tolerance mechanisms is reviewed. Due to the high level of genomic conservation in related grasses such as maize, barley, sorghum and sugarcane, these genes may be valuable tools which will help us to better understand and to manipulate aluminum tolerance in these species.Alumínio (Al é um dos principais fatores que afetam o desenvolvimento de plantas em solos ácidos, reduzindo substancialmente a produtividade agrícola. Na América do Sul, cerca de 66% da superfície do solo apresenta acidez, onde a alta saturação de alumínio é uma das maiores limitações à prática agrícola. Apesar do crescente número de estudos, uma compreensão completa das bases bioquímicas e moleculares da tolerância ao alumínio em plantas está longe de ser alcançada. No caso da cana-de-açúcar, não há nada publicado sobre a regulação g

  9. Chrome - Free Aluminum Coating System

    Science.gov (United States)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  10. Influence of surface pretreatment in resistance spot welding of aluminum AA1050

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al Saadi, Moneer H.; Daws, Kasim M.;

    2015-01-01

    Resistance spot welding (RSW) of aluminum alloys implies a major problem of inconsistent quality from weld to weld due to problems of varying thickness of the oxide layer. The high resistivity of oxide layer causes strong heat development, which has significant influence on electrode life and weld...

  11. A Virtual Aluminum Reduction Cell

    Science.gov (United States)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  12. Welding phenomena of aluminum-copper alloy in electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Nogi, K.; Sumi, Y.; Aoki, Y.; Yamamoto, T.; Fujii, H. [Osaka Univ., Ibaraki (Japan). Joining and Welding Res. Inst.

    2000-07-01

    Electron beam welding of an aluminum-copper alloy (2219) was performed using a small-sized electron beam welding apparatus under microgravity and in a high vacuum. The effect of gravity on various welding phenomena and the effect of the aluminum oxide film on the formation of bubbles were investigated. A much flatter weld bead is formed in the microgravity environment than in the terrestrial environment. When an aluminum alloy is exposed to atomic oxygen, the thickness of the aluminum oxide film increases and porosity after welding also increases. It is thought that the porosity is formed by the Al{sub 2}O gas through the reaction between Al{sub 2}O{sub 3} and Al. (orig.)

  13. Effect of Anodic Alumina Oxide Pore Diameter on the Crystallization of Poly(butylene adipate).

    Science.gov (United States)

    Sun, Xiaoli; Fang, Qunqun; Li, Huihui; Ren, Zhongjie; Yan, Shouke

    2016-04-01

    Poly(butylene adipate) (PBA) was infiltrated into the anodic alumina oxide (AAO) templates with the pore diameter of around 30, 70, and 100 nm and PBA nanotubes with different diameters were prepared. The crystallization and phase transition behavior of the obtained PBA nanotubes capped in the nanopores have been explored by using X-ray diffraction and differential scanning calorimetry. Only α-PBA crystals form in the bulk sample during nonisothermal crystallization. By contrast, predominant β-PBA crystals form in the AAO templates. The β-PBA crystals formed in the nanopores with pore diameter less than 70 nm prefer to adopt an orientation with their b-axis parallel to the long axis of the pore. During the melt recrystallization, it was found that the critical temperature (Tβ), below which pure β-crystals form, is 20 °C for bulk PBA. It drops down significantly with the pore diameter for the PBA in the AAO template. Moreover, the β-crystals in the porous template exhibit larger lattice parameters compared with the bulk crystals. By monitoring the change of β-crystals in the heating process, it was found that β-crystals in the AAO template with the pore diameter of 30 nm (D30) melt directly while the β-crystals transform to α-crystals in the template with the pore diameter of 100 nm (D100). The intensity of (020) Bragg peak of β-crystals decreases at a similar rate in both D30 and D100 but disappears at a relatively lower temperature in D30. On the other hand, the β(110) peak intensity of β-PBA crystals formed in the D100 template decreases first at slower rate before α crystals appear, and then at a faster rate once the β to α phase transition takes place. PMID:27008378

  14. Influence of Elemental Iron on Hydrogen Content in Superheated Aluminum-iron Melts

    Institute of Scientific and Technical Information of China (English)

    HU Li-na; BIAN Xiu-fang; ANANDA Mahto; DUAN You-feng

    2004-01-01

    The hydrogen content in liquid binary aluminum alloys with 1,3,5 and 8 wt% iron has been determined in the temperature range from 973K to 1103K.The hydrogen content in molten Al-Fe alloys increases remarkably when the temperature of the melt rises to about 1053K.This work indicates that the alloying element iron plays an important role in hydrogen content in superheated Al-Fe alloy melts below about 1053K.The results make it clear that the hydrogen content in the melt aluminum reduces with the increasing element levels.A conclusion is drawn that the degree of gassing in molten Al-Fe alloys is bound up with the properties of oxide film of aluminum alloy melts.The element iron has no effect on the compact structure of oxide film in aluminum melts.The effects of alloying element are theoretically analyzed in terms of Wagner interaction parameter.According to the values of the first order interaction parameter,it is concluded that the interaction between iron atom and aluminum is much stronger than that between hydrogen atom and aluminum,and the addition of the alloying element decreases the affinity of liquid aluminum for hydrogen.

  15. KINETICS OF GRAIN-GROWTH OF YTTRIUM ALUMINUM GARNET FIBERS PREPARED BY SOL-GEL METHOD

    Directory of Open Access Journals (Sweden)

    Tan H.

    2013-12-01

    Full Text Available The yttrium aluminum garnet (YAG long fibers were prepared by the sol-gel method using aluminum chloride, aluminum powder, yttrium oxide and acetic acid as raw materials. The grain growth law is given by Dn – D0n = Kt (D0 = initial grain size, D = average grain size at time t, n = grain growth exponent and K = reaction constant. The grain growth exponent and activation energy of YAG fibers are ≈ 3 and 200 kJ/mol, respectively. The grain-growth behaviors of YAG were influenced by experimental conditions such as raw materials, initial particle size, initial particle distribution, etc.

  16. On the crucial influence of some supporting electrolytes during electrocoagulation in the presence of aluminum electrodes

    OpenAIRE

    Trompette, Jean-Luc; Vergnes, Hugues

    2009-01-01

    The influence of some supporting electrolytes on aluminum electrode oxidation and pH variation during electrocoagulation of an unskimmed milk sample and a cutting oil emulsion has been investigated. Among the electrolytes studied, sulfate anions were found to be quite harmful both for electrical consumption and electrocoagulation efficiency. At the opposite, chloride and ammonium ionswere particularly benefic respectively for aluminum corrosion and pH regulation, whereas sodium cations were o...

  17. Characterization of metal oxide layers grown on CVD graphene

    International Nuclear Information System (INIS)

    Growth of a fully oxidized aluminum oxide layer with low surface roughness on graphene grown by chemical vapor deposition is demonstrated. This is accomplished by the deposition of a 0.2 nm thick titanium seed layer on the graphene prior to the deposition of the aluminum under ultra high vacuum conditions, which was subsequently oxidized. The stoichiometry and surface roughness of the oxide layers were measured for a range of titanium and aluminum depositions utilizing ex situ x-ray photoelectron spectrometry and atomic force microscopy. These fully oxidized films are expected to produce good dielectric layers for use in graphene based electronic devices.

  18. Processing of Aluminum Alloys Containing Displacement Reaction Products

    OpenAIRE

    Stawovy, Michael Thomas

    1998-01-01

    Aluminum and metal-oxide powders were mixed using mechanical alloying. Exothermic displacement reactions could be initiated in the powders either by mechanical alloying alone or by heat treating the mechanically alloyed powders. Exponential relationships developed between the initiation time of the reaction and the mechanical alloying charge ratio. The exponential relationships were the result of changes in the intensity and quantity of collisions occurring during mechanical alloying. Di...

  19. Experimental Studies of Cold Roll Bonded Aluminum Alloys

    OpenAIRE

    Lauvdal, Steinar

    2011-01-01

    This master’s thesis is based on experimental studies of the parameters influencing cold roll bonding (CRB) of the aluminum alloys AA1200 and AA3103,in the work hardened and annealed condition. The effect on the bond strength from the preparations parameters as degreasing agent, scratch brushing and exposure time for oxide growth is investigated in comparison to former studies. Further the effect of rolling speed and effect from contributing factors from the different testing methods is ...

  20. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.