WorldWideScience

Sample records for aluminum hydroxide

  1. Aluminum Hydroxide

    Science.gov (United States)

    ... penicillamine (Cuprimine, Depen), prednisone (Deltasone, Orasone), products containing iron, tetracycline (Sumycin, Tetracap, and others), ticlopidine (Ticlid), and vitamins.be aware that aluminum hydroxide may interfere with other medicines, making them less ...

  2. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  3. Surface Acidity of Amorphous Aluminum Hydroxide

    Institute of Scientific and Technical Information of China (English)

    K. FUKUSHI; K. TSUKIMURA; H. YAMADA

    2006-01-01

    The surface acidity of synthetic amorphous Al hydroxide was determined by acid/base titration with several complementary methods including solution analyses of the reacted solutions and XRD characterization of the reacted solids. The synthetic specimen was characterized to be the amorphous material showing four broad peaks in XRD pattern. XRD analyses of reacted solids after the titration experiments showed that amorphous Al hydroxide rapidly transformed to crystalline bayerite at the alkaline condition (pH>10). The solution analyses after and during the titration experiments showed that the solubility of amorphous aluminum hydroxide, Ksp =aAl3+/a3H+,was 1010.3,The amount of consumption of added acid or base during the titration experiment was attributed to both the protonation/deprotonation of dissolved Al species and surface hydroxyl group. The surface acidity constants, surface hydroxyl density and specific surface area were estimated by FITEQL 4.0.

  4. Polytypic transformations of aluminum hydroxide: A mechanistic investigation

    Institute of Scientific and Technical Information of China (English)

    Thimmasandra Narayan Ramesh

    2012-01-01

    The diffusion of ammonia vapors into a solution of aluminum nitrate or ferric nitrate results in the precipitation of their respective hydroxides and oxyhydroxides.Polymorphic phase formation of aluminum hydroxide is controlled by the rate of crystallization.The PXRD patterns of products obtained via vapor phase diffusion revealed that poorly ordered aluminum hydroxide is formed during the initial stages of crystallization.After 8 days,the formation of the bayerite phase of aluminum hydroxide was observed.Upon prolonged exposure to ammonia vapors,bayerite was transformed into gibbsite.The infrared spectrum of the product confirmed the presence of different polytypic phases of aluminum hydroxide.The results demonstrated that the crystal structure of metal hydroxides is controlled by the rate of crystallization,nature of the metal ion,site selectivity and specificity and preparative conditions.

  5. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  6. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  7. Advances in aluminum hydroxide-based adjuvant research and its mechanism

    OpenAIRE

    He, Peng; Zou, Yening; Hu, Zhongyu

    2015-01-01

    In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully und...

  8. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010 Section 73.1010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried...

  9. A Case of Recurrent Renal Aluminum Hydroxide Stone

    Directory of Open Access Journals (Sweden)

    Basri Cakıroglu

    2014-01-01

    Full Text Available Renal stone disease is characterized by the differences depending on the age, gender, and the geographic location of the patients. Seventy-five percent of the renal stone components is the calcium (Ca. The most common type of the stones is the Ca oxalate stones, while Ca phosphate, uric acid, struvite, and sistine stones are more rarely reported. Other than these types, triamterene, adenosine, silica, indinavir, and ephedrine stones are also reported in the literature as case reports. However, to the best of our knowledge, aluminum hydroxide stones was not reported reported before. Herein we will report a 38-years-old woman with the history of recurrent renal colic disease whose renal stone was determined as aluminum hydroxide stone in type. Aluminum mineral may be considered in the formation of kidney stones as it is widely used in the field of healthcare and cosmetics.

  10. Thermal stability and oil absorption of aluminum hydroxide treated by dry modification with phosphoric acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The dry modification of aluminum hydroxide powders with phosphoric acid and the effects of modification of technological conditions on thermal stability, morphology and oil absorption of aluminum hydroxide powders were investigated. The results show that the increase of mass ratio of phosphoric acid to aluminum hydroxide, the decrease of mass concentration of phosphoric acid and prolongation of mixing time are favorable to the improvement of thermal stability of aluminum hydroxide; when the mass ratio of phosphoric acid to aluminum hydroxide is 5:100, the mass concentration of phosphoric acid is 200 g/L and the mixing time is 10 min, the initial temperature of loss of crystal water in aluminum hydroxide rises from about 192.10 to 208.66 ℃2,but the dry modification results in the appearance of agglomeration and macro-aggregate in the modified powders, and the oil absorption of modified powders becomes higher than that of original aluminum hydroxide.

  11. Adsorption behavior of condensed phosphate on aluminum hydroxide

    Institute of Scientific and Technical Information of China (English)

    GUAN Xiao-hong; CHEN Guang-hao; SHANG Chii

    2007-01-01

    Sodium pyrophosphate(pyro-P,Na4P207),sodium tripolyphosphate(tripoly-P,NasP3010),and sodium hexametaphosphate(metaP,(NaP03)6)were selected as the model compounds of condensed phosphate to investigate the adsorption behavior of condensed phosphate on aluminum hydroxide.The adsorption was found to be endothermic and divisible into two stages:(1)fast adsorption within 1 h:and(2)slow adsorption between 1 and 24 h.The modified Freundlich model simulated the fast adsorption stage well;the slow adsorption stage was described well by the first-order kinetics.The activation energies of pyro-P,tripoly-P,and meta-P adsorption on aluminum hydroxide were determined to be 20.2,22.8 and 10.9 kJ/mol P adsorbed,respectively,in the fast adsorption stage and to be 66.3.53.5 and 72.5 kJ/tool P adsorbed,respectively,in the slow adsorption stage.The adsorption increased the negative charge of the aluminum hydroxide surface.Transmission electron microscopy and energy dispersive X-ray analysis analyses provided evidence that the adsorption was not uniform on the surface and that the small crystals contfibuted more to the fast adsorption than the normal sites did.The results from X-ray fluorescence spectrometry and X-ray photoelectron spectroscopy tests also revealed the uneven adsorption of condensed phosphate as a function of the penetration depth.More condensed phosphates were adsorbed on the outer surface of aluminum hydroxide than in its inner parts.

  12. Microstructure of Modified Layer Produced Using Aluminum Oxy-Hydroxide Nanostructured Powders

    Science.gov (United States)

    Kuznetsov, M. A.; Shlyakhova, G. V.; Danilov, V. I.; Zernin, E. A.; Dementyev, S. V.

    2016-04-01

    The paper provides the results of experimental research into the influence of aluminum oxy-hydroxide nano-structured powders on the microstructure of modified layers. It has been demonstrated aluminum oxy-hydroxide nano-structured powders AlO(OH) applied as modifiers bring about the decrease in dendrite dimensions, support equilibrium microstructure formation, and cause the growth of microhardness.

  13. An Aluminum Magnesium Hydroxide Stearate-based Skin Barrier Protection Cream Used for the Management of Eczematous Dermatitis

    Science.gov (United States)

    Bhambri, Sanjay; Michaels, Brent

    2008-01-01

    Eczematous dermatoses can often be very difficult to treat. An aluminum magnesium hydroxide stearate-based cream has recently become available for clinical use. Aluminum magnesium hydroxide stearate-based cream provides an alternative option in treating these dermatoses while providing barrier protection against external allergens and irritants. This article reviews various studies evaluating aluminum magnesium hydroxide stearate-based cream. PMID:21212843

  14. Form and stability of aluminum hydroxide complexes in dilute solution

    Science.gov (United States)

    Hem, John David; Roberson, Charles Elmer

    1967-01-01

    Laboratory studies of solutions 4.53 x 10 -4 to 4.5 x 10 -5 molal (12.2-1.2 ppm) in aluminum, in 0.01 molal sodium perchlorate, were conducted to obtain information as to the probable behavior of aluminum in natural water. When the solutions were brought to pH 7.5-9.5 and allowed to stand for 24 hours, a precipitate was obtained which was virtually amorphous as shown by X-rays, and which had a solubility equivalent to that of boehmite. This precipitate had a hydrolysis constant (*Ks4) of 1.93 x 10 -13a. When solutions were allowed to stead at this pH range for 10 days, their precipitates gave the X-ray pattern of bayerite (*Ks4 = 1.11 > (10- 4). These hydrolysis constants were obtained at 25?C. and corrected to zero ionic strength and are in close agreement with other published values. The predominant dissolved form in this pH range is Al(OH) -4. Below neutral pH (7.0) the dissolved aluminum species consist of octahedral units in which each aluminum ion is surrounded by six water molecules or hydroxide ions. Single units such as Al(OH2)6 + 3 and AlOH(OH2)5+2 are most abundant below pH 5.0, and where the molar ratio (r) of combined hydroxide to total dissolved aluminum is low. When r is greater than 1.0, polymerization of the octahedral units occurs. When r is between 2.0 and 3.0, solutions aged for 10 days or more contained colloidal particles between 0.10 and 0.45 ? in diameter. Particles whose diameters were greater than 0.10 ? were identified by X-ray diffraction as gibbsite. Particles smaller than 0.10 ? were also present and were shown by means of the electron microscope to have a hexagonal crystal pattern. Structured material consisting of sheets of coalesced six-membered rings of aluminum ions held together by double OH bridges has a distinctive kinetic behavior. This property was used to determine amounts of polymerized material in solutions having r between 1.0 and 3.0 after aging times ranging from a few hours to more than 4 months. Aging increased the

  15. Lithium adsorption on amorphous aluminum hydroxides and gibbsite

    Directory of Open Access Journals (Sweden)

    Konstantinos P. Prodromou

    2016-01-01

    Full Text Available Lithium (Li adsorption on both amorphous aluminum hydroxides and gibbsite was studied. For the amorphous Al(OH3 the adsorption was found to be pH dependent. Generally, 1.6 times more Li was adsorbed at initial pH value 8.0 compared with pH value 6.50. Gibbsite adsorbed 11.6 to 45.5 times less Li quantities compared with amorphous Al(OH3. Lithium adsorption was not depended on equilibrium times. It remained stable for all equilibrium times used. Lithium quantities extracted with 1N CH3COONH4 pH 7 , represent the physical adsorption, while the remaining Li that was adsorbed on Al(OH3, represents the chemical adsorption. During the desorption process 19% of Li extracted with NH4+, represents the physical adsorption, while the remaining 81% of Li, which was adsorbed represents the chemical adsorption. In gibbsite, 9.6% of Li represents the physical adsorption and 90.4% the chemical one. The experimental data conformed well to Freundlich isotherm equation.

  16. Kinetics of leaching of the aluminum hydroxide in bauxites by alkaline solutions at atmospheric pressure

    Science.gov (United States)

    Burtsev, A. V.; Lainer, Yu. A.; Gorichev, I. G.; Kipriyanov, N. A.; Izotov, A. D.

    2011-11-01

    The kinetics of leaching of the aluminum hydroxide from the gibbsite bauxites of Guinea (Kindia deposit) is studied under atmospheric conditions. The activation energy of the process is found to be 34.75 kJ/mol, which indicates that the process proceeds in a kinetic mode. The leaching of the aluminum hydroxide from bauxite in an alkaline solution is simulated using acid-base equilibria (ion exchange) and the electrochemical theory of the structure of a double electrical layer (Gram-Parsons theory).

  17. An Aluminum Magnesium Hydroxide Stearate-based Skin Barrier Protection Cream Used for the Management of Eczematous Dermatitis: A Summary of Completed Studies.

    Science.gov (United States)

    Del Rosso, James Q; Bhambri, Sanjay; Michaels, Brent

    2008-11-01

    Eczematous dermatoses can often be very difficult to treat. An aluminum magnesium hydroxide stearate-based cream has recently become available for clinical use. Aluminum magnesium hydroxide stearate-based cream provides an alternative option in treating these dermatoses while providing barrier protection against external allergens and irritants. This article reviews various studies evaluating aluminum magnesium hydroxide stearate-based cream.

  18. An Aluminum Magnesium Hydroxide Stearate-based Skin Barrier Protection Cream Used for the Management of Eczematous Dermatitis: A Summary of Completed Studies

    OpenAIRE

    Del Rosso, James Q.; Bhambri, Sanjay; Michaels, Brent

    2008-01-01

    Eczematous dermatoses can often be very difficult to treat. An aluminum magnesium hydroxide stearate-based cream has recently become available for clinical use. Aluminum magnesium hydroxide stearate-based cream provides an alternative option in treating these dermatoses while providing barrier protection against external allergens and irritants. This article reviews various studies evaluating aluminum magnesium hydroxide stearate-based cream.

  19. Different approaches to the analysis of small angle scattering experiments on porous aluminum-hydroxide

    DEFF Research Database (Denmark)

    Rasmussen, F.B.

    2001-01-01

    Different approaches to the analysis of Small Angle X-ray Scattering experiments on the porous aluminum-hydroxide pseudo-boehmite are compared. Experimental data is analyzed both as scattering from mass fractal aggregates and polydisperse collections of anisotropic particles. Both types of analys...

  20. Fluoride adsorption onto amorphous aluminum hydroxide: Roles of the surface acetate anions.

    Science.gov (United States)

    Zhang, Yong-Xing; Jia, Yong

    2016-12-01

    Amorphous aluminum hydroxide with hydroxyl groups, acetate anions and chlorine anions enriched surface was synthesized, and was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. Batch experiments were performed to study the influence of various experimental parameters such as contact time, initial fluoride concentration, temperature, pH value and the presence of competing anions on the adsorption of fluoride on amorphous aluminum hydroxide. The kinetic data was well fitted to pseudo-second-order model. The fluoride adsorption on the amorphous aluminum hydroxide can be well described by the Langmuir model, and the maximum adsorption capacity was 63.94mgg(-1) at pH 7.0. Thermodynamic parameters including the Gibbs free energy, standard enthalpy and standard entropy were calculated, and the results suggested that the adsorption of fluoride on the amorphous aluminum hydroxide was a feasible, spontaneous and exothermic process. The adsorption mechanism was revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis. The results suggested that the surface acetate anions and surface chlorine anions played important roles in the fluoride removal process. PMID:27565961

  1. Determination of adsorbed protein concentration in aluminum hydroxide suspensions by near-infrared transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Jacobsen, Susanne;

    2008-01-01

    Analysis of aluminum hydroxide based vaccines is difficult after antigen adsorption. Adsorbed protein is often assessed by measuring residual unadsorbed protein for quality control. A new method for the direct determination of adsorbed protein concentration in suspension using near-infrared (NIR...... in vaccine production as a method for quality control and quality assurance....

  2. ADSORPTION OF PITCH AND STICKIES ON MAGNESIUM ALUMINUM HYDROXIDES TREATED AT DIFFERENT TEMPERAURES

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2011-04-01

    Full Text Available Magnesium aluminum hydroxides (MAH of nitrate and carbonate forms were prepared by co-precipitation, dried at different temperatures, and employed as an adsorbent for pitch and stickies in papermaking. Results indicated that MAH that had been heat-treated had higher adsorption capacity to model pitch and stickies at neutral pH. Low-temperature-dried magnesium aluminum hydroxides of nitrate form (MAH-NO3 had higher adsorption capacity to model pitch and model stickies than those of the carbonate form (MAH-CO3. Increasing the drying temperature of MAH reduced the difference of adsorption capacity between MAH-NO3 and MAH-CO3. Higher-temperature-dried magnesium aluminum hydroxides also showed higher adsorption capacity to model pitch and stickies when the drying temperature was lower than 550 oC. MAH displayed higher adsorption capacity while a lower initial adsorption rate of model stickies than of model pitch. The model pitch and stickies were adsorbed on MAH significantly by charge neutralization and distributed mainly on the surface of the platelets of magnesium aluminum hydroxides. The experimental isothermal adsorption data of model pitch and stickies on MAH dried at 500 oC fit well to the Freundlich and Dubinin–Radushkevich isotherm equations.

  3. THE DIGESTION OPERATION IN THE ALKALI ALUMINAT SOLUTIONS OF ALUMINUM HYDROXIDES IN THE BOEHMITIC BAUXITES

    Directory of Open Access Journals (Sweden)

    Sami ŞAHİN

    1999-01-01

    Full Text Available At present more than 90 per cent of the world's alumina is produced by the Bayer process, a simple technology providing high purity final product. A part from some exceptional local conditions, bauxite is processed almost solely by this technology. As a benefication process, alumina production releases the aluminum oxide content of bauxite from other accompanying oxides thus providing alumina suitable for electrolysis in a cryolite melt. The basic theory of the Bayer process was elaborated by K.J. Bayer and described in his patents in 1887 and 1892. The first patent refers to the aid of seed crystals of aluminum hydroxide or of carbonic acid, that is, to the precipitation and carbonation processes. The second patent formulates the concept that the aluminum oxide content of bauxites can be dissolved in sodium hydroxide solutions, with the formulation of sodium aluminate, a process called digestion nowadays. The most important operations of the Bayer technology are bauxite preparation, crushing, grinding, digestion, red mud separation, thickening, washing, filtration, precipitation, calcination and evaporation. In spite of its great significance as regards the complete Bayer technology, the structure of sodium aluminate solutions has not been cleared up definitely yet. Boehmite is the most important aluminum mineral of karstic bauxites. Some experimental results showing the various effects on aluminum hydroxides by alkali process from boehmitic bauxites and the factors gowerning the digestion operation of aluminate solutions were investigated.

  4. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    Science.gov (United States)

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. PMID:27028104

  5. Thermal Analysis On The Kinetics Of Magnesium-Aluminum Layered Double Hydroxides In Different Heating Rates

    OpenAIRE

    Hongbo Y.; Meiling C.; Xu W; Hong G.

    2015-01-01

    The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs) was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC) methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min) on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal c...

  6. Stress Corrosion Cracking of Steel and Aluminum in Sodium Hydroxide: Field Failure and Laboratory Test

    Directory of Open Access Journals (Sweden)

    Y. Prawoto

    2012-01-01

    Full Text Available Through an investigation of the field failure analysis and laboratory experiment, a study on (stress corrosion cracking SCC behavior of steel and aluminum was performed. All samples were extracted from known operating conditions from the field failures. Similar but accelerated laboratory test was subsequently conducted in such a way as to mimic the field failures. The crack depth and behavior of the SCC were then analyzed after the laboratory test and the mechanism of stress corrosion cracking was studied. The results show that for the same given stress relative to ultimate tensile strength, the susceptibility to SCC is greatly influenced by heat treatment. Furthermore, it was also concluded that when expressed relative to the (ultimate tensile strength UTS, aluminum has similar level of SCC susceptibility to that of steel, although with respect to the same absolute value of applied stress, aluminum is more susceptible to SCC in sodium hydroxide environment than steel.

  7. Fabrication and Corrosion Resistance of Superhydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2013-01-01

    Full Text Available Superhydrophobic hydroxide zinc carbonate (HZC films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF26(CH23Si(OCH33 molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM, water contact angle measurement (CA, Fourier transform infrared spectrometer (FTIR, and X-ray photoelectron spectroscopy (XPS, respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pinecone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the superhydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS measurements. The EIS measurements’ results revealed that the superhydrophobic surface considerably improved the corrosion resistance of aluminum.

  8. Fabrication and Corrosion Resistance of Super hydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    International Nuclear Information System (INIS)

    Super hydrophobic hydroxide zinc carbonate (HZC) films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF2)6(CH2))3Si(OCH3)3) molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM), water contact angle measurement (CA), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS), respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pine cone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the super hydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements’ results revealed that the super hydrophobic surface considerably improved the corrosion resistance of aluminum.

  9. Thermal Analysis On The Kinetics Of Magnesium-Aluminum Layered Double Hydroxides In Different Heating Rates

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.

  10. Kinetics and leaching behaviors of aluminum from pharmaceutical blisters in sodium hydroxide solution

    Institute of Scientific and Technical Information of China (English)

    王重庆; 王晖; 顾帼华; 符剑刚; 刘又年

    2015-01-01

    A hydrometallurgical process was developed for recycling pharmaceutical blisters. Leaching aluminum from pharmaceutical blisters using sodium hydroxide (NaOH) solutions was investigated with respect to leaching behaviors and kinetics. A L9(34) orthogonal design of experiments suggests that the most significant factor is NaOH concentration followed by temperature and leaching time. Factorial experiments demonstrate that the leaching rate of aluminum increases with increasing of the factors. The optimum conditions are temperature of 70 °C, leaching time of 20 min, NaOH concentration of 1.25 mol/L, liquid-to-solid mass ratio of 15:1 and agitation speed of 400 r/min. Under optimum conditions, the leaching rate is up to 100%, implying that aluminum and polyvinyl chloride (PVC) plastic in pharmaceutical blisters are separated completely. Kinetics of leaching aluminum is best described by the product layer diffusion control model, and the activation energy is calculated to be 19.26 kJ/mol.

  11. ALUMINUM READINESS EVALUATION FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENRATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MASSIE HL

    2011-01-27

    A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

  12. Mechanisms of Antigen Adsorption Onto an Aluminum-Hydroxide Adjuvant Evaluated by High-Throughput Screening.

    Science.gov (United States)

    Jully, Vanessa; Mathot, Frédéric; Moniotte, Nicolas; Préat, Véronique; Lemoine, Dominique

    2016-06-01

    The adsorption mechanism of antigen on aluminum adjuvant can affect antigen elution at the injection site and hence the immune response. Our aim was to evaluate adsorption onto aluminum hydroxide (AH) by ligand exchange and electrostatic interactions of model proteins and antigens, bovine serum albumin (BSA), β-casein, ovalbumin (OVA), hepatitis B surface antigen, and tetanus toxin (TT). A high-throughput screening platform was developed to measure adsorption isotherms in the presence of electrolytes and ligand exchange by a fluorescence-spectroscopy method that detects the catalysis of 6,8-difluoro-4-methylumbelliferyl phosphate by free hydroxyl groups on AH. BSA adsorption depended on predominant electrostatic interactions. Ligand exchange contributes to the adsorption of β-casein, OVA, hepatitis B surface antigen, and TT onto AH. Based on relative surface phosphophilicity and adsorption isotherms in the presence of phosphate and fluoride, the capacities of the proteins to interact with AH by ligand exchange followed the trend: OVA electrostatic attractions governing the interactions between an antigen adsorbed onto aluminum-containing adjuvant. PMID:27238481

  13. ATR-FTIR and XPS study on the structure of complexes formed upon the adsorption of simple organic acids on aluminum hydroxide

    Institute of Scientific and Technical Information of China (English)

    GUAN Xiao-hong; CHEN Guang-hao; SHANG Chii

    2007-01-01

    Information on the binding of organic ligands to metal (hydr)oxide surfaces is useful for understanding the adsorption behaviour of natural organic matter (NOM) on metal (hydr)oxide. In this study, benzoate and salicylate were employed as the model organic ligands and aluminum hydroxide as the metal hydroxide. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra revealed that the ligands benzoate and salicylate do coordinate directly with the surface of hydrous aluminum hydroxide, thereby forming inner-sphere surface complexes. It is concluded that when the initial pH is acidic or neutral, monodentate and bridging complexes are to be formed between benzoate and aluminum hydroxide while bridging complexes predominate when the initial pH is alkalic. Monodentate and bridging complexes can be formed at pH 5 while precipitate and bridging complexes are formed at pH 7 when salicylate anions are adsorbed on aluminum hydroxide. The X-ray photoelectron (XP) spectra demonstrated the variation of C 1s binding energy in the salicyate and phenolic groups before and after adsorption. It implied that the benzoate ligands are adsorbed through the complexation between carboxylate moieties and the aluminum hydroxide surface, while both carboxylate group and phenolic group are involved in the complexation reaction when salicylate is adsorbed onto aluminum hydroxide. The information offered by the XPS confirmed the findings obtained with ATR-FTIR.

  14. Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum

    Science.gov (United States)

    Zhang, Haifeng; Yin, Liang; Liu, Xiaowei; Weng, Rui; Wang, Yang; Wu, Zhiwen

    2016-09-01

    We present a novel method to fabricate Zn-Al LDH (layered double hydroxides) film with 3D flower-like micro-and nanostructure on the aluminum foil. The wettability of the Zn-Al LDH film can be easily changed from superhydrophilic to superhydrophobic with a simple chemical modification. The as-prepared superhydrophobic surfaces have water CAs (contact angles) of 165 ± 2°. In order to estimate the drag reduction property of the surface with different adhesion properties, the experimental setup of the liquid/solid friction drag is proposed. The drag reduction ratio for the as-prepared superhydrophobic sample is 20-30% at low velocity. Bearing this in mind, we construct superhydrophobic surfaces that have numerous technical applications in drag reduction field.

  15. Evaluation of preservative effectiveness of gallic acid derivatives in aluminum hydroxide gel-USP

    Directory of Open Access Journals (Sweden)

    Anurag Khatkar

    2013-01-01

    Full Text Available Background: Preservatives are added to most of the pharmaceutical preparations to prevent them from deterioration throughout their shelf life. Literature reveals that the common synthetic preservatives have many limitations, such as development of microbial resistance (in due course of time and several serious side-effects. Aim: The aim of this study is to find out new preservatives synthesized from natural sources, which may have better efficiency than the existing synthetic preservatives. The derivatives of naturally occurring gallic acid were subjected for their preservative efficacy study. Their preservative efficiency was evaluated and compared with the standard parabens. Materials and Methods: The selected amide, anilide and ester derivatives of gallic acid were subjected to preservative efficacy testing in an official antacid preparation, {aluminum hydroxide gel-USP (United States Pharmacopoeia} against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Candida albicans, and Aspergillus niger as representative challenging microorganisms as per USP 2004 guidelines. Results: The selected derivatives were found to be effective against all selected strains and showed preservative efficacy comparable to that of standard and even better in case E. coli, C. albicans and A. niger. The 8-hydroxy quinoline ester derivative showed better preservative efficacy than standard as well as other derivatives. Conclusion: The newly synthesized gallic acid preservatives were found to be effective in the proposed pharmaceutical preparation (Aluminium Hydroxide Gel - USP. Also, the synthesized preservatives have shown comparative and even better efficacy than the existing parabens and hence they have potential for use in pharmaceutical preparations.

  16. Double-blind clinical, endoscopic and histological comparison of hydrotalcite/dimethicone suspension and magnesium hydroxide/aluminum hydroxide suspension in the treatment of symptomatic gastritis.

    Science.gov (United States)

    Cobden, I; McMahon, M J; Dixon, M F; Axon, A T

    1981-01-01

    A double-blind, randomized trial was undertaken to compare the clinical, endoscopic and histological response to 6-weeks' treatment with hydrotalcite/dimethicone suspension or magnesium hydroxide/aluminum hydroxide suspension in 36 patients with symptomatic gastritis. Significantly more patients (P less than 0.05) showed symptomatic improvement in the antacid-treated group than in the hydrotalcite/dimethicone-treated group and more had a reduction in histological inflammatory scores (P less than 0.01), although there was little correlation between histology and symptoms. There was no evidence from this study that the bile acid binding and anti-foaming properties of hydrotalcite/dimethicone suspension were of any benefit in the treatment of patients with symptomatic gastritis. PMID:7267678

  17. Coprecipitation of trace amounts of silicon with aluminum hydroxide and the determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2014-01-01

    Full Text Available A simple preconcentration method of silicon based on coprecipitation with aluminum hydroxide prior to its flame atomic absorption (FAAS determination was established. The recovery values of analyte ion was higher than 95%. The parameters including types of hydroxide ion source for precipitation, acid type for dissolution step, amount of aluminum ion as collector, pH, temperature, standing and centrifuge time, and sample volume were optimized for the quantitative recovery of the analyte. The influences of matrix ions were also examined. The relative standard deviation was found to be 3.2%. The limit of detection was calculated as (0.1 mg L-1. The preconcentration factor is 100 for (200 mL solution. The proposed method was successfully applied for the determination of silicon in some water and alloy samples.

  18. Synthesis Of Magnesium-Aluminum Layered Double Hydroxides By Mechanochemical Method And Its Solid State Reaction Kinetics

    OpenAIRE

    Hongbo Y.; Meiling C.; Xiuhui W.; Hong G.

    2015-01-01

    A mechanochemical method is developed in preparing magnesium-aluminum-layered double hydroxides (MgAl-LDHs). This approach includes activation process and diffusion process. In order to verify the LDHs structure and study the reaction kinetics, X-ray diffraction (XRD) patterns, inductively coupled plasma(ICP) and physical adsorption instrument were characterized. The results show that activation time can change the surface of particles and affect the reaction grade. During the diffusion proce...

  19. Glassy-state stabilization of a dominant negative inhibitor anthrax vaccine containing aluminum hydroxide and glycopyranoside lipid A adjuvants.

    Science.gov (United States)

    Hassett, Kimberly J; Vance, David J; Jain, Nishant K; Sahni, Neha; Rabia, Lilia A; Cousins, Megan C; Joshi, Sangeeta; Volkin, David B; Middaugh, C Russell; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2015-02-01

    During transport and storage, vaccines may be exposed to temperatures outside of the range recommended for storage, potentially causing efficacy losses. To better understand and prevent such losses, dominant negative inhibitor (DNI), a recombinant protein antigen for a candidate vaccine against anthrax, was formulated as a liquid and as a glassy lyophilized powder with the adjuvants aluminum hydroxide and glycopyranoside lipid A (GLA). Freeze-thawing of the liquid vaccine caused the adjuvants to aggregate and decreased its immunogenicity in mice. Immunogenicity of liquid vaccines also decreased when stored at 40°C for 8 weeks, as measured by decreases in neutralizing antibody titers in vaccinated mice. Concomitant with efficacy losses at elevated temperatures, changes in DNI structure were detected by fluorescence spectroscopy and increased deamidation was observed by capillary isoelectric focusing (cIEF) after only 1 week of storage of the liquid formulation at 40°C. In contrast, upon lyophilization, no additional deamidation after 4 weeks at 40°C and no detectable changes in DNI structure or reduction in immunogenicity after 16 weeks at 40°C were observed. Vaccines containing aluminum hydroxide and GLA elicited higher immune responses than vaccines adjuvanted with only aluminum hydroxide, with more mice responding to a single dose. PMID:25581103

  20. Thermal stability and oil absorption of aluminum hydroxide treated by dry modification with different modifiers

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiang-yang; LI Chang-lin; HUO Deng-wei; LI Jie; WU Shang-yuan

    2008-01-01

    The thermal stability, particle size and morphology and oil absorption of aluminum hydroxide(ATH) treated by dry modification with three different modifiers were investigated. The experimental results show that the thermal stability of ATH powder is markedly improved by dry modification technology with the following modifiers such as phosphoric acid, polyacrylic acid and the mixture of phosphoric acid and polyacrylic acid. The best effect comes from pure phosphoric acid, and the initial temperature for the loss of crystal water of ATH powder modified with pure polyacrylic acid can reach about 202 ℃ that is approximately 10 ℃ higher than that of ATH powder before modification. The phenomena of agglomeration and macro-aggregate badly exist in ATH powder modified with the modifiers containing phosphoric acid. The growth of particles and agglomerations of powders are not evident in ATH powder modified with pure polyacrylic acid. The oil absorption of ATH powder modified with the modifiers containing phosphoric acid is apparently larger than that of original ATH powder and ATH powder modified with pure polyacrylic acid. The oil absorption of the ATH powder modified with pure polyacrylic acid is slightly smaller than that of original ATH powder.

  1. Removal of trivalent chromium from aqueous solution using aluminum oxide hydroxide.

    Science.gov (United States)

    Bedemo, Agaje; Chandravanshi, Bhagwan Singh; Zewge, Feleke

    2016-01-01

    Water is second most essential for human being. Contamination of water makes it unsuitable for human consumption. Chromium ion is released to water bodies from various industries having high toxicity which affects the biota life in these waters. In this study aluminum oxide hydroxide was tested for its efficiency to remove trivalent chromium from aqueous solutions through batch mode experiments. Chromium concentrations in aqueous solutions and tannery waste water before and after adsorption experiments were determined using flame atomic absorption spectrometry. The effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(III) were studied. The study revealed that more than 99 % removal of Cr(III) was achieved over wide range of initial pH (3-10). The optimum conditions for the removal of Cr(III) were found to be at pH 4-6 with 40 g/L adsorbent dose at 60 min of contact time. The adsorption capacity was assessed using Langmuir and Freundlich isotherms. The equilibrium data at varying adsorbent dose obeyed the two isotherms. The adsorbent was found to be efficient for the removal of Cr(III) from tannery waste effluent. PMID:27547663

  2. Ionic elastomers based on carboxylated nitrile rubber (XNBR and magnesium aluminum layered double hydroxide (hydrotalcite

    Directory of Open Access Journals (Sweden)

    A. Laskowska

    2014-06-01

    Full Text Available The presence of carboxyl groups in carboxylated nitrile butadiene rubber (XNBR allows it to be cured with different agents. This study considers the effect of crosslinking of XNBR by magnesium aluminum layered double hydroxide (MgAl-LDH, known also as hydrotalcite (HT, on rheometric, mechano-dynamical and barrier properties. Results of XNBR/HT composites containing various HT loadings without conventional curatives are compared with XNBR compound crosslinked with commonly used zinc oxide. Hydrotalcite acts as an effective crosslinking agent for XNBR, as is particularly evident from rheometric and Fourier transform infrared spectroscopy (FTIR studies. The existence of ionic crosslinks was also detected by dynamic mechanical analysis (DMA of the resulting composites. DMA studies revealed that the XNBR/HT composites exhibited two transitions – one occurring at low temperature is associated to the Tg of elastomer and the second at high temperature corresponds to the ionic transition temperature Ti. Simultaneous application of HT as a curing agent and a filler may deliver not only environmentally friendly, zinc oxide-free rubber product but also ionic elastomer composite with excellent mechanical, barrier and transparent properties.

  3. MORPHOLOGY AND PROPERTIES OF LINEAR LOW-DENSITY POLYETHYLENE HIGHLY LOADED WITH ALUMINUM HYDROXIDE

    Institute of Scientific and Technical Information of China (English)

    Gen-lin Wang; Ping-kai Jiang; Zi-kang Zhu; Jie Yin

    2002-01-01

    An experimental study was carried out to investigate the effects of isopropoxy tri(dioctyl pyrophosphoryl) titanate coupling agent on the mechanical performance, rheological property and microstructures of polyethylene highly loaded with aluminum hydroxide (Al(OH)a) composite. It was found that the addition of coupling agent results in reduced tensile strength and increased percentage elongation of the filled systems. Silane crosslinkable polyethylene substituting for polyethylene as matrix improves the tensile strength of the composite, while the percentage elongation of the composite still remains at a desired level. Melt viscosity of the composite will be improved by addition of titanate coupling agent. Microstructures of the composites were also studied by means of the scanning electron microscopy (SEM) technique. SEM micrographs reveal that finer dispersion of Al(OH)3 will be obtained upon treatment of titanate and a transition from brittle to tough fracture takes place before and after silane crosslinking structure is introduced into polyethylene highly filled with Al(OH)3 composite.

  4. Characterization of alumina obtained from the synthesis of gelatinous precipitates of aluminum hydroxide obtained from the reaction of aluminum sulfate and ammonium hydroxide in different temperatures; Caracterizacao de aluminas obtidas a partir da sintese de precipitados gelatinosos de hidroxido de aluminio obtidos pela reacao de sulfato de aluminio e hidroxido de amonio em diferentes temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Mercury, Jose Manuel Rivas [Centro Federal de Educacao Tecnologica do Maranhao (CEFET), Sao Luiz, MA (Brazil); Freitas Neves, R. de [Para Univ., Belem, Pa (Brazil). Dept. de Engenharia Quimica

    1996-07-01

    Aluminum hydroxide was obtained by synthesis through neutralization of solutions aluminum sulphate solutions with ammonium hydroxide at different level of temperatures of synthesis (30, 60, 90 deg C) on the molar [OH]/[Al{sup +3}] of 6,5. All products was burned at 950 deg C during two hours of dried aluminum hydroxide powder. Alumina obtained and A-16SG, APC-2011, produced by Alcoa Co. was characterized by Bulk Density, Tap density, Real Density, Particle Size Distribution, X-Ray Diffractions and Chemical Analysis and both compared. (author) 11 refs., 3 figs., 3 tabs.

  5. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  6. A mechanochemical approach to get stunningly uniform particles of magnesium-aluminum-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaoqing; Qi Fenglin [Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210097 (China); Li Shuping, E-mail: lishuping@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210097 (China); Wei Shaohua; Zhou Jiahong [Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210097 (China)

    2012-10-15

    Graphical abstract: The variation of water content can change the morphology and the dispersion state of Mg-Al-LDHs, the water content are 0% (a) and 2% (b), respectively. Highlights: Black-Right-Pointing-Pointer A mechanochemical approach is developed to get uniform and monodispersed LDHs. Black-Right-Pointing-Pointer This approach includes two processes, i.e., grinding and peptization process. Black-Right-Pointing-Pointer Peptization plays a critical role in the formation of high crystallinity hexagons. Black-Right-Pointing-Pointer The size and morphologies of LDHs can be precisely controlled. - Abstract: A mechanochemical approach is developed in preparing a series of magnesium-aluminum-layered double hydroxides (Mg-Al-LDHs). This approach includes a mechanochemical process which involved manual grinding of solid salts in an agate mortar and afterwards peptization process. In order to verify the LDHs structure synthesized in the grinding process, X-ray diffraction (XRD) patterns, transmission electron microscopy (TEM) photos and thermogravimetry/differential scanning calorimetry (TG-DSC) property of the product without peptization were characterized and the results show that amorphous particles with low crystallinity and poor thermal stability are obtained, and the effect of peptization is to improve the properties, more accurately, regular particles with high crystallinity and good thermal stability can be gained after peptization. Furthermore, the fundamental experimental parameters including grinding time, the molar ratio of Mg to Al element (defined as R value) and the water content were systematically examined in order to control the size and morphologies of LDHs particles, regular hexagonal particles or the spherical nanostructures can be efficiently obtained and the particle sizes were controlled in the range of 52-130 nm by carefully adjusting these parameters. At last, stunningly uniform Mg-Al-LDHs particles can be synthesized under proper R values

  7. Synthesis Of Magnesium-Aluminum Layered Double Hydroxides By Mechanochemical Method And Its Solid State Reaction Kinetics

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available A mechanochemical method is developed in preparing magnesium-aluminum-layered double hydroxides (MgAl-LDHs. This approach includes activation process and diffusion process. In order to verify the LDHs structure and study the reaction kinetics, X-ray diffraction (XRD patterns, inductively coupled plasma(ICP and physical adsorption instrument were characterized. The results show that activation time can change the surface of particles and affect the reaction grade. During the diffusion process, reaction time is the most important factor. The reaction energy (ΔQ was calculated that is 6kJ/mol.

  8. Comparison of the kinetic laws of the dissolution of bauxite and aluminum and iron(III) oxides and hydroxides in hydrochloric acid

    Science.gov (United States)

    Gololobova, E. G.; Gorichev, I. G.; Lainer, Yu. A.; Kozlov, K. V.

    2013-07-01

    The influence of the temperature and concentration of a hydrochloric acid solution on the dissolution kinetics of aluminum and iron(III) oxides and hydroxides and a natural sample of aluminum-containing raw materials, bauxite, is studied. The rate W of the transition of iron(III) ions from bauxite is higher than the rate of aluminum ion transition. The dependence of the fraction of a dissolved solid phase on time τ of dissolution of the oxides and hydroxides is determined, α = 1 — exp(- Asinh( Wτ)). The solubility of iron(III) chloride increases and that of aluminum chloride decreases as the HCl concentration increases. An empirical equation is proposed for the description of the dependence of the process rate on a series of parameters,.

  9. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  10. How the Method of Synthesis Governs the Local and Global Structure of Zinc Aluminum Layered Double Hydroxides

    DEFF Research Database (Denmark)

    Puschparaj, Suraj S. C.; Forano, Claude; Prevot, Vanessa;

    2015-01-01

    Seven zinc aluminum layered double hydroxides (ZnAl LDHs), [Zn1-xAlx (OH)2Ax,nH2O] A = NO3-, Cl- or CO32-, prepared by the urea and co-precipitation synthesis methods were investigated to determine how synthesis parameters (pH, metal ion concentration and post synthesis treatment) affect the local...... the LDH particles or separate phase(s) associated with LDHs. In contrast, samples prepared by co-precipitation with careful pH control and hydrothermal treated have high local order and good crystallinity (large particle size). Our results show that both local (NMR) and bulk techniques are needed......, and 67Zn NMR spectroscopy. The urea method results in LDHs, which on the global scale are highly crystalline LDHs, but disordered on the local scale. The disorder is correlated with the presence of Al-rich phases, which are undetected by bulk techniques (TEM, PXRD), as they are either defects within...

  11. Direct growth of cobalt aluminum double hydroxides on graphene nanosheets and the capacitive properties of the resulting composites

    International Nuclear Information System (INIS)

    We synthesized graphene nanosheets (GNs)/cobalt aluminum (CoAl) double hydroxide composites through a layer-by-layer deposition process while varying the concentration of the graphene precursor used. The CoAl layered double hydroxide particles were uniformly distributed on the surfaces of the graphene layers and effectively prevented the agglomeration of the GNs, resulting in a higher reactive surface area and easier ion transport. We employed X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, and field-emission transmission electron microscopy to investigate the microstructures and morphologies of the composites. In addition, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements were performed to analyze the electrochemical behaviors of the composites. The as-prepared composites showed desirable electrochemical characteristics, including high specific capacitances, low resistances, and high cycling stabilities. In particular, the composite formed by optimizing the GNs/CoAl ratio (the electrolyte used was a 6 M aqueous KOH solution) exhibited the maximum specific capacitance, which was 974 F g−1

  12. Structural Investigation of Zn(II) Insertion in Bayerite an Aluminum Hydroxide

    DEFF Research Database (Denmark)

    Puschparaj, Suraj S. C.; Jensen, Nicholai Daugaard; Forano, Claude;

    2016-01-01

    Bayerite was treated under hydrothermal conditions (120, 130, 140, and 150 °C) in order to prepare a series of layered double hydroxides (LDHs) with an ideal composition of ZnAl4(OH)12(SO4)0.5nH2O (ZnAl4-LDHs). These products were investigated by both bulk techniques (PXRD, TEM, and elemental an...

  13. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites.

    Science.gov (United States)

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322

  14. Influence of pH on the thixotropy of magnesium aluminum hydroxide-kaolinite suspension

    Institute of Scientific and Technical Information of China (English)

    DAI; Xiaonan

    2001-01-01

    [1]Chen Zongqi, Shi Lin, Wu Shiying et al., The negative thixotropy, Chemistry (in Chinese), 1991, 54(2): 31-34.[2]Hou Wanguo, Sun Dejun, Han Shuhua et al., A novel thixotropic phenomenon-complex thixotropic behavior, Chem. Res. Chin. Univ., 1997, 13(1): 86-88.[3]Mo 2+ Al3+[4]Constantino. V. R. L., Pinnavaia, T. J., Basic properties of Mg2+l-x Ai3+x layered double hydroxides intercalated by carbonate. hydroxide, chloride, and sulfate anions, Inorg. Chem., 1995, 34(4): 883-892.[5]Albiston, L., Frankin, K. R., Lee, E. et al., Rheology and microstructure of aqueous layered double hydroxide dispersions, J. Mater. Chem., 1996, 6(5): 871-877.[6]Abend, S., Bonnke, N., Gutschner, U. et al., Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides, Colloid Polym. Sci., 1998, 276(8): 730-737.[7]Heckroodt, R. O., Ryan, W., Clay suspensions with negative thixotropy, Trans. J. Brit. Ceram. Sci., 1978, 77(2): 180- 183.[8]Chen Zongqi, Yu Wanglin, Hao Ce et al., The rheological properties of SiO2 suspension and PHPA system, Acta Chimica Sinica, 1990, 48(7): 666-72.[9]Benna, M., Kbir-Ariguib, N., Magnin, A. et al., Effect of pH on rheological properties of purified sodium bentonite suspensions, J. Colloid Interface Sci., 1999, 218(4): 442-445.[10]Sohm, R., Tadros, T. F., Viscoelastic Properties of sodium montmorillonite (Gelwhite H) suspensions, J. Colloid Interface Sci.. 1989, 132(1): 62-71.[11]Torrance, K. J., Pirmat, M., Effect of pH on the rheology of marine clay from the site of the south Nation River, Clays Clay Miner, 1984, 32(5): 384-390.[12]Heath, D., Tadros, T. F., Influence of pH, electrolyte, and poly (vinyl alcohol) addition on the rheological characteristics of aqueous dispersions of sodium montmorillonite, J. Colloid Interface Sci., 1983, 93(2): 307-319.

  15. Stress Corrosion Cracking of Steel and Aluminum in Sodium Hydroxide: Field Failure and Laboratory Test

    OpenAIRE

    Prawoto, Y.; Sumeru, K.; W.B. WAN NIK

    2012-01-01

    Through an investigation of the field failure analysis and laboratory experiment, a study on (stress corrosion cracking) SCC behavior of steel and aluminum was performed. All samples were extracted from known operating conditions from the field failures. Similar but accelerated laboratory test was subsequently conducted in such a way as to mimic the field failures. The crack depth and behavior of the SCC were then analyzed after the laboratory test and the mechanism of stress corrosion cracki...

  16. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2016-07-01

    Full Text Available Bullo Saifullah,1 Mohamed Ezzat El Zowalaty,2,3 Palanisamy Arulselvan,3 Sharida Fakurazi,3,4 Thomas J Webster,5–7 Benjamin Mahler Geilich,5,6 Mohd Zobir Hussein1 1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, (ITMA, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa; 3Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, 4Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 5Department of Chemical Engineering, 6Department of Bioengineering, Northeastern University, Boston, MA, USA; 7Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The chemotherapy for tuberculosis (TB is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B by intercalating the anti-TB drug isoniazid (INH into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to be ~164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. Keywords: tuberculosis, Zn/Al-LDHs, drug

  17. Influence of pH on the thixotropy of magnesium aluminum hydroxide-kaolinite suspension

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The influence of pH on the thixotropy of pure kaolinite suspension and magnesium alu minum hydroxide (Mg-Al-MMH)-kaolinite suspension was studied. The results show that the thixotropic type of pure kaolinite suspension was not affected by pH studied in the range of 3.60 12.00. The thixotropic type of Mg-Al-MMH-kaolinite suspension with mass ratio (R) value of MMH to kaolinite 0.029 transformed from complex thixotropy into positive thixotropy with increasing of pH in the range of pH 3.83- 12.00, and the type of thixotropy of Mg-AI-MMH-kaolinite suspension with R= 0.129 transformed from positive thixotropy into complex thixotropy with increasing of pH in the range of pH 3.70- 11.96.

  18. Alkali Leaching Kinetics of Amorphous Aluminum Hydroxide Mud in Chromium Hydroxide Residue for Aluminium Recovery%铬渣中无定型铝泥碱浸提铝动力学

    Institute of Scientific and Technical Information of China (English)

    田磊; 徐志峰; 李平; 徐红彬; 张懿

    2011-01-01

    以含Cr(OH)3和Al(OH)3的铝泥渣为原料,研究渣中Al(OH)3在343~373 K温度内的碱浸动力学.结果表明,在NaOH溶液初始浓度150g/L、液固比15 mL/g、搅拌转速450 r/min条件下,在浸出达到平衡前,铝浸出率与浸出时间呈良好的线性关系,随温度升高,铝浸出达到平衡所需时间不断缩短;在343~373 K内,铝浸出速率随浸出温度升高不断增大,最终可达94.07%,所得氧化铬产品中氧化铬的含量为98.12%.Cr(OH)3渣中铝浸出反应的表观活化能为62.38 kJ/mol,浸出过程遵循界面化学反应控制的粒径收缩芯模型.%With the aluminum residue containing chromium hydroxide [Cr(OH)3] and aluminum hydroxide [A1(OH)3] as raw material, the alkali leaching kinetics of A1(OH)3 in the residue has been studied in the following conditions: leaching temperature from 343 to 373 K, initial concentration of sodium hydroxide 150 g/L, ratio of liquid to solid 15 mL/g, and agitation speed 450 r/min. The experimental results show that a linear relationship between the leaching rate of aluminum and leaching time exits before the leaching equilibrium. The time consumed for which the leaching of aluminum reaches at the equilibrium is shortened with the increase of leaching temperature. The leaching rate of aluminum is increased with the increase of temperature in 343-373 K, finally the leaching rate of aluminum is 94.07%, leading to the main content of chrome oxide product at 98.12%. The apparent activation energy is determined as 62.38 kJ/mol for the leaching of aluminum. The leaching of aluminum follows the shrinking core model with surface reaction control.

  19. ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION SUMMARY OF PRIOR LAB-SCALE TESTING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; GUILLOT S

    2011-01-27

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  20. Aluminum Removal And Sodium Hydroxide Regeneration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation Summary Of Prior Lab-Scale Testing

    International Nuclear Information System (INIS)

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  1. How the method of synthesis governs the local and global structure of zinc aluminum layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Pushparaj, Suraj Shiv Charan; Forano, Claude; Prevot, Vanessa; Lipton, Andrew S.; Rees, Gregory; Hanna, John V.; Nielsen, Ulla Gro

    2015-11-10

    A series of zinc aluminum layered double hydroxides (ZnAl LDHs), [Zn1-xAlx (OH)2Ax,nH2O with A = NO3-, Cl- or CO3] were prepared by the urea and co-precipitation synthesis methods, which allowed for a detailed investigation on how synthesis parameters such as pH, metal ion concentration and post synthesis treatment influence the local and global structure of the LDH product. Information about sample composition, purity, defects and other structural aspects of the LDH products were obtained from powder X-ray diffraction, transmission electron microscopy, micro-Raman, and elemental analysis, as well as solid state 1H, 27Al and 67Zn NMR spectroscopy. Our results show that the urea method results in LDHs, which on the global scale are highly crystalline LDHs, whereas solid state NMR shows the different local environments indicating local disorder most likely linked to the presence of Al-rich phases. However, these Alrich phases are not detected by global range techniques, as they either defects within the LDH particles or separate phase(s) associated with LDHs. In contrast, samples prepared by coprecipitation especially synthesized under careful pH control and subsequently hydrothermal treated have high local order and good crystallinity (particle size). Our results show that both molecular level and macroscopic techniques are needed to assess the composition of LDHs, as the conventional PXRD and TEM analysis of LDHs failed to identify the many structural defects and/or amorphous phases.

  2. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts

    Science.gov (United States)

    Willhite, Calvin C.; Karyakina, Nataliya A.; Yokel, Robert A.; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M.; Arnold, Ian M. F.; Momoli, Franco; Krewski, Daniel

    2016-01-01

    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al” assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+2 and Al(H2O)6+3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2•− and OH•. Thus, it is the Al+3-induced formation of oxygen radicals that accounts for the oxidative damage that

  3. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts.

    Science.gov (United States)

    Willhite, Calvin C; Karyakina, Nataliya A; Yokel, Robert A; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M; Arnold, Ian M F; Momoli, Franco; Krewski, Daniel

    2014-10-01

    Abstract Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007) . Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of "total Al"assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al(+3) to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)(+2) and Al(H2O)6 (+3)] that after complexation with O2(•-), generate Al superoxides [Al(O2(•))](H2O5)](+2). Semireduced AlO2(•) radicals deplete mitochondrial Fe and promote generation of H2O2, O2 (•-) and OH(•). Thus, it is the Al(+3)-induced formation of oxygen radicals that accounts for the

  4. Preparation and controlled-release studies of a protocatechuic acid-magnesium/aluminum-layered double hydroxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Barahuie F

    2013-05-01

    Full Text Available Farahnaz Barahuie,1 Mohd Zobir Hussein,1 Samer Hasan Hussein-Al-Ali,2 Palanisamy Arulselvan,3 Sharida Fakurazi,3,4 Zulkarnain Zainal11Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, 4Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: In the study reported here, magnesium/aluminum (Mg/Al-layered double hydroxide (LDH was intercalated with an anticancer drug, protocatechuic acid, using ion-exchange and direct coprecipitation methods, with the resultant products labeled according to the method used to produce them: “PANE” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the ion-exchange method and “PAND” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the direct method, respectively. Powder X-ray diffraction and Fourier transform infrared spectroscopy confirmed the intercalation of protocatechuic acid into the inter-galleries of Mg/Al-LDH. The protocatechuic acid between the interlayers of PANE and PAND was found to be a monolayer, with an angle from the z-axis of 8° for PANE and 15° for PAND. Thermogravimetric and differential thermogravimetric analysis results revealed that the thermal stability of protocatechuic acid was markedly enhanced upon intercalation. The loading of protocatechuic acid in PANE and PAND was estimated to be about 24.5% and 27.5% (w/w, respectively. The in vitro release study of protocatechuic acid from PANE and PAND in phosphate-buffered saline at pH 7.4, 5.3, and 4.8 revealed that the nanocomposites had a sustained release property. After 72 hours incubation of PANE and PAND with MCF-7 human breast cancer and HeLa human cervical cancer cell lines, it was found that the nanocomposites had suppressed the growth of these cancer cells

  5. High-temperature CO2 capture cycles of hydrated limestone prepared with aluminum (hydr)oxides derived from kaolin

    International Nuclear Information System (INIS)

    Highlights: • Hydrated limestone exhibited a higher reactivity and stability. • Microstructure of hydrated limestone was significantly improved. • Hydrated limestone still suffered less loss-incapacity. • Hydrated limestone sorbents with kaolin-based binders were prepared and characterized. • Sorbents prepared from hydrated limestone and Al(OH)3 binder are a promising sorbent. - Abstract: A simple and convenient process was used to improve the utilization of natural limestone and kaolin for calcium looping technology and environmental applications. The calcined natural limestone modified with the distilled water (denoted as Limestone-W), was systematically studied and compared with the other CaO sorbents (calcium acetate, calcium D-gluconate and calcined natural limestone). These CaO-based sorbents were tested for their CO2 capture behavior through 20 carbonation/calcination cycles in a thermo-gravimetric analyzer (TGA). Their morphology, pore structure and phase composition before and after carbonation/calcination cycles were determined by scanning electron microscopy, nitrogen adsorption, and X-ray diffraction. The first-cycle and multicycle sorption results revealed that the Limestone-W sorbent exhibited a relatively faster reaction rate and higher cyclic CO2 capture. The characterization data indicated that the Limestone-W was composed of a special calcium oxide structure with lower crystalline and higher porosity nanoparticles, which appeared to be the main reasons for its higher CO2 capture capability. However, the Limestone-W still suffered loss of reactivity, even though it was less pronounced than the other CaO sorbent. To avoid this unfavorable effect, a thermally stable inert material (aluminum hydroxide derived from kaolin) was incorporated into the Limestone-W structure. This new sorbent revealed higher stability because the formation of a stable framework of Ca12Al14O33 particles hindered densification and sintering of the CaO phase. It was

  6. Preparation of ultrafine α-Al2O3 powders by catalytic sintering of ammonium aluminum carbonate hydroxide at low temperature

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; DENG Hua; WAN Ye; LI Jie; LIU Ye-xiang

    2006-01-01

    The precursor of ammonium aluminum carbonate hydroxide was synthesized by using aluminum sulfate (Al2 (SO4)3) and ammonium carbonate((NH4)2CO3). The effects of α-Al2O3 seeds and mixture composed of α-Al2O3 and ammonium nitrate, as well as multiplex catalysts (AT) on phase transformation of alumina in sintering process were investigated respectively. The results show that the α-Al2O3 seeds and the mixture of α-Al2O3 and ammonium nitrate can lower the phase transformation temperature of α-Al2O3 to different extents while the particles obtained agglomerate heavily. AT has great potential synergistic effects on the phase transformation of alumina and reduces the phase transformation temperature of α-Al2O3 and the trends of necking-formation between particles.Therefore the dispersion of powder particles is improved significantly.

  7. Aluminum hydroxide associated to Schistosoma mansoni 22.6 kDa protein abrogates partial protection against experimental infection but not alter interleukin-10 production

    Directory of Open Access Journals (Sweden)

    Lucila GG Pacífico

    2006-10-01

    Full Text Available The need to develop a vaccine against schistosomiasis led several researches and our group to investigate proteins from Schistosoma mansoni as vaccine candidates. Sm22.6 is a protein from S. mansoni that shows high identity with Sj22.6 and Sh22.6 (79 and 91%, respectively. These proteins are associated with high levels of IgE and protection to reinfection. Previously, we have shown that Sm22.6 induced a partial protection of 34.5% when used together with Freund's adjuvant and produced a Th0 type of immune response with interferon-g and interleukin-4. In this work, mice were immunized with Sm22.6 alone or with aluminum hydroxide adjuvant and high levels of IgG, IgG1, and IgG2a were measured. Unfortunately, no protection was detected. Since IL-10 is a modulating cytokine in schistosomiasis, we also observed a high level of this molecule in splenocytes of vaccinated mice. In conclusion, we did not observe the adjuvant effect of aluminum hydroxide associated with rSm22.6 in protective immunity.

  8. Preparation and Properties of Magnesium Hydroxide/Aluminum Hydroxide/Melamine Phosphate Filled Flame Retardant Silicone Rubber%氢氧化镁/氢氧化铝/三聚氰胺磷酸盐协效无卤膨胀型阻燃硅橡胶的制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    李兴建; 张宜恒; 孙道兴

    2013-01-01

    以碱催化平衡聚合法制备的a,ω二羟基聚二甲基硅氧烷为基胶,制备氢氧化镁/氢氧化铝/三聚氰胺磷酸盐(MP)协效无卤膨胀型阻燃硅橡胶,并对其结构和性能进行研究.结果表明:氢氧化镁/氢氧化铝/MP可产生阻燃协同作用,能够使复合硅橡胶的阻燃性能、热稳定性能和抑烟性能进一步增强.氢氧化镁/氢氧化铝/MP阻燃硅橡胶不仅具有优异的阻燃性能,还能保持良好的物理性能,当复合阻燃剂氢氧化镁/氢氧化铝/MP并用比为12/18/30时,复合硅橡胶的综合性能最佳.%The magnesium hydroxide/aluminum hydroxide/melamine phosphate(MP) filled retardant silicone rubber was prepared by using α,ω-dihydroxy polydimethylsiloxane,which was prepared by equilibrium polymerization by using alkaline catalyst,and the structure and properties of the flame retardant silicone rubber were investigated.The results showed that,the magnesium hydroxide/aluminum hydroxide/MP flame retardants possessed excellent synergistic flame retardant effect,and the flame retardancy,thermal stability and smoke suppression of silicone rubber composite were improved.The magnesium hydroxide/aluminum hydroxide/MP flame retardant silicone rubber also possessed good physical properties.As the magnesium hydroxide/aluminum hydroxide/MP blend ratio was 12/18/30,the comprehensive properties of the silicone rubber composite was the best.

  9. One-step hydrothermal crystallization of a layered double hydroxide/alumina bilayer film on aluminum and its corrosion resistance properties.

    Science.gov (United States)

    Guo, Xiaoxiao; Xu, Sailong; Zhao, Lili; Lu, Wei; Zhang, Fazhi; Evans, David G; Duan, Xue

    2009-09-01

    A zinc-aluminum layered double hydroxide (ZnAl-LDH)/alumina bilayer film has been fabricated on an aluminum substrate by a one-step hydrothermal crystallization method. The LDH film was uniform and compact. XRD patterns and SEM images showed that the LDH film was highly oriented with the c-axis of the crystallites parallel to the substrate surface. The alumina layer existing between the LDH film and the substrate was formed prior to the LDH during the crystallization process. Polarization measurements showed that the bilayer film exhibited a low corrosion current density value of 10(-8) A/cm(2), which means that the LDH/alumina bilayer film can effectively protect aluminum from corrosion. Electrochemical impedance spectroscopy (EIS) showed that the impedance of the bilayer was 16 MOmega, meaning that the film served as a passive layer with a high charge transfer resistance. The adhesion between the film and the substrate was very strong which enhances its potential for practical application. PMID:19441823

  10. Influence of the molecular-oriented structure of ionic liquids on the crystallinity of aluminum hydroxide prepared by a sol-gel process in ionic liquids.

    Science.gov (United States)

    Kinoshita, K; Yanagimoto, H; Suzuki, T; Minami, H

    2015-07-28

    The influence of the structure of ionic liquids on the crystallinity of aluminum hydroxide (Al(OH)3) prepared by a sol-gel process with aluminum isopropoxide (Al(OPr(i))3) in imidazolium-based ionic liquids was investigated. When Al(OH)3 was prepared in ionic liquids having long alkyl chains, such as 1-butyl-3-methylimidazolium salts and 1-methyl-3-octylimidazolium salts, highly crystalline products were obtained. In contrast, Al(OH)3 obtained using the 1-ethyl-3-methylimidazolium salt was an amorphous material, indicating that hydrophobic interaction of the alkyl tail of the imidazolium cation of the ionic liquid strongly affects the crystallinity of sol-gel products and the local structure of the ionic liquid. Moreover, the crystallinity of Al(OH)3 prepared in ionic liquids increased relative to the amount of additional water (ionic liquid/water = 1.28/2.0-3.5/0.2, w/w). In the case of addition of a small amount of water (ionic liquid/water = 3.5/0.2, w/w), the product was amorphous. These results implied that the presence of an ionic liquid and a sufficient amount of water was crucial for the successful synthesis of sol-gel products with high crystallinity. (1)H NMR analyses revealed a shift of the peak associated with the imidazolium cation upon addition of water, which suggested that the molecular orientation of the ionic liquid was similar to that of a micelle.

  11. Preparing soluble aluminum hydroxide by seed precipitation method%种分法制备易溶氢氧化铝的工艺

    Institute of Scientific and Technical Information of China (English)

    晏永祥; 刘少峰; 陈枚燕; 陈启杰

    2013-01-01

    通过种分法制备了易溶氢氧化铝,研究了分解原液浓度、晶种数量和分解温度等实验条件对铝酸钠溶液分解率及氢氧化铝酸溶性的影响.研究结果表明,其最佳条件是:分解初温为40℃,分解终温为30℃,分解原液的Al2O3浓度为130 g/L,晶种数量为0.4 g/L,产品酸溶率在90%以上.并通过SEM和XRD对粒子的形态和晶体结构进行了表征.%The soluble aliminum hydroxide was prepared by seed precipitation method.The effects of decomposition solution concentration,the amount of seed crystal and decomposition temperature on the decomposition rate of the sodium aluminate solution and the aluminum hydroxide acid soluble have been studied.Under the optimum conditions the initial and final decomposition temperature was 40 and 30 ℃,respectively; the decomposition solution concentration of Al2O3 was 130 g/L and the amount of seed crystal was 0.4 g/L,the acid soluble rate of the product was more than 90%.The morphology and crystal structure of the product were characterized by SEM and XRD.

  12. 人工合成铁、铝矿对As(V)吸附的研究%Study on arsenate adsorption by synthetic iron and aluminum oxides/hydroxides

    Institute of Scientific and Technical Information of China (English)

    吴萍萍; 曾希柏

    2011-01-01

    Batch experiments were used to investigate arsenate adsorption by synthetic iron and aluminum oxides/hydroxides.The effects of adsorption time and pH on the adsorption behavior were also studied.The results showed that, As(V)adsorption by four iron and aluminum oxides/hydroxides increased with initial As(V) concentrations (0.1~100 mg/L), in which ferrihydrite showed a rising adsorption trend in the whole concentration range, with the adsorption amount of 22.56 mg/g at the initial As(V) of 100 mg/L.While the rapid increase in lower initial concentration and slow change in higher initial concentrations for the adsorption capacities of goethite, gibbsite, and hematite were obtained.When the initial As(V)reached 100mg/L, the least adsorption capacity of 4.75mg/g was received for hematite.Furthermore, the Freundlich equation fitted the data better than the Langmuir equation.The adsorption capacity of ferrihydrite is the highest, followed by goethite and gibbsite, and hematite shows lower adsorption capacity.With the increase of adsorption time, As(V) adsorption amount of four synthetic iron and aluminum oxides/hydroxides increased gradually, especially for ferrihydrite, reaching 96.3% of adsorption equilibrium in 10 minutes.The adsorption amount of goethite and gibbsite reached 97.4% and 97.2% of the equilibrium at 48h, respectively, while hematite required 96 hours to reach the equilibrium.Except ferrihydrite, four equations fitted the kinetic data better, especially the two-constant equation.The effect of pH on As(V) adsorption was associated to As(V) initial concentrations.In lower initial concentrations, adsorption of four synthetic iron and aluminum oxides/hydroxides decreased only under extremely alkaline conditions (pH>10), and when the initial concentrations were higher, adsorption amount dropped sharply with pH increasing.%采用批实验方法研究了人工合成铁、铝矿物对As(V)的吸附,考察吸附时间及溶液pH值对As(V)吸附的影

  13. Facile one-step synthesis of nanocomposite based on carbon nanotubes and Nickel-Aluminum layered double hydroxides with high cycling stability for supercapacitors.

    Science.gov (United States)

    Bai, Caihui; Sun, Shiguo; Xu, Yongqian; Yu, Ruijin; Li, Hongjuan

    2016-10-15

    Nickel-Aluminum Layered Double Hydroxide (NiAl-LDH) and nanocomposite of Carbon Nanotubes (CNTs) and NiAl-LDH (CNTs/NiAl-LDH) were prepared by using a facile one-step homogeneous precipitation approach. The morphology, structure and electrochemical properties of the as-prepared CNTs/NiAl-LDH nanocomposite were then systematically studied. According to the galvanostatic charge-discharge curves, the CNTs/NiAl-LDH nanocomposite exhibited a high specific capacitance of 694Fg(-1) at the 1Ag(-1). Furthermore, the specific capacitance of the CNTs/NiAl-LDH nanocomposite still retained 87% when the current density was increased from 1 to 10Ag(-1). These results indicated that the CNTs/NiAl-LDH nanocomposite displayed a higher specific capacitance and rate capability than pure NiAl-LDH. And the participation of CNTs in the NiAl-LDH composite improved the electrochemical properties. Additionally, the capacitance of the CNTs/NiAl-LDH nanocomposite kept at least 92% after 3000cycles at 20Ag(-1), suggesting that the nanocomposite exhibited excellent cycling durability. This strategy provided a facile and effective approach for the synthesis of nanocomposite based on CNTs and NiAl-LDH with enhanced supercapacitor behaviors, which can be potentially applied in energy storage conversion devices. PMID:27405071

  14. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route

    Science.gov (United States)

    Shi, Jingjing; Lai, Lincong; Zhang, Ping; Li, Hailong; Qin, Yumei; Gao, Yuanchunxue; Luo, Lei; Lu, Jun

    2016-09-01

    Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al3+ ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al3+ films. The electrochromic performance of the films were evaluated by means of UV-vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, the ratio of Ni3+/Ni2+ also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni3+ making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film.

  15. Extract of high-whiteness aluminum hydroxide from residues of novel process of magnesium production by aluminothermic reduction%新法铝热炼镁还原渣提取高白氢氧化铝

    Institute of Scientific and Technical Information of China (English)

    狄跃忠; 王智慧; 王耀武; 彭建平; 冯乃祥

    2013-01-01

    The novel process producing magnesium metal using vacuum aluminothermic reduction, which utilizes dolomite and magnesite as raw materials and aluminum powder as reductant, produces reducing slag containing-rich CaO·2Al2O3.The reducing residue can be solved by a mixture solution of sodium hydroxide and sodium carbonate, and a solution of sodium aluminate is produced which can be decomposed by CO2 to obtain aluminum hydroxide. For the production process of aluminum hydroxide, effects of process parameters on leaching rate of alumina are investigated systematically and the performance of aluminum hydroxide obtained was detected. The results show that the alumina leaching rate from the residue is above 85% under the conditions of NaOH concentration 80 g·L-1 , Na2CO3 concentration 110 g·L-1 , leaching temperature 95℃, leaching time 120min and L/S 6. Whiteness of aluminum hydroxide obtained carbonation precipitation at 50℃ is over 98, and average particle size is 26. 98μm.%新法铝热炼镁工艺以白云石和菱镁石为原料、以铝粉为还原剂,在真空还原获得金属镁的同时得到富含CaO·2Al2O3的还原渣,该还原渣可通过氢氧化钠和碳酸钠的混合碱液溶出得到铝酸钠溶液,并通过碳酸化分解制备氢氧化铝.以该工艺所得还原渣为原料,系统地研究各溶出条件对氧化铝溶出率的影响,并对碳分所得氢氧化铝进行性能检测.结果表明,在氢氧化钠浓度80 g·L-1、碳碱浓度110 g·L-1、溶出时间120min、溶出温度95℃、液固比为6的条件下,炼镁还原渣中氧化铝的溶出率在85%以上.氢氧化铝产品白度均大于98,平均粒径为26.98 μm,能够达到高白氢氧化铝的要求.

  16. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate–zinc aluminum-layered double-hydroxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2013-11-01

    Full Text Available Bullo Saifullah,1 Mohd Zobir Hussein,1 Samer Hasan Hussein-Al-Ali,2 Palanisamy Arulselvan,3 Sharida Fakurazi3,41Materials Synthesis and Characterization Laboratory, 2Laboratory of Molecular Biomedicine, 3Laboratory of Vaccines and Immunotherapeutics, 4Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: We report the intercalation and characterization of para-amino salicylic acid (PASA into zinc/aluminum-layered double hydroxides (ZLDHs by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D and PASA nanocomposite prepared by an indirect method (PASA-I. Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.Keywords: drug-delivery system, slow-release nanocarrier, tuberculosis, biocompatible nanocomposites

  17. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  18. NICKEL HYDROXIDES

    Energy Technology Data Exchange (ETDEWEB)

    MCBREEN,J.

    1997-11-01

    Nickel hydroxides have been used as the active material in the positive electrodes of several alkaline batteries for over a century. These materials continue to attract a lot of attention because of the commercial importance of nickel-cadmium and nickel-metal hydride batteries. This review gives a brief overview of the structure of nickel hydroxide battery electrodes and a more detailed review of the solid state chemistry and electrochemistry of the electrode materials. Emphasis is on work done since 1989.

  19. Experimental Study on Preparation of Ultrafine Aluminum Hydroxide Powders from Coal Gangue%利用煤矸石制备超细氢氧化铝的试验研究

    Institute of Scientific and Technical Information of China (English)

    王明玮; 杨静; 马鸿文; 苏双青; 郭锋

    2011-01-01

    为探索煤矸石的高附加值和清洁利用,以内蒙古某地的煤矸石为原料,采用改良的碱石灰烧结法处理煤矸石,使煤矸石中的SiO2组分转化为CaSiO3,然后将烧结熟料水溶后所得到的NaAlO2溶液,经脱硅除杂厦降低苛性比处理,利用碳酸化分解法制备起钿氢氧化铝粉体.结果表明:煤矸石经加碱烧结后,熟料的AlO3溶出率为81%;碳酸化分解法制备超细氢氧化铝粉体为结晶度和分散性较好的拜耳石,颗粒尺寸大多在300~500 nm之间.%In order to research the new technique of high added value and clean use of coal gangue, the coal gangue from Inner Mongolia was used as raw materials, the improved soda lime sintering process was employed to deal with coal gangue by turning SiO2 into CaSiO3. The purified NaAlO2 solution was obtained by desilication of the initial NaAlO2 solution from the dissolution of calcined clinkers. Then the ultrafine aluminum hydroxide powders were prepared by carbonization method. The results showed that the dissolution rate of Al2O3 of calcinated coal gangue was 81%. The prepared ultrafine aluminum hydroxide powders were bayerite with good crystallinity and dispersivity, and their particle size was mostly between 300~500 nm.

  20. Loading Effect of Aluminum Hydroxide onto the Mechanical, Thermal Conductivity, Acoustical and Burning Properties of the Palm-based Polyurethane Composites

    International Nuclear Information System (INIS)

    Effects of aluminium hydroxide (ATH) addition on the properties of palm-based polyurethane composites were investigated. The hybrid composites were prepared by mixing 10 wt % of oil palm empty fruit bunch fiber (EFB) with ATH at varying amount of 2, 4 and 6 wt % of the overall mass of the resin. The compression stress and modulus gave the highest values of 575 and 2301 kPa, respectively at 2 wt % loading of ATH. The compression stress and modulus decreased drastically at 4 wt % (431 kPa and 1659 kPa, respectively) and further decreased at 6 wt % ATH (339 and 1468 kPa, respectively). However, the burning rate is inversely proportional to the loading percentage where the highest burning rate was observed at 2 wt % ATH. Sound absorption analysis indicated a large absorption coefficient at high frequency (4000 Hz) for all samples. The highest absorption coefficient was obtained from PU-EFB/ ATH with 4 wt % ATH. (author)

  1. Engineering one-dimensional and two-dimensional birnessite manganese dioxides on nickel foam-supported cobalt–aluminum layered double hydroxides for advanced binder-free supercapacitors

    KAUST Repository

    Hao, Xiaodong

    2014-11-19

    © The Royal Society of Chemistry. We report a facile decoration of the hierarchical nickel foam-supported CoAl layered double hydroxides (CoAl LDHs) with MnO2 nanowires and nanosheets by a chemical bath method and a hydrothermal approach for high-performance supercapacitors. We demonstrate that owing to the sophisticated configuration of binder-free LDH@MnO2 on the conductive Ni foam (NF), the designed NF/LDH@MnO2 nanowire composites exhibit a highly boosted specific capacitance of 1837.8 F g-1 at a current density of 1 A g-1, a good rate capability, and an excellent cycling stability (91.8% retention after 5000 cycles). By applying the hierarchical NF/LDH@MnO2 nanowires as the positive electrode and activated microwave exfoliated graphite oxide activated graphene as the negative electrode, the fabricated asymmetric supercapacitor produces an energy density of 34.2 Wh kg-1 with a maximum power density of 9 kW kg-1. Such strategies with controllable assembly capability could open up a new and facile avenue in fabricating advanced binder-free energy storage electrodes. This journal is

  2. Preparation and Immunization Test of Chicken Infectious Coryza Aluminum Hydroxide Adjuvant Inactivated Vaccine%鸡传染性鼻炎氢氧化铝佐剂灭活苗的制备及免疫试验

    Institute of Scientific and Technical Information of China (English)

    乔宏兴; 索江华; 边传周; 任敏

    2014-01-01

    用副鸡嗜血杆菌分离株制成氢氧化铝胶佐剂灭活疫苗接种8周龄试验鸡,结果表明三批次疫苗保护率均可达到100%,疫苗于室温放置3、6、9、12个月后均能起到保护作用,最小免疫剂量检测结果显示肌肉注射0.25 mL/只就可起到免疫保护作用。研究表明本地区分离菌株制备的疫苗可以对本地传染性鼻炎的防控起到很好的预防作用。%Eight-week-old chickens were immunized with aluminum hydroxide adjuvant inactivated vaccine of Haemophilus paragallinarum isolates.The result showed that three batches of vaccine protection rates could reach 100%,even the vaccine at room temperature for 3,6,9,12 month.The minimum immune dose detection result showed tha the injection of 0.25 mL could protection.The vaccine made of isolates could produce immune give a perfect protection to infectious coryza in the same area.

  3. Thermal aging of interfacial polymer chains in ethylene-propylene-diene terpolymer/aluminum hydroxide composites: solid-state NMR study.

    Science.gov (United States)

    Gabrielle, Brice; Lorthioir, Cédric; Lauprêtre, Françoise

    2011-11-01

    The possible influence of micrometric-size filler particles on the thermo-oxidative degradation behavior of the polymer chains at polymer/filler interfaces is still an open question. In this study, a cross-linked ethylene-propylene-diene (EPDM) terpolymer filled by aluminum trihydrate (ATH) particles is investigated using (1)H solid-state NMR. The time evolution of the EPDM network microstructure under thermal aging at 80 °C is monitored as a function of the exposure time and compared to that of an unfilled EPDM network displaying a similar initial structure. While nearly no variations of the topology are observed on the neat EPDM network over 5 days at 80 °C, a significant amount of chain scission phenomena are evidenced in EPDM/ATH. A specific surface effect induced by ATH on the thermodegradative properties of the polymer chains located in their vicinity is thus pointed out. Close to the filler particles, a higher amount of chain scissions are detected, and the characteristic length scale related to these interfacial regions displaying a significant thermo-oxidation process is determined as a function of the aging time.

  4. Adsorption of recombinant poxvirus L1-protein to aluminum hydroxide/CpG vaccine adjuvants enhances immune responses and protection of mice from vaccinia virus challenge

    Science.gov (United States)

    Xiao, Yuhong; Zeng, Yuhong; Alexander, Edward; Mehta, Shyam; Joshi, Sangeeta B.; Buchman, George W.; Volkin, David B.; Middaugh, C. Russell; Isaacs, Stuart N.

    2012-01-01

    The stockpiling of live vaccinia virus vaccines has enhanced biopreparedness against the intentional or accidental release of smallpox. Ongoing research on future generation smallpox vaccines is providing key insights into protective immune responses as well as important information about subunit vaccine design strategies. For protein-based recombinant subunit vaccines, the formulation and stability of candidate antigens with different adjuvants are important factors to consider for vaccine design. In this work, a non-tagged secreted L1-protein, a target antigen on mature virus, was expressed using recombinant baculovirus technology and purified. To identify optimal formulation conditions for L1, a series of biophysical studies was performed over a range of pH and temperature conditions. The overall physical stability profile was summarized in an empirical phase diagram. Another critical question to address for development of an adjuvanted-vaccine was if immunogenicity and protection could be affected by the interactions and binding of L1 to aluminum salts (Alhydrogel) with and without a second adjuvant, CpG. We thus designed a series of vaccine formulations with different binding interactions between the L1 and the two adjuvants, and then performed a series of vaccination-challenge experiments in mice including measurement of antibody responses and post-challenge weight-loss and survival. We found that better humoral responses and protection were conferred with vaccine formulations when the L1-protein was adsorbed to Alhydrogel. These data demonstrate that designing vaccine formulation conditions to maximize antigen-adjuvant interactions is a key factor in smallpox subunit vaccine immunogenicity and protection. PMID:23153450

  5. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  6. USING COLLOIDAL LAYERED DOUBLE HYDROXIDES AS CATIONICMICROPARTICULATE COMPONENT

    Institute of Scientific and Technical Information of China (English)

    SonglinWang; WenxiaLiu

    2004-01-01

    Layered double hydroxides consisting of layers withcationic charges may be potential candidates ofcationic microparticles forming synergetic retentioneffect with anionic polyacrylamide. In this work, thelayered double hydroxides with various molar ratiosof Mg/AI were synthesized by co-precipitation ofmagnesium chloride and aluminum chloride and pep-tized by intense washing with water. The chemicalformula, particle size, Zeta potential of the layereddouble hydroxide were analyzed. It was found thatpositively charged magnesium aluminum hydroxidewith particle diameter in nanoparticle size could beprepared. The Zeta potential and particle size varywith the feed molar ratio of Mg/A1 and the peptizingprocess, respectively. The Zeta potential is also pHdependent. The retention experiments carried out onDDJ show that when used together with anionic poly-acrylamide, the positively charged colloidal doublehydroxide greatly improves the retention of reedpulps. The chemical formula, particle size and Zetapotential of the colloidal double hydroxide all affectits retention behavior.

  7. USING COLLOIDAL LAYERED DOUBLE HYDROXIDES AS CATIONIC MICROPARTICULATE COMPONENT

    Institute of Scientific and Technical Information of China (English)

    Songlin Wang; Wenxia Liu

    2004-01-01

    Layered double hydroxides consisting of layers with cationic charges may be potential candidates of cationic microparticles forming synergetic retention effect with anionic polyacrylamide. In this work, the layered double hydroxides with various molar ratios of Mg/Al were synthesized by co-precipitation of magnesium chloride and aluminum chloride and peptized by intense washing with water. The chemical formula, particle size, Zeta potential of the layered double hydroxide were analyzed. It was found that positively charged magnesium aluminum hydroxide with particle diameter in nanoparticle size could be prepared. The Zeta potential and particle size vary with the feed molar ratio of Mg/Al and the peptizing process, respectively. The Zeta potential is also pH dependent. The retention experiments carried out on DDJ show that when used together with anionic polyacrylamide, the positively charged colloidal double hydroxide greatly improves the retention of reed pulps. The chemical formula, particle size and Zeta potential of the colloidal double hydroxide all affect its retention behavior.

  8. Formation of nematic liquid crystals of sterically stabilized layered double hydroxide platelets

    NARCIS (Netherlands)

    Mourad, M.C.D.; Devid, E.J.; van Schooneveld, M.M.; Vonk, Ch.; Lekkerkerker, H.N.W.

    2008-01-01

    Colloidal platelets of hydrotalcite, a layered double hydroxide, have been prepared by coprecipitation at pH 11−12 of magnesium nitrate and aluminum nitrate at two different magnesium to aluminum ratios. Changing the temperature and ionic strength during hydrothermal treatment, the platelets were ta

  9. Propriedades mecânicas e de inflamabilidade de composições de borracha EPDM carregadas com negro de fumo e hidróxido de alumínio Mechanical and flammability properties of EPDM (ethylene-propylene terpolymer rubber compositions filled with carbon black and aluminum hydroxide

    Directory of Open Access Journals (Sweden)

    Cristine Canaud

    2001-03-01

    Full Text Available Composições de EPDM (terpolímero de etileno-propileno-dieno contendo misturas de negro de fumo e hidróxido de alumínio (ATH foram preparadas com o objetivo de se avaliar seu potencial de utilização em aplicações elétricas. O hidróxido de alumínio, conhecido por suas características de retardante de chama, é uma carga semi-reforçante e, portanto, incapaz de fornecer o nível de reforço necessário para diversas aplicações. Dessa forma, para aliar ao artefato propriedades de não inflamabilidade e alto desempenho mecânico, foi também adicionado o negro de fumo (que é a carga reforçante mais largamente empregada. A escolha do EPDM se justifica pela facilidade de ser encontrado no mercado brasileiro, por sua característica em aceitar grandes quantidades de carga e por ser um elastômero apolar, o que é um requisito básico para aplicação em isolamento elétrico. Os materiais foram submetidos a testes mecânicos e de inflamabilidade, para se determinar aqueles que se ajustavam às normas estabelecidas pela Associação Brasileira de Normas Técnicas - ABNT. Verificou-se que pelo menos 160 phr de hidróxido de alumínio são necessários nessas composições para que a resistência à chama seja alcançada.EPDM composition filled with mixtures of aluminum hydroxide (ATH and carbon black were evaluated for electrical applications. Aluminum hydroxide, known for its characteristics of flame retardancy, is a semi-reinforcing filler and, in this sense, it is unable to impart the reinforcement level necessary to several applications. Thus, to have in the same artifact the non-flammability properties together with a high mechanical performance, carbon black, the most widely used reinforcing filler, has also been used. The choice of EPDM can be justified by the availability of this polymer in the brazilian market, allied to its characteristics to accept large amounts of filler and its apolar chemical character, which is a basic

  10. From Zn-Al layered double hydroxide to ZnO nanostructure:Gradually etching by sodium hydroxide

    Institute of Scientific and Technical Information of China (English)

    Gang Qiang Wan; Dong Xiang Li; Chun Fang Li; Jie Xu; Wan Guo Hou

    2012-01-01

    Zn-Al layered double hydroxide (LDH) was used as precursor to produce ZnO nanostructures through dissolution of aluminum hydroxide in caustic soda.The Zn-Al LDH could transform into different nanostructures of ZnO on LDH nanosheets and even pure ZnO nanorods under various NaOH concentration.The formed ZnO nanorods vertically aligned on both LDH sides.UV-vis diverse reflectance spectra show that the obtained ZnO nanorods have a band gap of approximately 3.05 eV.Such ZnO/LDH nanostructures might be used as photocatalyst in the organic pollutant decomposition.

  11. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water.

    Science.gov (United States)

    Du, Junyi; Sabatini, David A; Butler, Elizabeth C

    2014-04-01

    Simple aluminum (hydr)oxides and layered double hydroxides were synthesized using common chemicals and equipment by varying synthesis temperature, concentrations of extra sulfate and citrate, and metal oxide amendments. Aluminum (hydr)oxide samples were aged at either 25 or 200°C during synthesis and, in some cases, calcined at 600 °C. Despite yielding increased crystallinity and mineral phase changes, higher temperatures had a generally negative effect on fluoride adsorption. Addition of extra sulfate during synthesis of aluminum (hydr)oxides led to significantly higher fluoride adsorption capacity compared to aluminum (hydr)oxides prepared with extra citrate or no extra ligands. X-ray diffraction results suggest that extra sulfate led to the formation of both pseudoboehmite (γ-AlOOH) and basaluminite (Al4SO4(OH)10⋅4H2O) at 200 °C; energy dispersive X-ray spectroscopy confirmed the presence of sulfur in this solid. Treatment of aluminum (hydr)oxides with magnesium, manganese, and iron oxides did not significantly impact fluoride adsorption. While layered double hydroxides exhibited high maximum fluoride adsorption capacities, their adsorption capacities at dissolved fluoride concentrations close to the World Health Organization drinking water guideline of 1.5 mg L(-1) were much lower than those for the aluminum (hydr)oxides.

  12. Novel routes to metalloorganics containing aluminum from minerals

    Science.gov (United States)

    Narayanan, Ramasubramanian

    Novel pathways for synthesizing Al metalloorganics directly from widely available oxides and oxo-hydroxides of aluminum are developed. The Al metalloorganics are then used to produce low-cost precursors for ceramics and polymers containing Al. Alumatrane, an unique, air-stable, aluminum alkoxide is prepared in one step from aluminum hydroxide in quantitative yields. Subsequently, alumatrane was used to prepare and characterize all group II dialuminate ceramics (MAlsb2Osb4, M = Mg, Ca, Sr, Ba). Similarly, an air-stable alkoxide of silicon was synthesized directly from SiOsb2, and is used in conjunction with alumatrane to produce precursors for aluminosilicate ceramics (MAlSiOsb4, M = K, Li, Na). Aluminum formate is synthesized, in differing efficiencies, from different crystalline minerals of Al, by direct dissolution in formic acid. A few other aluminum carboxylates are also synthesized, either directly from minerals or from aluminum formates, thus expanding the scope of the acid dissolution of aluminum hydroxides. Aluminum allyloxypropanoate (AAP) (Al(Osb2CCHsb2CHsb2OCH{=}CHsb2)sb2(OH)), an aluminum carboxylate with a polymerizable group has been synthesized from aluminum formate. This, has been incorporated into methyl methacrylate (MMA) polymers to impart fire retardancy. The increase in char yields as a result of AAP incorporation, indicate improved fire retardancy. Fire retardant characteristics of alumatrane has also been investigated, in MMA polymers and in a polyurethane polymer, taking char yields as a measure of fire retardance efficiency.

  13. Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel

    OpenAIRE

    Hang, To Thi Xuan; Truc, Trinh Anh; Duong, Nguyen Thuy; Pébère, Nadine; Olivier, Marie-Georges

    2012-01-01

    International audience The present work focuses on the use of layered double hydroxides (LDH) as containers for corrosion inhibitors in an epoxy coating. 2-Benzothiazolylthio-succinic acid (BTSA), used as corrosion inhibitor, was intercalated by co-precipitation in magnesium-aluminum layered double hydroxides. The obtained LDH-BTSA was characterized by infrared spectroscopy, X-ray diffraction and scanning electron microscopy. BTSA release from LDH-BTSA in NaCl solutions was investigated by...

  14. 氢氧化铝和硼酸锌对乙烯-乙酸乙烯酯橡胶/丁腈橡胶共混胶阻燃性能的影响%Effects of aluminum hydroxide and zinc borate on flame retardancy of ethylene-vinyl acetate rubber/nitrile rubber blends

    Institute of Scientific and Technical Information of China (English)

    王鹤; 竺珠; 赵树高; 史新妍

    2012-01-01

    The effects of aluminum hydroxide (ATH) and zinc borate on the flame retardantcy of ethylene-vinyl acetate rubber ( EVM )/nitrile rubber ( NBR) blends with magnesium hydroxide ( MDH ) as flame retardant were investigated by the limiting oxygen index ( LOI) method and cone calorimeter. The results showed that there was no evident difference of LOI between adding MDH/ATH and MDH in EVM/ NBR blends at the same loading amount flame retard-ants , but adding a small amount of ATH could significantly prolong the ignition time, reduce the total heat release. Besides, the flame retardancy of EVM/ NBR/MDH system was improved by adding zinc borate, especially at more than 20 phr, the ignition time increased effectively and the heat release rate decreased obviously. So for the EVM/NBR blends, the highest fire performance index and the best flame retardancy were gained when 140 phr MDH and 20 phr zinc borate were added simultaneously.%以氢氧化镁(MDH)作乙烯-乙酸乙烯酯橡胶(EVM)/丁腈橡胶(NBR)共混胶的阻燃剂,运用极限氧指教(LOI)法和锥形量热仪,研究了分别并用少量氢氧化铝(ATH)和硼酸锌对共混胶阻燃性能的影响.结果表明,当添加相同份数的阻燃剂时,MDH与ATH并用和单独使用MDH相比,共混胶的LOI相差不大,但并用少量ATH可以明显延长点燃时间,降低总释放热.添加硼酸锌后,EVM/NBR/MDH体系的阻燃性能提高,添加20份以上硼酸锌,共混胶的点燃时间明显延长,热释放速率峰值明显下降;添加140份MDH时并用20份硼酸锌,共混胶的火灾性能指数最高,阻燃效果最好.

  15. 镁铝双氢氧化物对EVA/LDPE的性能影响研究%Effects of Aluminum Magnesium Double Hydroxide on the Properties of EVA/LDPE Blend

    Institute of Scientific and Technical Information of China (English)

    陈有双; 邱光南; 田丰; 童彬; 张增芳; 唐忠锋

    2012-01-01

    The tensile properties of EVA/LDPE composites were studied by adding MH or ATH particles. The tensile strength and elongation at break decreased with increasing MH or ATH. Aluminum magnesium composite halogen-free flame retardant was mixed with MH, ATH, zinc borate and red phosphorous. The EVA/LDPE new style halogen-free retardant composites were prepared by direct blending methods. Tensile and flame retardant properties of composite materials were studied using different prescription. When the mass ratio of MH and ATH is 40 : 20, zinc borate is 20 phr, red phosphorous is 4 phr, the tensile properties are well, and the flame retardant properties of materials meet UL94 V-0 requirements.%将氢氧化镁(MH)或氢氧化铝(ATH)添加到乙烯-醋酸乙烯酯共聚物(EVA)/低密度聚乙烯(LDPE)中,通过拉伸试验测试材料的拉伸性能变化规律.研究发现,随MH或ATH含量增加,EVA/LDPE复合材料的拉伸强度和断裂伸长率逐渐降低.以MH和ATH为无卤基材结合硼酸锌、红磷复配制备无卤阻燃剂,通过正交试验获得了最佳复配阻燃剂配方,结果表明,在ATH和MH总量为60份的条件下,当MH与ATH配比为40∶20,硼酸锌用量为20份,红磷用量为4份时,无卤阻燃剂对EVA/LDPE材料的拉伸性能达到最佳,该配方下材料阻燃性能满足垂直燃烧等级UL-94 V-0级,综合性能优异.

  16. Surface complexation sorption and ligand-promoted dissolution of enrofloxacin on aluminum hydroxide and iron hydroxide%恩诺沙星在含水氧化铝和含水氧化铁上的配位吸附及配位增溶效应

    Institute of Scientific and Technical Information of China (English)

    周敏; 王树伦; 陈俊辉; 陶钧; 陈慧; 杜新贞

    2012-01-01

    Batch equilibrium experiments were used to reveal enrofloxacin(ENR) adsorption on two different hydrous oxides:aluminum hydroxide(HAO) and iron hydroxide(HFO).The results showed that the adsorption isotherms of ENR on the two hydrous oxides were both well described by Langmuir model when KL(HFO) KL(HAO).The adsorption capacity(Qm) of enrofloxacin to HAO/HFO decreased with the increase of ion strength if NaCl concentrations were at a range between 0.01 mol · L-1 and 0.5 mol · L-1.However,the ion strengths in the solution had little effect on the adsorption at the low concentrations of enrofloxacin,which indicated that adsorption of enrofloxacin on the two different hydrous oxides was essentially based on ligand reaction.However,the adsorption efficiency apparently decreased in the strong acidic or alkaline environment.The coordination adsorption mainly occurred at pH 5~8 in the environment.It was found that the coordination point occurred at the C-3 carboxyl site,and the soluble complexes of 1:1 ENR:M(Metal ions) were formed in the solution,which was measured by UV spectrometry,ATR-FTIR difference spectrometry and atomic absorption spectrometry.Meanwhile,the formed complex between ENR and HAO/HFO could increase the solubility of ENR in aqueous solution.%采用批平衡试验方法,研究了恩诺沙星(ENR)在含水氧化铝(HAO)和含水氧化铁(HFO)上的吸附行为.结果表明,恩诺沙星在两类不同含水氧化物上的吸附可以用Langmuir等温方程描述,其中,吸附平衡常数KL(HFO)〉KL(HAO).当溶液中NaCl的浓度在0.01~0.50mol.L-1之间时,恩诺沙星的最大吸附量随着溶液离子强度的增大呈下降趋势,但吸附低浓度的恩诺沙星时,离子强度对吸附量的影响不大,表明此时两类含水氧化物对恩诺沙星的吸附均以配位反应为主.实验还发现,在较强的酸性或碱性环境中,恩诺沙星的吸附量都明显减小,配位

  17. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  18. 21 CFR 184.1763 - Sodium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... solution and also by reacting calcium hydroxide with sodium carbonate. (b) The ingredient meets the... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg....

  19. Toxicity and Metabolism of Layered Double Hydroxide Intercalated with Levodopa in a Parkinson’s Disease Model

    OpenAIRE

    Aminu Umar Kura; Nooraini Mohd Ain; Mohd Zobir Hussein; Sharida Fakurazi; Samer Hasan Hussein-Al-Ali

    2014-01-01

    Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell m...

  20. 陕南白山羊伪结核棒状杆菌分离鉴定及灭活铝胶疫苗研制%Isolation and Identification of Corynebacterium pseudotuberculosis from White Goat in South Shaanxi and Development of an Inactivated Vaccine with Aluminum Hydroxide Adjuvant

    Institute of Scientific and Technical Information of China (English)

    蔡俊波; 王爱玲; 李海敏; 李春燕; 焦阳阳; 张彦明; 郭抗抗

    2016-01-01

    Caseous lymphadenitis also known as ovine pseudotuberculosis,is a chronic zoonotic infectious disease caused by Corynebacterium pseudotuberculosis .This disease is harmful to goat especially,and there is not yet an effective treatment to prevent this disease.White goat is a main breed in Shiquan county of south Shaanxi,Corynebacterium pseudotuberculosis is an important pathogen in goat population and causes large economic losses in recent years.In order to screen drugs that are sensitive to local Corynebacterium pseudotuberculosis and develop an inactivated vaccine,the fresh pus were collected from the suspected pseudotuberculosis goats,the bacteria were isolated and identified from those samples.And then,drug sen-sitivity test was carried out with 1 isolate,and then an inactivated vaccine with aluminum hydroxide adju-vant was developed based this isolate.The results showed that the isolated bacteria formed a medium sized white,dry,flat and opaque,neat edge colony at solid agar,showing Gram stain positive.The isolate was confirmed as Corynebacterium pseudotuberculosis by analysis of 1 6 S rRNA sequences.Susceptibility test results showed this isolate was highly sensitive to ciprofloxacin,ceftriaxone,erythromycin,kanamycin,ce-fotaxime,moderately sensitive to tobramycin,doxycycline,gentamicin,chloramphenicol;tetracycline,rif-ampicin,streptomycin.Subsequently,an activated vaccine was developed with aluminum hydroxide adjuvant based on this isolate,no live bacterium was detected in this vaccine.The inactivated vaccine was injected to experimental goats in those herds that the samples were collected,and no abnormal reactions were ob-served in the goats.Clinical application also was carried out in goat herd and the immune effects will be e-valuated later.This study provided an experimental basis for effective drugs and a choice of inactivated vac-cine for preventing and controlling caseous lymphadenitis.%羊干酪性淋巴结炎又称羊伪结核病,是由伪结核棒

  1. Comparison of immunogenicity of Aluminum salts as adjuvant for recombinant Hepatitis-B vaccine

    Directory of Open Access Journals (Sweden)

    Fazeli MR

    2007-05-01

    Full Text Available Background: Aluminum salts are common adjuvants in human and animal vaccine preparations. The two adjuvants aluminum phosphate and aluminum hydroxide show acceptable immunoadjuvant properties with many antigens. These two salts have different physicochemical characteristics that make each one suitable for certain antigens. The surface antigen of Hepatitis B (HBsAg has several antigenic epitopes that bind to aluminum adjuvants by a ligand exchange mechanism. Although HBV vaccines using an aluminum hydroxide adjuvant are available, higher antigenicity is needed for the subgroup of people who do not respond sufficiently to the currently available vaccines. Methods: A solution of recombinant HBsAg for making different formulations of vaccines with aluminum phosphate (Adju-Phos® and aluminum hydroxide (Alhydrogel® adjuvants was obtained from Darupakhsh Pharmaceutical Company. The total protein content, antigenicity, and purity of HBsAg solution were determined using BCA, ELISA, and SDS-PAGE methods, respectively. The different formulations were prepared in the lab and administered i.p. to two test groups of Balb/C mice and a third test group received the Engerix vaccine, which is currently available on the market and uses an aluminum hydroxide adjuvant. The control group of animals received the solution without antigen. After 28 days, heart blood samples were collected and serum was separated to determine the antibody titer against HBsAg using an ELISA kit. Results: This study shows that the vaccine formulated with aluminum phosphate exerted more immunogenicity than both the aluminum hydroxide laboratory formulation and the Engerix vaccines. Conclusion: Although the results of our study indicate higher immunogenic properties of the vaccine formulated with the aluminum phosphate adjuvant, complementary experiments are needed to further evaluate the biological properties with respect to effectiveness, adverse effects, product stability and finally

  2. Preparation and characterization of aluminum stearate

    Directory of Open Access Journals (Sweden)

    Lončar Eva S.

    2003-01-01

    Full Text Available Preparation of aluminum stearate by the precipitation method was examined under various conditions of stearic acid saponification with sodium hydroxide. It was proved that the most favorable ratio of acid/alkali was 1:1.5 and that the obtained soap was very similar to the commercial product. Endothermic effects determined by differential scanning calorimetry and also the other parameters showed that the soaps consisted mono-, di-, tristearates and non-reacted substances, where distearate was the dominant form.

  3. Fabrication of Superhydrophobic Aluminum Plate by Surface Etching and Fluorosilane Modification

    Institute of Scientific and Technical Information of China (English)

    YIN Shi-heng; ZHU Bin; LIU Yun-chun; YANG Ji; KUANG Tong-chun

    2012-01-01

    Superhydrophobic aluminum surfaces with a high water contact angle and low sliding angle on aluminum plate substrate were fabricated by means of surface etching with sodium hydroxide under ultrasonic bathing and then modification with fluorosilane.Scanning electron microscopy(SEM) showed a honeycomb-like structure on aluminum substrate surface after etching under ultrasonic bathing.And the surface was rendered from superhydrophilicity to superhydrophobicity after further modification with fluorosilane.

  4. 21 CFR 582.1205 - Calcium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium hydroxide. 582.1205 Section 582.1205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use....

  5. Bacterial reduction and release of adsorbed arsenate on Fe(Ⅲ)-, Al-and coprecipitated Fe(Ⅲ)/Al-hydroxides

    Institute of Scientific and Technical Information of China (English)

    Xuexia Zhang; Yongfeng Jia; Shaofeng Wang; Rongrong Pan; Xudong Zhang

    2012-01-01

    Mobilization of arsenic under anaerobic conditions is of great concern in arsenic contaminated soils and sediments.Bacterial reduction of As(Ⅴ)and Fe(Ⅲ)influences the cycling and partitioning of arsenic between solid and aqueous phase.We investigated the impact of bacterially mediated reductions of Fe(Ⅲ)/A1 hydroxides-bound arsenic(Ⅴ)and iron(Ⅲ)oxides on arsenic release.Our results suggested that As(Ⅴ)reduction occurred prior to Fe(Ⅲ)reduction,and Fe(Ⅲ)reduction did not enhance the release of arsenic.Instead,Fe(Ⅲ)hydroxides retained their dissolved concentrations during the experimental process,even though the new iron mineral-magnetite formed.In contrast,the release of reduced As(Ⅲ)was promoted greatly when aluminum hydroxides was incorporated.Thus,the substitution of aluminum hydroxides may be responsible for the release of arsenic in the contaminated soils and sediments,since aluminum substitution of Fe(Ⅲ)hydroxides universally occurs under natural conditions.

  6. Selenium adsorption to aluminum-based water treatment residuals

    Energy Technology Data Exchange (ETDEWEB)

    Ippolito, James A.; Scheckel, Kirk G.; Barbarick, Ken A.; (US-Agriculture); (EPA); (CSU)

    2009-09-02

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR in an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.

  7. Supermolecular layered dou- ble hydroxides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Research progresses in the layered double hydroxides ·mH2O intercalated with metal coordinate ions or oxometalates in the last ten years are reviewed. These layered double hydroxides are mainly intercalated with polyoxometalate (POM) ions, a LiAl-LDH photochemical assembly containing TiO2 and CH3(CH2)12COO- anions, together with Zn(TPPC) (porphy-rin derivate) and macrocyclic ligand-containing porphyrin derivate anions. Emphasis is put on the synthesis methods for intercalation of the anions into the interlayer regions, the characterization techniques and structures for the layered compounds and the newest research progress in the fields such as catalysis. The review also forecasts the prospects of the field.

  8. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  9. Hydrogen generation by aluminum corrosion in seawater promoted by suspensions of aluminum hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Lluis; Candela, Angelica Maria; Macanas, Jorge; Munoz, Maria; Casado, Juan [Centre Grup de Tecniques de Separacio en Quimica (GTS), Unitat de Quimica Analitica, Departament de Quimica, Universitat Autonoma de Barcelona, Edifici C - Campus de la UAB s/n, 08193 Bellaterra, Barcelona, Catalonia (Spain)

    2009-10-15

    Nowadays, new processes of H{sub 2} generation from water via Al corrosion are mainly limited by Al passivation. Here we report on the systematic assessment of H{sub 2} production by corrosion of Al in seawater suspensions prepared with NaAlO{sub 2}. The reported results are encouraging, since it was observed that seawater suspensions tested can prevent Al passivation during H{sub 2} evolution, reaching 100% yields at ca. 700 cm{sup 3} H{sub 2} min{sup -1}. XRD analysis revealed the formation of solid Al(OH){sub 3} (bayerite) in initial seawater suspensions. So, model suspensions were prepared using NaAlO{sub 2} + Al(OH){sub 3} in distilled water, which even improved the results obtained in seawater. Suspended particles of Al(OH){sub 3} act as nuclei in a mechanism of seeded crystallization, which prevents Al surface passivation. Moreover, a synergistic effect of Al(OH){sub 3} suspensions in combination with NaAlO{sub 2} solutions was key in promoting Al corrosion. The effect of NaCl in aqueous suspensions was also studied, but it was insignificant compared to this synergistic effect. The composition of suspensions was optimized and a 0.01 M NaAlO{sub 2} solution with 20 g dm{sup -3} Al(OH){sub 3} was selected as candidate to generate H{sub 2} at pH ca. 12 with high efficiency. Consecutive runs of the selected composition were performed obtaining ca. 90% yields in all of them. (author)

  10. Aluminum-26 as a biological tracer using accelerator mass spectrometry

    Science.gov (United States)

    Flarend, Richard Edward

    1997-06-01

    The development of accelerator mass spectrometry (AMS) has provided a practical method of detection for the only isotope of aluminum suitable as a tracer, 26Al. The use of 26Al as a tracer for aluminum has made possible the study of aluminum metabolism and the pharmacokinetics of aluminum-containing drugs at physiological levels. An overview of the various advantages of using 26Al as a tracer for aluminum and a general description of the AMS technique as applied to bio-medical applications is given. To illustrate the versatility of 26Al as a tracer for aluminum, 26Al studies of the past several years are discussed briefly. In addition, Two novel investigations dealing with 26Al-labeled drugs will be presented in more detail. In one of these studies, it was found that 26Al from aluminum hydroxide and aluminum phosphate vaccine adjuvants appeared in the blood just one hour after intramuscular injection. This is a surprising result since the currently held theory of how adjuvants work assumes that adjuvants remain insoluble and hold the antigen at the injection site for a long period of time. In another project, 26Al-labeled antiperspirants are being characterized by combining AMS with traditional analytical and chromatographic techniques. Future directions for this and other possible studies are discussed.

  11. ALUMINUM REMOVAL FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION - LABORATORY SCALE VALIDATION ON WASTE SIMULANTS TEST REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SAMS T; HAGERTY K

    2011-01-27

    To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH){sub 4}) as lithium hydrotalcite (Li{sub 2}CO{sub 3}.4Al(OH){sub 3}.3H{sub 2}O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

  12. Aluminum Removal From Hanford Waste By Lithium Hydrotalcite Precipitation - Laboratory Scale Validation On Waste Simulants Test Report

    International Nuclear Information System (INIS)

    To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH)4) as lithium hydrotalcite (Li2CO3.4Al(OH)3.3H2O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

  13. Hydrogen generation through massive corrosion of deformed aluminum in water

    Energy Technology Data Exchange (ETDEWEB)

    Czech, E.; Troczynski, T. [Materials Engineering Department, University of British Columbia, 309-6350 Stores Rd., Vancouver, BC V6T 1Z4 (Canada)

    2010-02-15

    Aluminum, one of most reactive metals, rapidly corrodes in strong acidic or alkaline solutions but passivates at pH of about 5-9. We have determined that the passivation of aluminum in this range of pH, and in particular in regular tap water, can be substantially prevented after milling of aluminum with water-soluble inorganic salts (referred to as ''WIS''), such as KCl or NaCl. Ensuing corrosion of Al in tap water, with accompanying release of hydrogen and precipitation of aluminum hydroxide, at normal pressure and moderate temperatures ({proportional_to}55 C) is rapid and substantial. For example, {proportional_to}92% of the Al in the Al-WIS system when milled for 1 h and {proportional_to}81% when milled for 15 min, corrodes in 1 h, with the release of 1.5 mol of hydrogen per each mole of Al consumed in the reaction. Besides gaseous hydrogen, only solid aluminum hydroxides were formed as the reaction byproducts, opening up the possibility of straightforward recycling of the system. The effects of WIS concentration, chemistry of other additives, powder particle size, temperature, and milling conditions on the reaction kinetics are reported. (author)

  14. In situ generation of hydrogen from water by aluminum corrosion in solutions of sodium aluminate

    OpenAIRE

    Soler Turu, Lluis; Candela Soto, Angélica Maria; Macanás de Benito, Jorge; Muñoz Tapia, Maria; Casado Giménez, Juan

    2009-01-01

    A new process to obtain hydrogen from water using aluminum in sodium aluminate solutions is described and compared with results obtained in aqueous sodium hydroxide. This process consumes only water and aluminum, which are raw materials much cheaper than other compounds used for in situ hydrogen generation, such as hydrocarbons and chemical hydrides, respectively. As a consequence, our process could be an economically feasible alternative for hydrogen to supply fuel cells. Results showed an i...

  15. Aluminum Solubility Model for Hanford Tank Waste Treatment

    International Nuclear Information System (INIS)

    The solubility of aluminum in Hanford tank waste is a critical issue that fundamentally impacts the planning basis for treating waste at Hanford's Waste Treatment Plant. Dissolving or leaching aluminum from Hanford tank sludges and maintaining its solubility during pretreatment requires the addition of large amounts of sodium hydroxide. Recent estimates suggest that added sodium may result in nearly doubling the amount of Low-Activity Waste (LAW). On the other hand, aluminum (as aluminate) often shows very high solubility in Hanford tank waste supernatants. There are many reports of tank farm supernatants with aluminum concentrations in the range of 0.2 to 1.5 M, considerably higher than predicted by current models with the measured free hydroxide concentrations. This paper proposes an aluminum solubility model that is consistent with these observations by taking into account not only the free hydroxide, but three additional characteristics of these complex waste mixtures: 1) Low water activity that appears to stabilize aluminate in solution and is caused by high amounts of dissolved salts in waste concentrates; 2) Carbonate appears to further stabilize aluminate in solution; and 3) High TOC (total organic carbon) in waste also appears to stabilize soluble aluminate. This paper shows this 'water activity' aluminum solubility model is consistent with a large number of tank farm assays and may therefore be useful for Site planning. The well-known dependence of Al solubility on hydroxide concentration occurs by means of formation of soluble aluminate, Al(OH)4-. Although it has also been long recognized that changes in species activities are important for highly concentrated sodium hydroxide solutions, the role of water activity has not yet been well defined. The water-activity model herein developed seems to be consistent with the large amount of data for the simple system of NaOH, Al(OH)3, and H2O, including temperature. Moreover, this paper shows additional roles

  16. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    Science.gov (United States)

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing.

  17. Characterization of aluminum nanopowders after long-term storage

    International Nuclear Information System (INIS)

    Highlights: • The aluminum nanopowders produced by electrical explosion of wires after long-term storage (27 and 10 years) under natural conditions are characterized. • The phase composition and thermal stability of aluminum nanopowders after long-term storage are determined. • The surface chemical changes in the aged aluminum nanopowders are examined. • The high reactivity of aluminum nanopowder is due to the presence of the protective oxide–hydroxide layer on the particles surface. - Abstract: The characteristics of aluminum nanopowders obtained by electrical explosion of wires, passivated by air and stored for a long time under natural conditions are analyzed. The aluminum nanopowder produced in hydrogen had been stored for 27 years; the nanopowders produced in argon and nitrogen had been stored for 10 years. The powders were studied using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG) and Fourier transform infrared spectrometry (FTIR). The influence of the obtaining conditions and storage period of nanopowders on their thermal stability under heating in air is shown. The aluminum nanopowders after long-term storage in air under ambient conditions are found to be extremely active

  18. Flame retardancy effect of surface-modified metal hydroxides on linear low density polyethylene

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by γ-diethoxyphosphorous ester propyldiethoxymethylsilane,boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃.Phosphorus,silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy.The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis.The results show that linear low density polyethylene (LLDPE) composite,filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers,passes the V-O rating of UL-94 test and shows the limited oxygen index of 34%,and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously;The mechanical properties of MAH can be improved by surface-modification.The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.

  19. Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Grey, Clare P.; Sideris, Paul J.;

    2008-01-01

    The anion- exchange ability of layered double hydroxides ( LDHs) has been exploited to create materials for use in catalysis, drug delivery, and environmental remediation. The specific cation arrangements in the hydroxide layers of hydrotalcite- like LDHs, of general formula Mg1-x2+Alx3+OH2(Anion...... contacts. The application of rapid MAS NMR methods to investigate proton distributions in a wide range of materials is readily envisaged.......(x/n)(n-)).yH(2)O, have, however, remained elusive, and their elucidation could enhance the functional optimization of these materials. We applied rapid ( 60 kilohertz) magic angle spinning ( MAS) to obtain high- resolution hydrogen- 1 nuclear magnetic resonance ( H-1 NMR) spectra and characterize the magnesium...... and aluminum distribution. These data, in combination with H-1-Al-27 double- resonance and Mg-25 triple- quantum MAS NMR data, show that the cations are fully ordered for magnesium: aluminum ratios of 2:1 and that at lower aluminum content, a nonrandom distribution of cations persists, with no Al3+-Al3+ close...

  20. Pharmacokinetic Profile of Oral Magnesium Hydroxide

    DEFF Research Database (Denmark)

    Dolberg, Mette Konow Bøgebjerg; Nielsen, Lars Peter; Dahl, Ronald

    2016-01-01

    Despite the presumption of a beneficial effect of magnesium (Mg) supplementation on various diseases, little is known concerning the pharmacokinetics of Mg hydroxide. This study was designed to provide a pharmacokinetic profile of Mg hydroxide after a single oral dose. Ten healthy male adults...... participated in this cross-over study with three 24-hr study days. Interventions were: 1) none (baseline), 2) oral intake of three (3 x 360 mg) tablets of Mg hydroxide (Mablet(®) ) and 3) IV bolus infusion of 2 g Mg sulphate (index drug). Blood samples were collected before the single dose, after (i.e. post.......0) from baseline. No severe side effects. Mg hydroxide demonstrates a 15% bioavailability, and it constitutes a clinically relevant option for oral Mg supplementation. No severe side effects were seen. This article is protected by copyright. All rights reserved....

  1. Degradation of l-polylactide during melt processing with layered double hydroxides

    DEFF Research Database (Denmark)

    Gerds, Nathalie; Katiyar, Vimal; Koch, Christian Bender;

    2012-01-01

    PLA was melt compounded in small-scale batches with two forms of laurate-modified magnesium–aluminum layered double hydroxide (Mg-Al-LDH-C12), the corresponding carbonate form (Mg-Al-LDH-CO3) and a series of other additives. Various methods were then adopted to characterize the resulting compounds...... in an effort to gain greater insights into PLA degradation during melt processing. PLA molecular weight reduction was found to vary according to the type of LDH additive. It is considered that the degree of particle dispersion and LDH exfoliation, and hence the accessibility of the hydroxide layer surfaces...... and catalytically active Mg site centers are causative factors for PLA degradation. Interestingly, the release of water under the processing conditions was found to have a rather small effect on the PLA degradation. Low loadings of sodium laurate also caused PLA degradation indicating that carboxylate chain ends...

  2. Study on the supramolecular structure of sorbic acid intercalated Zn-Al layered double hydroxides and its thermal decomposition

    Institute of Scientific and Technical Information of China (English)

    MENG Jinhong; ZHANG Hui; David G. Evans; DUAN Xue

    2005-01-01

    A novel organic-inorganic composite, sorbic acid intercalated zinc aluminum layered double hydroxides (SA-ZnAl-LDHs) has been successfully assembled by a simple direct coprecipitation method. A holistic approach including normal XRD, FT-IR, and UV-Vis measurements and simultaneous TG/DTA/MS and in situ HT-XRD techniques was employed to explore the supramolecular intercalation structure and the thermal decomposition properties of as-synthesized SA-ZnAl-LDHs material.

  3. Effects of organic solutes on chemical reactions of aluminum

    Science.gov (United States)

    Lind, Carol J.; Hem, John David

    1975-01-01

    Concentrations of organic matter in the general range of 1-10 milligrams per litre organic carbon are common in natural water, and many naturally occurrin7 organic compounds form aluminum complexes. The aluminum concentrations in near-neutral pH solutions may be 10-100 times higher than the values predicted from solubility data if formation of such organic complexes is ignored. The processes of polymerization of aluminum hydroxide and precipitation of gibbsite are inhibited by the presence of the organic flavone compound quercetin in concentrations as low as 10 x -5.3 mole per litre. Quercetin forms a complex, with a probable molar ratio of 1:2 aluminum to quercetin, that has a formation constant (f12) of about 10 12. A complex with a higher aluminum-quercetin ratio also was observed, but this material tends to evolve into a compound of low solubility that removes aluminum from solution. In the presence of both dissolved aluminum and aqueous silica, low concentrations of quercetin improved the yield of crystallized kaolinite and halloysite. Small amounts of well-shaped kaolinite and halloysite crystals were identified by electron microscopy in solutions with pH's in the range 6.5-8.5 after 155 days aging in one experimer t and 481 days aging in a repeated experiment. The bulk of the precipitated material was amorphous to X-rays, and crystalline material was too small a proportion of the total to give identifiable X-ray diffraction peaks. The precipitates had aluminum-silicon ratios near 1, and their solubility corresponded to that found by Hem, Roberson, Lind, and Polzer (1973) for similar aluminosilicate precipitated in the absence of organic solutes. The improved yield of crystalline material obtained in the presence of quercetin probably is the result of the influence of the organic compound on the aluminum hydroxide polymerization process. Natural water containing color imparted by organic material tends to be higher in aluminum than would be predicted by p

  4. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  5. Sensing of corrosion on aluminum surfaces by use of metallic optical fiber.

    Science.gov (United States)

    Dong, Saying; Liao, Yanbiao; Tian, Qian

    2005-10-20

    We present a new method for monitoring aluminum corrosion by determining the kind of light output that is as corrosion occurs. We prepared some metallized multimode optical fibers by physical vacuum deposition of aluminum to monitor metal corrosion. The sensing area was 1-2 cm in length and had an uncladded part. We used scanning-electron microscopy (SEM) to observe the microappearance of the aluminum before and after corrosion by sodium hydroxide or hydrochloric acid. The film's thickness was also measured by SEM. The factors that affect the rate of corrosion were also investigated. PMID:16252643

  6. Dynamics of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of CdAl Layered Double Hydroxide to the Brucite-Like Cadmium Hydroxide

    KAUST Repository

    Saliba, Daniel

    2016-06-23

    Cadmium-Aluminum layered double hydroxide (CdAl LDH) is thermodynamically unstable and transforms to Cd(OH)2 and Al(OH)3 in a short period of time. We present a reaction-diffusion framework that enables us to use in situ steady-state fluorescence spectroscopy to study the kinetics of intercalation of a fluorescent probe (Rhodamine B (RhB)) during the formation of the CdAl LDH and its de-intercalation upon the conversion of the LDH phase to the β phase (Cd(OH)2). The method involves the diffusion of sodium hydroxide into a hydrogel gel matrix containing the aluminum and cadmium ions as well as the species we wish to incorporate in the interlayers of the LDH. The existence of RhB between the LDH layers and its expel during the transition into the β phase are proved via fluorescence microscopy, XRD and ssNMR. The activation energies of intercalation and de-intercalation of RhB are computed and show dependence on the cationic ratio of the corresponding LDH. We find that the energies of de- intercalation are systematically higher than those of intercalation proving that the dyes are stabilized due to the probe-brucite sheets interactions.

  7. Radiopacity evaluation of root canal sealers containing calcium hydroxide and MTA

    OpenAIRE

    Juliane Maria Guerreiro- Tanomaru; Marco Antonio Húngaro Duarte; Marcelo Gonçalves; Mario Tanomaru-Filho

    2009-01-01

    The purpose of this study was to evaluate the radiopacity of root canal sealers containing calcium hydroxide and MTA (Acroseal, Sealer 26, Sealapex, Endo CPM Sealer, Epiphany and Intrafill). Five disc-shaped specimens (10 x 1 mm) were fabricated from each material, according to the ISO 6876/2001 standard. After setting of the materials, radiographs were taken using occlusal film and a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The dental X-ray unit (GE1000) was set at ...

  8. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  9. Graphene-aluminum nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bartolucci, Stephen F., E-mail: stephen.bartolucci@us.army.mil [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Paras, Joseph [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Rafiee, Mohammad A. [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Rafiee, Javad [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina; Kapoor, Deepak [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Koratkar, Nikhil, E-mail: koratn@rpi.edu [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-10-15

    Highlights: {yields} We investigated the mechanical properties of aluminum and aluminum nanocomposites. {yields} Graphene composite had lower strength and hardness compared to nanotube reinforcement. {yields} Processing causes aluminum carbide formation at graphene defects. {yields} The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  10. Synthesis of layered double hydroxides from eggshells

    Energy Technology Data Exchange (ETDEWEB)

    Li Songnan [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, 150001 (China); Wang Fangyong [College of Engineering and Technology, Northeast Forestry University, 150001 (China); Jing Xiaoyan [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, 150001 (China); Wang Jun, E-mail: zhqw1888@sohu.com [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, 150001 (China); Saba, Jamil; Liu Qi; Ge Lan; Song Dalei; Zhang Milin [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, 150001 (China)

    2012-01-16

    Graphical abstract: This is the XRD pattern and TEM image of 4Ca-Al layered double hydroxide, which is obtained from eggshells. It can be seen that the sample is of layered double hydroxide and shows the plate-like agglomerations with an average size of 20-100 nm. Highlights: Black-Right-Pointing-Pointer We synthesize layered double hydroxides from eggshells. Black-Right-Pointing-Pointer Eggshells are the mainly material in this method. Black-Right-Pointing-Pointer The additional alkaline solution is not required. - Abstract: Ca-Al and Ca-Fe layered double hydroxides (LDHs) were successfully synthesized from chicken eggshells by an ultrasonic wave assistant method. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) techniques. XRD and TEM analyses showed that the 4Ca-Al LDHs were of high purity but other samples were not. The present study provides a simple, efficient and environmental friendly method to obtain LDHs from biowaste eggshells, in which additional alkaline solution is not required for synthesis. Moreover, eggshells provide all the requisite bivalent metal ions, which are needed to form layered double hydroxides.

  11. Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2014-07-01

    Full Text Available Bullo Saifullah,1 Mohamed E El Zowalaty,2,3 Palanisamy Arulselvan,2 Sharida Fakurazi,2,4 Thomas J Webster,5,6 Benjamin M Geilich,5 Mohd Zobir Hussein1 1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 3Department of Environmental Health, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia; 4Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 5Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH, against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis.  Keywords: Zn/Al-layered double hydroxides, zinc layered hydroxides, tuberculosis, para

  12. Synthesis and characterization of terephthalate-intercalated NiAl layered double hydroxides with high Al content.

    Science.gov (United States)

    Arias, Santiago; Eon, Jean Guillaume; San Gil, Rosane A S; Licea, Yordy E; Palacio, Luz Amparo; Faro, Arnaldo C

    2013-02-14

    Terephthalate-intercalated nickel-aluminum layered double hydroxides (LDHs) were prepared by a co-precipitation method, with nominal x values in the general formula Ni((1-x))Al(x)(OH)(2)(C(8)H(4)O(4))(x/2) in the range 0.3-0.8. The materials were characterized by X-ray diffraction, X-ray fluorescence spectroscopy, CHN analysis, thermogravimetric analysis, FTIR spectroscopy, EXAFS at the Ni edge and (27)Al NMR spectroscopy. A combination of XRD, XRF and CHN analysis indicated that crystalline LDHs with true x values up to 0.5 were obtained, along with increasing segregation of an aluminum hydroxide phase with increasing aluminum content. The EXAFS analysis indicated an upper limit of ca. 0.6 for the atomic fraction of aluminum at the second nickel coordination sphere. The (27)Al NMR analysis suggested that a phase containing octahedrally co-ordinated Al(3+) is segregated for nominal x values from 0.6 upwards. PMID:23188191

  13. Effect of an antacid containing magnesium and aluminum on absorption, metabolism, and mechanism of renal elimination of pefloxacin in humans.

    OpenAIRE

    Jaehde, U; Sörgel, F.; Stephan, U.; W. SCHUNACK

    1994-01-01

    The effects of an antacid containing magnesium and aluminum hydroxide on the pharmacokinetics of pefloxacin in 10 healthy volunteers were investigated. In a randomized crossover design, each subject received an oral dose of 400 mg of pefloxacin either with or without multiple doses of the antacid. The concentrations of pefloxacin and its metabolites in plasma and urine were determined by high-performance liquid chromatography assays. We found that coadministration of magnesium and aluminum hy...

  14. Single sheet metal oxides and hydroxides

    DEFF Research Database (Denmark)

    Huang, Lizhi

    The synthesis of layered double hydroxides (LDHs) provides a relatively easy and traditional way to build versatile chemical compounds with a rough control of the bulk structure. The delamination of LDHs to form their single host layers (2D nanosheets) and the capability to reassemble them offer ......) Delamination of the LDHs structure (oxGRC12) with the formation of single sheet iron (hydr)oxide (SSI). (3) Assembly of the new 2D nanosheets layer by layer to achieve desired functionalities.......The synthesis of layered double hydroxides (LDHs) provides a relatively easy and traditional way to build versatile chemical compounds with a rough control of the bulk structure. The delamination of LDHs to form their single host layers (2D nanosheets) and the capability to reassemble them offer...

  15. Aspects of aluminum toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, C.D.; Savory, J.; Wills, M.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  16. Aging of coprecipitated gallium and gadolinium hydroxides

    International Nuclear Information System (INIS)

    The X-ray graphical and X-ray spectroscopic methods have been used to investigate aging under parent solution at 25, 50, 90 deg and thermolysis in the 250-1000 deg range of mixed gallium and gadolinium hydroxides coprecipitated at pH 8.6 by ammonium hydroxide from the nitrate solution (Gd:Ga=3:5). Hydroxopolycompounds With garnet prestructure are stated to be precipitated under the mentioned conditions. Their dehydration and crystallization of gallium-gadolinium garnet take place during aging under parent solution and thermolysis

  17. Mesoporous aluminosilicates assembled from dissolved LTA zeolite and triblock copolymer in the presence of tetramethylammonium hydroxide.

    Science.gov (United States)

    Tanaka, Shunsuke; Okada, Hiroaki; Nakatani, Norihito; Maruo, Takanori; Nishiyama, Norikazu; Miyake, Yoshikazu

    2009-05-15

    Zeolite Na-A crystals dissolved in a HCl solution were used as a single-source of silicon and aluminum for the synthesis of mesoporous aluminosilicates via a template-assisted method with an organic base tetramethylammonium hydroxide (TMAOH). Amphiphilic triblock copolymer Pluronic F127 (EO(106)PO(70)EO(106)) was used as template. Increasing the amount of TMAOH in the synthetic solution resulted in an increase in the aluminum content of the products. On the other hand, mesostructural periodicity was deteriorated with higher content of aluminum incorporated into the mesoporous framework. The samples with low Si/Al ratios less than 5 have wormhole-like pore structure, while the samples with Si/Al ratios more than 7 possess highly ordered mesoporous structure, a body-centered Im3m symmetry, with single crystal like morphology. The samples with Si/Al ratio of 7, which prepared at TMAOH molar concentration of 25 mM in the templating solution, possess BET surface area of 470 m(2)/g, pore size of 6.4 nm, and pore volume of 0.56 cm(3)/g. Aluminum atoms have successfully been incorporated in a tetra-coordinated position and remained stable even after calcination at 600 degrees C. PMID:19223041

  18. A Quick and Simple Polarographic Method for Aluminum Measurement in Recombinant Hepatitis B Vaccine

    Directory of Open Access Journals (Sweden)

    Mahmoud Alebouyeh (PhD

    2016-01-01

    Full Text Available Background and Objective: Aluminum salts are among the most common useful additive compounds in preparation of human and animal vaccines. Aluminum phosphate and aluminum hydroxide are two additives that show good immunoadjuvant effects with many antigens. Aluminum-containing vaccines lead to a better and longer immune response compared to adjuvant-lacking vaccines. The Chromogenic methods used for determination of aluminum amounts in manufacturing centers are time-consuming and requires some experienced technicians to obtain accurate results. This study aimed to design and validate a simple polarographic method to measure aluminum in recombinant hepatitis B vaccine. Methods: In this study, the effects of temperature, pH, potential range and potential scan rate on the polarographic method of measuring aluminum in hepatitis B vaccine was evaluated and the optimal values for each of these factors were achieved. Results: In order to measure aluminum, temperature of 60 °C and pH of 4.5 were found as the optimal values. Implementation of polarographic method in the potential range of -0.25 to 0.1 volts had a better signal. Conclusion: Since the polarography method is more simple, accurate and faster than the chromogenic methods, it is suitable to be used for the measurement of aluminum in hepatitis B vaccine and it is recommended to be used in quality control laboratories for biological products.

  19. Radiopacity evaluation of root canal sealers containing calcium hydroxide and MTA

    Directory of Open Access Journals (Sweden)

    Juliane Maria Guerreiro- Tanomaru

    2009-06-01

    Full Text Available The purpose of this study was to evaluate the radiopacity of root canal sealers containing calcium hydroxide and MTA (Acroseal, Sealer 26, Sealapex, Endo CPM Sealer, Epiphany and Intrafill. Five disc-shaped specimens (10 x 1 mm were fabricated from each material, according to the ISO 6876/2001 standard. After setting of the materials, radiographs were taken using occlusal film and a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The dental X-ray unit (GE1000 was set at 50 kVp, 10 mA, 18 pulses/s and distance of 33.5 cm. The radiographs were digitized and the radiopacity compared to that of the aluminum stepwedge using VIXWIN-2000 software (Gendex. The data (mmAl were analyzed statistically by ANOVA and Tukey's test at the 5% significance level. Epiphany and Intrafill presented the highest radiopacity values (8.3 mmAl and 7.5 mmAl respectively, p < 0.05 followed by Sealer 26 (6.3 mmAl, Sealapex (6.1 mmAl and Endo CPM Sealer (6 mmAl. Acroseal was the least radiopaque material (4 mmAl, p < 0.05. In conclusion, the calcium hydroxide- and MTA-containing root canal sealers had different radiopacities. However, all materials presented radiopacity values above the minimum recommended by the ISO standard.

  20. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation.

    Science.gov (United States)

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-01-01

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type-III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications. PMID:27480483

  1. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1 – Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Kerry J., E-mail: howe@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Mitchell, Lana, E-mail: lmitchell@alionscience.com [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kim, Seung-Jun, E-mail: skim@lanl.gov [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Blandford, Edward D., E-mail: edb@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kee, Ernest J., E-mail: erniekee@gmail.com [South Texas Project Nuclear Operating Company, P.O. Box 270, Wadsworth, TX 77483 (United States)

    2015-10-15

    Highlights: • Trisodium phosphate (TSP) causes aluminum corrosion to cease after 24 h of exposure. • Chloride, iron, and copper have a minimal effect on the rate of aluminum corrosion when TSP is present. • Zinc can reduce the rate of aluminum corrosion when TSP is present. • Aluminum occasionally precipitates at concentrations lower than the calculated solubility for Al(OH){sub 3}. • Corrosion and solubility equations can be used to calculate the solids generated during a LOCA. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum from metallic aluminum surfaces under conditions representative of the containment pool following a postulated loss of coolant accident at a nuclear power generating facility. The experiments showed that TSP is capable of passivating the aluminum surface and preventing continued corrosion after about 24 h at the conditions tested. A correlation that describes the rate of corrosion including the passivation effect was developed from the bench experiments and validated with a separate set of experiments from a different test system. The saturation concentration of aluminum was shown to be well described by the solubility of amorphous aluminum hydroxide for the majority of cases, but instances have been observed when aluminum precipitates at concentrations lower than the calculated aluminum hydroxide solubility. Based on the experimental data and previous literature, an equation was developed to calculate the saturation concentration of aluminum as a function of pH and temperature under conditions representative of a loss of coolant accident (LOCA) in a TSP-buffered pressurized water reactor (PWR) containment. The corrosion equation and precipitation equation can be used in concert with each other to calculate the quantity of solids that would form as a function of time during a LOCA if the temperature and pH profiles were known.

  2. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  3. Aluminium hydroxide-induced granulomas in pigs

    DEFF Research Database (Denmark)

    Valtulini, S; Macchi, C; Ballanti, P;

    2005-01-01

    in the muscles of the neck (group slaughtered). The pigs had been injected with a vaccine containing 40 mg/2 ml dose of aluminium hydroxide as adjuvant. Research consisted of two phases: first, an epidemiological study was carried out, aimed at determining the risk factors for the granulomas. The results...

  4. 21 CFR 184.1205 - Calcium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium hydroxide. 184.1205 Section 184.1205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  5. Hydroxide catalysis bonding of silicon carbide

    NARCIS (Netherlands)

    Veggel, A.A. van; Ende, D.A. van den; Bogenstahl, J.; Rowan, S.; Cunningham, W.; Gubbels, G.H.M.; Nijmeijer, H.

    2008-01-01

    For bonding silicon carbide optics, which require extreme stability, hydroxide catalysis bonding is considered [Rowan, S., Hough, J. and Elliffe, E., Silicon carbide bonding. UK Patent 040 7953.9, 2004. Please contact Mr. D. Whiteford for further information: D.Whiteford@admin.gla.ac.uk]. This techn

  6. Is the Aluminum Hypothesis Dead?

    OpenAIRE

    Lidsky, Theodore I.

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  7. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  8. Effect of three different calcium hydroxide mixtures (calcium hydroxide with glycerine, normal saline and distilled water) on root dentin microhardness

    OpenAIRE

    Hasheminia SM; Norouzynasab S

    2007-01-01

    Background and Aim: During root canal therapy, it is necessary to remove as many bacteria as possible from the root canal. The use of medicaments is recommended to reduce the microbial population prior to root filling. Calcium hydroxide pastes have been used because of their antibacterial effects and the ability of tissue dissolving. The aim of this study was to evaluate the effect of calcium hydroxide/glycerine mixture, calcium hydroxide/normal saline mixture and calcium hydroxide/distilled ...

  9. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  10. Effect of Fe/Al Hydroxides on Desorption of K+ and NH4+ from Two Soils and Kaolinite

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-Ping; XU Ren-Kou; LI Jiu-Yu

    2013-01-01

    Potassium (K) and nitrogen (N) are essential nutrients for plants.Adsorption and desorption in soils affect K+ and NH4+ availabilities to plants and can be affected by the interaction between the electrical double layers on oppositely charged particles because the interaction can decrease the surface charge density of the particles by neutralization of positive and negative charges.We studied the effect of iron (Fe)/aluminum (Al) hydroxides on desorption of K+ and NH4+ from soils and kaolinite and proposed desorption mechanisms based on the overlapping of diffuse layers between negatively charged soils and mineral particles and the positively charged Fe/Al hydroxide particles.Our results indicated that the overlapping of diffuse layers of electrical double layers between positively charged Fe/Al hydroxides,as amorphous Al(OH)3 or Fe(OH)3,and negatively charged surfaces from an Ultisol,an Alfisol,and a kaolinite standard caused the effective negative surface charge density on the soils and kaolinite to become less negative.Thus the adsorption affinity of these negatively charged surfaces for K+ and NH4+ declined as a result of the incorporation of the Fe/Al hydroxides.Consequently,the release of exchangeable K+ and NH4+ from the surfaces of the soils and kaolinite increased with the amount of the Fe/Al hydroxides added.The greater the positive charge on the surfaces of Fe/Al hydroxides,the stronger was the interactive effect between the hydroxides and soils or kaolinite,and thus the more release of K+ and NH4+.A decrease in pH led to increased positive surface charge on the Fe/Al hydroxides and enhanced interactive effects between the hydroxides and soils/kaolinite.As a result,more K+ and NH4+ were desorbed from the soils and kaolinite.This study suggests that the interaction between oppositely charged particles of variable charge soils can enhance the mobility of K+ and NH4+ in the soils and thus increase their leaching loss.

  11. Research on the removal of radium from uranium effluent by air-aeration hydrated manganese hydroxide adsorption

    International Nuclear Information System (INIS)

    In the acidic leaching uranium process, pyrolusite or manganese oxide (MnO2) powder is often used as an oxidizer. In the processed effluent, manganese ion present as a contaminant in addition to U, Ra, Th, As, Zn, Cu, F, SO42-, etc. Manganese ion content is about 100∼200 mg/1 in effluent. In this case, a new process technique can be developed to treat the effluent using the Mn2+ present in the effluent. The approach is as follows: The effluent is neutralized by lime milk to pH about 11. As a result, most contaminants are precipitated to meet the uranium effluent discharge standards (U, Th, Mn, SO42- etc.), but radium is still present in the effluent. In this process, manganese ion forms manganese hydroxide Mn(OH)2. The manganese hydroxide is easily to oxide to form MnO(OH)2 by air aeration. This hydrated manganese hydroxide complex can then be used to adsorb radium in effluent. The experiments show: (1) Effluent pH, manganese concentration in effluent, and aeration strength and time etc. influence the radium removal efficiency. Under the test conditions, when manganese in effluent is between 100∼300 mg/l, and pH is over 10.5, radium can be reduced to lower 1.11 Bq/1 in the processed effluent. Higher contents of impurity elements such as aluminum, silicon and magnesium in the effluent affect the removal efficiency; (2) Under the experimental conditions, the lime precipitation air-aeration formed hydrated manganese hydroxide complex sludge is stable. There is no obvious release of radium from the adsorbed hydrated manganese hydroxide complex sludge; (3) The current experiments show that hydrated manganese hydroxide complex sludge has a very good re-adsorption ability for removal of radium from uranium effluent. Some experimental parameters have been measured. (author)

  12. Atmospheric pressure plasma treatment of flat aluminum surface

    International Nuclear Information System (INIS)

    Highlights: • DCSBD plasma is applicable for activation and cleaning of flat aluminum surfaces. • Decrease in the value of the contact angle after 1 s plasma treatment was 93%. • EDX measurements confirmed removal of oil contamination by 50% decreasing of carbon. • XPS analyze shown decrease of carbon content and increase of aluminum hydroxide and oxyhydroxide. - Abstract: The atmospheric pressure ambient air and oxygen plasma treatment of flat aluminum sheets using the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD) were investigated. The main objective of this study is to show the possibility of using DCSBD plasma source to activate and clean aluminum surface. Surface free energy measurements, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM/EDX) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used for the characterization of the aluminum surface chemistry and changes induced by plasma treatment. Short plasma exposure times (several seconds) led to a significant increase in the surface free energy due to changes of its polar components. Various ageing effects, depending on the storage conditions were observed and discussed. Effects of air and oxygen plasmas on the removal of varying degrees of artificial hydrocarbon contamination of aluminum surfaces were investigated by the means of EDX, ATR-FTIR and XPS methods. A significant decrease in the carbon surface content after the plasma treatment indicates a strong plasma cleaning effect, which together with high energy efficiency of the DCSBD plasma source points to potential benefits of DCSBD application in processing of the flat aluminum surfaces

  13. Clinical biochemistry of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  14. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  15. Burning characteristics of individual aluminum/aluminum oxide particles

    OpenAIRE

    Ruttenberg, Eric C.

    1996-01-01

    Approved for public release; distribution is unlimited An experimental investigation was conducted in which the burning characteristics of individual aluminum/aluminum oxide particles were measured using a windowed combustion bomb at atmospheric pressure and under gravity-fall conditions. A scanning electron microscope (SEM) was used to measure the size distribution of the initial aluminum particles and the aluminum oxide residue. Analysis of the residue indicated that the mass of aluminum...

  16. Purifying Aluminum by Vacuum Distillation

    Science.gov (United States)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  17. Friction reducing behavior of stearic acid film on a textured aluminum substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quan [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Wan, Yong, E-mail: wanyong@qtech.edu.cn [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Li, Yang; Yang, Shuyan [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Yao, Wenqing [Analysis Center of Tsinghua University, Beijing 100084 (China)

    2013-09-01

    A simple two-step process was developed to render the aluminum hydrophobicity with lower friction. The textured aluminum substrate was firstly fabricated by immersed in a sodium hydroxide solution at 100 °C for 1 h. Stearic acid film was then deposited to acquire high hydrophobicity. Scanning electron microscopy, IR spectroscopy and water contact angle measurements were used to analyze the morphological features, chemical structure and hydrophobicity of prepared samples, respectively. Moreover, the friction reducing behavior of the organic–inorganic composite film on aluminum sliding against steel was evaluated in a ball-on-plate configuration. It was found that the stearic acid film on the textured aluminum led to decreased friction with significantly extended life.

  18. Layered Double Hydroxide as Cordycepin Delivery Nanocarrier

    Institute of Scientific and Technical Information of China (English)

    Qin Zheng YANG; Jing YANG; Chang Kai ZHANG

    2006-01-01

    Layered double hydroxide was investigated as cordycepin delivery nanocarrier for the first time in this study. Negatively charged biomolecule-cordycepin was intercalated in the gallery spaces of [Mg-Al-NO3], which was confirmed by the results of X-ray diffraction and electrophoretic mobility. Cell experiment suggested that the new bio-LDH nanohybrid could prevent cordycepin decomposition by adenosine deaminase. This new formulation could possibly be used as a novel form cordycepin intravenous injection.

  19. Thermal behaviour of hydroxides, hydroxysalts and hydrotalcites

    Indian Academy of Sciences (India)

    Parthasarathi Bera; Michael Rajamathi; M S Hegde; P Vishnu Kamath

    2000-04-01

    Mass spectrometric analysis of gases evolved during thermal decomposition of divalent metal hydroxides, hydroxysalts and hydrotalcites show that all these compounds undergo dehydration in the temperature range 30 < T < 220°C followed by decomposition at temperatures above 250°C. The latter step involves simultaneous deanation and dehydroxylation of the layers. Our observations conclusively prove that alternative mechanisms which envisage CO2 evolution due to deanation at lower temperatures proposed by Kanezaki to be wrong.

  20. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  1. Control of crystallite and particle size in the synthesis of layered double hydroxides: Macromolecular insights and a complementary modeling tool.

    Science.gov (United States)

    Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S

    2016-04-15

    Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. PMID:26828278

  2. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  3. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  4. Intensity-based optical fiber sensor for monitoring corrosion of aluminum alloys.

    Science.gov (United States)

    Dong, Saying; Liao, Yanbiao; Tian, Qian

    2005-09-20

    A new method, based on the shift of light power transmitted through fiber, to measure corrosion of aluminum is presented. A multimode fiber was metallized by use of physical vacuum to deposit aluminum onto an unclad part of a fiber of 1 to 2 cm length. Scanning-electron microscopy and x-ray diffraction were used to show, the formation and corrosion of the metallized film. The light signal driven by metal corrosion was affected by the film's thickness and the concentration of the corrosive solution of sodium hydroxide. PMID:16201441

  5. Research on the removal of radium from uranium effluent by air-aeration hydrated manganese hydroxide adsorption

    International Nuclear Information System (INIS)

    In the acidic leaching uranium process, pyrolusite or manganese oxide (MnO2) powder is often used as an oxidizer. In the resulting effluent, manganese ion is present as a contaminant in addition to U, Ra, Th, As, Zn, Cu, F-, SO42-, etc. Manganese ion content is about 100∼200 mg/l in effluent. In this case, a new process technique can be developed to treat the effluent using the Mn2+ present in the effluent. The approach is as follows: The effluent is neutralized by lime milk to pH about 11. As a result, most contaminants are precipitated to meet the uranium effluent discharge standards (U, Th, Mn, SO42- etc), but radium is still present in the effluent. In this process, manganese ion forms manganese hydroxide Mn(OH)2. The manganese hydroxide is easily oxidized to form MnO(OH)2 by air aeration. This hydrated manganese hydroxide complex can then be used to adsorb radium in effluent. The experiments show: (1) Effluent pH, manganese concentration in effluent, and aeration strength and time etc. influence the radium removal efficiency. Under the test conditions, when manganese in effluent is between 100∼300 mg/l, and pH is over 10.5, radium can be reduced to lower than 1.11 Bq/l in the processed effluent. Higher contents of impurity elements such as aluminum, silicon and magnesium in the effluent affect the removal efficiency, (2) Under the experimental conditions, the lime precipitation-air aeration formed hydrated manganese hydroxide complex sludge is stable. There is no obvious release of radium from the adsorbed hydrated manganese hydroxide complex sludge, (3) the current experiments show that hydrated manganese hydroxide complex sludge has very good re-adsorption ability for removal of radium from uranium effluent. Some experimental parameters have been measured, (4) Compared with other process methods, such as neutralizing effluent without aeration; or neutralization with barium chloride addition at pH 5, 8, and 11, the removal of radium from uranium effluent

  6. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts

    Science.gov (United States)

    Boclair, J. W.; Braterman, P. S.

    1999-01-01

    Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.

  7. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.

    Science.gov (United States)

    Choi, Tae Hoon; Liang, Ruibin; Maupin, C Mark; Voth, Gregory A

    2013-05-01

    The self-consistent charge density functional tight binding (SCC-DFTB) method has been applied to hydroxide water clusters and a hydroxide ion in bulk water. To determine the impact of various implementations of SCC-DFTB on the energetics and dynamics of a hydroxide ion in gas phase and condensed phase, the DFTB2, DFTB2-γ(h), DFTB2-γ(h)+gaus, DFTB3-diag, DFTB3-diag+gaus, DFTB3-Full+gaus, and DFTB3-3OB implementations have been tested. Energetic stabilities for small hydroxide clusters, OH(-)(H2O)n, where n = 4-7, are inconsistent with the results calculated with the B3LYP and second order Møller-Plesset (MP2) levels of ab initio theory. The condensed phase simulations, OH(-)(H2O)127, using the DFTB2, DFTB2-γ(h), DFTB2-γ(h)+gaus, DFTB3-diag, DFTB3-diag+gaus, DFTB3-Full+gaus and DFTB3-3OB methods are compared to Car-Parrinello molecular dynamics (CPMD) simulations using the BLYP functional. The SCC-DFTB method including a modified O-H repulsive potential and the third order correction (DFTB3-diag/Full+gaus) is shown to poorly reproduce the CPMD computational results, while the DFTB2 and DFTB2-γ(h) method somewhat more closely describe the structural and dynamical nature of the hydroxide ion in condensed phase. The DFTB3-3OB outperforms the MIO parameter set but is no more accurate than DFTB2. It is also shown that the overcoordinated water molecules lead to an incorrect bulk water density and result in unphysical water void formation. The results presented in this paper point to serious drawbacks for various DFTB extensions and corrections for a hydroxide ion in aqueous environments. PMID:23566052

  8. Fluoride ions sorption of the water using natural and modified hematite with aluminium hydroxide

    International Nuclear Information System (INIS)

    Fluorine is a mineral known for its dental benefits, but fluoride ions can cause fluoro sis in excessive quantities. There are many epidemiological studies on possible adverse effects resulting from prolonged ingestion of fluoride through drinking water. These studies demonstrate that fluoride mainly affects the bone tissue (bones and teeth), may produce an adverse effect on tooth enamel and can cause mild dental fluoro sis at concentrations from 0.9 to 1.2 mg/L in drinking water. In several states of Mexico, water contaminated with fluoride ions can be found, such as Aguascalientes, Chihuahua, Coahuila, Durango, Guanajuato, Sonora, Zacatecas, San Luis Potosi and Jalisco, where the fluoride ions levels are higher than 1.5 mg/L, established by the Mexican Official Standard (NOM-127-Ssa-2000) which sets the permissible limits of water for human use and consumption. Currently, several technologies have been proposed to remove fluoride ions from water such as precipitation methods which are based on the addition of chemicals to water and sorption methods to removed fluoride ions by sorption or ion exchange reactions by some suitable substrate capable of regenerate and reuse. In this work, the sorption of fluoride ions using unmodified and modified hematite with aluminum hydroxide to remove fluoride ions from water by bath experiments was studied. The hematite was modified by treating it with aluminum hydroxide, NaOH and Al2(SO4)3 solutions. The characterization of hematite before and after modification with aluminum hydroxide was studied by X-ray diffraction, scanning electron microscopy, EDS and Bet. The effect of ph, contact time, concentration of fluoride ions, and the dose of sorbent on the sorption of fluoride ions by the modified hematite were studied. Equilibrium was reached within 48 hours of contact time and the maximum sorption of fluoride ions were in the range pHeq between 2.3 and 6.2. Sorption capacities of fluoride ions as a function of dose of sorbent

  9. Aluminum, parathyroid hormone, and osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  10. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    OpenAIRE

    Mohammadi, Z; Shalavi, S.; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5...

  11. High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides

    OpenAIRE

    Lu, Z Y; Zhu, W; Lei, X. D.; Williams, G. R.; O'Hare, D.; Chang, Z; Sun, X. M.; Duan, X

    2012-01-01

    A thin nanosheet of mesoporous cobalt carbonate hydroxide (MPCCH) has been fabricated from a CoAl-LDH nanosheet following removal of the Al cations by alkali etching. The basic etched electrode exhibits enhanced specific capacitance (1075 F g−1 at 5 mA cm−2) and higher rate capability and cycling stability (92% maintained after 2000 cycles).

  12. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  13. Protons and Hydroxide Ions in Aqueous Systems.

    Science.gov (United States)

    Agmon, Noam; Bakker, Huib J; Campen, R Kramer; Henchman, Richard H; Pohl, Peter; Roke, Sylvie; Thämer, Martin; Hassanali, Ali

    2016-07-13

    Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics. PMID:27314430

  14. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  15. Preparação de compostos de alumínio a partir da bauxita: considerações sobre alguns aspectos envolvidos em um experimento didático Preparation of aluminum compounds from bauxite: considerations about some aspects involved in a didactic experiment

    Directory of Open Access Journals (Sweden)

    Vera R. Leopoldo Constantino

    2002-05-01

    Full Text Available Aluminum metal and aluminum compounds have many applications in several branches of the industry and in our daily lives. The most important raw material for aluminum and its manufactured compounds is bauxite, a rock constituted mainly by aluminum hydroxides minerals. In this work, a didactic experiment aiming the preparation of alumina and potassium alum starting from bauxite is proposed for undergraduate students. Both compounds are of great commercial, scientific and historical interest. The experiment involves applications of important chemical principles such as acid-base and precipitation. Some chemical properties and uses of aluminum compounds are also illustrated.

  16. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Science.gov (United States)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-11-01

    Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However, MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  17. Shape and size control of nano dispersed Mg/Al layered double hydroxide.

    Science.gov (United States)

    Panda, H S; Srivastava, R; Bahadur, D

    2008-08-01

    Controlling the shape and size of the layered inorganic-organic hybrid particles is a challenge with conventional methods of synthesis. The co-precipitation method has been modified to synthesize Mg/Al Layered double hydroxide by controlling the particle growth using ultrasonic wave at the time of nucleation. In this project, magnesium and aluminum ions were considered as model systems with carbonate anion as intercalating agent. The resulting particles are compared with those of LDHs produced by conventional co-precipitation method at constant pH. Powder X-ray diffraction confirmed formation of the layered double hydroxide phases having crystallite size 19-20 nm in both 'a' and 'c' crystallographic directions. Transmission electron microscope and dynamic light scattering revealed nano disperse hexagonal platelets with narrow size distribution and average size was around 48 nm. The modified method reduces the particle size, increases the surface charge, narrows down the size distribution and also reduces the aspect ratio of the particles. Therefore, it is suggested that low amplitude ultrasonic wave prevents the aggregation of the nuclei, thus restricting the particle growth and results in uniform size particles. PMID:19049206

  18. High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructure.

    Science.gov (United States)

    Tokudome, Yasuaki; Fukui, Megu; Tarutani, Naoki; Nishimura, Sari; Prevot, Vanessa; Forano, Claude; Poologasundarampillai, Gowsihan; Lee, Peter D; Takahashi, Masahide

    2016-09-01

    Hierarchically porous biocompatible Mg-Al-Cl-type layered double hydroxide (LDH) composites containing aluminum hydroxide (Alhy) have been prepared using a phase-separation process. The sol-gel synthesis allows for the hierarchical pores of the LDH-Alhy composites to be tuned, leading to a high specific solid surface area per unit volume available for high-molecular-weight protein adsorptions. A linear relationship between the effective surface area, SEFF, and loading capacity of a model protein, bovine serum albumin (BSA), is established following successful control of the structure of the LDH-Alhy composite. The threshold of the mean pore diameter, Dpm, above which BSA is effectively adsorbed on the surface of LDH-Alhy composites, is deduced as 20 nm. In particular, LDH-Alhy composite aerogels obtained via supercritical drying exhibit an extremely high capacity for protein loading (996 mg/g) as a result of a large mean mesopore diameter (>30 nm). The protein loading on LDH-Alhy is >14 times that of a reference LDH material (70 mg/g) prepared via a standard procedure. Importantly, BSA molecules pre-adsorbed on porous composites were successfully released on soaking in ionic solutions (HPO4(2-) and Cl(-) aqueous). The superior capability of the biocompatible LDH materials for loading, encapsulation, and releasing large quantities of proteins was clearly demonstrated. PMID:27501777

  19. Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors

    Science.gov (United States)

    Li, Xuejin; Zhang, Yu; Xing, Wei; Li, Li; Xue, Qingzhong; Yan, Zifeng

    2016-11-01

    Electrode design in nanoscale is considered to be ultra-important to construct a superb capacitor. Herein, a sandwich-like composite was made by combining graphene/polypyrrole (GPPY) with nickel-aluminum layered double hydroxide nanowires (NiAl-NWs) via a facile hydrothermal method. This sandwich-like architecture is promising in energy storage applications due to three unique features: (1) the conductive GPPY substrate not only effectively prevents the layered double hydroxides species from aggregating, but also considerably facilitates the electron transmission; (2) the ultrathin NiAl-NWs ensure a maximum exposure of active Ni2+, which can improve the efficiency of rapid redox reactions even at high current densities; (3) the sufficient space between anisotropic NiAl-NWs can accommodate a large volume change of the nanowires to avoid their collapse or distortion during the reduplicative redox reactions. Keeping all these unique features in mind, when the as-prepared composite was applied to supercapacitors, it presented an enhanced capacitive performance in terms of high specific capacitance (845 F g-1), excellent rate performance (67% retained at 30 A g-1), remarkable cyclic stability (92% maintained after 5000 cycles) and large energy density (40.1 Wh·Kg-1). This accomplishment in the present work inspires an innovative strategy of nanoscale electrode design for high-rate performance supercapacitor electrodes containing pseuducapacitive metal oxide.

  20. Hydrothermal synthesis of nanosize alpha-Al2O3 from seeded aluminum hydroxide

    OpenAIRE

    Sharma, Pramod K.; Burgard, Detlef; Nass, Rüdiger; Schmidt, Helmut K.; Jilavi, Mohammad H.

    1998-01-01

    α-Alumina and boehmite particles were synthesized by co-precipitation followed by a hydrothermal treatment. X-ray diffraction (XRD) indicated that α-Al2O3 was the major phase and coexisted with 4% of boehmite in the presence of the α-Al2O3 seeds. On the other hand, a single boehmite phase was obtained in the absence of the α-Al2O3 seed particles. The powder densified in the temperature range from 1050° to 1350°C. High-resolution transmission electron microscopy (HRTEM)...

  1. Aluminum hydroxide adjuvant differentially activates the three complement pathways with major involvement of the alternative pathway

    DEFF Research Database (Denmark)

    Güven, Esin; Duus, Karen; Laursen, Inga;

    2013-01-01

    Al(OH)3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH)3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH)3 treatment of serum depletes c...

  2. China’s Aluminum Resources

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The aluminum industry makes one of the keyindustries in China’s industrial and agriculturalmodernization and features a high degree ofrelevance with all industries.Of all the 124existing industries in China,113 use aluminum,representing an industrial relevance rate of91%.The consumption of aluminum is also ofhigh relevance with China’s GDP.

  3. Hydroxide Solvation and Transport in Anion Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen [Univ. of Chicago, IL (United States); Wuhan Univ. (China); Tse, Ying-Lung Steve [Univ. of Chicago, IL (United States); Lindberg, Gerrick E. [Northern Arizona Univ., Flagstaff, AZ (United States); Knight, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Voth, Gregory A. [Univ. of Chicago, IL (United States)

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  4. FIBRED MAGNESIUM HYDROXIDE AND FLAME-RESISTANT POLYENE MATERIAL

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The fibred mangesiun hydroxide from the bracite was treated with a surface active agent. The modified fibred magesium hydroxide as f lame-retardant,boric acid, barium stearate, polydimethyl siloxane fluid,vinyltr iethoxysilane as synergists of the flame-retardant were added to polyene resin. The flame-resistance polyene material prepared meets the requirements of EWCZ -6287-1.

  5. Role of Calcium Hydroxide in Endodontics: A Review

    OpenAIRE

    Arun A; Sangameshwar Sajjanshetty; Deepak Jain; Saujanya KP; Mohammed Mustafa; Laxmi Uppin; Mahnoor Kadri

    2012-01-01

    Calcium hydroxide is a multipurpose agent, and there have been an increasing number of indications for its use in endodontics. Some of its indications include inter-appointment intracanal medicaments, endodontic sealers, pulp capping agents, apexification, pulpotomy and weeping canals. The purpose of this article is to review the properties, advantages, disadvantages and various indications for the use of calcium hydroxide in endodontics.

  6. Large pore volume mesoporous aluminum oxide synthesized via nano-assembly

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new nano-assembly approach has been proposed for the preparation of macropore volume mesoporous aluminum oxide supports. Secondary nano-assembly and a frame structure mechanism for large pore volume mesoporous supports have been proposed. In a primary nano-assembly supersoluble micelle,aluminum hydroxide nanoparticles were precipitated in situ in surfactants with a volume balance (VB) less than 1,followed by secondary nano-assembly in linear and cylindrical shapes. The secondary nano-assembly of cylindrical aluminum hydroxides was calcined to form nano cylindrical aluminum oxides. For the formation of macropore volume mesoporous supports,we utilized a frame structure mechanism of mesoporous support,in which the exterior surface of the carrier may not be continuous. This macropore volume support has been used for the hydrotreatment of a residual oil catalyst,which possesses the following physical characteristics:pore volume 1.8―2.7 mL·g-1,specific surface area 180―429 m2·g-1,average pore diameter 17―57 nm,average pore diameter more than 10 nm (81%―94%),porosity 87%―93%,and crush strength 7.7―25 N·mm-1.

  7. Pingguo Aluminum Faces Dilemma

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Chinalco Guangxi Pinggjuo Branch is an exemplary company of Chinalco. Many of its indicators including technology, management standard, and profit rank in leading position in the industry, but such a pace-setter company is also facing the dilemma of overstock of Alumina products, and loss in electrolytic aluminum business.

  8. Applied Electrochemistry of Aluminum

    DEFF Research Database (Denmark)

    Li, Qingfeng; Qiu, Zhuxian

    Electrochemistry of aluminum is of special importance from both theoretical and technological point of view. It covers a wide range of electrolyte systems from molten fluoride melts at around 1000oC to room temperature molten salts, from aqueous to various organic media and from liquid to solid...

  9. Toxicity and Metabolism of Layered Double Hydroxide Intercalated with Levodopa in a Parkinson’s Disease Model

    Directory of Open Access Journals (Sweden)

    Aminu Umar Kura

    2014-04-01

    Full Text Available Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 µg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment.

  10. New technology for comprehensive utilization of aluminum-chromium residue from chromium salts production

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; QI Tian-gui; JIANG Xin-min; ZHOU Qiu-sheng; LIU Gui-hua; PENG Zhi-hong; HAN Deng-lun; ZHANG Zhong-yuan; YANG Kun-shan

    2008-01-01

    Colloidal aluminum-chromium residue(ACR) was mass-produced in chromate production process, and the large energy consumption and high recovery cost existed in traditional methods of utilizing such ACR. To overcome those problems, a new comprehensive method was proposed to deal with the ACR, and was proven valid in industry. In the new process, the chromate was separated firstly from the colloidal ACR by ripening and washing with additives, by which more than 95% hexavalent chromium was recovered. The chromium-free aluminum residue(CFAR), after properly dispersed, was digested at 120-130 ℃ and more than 90% alumina can be recovered. And then the pregnant aluminate solution obtained from digestion was seeded to precipitate aluminum hydroxide. This new method can successfully recover both alumina and sodium chromate, and thus realize the comprehensive utilization of ACR from chromate industry.

  11. Experimental investigation of aluminum complexing with sodium ion and of gallium and iron (III) speciation in natural solutions

    International Nuclear Information System (INIS)

    The aim of this work is to acquire thermodynamic data on the aqueous complexes forming between sodium and aluminum, gallium and hydroxide, and iron (III) and hydroxide. These data will provide for a better understanding of the transport and distribution of these elements in surface and hydrothermal fluids. Stability constants of the sodium-aluminate complex (Na Al(OH)4 deg.) were obtained from boehmite solubility measurements at temperatures from 125 to 350 deg. C in alkaline solutions containing from 0.1 to 1 mol/L sodium. Complementary potentiometric measurements were performed with a sodium selective electrode, between 75 and 200 deg C (the potentiometric study was carried out by Gleb Pokrovski). Analyses of these data within the framework of the revised Helgeson-Kirkham-Flowers (HKF) model allowed determination of the HKF parameters for Na Al(OH)4 deg. and calculation of its thermodynamic properties to 800 deg. C and 5 kb. The results of this work show that Na Al(OH)4 deg. complex formation increases significantly the solubility of aluminum-bearing minerals and consequently aluminum mobility in hydrothermal fluids. Gallium speciation in surface and hydrothermal fluids is dominated by the negatively charged species, Ga(OH)4-. The thermodynamic properties of this species were determined from of OEGaOOH solubility measurements as a function of pH and temperature from 25 to 250 deg. C. In general, the variation of gallium aqueous speciation with pH is similar to that of aluminum other than at temperatures less than 200 deg. C over the pH range 3 - 6. This difference can account for the independent behavior of gallium versus aluminum in numerous low temperature natural systems. The thermodynamic properties of Fe(OH)3 deg. which dominates the speciation of Fe(III) in surface waters and Fe(OH)4- were determined from hematite solubility measurements as a function of pH, oxygen pressure and temperature from 110 to 300 deg. C. The available thermodynamic data on other

  12. Strontium coprecipitation with individual and mixed hydroxides of some metals

    International Nuclear Information System (INIS)

    Using the method of radioactive indicators and studing coprecipitation of strontium with a great number of metal hydroxides under comparative conditions, it is ascertained that strontium is not coprecipitated with cadmium, zinc, magnesium, lead, telluride(4), aluminium, bismuth hydroxides over the whole range of pH studied. The value of strontium coprecipitation with other hydroxides increases with an increase in ionic potentials of the corresponding metals in the following sequence: La< Y< Co< Ni< In< Zr< Fe< Sn(4)< Sb(5). It is shown that acid-basic interaction between sorption and sorbent lies in the basis of sorption of the element small amounts by metal hdroxides

  13. HYDROGEN PEROXIDE BLEACHING OF CMP PULP USING MAGNESIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Farhad Zeinaly

    2009-11-01

    Full Text Available Conventional bleaching of hardwood CMP pulp with magnesium hydroxide (Mg(OH2 show significant benefits over bleaching with sodium hydroxide (NaOH under various conditions. Magnesium hydroxide bleaching generate higher optical properties, higher pulp yield and lower effluent COD at the same chemical charge, but the physical properties were found to be similar for both processes. The initial freeness of the bleached pulps and refining value to reach a target freeness (about 350 ml. CSF were more for the Mg(OH2-based process. The residual peroxide of filtrate from the Mg(OH2-based process was very high as compared to conventional bleaching.

  14. Synthesis of polymer nanocomposites using layered hydroxide salts (LHS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    In this work latexes of poly (methyl methacrylate) were synthesized via emulsion polymerization using layered hydroxide salts (LHS) as reinforcements: zinc hydroxide nitrate (Zn{sub 5}(OH){sub 8}(NO{sub 3}){sub 2{center_dot}}2H{sub 2}O) and copper hydroxide acetate (Cu{sub 2}(OH){sub 3}CH{sub 3}COO.H{sub 2}O). The LHSs were characterized by X-ray powder diffraction (XRPD). Mastersizer analysis indicated the particle diameter of the latexes. Molecular weights and conversion data were also obtained. (author)

  15. Homogeneous Precipitation of Nickel Hydroxide Powders

    Energy Technology Data Exchange (ETDEWEB)

    Bora Mavis

    2003-12-12

    Precipitation and characterization of nickel hydroxide powders were investigated. A comprehensive precipitation model incorporating the metal ion hydrolysis, complexation and precipitation reactions was developed for the production of the powders with urea precipitation method. Model predictions on Ni{sup 2+} precipitation rate were confirmed with precipitation experiments carried out at 90 C. Experimental data and model predictions were in remarkable agreement. Uncertainty in the solubility product data of nickel hydroxides was found to be the large contributor to the error. There were demonstrable compositional variations across the particle cross-sections and the growth mechanism was determined to be the aggregation of primary crystallites. This implied that there is a change in the intercalate chemistry of the primary crystallites with digestion time. Predicted changes in the concentrations of simple and complex ions in the solution support the proposed mechanism. The comprehensive set of hydrolysis reactions used in the model described above allows the investigation of other systems provided that accurate reaction constants are available. the fact that transition metal ions like Ni{sup 2+} form strong complexes with ammonia presents a challenge in the full recovery of the Ni{sup 2+}. On the other hand, presence of Al{sup 3+} facilitates the complete precipitation of Ni{sup 2+} in about 3 hours of digestion. A challenge in their predictive modeling studies had been the fact that simultaneous incorporation of more than one metal ion necessitates a different approach than just using the equilibrium constants of hydrolysis, complexation and precipitation reactions. Another limitation of using equilibrium constants is that the nucleation stage of digestion, which is controlled mainly by kinetics, is not fully justified. A new program released by IBM Almaden Research Center (Chemical Kinetics Simulator{trademark}, Version 1.01) lets the user change the order of

  16. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  17. Hydroxide-Assisted Bonding of Ultra-Low-Expansion Glass

    Science.gov (United States)

    Abramovici, Alexander; White, Victor

    2008-01-01

    A process for hydroxide-assisted bonding has been developed as a means of joining optical components made of ultra-low-expansion (ULE) glass, while maintaining sufficiently precise alignment between. The process is intended mainly for use in applications in which (1) bonding of glass optical components by use of epoxy does not enable attainment of the required accuracy and dimensional stability and (2) conventional optical contacting (which affords the required accuracy and stability) does not afford adequate bond strength. The basic concept of hydroxide-assisted bonding is not new. The development of the present process was prompted by two considerations: (1) The expertise in hydroxide-assisted bonding has resided in very few places and the experts have not been willing to reveal the details of their processes and (2) data on the reliability and strength attainable by hydroxide-assisted bonding have been scarce.

  18. Conversion coatings prepared or treated with calcium hydroxide solutions

    Science.gov (United States)

    Minevski, Zoran (Inventor); Clarke, Eric (Inventor); Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor)

    2002-01-01

    A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.

  19. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a... prepared cavity before insertion of restorative material, such as amalgam, to protect the pulp of a...

  20. Role of Calcium Hydroxide in Endodontics: A Review

    Directory of Open Access Journals (Sweden)

    Arun A

    2012-01-01

    Full Text Available Calcium hydroxide is a multipurpose agent, and there have been an increasing number of indications for its use in endodontics. Some of its indications include inter-appointment intracanal medicaments, endodontic sealers, pulp capping agents, apexification, pulpotomy and weeping canals. The purpose of this article is to review the properties, advantages, disadvantages and various indications for the use of calcium hydroxide in endodontics.

  1. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  2. Ageing behaviour of unary hydroxides in trivalent metal salt solutions: Formation of layered double hydroxide (LDH)-like phases

    Indian Academy of Sciences (India)

    Michael Rajamathi; P Vishnu Kamath

    2000-10-01

    The hydroxides of Mg, Ni, Cu and Zn transform into layered double hydroxide (LDH)-like phases on ageing in solutions of Al or Cr salts. This reaction is similar to acid leaching and proceeds by a dissolution–reprecipitation mechanism offering a simple method of LDH synthesis, with implications for the accepted theories of formation of LDH minerals in the earth’s crust.

  3. The Effects of Aluminium Hydroxide and Magnesium Hydroxide on the Mechanical Properties of Thermoplastic Polyurethane Materials

    Directory of Open Access Journals (Sweden)

    Erkin Akdoğan

    2015-12-01

    Full Text Available Thermoplastic polyurethane materials are widely used in automotive, clothing, electrical and electronics, medical, construction, machine industry due to excellent physical and chemical properties. Thermoplastic polyurethane materials combustion and resistance to high temperature characteristics are poor. Additives and fillers are added into the polyurethane matrix to improve those properties. Particularly adding these agents as a flame retardant are affect mechanical properties of polyurethane materials. Therefore, it is important to determinate the mechanical properties of these materials. In this study, 5% by weight of the thermoplastic polyurethane material, aluminium tri hydroxide (ATH, (Al2O3 3H2O and magnesium hydroxide (MgOH, (Mg(OH2 were added. Ammonium polyphosphate (APP as an intumescent flame retardant with inorganic flame retardants were added to increase the flame resistance of produced composite structure. Tensile test, tear test, hardness and Izod impact tests were made and compared of those produced composites. As a result of experiments the addition of ATH has lowered the tensile strength and tear strength contrast to this the addition of MgOH has improved those properties. Hardness and Izod impact test results were showed that both of the additives have no negative effect.

  4. Neurofibrillary pathology and aluminum in Alzheimer's disease

    OpenAIRE

    Shin, R. W.; Lee, V. M. Y; Trojanowski, J Q

    1995-01-01

    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  5. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  6. Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide

    International Nuclear Information System (INIS)

    The effect of cerium-based corrosion inhibitors on the pH front between the alkaline cathode and acidic anode in corrosion cells has been studied. The cerium component of these inhibitors can affect the pH front since it precipitates in an alkaline environment as cerium hydroxide, which is important since the corrosion inhibition mechanism of the cerium component is a result of its deposition as a highly electrical resistive (passivation) layer on the cathode. It is studied whether the cerium can reach the cathode when fed into the corrosion cell from an external source after the onset of corrosion. To this end a simulation model was set up that includes the Poisson–Nernst–Planck theory to describe ion transport and the Frumkin–Butler–Volmer equation to describe charge transfer at the electrodes. In this model both the self-dissociation of water and the formation of cerium hydroxide are taken into account. To support our findings experimentally a corrosion cell consisting of an aluminum and copper electrode was used, in which the pH fronts were visualized using a pH-indicator. Two types of inhibitors were used; namely, highly soluble CeCl3 and sparsely soluble cerium dibutylphosphate, Ce(dbp)3. The results show that CeCl3 can reduce the size of the alkaline region and reach the cathode to form a passivation layer, whereas the solubility in case of Ce(dbp)3 is too low to supply sufficient amounts of trivalent cerium cations to penetrate the alkaline region. This behavior can be explained by the simulation results, which reveal a threshold for the corrosion inhibitor solubility below which no passivation of the cathode occurs

  7. The in vitro sustained release profile and antitumor effect of etoposide-layered double hydroxide nanohybrids

    Directory of Open Access Journals (Sweden)

    Qin LL

    2013-05-01

    Full Text Available Lili Qin,1 Mei Wang,2 Rongrong Zhu,3 Songhui You,1 Ping Zhou,1 Shilong Wang31Department of Physical Education, Tongji University, Shanghai, People's Republic of China; 2Department of Chemistry, Tongji University, Shanghai, People's Republic of China; 3School of Life Science and Technology, Tongji University, Shanghai, People's Republic of ChinaAbstract: Magnesium-aluminum layered double hydroxides intercalated with antitumor drug etoposide (VP16 were prepared for the first time using a two-step procedure. The X-ray powder diffraction data suggested the intercalation of VP16 into layers with the increased basal spacing from 0.84–1.18 nm was successful. Then, it was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, and transmission electron microscopy. The prepared nanoparticles, VP16-LDH, showed an average diameter of 62.5 nm with a zeta potential of 20.5 mV. Evaluation of the buffering effect of VP16-LDH indicated that the nanohybrids were ideal for administration of the drugs that treat human stomach irritation. The loading amount of intercalated VP16 was 21.94% and possessed a profile of sustained release. The mechanism of VP16-LDH release in the phosphate buffered saline solution at pH 7.4 is likely controlled by the diffusion of VP16 anions from inside to the surface of LDH particles. The in vitro cytotoxicity and antitumor assays indicated that VP16-LDH hybrids were less toxic to GES-1 cells while exhibiting better antitumor efficacy on MKN45 and SGC-7901 cells. These results imply that VP16-LDH is a potential antitumor drug for a broad range of gastric cancer therapeutic applications.Keywords: layered double hydroxides, etoposide, drug delivery, antitumor effect, sustained release

  8. The influence of magnesium hydroxide sulfate whisker on the properties of liquid silicone rubber%碱式硫酸镁晶须对液体硅橡胶性能影响研究

    Institute of Scientific and Technical Information of China (English)

    张晓颖; 王国辉; 李倩; 邓新华

    2012-01-01

    以双组份加成型液体硅橡胶(LSR)为基胶,白炭黑为补强填料,通过测试分析,对比氢氧化铝、氢氧化镁、碱式硫酸镁晶须、经硬脂酸钠表面处理的碱式硫酸镁晶须4种阻燃剂复合液体硅橡胶的燃烧性能和力学性能.结果表明,经表面处理后的碱式硫酸镁晶须提高了LSR的拉伸强度,并在改善LSR的防火性能方面具有独特的优势.%Taking two-component additional liquid silicone rubber (LSR) as base rubber, silica white carbon black was as reinforcing packing material. Analyzis and comparison of the combustion performance and mechanical properties of four flame retardant liquid silicone rubber compound, including aluminum hydroxide, magnesium hydroxide, magnesium hydroxide sulfate whisker,and the stearic acid sodium surface treatment of magnesium hydroxide sulfate whisker. The results showed that the stearic acid sodium surface treatment of magnesium hydroxide sulfate whisker could improve the tensile strength of LSR, and had a unique advantage in improving the flame resistance of LSR.

  9. Hualu Aluminum Will Construct Large Coal-Power-Aluminum Aluminum Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The reporter learned from relevant departments of Baiyin City that in order to further push forward industrial upgrading,fulfill expansion and consolidation of the enterprise,Gansu Hualu Aluminum Co.,Ltd(Hualu Aluminum)will implement Out-Of-City-Into-Park project,

  10. Aluminum Zintl anion moieties within sodium aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  11. pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminum

    DEFF Research Database (Denmark)

    Reitzel, Kasper; Jensen, Henning S.; Egemose, Sara

    2013-01-01

    aluminate in shallow lakes, where resuspension and high pH in the water occurs frequently. In the worst case dissolved Al may reach toxic levels in lakes treated by Al but also the concomitant release of P and the possible loss of dissolved Al to downstream ecosystems are negative effects that may occur......The possible pH dependent dissolution of aluminum hydroxides (Al(OH)(3)) from lake sediments was studied in six lakes previously treated with Al to bind excess phosphorus (P). Surface sediment was suspended for 2 h in lake water of pH 7.5, 8.5, or 9.5 with resulting stepwise increments in dissolved...... Al observed in all lakes. The amount of dissolved Al increased proportional to the sediment content of Al(OH)(3) as quantified by a sequential extraction technique. Up to 24% of the sediment Al(OH)(3) could dissolve within 2 h at pH 9.5 and a portion of sediment P was dissolved concomitantly...

  12. The citotoxicity of calcium hydroxide intracanal dressing by MTT assay

    Directory of Open Access Journals (Sweden)

    Nanik Zubaidah

    2007-12-01

    Full Text Available Calcium hydroxide had been used as the intracanal dressing in endodontic treatment due to its high alkaline and high antimicrobial capacity. It also be able to dissolve the necrotic tissue, prevent the root resorbtion and regenerate a new hard tissue. The aim of this study is to identify the concentration of calcium hydroxide that has the lowest citotoxicity. There are 5 groups, each group had 8 samples with different concentration of calcium hydroxide. Group I: 50%, Group II: 55%, Group III: 60%, Group IV: 65% and Group V: 70%. The citotoxicity test by using enzymatic assay of MTT [3-(4.5- dimethylthiazol-2yl ]-2.5 diphenyl tetrazolium bromide, against fibroblast cell (BHK-21. The result of susceptibility test was showed by the citotoxicity detection of the survive cell of fibroblast that was measured spectrophotometrically using 595 nm beam. The data was analyzed using One-Way ANOVA test with significant difference α = 0.05 and subsequently LSD test. The result showed that in concentration 50%, 55%, 60%, 65%, and 70% calcium hydroxide had low toxicity, but calcium hydroxide 60%, had the lowest toxicity.

  13. Photo-oxidation of EPDM/layered double hydroxides composites: Influence of layered hydroxides and stabilizers

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available The photo-oxidation of ethylene propylene diene monomer (EPDM/ layered double hydroxide (LDH composites as well as EPDM/LDH with stabilizers is studied under accelerated UV irradiation (λ≥290 nm at 60°C for different time intervals. The development of functional groups during oxidation was monitored by FT-IR spectroscopy. The photodegradation of the pristine polymer and composites take place and the increase in hydroxyl and carbonyl groups with irradiation times, was estimated. EPDM filled LDH showed higher degradation rate than pristine EPDM, while in acidic medium EPDM/LDH showed almost equal degradation as in isolated conditions. These results show the advantages of LDHs as a filler as well as an acid killer. The effect of stabilizers is very less because of their concentration in comparison of LDH.

  14. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  15. Ultrahigh vacuum system with aluminum

    International Nuclear Information System (INIS)

    A bakeable vacuum chamber (1500C continuous) consists of aluminum alloy beam pipe (6063-T6) and bellows (5052-F) with an aluminum alloy flange (2219-T87) and a metal seal [Helicoflex-HN: pure aluminum (1050) O-ring with an elastic core (Ni base super alloy Inconel 750) which supplies the sealing force] has been constructed. The beam pipe and the flange (6063-T6/2219-T87), and the bellows and the flange (5052-F/2219-T87) were welded by an alternate current (50 Hz) TIG process using an aluminum alloy filler wire (4043). The mechanical properties of the aluminum alloy (2219-T87) is suitable for using the Helicoflex O-ring but the groove surface for the gasket is weak for scratching. Cromium-nitride coating by ion plating method was carried out on the aluminum surface of the gasket groove [thickness: 16 μm, micro Vickers hardness: 1800]. Ordinary stainless steel vacuum system can be replaced by the aluminum vacuum system in an accelerator. (author)

  16. Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    Science.gov (United States)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei

    2015-05-01

    A hierarchical superhydrophobic zinc-aluminum layered double hydroxides (Zn-Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn-Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn-Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  17. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  18. ANTIBACTERIAL EFFECT OF CALCIUM HYDROXIDE IN DIFFER ENT VEHICLES

    Directory of Open Access Journals (Sweden)

    Hari

    2012-11-01

    Full Text Available ABSTRACT: AIM: This study evaluated the antibacterial effect of ca lcium hydroxide in different vehicles in an in vitro model. MATERIAL AND METHODS: Calcium hydroxide paste prepared with two conventionally used vehicles namely, campho rated monochlophenol, distilled water and also propylene glycol. The antibacterial activity of these paste were tested against five micro- organisms that can commonly occur in the inf ected root canals. RESULTS AND CONCLUSIONS: The results of the study indicate that a paste of ca lcium hydroxide made with propylene glycol exerts significant antibacterial act ion. Hence, it can be recommended for use as an intracanal medicament in preference to a paste prepa red with a tissue toxic phenolic compound like camphorated mono chlorophenol

  19. Synthesis of aluminum nitride in a coke-calcium reduction bed using nitrogen in air

    Institute of Scientific and Technical Information of China (English)

    Ehsan Noorizadeh Dehkordi; H.R. Samim Banihashemi; R. Naghizadeh; H.R.Rezaie; M.Goodarzi

    2015-01-01

    An experimental study on the heating of a mixture of aluminum and lithium hydroxide (LiOH) powders in a reductive bed under air atmosphere is reported. The formation of aluminum nitride (AlN) during this process was the focus of this study. The formation of AlN was achieved using LiOH as an additive and heating the sample in a resistance furnace in a specially designed double crucible within a bed of a mixture of coke and filamentous calcium. The temperature range of the reaction was between 700°C and 1100°C. The optimum tem-perature of 1100°C and the optimum LiOH amount (5wt%) required to achieve maximum yield were determined by powder X-ray diffrac-tion (XRD) analysis. Scanning electron microscopy (SEM) micrographs clearly indicated the transformation of grain structures from rods (700°C) to cauliflower shapes (1100°C).

  20. Nanoscale layered double hydroxide materials for corrosion resistance

    OpenAIRE

    Rangel, C. M.; Travassos, Maria Antónia

    2007-01-01

    Layered Double Hydroxides (LDHμs), represented by the general formula [MII (1-x)MIIIx(OH)2[An-x/n].zH2O or [MIMIII2(OH)6[An-1/n].zH2O], where MI, MII, MIII are mono-, di- and tri-valent metal cations, are being researched as anion-exchange materials which interesting intercalation chemistry that accommodate a wide range of applications from heterogeneous catalysis to storage and subsequent controlled release of bioactive agents. In this work, layered double hydroxides containing a monovalent...

  1. Layered double hydroxides for aluminium alloys corrosion resistance

    OpenAIRE

    Rangel, C. M.; Travassos, Maria Antónia

    2007-01-01

    Layered Double Hydroxides (LDHμs), represented by the general formula [MII (1-x)MIIIx(OH)2[An-x/n].zH2O or [MIMIII2(OH)6[An-1/n].zH2O], where MI, MII, MIII are mono-, di- and tri-valent metal cations, are being researched as anion-exchange materials with interesting intercalation chemistry that accommodate a wide range of applications including corrosion resistance. In this work, layered double hydroxides containing a monovalent (Li+) and trivalent (Al3+) matrix cations, have ...

  2. Oxidative leaching of chromium from layered double hydroxides: Mechanistic studies

    Indian Academy of Sciences (India)

    A V Radha; P Vishnu Kamath

    2004-08-01

    The layered double hydroxide (LDH) of Zn with Cr on treatment with a hypochlorite solution releases chromate ions as a result of oxidative leaching by a dissolution–reprecipitation mechanism. The residue is found to be -Zn(OH)2. The LDH of Mg with Cr on the other hand is resistant to oxidative leaching. In contrast, a X-ray amorphous gel of the coprecipitated hydroxides of Mg and Cr yields chromate ions. These results suggest that the oxidation potential of Cr(III) in LDHs is determined by the nature of the divalent ion and the crystallinity of the phase while being unaffected by the nature of the intercalated anions.

  3. Chrome - Free Aluminum Coating System

    Science.gov (United States)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  4. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen;

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...... hydroxide. Numerical simulations of the electromagnetic field around the probe-sample interaction region are used to explain the experimental observations. With an aluminum-coated fiber probe, lines of 35 nm in width were transferred into the amorphous silicon layer. (C) 1997 American Institute of Physics....

  5. A Virtual Aluminum Reduction Cell

    Science.gov (United States)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  6. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors

    Science.gov (United States)

    Wang, Ya; Dou, Hui; Wang, Jie; Ding, Bing; Xu, Yunling; Chang, Zhi; Hao, Xiaodong

    2016-09-01

    In this work, an exfoliated MXene (e-MXene) nanosheets/nickel-aluminum layered double hydroxide (MXene/LDH) composite as supercapacitor electrode material is fabricated by in situ growth of LDH on e-MXene substrate. The LDH platelets homogeneously grown on the surface of the e-MXene sheets construct a three-dimensional (3D) porous structure, which not only leads to high active sites exposure of LDH and facile liquid electrolyte penetration, but also alleviates the volume change of LDH during the charge/discharge process. Meanwhile, the e -MXene substrate forms a conductive network to facilitate the electron transport of active material. The optimized MXene/LDH composite exhibits a high specific capacitance of 1061 F g-1 at a current density of 1 A g-1, excellent capacitance retention of 70% after 4000 cycle tests at a current density of 4 A g-1 and a good rate capability with 556 F g-1 retention at 10 A g-1.

  7. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengxia; Liang, Jun, E-mail: jliang@licp.cas.cn; Peng, Zhenjun; Liu, Baixing

    2014-09-15

    Highlights: • Zn-Al LDHs film was prepared on AZ91D Mg alloy by electrochemical deposition. • The Zn-Al LDHs film was uniform and dense with some small flaws and cracks. • The Zn-Al LDHs film had high adhesion and good corrosion protection to Mg alloy. - Abstract: A zinc-aluminum layered double hydroxides (Zn-Al LDHs) film was prepared on AZ91D magnesium (Mg) alloy substrate by electrochemical deposition method. The characteristics of the film were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electronic microscope (SEM). It was found that the electrodeposited film was composed of crystalline Zn-Al LDHs with nitrate intercalation. The Zn-Al LDHs film was uniform and dense though there also presented some small flaws and cracks. The cross cut tape test showed that the film adhered well to the substrate. Polarization and EIS measurements revealed that the LDHs coated Mg alloy had better corrosion resistance compared to that of the uncoated one in 3.5 wt.% NaCl solution, indicating that the Zn-Al LDHs film could effectively protect Mg alloy from corrosion.

  8. Nickel immobilization in ceramic matrix admixed with waste nickel hydroxide.

    Science.gov (United States)

    Osińska, Malgorzata; Stefanowicz, Tadeusz; Paukszta, Dominik

    2003-01-01

    WAXS examinations performed with nickel hydroxide samples heated to various temperatures showed that freshly settled wet nickel hydroxide sample contains some amount of crystalline beta-Ni(OH)(2) structure and its share increased when sample was dried during 3 weeks at ambient temperature. However, the share significantly decreased when the sample was dried at 110 degrees C and more so at 250 degrees C. Crystalline phase traces of Ni(OH)(2) disappeared after sample burning at 980 degrees C and instead the distinct presence of crystalline NiO was determined. The above samples were examined for solubility in stoichiometric amount of sulphuric acid diluted with water to pH 1.9 and 2.8. Solubility was determined by measuring nickel ion concentration in leachate by the AAS method. The dissolving rate was found to decrease with the rise of temperature to which the nickel hydroxide samples were heated. The solubility of Ni(OH)(2) sample burnt at 980 degrees C was undetectable during 90 h solubility-testing time likely due to its transformation into sparingly soluble crystalline NiO. The latter is considered to be the reason for effective immobilization of waste nickel hydroxide in ceramic prepared by blending with clay and sintering at 980 degrees C. PMID:14583250

  9. Dewatering of alumino-humic sludge: impacts of hydroxide.

    Science.gov (United States)

    Bache, D H; Papavasilopoulos, E N

    2003-08-01

    The paper draws together information on factors which influence the conditioning and dewatering behaviour of an alum sludge gained from the coagulation of a low-turbidity coloured water. A principal focus is the potential impact of aluminium hydroxide on the sludge character. Background information is provided on the composition of the source floc for the domain pH 6.0-6.5 and Al>2.0mg/l. From this, there were many pointers to the presence of Al(OH)(3)(s) within the floc. A series of comparisons were made between an alum sludge and a hydroxide suspension at a concentration equivalent to the coagulant fraction within the sludge. The parameters studied included floc size, floc density, polymer adsorption and dewatering behaviour at different time-scales. In all cases, there were strong similarities in the behaviour of the two suspensions-indicating the potential impact of the hydroxide. There was also evidence of common features being displayed by both the organic fractions and the hydroxide. It was suggested that some of the behavioural features might emanate from a common fractal structure within the source floc, the fractal dimension (approximately 1) being insensitive to composition.

  10. Antimicrobial effectiveness of different preparations of calcium hydroxide

    Directory of Open Access Journals (Sweden)

    Anshul Gangwar

    2011-01-01

    Results and Conclusions: It was seen that calcium hydroxide and CMCP combination showed the maximum zone of inhibition, and maximum inhibitory effect was seen at 24 hours. The bacteria most susceptible was found to be S. aureus and the least susceptible was E. faecalis. Further clinical studies are required to substantiate these results.

  11. Sorptive stabilization of organic matter by amorphous Al hydroxide

    NARCIS (Netherlands)

    M.P.W. Schneider; T. Scheel; R. Mikutta; P. van Hees; K. Kaiser; K. Kalbitz

    2010-01-01

    Amorphous Al hydroxides (am-Al(OH)(3)) strongly sorb and by this means likely protect dissolved organic matter (OM) against microbial decay in soils. We carried out batch sorption experiments (pH 4.5; 40 mg organic C L-1) with OM extracted from organic horizons under a Norway spruce and a European b

  12. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  13. Engineering evaluation of a sodium hydroxide thermal energy storage module

    Science.gov (United States)

    Perdue, D. G.; Gordon, L. H.

    1980-01-01

    An engineering evaluation of thermal energy storage prototypes was performed in order to assess the development status of latent heat storage media. The testing and the evaluation of a prototype sodium hydroxide module is described. This module stored off-peak electrical energy as heat for later conversion to domestic hot water needs.

  14. Dissolution of gaseous methyl iodide into aqueous sodium hydroxide solutions

    International Nuclear Information System (INIS)

    Absorption process of gaseous methyl iodide by water or sodium hydroxide solutions was investigated using a semi-flow type experimental apparatus by measuring the concentration of all measurable chemical species in both the gas and the liquid phase. The experimental temperature ranged from 288 to 311 K and the gaseous methyl iodide and aqueous sodium hydroxide concentrations were approximately 0.6 x 10-3 to 7 x 10-3 and 0 to 0.2 mol/dm3, respectively. It is estimated that the dissolution of methyl iodide into the sodium hydroxide solution proceeds according to the following steps. Step (1) Methyl iodide in air dissolves physically into the aqueous phase. Physical dissolution process obeys Henry's law. Step (2) Methyl iodide dissolved into the aqueous phase is decomposed by a base catalytic hydrolysis and produces methyl alcohol and iodide ion. The equilibrium constants of physical dissolution were obtained from the steady concentration in both the gas and the liquid phases in the semi-flow type experiment because the hydrolysis reaction rate of methyl iodide is very slow in comparison with the physical dissolution in this experimental conditions. The obtained value of the standard heat of solution of methyl iodide into water was 7.2 kcal/mol. Salting-out effect was observed when the concentration of sodium hydroxide in the absorbent was over 0.01 mol/dm3. (auth.)

  15. Recent progress in polymer/layered double hydroxide nanocomposites

    Institute of Scientific and Technical Information of China (English)

    DING Peng; CHEN Wei; QU Baojun

    2006-01-01

    New developments in the studies of nanocomposites based on polymer matrixes and layered double hydroxides (LDHs)in recent years are reviewed combining our relative research work, among which the synthesis techniques, the physicochemical characterizations, and the improved material properties are especially discussed. The possible application of polymer/LDH nanocomposites is also proposed.

  16. Preparation of Metallic Aluminum Compound Particles by Submerged Arc Discharge Method in Aqueous Media

    Science.gov (United States)

    Liao, Chih-Yu; Tseng, Kuo-Hsiung; Lin, Hong-Shiou

    2013-02-01

    Fine metal particles are produced by chemical methods, which add surfactants to control particle size and concentration. This study used the submerged arc discharge method (SADM) to prepare metal fluid containing nanoparticles and submicron particles in pure dielectric fluid (deionized water or alcohol). The process is fast and simple, and it does not require the addition of chemical agents. The SADM uses electrical discharge machining (EDM) equipment, and the key parameters of the production process include discharge voltage, current, and pulse discharge on-off duration. This study added a capacitive component between the electrodes and the electrode Z-axis regulation in the control parameters to render the aluminum fluid process smooth, which is the main difference of this article from the literature. The experimental results showed that SADM can produce aluminum particles from nanometer to submicron grade, and it can obtain different compounds from different dielectric fluids. The dielectric fluids used in this study were deionized water and ethanol, and aluminum hydroxide Al(OH)3 particles with suspending power and precipitated aluminum particles were obtained, respectively. The preparations of metal colloid and particles by the SADM process have the characteristics of low cost, high efficiency, high speed, and mass production. Thus, the process has high research value and developmental opportunities.

  17. Infrared Spectroscopic Study on the Modified Mechanism of Aluminum-Impregnated Bone Charcoal

    Directory of Open Access Journals (Sweden)

    Hao Li

    2014-01-01

    Full Text Available Fluoride contamination in drinking water is a prominent and widespread problem in many parts of the world. Excessive ingestion of fluoride through water can lead to the high risk of fluorosis in human body. Bone charcoal, with the principal active component of hydroxyapatite, is a frequently used adsorbent for fluoride removal. Many laboratory experiments suggest that the aluminum-impregnated bone charcoal is an effective adsorbent in defluoridation. However, the mechanisms underlying this modification process are still not well understood, which in turn greatly impedes the further studies on other different modified adsorbents. To address this issue, we used the infrared spectroscopy to examine the bone charcoal and the aluminum-impregnated bone charcoal, respectively. The comparative results show that the −OH peak of infrared spectroscopy has been intensified after modification. This significant change helped speculate the modified mechanism of the aluminum-impregnated bone charcoal. In addition, it is found that the hydroxide ion dissociates from hydroxyapatite in the modification process. Such finding implies that the tetrahydroxoaluminate can be combined with the hydroxyapatite and the aluminum ion can be impregnated onto the bone char surface.

  18. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  19. Charging and ion adsorption behaviour of different iron (hydr)oxides.

    NARCIS (Netherlands)

    Venema, P.

    1997-01-01

    Metal (hydr)oxides are of importance for many soil systems. All metal (hydr)oxides have a surface charge that varies with the pH. The variation in this surface charge is caused by adsorption and desorption of protons. The adsorption of cat- and anions on the metal (hydr)oxide surface is strongly inf

  20. 40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to...

  1. 75 FR 28608 - Calcium Hydroxide; Receipt of Application for Emergency Exemption, Solicitation of Public Comment

    Science.gov (United States)

    2010-05-21

    ... AGENCY Calcium Hydroxide; Receipt of Application for Emergency Exemption, Solicitation of Public Comment... exemption request from the Hawaii Department of Agriculture to use the pesticide calcium hydroxide (CAS No... has requested the Administrator to issue a quarantine exemption for the use of calcium hydroxide...

  2. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  3. Structural and Morphological Features of Disperse Alumina Synthesized Using Aluminum Nitrate Nonahydrate.

    Science.gov (United States)

    Myronyuk, Ivan F; Mandzyuk, Volodymyr I; Sachko, Volodymyr M; Gun'ko, Volodymyr M

    2016-12-01

    Transformation of Al(NO3)3∙9H2O (upon heating in the range of 20-1200 °C) into blends of amorphous and crystalline boehmite (210-525 °C), amorphous alumina and crystalline γ-Al2O3 (850 °C), and crystalline α-Al2O3 (1100 °C) was analyzed using X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), infrared (IR) spectroscopy, thermogravimetry, and low-temperature nitrogen adsorption. Boehmite consists of nanoparticles of 6-10 nm in diameter, and part of them has crystalline structure observed in HRTEM images, despite they are XRD amorphous. The nanoglobules are surrounded by amorphous aluminum hydroxide with chains of -AlO(H)-O-AlO(H)- of 1-5 nm in length. Heating of samples at 350-525 °C gives mesoporous aluminum hydroxide with a relatively narrow pore size distribution. An increase in calcination temperature to 850 °C decreases the porosity of alumina composed of amorphous and crystalline (γ-Al2O3) phases. Calcination at 1100 °C gives α-Al2O3 with strongly decreased porosity of aggregates. PMID:27000021

  4. Effects of iron and aluminum oxides and clay content on penetration resistance of five Greek soils

    Directory of Open Access Journals (Sweden)

    Stefanos Stefanou

    2013-07-01

    Full Text Available The effect of amorphous and crystalline iron (Fe and aluminum (Al oxides and oxy-hydroxides as well as clay on soil penetration resistance of five Greek soils, as a function of soil water suction was studied for the whole range of soil moisture. The soils tested were of loamy texture and were collected from cultivated and non-cultivated areas of north and central Greece (Macedonia and Thessaly. The study aimed at understanding the role of the above mentioned soil components on penetration resistance. The findings showed that the increase of iron and aluminum oxides and oxy-hydroxides content resulted in an increase of soil penetration resistance and the relationships between them were significant. Crystalline iron forms found to have a more profound effect on penetration resistance as compared to amorphous iron forms. Finally, positive and significant relationships were also found between penetration resistance and clay content. However, it is not entirely clear which of the two soil components plays the most important role in penetration resistance changes in soils.

  5. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  6. Comparative study of Mg/Al- and Zn/Al-layered double hydroxide-perindopril erbumine nanocomposites for inhibition of angiotensin-converting enzyme

    Directory of Open Access Journals (Sweden)

    Hussein Al Ali SH

    2012-08-01

    Full Text Available Samer Hasan Hussein Al Ali,1 Mothanna Al-Qubaisi,2 Mohd Zobir Hussein,1,3 Maznah Ismail,2,4 Zulkarnain Zainal,1 Muhammad Nazrul Hakim51Department of Chemistry, Faculty of Science, 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 4Department of Nutrition and Health Science, 5Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, MalaysiaAbstract: The intercalation of a drug active, perindopril, into Mg/Al-layered double hydroxide for the formation of a new nanocomposite, PMAE, was accomplished using a simple ion exchange technique. A relatively high loading percentage of perindopril of about 36.5% (w/w indicates that intercalation of the active took place in the Mg/Al inorganic interlayer. Intercalation was further supported by Fourier transform infrared spectroscopy, and thermal analysis shows markedly enhanced thermal stability of the active. The release of perindopril from the nanocomposite occurred in a controlled manner governed by pseudo-second order kinetics. MTT assay showed no cytotoxicity effects from either Mg/Al-layered double hydroxide or its nanocomposite, PMAE. Mg/Al-layered double hydroxide showed angiotensin-converting enzyme inhibitory activity, with 5.6% inhibition after 90 minutes of incubation. On incubation of angiotensin-converting enzyme with 0.5 µg/mL of the PMAE nanocomposite, inhibition of the enzyme increased from 56.6% to 70.6% at 30 and 90 minutes, respectively. These results are comparable with data reported in the literature for Zn/Al-perindopril.Keywords: magnesium, aluminum, layered double hydroxide, perindopril erbumine, ion exchange, angiotensin-converting enzyme, Chang cells line

  7. Evaluation of precipitates used in strainer head loss testing: Part II. Precipitates by in situ aluminum alloy corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@anl.go [Argonne National Laboratory, Lemont, IL 60439 (United States); Kasza, Ken E.; Shack, William J.; Natesan, Ken [Argonne National Laboratory, Lemont, IL 60439 (United States); Klein, Paul [The United States Nuclear Regulatory Commission, Rockville, MD 20852 (United States)

    2011-05-15

    Graphical abstract: Display Omitted Research highlights: Sump strainer head loss testing to evaluate chemical effects. Aluminum hydroxide precipitates by in situ Al alloy corrosion caused head loss. Intermetallic particles released from Al alloy can also cause significant head loss. When evaluating Al effect on head loss, intermetallics should be considered. - Abstract: Vertical loop head loss tests were performed with 6061 and 1100 aluminum (Al) alloy plates immersed in borated solution at pH = 9.3 at room temperature and 60 {sup o}C. The results suggest that the potential for corrosion of an Al alloy to result in increased head loss across a glass fiber bed may depend on its microstructure, i.e., the size distribution and number density of intermetallic particles that are present in Al matrix and FeSiAl ternary compounds, as well as its Al release rate. Per unit mass of Al removed from solution, the WCAP-16530 aluminum hydroxide (Al(OH){sub 3}) surrogate was more effective in increasing head loss than the Al(OH){sub 3} precipitates formed in situ by corrosion of Al alloy. However, in choosing a representative amount of surrogate for plant specific testing, consideration should be given to the potential for additional head losses due to intermetallic particles and the apparent reduction in the effective solubility of Al(OH){sub 3} when intermetallic particles are present.

  8. Rechargeable Aluminum-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans [ORNL; Liu, Hansan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  9. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely... additive, expressed as niacin, shall appear on the label of the food additive container or on that of...

  10. Baise to Build Ecological Aluminum Industry Base

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>The government of Baise announced the construction of an ecological aluminum industry base over the next few years,pledging to turn the city into a major aluminum industry base in China and the rest of Asia.

  11. Environmental Control over the Primary Aluminum Industry

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> To strengthen environmental control over theprimary aluminum industry,the State Environ-mental Protection Administration of China hasrecently issued a notice addressing the follow-ing points:Strengthening environmental control over theexisting primary aluminum companies

  12. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义

    2004-01-01

    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  13. OPTIMIZING AN ALUMINUM EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Mohammed Ali Hajeeh

    2013-01-01

    Full Text Available Minimizing the amount of scrap generated in an aluminum extrusion process. An optimizing model is constructed in order to select the best cutting patterns of aluminum logs and billets of various sizes and shapes. The model applied to real data obtained from an existing extrusion factory in Kuwait. Results from using the suggested model provided substantial reductions in the amount of scrap generated. Using sound mathematical approaches contribute significantly in reducing waste and savings when compared to the existing non scientific techniques.

  14. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... in the Federal Register on November 17, 2009 (74 FR 59254). At the request of the State agency and a... Employment and Training Administration Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood... Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division, including on- site...

  15. Evaluation of Aluminum in Iranian Consumed Tea

    OpenAIRE

    Alireza Asgari; Mahdi Ahmadi Moghaddam; Amirhossein Mahvi; Masoud Yonesian

    2008-01-01

    Introduction: Black tea leaf is one of the most important sources of Aluminum in dietary. Therefore this research was conducted to assess the amount of Aluminum in Iranian tea infusion. Methods: To assess Aluminum in Iranian consumed tea, 27 tea samples were analyzed for Al concentration for 10 and 60 min infusion, aluminum concentration was measured with atomic absorption and the results were analyzed by SPSS.13 version. Results: The results showed that minimum and maximum concentration of A...

  16. Mineral resource of the month: aluminum

    Science.gov (United States)

    Bray, E. Lee

    2012-01-01

    The article offers information on aluminum, a mineral resource which is described as the third-most abundant element in Earth's crust. According to the article, aluminum is the second-most used metal. Hans Christian Oersted, a Danish chemist, was the first to isolate aluminum in the laboratory. Aluminum is described as lightweight, corrosion-resistant and an excellent conductor of electricity and heat.

  17. Electrochemical Behavior of Aluminum in Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hui; ZHU; Li-yang; LIN; Ru-shan; TAN; Hong-bin; HE; Hui

    2013-01-01

    Aluminum is one of cladding materials for nuclear fuel,it is important to investigate the electrolytic dissolution of aluminum in nitric acid.The electrochemical impedance spectroscopy,polarization curve and cyclic voltammetry cure of anodic aluminum electrode in nitric acid under various conditions were collected(Fig.1).It turns out,under steady state,the thickness of the passivated film of aluminum

  18. Immobilization of laccase on hybrid layered double hydroxide

    Directory of Open Access Journals (Sweden)

    David Isidoro Camacho Córdova

    2009-01-01

    Full Text Available Crystals of Mg/Al layered double hydroxide were synthesized by alkaline precipitation and treated in an aqueous solution of glutamic acid. The glutamate ions were not intercalated into the interlayer space, but were detected in the material by Fourier transform infrared spectroscopy, suggesting that only the external surfaces of crystals were modified with glutamate ions. The resulting hybrid material was tested as a support for immobilization of the enzyme laccase (Myceliophthora thermophila. The immobilized enzyme preparation was characterized by electronic paramagnetic resonance spectroscopy and by assays of catalytic activity. The activity of the immobilized laccase was 97% of the activity in the free enzyme. Layered double hydroxide is a suitable support for use in remediation of soil studies.

  19. Hierarchical cobalt-based hydroxide microspheres for water oxidation

    Science.gov (United States)

    Zhang, Ye; Cui, Bai; Derr, Olivia; Yao, Zhibo; Qin, Zhaotong; Deng, Xiangyun; Li, Jianbao; Lin, Hong

    2014-02-01

    3D hierarchical cobalt hydroxide carbonate hydrate (Co(CO3)0.5(OH).0.11H2O) has been synthesized featuring a hollow urchin-like structure by a one-step hydrothermal method at modest temperature on FTO glass substrates. The functionalities of precursor surfactants were isolated and analyzed. A plausible formation mechanism of the spherical urchin-like microclusters has been furnished through time-dependent investigations. Introduction of other transitional metal doping (Cu, Ni) would give rise to a substantial morphological change associated with a surface area drop. The directly grown cobalt-based hydroxide composite electrodes were found to be capable of catalyzing oxygen evolution reaction (OER) under both neutral pH and alkaline conditions. The favorable 3D dendritic morphology and porous structure provide large surface areas and possible defect sites that are likely responsible for their robust electrochemical activity.

  20. Liquid-phase synthesized mesoporous electrochemical supercapacitors of nickel hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jinho; Park, Mira; Ham, Dukho; Mane, Rajaram S.; Han, Sung-Hwan [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea); Ogale, S.B. [Physical and Materials Chemsitry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)

    2008-06-01

    Electrochemical supercapacitive (ES) properties of liquid-phase synthesized mesoporous (pore size distribution centered {proportional_to}12 nm) and of 120 m{sup 2}/g surface area nickel hydroxide film electrodes onto tin-doped indium oxide substrate are discussed. The amounts of inner and outer charges are calculated to investigate the contribution of mesoporous structure on charge storage where relatively higher contribution of inner charge infers good ion diffusion into matrix of nickel hydroxide. Effect of different electrolytes, electrolyte concentrations, deposit mass and scan rates on the current-voltage profile in terms of the shape and enclosed area is investigated. Specific capacitance of {proportional_to}85 F/g at a constant current density of 0.03 A/g is obtained from the discharge curve. (author)

  1. Guangxi Aluminum Giant Made Investment in Changfeng

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>A aluminum processing and supporting project (450,000 tons) of Hefei Guangyin Aluminum Company kicked off in Xiatang Town of Changfeng County recently. It is a project jointly invested by Guangxi Investment Group and Guangxi Baise Guangyin Aluminum in Xiatang Town of Changfeng County.

  2. 21 CFR 73.2645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements...

  3. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  4. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  5. Hydrothermal Synthesis of Ni/Al Layered Double Hydroxide Nanorods

    OpenAIRE

    Yun Zhao; Fenfei Xiao; Qingze Jiao

    2011-01-01

    Ni/Al layered double hydroxide (LDH) nanorods were successfully synthesized by the hydrothermal reaction. The crystal structure of the products was characterized by X-ray diffraction (XRD). The morphology of the products was observed using transmission electron microscopy (TEM) and field emission scanning electron microscopy (SEM). The influences of reaction time and pH value on the morphology of the Ni/Al LDHs were investigated. The result showed that the well-crystallized nanorods of Ni/Al ...

  6. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis

    OpenAIRE

    Song, Fang; Hu, Xile

    2014-01-01

    The oxygen evolution reaction is a key reaction in water splitting. The common approach in the development of oxygen evolution catalysts is to search for catalytic materials with new and optimized chemical compositions and structures. Here we report an orthogonal approach to improve the activity of catalysts without alternating their compositions or structures. Specifically, liquid phase exfoliation is applied to enhance the oxygen evolution activity of layered double hydroxides. The exfoliat...

  7. Layered Double Hydroxide-Based Nanocarriers for Drug Delivery

    OpenAIRE

    Xue Bi; Hui Zhang; Liguang Dou

    2014-01-01

    Biocompatible clay materials have attracted particular attention as the efficient drug delivery systems (DDS). In this article, we review developments in the use of layered double hydroxides (LDHs) for controlled drug release and delivery. We show how advances in the ability to synthesize intercalated structures have a significant influence on the development of new applications of these materials. We also show how modification and/or functionalization can lead to new biotechnological and bio...

  8. EXAFS and XANES Study of Layered Double Hydroxides

    OpenAIRE

    Bigey, L.; Depège, C.; Roy, A; Besse, J.

    1997-01-01

    Structure of Layered Double Hydroxides and the reaction occurring during thermal treatments are investigated. The reaction is supposed to be a grafting reaction of interlamellar species onto layers but its mechanism is not well known. These materials display a very poor level of organisation and the study of their fine structure involves the use of techniques sensitive to the local environments. XANES and EXAFS studies give few information about the grafting process because of the great disor...

  9. Methotrexate intercalated ZnAl-layered double hydroxide

    International Nuclear Information System (INIS)

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 A in pristine LDH to 21.3 A in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug molecule in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion. - Graphical abstract: ZnAl-layered double hydroxide intercalated with methotrexate (∼34% loading) promises the possibility of use of ZnAl-LDH material as drug carrier and in controlled delivery. Highlights: → ZnAl-layered double hydroxide methotrexate nanohybrid has been synthesized. → XRD and TEM studies on nanohybrid revealed successful intercalation of methotrexate. → TG and CHN analyses showed ∼34 wt% of methotrexate loading into the nanohybrid. → Possibility of use of ZnAl-LDH material as drug carrier and in delivery.

  10. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  11. Formation reaction mechanisms of hydroxide anions from Mg(OH)2 layers

    International Nuclear Information System (INIS)

    Highlights: • Mg(OH)2 hydroxide anion migrates to the surface thus producing an adsorbed free hydroxide anion. • Orbital contributions from adsorbed free hydroxide anion dominate the shape of total DOS in the region near the Fermi level. • The hydroxide anion formation reaction in Mg(OH)2 from Mg(OH)2 dissociation is slower than the formation from H2O dissociation. • Formation of hydroxide anions in a layered hydroxide would involve reaction of H2O molecules with layer hydroxide anions. - Abstract: DFT calculations with periodic boundary conditions were used to study two formation reaction mechanisms of adsorbed free hydroxide anions on the surface of the brucite, Mg(OH)2. In the first mechanism, we investigated the migration of a hydroxide anion present in the structure of Mg(OH)2 to the layer surface. In the second, a mechanism composed of three elementary reactions was examined for the reaction of H2O molecules with the brucite layer surface. The result in both mechanisms is the formation of hydroxide anions and a hydroxide vacancy in the positively charged Mg(OH)2 layer. The global reaction is the same in both cases and the computed Gibbs free energy variation equals 37.5 kcal/mol at room temperature. The reaction barrier for the formation of hydroxide anion on Mg(OH)2 surface from H2O dissociation (27.6 kcal/mol) is lower than the reaction barrier for the formation of hydroxide anions from Mg(OH)2 dissociation (43.2 kcal/mol)

  12. Application of recovered magnesium hydroxide from a flue gas desulfurization system for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, P.L.; Wu, Q.; Keener, T.; Zhuang, L.A.; Gurusamy, R.; Pehkonen, S.

    1999-07-01

    Magnesium hydroxide, reclaimed from the flue gas desulfurization system (FGD) at the Zimmer Power Plant, Cincinnati, Ohio, is a weak base, in the form of either a slurry or powder. It has many potential applications for wastewater treatment. The objectives of this research are (1) to characterize the reclaimed magnesium hydroxide, e.g., purity, particle size distribution, dissolution kinetics; (2) to evaluate neutralization capacity and buffering intensity of the reclaimed magnesium hydroxide; (3) to study the efficacy of the reclaimed magnesium hydroxide for nutrient removal in wastewater treatment processes; (4) to investigate whether and how the magnesium hydroxide influences the characteristics of the activated sludge floc; (5) to determine whether magnesium hydroxide improves the anaerobic sludge digestion process and associated mechanisms; and (6) to conduct a cost-benefit analysis for the application of the reclaimed magnesium hydroxide in wastewater treatment and the possibility of marketing this product. Research results to date show that the purity of the reclaimed magnesium hydroxide depends largely on the recovery hydroxide slurry. This product proved to be very effective for wastewater neutralization, compared with other commonly used chemicals, both for its neutralization capacity and its buffering intensity. Due to its relatively low solubility in water and its particle size distribution characteristics, magnesium hydroxide behaves like a weak base, which will be very beneficial for process control. The authors also found that nitrogen and phosphorus could be removed from the wastewater using magnesium hydroxide due to their complexation and precipitation as magnesium ammonium phosphate (struvite). Magnesium hydroxide also greatly enhanced the settleability of the activated sludge. Intensive research on the mechanisms associated with these phenomena reveals that sweep flocculation and magnesium ion bridging between exopolymeric substances (EPS) of

  13. Electrodeposition of aluminum on aluminum surface from molten salt

    Institute of Scientific and Technical Information of China (English)

    Wenmao HUANG; Xiangyu XIA; Bin LIU; Yu LIU; Haowei WANG; Naiheng MA

    2011-01-01

    The surface morphology,microstructure and composition of the aluminum coating of the electrodeposition plates in AlC13-NaC1-KC1 molten salt with a mass ratio of 8:1:1 were investigated by SEM and EDS.The binding force was measured by splat-cooling method and bending method.The results indicate that the coatings with average thicknesses of 12 and 9 μm for both plates treated by simple grinding and phosphating are compacted,continuous and well adhered respectively. Tetramethylammonium chloride (TMAC) can effectively prevent the growth of dendritic crystal,and the anode activation may improve the adhesion of the coating. Binding force analysis shows that both aluminum coatings are strongly adhered to the substrates.

  14. Resiquimod and polyinosinic–polycytidylic acid formulation with aluminum hydroxide as an adjuvant for foot-and-mouth disease vaccine

    OpenAIRE

    Zhou, Chun-Xue; Li, Dong; Chen, Ying-Li; Lu, Zeng-Jun; Sun, Pu; Cao, Yi-Mei; Bao, Hui-Fang; Fu, Yuan-Fang; Li, Ping-hua; Bai, Xing-Wen; Xie, Bao-Xia; Liu, Zai-Xin

    2014-01-01

    Background Toll-like receptor (TLR) agonists reportedly have potent antiviral and antitumor activities and may be a new kind of adjuvant for enhancing immune efficacy. Resiquimod (R848) is an imidazoquinoline compound with potent antiviral activity and functions through the TLR7/TLR8 MyD88-dependent signaling pathway. Polyinosinic-polycytidylic acid [poly(I:C)] is a synthetic analog of double-stranded RNA that induces the production of pro-inflammatory cytokines by the activation of NF-κB thr...

  15. Technology Maturation Plan For Aluminum Removal And Sodium Hydroxide Regeneration From Hanford Waste By Lithium Hydrotalcite Precipitation

    International Nuclear Information System (INIS)

    This Technology Maturation Plan schedules the development process that will bring the Lithium Hydrotalcite waste pretreatment process from its current estimated Technology Readiness Level of 3, to a level of 6. This maturation approach involves chemical and engineering research and development work, from laboratory scale to pilot scale testing, to incrementally make the process progress towards its integration in a fully qualified industrial system.

  16. Antimicrobial activity of calcium hydroxide and chlorhexidine on intratubular Candida albicans

    OpenAIRE

    Jacques Rezende Delgado, Ronan; Helena Gasparoto, Thaís; Renata Sipert, Carla; Ramos Pinheiro, Claudia; Gomes de Moraes, Ivaldo; Brandão Garcia, Roberto; Antônio Hungaro Duarte, Marco; Monteiro Bramante, Clóvis; Aparecido Torres, Sérgio; Pompermaier Garlet, Gustavo; Paula Campanelli, Ana; Bernardineli, Norberti

    2013-01-01

    This study investigated the efficacy of calcium hydroxide and chlorhexidine gel for the elimination of intratubular Candida albicans (C. albicans). Human single-rooted teeth contaminated with C. albicans were treated with calcium hydroxide, 2% chlorhexidine gel, calcium hydroxide plus 2% chlorhexidine gel, or saline (0.9% sodium chloride) as a positive control. The samples obtained at depths of 0–100 and 100–200 µm from the root canal system were analyzed for C. albicans load by counting the ...

  17. Hydroxide ion concentration at an interface between concrete and a self-levelling flooring compound

    OpenAIRE

    Anderberg, Anders; Wadsö, Lars

    2007-01-01

    This article presents results from measurements of hydroxide ion transport between a concrete and a floor screed of a lower alkalinity than the concrete. As many floor coverings and floor adhesives are sensitive to high alkaline conditions it is important to know how hydroxide ions are transported to be able to evaluate the long-term function of floor constructions. It was found that only minor transport of hydroxide ions occurs in the hygroscopic moisture range. One conclusion is therefore t...

  18. Purification technology of molten aluminum

    Institute of Scientific and Technical Information of China (English)

    孙宝德; 丁文江; 疏达; 周尧和

    2004-01-01

    Various purification methods were explored to eliminate the dissolved hydrogen and nonmetallic inclusions from molten aluminum alloys. A novel rotating impeller head with self-oscillation nozzles or an electromagnetic valve in the gas circuit was used to produce pulse gas currents for the rotary impeller degassing method. Water simulation results show that the size of gas bubbles can be decreased by 10%-20% as compared with the constant gas current mode. By coating ceramic filters or particles with active flux or enamels, composite filters were used to filter the scrap A356 alloy and pure aluminum. Experimental results demonstrate that better filtration efficiency and operation performance can be obtained. Based on numerical calculations, the separation efficiency of inclusions by high frequency magnetic field can be significantly improved by using a hollow cylinder-like separator or utilizing the effects of secondary flow of the melt in a square separator. A multi-stage and multi-media purification platform based on these methods was designed and applied in on-line processing of molten aluminum alloys. Mechanical properties of the processed scrap A356 alloy are greatly improved by the composite purification.

  19. Microbial corrosion of aluminum alloy.

    Science.gov (United States)

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors. PMID:10592801

  20. Assessment of ion diffusion from a calcium hydroxide-propolis paste through dentin

    OpenAIRE

    Janaina Corazza Montero; Graziela Garrido Mori

    2012-01-01

    This study evaluated the ability of ions from a non-alcoholic calcium hydroxide-propolis paste to diffuse through dentinal tubules. Thirty-six single-rooted bovine teeth were used. The tooth crowns were removed, and the root canals were instrumented and divided into 3 groups: Group 1 - calcium hydroxide-propylene glycol paste; Group 2 - calcium hydroxide-saline solution paste; Group 3 - calcium hydroxide-propolis paste. After the root canal dressings were applied, the teeth were sealed and pl...

  1. Effects of salinity and humic acid on the sorption of Hg on Fe and Mn hydroxides.

    Science.gov (United States)

    Liang, Peng; Li, Yi-Chun; Zhang, Chan; Wu, Sheng-Chun; Cui, Hao-Jie; Yu, Shen; Wong, Ming H

    2013-01-15

    The objective of this study was to investigate the influence of humic acid (HA) and salinity on adsorption of Hg on the amorphous and crystalline of iron and manganese hydroxides. The results show that the adsorption of Hg(2+) on Fe and Mn hydroxides was inhibited in marine system due to the formation of stable, nonsorbing aqueous HgCl(2) complexes in solution. Moreover, Cl(-) inhibited the Hg(2+) adsorption more severely on amorphous than crystalline hydroxides. The addition of HA inhibited Hg(2+) adsorption on Fe and Mn hydroxides in freshwater system might be attributed to the competition between Hg(2+) and HA on adsorption to Fe and Mn hydroxides. In contrast, the addition of HA promoted Hg(2+) adsorption on Fe and Mn hydroxides in the marine system, which might be due to the addition of humic acid resulted in the reaction between Cl(-) and HA, and therefore the reducing of Cl(-) promoted more Hg(2+) on Fe and Mn hydroxides. In addition, the influence of HA on Hg(2+) adsorption on Fe and Mn hydroxides are more visible for crystalline than amorphous hydroxides.

  2. Antimicrobial activity of calcium hydroxide and chlorhexidine on intratubular Candida albicans

    Institute of Scientific and Technical Information of China (English)

    Ronan Jacques Rezende Delgado; Thaís Helena Gasparoto; Carla Renata Sipert; Claudia Ramos Pinheiro; Ivaldo Gomes de Moraes; Roberto Brandāo Garcia; Marco Antonio Hungaro Duarte; Clóvis Monteiro Bramante; Sérgio Aparecido Torres; Gustavo Pompermaier Garlet; Ana Paula Campanelli; Norberti Bernardineli

    2013-01-01

    This study investigated the efficacy of calcium hydroxide and chlorhexidine gel for the elimination of intratubular Candida albicans (C. albicans). Human single-rooted teeth contaminated with C. albicans were treated with calcium hydroxide, 2% chlorhexidine gel, calcium hydroxide plus 2% chlorhexidine gel, or saline (0.9% sodium chloride) as a positive control. The samples obtained at depths of 0-100 and 100-200 μm from the root canal system were analyzed for C. albicans load by counting the number of colony forming units and for the percentage of viable C. albicans using fluorescence microscopy. First, the antimicrobial activity of calcium hydroxide and the 2% chlorhexidine gel was evaluated by counting the number of colony forming units. After 14 days of intracanal medication, there was a significant decrease in the number of C. albicanscolony forming units at a depth of 0-100 lzm with chlorhexidine treatment either with or without calcium hydroxide compared with the calcium hydroxide only treatment. However, there were no differences in the number of colony forming units at the 100-200 μm depth for any of the medications investigated. C. albicans viability was also evaluated by vital staining techniques and fluorescence microscopy analysis. Antifungal activity against C. albicans significantly increased at both depths in the chlorhexidine groups with and without calcium hydroxide compared with the groups treated with calcium hydroxide only. Treatments with only chlorhexidine or chlorhexidine in combination with calcium hydroxide were effective for elimination of C. albicans.

  3. The photoluminescence of Co-Al-layered double hydroxide

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We report a new optical behaviour of pure Co-Al-layered double hydroxide (LDH). It was found that the Co-Al-LDH sample could emit fluorescence without any fluorescent substances intercalated. Its excitation spectrum shows a maximum peak near the wavelength 370 nm, the maximum emission peak appears at 430 nm and the photoluminescence colour of the Co-Al-LDH sample is blue. This new optical property will be expected to extend the potential applications of LDHs in optical materials field.

  4. Synthesis and transformation of iron-based layered double hydroxides

    OpenAIRE

    Ruby, Christian; Usman, Muhammad; Naille, Sebastien; Hanna, Khalil; Carteret, Cédric; Mullet, Martine; François, Michel; Abdelmoula, Mustapha

    2009-01-01

    International audience Iron-based layered double hydroxides (LDHs) have the general formula [MII(1-x)MIIIx(OH)2]x+. [(x/n) An-, m H2O]x- and contain a molar fraction of iron, i.e. FeII or FeIII situated in the cationic layers, higher than 50 %. LDHs containing FeII species are interesting materials for several applications such as the reduction of anionic pollutants or the degradation of organic pollutants. They are mostly prepared either by coprecipitation of dissolved species or by oxida...

  5. LAYERED DOUBLE HYDROXIDES: NANOMATERIALS FOR APPLICATIONS IN AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Luíz Paulo Figueredo Benício

    2015-02-01

    Full Text Available The current research aims to introduce Layered Double Hydroxides (LDH as nanomaterials to be used in agriculture, with particular reference to its use as storage and slow release matrix of nutrients and agrochemicals for plant growing. Structural characteristics, main properties, synthesis methods and characterization of LDH were covered in this study. Moreover, some literature data have been reported to demonstrate their potential for storage and slow release of nitrate, phosphate, agrochemicals, besides as being used as adsorbent for the wastewater treatment. This research aims to expand, in near future, the investigation field on these materials, with application in agriculture, increasing the interface between chemistry and agronomy.

  6. Utilization of Active Ni to Fabricate Pt-Ni Nanoframe/NiAl Layered Double Hydroxide Multifunctional Catalyst through In Situ Precipitation.

    Science.gov (United States)

    Ren, Fumin; Wang, Zheng; Luo, Liangfeng; Lu, Haiyuan; Zhou, Gang; Huang, Weixin; Hong, Xun; Wu, Yuen; Li, Yadong

    2015-09-14

    Integration of different active sites into metallic catalysts, which may impart new properties and functionalities, is desirable yet challenging. Herein, a novel dealloying strategy is demonstrated to decorate nickel-aluminum layered double hydroxide (NiAl-LDH) onto a Pt-Ni alloy surface. The incorporation of chemical etching of Pt-Ni alloy and in situ precipitation of LDH are studied by joint experimental and theoretical efforts. The initial Ni-rich Pt-Ni octahedra transform by interior erosion into Pt3 Ni nanoframes with enlarged surface areas. Furthermore, owing to the basic active sites of the decorated LDH together with the metallic sites of Pt3 Ni, the resulting Pt-Ni nanoframe/NiAl-LDH composites exhibit excellent catalytic activity and selectivity in the dehydrogenation of benzylamine and hydrogenation of furfural. PMID:26241390

  7. Interaction of Pu(IV,VI) hydroxides/oxides with metal hydroxides/oxides in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseev, A.M.; Krot, N.N.; Budantseva, N.A.; Bessonov, A.A.; Nikonov, M.V.; Grigoriev, M.S.; Garnov, A.Y.; Perminov, V.P.; Astafurova, L.N. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry

    1998-08-01

    The primary goal of this investigation was to obtain data on the possibility, extent, and characteristics of interaction of Pu(IV) and (VI) with hydroxides and oxides of d-elements and other metals [Al(III), LA(III), and U(VI)] in alkaline media. Such information is important in fundamental understanding of plutonium disposition and behavior in Hanford Site radioactive tank waste sludge. These results supply essential data for determining criticality safety and in understanding transuranic waste behavior in storage, retrieval, and treatment of Hanford Site tank waste.

  8. Theoretical Study of Hydrogenated Tetrahedral Aluminum Clusters

    CERN Document Server

    Ichikawa, Kazuhide; Wagatsuma, Ayumu; Watanabe, Kouhei; Szarek, Pawel; Tachibana, Akitomo

    2011-01-01

    We report on the structures of aluminum hydrides derived from a tetrahedral aluminum Al4 cluster using ab initio quantum chemical calculation. Our calculation of binding energies of the aluminum hydrides reveals that stability of these hydrides increases as more hydrogen atoms are adsorbed, while stability of Al-H bonds decreases. We also analyze and discuss the chemical bonds of those clusters by using recently developed method based on the electronic stress tensor.

  9. Ions in water: the microscopic structure of concentrated hydroxide solutions.

    Science.gov (United States)

    Imberti, S; Botti, A; Bruni, F; Cappa, G; Ricci, M A; Soper, A K

    2005-05-15

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45 degrees from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  10. Selectivity of Crystal Growth Direction in Layered Double Hydroxides

    Institute of Scientific and Technical Information of China (English)

    赵芸; 梁吉; 李峰; 段雪

    2004-01-01

    Investigation of selectivity of crystal growth direction in layered double hydroxides is helpful to control their particle sizes in different directions. Mg-Al layered double hydroxides (LDHs) were synthesized using a coprecipitation method. The influences of aging temperature, aging time, and Mg/Al molar ratio on the crystal structure, the LDHs particle size, and the selectivity of crystal growth in different directions were investigated. The results show that the size of the crystallites in the a direction is larger than that in the c direction for all experimental conditions, indicating faster crystal growth in the a direction than in the c direction. The crystallite sizes in the a and c directions both increase with decreasing Mg/Al molar ratio but with less difference between the sizes in the two directions. Therefore, the crystal growth rate in the c direction increases more than that in the a direction as the Mg/Al molar ratio decreases. The influence of the aging time, aging temperature, and Mg/Al molar ratio on the selectivity of the crystal growth direction can be used to prepare LDHs with selected sizes in the a and c directions.

  11. Aluminum exclusion and aluminum tolerance in woody plants

    OpenAIRE

    Brunner, Ivano; Sperisen, Christoph

    2013-01-01

    The aluminum (Al) cation Al3 + is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3 + conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusio...

  12. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  13. Interlayer intercalation and arrangement of 2-mercaptobenzothiazolate and 1,2,3-benzotriazolate anions in layered double hydroxides: In situ X-ray diffraction study

    Science.gov (United States)

    Serdechnova, Maria; Salak, Andrei N.; Barbosa, Filipe S.; Vieira, Daniel E. L.; Tedim, João; Zheludkevich, Mikhail L.; Ferreira, Mário G. S.

    2016-01-01

    2-mercaptobenzothiazole (MBT) and 1,2,3-benzotriazole (BTA) are very promising inhibitors for the corrosion protection of aluminum alloys. These inhibitors can be incorporated in protective coatings in the form of anions intercalated into interlayers of layered double hydroxides (LDHs). Capacity and performance of such LDH-nanocontainers depend on the arrangement of the anions in their interlayers. In this work, intercalation of MBT- and BTA- into Mg-Al-NO3 and Zn-Al-NO3 LDHs were studied in detail using X-ray diffraction (XRD) methods including in situ XRD. The nitrate-to-MBT(BTA) anion exchange is much faster than considered previously. Well-formed Mg-Al-MBT, Zn-Al-MBT, Mg-Al-BTA LDHs were obtained after a 20-min exchange reaction at pH 11.5 at room temperature. It was demonstrated that Zn-Al-BTA LDH cannot be obtained under the same conditions due to the reaction between BTA and the Zn-Al hydroxide layers. Substitution of nitrates by organic anions occurs with the participation of hydroxide anions. Although no intermediate LDH phase intercalated with the combination of NO3 - and OH- appears, formation of the LDH-MBT and LDH-BTA phases results also in appearance of an LDH phase intercalated with OH- at the final stage of the anion exchange. In the LDH interlayer, MBT- and BTA- form a double layer in which these species have a tilted orientation against the layer plane (herringbone-like arrangement). Such an arrangement meets the LDH layer-interlayer electroneutrality and matches well with the observed values of the layer-interlayer distance.

  14. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No....

  15. The Aluminum Deep Processing Project of North United Aluminum Landed in Qijiang

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum’s aluminum deep processing project in Qijiang.

  16. [The corrosion resistance of aluminum and aluminum-based alloys studied in artificial model media].

    Science.gov (United States)

    Zhakhangirov, A Zh; Doĭnikov, A I; Aboev, V G; Iankovskaia, T A; Karamnova, V S; Sharipov, S M

    1991-01-01

    Samples of aluminum and its alloys, designed for orthodontic employment, were exposed to 4 media simulating the properties of biologic media. The corrosion resistance of the tested alloys was assessed from the degree of aluminum migration to simulation media solutions, which was measured by the neutron activation technique. Aluminum alloy with magnesium and titanium has shown the best corrosion resistance. PMID:1799002

  17. The apparent solubility of aluminum (III) in Hanford high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G.

    2012-12-01

    The solubility of aluminum in Hanford nuclear waste impacts on the process ability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono, di and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH{sub 4})H{sub 2}O system, and the NaOH-NaAl(OH{sub 4})NaCl-H{sub 2}O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than two. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include. kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above two. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.

  18. The apparent solubility of aluminum (III) in Hanford high-level waste.

    Science.gov (United States)

    Reynolds, Jacob G

    2012-01-01

    The solubility of aluminum in Hanford nuclear waste impacts on the processability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono-, di- and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH)(4)-H(2)O system, and the NaOH-NaAl(OH)(4)-NaCl-H(2)O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than 2M. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above 2M. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect. PMID:22934992

  19. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    Science.gov (United States)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  20. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  1. Preparation of plate-shape nano-magnesium hydroxide from asbestos tailings

    International Nuclear Information System (INIS)

    To prepare magnesium hydroxide is one of the effective methods to the comprehensive utilization of asbestos tailings. Nano-scale magnesium hydroxide was prepared and mechanisms of in-situ surface modification were characterized in the paper. Process conditions of preparation of magnesium hydroxide from purified hydrochloric acid leachate of asbestos tailings were optimized and in-situ surface modification of the product was carried out. Results showed that optimum process conditions for preparing nano-scale magnesium hydroxide were as follows: initial concentration of Mg2+ in the leachate was 22.75g/L, precipitant was NaOH solution (mass concentration 20%), reaction temperature was 50 deg. C, and reaction time was 5min. The diameter and thickness of the plate nano-scale magnesium hydroxide powder prepared under optimal conditions were about 100 nm and 10 nm, respectively. However, particle agglomeration was obvious, the particle size increased to micron-grade. Dispersity of the magnesium hydroxide powder could be elevated by in-situ modification by silane FR-693, titanate YB-502 and polyethylene glycol and optimum dosages were 1.5%, 1.5% and 0.75% of the mass of magnesium hydroxide, respectively. All of the modifiers adsorbed chemically on surfaces of magnesium hydroxide particles, among which Si-O-Mg bonds formed among silane FR-693 and the particle surfaces and Ti-O-Mg among titanate YB-502 and the surfaces.

  2. Structural perturbation of diphtheria toxoid upon adsorption to aluminium hydroxide adjuvant

    NARCIS (Netherlands)

    Regnier, M.; Metz, B.; Tilstra, W.; Hendriksen, C.; Jiskoot, W.; Norde, W.; Kersten, G.

    2012-01-01

    Aluminium-containing adjuvants are often used to enhance the potency of vaccines. In the present work we studied whether adsorption of diphtheria toxoid to colloidal aluminium hydroxide induces conformational changes of the antigen. Diphtheria toxoid has a high affinity for the aluminium hydroxide p

  3. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D2/ = 1.9 x 10-2 exp (--22,400/RT) cc (NTP)atm/sup --1/2/ s-1cm-1. The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  4. Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions.

    Science.gov (United States)

    Senapati, Sudipta; Thakur, Ravi; Verma, Shiv Prakash; Duggal, Shivali; Mishra, Durga Prasad; Das, Parimal; Shripathi, T; Kumar, Mohan; Rana, Dipak; Maiti, Pralay

    2016-02-28

    Hydrophobic anticancer drug, raloxifene hydrochloride (RH) is intercalated into a series of magnesium aluminum layered double hydroxides (LDHs) with various charge density anions through ion exchange technique for controlled drug delivery. The particle nature of the LDH in presence of drug is determined through electron microscopy and surface morphology. The release of drug from the RH intercalated LDHs was made very fast or sustained by altering the exchangeable anions followed by the modified Freundlich and parabolic diffusion models. The drug release rate is explained from the interactions between the drug and LDHs along with order-disorder structure of drug intercalated LDHs. Nitrate bound LDH exhibits greater interaction with drug and sustained drug delivery against the loosely interacted phosphate bound LDH-drug, which shows fast release. Cell viability through MTT assay suggests drug intercalated LDHs as better drug delivery vehicle for cancer cell line against poor bioavailability of the pure drug. In vivo study with mice indicates the differential tumor healing which becomes fast for greater drug release system but the body weight index clearly hints at damaged organ in the case of fast release system. Histopathological experiment confirms the damaged liver of the mice treated either with pure drug or phosphate bound LDH-drug, fast release system, vis-à-vis normal liver cell morphology for sluggish drug release system with steady healing rate of tumor. These observations clearly demonstrate that nitrate bound LDH nanoparticle is a potential drug delivery vehicle for anticancer drugs without any side effect. PMID:26774219

  5. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei, E-mail: kwgao@yahoo.com

    2015-05-15

    Highlights: • Hierarchical superhydrophobic Zn–Al LDHs film has been fabricated on a magnesium alloy substrate. • The superhydrophobic surface has good long-term stability under atmospheric environment. • The superhydrophobic surface can provide a stable corrosion protection for the Mg alloys. - Abstract: A hierarchical superhydrophobic zinc–aluminum layered double hydroxides (Zn–Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn–Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn–Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  6. The Deactivation of Nickel Hydroxide to Hypophosphite Electrooxidation on a Nickel Electrode

    Institute of Scientific and Technical Information of China (English)

    Yue ZENG; Min MO; Jian Long YI; Xin Jun TANG; Hui Xian WANG

    2004-01-01

    The deactivation of nickel hydroxide to the electrooxidation of hypophosphite on a nickel electrode was studied by means of in situ UV-Vis subtractive reflectance spectroscopy. The experimental results show that when the potential is lower than -1.0 V (SCE), the surface on nickel electrode is free of nickel hydroxide, on which hypophosphite is active. When the potential moves positively to about-0.75V, two absorbency bands around 300 nm and 550 nm, which were ascribed to the formation of α-nickel hydroxide, were observed, nickel is oxidized to α-nickel hydroxide.Severe deactivation of the surface occurs when the nickel surface is covered with nickel hydroxide,which separates the hypophosphite ion from nickel substrate.

  7. Comparison of calcium hydroxide and zinc oxide and eugenol pulpectomies in primary teeth of dogs.

    Science.gov (United States)

    Hendry, J A; Jeansonne, B G; Dummett, C O; Burrell, W

    1982-10-01

    The purpose of this investigation was to compare calcium hydroxide with zinc oxide and eugenol (ZOE) as root canal obturants in the pulpectomy procedure for irreversibly inflamed primary pulps of dogs. Clinical, radiographic, and histologic comparisons of calcium hydroxide and ZOE root canal filling materials were made in forty-two primary premolars of seven mongrel puppies. When the animals were 6 weeks of age, the pulps of all samples teeth were extirpated and the canals left open to the oral environment. The root canals were assigned to calcium hydroxide, ZOE, and control groups, instrumented, and filled 2 weeks later. The animals were killed 1 day, 1 week, 4 weeks, and 12 weeks after filling. Statistical analysis of all categories for comparison at 4 weeks indicated that calcium hydroxide gave significantly more favorable results than ZOE. Canals treated with calcium hydroxide exhibited less inflammation, less resorption, and more hard-tissue apposition than ZOE-treated and control groups.

  8. Electrochromic and electrochemical properties of amorphous porous nickel hydroxide thin films

    International Nuclear Information System (INIS)

    Nickel hydroxide films were prepared using the chemical bath deposition (CBD) technique. The amorphous nature of the films was confirmed by X-ray diffraction measurements. X-ray photoelectron spectroscopy (XPS) measurements showed that the films exhibited nickel hydroxide nature. The porosity of the films was studied using optical measurements. The electrochromic properties of the porous nickel hydroxide layers were investigated, using cyclic voltammetry, chronoamperometry, in situ transmittance, UV-vis spectroscopy, and impedance spectroscopy. The change in the optical density (ΔOD) was found to be 0.79 for the as-deposited nickel hydroxide films, whereas it is 0.53 and 0.50 for the films annealed at 150 deg. C and 200 deg. C, respectively. The in situ transmittance and chronoamperometry curves revealed that the annealed films had a very fast colouration (tc b 2/C. The impedance measurements revealed the faster colouration and good electrochromic properties for the annealed nickel hydroxide films.

  9. Synthesis and structure refinement of layered double hydroxides of Co, Mg and Ni with Ga

    Indian Academy of Sciences (India)

    G V Manohara; P Vishnu Kamath

    2010-06-01

    Homogeneous precipitation by urea hydrolysis results in the formation of highly ordered layered double hydroxides of divalent metal ions (Co, Mg, Ni) and Ga. Structure refinement shows that these carbonate containing layered hydroxides crystallize with rhombohedral symmetry (space group -3) in the structure of the 31 polytype. An analysis of the structure shows that, coulombic attraction between the layer and interlayer remains invariant in different layered hydroxides, whereas the strength of hydrogen bonding varies. The Ni–Ga LDH has the weakest hydrogen bonding and Co–Ga, the strongest, as reflected by the layer–interlayer oxygen–oxygen distances. The poor polarity of the OH bond in the Ni–Ga hydroxide points to the greater covalency of the (2+}/′3+)-oxygen bond in this compound as opposed to the Co–Ga hydroxide. These observations are supported by IR spectra.

  10. Synthesize of hierarchical sisal-like cobalt hydroxide and its electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xi; Gao, Hongyi; Yang, Mu; Luan, Yi [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Dong, Wenjun [Center for Nanoscience and Nanotechnology, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Jin, Zhaokui; Yu, Jie; Qi, Yue [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Feng, Yanhui [School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Ge, E-mail: gewang@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2014-09-01

    Graphical abstract: Sisal-shaped hierarchical cobalt hydroxide was obtained by a simple hydrothermal method, and cobalt oxide was also easily obtained by heating the cobalt hydroxide in air. The obtained cobalt oxide possessed a similar hierarchical structure to the cobalt hydroxide. The prepared cobalt hydroxide samples were made of building blocks which took the shape of tower of Hanoi. The prepared samples exhibited promising electrochemical applications. - Highlights: • Three-dimensional sisal-shaped β-cobalt hydroxide and oxide are synthesized. • The products are assembled from building blocks with the shape of tower of Hanoi. • The morphologies, structures and sizes of products could be easily controlled. • The products exhibited promising electrochemical applications. - Abstract: Sisal-shaped hierarchical cobalt hydroxide was obtained by a simple hydrothermal method, and cobalt oxide was also easily obtained by heating the cobalt hydroxide in air. The obtained cobalt oxide possessed a similar hierarchical structure to the cobalt hydroxide. The prepared cobalt hydroxide samples were made of building blocks which took the shape of tower of Hanoi. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), field scanning electron microscope (FESEM), high resolution transmission electron microscopy (HRTEM) and thermogravimetry analysis (TG), which implied that various morphologies and structures of the samples could be easily obtained by changing the molar ratio of cobalt nitrate to TETA, the amount of sodium hydroxide added and reaction temperature. Furthermore, the formation mechanisms were explained. Finally, the electrochemical properties were evaluated and the prepared samples exhibited promising electrochemical applications.

  11. Study on the Rare Earth Sealing Procedure of the Porous Film of Anodized 2024 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The rare earth sealing procedure of the porous film of anodized aluminum alloy 2024 was studied with the fieldemission scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). The results show thatRE solution can form cerium oxide/hydroxides precipitation in the pores of the anodized coating at the beginning ofsealing. At the same time, the spherical deposits formed on the surface of the anodized coating created a barrierto the precipitation of RE solution in the pores. When the pore-structured anodizing film is covered all with thespherical deposits, RE conversion coating will form on the surface of the anodized coating. The reaction of thecoating formation was investigated by employing cyclic voltammetry. The results indicate that accelerator H2O2 actsas the source of O2 by carrying chemical reaction in course of coating formation. In the mean time, it maybe carrieselectrochemical reaction to generate alkaline condition to accelerate the coating formation. The porous structure ofthe film is beneficial to the precipitation of the cerium hydroxides film.

  12. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  13. Sanmenxia strives to create aluminum industrial base

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Contradiction between rich alumina resource and relatively weak electrolytic aluminum production capacity is the "bottleneck" inhibiting development of aluminum industry in San-menxia. During the period of "11th Five-Year Development", Sanmenxia will relay on its

  14. Wilson's disease; increased aluminum in liver.

    Science.gov (United States)

    Yasui, M; Yoshimasu, F; Yase, Y; Uebayashi, Y

    1979-01-01

    Interaction of trace metal metabolism was studied in a patient with Wilson's dease. Atomic absorption analysis showed markedly increased urinary excretion of copper and aluminum and an increased aluminum content was found in the biopsied liver by neutron activation analysis. These findings suggest a complicated pathogenetic mechanism involving other metals besides copper in the Wilson's disease.

  15. Aluminum honeycomb impact limiter study

    Energy Technology Data Exchange (ETDEWEB)

    Yaksh, M.C.; Thompson, T.C. (Nuclear Assurance Corp., Norcross, GA (United States)); Nickell, R.E. (Applied Science and Technology, Inc., Poway, CA (United States))

    1991-07-01

    Design requirements for a cask transporting radioactive materials must include the condition of the 30-foot free fall of the cask onto an unyielding surface. To reduce the deceleration loads to a tolerable level for all the components of the cask, a component (impact limiter) is designed to absorb the kinetic energy. The material, shape, and method of attachment of the impact limiter to the cask body comprises the design of the impact limiter. The impact limiter material of interest is honeycomb aluminum, and the particular design examined was for the NAC Legal Weight Truck cask (NAC-LWT) for spent fuel from light water reactors. The NAC-LWT has a design weight of 52,000 pounds, and it has a nominal length of 200 inches. The report describes the numerical calculations embodied in the FADE program to determine the accelerations and crush strain resulting from an arbitrary height and angle of orientation. Since the program serves as a design tool, static tests are performed to assess the effect of the shell containing the honeycomb aluminum. The static tests and their results are contained in the study. The static tests are used to demonstrate for licensing purposes the level of accelerations imposed on the cask during a 30-foot drop. 3 refs., 41 figs., 15 tabs.

  16. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  17. Recrystallization in Commercially Pure Aluminum

    DEFF Research Database (Denmark)

    Bay, Bent; Hansen, Niels

    1984-01-01

    Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree of defor......Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree...... (FeAl3), which start to become operative when the degree of deformation is raised from 15 to 30 pct. The temperature of nucleation and of recrystallization decreases when the degree of deformation is increased and the initial grain size is decreased. The recrystallized grain size follows the same...... trend and it is observed that the refinement of the recrystallized grain size caused by an increasing degree of deformation and decreasing initial grain size is enhanced by the FeAl3 particles (when the degree of deformation is raised from 15 to 30 pct). Finally, the structural and kinetic observations...

  18. Biological evaluation of layered double hydroxides as efficient drug vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Li Yan; Liu Dan; Chang Qing; Liu Dandan; Xia Ying; Liu Shuwen; Peng Nanfang; Yang Xu [Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079 (China); Ai Hanhua [College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079 (China); Xi Zhuge, E-mail: yangxu@mail.ccnu.edu.cn [Tianjin Institutes of Health and Environmental Medicine, Tianjin 300050 (China)

    2010-03-12

    Recently there has been a rapid expansion of the development of bioinorganic hybrid systems for safe drug delivery. Layered double hydroxides (LDH), a variety of available inorganic matrix, possess great promise for this purpose. In this study, an oxidative stress biomarker system, including measurement of reactive oxygen species, glutathione content, endogenous nitric oxide, carbonyl content in proteins, DNA strand breaks and DNA-protein crosslinks, was designed to evaluate the biocompatibility of different concentrations of nano-Zn/Al-LDH with a Hela cell line. The drug delivery activity of the LDH-folic-acid complex was also assessed. The resulting data clearly demonstrated that nano-LDH could be applied as a relatively safe drug vehicle with good delivery activity, but with the caveat that the effects of high dosages observed here should not be ignored when attempting to maximize therapeutic activity by increasing LDH concentration.

  19. The kinetic parameters of carbonaceous materials activated with potassium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Z.; Han, B.X.

    2000-07-01

    On the basis of microspore formation in carbonaceous materials, the activation energy for the potassium hydroxide activation of Chinese petroleum coke and coal has been deduced theoretically as dB(O)/dt = A exp(-E(a)) is an element of/RT), where is an element of is the formation energy for the metastable solid formed at the activation temperature. The kinetic parameters (frequency factor, A, and apparent activation energy, E(a) were calculated from this equation as being 5.319 mg/(g min), 36.51 kJ/mol and 6.64 mg/(g min), 49.46 kJ/mol, respectively, for the two carbonaceous materials studied.

  20. Hydroxide as general base in the saponification of ethyl acetate.

    Science.gov (United States)

    Mata-Segreda, Julio F

    2002-03-13

    The second-order rate constant for the saponification of ethyl acetate at 30.0 degrees C in H(2)O/D(2)O mixtures of deuterium atom fraction n (a proton inventory experiment) obeys the relation k(2)(n) = 0.122 s(-1) M(-1) (1 - n + 1.2n) (1 - n + 0.48n)/(1 - n + 1.4n) (1 - n + 0.68n)(3). This result is interpreted as a process where formation of the tetrahedral intermediate is the rate-determining step and the transition-state complex is formed via nucleophilic interaction of a water molecule with general-base assistance from hydroxide ion, opposite to the direct nucleophilic collision commonly accepted. This mechanistic picture agrees with previous heavy-atom kinetic isotope effect data of Marlier on the alkaline hydrolysis of methyl formate.

  1. Layered Double Hydroxide-Based Nanocarriers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Xue Bi

    2014-06-01

    Full Text Available Biocompatible clay materials have attracted particular attention as the efficient drug delivery systems (DDS. In this article, we review developments in the use of layered double hydroxides (LDHs for controlled drug release and delivery. We show how advances in the ability to synthesize intercalated structures have a significant influence on the development of new applications of these materials. We also show how modification and/or functionalization can lead to new biotechnological and biomedical applications. This review highlights the most recent progresses in research on LDH-based controlled drug delivery systems, focusing mainly on: (i DDS with cardiovascular drugs as guests; (ii DDS with anti-inflammatory drugs as guests; and (iii DDS with anti-cancer drugs as guests. Finally, future prospects for LDH-based drug carriers are also discussed.

  2. Synthesis of erbium hydroxide microflowers and nanostructures in subcritical water

    International Nuclear Information System (INIS)

    The effects of temperature, pressure, pH, residence time and reactant concentrations, as well as the presence or absence of CO2, on the size and morphology of erbium hydroxide particles synthesized in a hydrothermal batch reactor and a diamond-anvil cell (DAC) reactor have been investigated. Several new erbium-based microstructures and nanostructures were obtained that encompass different phases and shapes, including crystalline microflowers, hexagonal microlayers, microsticks and microspheres made from nanoparticles, as well as nanofibers, nanorods and nanolayers. The Er2OCO3(OH)2 microflowers are pure, structurally uniform, and mostly free from dislocations. Their crystallinity, morphology, optical properties and structural features have been examined and compared with those of the other phases by field-emission scanning electron microscopy (SEM), x-ray diffraction (XRD), and energy-dispersive x-ray (EDX) analysis, and by Raman, infrared, UV-visible and fluorescence spectroscopy

  3. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    S Radha; P Vishnu Kamath

    2013-10-01

    Transition metal complexes intercalated in layered double hydroxides have a different electronic structure as compared to their free state owing to their confinement within the interlayer gallery. UV–Vis absorptions of the intercalated complex anions show a significant shift as compared to their free state. The ligand to metal charge transfer transitions of the ferricyanide anion show a red shift on intercalation. The ferrocyanide ion shows a significant blue shift of – bands due to the increased separation between 2g and g levels on intercalation. MnO$^{-}_{4}$ ion shows a blue shift in its ligand to metal charge transfer transition since the non-bonding 1 level of oxygen from which the transition arises is stabilized.

  4. Pulse radiolysis of tetraalkylammonium hydroxides in alkaline solution containing oxygen

    International Nuclear Information System (INIS)

    In the pulse radiolysis of aqueous oxygenated solutions of tetraalkylammonium hydroxides there is a build-up of ozonide ion lasting up to 100 μs after the pulse. The build-up does not occur in solutions containing a twenty fold (reactivity) excess of N2O to O2. The influence of various concentrations of tetraalkylammonium cations, oxygen and different reactivity ratios of N2O to O2 on the build-up of ozonide ion after the pulse was investigated. The reaction rates of O2-and O- with peroxy radicals and organic cations, respectively, control the nature of the observed build-up and decay of ozonide ion. (author)

  5. Polymerization reaction in restricted space of layered double hydroxides (LDHs)

    Institute of Scientific and Technical Information of China (English)

    SI Lichun; WANG Ge; CAI Fuli; WANG Zhiqiang; DUAN Xue

    2004-01-01

    This paper reported the preparation of styrene sulfonate intercalated layered double hydroxides (LDHs) material, SS-LDHs by coprecipitation method, followed by in-situ polymerization of the monomers in the interlayer space of LDHs. The polymerization reaction was monitored by UV and NMR. It is confirmed that when the reaction occurred at 100℃ for 24 h, part of monomers did not react .When the reaction was carried out at 150℃, the polymeriza tion of the intercalated monomers is complete to afford the polymer intercalated product PSS-LDHs. During the polymerization process, the layered structure remains well. At thesame time the gallery height increases with the lengthening of reaction time. This is preliminarily because that the PSS becomes more swelling with the amount of water it absorbs due to its hygroscopicity property.

  6. Application of Hydrosoluble Polymers to Preparation of Nanoscale Calcium Hydroxide

    Institute of Scientific and Technical Information of China (English)

    XU Jing; CHEN Qing-hua; QIAN Qing-rong

    2004-01-01

    Calcium hydroxide with uniform diameters about 50-100 nm was firstly prepared under moderate condition by adding different kinds of hydrosoluble polymers. From the results of TEM and IR, the polymers were proved not only to improve the agglomeration of the nanoparticles but also to be used as a template to control the formation of the special structure and the needed size of Ca (OH)2 by changing the concentration of the polymers. The experimental results of TG-DTA indicate that the Ca(OH)2 can absorb most of the acid gases released during the decomposition of polymers. So this kind of nano-Ca(OH)2 can be used as a useful additive of environmental friendly plastics.

  7. Aluminum-based metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  8. Gating of Permanent Molds for ALuminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  9. Trends in the global aluminum fabrication industry

    Science.gov (United States)

    Das, Subodh; Yin, Weimin

    2007-02-01

    The aluminum fabrication industry has become more vital to the global economy as international aluminum consumption has grown steadily in the past decades. Using innovation, value, and sustainability, the aluminum industry is strengthening its position not only in traditional packaging and construction applications but also in the automotive and aerospace markets to become more competitive and to face challenges from other industries and higher industrial standards. The aluminum fabrication industry has experienced a significant geographical shift caused by rapid growth in emerging markets in countries such as Brazil, Russia, India, and China. Market growth and distribution will vary with different patterns of geography and social development; the aluminum industry must be part of the transformation and keep pace with market developments to benefit.

  10. Gelling nature of aluminum soaps in oils.

    Science.gov (United States)

    Wang, Xiaorong; Rackaitis, Mindaugas

    2009-03-15

    Aluminum soaps are notable for their ability to form soap-hydrocarbon gels of high viscosity. For more than half a century, it has been believed that the gelling mechanism is due to a formation of polymeric chains of aluminum molecules with the aluminum atoms linking along the axis and with the fatty acid chain extended sideways. Here we report results from an investigation using high-resolution electron microscopy and rheology measurements that clearly resolve the ambiguity. Our results reveal that the gelling mechanism stems from the formation of spherical nano-sized micelles from aluminum soap molecules, and those colloidal micelle particles then aggregate into networks of highly fractal and jammed structures. The earlier proposed polymer chain-like structure is definitely incorrect. The discovery of aluminum soap particles could expand application of these materials to new technologies.

  11. Proposal of recycling system for waste aluminum

    Directory of Open Access Journals (Sweden)

    Š. Valenčík

    2008-04-01

    Full Text Available Introduced work is focused on waste aluminum recycling process with objective to propose complex production system for recovering of aluminum and some aluminum alloys. Solution is supported by extended analysis concerning purpose, basis and system sequences for recyclation. Based on that, sources, possibilities and conditions for recycling are formed. This has been used in proposal of manufacturing system. The principle is the structural proposal of manufacturing system, which does not only differentiate the stage of aluminum melting process, but also related stages as gross separation, sizing, containerisation and batching, palletisation, stacking and some related operations. Production system respects technological specifications, requirements for rationalisation of manufacturing systems, technical and economical feasibility conditions and is considered in lower automation level. However production system solves complex problem of recycling of some types of aluminum, it improves flexibility, production, quality (melting by high enforcements and in protective atmosphere and extention of production (final products production.

  12. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water.

    Science.gov (United States)

    Willhite, Calvin C; Ball, Gwendolyn L; McLellan, Clifton J

    2012-05-01

    Maximum contaminant levels are used to control potential health hazards posed by chemicals in drinking water, but no primary national or international limits for aluminum (Al) have been adopted. Given the differences in toxicological profiles, the present evaluation derives total allowable concentrations for certain water-soluble inorganic Al compounds (including chloride, hydroxide, oxide, phosphate and sulfate) and for the hydrated Al silicates (including attapulgite, bentonite/montmorillonite, illite, kaolinite) in drinking water. The chemistry, toxicology and clinical experience with Al materials are extensive and depend upon the particular physical and chemical form. In general, the water solubility of the monomeric Al materials depends on pH and their water solubility and gastrointestinal bioavailability are much greater than that of the hydrated Al silicates. Other than Al-containing antacids and buffered aspirin, food is the primary source of Al exposure for most healthy people. Systemic uptake of Al after ingestion of the monomeric salts is somewhat greater from drinking water (0.28%) than from food (0.1%). Once absorbed, Al accumulates in bone, brain, liver and kidney, with bone as the major site for Al deposition in humans. Oral Al hydroxide is used routinely to bind phosphate salts in the gut to control hyperphosphatemia in people with compromised renal function. Signs of chronic Al toxicity in the musculoskeletal system include a vitamin D-resistant osteomalacia (deranged membranous bone formation characterized by accumulation of the osteoid matrix and reduced mineralization, reduced numbers of osteoblasts and osteoclasts, decreased lamellar and osteoid bands with elevated Al concentrations) presenting as bone pain and proximal myopathy. Aluminum-induced bone disease can progress to stress fractures of the ribs, femur, vertebrae, humerus and metatarsals. Serum Al ≥100 µg/L has a 75-88% positive predictive value for Al bone disease. Chronic Al

  13. Oxidative coal desulfurization using lime to regenerate alkali metal hydroxide from reaction product

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, S.

    1980-07-22

    A process for the removal of pyrite from coal comprises (A) preparing an aqueous slurry containing finely divided coal particles; (B) adding to the slurry an alkali metal hydroxide selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide, as well as mixtures thereof, in amounts sufficient to continuously maintain the pH of the slurry at a value of below about 8; (C) agitating the slurry while treating the slurry with oxygen or an oxygen-containing gas at substantially atmospheric pressuresand at a slightly elevated temperature of at least about 70/sup 0/C to convert the pyrite in the coal to a soluble alkali metal sulfate; (D) reacting lime with the so-formed alkali metal sulfate to regenerate the alkali metal hydroxide; and (E) recycling the hydroxide for further use in the process, whereby pyrite is effectively removed and the hydroxide conveniently regenerated with the inhibiting effect of calcium ions therein upon the oxygen leaching of said pyritic sulfur from coal being overcome at said pH, the reaction rate being enhanced by the use of said elevated temperature.

  14. Oxidation dynamics of aluminum nanorods

    International Nuclear Information System (INIS)

    Aluminum nanorods (Al-NRs) are promising fuels for pyrotechnics due to the high contact areas with oxidizers, but their oxidation mechanisms are largely unknown. Here, reactive molecular dynamics simulations are performed to study thermally initiated burning of oxide-coated Al-NRs with different diameters (D = 26, 36, and 46 nm) in oxygen environment. We found that thinner Al-NRs burn faster due to the larger surface-to-volume ratio. The reaction initiates with the dissolution of the alumina shell into the molten Al core to generate heat. This is followed by the incorporation of environmental oxygen atoms into the resulting Al-rich shell, thereby accelerating the heat release. These results reveal an unexpectedly active role of the alumina shell as a “nanoreactor” for oxidation

  15. Clinical effect of calcium hydroxide paste combined with triple antibiotic paste on root canal disinfection

    Directory of Open Access Journals (Sweden)

    Chen QU

    2014-03-01

    Full Text Available Objective To compare the efficacy in disinfection and pain control of calcium hydroxide paste and triple antibiotic paste (ornidazole, ciprofloxacin and minocycline used individually or jointly for root canal disinfection. Methods Two hundred and thirty-five patients with chronic apical periodontitis (235 teeth were involved in the present study and divided into 2 groups: fistula group (n=118 and no fistula group (n=117. Each group was then randomly divided into 4 subgroups: calcium hydroxide paste group, triple antibiotic paste group, calcium hydroxide + triple antibiotic paste group, and camphor phenol group. After regular root canal preparation, root canals of patients in 4 groups were filled with tiny paper ends impregnated with fore 4 different drugs respectively. Visual analogue scales (VAS of pain were given to the patients with a guide for filling the scale. One week later, both the data of the scales and the effects of root canal disinfection were recorded and analyzed. Results Seven days after treatment, the clinical efficacy of calcium hydroxide paste, triple antibiotic paste and calcium hydroxide + triple antibiotic paste was similar (P>0.05 either in fistula group or in no fistula group, but all better than that of camphor phenol (P<0.05. VAS score analysis showed that, at least on the first 3 days after sealing medicine in the root canal, calcium hydroxide + triple antibiotic paste achieved better result of pain control than the other three groups (P<0.05 no matter with or without fistula. Conclusions  Calcium hydroxide paste, triple antibiotic paste, calcium hydroxide + triple antibiotic paste are effective in treatment of chronic apical periodontitis whether with or without fistula. However, the combined use of calcium hydroxide and three antibiotic pastes is better for controlling the pain after root canal preparation than other treatments, which is therefore worthy of clinical application. DOI: 10.11855/j.issn.0577-7402.2014.02.12

  16. Oxidation kinetics of aluminum diboride

    Science.gov (United States)

    Whittaker, Michael L.; Sohn, H. Y.; Cutler, Raymond A.

    2013-11-01

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3-B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments.

  17. Development of Alcoa aluminum foam products

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.D.; Crowley, M.D.; Wang, W.; Wilhelmy, D.M.; Hunter, D.E. [Alcoa Technical Center, Alcoa Center, PA (United States)

    2007-07-01

    A new lightweight aluminum foam product was described. The foam was made through the controlled decomposition of carbonate powders within molten aluminum and was able to resist both coalescence and drainage. The fine-celled aluminum foam derived its physical and mechanical properties from the properties of the aluminum alloy matrix from which they were produced. The rheology of the molten aluminum was modified to provide a superior mesostructure. Stabilization was achieved by creating a solid-gas-liquid suspension initiated by the addition of carbonates into an aluminum alloy melt. A cascade of chemical reactions then occurred within the melt to create a foamable suspension. Carbon monoxide (CO) was generated to initiate an additional sequence of chemical reactions which resulted in the formation of solid particles within the liquid metal. CO reacted with liquid Al to form graphite. The graphite then reacted with Al to form aluminum carbide (Al{sub 4}C{sub 3}). The microstructural, mesostructural, and mechanical character of the foams produced under different processing conditions were examined. Details of experimental test procedures were also described. It was concluded that the specific crush energy absorption was as high as 20 kJ/kg. The foam exhibited a bending stiffness that was approximately 20 to 30 times higher than balsa and polymer foams. 14 refs., 2 tabs., 7 figs.

  18. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: pgottesfeld@okinternational.org [Occupational Knowledge International, San Francisco, CA (United States)

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  19. Scientific Opinion on the safety and efficacy of sodium hydroxide for dogs, cats and ornamental fish

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

    2012-01-01

    The additive consists, by specification, of a minimum of 98.0 % sodium hydroxide or alkali in the solid form, the content of solutions scaled accordingly, based on the stated or labelled concentration. No data have been provided that would support the specification of the solid form, only a 50.0 % w/w solution of sodium hydroxide in water, which is the final product of the production process described in the dossier. Sodium hydroxide is considered safe for the target animals, provide...

  20. Reactive transport modeling at uranium in situ recovery sites: uncertainties in uranium sorption on iron hydroxides

    Science.gov (United States)

    Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.

  1. Honeywell Modular Automation System Computer Software Documentation for the Magnesium Hydroxide Precipitation Process

    International Nuclear Information System (INIS)

    The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP) for the Magnesium Hydroxide Precipitation Process in Rm 230C/234-5Z. The magnesium hydroxide process control software Rev 0 is being updated to include control programming for a second hot plate. The process control programming was performed by the system administrator. Software testing for the additional hot plate was performed per PFP Job Control Work Package 2Z-00-1703. The software testing was verified by Quality Control to comply with OSD-Z-184-00044, Magnesium Hydroxide Precipitation Process

  2. Study on the modulating effect of polysaccharide upon the mineralization of iron hydroxide

    Institute of Scientific and Technical Information of China (English)

    HUANG Jiangbo; SUN Zhenya

    2008-01-01

    To investigate the modulating effect of polysaccharide upon the mineralization of iron hydroxide, a series of simulative biomineralization experiments using dextran and chitosan as organic substrates were conducted in this paper. The results showed that iron hydroxide gel nucleated and grew in polysaccharide molecules, with the self-assemble effect of dextran or chitosan, the nanometer-sized akaganeite was formed. The shape, size and crystal structural type of iron oxyhydroxide formed from iron hydroxide gel depend on the type of polysaccharide and its concentrations.

  3. Spray Rolling Aluminum Strip for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

    2005-02-01

    Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

  4. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  5. Calcium hydroxide as intracanal dressing for teeth with apical periodontitis

    Directory of Open Access Journals (Sweden)

    Sari Dewiyani

    2011-03-01

    Full Text Available Background: Root canal infection and periapical diseases are caused by bacteria and their products. Long term infection may spread bacteria throughout the root canal system. Apical periodontitis caused by infectious microbe that persistent in root canals can cause radiographic and histopathology periapical changes. Chemomechanical preparation and intracanal dressing then are recommended to be conducted and used in between visits to eliminate microbes in root canals. Calcium hydroxide (Ca(OH2 can be used as intracanal dressing since it can be used as musical physical defense barrier to eliminate re-infection in root canal and to disturb nutrition supply for bacterial development. Purpose: The aim of this study is observe the effectiveness of Ca(OH2 in treating endodontic teeth with apical periodontitis. Cases: Case 1 and 3 are about patients whose left posterior mandibular teeth had spontaneous intermittent pain. Case 2 is about a patient whose left posterior maxillary teeth had gingival abscess and fracture history. Based on the radiographic examination, it was known that the filling of root canal was incomplete and there was radiolucency in the apical area. Case management: The cases were treated with triad endodontics, which involves preparation, disinfection by using 2.5% NaOCl as irrigation substance and calcium hydroxide as intracanal dressing, and then the filling of root canal with gutta percha and endomethasone root canal cement. Evaluations were conducted one month, 12 months, and 24 months after the treatment. Conclusion: Calcium hydroxide is effective to be used as intracanal dressing in apical periodontitis cases.Latar belakang: Infeksi saluran akar dan penyakit periapeks disebabkan oleh mikroba dan produknya. Infeksi yang berlangsung lama memungkinkan bakteri masuk ke dalam seluruh sistem saluran akar. Periodontitis apikal disebabkan oleh infeksi persisten mikroba di dalam sistem saluran akar disertai perubahan radiografik dan

  6. Fundamental studies of aluminum corrosion in acidic and basic environments: Theoretical predictions and experimental observations

    Energy Technology Data Exchange (ETDEWEB)

    Lashgari, Mohsen, E-mail: Lashgari@iasbs.ac.i [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of); Malek, Ali M. [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2010-07-15

    Using quantum electrochemical approaches based on density functional theory and cluster/polarized continuum model, we investigated the corrosion behavior of aluminum in HCl and NaOH media containing phenol inhibitor. In this regard, we determined the geometry and electronic structure of the species at metal/solution interface. The investigations revealed that the interaction energies of hydroxide corrosive agents with aluminum surface should be more negative than those of chloride ones. The inhibitor adsorption in acid is more likely to have a physical nature while it appears as though to be chemical in basic media. To verify these predictions, using Tafel plots, we studied the phenomena from experimental viewpoint. The studies confirmed that the rate of corrosion in alkaline solution is substantially greater than in HCl media. Moreover, phenol is a potential-molecule having mixed-type inhibition mechanism. The relationship between inhibitory action and molecular parameters was discussed and the activity in alkaline media was also theoretically anticipated. This prediction was in accord with experiment.

  7. In situ generation of hydrogen from water by aluminum corrosion in solutions of sodium aluminate

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Lluis; Candela, Angelica Maria; Munoz, Maria; Casado, Juan [Centre Grup de Tecniques de Separacio en Quimica (GTS), Unitat de Quimica Analitica, Departament de Quimica, Universitat Autonoma de Barcelona, Campus UAB s/n, 08193 Bellaterra, Barcelona, Catalonia (Spain); Macanas, Jorge [Laboratoire de Genie Chimique, UMR 5503 CNRS-INPT-UPS, Universite de Toulouse, Toulouse (France)

    2009-07-01

    A new process to obtain hydrogen from water using aluminum in sodium aluminate solutions is described and compared with results obtained in aqueous sodium hydroxide. This process consumes only water and aluminum, which are raw materials much cheaper than other compounds used for in situ hydrogen generation, such as hydrocarbons and chemical hydrides, respectively. As a consequence, our process could be an economically feasible alternative for hydrogen to supply fuel cells. Results showed an improvement of the maximum rates and yields of hydrogen production when NaAlO{sub 2} was used instead of NaOH in aqueous solutions. Yields of 100% have been reached using NaAlO{sub 2} concentrations higher than 0.65 M and first order kinetics at concentrations below 0.75 M has been confirmed. Two different heterogeneous kinetic models are verified for NaAlO{sub 2} aqueous solutions. The activation energy (E{sub a}) of the process with NaAlO{sub 2} is 71 kJ mol{sup -1}, confirming a control by a chemical step. A mechanism unifying the behavior of Al corrosion in NaOH and NaAlO{sub 2} solutions is presented. The application of this process could reduce costs in power sources based on fuel cells that nowadays use hydrides as raw material for hydrogen production. (author)

  8. Electrochemical treatment of Orange II dye solution-Use of aluminum sacrificial electrodes and floc characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mollah, M. Yousuf A. [Department of Chemistry, University of Dhaka, Dhaka-1000 (Bangladesh); Gomes, Jewel A.G., E-mail: jewel.gomes@lamar.edu [Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10053, Beaumont, TX 77710 (United States); Das, Kamol K.; Cocke, David L. [Gill Chair of Chemical Engineering, Lamar University, P.O. Box 10053, Beaumont, TX 77710 (United States)

    2010-02-15

    Electrocoagulation (EC) of Orange II dye in a flow through cell with aluminum as sacrificial electrodes was carried out under varying conditions of dye concentration, current density, flow rate, conductivity, and the initial pH of the solution in order to optimize the operating parameters for maximum benefits. Maximum removal efficiency of 94.5% was obtained at the following conditions: dye concentration = 10 ppm, current density = 160 A/m{sup 2}, initial pH 6.5, conductance = 7.1 mS/cm, flow rate = 350 mL/min, and concentration of added NaCl = 4.0 g/L of dye solution. The EC-floc was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy, and powder X-ray diffraction techniques. The removal mechanism has been proposed that is in compliance with the Pourbaix diagram, solubility curve of aluminum oxides/hydroxides, and physico-chemical properties of the EC-floc.

  9. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    International Nuclear Information System (INIS)

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals

  10. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  11. Nanshan Aluminum Reached Strategic Cooperation with CSR Corporation Limited

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As a key supplier of aluminum profiles and aluminum plate,sheet and trip products for CSR Corporation Limited,Nanshan Aluminum will join hands with CSR Corporation Limited to reach strategic cooperation.On January 5,Nanshan Aluminum signed strategic cooperation agreement with CSR Sifang Locomotive&Rolling; Stock Co.,Ltd,both

  12. Changes in porosity of foamed aluminum during solidification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  13. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  14. Diel cycle of iron, aluminum and other heavy metals in a volcano watershed in northern Taiwan

    Science.gov (United States)

    Kao, S.

    2013-12-01

    It is well known that heavy metals in surface water show diel (24-hr) changes in concentrations due to diel biogeochemical cycle. Accordingly, it is important to have a better sampling policy for monitoring the environmental impact of heavy metals of surface water, especially volcanic and mining areas. This study investigated Tatun Volcano watershed in northern Taiwan with a 24-h sampling operation to explore the diel cycle of arsenic concentrations and discuss on the corresponding biogeochemical processes. According to the previous studies, solar energy is the main factor of diel cycles, which could have strong effects on temperature, pH, dissolved oxygen, and many other water qualities. These changes produce a series of chain reactions and finally result in the change of heavy metal concentrations. In general, diel cycle of dissolved oxygen is dominated by metabolism of aquatic plants and sunlight photoreduction in acidic stream water; therefore, the Fe and Al contents would be accordingly changed. In addition, the concentrations of heavy metals will be simultaneously modified due to the high adsorption capacity of Fe and Al hydroxides. In this study, the results of hydro chemical analysis show that creek water is characterized by higher temperature, low pH value (3.0-4.5) and high SO4content(60-400 ppm) due to the mixing of hot spring. That the pH dramatically drops in the noon demonstrates that pH is highly dependent on photoreduction. This can be confirmed by the opposite trend of Fe concentration. The high Fe content in the noon also demonstrates that the precipitation of Fe hydroxides is not dominant in the day time and Fe is mainly in dissolved and/or colloid forms. Under the situation, heavy metals are supposed to have a similar trend with Fe. However, arsenic, aluminum and rare earth elements show a quite different diel cycle from Fe and other heavy metals. It concludes that arsenic and rare earth elements may be adsorbed by Al hydroxides instead of Fe

  15. Diffuse Parenchymal Diseases Associated With Aluminum Use and Primary Aluminum Production

    OpenAIRE

    Taiwo, Oyebode A.

    2014-01-01

    Aluminum use and primary aluminum production results in the generation of various particles, fumes, gases, and airborne materials with the potential for inducing a wide range of lung pathology. Nevertheless, the presence of diffuse parenchymal or interstitial lung disease related to these processes remains controversial. The relatively uncommon occurrence of interstitial lung diseases in aluminum-exposed workers—despite the extensive industrial use of aluminum—the potential for concurrent exp...

  16. South West Aluminum: Next year The Capacity of Auto-use Aluminum Sheet will Reach 5000 Tonnes

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Following supplying supporting aluminum products for"Shenzhou"spacecraft,"Long March"rocket,Boeing and Airbus,South West Aluminum again tapped new economic growth points,i.e.automobile-use aluminum products.According to what the reporter has learned from South West Aluminum Group recently,this group has finished early stage

  17. Southwest Aluminum Increase Two Production Lines and May Become the Largest Aluminum Fabricator In the World

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Recently,Wu Bing,Director of Chongqing Economic Committee,announced at the"Industrial Economy Meeting"that the city will"facilitate the technical upgrade and capacity expansion of the existing production lines at Southwest Aluminum with great efforts on the construction of one additional hot continuous rolling line and one cold continuous rolling line so as to have a comprehensive production ca- pacity of 1.2 million tons on aluminum processing profiles for the achievement of building Southwest Aluminum into the world largest aluminum processing enterprise".

  18. Preliminary Study on Aluminum Content of Foods and Aluminum Intake of Residents in Tianjin

    Institute of Scientific and Technical Information of China (English)

    XUGe-Sheng; JINRng-Pei; 等

    1993-01-01

    Aluminum contents of 64 kinds of foods in Tianjin were detrmined.The results showed that the aluminum levels in diffeent kinds of foods varied greatly,and most foodstuffs from natural sources(including contamination from food processing)contained less than 10mg/kg,Aluminum contents were higher in foodstuffs of plant origin,especiallydry beans containing large amounts of aluminum naturally.Lower concentration of aluminum seemed to be present in foodstuffs of animal origin.It was estimated that the potential daily intake of aluminum per person from natural dietary sources in Tianjin was about 3.79 mg.This estimated figure of dietary aluminum intake was very close to the measured data from 24 daily diets of college students.which was 4.86±1.72mg.Considering all the potential sources of natural aluminum in foods.water and the individual habitual food,it would apear that most residents in Tianjin would consume 3-10mg aluminum daily from natural dietary sources.

  19. Infiltration of molten aluminum in aluminum-nickel powder preform

    International Nuclear Information System (INIS)

    It has been shown by the present author that when molten aluminum comes in contact with nickel, an exothermic reaction is initiated and both stiochiometric and non-stiochiometric phases form at the interface. For nickel powders, such reaction is expected to be much faster due to high surface area to volume ratio of the fine particles. Infiltration of molten metals in ceramics powder preforms has long been used to fabricate near or net-shaped Metal Matrix Composite components. For metallic preforms however, it is important to see if the exothermic reaction compromises the infiltration of the molten metal constituent, i.e. defective components. The current project studied the fabrication of near net-shaped Intermetallic Matrix Composites, (IMC) via molten metal infiltration and subsequent reaction with the metal powder preform. X-ray diffraction (XRD), Optical and SEM microscopes were used to characterize the infiltration, reaction and the resulted microstructure. It is expected that the molten metal temperature, holding time within the molten metal, the infiltration pressure, i.e. metallostatic pressure and the preform compaction pressure are all important parameters to be considered carefully to achieve sound components. The current report examined the feasibility of such fabrication technique and the resultant microstructure. (author)

  20. Profit of Aluminum Industry Dropped Sharply

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>On August 2nd,the Ministry of Industry and Information Technology published the performance of nonferrous metal industry in the first half of 2011.Relevant data showed that due to cost increase,aluminum smelting enter

  1. Aluminum plasmonic multicolor meta-hologram.

    Science.gov (United States)

    Huang, Yao-Wei; Chen, Wei Ting; Tsai, Wei-Yi; Wu, Pin Chieh; Wang, Chih-Ming; Sun, Greg; Tsai, Din Ping

    2015-05-13

    We report a phase-modulated multicolor meta-hologram (MCMH) that is polarization-dependent and capable of producing images in three primary colors. The MCMH structure is made of aluminum nanorods that are arranged in a two-dimensional array of pixels with surface plasmon resonances in red, green, and blue. The aluminum nanorod array is patterned on a 30 nm thick SiO2 spacer layer sputtered on top of a 130 nm thick aluminum mirror. With proper design of the structure, we obtain resonances of narrow bandwidths to allow for implementation of the multicolor scheme. Taking into account of the wavelength dependence of the diffraction angle, we can project images to specific locations with predetermined size and order. With tuning of aluminum nanorod size, we demonstrate that the image color can be continuously varied across the visible spectrum.

  2. Macrodeformation Twins in Single-Crystal Aluminum

    Science.gov (United States)

    Zhao, F.; Wang, L.; Fan, D.; Bie, B. X.; Zhou, X. M.; Suo, T.; Li, Y. L.; Chen, M. W.; Liu, C. L.; Qi, M. L.; Zhu, M. H.; Luo, S. N.

    2016-02-01

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum at scales beyond nanotwins. Here, we present the first experimental demonstration of macrodeformation twins in single-crystal aluminum formed under an ultrahigh strain rate (˜106 s-1 ) and large shear strain (200%) via dynamic equal channel angular pressing. Large-scale molecular dynamics simulations suggest that the frustration of subsonic dislocation motion leads to transonic deformation twinning. Deformation twinning is rooted in the rate dependences of dislocation motion and twinning, which are coupled, complementary processes during severe plastic deformation under ultrahigh strain rates.

  3. China Aluminum Processing Industry Development Report 2011

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>In 2011,China’s aluminum processing industry maintained a high growth rate,with the aluminum output reaching 23,456,000tons,up 20.6% y-o-y.Overshadowed by complicated situation both at home and abroad,China’seconomy slowed down and declined by2.2% y-o-y.In 2011,China’s aluminum processing industry showed a downward tendency,that is,it grew at a high speed before the3rd quarter,but suffered from a shortage of orders in the remaining time of the year and the growth rate fell increasingly.Between January and August,China’s aluminum output rose by 26% y-o-y;

  4. Shock wave compression behavior of aluminum foam

    Institute of Scientific and Technical Information of China (English)

    程和法; 黄笑梅; 薛国宪; 韩福生

    2003-01-01

    The shock wave compression behavior of the open cell aluminum foam with relative density of 0. 396 was studied through planar impact experiments. Using polyvinylidene fluoride(PVDF) piezoelectric gauge technique, the stress histories and propagation velocities of shock wave in the aluminum foam were measured and analyzed. The results show that the amplitude of shock wave attenuates rapidly with increasing the propagation distance in the aluminum foam, and an exponential equation of the normalized peak stress vs propagation distance of shock wave is established, the attenuation factor in the equation is 0. 286. Furthermore, the Hugoniot relation, νs = 516.85+ 1.27νp,for the aluminum foam is determined by empirical fit to the experimental Hugoniot data.

  5. Aluminum-CNF Lightweight Radiator Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal relates to a new materials concept for an aluminum-carbon nanofiber composite, high thermal conductivity ultra lightweight material that will form the...

  6. Over-heated Investment in Aluminum Hub Industry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Aluminum hub is one of typical products with the comparative advantages.China’s aluminum hub industry is very competitive.In recent years,the value of export for the aluminum hub soared,increasing from USD130 millions in 1999 up to nearly USD1 billion in 2004.The main exporter are Wanfeng Auto Holding Group,Shanghai Fervent Alloy Wheel MFG Co.,Ltd.,Nanhai Zhongnan Aluminum Co., Ltd.,Taian Huatai Aluminum Hub Co.,Ltd.

  7. Anodic Activation of Aluminum by Trace Element Tin

    OpenAIRE

    Tan, Juan

    2011-01-01

    Anodic activation of commercial and model aluminum alloys in chloride solution became of practical importance in connection with filiform corrosion of painted aluminum sheet in architectural application and aluminum components of brazed heat exchangers. Activation in chloride solution manifests itself in the form of a significant negative shift in the pitting potential relative to pure aluminum and a significant increase in the anodic current output at potentials where aluminum is normally ex...

  8. Antimicrobial effect of calcium hydroxide as endo intracanal dressing on Streptococcus viridans

    Directory of Open Access Journals (Sweden)

    Nanik Zubaidah

    2008-03-01

    Full Text Available Calcium hydroxide had been used as the intra-canal dressing in endodontic treatment due to its high alkaline and antimicrobial capacity. It can also dissolve the necrotic tissue, prevent dental root resorbtion and regenerate a new hard tissue. The aim of this study was to determine the concentration of calcium hydroxide which had the highest antimicrobial effect on Streptococcus viridans. Samples were divided into 5 groups; each group consisted of 8 samples with different concentration of calcium hydroxide. Group I: 50%, group II: 55, Group III: 60%, Group IV: 65%, Group V: 70%. The antimicrobial testing was performed using diffusion method against Streptococcus viridans. The result of susceptibility test was showed by the inhibition zone diameter which measured with caliper (in millimeter. We analyzed the data using One-Way ANOVA test with significant difference 0.05 and subsequently LSD test. The study showed that calcium hydroxide with concentration 60% has the highest antimicrobial effect.

  9. A Ni-Fe Layered Double Hydroxide-Carbon Nanotube Complex for Water Oxidation

    CERN Document Server

    Gong, Ming; Wang, Hailiang; Liang, Yongye; Wu, Justin Zachary; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-01-01

    Highly active, durable and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions including water splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel iron layered double hydroxide nanoplates on mildly oxidized multi-walled carbon nanotubes. Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-layered double hydroxide. The nanoplates were covalently attached to a network of nanotubes, affording excellent electrical wiring to the nanoplates. The ultra-thin Ni-Fe layered double hydroxide nanoplates/carbon nanotube complex was found to exhibit unusually high electro-catalytic activity and stability for oxygen evolution and outperformed commercial precious metal Ir catalysts.

  10. Potassium hydroxide pulping of rice straw in biorefinery initiatives.

    Science.gov (United States)

    Jahan, M Sarwar; Haris, Fahmida; Rahman, M Mostafizur; Samaddar, Purabi Rani; Sutradhar, Shrikanta

    2016-11-01

    Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp. PMID:27518034

  11. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process

    Science.gov (United States)

    Lan, Shengjie; Li, Lijuan; Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng

    2016-09-01

    In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material's crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Sisbnd Osbnd Mg) formed by the reaction between Si-OC2H5 and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  12. The development of dysprosium-165 hydroxide macroaggregates for radiation synovectomy

    International Nuclear Information System (INIS)

    The development of a dysprosium-165 product, Dy-HMA, which is suitable for the radiation synovectomy of arthritic joints is described. Dysprosium-165 is a short-lived (t1/2 = 139 min) beta-emitter produced by the neutron irradiation of natural dysprosium. Dy-HMA is a suspension of macroaggregated hydroxide particles in saline with the majority of particles in the 3-5 μm range. Studies in rabbits have demonstrated minimal leakage following the intra-articular injection of a knee joint. At 24 hours, the accumulation in the liver is about 0.003% of the injected dose and there is considerably less in other organs and tissue. The use of Dy-HMA has considerable advantages over the presently used yttrium-90 products. The undesired leakage to and subsequent irradiation of other organs is considerably reduced. The period of hospitalisation is reduced from four days to one and the production of 165 Dy in Australia will overcome the difficulties of supply 90Y from overseas. 21 refs., 1 fig., 18 tabs

  13. Defluoridation from aqueous solutions by granular ferric hydroxide (GFH).

    Science.gov (United States)

    Kumar, Eva; Bhatnagar, Amit; Ji, Minkyu; Jung, Woosik; Lee, Sang-Hun; Kim, Sun-Joon; Lee, Giehyeon; Song, Hocheol; Choi, Jae-Young; Yang, Jung-Seok; Jeon, Byong-Hun

    2009-02-01

    This research was undertaken to evaluate the feasibility of granular ferric hydroxide (GFH) for fluoride removal from aqueous solutions. Batch experiments were performed to study the influence of various experimental parameters such as contact time (1 min-24h), initial fluoride concentration (1-100 mgL(-1)), temperature (10 and 25 degrees C), pH (3-12) and the presence of competing anions on the adsorption of fluoride on GFH. Kinetic data revealed that the uptake rate of fluoride was rapid in the beginning and 95% adsorption was completed within 10 min and equilibrium was achieved within 60 min. The sorption process was well explained with pseudo-first-order and pore diffusion models. The maximum adsorption capacity of GFH for fluoride removal was 7.0 mgg(-1). The adsorption was found to be an endothermic process and data conform to Langmuir model. The optimum fluoride removal was observed between pH ranges of 4-8. The fluoride adsorption was decreased in the presence of phosphate followed by carbonate and sulphate. Results from this study demonstrated potential utility of GFH that could be developed into a viable technology for fluoride removal from drinking water.

  14. Thermochemistry of calcium oxide and calcium hydroxide in fluoride slags

    Science.gov (United States)

    Chattopadhyay, S.; Mitchell, A.

    1990-08-01

    Calcium oxide activity in binary CaF2-CaO and ternary CaF2-CaO-Al2O3 and CaF2-CaO-SiO2 slags has been determined by CO2-slag equilibrium experiments at 1400 °C. The carbonate ca-pacity of these slags has also been computed and compared with sulfide capacity data available in the literature. The similarity in trends suggests the possibility of characterizing carbonate capacity as an alternative basicity index for fluoride-base slags. Slag-D2O equilibrium experi-ments are performed at 1400°C with different fluoride-base slags to determine water solubility at two different partial pressures of D2O, employing a new slag sampling technique. A novel isotope tracer detection technique is employed to analyze water in the slags. The water solubility data found show higher values than the previous literature data by an order of magnitude but show a linear relationship with the square root of water vapor partial pressure. The activity of hydroxide computed from the data is shown to be helpful in estimating water solubility in in-dustrial electroslag remelting (ESR) slags.

  15. In vivo toxicity studies of europium hydroxide nanorods in mice.

    Science.gov (United States)

    Patra, Chitta Ranjan; Abdel Moneim, Soha S; Wang, Enfeng; Dutta, Shamit; Patra, Sujata; Eshed, Michal; Mukherjee, Priyabrata; Gedanken, Aharon; Shah, Vijay H; Mukhopadhyay, Debabrata

    2009-10-01

    Lanthanide nanoparticles and nanorods have been widely used for diagnostic and therapeutic applications in biomedical nanotechnology due to their fluorescence and pro-angiogenic properties to endothelial cells, respectively. Recently, we have demonstrated that europium (III) hydroxide [Eu(III)(OH)(3)] nanorods, synthesized by the microwave technique and characterized by several physico-chemical techniques, can be used as pro-angiogenic agents which introduce future therapeutic treatment strategies for severe ischemic heart/limb disease, and peripheral ischemic disease. The toxicity of these inorganic nanorods to endothelial cells was supported by several in vitro assays. To determine the in vivo toxicity, these nanorods were administered to mice through intraperitoneal injection (IP) everyday over a period of seven days in a dose dependent (1.25 to 125 mg kg(-1) day(-1)) and time dependent manner (8-60 days). Bio-distribution of europium elements in different organs was analyzed by inductively coupled plasma mass spectrometry (ICPMS). Short-term (S-T) and long-term (L-T) toxicity studies (mice euthanized on days 8 and 60 for S-T and L-T, respectively) show normal blood hematology and serum clinical chemistry with the exception of a slight elevation of liver enzymes. Histological examination of nanorod-treated vital organs (liver, kidney, spleen and lungs) showed no or only mild histological changes that indicate mild toxicity at the higher dose of nanorods.

  16. Removal of boron species by layered double hydroxides: a review.

    Science.gov (United States)

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants. PMID:23635479

  17. Methotrexate intercalated ZnAl-layered double hydroxide

    Science.gov (United States)

    Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram; Chakraborty, Jui; Ghosh, Swapankumar; Mitra, Manoj K.; Basu, Debabrata

    2011-09-01

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 Å in pristine LDH to 21.3 Å in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug molecule in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion.

  18. Surface modification of magnesium hydroxide by γ-aminopropyltriethoxysilane

    Institute of Scientific and Technical Information of China (English)

    LUO Wei; FENG Qi-ming; OU Le-ming; LIU Kun

    2008-01-01

    Magnesium hydroxide (MH), which is commonly used as a halogen-free flame retardant filler in composite materials, was modified by silanization reaction with γ-aminopropyltriethoxysilane (γ-APS) in aqueous solution at different pH values (pH range from 8.0 to 12.0). The surface properties of grafted γ-APS on MH surface as a function of solution pH value were studied using elemental analysis, Fourier transform infrared spectroscopy and zeta potential measurement. The results show that hydrolysis and condensation of γ-APS are activated in alkaline solution and lead to multilayer adsorption of γ-APS molecules on the surface of MH. The type of adsorption orientation of γ-APS on MH surface is a function of coverage density that is altered by changing solution pH value. At low coverage density (e.g.55nm-2), γ-APS molecules are preferentially adsorbed to the surface with the silicon moiety towards the surface, and increasing coverage density (e.g.90nm-2) leads to parallel orientation. At an even higher coverage density(e.g.115nm-2), γ-APS molecules bond to the surface with the amino moiety towards the surface.

  19. Layered-double-hydroxide-modified electrodes: electroanalytical applications.

    Science.gov (United States)

    Tonelli, Domenica; Scavetta, Erika; Giorgetti, Marco

    2013-01-01

    Two-dimensional inorganic solids, such as layered double hydroxides (LDHs), also defined as anionic clays, have open structures and unique anion-exchange properties which make them very appropriate materials for the immobilization of anions and biomolecules that often bear an overall negative charge. This review aims to describe the important aspects and new developments of electrochemical sensors and biosensors based on LDHs, evidencing the research from our own laboratory and other groups. It is intended to provide an overview of the various types of chemically modified electrodes that have been developed with these 2D layered materials, along with the significant advances made over the last several years. In particular, we report the main methods used for the deposition of LDH films on different substrates, the conductive properties of these materials, the possibility to use them in the development of membranes for potentiometric anion analysis, the early analytical applications of chemically modified electrodes based on the ability of LDHs to preconcentrate redox-active anions and finally the most recent applications exploiting their electrocatalytic properties. Another promising application field of LDHs, when they are employed as host structures for enzymes, is biosensing, which is described considering glucose as an example.

  20. Immobilization of Penicillin G Acylase on Calcined Layered Double Hydroxides

    Institute of Scientific and Technical Information of China (English)

    REN Ling-ling; HE Jing; Evans D. G.; DUAN Xue

    2003-01-01

    A hydrotalcite-like Mg2+/Al3+ layered double hydroxide(LDH) material was prepared by means of a modified coprecipitation method involving a rapid mixing step followed by a separate aging process. LDH calcined at 500 ℃, denoted as CLDH, was characterized by XRD, IR and BET surface area measurements. CLDH has a poor crystalline MgO-like structure with a high surface area and porosity. CLDH was used as a support for the immobilization of penicillin G acylase(PGA). The effect of varying the immobilization conditions, such as pH, contact time and the ratio of enzyme to support, on the activity of the immobilized enzyme in the hydrolysis of penicillin G has been studied. It was found that the activity of the immobilized enzyme decreased slightly with decreasing pH and reached a maximum after a contact time of 24 h. The activity of the immobilized enzyme increased with increasing the ratio of enzyme to support. It was found that the adsorption of PGA inhibited the expected reaction of CLDH with an aqueous medium to regenerate a LDH phase. Its original activity(36%) after 15 cycles of reuse of the immobilized enzyme was retained, but no further loss in the activity was observed.

  1. Enhanced aerobic sludge granulation with layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Jizhi Zhou

    2014-06-01

    Full Text Available Aerobic granular sludge technology has been developed for the biochemical treatment of wastewater in the present study. A fast cultivation of aerobic granular sludge was realized in Sequencing Batch Reactor (SBR, where Mg-Al layered double hydroxide (LDH was used as a carrier for granules growth. In comparison, the sludge particle size with LDH addition was bigger than those without LDH, with more than 50% of compact granular sludge >1.4 mm in size. This indicatestheLDH improved the growth ofthegranular sludge. The frequency of LDH addition had little effect on the granule growth. Moreover, the formation of granules led to the low sludge volume index (SVI and high mixed liquid suspended solids (MLSS in SBR reactor. With the formation of granular sludge, more than 80% of COD was removed in SBR reactor. The high COD removal efficiency of wastewater was observed regardless of various COD loading strength. The results suggest that the growth of granular sludge with LDH as a carrier enhanced the treatment efficiency. Therefore, our results have provided a promising way to prepare the granular sludge for wastewater treatment.

  2. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  3. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  4. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  5. ALUMINUM FOIL REINFORCED BY CARBON NANOTUBES

    OpenAIRE

    A. V. Alekseev; PREDTECHENSKIY M.R.

    2016-01-01

    In our research, the method of manufacturing an Al-carbon nanotube (CNT) composite by hot pressing and cold rolling was attempted. The addition of one percent of multi-walled carbon nanotubes synthesized by OCSiAl provides a significant increase in the ultimate tensile strength of aluminum. The tensile strength of the obtained composite material is at the tensile strength level of medium-strength aluminum alloys.

  6. Oxidation kinetics of aluminum diboride

    International Nuclear Information System (INIS)

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3–B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB2 in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time–temperature plots, (b) conversion as a function of time, (c) Arrhenius plots used to calculate activation energies, and (d) activation energy

  7. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleema, N., E-mail: saleema.noormohammed@imi.cnrc-nrc.gc.ca [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada); Sarkar, D.K. [Centre Universitaire de Recherche sur l' Aluminium (CURAL), University of Quebec at Chicoutimi (UQAC), 555 Boulevard University East, Saguenay, Quebec G7H 2B1 (Canada); Paynter, R.W. [Institut National de la Recherche Scientifique Energie Materiaux Telecommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Gallant, D.; Eskandarian, M. [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. Black-Right-Pointing-Pointer Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. Black-Right-Pointing-Pointer Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. Black-Right-Pointing-Pointer Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure

  8. Niobium powder synthesized by calciothermic reduction of niobium hydroxide for use in capacitors

    OpenAIRE

    Baba, Masahiko; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2015-01-01

    Metallic niobium powder was produced for applications in electric capacitors via calciothermic reduction of niobium hydroxide in molten CaCl2. Sub-micrometer spherical metallic particles with coral-like morphologies reflected the particle size of the starting oxide powder. A fine powder was obtained from the mixtures of niobium hydroxide and CaO or Ca(OH)2, respectively. Sintered pellets of the metallic powder showed a higher capacitance (CV) than those of the simply reduced powder without pr...

  9. Adsorption of Chromium (VI) by metal hydroxide sludge from the metal finishing

    OpenAIRE

    Perrin, Loïc; Laforest, Valérie; De Roy, Marie-Elisabeth; Forano, Claude; Bourgois, Jacques

    2009-01-01

    Metal finishing industries produce an important tonnage of metal hydroxide sludge (MHS) during the treatment of their liquid effluents charged with heavy metals. Generally, a small part of these sludge is valorized because of their important metal fickleness. Consequently, the majority of these metal hydroxide sludge is sent to landfill centers. We propose to valorize this sludge by using them as pollutant sorbent in order to retain the polluting species contained in the industrial aqueous ef...

  10. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    OpenAIRE

    Hirokazu Nakayama; Aki Hayashi

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution...

  11. Near- infrared spectroscopy of palladium-containing layered double hydroxides used as catalysts

    OpenAIRE

    Mora, Manuel; Lopez, María I.; Jiménez-Sanchidrián, César; Ruiz, José R.

    2011-01-01

    ABSTRACT Three catalysts consisting of layered double hydroxides (LDHs) of magnesium and aluminium, and containing palladium in various forms, were synthesized and subsequently characterized by mid- and near-infrared spectroscopies. The results thus obtained are compared with those for a pure Mg/Al layered double hydroxide. The spectra for the Pd-containing LDHs (particularly the strength of the bands) were found to depend on the particular palladium form present. As a rule, the mi...

  12. Transfer and transport of aluminum in filtration unit

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aluminum salt coagulants were used prevalently in various water works. In this article, the effects of filtration on residual aluminum concentration and species distribution were researched by determining the concentration of different Aluminum species before and after single layer filter, double layer filter, and membrane filtration units. In the research, size exclusion chromatography (SEC) was used to separate colloidal and soluble aluminum, ion exchange chromatography (IEC) was used to separate organic and inorganic aluminum, and inductivity coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine the aluminum concentration. The results showed that the rapid filtration process had the ability of removing residual aluminum from coagulant effluent water, and that double layer filtration was more effective in residual aluminum removal than single layer filtration, while Nano filtration was more effective than micro filtration. It was found that when the residual aluminum concentration was below 1mg/L in sediment effluent, the residual aluminum concentration in treated water was above 0.2 mg/L. The direct rapid filtration process mainly removed the suspended aluminum. The removal of soluble and colloidal aluminum was always less than 10% and the natural small particles that adsorbed the amount of soluble or small particles aluminum on their surface were difficult to be removed in this process. Micro filtration and nano filtration were good technologies for removing aluminum; the residual aluminum concentration in the effluent was less than 0.05 mg/L.

  13. Spark plasma sintering of aluminum matrix composites

    Science.gov (United States)

    Yadav, Vineet

    2011-12-01

    Aluminum matrix composites make a distinct category of advanced engineering materials having superior properties over conventional aluminum alloys. Aluminum matrix composites exhibit high hardness, yield strength, and excellent wear and corrosion resistance. Due to these attractive properties, aluminum matrix composites materials have many structural applications in the automotive and the aerospace industries. In this thesis, efforts are made to process high strength aluminum matrix composites which can be useful in the applications of light weight and strong materials. Spark Plasma Sintering (SPS) is a relatively novel process where powder mixture is consolidated under the simultaneous influence of uniaxial pressure and pulsed direct current. In this work, SPS was used to process aluminum matrix composites having three different reinforcements: multi-wall carbon nanotubes (MWCNTs), silicon carbide (SiC), and iron-based metallic glass (MG). In Al-CNT composites, significant improvement in micro-hardness, nano-hardness, and compressive yield strength was observed. The Al-CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self-lubricating effects of CNTs. In Al-SiC and Al-MG composites, microstructure, densification, and tribological behaviors were also studied. Reinforcing MG and SiC also resulted in increase in micro-hardness and wear resistance.

  14. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  15. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  16. Identification of iron oxide and hydroxide in soil clays

    Science.gov (United States)

    Taneja, S. P.; Raj, D.

    1993-04-01

    Clay fractions of soils collected at different depths from the foothills of Karbi Anglong, Assam (India), have been analysed by Mössbauer spectroscopy. Mössbauer data, recorded at room and liquid nitrogen temperatures, show the presence of iron oxide (α-Fe 2O 3, hematite) and iron oxyhydroxide (α-FeOOH, goethite) in the form of fine particles/Al-substituted. All samples exhibited strong superparamagnetism, characteristic of the fine size of the oxide particles and the effect of aluminum substitution. Both hematite and goethite are present in the lower horizon while only goethite occurs in the upper horizon. In addition, silicate clay minerals e.g. kaolinite and illite are also identified.

  17. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The optimum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liquid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  18. Scientific Opinion on the safety and efficacy of sodium hydroxide for dogs, cats and ornamental fish

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2012-10-01

    Full Text Available

    The additive consists, by specification, of a minimum of 98.0 % sodium hydroxide or alkali in the solid form, the content of solutions scaled accordingly, based on the stated or labelled concentration. No data have been provided that would support the specification of the solid form, only a 50.0 % w/w solution of sodium hydroxide in water, which is the final product of the production process described in the dossier. Sodium hydroxide is considered safe for the target animals, provided that the resulting total sodium concentration in feed does not compromise the overall electrolyte balance. Sodium hydroxide in solid form and in aqueous solution at concentrations > 8.0 % is corrosive. At lower concentrations it is irritant to skin and eyes (0.5 % and 0.2 %, respectively and the respiratory tract (0.5 %. Exposure via inhalation is likely to be minimal. Sodium hydroxide is not considered to be a skin sensitiser. As sodium hydroxide is used in food as an acidity regulator, and its function in feed is essentially the same as that in food, no further demonstration of efficacy is necessary.

  19. Parametric Effect of Sodium Hydroxide and Sodium Carbonate on the Potency of a Degreaser

    Directory of Open Access Journals (Sweden)

    Babatope Abimbola Olufemi

    2016-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Experimental and statistical analysis was carried out on the comparative effect of sodium hydroxide and sodium carbonate on the potency of a laboratory produced degreaser in this work. The materials used include; octadecyl benzene sulphonic acid, sodium hydroxide, sodium carbonate, sodium metasilicate, carboxyl methyl cellulose (C.M.C, formadelhyde, perfume, colourant and distilled water. Different samples of degreaser were produced with varying composition of sodium hydroxide and sodium carbonate respectively. Statistical significance through methods like analysis of variance (ANOVA of some parameters on various concentrations of sodium hydroxide and sodium carbonate was investigated. The effect of the varying compositions of sodium hydroxide and sodium carbonate was also determined by using a gray scale (GS test, and also subjecting surfaces heavily stained with crude oil to determine and characterize the cleansing action of the degreaser. It was found that as the concentration of sodium hydroxide increases, the cleansing ability also increases, whereas the increase in concentration of sodium carbonate had no effect on the cleansing ability. The work would enable production of effective, useful and property controlled degreasers at moderate cost.

  20. Biodiscovery of aluminum binding peptides

    Science.gov (United States)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  1. Drug: D04393 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D04393 Mixture, Drug Aluminum hydroxide, dried - magnesium hydroxide mixt; Aluminum... hydroxide - magnesium hydroxide mixt; Maalox (TN); Sakloft (TN) (Aluminum hydroxide, dried [DR:D02416] | Al... 234 Antacids 2349 Others D04393 Aluminum hydroxide, dried - magnesium hydroxide mixt PubChem: 17398090 ...

  2. Aluminum powder impacts the properties of EPS insulation energy-saving wall panel%铝粉对EPS节能保温墙板性能的影响

    Institute of Scientific and Technical Information of China (English)

    周鹏杰; 倪修全

    2013-01-01

    EPS节能保温墙板是一种轻型且保温效果好的保温材料,若在制作过程中加入铝粉,铝粉参与水化产生的氢氧化钙反应,生成氢气泡,使混凝土内部形成许多蜂窝状的结构,能增强保温效果。但当掺入过量铝粉时,发气量过大,墙体内部孔隙率过大,将影响混凝土的抗压强度,为此需要对铝粉的掺量进行研究。%EPS insulation energy-saving wall panels is a kind of light and heat preservation materials with good effect, if adding aluminum powder in the production process, Aluminum can react with the hydration of calcium hydroxide and generate hydrogen bubble, and form a number of cellular structure Inside the concrete, which enhances the heat preservation effect. When mixed with excess aluminum powder, it will have too much gas, and the large porosity impacts the compressive strength of concrete. So to study the content of aluminum powder is needed.

  3. Deposition of aluminum-magnesium alloys from electrolytes containing organo-aluminum complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, H.; Mehler, K.; Bongard, H.; Tesche, B. [Max-Planck-Inst. fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Reinhold, B. [Audi AG Technische Entwicklung, Ingolstadt (Germany)

    2001-06-01

    Organo-aluminum compounds have been used for many years as electrolytes in the coating industry. In this communication the development of a galvanic process for generating aluminum-magnesium coatings from organometallic electrolyte systems is reported as well as results on physical properties like adhesion, ductility and corrosion resistance. (orig.)

  4. The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Bowen, Kit H., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnoeckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kiran, Boggavarapu, E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-03-28

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg{sub m}Al{sub n}{sup −} (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg{sub 3}Al{sub 11} and Mg{sub 2}Al{sub 12}{sup −}, did the aluminum moieties exhibit Zintl anion-like characteristics.

  5. Development of polymer nanocomposites based on layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Sipusic, J.

    2009-05-01

    Full Text Available Polymeric nanocomposites are commonly considered as systems composed of a polymeric matrix and - usually inorganic - filler. The types of nanofillers are indicated in Fig. 1. Beside wellknown layered silicate fillers, recent attention is attracted to layered double hydroxide fillers (LDH, mainly of synthetic origin. The structure of LDH is based on brucite, or magnesium hydroxide, Mg(OH2 and is illustrated in Fig. 2. The modification of LDHs is commonly done by organic anions, to increase the original interlayer distance and to improve the organophilicity of the filler, keeping in mind their final application as fillers for, usually hydrophobic, polymer matrices. We have used the modified rehydration procedure for preparing organically modified LDH. The stoichiometric quantities of Ca33Al2O6, CaO and benzoic (B (or undecenoic (U acid were mixed with water and some acetone. After long and vigorous shaking, the precipitated fillers were washed, dried and characterized. X-ray diffraction method (XRD has shown the increase of the original interlayer distance for unmodified LDH (OH–-saturated of 0.76 nm to the 1.6 nm in LDH-B or LDH-U fillers (Fig. 3. Infrared spectroscopy method (FTIR has confirmed the incorporation of benzoic anion within the filler layers (Fig. 4. For the preparation of LDH-B and LDH-U composites with polystyrene (PS, poly(methyl methacrylate (PMMA and copolymer (SMMA matrices, a two-step in situ bulk radical polymerization was selected (Table 1 for recipes, azobisisobutyronitrile as initiator, using conventional stirred tank reactor in the first step, and heated mold with the movable wall (Fig. 6 in the second step of polymerization. All the prepared composites with LDH-U fillers were macroscopically phase-separated, as was the PMMA/LDH-B composite.PS/LDH-B and SMMA/LDH-B samples were found to be transparent and were further examined for deduction of their structure (Fig. 5 and thermal properties. FTIR measurements showed that

  6. Production of Potassium and Calcium Hydroxide, Compost and Humic Acid from Sago (Metroxylon sagu Waste

    Directory of Open Access Journals (Sweden)

    C. P. Auldry

    2009-01-01

    Full Text Available Problem statement: Agriculture waste such as Sago Waste (SW has a potential to cause pollution when the waste is discarded into rivers. In order to add value to SW, a study was conducted to produce potassium and calcium hydroxide, compost and Humic Acid (HA from SW. Approach: The SW was air-dried and some grinded. The grinded SW was incinerated at 600°C. Potassium and calcium hydroxide was extracted by dissolving the ash in distilled water at a ratio of 1:500 (ash: water, equilibrated for 24 h at 150 rpm using a mechanical shaker and filtered. The ungrinded SW was used for compost production. The compost was produced by mixing SW (80% + chicken feed (10% + chicken dung slurry (5% + molasses (5%. Results: The hydroxide extracted from ash of SW was used to isolate HA of composted SW. The molarity and pH of the hydroxide were 0.002M and 10 respectively. Calcium (42.88 mg kg-1 and potassium (29.51 mg kg-1 content were high in the hydroxide compared with other elements. The compost took about 60 days to mature. There was an increased in pH, ash, Cation Exchange Capacity (CEC and HA and a decreased in temperature, C/N ratio, C/P ratio and organic matter. The hydroxide was able to extract 1% of HA from the composted SW. A comparison between the yields of HA extracted from the composted SW using the hydroxide of the SW and that of the analytical grade showed no statistically difference. The chemical characteristics of HA from the composted SW were in standard range. Conclusion: Potassium and calcium hydroxide, compost and HA can be produced from sago waste. Low morality of the hydroxide is able to produce good quality of HA from composted sago waste. The HA can be reconstituted with K and Ca from potassium and calcium hydroxide to produce K-Ca-humate and this needs to be investigated as a form of organic based fertilizer.

  7. Ruthenium oxide-niobium hydroxide composites for pseudocapacitor electrodes

    International Nuclear Information System (INIS)

    A simple solution-based method has been developed to vary the composition of redox active ruthenium oxide with highly proton-conducting niobium hydroxide to create stable, high capacitance electrodes at elevated temperatures. This method presents a dramatic departure from most other ruthenium oxide systems, which are prepared through annealing of hydrous ruthenium oxide. Typically RuO2 processed at high temperature only exhibits high electrical conductivity and suffers from poor proton conduction, giving low overall capacitances. Here, the optimized Ru/Nb oxide composition can be used to achieve high power densities, high capacitances, and stabilized electrodes while significantly reducing ruthenium content. Extensive materials characterization including high-resolution cross-sectional TEM, elemental mapping, XRD, electrochemical impedance spectroscopy, and proton NMR were used to evaluate the structure of the material system. The electrochemically inert niobium oxide serves as a network former enhancing accessibility to redox active ruthenium oxide. The dispersion of RuO2 in the NbO(OH)x matrix results in reduced RuO2 particle size, as observed via TEM and XRD, while also increasing the proton concentration in the material. Interconnected RuO2 particles provide electrically conducting pathways, even at low Ru contents, where percolation networks remain intact. Ruthenium is more efficiently utilized in the Ru/Nb composites and ruthenium content can be significantly reduced without decreasing capacitive performance. In addition, the composite electrodes, with the fine mixing of Ru and Nb, give higher power performance than for RuO2 alone.

  8. Preferential Intercalation of Pyridinedicarboxylates into Layered Double Hydroxides

    Institute of Scientific and Technical Information of China (English)

    李蕾; 莫丹; 陈大舟

    2005-01-01

    Intercalation of 2,3-,2,4-,2,5-,2,6-,3,4-,or3,5-pyridincdicarboxylate into the layered double hydroxide (LDH),[Mg0.73AIo.27(OH)2](CO3)0.14*1.34H2O was carried out by the reconstruction method in the molar ratio of organic acid: calcined LDH=3:8, in 80% alcoholic aqueous solution at 70℃. Selective reaction was observed in com-petitive experiments involving an equal concentration pairs of acids. The preference order of the organic acids intercalated into the Mg-Al-LDH was found to be in the order of 2,3-pyridinedicarboxylate>2,5-pyridinedicarboxylate>2,4-pyridinedicarboxylate>3,5-pyridinedicarboxylate>3,4-pyridinedicarboxylate>2,6-pyridinedic arboxylate. The structures of the intercalates formed by the reaction of six guests with Mg-Al-LDH were characterized by X-ray diffraction, infrared and thermogravimetry techniques. And the charge density on the oxygens of each of the carboxylate groups for the six anions was investigated utilizing ab initio (HF/6-31G) method by G98w. From the X-ray diffraction data, the guest size and the charge density of the oxygens of the guest, the orientation of 2,3-,2,4-,2,5-,2,6-,3,4-, or 3,5-pyridinedicarboxylate anions between the layers was determined and the preferential intercalation mechanism was discussed. These results indicate the possibility of a molecular recognition ability of LDH and it would be exploited for the chemical separation of some anions from solution.

  9. A titration model for evaluating calcium hydroxide removal techniques

    Directory of Open Access Journals (Sweden)

    Mark PHILLIPS

    2015-02-01

    Full Text Available Objective Calcium hydroxide (Ca(OH2 has been used in endodontics as an intracanal medicament due to its antimicrobial effects and its ability to inactivate bacterial endotoxin. The inability to totally remove this intracanal medicament from the root canal system, however, may interfere with the setting of eugenol-based sealers or inhibit bonding of resin to dentin, thus presenting clinical challenges with endodontic treatment. This study used a chemical titration method to measure residual Ca(OH2 left after different endodontic irrigation methods. Material and Methods Eighty-six human canine roots were prepared for obturation. Thirty teeth were filled with known but different amounts of Ca(OH2 for 7 days, which were dissolved out and titrated to quantitate the residual Ca(OH2 recovered from each root to produce a standard curve. Forty-eight of the remaining teeth were filled with equal amounts of Ca(OH2 followed by gross Ca(OH2 removal using hand files and randomized treatment of either: 1 Syringe irrigation; 2 Syringe irrigation with use of an apical file; 3 Syringe irrigation with added 30 s of passive ultrasonic irrigation (PUI, or 4 Syringe irrigation with apical file and PUI (n=12/group. Residual Ca(OH2 was dissolved with glycerin and titrated to measure residual Ca(OH2 left in the root. Results No method completely removed all residual Ca(OH2. The addition of 30 s PUI with or without apical file use removed Ca(OH2 significantly better than irrigation alone. Conclusions This technique allowed quantification of residual Ca(OH2. The use of PUI (with or without apical file resulted in significantly lower Ca(OH2 residue compared to irrigation alone.

  10. Fluoride ions sorption of the water using natural and modified hematite with aluminium hydroxide; Sorcion de iones fluoruro del agua utilizando hematita natural y hematita acondicionada con hidroxido de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Teutli S, E. A.

    2011-07-01

    Fluorine is a mineral known for its dental benefits, but fluoride ions can cause fluoro sis in excessive quantities. There are many epidemiological studies on possible adverse effects resulting from prolonged ingestion of fluoride through drinking water. These studies demonstrate that fluoride mainly affects the bone tissue (bones and teeth), may produce an adverse effect on tooth enamel and can cause mild dental fluoro sis at concentrations from 0.9 to 1.2 mg/L in drinking water. In several states of Mexico, water contaminated with fluoride ions can be found, such as Aguascalientes, Chihuahua, Coahuila, Durango, Guanajuato, Sonora, Zacatecas, San Luis Potosi and Jalisco, where the fluoride ions levels are higher than 1.5 mg/L, established by the Mexican Official Standard (NOM-127-Ssa-2000) which sets the permissible limits of water for human use and consumption. Currently, several technologies have been proposed to remove fluoride ions from water such as precipitation methods which are based on the addition of chemicals to water and sorption methods to removed fluoride ions by sorption or ion exchange reactions by some suitable substrate capable of regenerate and reuse. In this work, the sorption of fluoride ions using unmodified and modified hematite with aluminum hydroxide to remove fluoride ions from water by bath experiments was studied. The hematite was modified by treating it with aluminum hydroxide, NaOH and Al{sub 2}(SO{sub 4}){sub 3} solutions. The characterization of hematite before and after modification with aluminum hydroxide was studied by X-ray diffraction, scanning electron microscopy, EDS and Bet. The effect of ph, contact time, concentration of fluoride ions, and the dose of sorbent on the sorption of fluoride ions by the modified hematite were studied. Equilibrium was reached within 48 hours of contact time and the maximum sorption of fluoride ions were in the range pH{sub eq} between 2.3 and 6.2. Sorption capacities of fluoride ions as a

  11. Arsenic adsorption by iron-aluminium hydroxide coated onto macroporous supports: Insights from X-ray absorption spectroscopy and comparison with granular ferric hydroxides.

    Science.gov (United States)

    Suresh Kumar, Prashanth; Flores, Roxana Quiroga; Sjöstedt, Carin; Önnby, Linda

    2016-01-25

    This paper evaluates the arsenic adsorption characteristics of a macroporous polymer coated with coprecipitated iron-aluminium hydroxides (MHCMP). The MHCMP adsorbent-composite fits best with a pseudo-second order model for As(III) and a pseudo-first order kinetic model for As(V). The MHCMP shows a maximum adsorption capacity of 82.3 and 49.6 mg As/g adsorbent for As(III) and As(V) ions respectively, and adsorption followed the Langmuir model. Extended X-ray absorption fine structure showed that binding of As(III) ions were confirmed to take place on the iron hydroxides coated on the MHCMP, whereas for As(V) ions the binding specificity could not be attributed to one particular metal hydroxide. As(III) formed a bidentate mononuclear complex with Fe sites, whereas As(V) indicated on a bidentate binuclear complex with Al sites or monodentate with Fe sites on the adsorbent. The column experiments were run in a well water spiked with a low concentration of As(III) (100 μg/L) and a commercially available adsorbent (GEH(®)102) based on granular iron-hydroxide was used for comparison. It was found that the MHCMP was able to treat 7 times more volume of well water as compared to GEH(®)102, maintaining the threshold concentration of less than 10 μg As/L, indicating that the MHCMP is a superior adsorbent.

  12. The Role of Particles in Fatigue Crack Propagation of Aluminum Matrix Composites and Casting Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Zhenzhong CHEN; Ping HE; Liqing CHEN

    2007-01-01

    Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high AK region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.

  13. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  14. The Effect of Calcium Hydroxide on the Bond Strength of Resilon/Epiphany Self-Etch and Assessment of Calcium Hydroxide Removal Techniques: An Ex-Vivo Study

    Directory of Open Access Journals (Sweden)

    B. Bolhari

    2012-01-01

    Full Text Available Objective: Calcium hydroxide is the most widely used intracanal medicament in endodontics, which should be removed prior to permanent root canal filling to minimize its intervention with the bonding of endodontic sealers. This ex-vivo study aimed to evaluate the effect of pretreatment with calcium hydroxide on the bond strength of Resilon/Epiphany self etch (SE to the radicular dentin after removing the calcium hydroxide by hand file or ultrasonic methods.Materials and Methods: Thirty-six single-rooted human extracted teeth were used in this study. After root canal preparation, the teeth were divided into three groups. In group 1, as the control, no pretreatment was performed; while in groups 2 and 3, this was carried out using calcium hydroxide paste. After one week, the paste was removed with hand stainless steel K-files in group 2 and ultrasonic instrumentation in group 3. All samples were obturated with Resilon/Epiphany SE. One-millimeter slices of mid-root dentin were prepared for the push-out test (14 slices per group. After the bond strength was assessed, the failure modes were examined. The data were analyzed using one-way ANOVA and Dunnett Post Hoc tests.Results: Group 2 significantly showed the lowest bond strength (0.947 ± 0.47 (P = 0.01. No significant differences were found between the control group (2.32 ± 1.43 and group 3 (1.78 ± 1.04 (P = 0.01.Conclusions: Under the conditions of this ex vivo study, calcium hydroxide as the intracanal medicament and its removal using hand instrumentation adversely affected the bond strength of Resilon/Epiphany SE.

  15. The Effect of Ultrafine Magnesium Hydroxide on the Tensile Properties and Flame Retardancy of Wood Plastic Composites

    Directory of Open Access Journals (Sweden)

    Zhiping Wu

    2014-01-01

    Full Text Available The effect of ultrafine magnesium hydroxide (UMH and ordinary magnesium hydroxide (OMH on the tensile properties and flame retardancy of wood plastic composites (WPC were investigated by tensile test, oxygen index tester, cone calorimeter test, and thermogravimetric analysis. The results showed that ultrafine magnesium hydroxide possesses strengthening and toughening effect of WPC. Scanning electron micrograph (SEM of fracture section of samples provided the positive evidence that the tensile properties of UMH/WPC are superior to that of WPC and OMH/WPC. The limited oxygen index (LOI and cone calorimeter test illustrated that ultrafine magnesium hydroxide has stronger flame retardancy and smoke suppression effect of WPC compared to that of ordinary magnesium hydroxide. The results of thermogravimetric analysis implied that ultrafine magnesium hydroxide can improve the char structure which plays an important role in reducing the degradation speed of the inner matrix during combustion process and increases the char residue at high temperature.

  16. Evaluation of Aluminum in Iranian Consumed Tea

    Directory of Open Access Journals (Sweden)

    Alireza Asgari

    2008-01-01

    Full Text Available Introduction: Black tea leaf is one of the most important sources of Aluminum in dietary. Therefore this research was conducted to assess the amount of Aluminum in Iranian tea infusion. Methods: To assess Aluminum in Iranian consumed tea, 27 tea samples were analyzed for Al concentration for 10 and 60 min infusion, aluminum concentration was measured with atomic absorption and the results were analyzed by SPSS.13 version. Results: The results showed that minimum and maximum concentration of Al in tea infusion for 10 min infusion was 1.59 and 18.60 mg.L-1 respectively in this regard Baroti and Bamdad tea show the highest and lowest concentration respectively in term of Al, Also Statistical analysis with pair T-test showed that infusion time doesn,t significantly effects on aluminum leaching into infusion (P>0.05. Calculation of percentage "available" Al to the human system showed that 1 L of tea can provide 17.68 % of the daily dietary intake of Al, the percentage "available" for absorption in the intestine is only 8.49 % for overall mean Al concentration. Conclusion: Therefore based on our results, tea consumption in medium values cannot cause toxic effects on human. Although it is necessary to note that tea consumption might be toxic because of effects on people with absorption or secretion problems

  17. Physical and chemical characteristics of co-precipitated Magnesium, Ferum, Chromium hydroxide and products of their thermal decomposition

    OpenAIRE

    Луцась, Анна Віталіївна; Яремій, Іван Петрович; Матківський, Микола Петрович; Яремій, Софія Іванівна

    2016-01-01

    Magnesium ferrite-chromites of the system Mg(FeᵪCr₂₋ᵪ)O₄ were synthesized from aqueous solutions of the corresponding chlorides using the coprecipitation method. It was obtained homogeneous reactive active hydroxides with a high specific surface area, the value of which increases with the chromium content in the system. The conditions of magnesium, iron and chromium hydroxides coprecipitation are defined. The presence of chemical hydroxide interactions in co-precipitation and formation of pol...

  18. The effect of calcium hydroxide on the steroid component of Ledermix® and Odontopaste®

    OpenAIRE

    Athanassiadis, M; Jacobsen, N.; Parashos, P

    2011-01-01

    Aim To investigate the chemical interaction of calcium hydroxide with the corticosteroid triamcinolone acetonide in Ledermix® Paste and in Odontopaste®, a new steroid/antibiotic paste. Methodology Validated methods were developed to analyse the interaction of calcium hydroxide in two forms, Pulpdent® Paste and calcium hydroxide powder, with triamcinolone acetonide within Odontopaste® and Ledermix® Paste. High-performance liquid chromatography (HPLC) was used to analyse the mixed samples of th...

  19. The Effect of Ultrafine Magnesium Hydroxide on the Tensile Properties and Flame Retardancy of Wood Plastic Composites

    OpenAIRE

    Zhiping Wu; Na Hu; Yiqiang Wu; Shuyun Wu; Zu Qin

    2014-01-01

    The effect of ultrafine magnesium hydroxide (UMH) and ordinary magnesium hydroxide (OMH) on the tensile properties and flame retardancy of wood plastic composites (WPC) were investigated by tensile test, oxygen index tester, cone calorimeter test, and thermogravimetric analysis. The results showed that ultrafine magnesium hydroxide possesses strengthening and toughening effect of WPC. Scanning electron micrograph (SEM) of fracture section of samples provided the positive evidence that the ten...

  20. Synthesis of Zn–Fe layered double hydroxides via an oxidation process and structural analysis of products

    International Nuclear Information System (INIS)

    The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. The product derived from the synthesis employing Fe(II) was found to transition to a Zn–Fe(III) layered double hydroxides phase following oxidation process. In contrast, the product obtained with Fe(III) did not contain a layered double hydroxides phase, but rather consisted of simonkolleite and hydrous ferric oxide. It was determined that the valency of the Fe reagent used in the initial synthesis affected the generation of the layered double hydroxides phase. Fe(II) species have ionic radii and electronegativities similar to those of Zn, and therefore are more likely to form trioctahedral hydroxide layers with Zn species. - Graphical abstract: The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. - Highlights: • Iron valency affected the generation of Zn–Fe layered double hydroxides. • Zn–Fe layered double hydroxides were successfully synthesized using Fe(II). • Fe(II) species were likely to form trioctahedral hydroxide layers with Zn species

  1. Synthesis of Zn–Fe layered double hydroxides via an oxidation process and structural analysis of products

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Kazuya, E-mail: kazuya.morimoto@aist.go.jp [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Tamura, Kenji [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Anraku, Sohtaro [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Sato, Tsutomu [Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Suzuki, Masaya [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Yamada, Hirohisa [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-08-15

    The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. The product derived from the synthesis employing Fe(II) was found to transition to a Zn–Fe(III) layered double hydroxides phase following oxidation process. In contrast, the product obtained with Fe(III) did not contain a layered double hydroxides phase, but rather consisted of simonkolleite and hydrous ferric oxide. It was determined that the valency of the Fe reagent used in the initial synthesis affected the generation of the layered double hydroxides phase. Fe(II) species have ionic radii and electronegativities similar to those of Zn, and therefore are more likely to form trioctahedral hydroxide layers with Zn species. - Graphical abstract: The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. - Highlights: • Iron valency affected the generation of Zn–Fe layered double hydroxides. • Zn–Fe layered double hydroxides were successfully synthesized using Fe(II). • Fe(II) species were likely to form trioctahedral hydroxide layers with Zn species.

  2. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  3. Aluminum phosphate ceramics for waste storage

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  4. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  5. Pulmonary alveolar proteinosis and aluminum dust exposure

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.R.; Churg, A.M.; Hutcheon, M.; Lom, S.

    1984-08-01

    A 44-yr-old male presented shortness of breath, diffuse X-ray infiltrates, and physiologic evidence of a restrictive lung disease. Biopsy revealed pulmonary alveolar proteinosis. The patient had worked for the previous 6 yr as an aluminum rail grinder in a very dusty environment. Analysis of his lung tissue revealed greater than 300 X 10(6) particles of aluminum/g dry lung; all of the particles appeared as spheres of less than 1 mu diameter. We believe that this case represents an example of pulmonary alveolar proteinosis induced by inhalation of aluminum particles; this finding confirms animal studies which suggest that proteinosis can be produced by very large doses of many types of finely divided mineral dust.

  6. Dynamic recrystallization behavior of commercial pure aluminum

    Institute of Scientific and Technical Information of China (English)

    LI Hui-zhong; ZHANG Xin-ming; CHEN Ming-an; LIU Zi-juan

    2006-01-01

    The flow stress feature and microstructure evolvement of a commercial pure aluminum were investigated by compression on Gleeble-1500 dynamic materials test machine. Optical microscopy (OM) and transmission electron microscopy (TEM) were applied to analyze the deformation microstructure of the commercial pure aluminum.The results show that the flow stress tends to be constant after a peak value and the dynamic recovery occurs when the deformation temperatures is 220 ℃ with the strain rate of 0.01 s-1; while the dynamic recrystallization occurs when the deformation temperature is higher than 380 ℃, and the flow stress exhibits a single peak at 460 ℃ with different strain rates from 0.001 s-1 to 1 s-1, and continuous dynamic recrystallization and geometric dynamic recrystallization occur during the hot compression of the commercial pure aluminum.

  7. Crystallization behaviour of hydroxide cobalt carbonates by aging: Environmental implications.

    Science.gov (United States)

    González-López, Jorge; Fernández-González, Angeles; Jimenez, Amalia

    2014-05-01

    Cobalt is a naturally occurring element widely distributed in water, sediments and air that is essential for living species, since it is a component of B12 vitamin and it is also a strategic and critical element used in a number of commercial, industrial and military applications. However, relatively high accumulations of cobalt in environment can be toxic for human and animal health. Cobalt usually occurs as Co2+ and Co3+ in aqueous solutions, where Co2+ is the most soluble and hence its mobility in water is higher. The study of the precipitation of cobalt carbonates is of great interest due to the abundance of carbonate minerals in contact with surface water and groundwater which can be polluted with Co2+. Previous works have demonstrated that the formation of Co-bearing calcium carbonates and Co-rich low crystallinity phases takes place at ambient conditions. With the aim of investigating the crystallization behavior of Co- bearing carbonates at ambient temperature, macroscopic batch-type experiments have been carried out by mixing aqueous solutions of CoCl2 (0.05M) and Na2CO3 (0.05M) during increasing reaction times (5 minutes and 1, 5, 24, 48, 96, 168, 720 and 1440 hours). The main goals of this work were (i) to analyse the physicochemical evolution of the system and (ii) to study the evolution of the crystallinity of the solid phases during aging. After a given reaction period, pH, alkalinity and dissolved Co2+ in the aqueous solutions were analysed. The evolution of the morphology and chemical composition of the solids with aging time was examined by SEM and TEM. The precipitates were also analyzed by X-ray powder diffraction (XRD) and the crystallinity degree was followed by the intensity and the full width at high medium (FWHM) of the main peaks. The results show that a low crystallinity phase was obtained at the very beginning of aging. This phase evolves progressively to form hydroxide carbonate cobalt (Co2CO3(OH)2) which crystallize with the spatial

  8. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance. PMID:26393523

  9. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  10. Effect of different molarities of Sodium Hydroxide solution on the Strength of Geopolymer concrete

    Directory of Open Access Journals (Sweden)

    Shivaji S. Bidwe

    2015-03-01

    Full Text Available This paper contains the experimental study of strength of geopolymer concrete for different molarities of sodium hydroxide solution. This paper also contains results of the laboratory tests conducted to find out the effect of sodium hydroxide concentration on the strength of the geopolymer concrete. In these days the world is facing a major problem i.e. the environmental pollution. We can use fly ash instead of cement in the construction in order to reduce environmental pollution. The Concrete made by using Fly ash and alkaline liquid mixture as a binder is known as geopolymer concrete. In this study for the polymerization process alkaline liquids used are Sodium Hydroxide (NaOH and Sodium Silicate (Na2SiO3. Different molarities of sodium hydroxide solution i.e. 8M, 10M and 12M are taken to prepare different mixes and the compressive strength is calculated for each of the mix. The size of the cube specimens taken are 150mm X 150mm X 150mm. Curing of these cubes is done in an oven for 3 days and 28 days. The Compressive strength of these geopolymer concrete specimens is tested at 3 days and 28 days. The results show that there is increase in comp. strength of geopolymer concrete with increase in molarity of Sodium Hydroxide Solution. Ordinary Concrete Specimens are also manufactured with cement as binder. It is found that the Compressive strength of Geopolymer Concrete specimens is higher than the Compressive strength of Ordinary Concrete Specimens.

  11. The Effect of Calcium Hydroxide As an Intracanal Medication of The Apical Microleakage

    Directory of Open Access Journals (Sweden)

    Heshmat Mohajer AR

    2011-12-01

    Full Text Available Background and Aims: Nowadays, calcium hydroxide is used as a dressing for canal sterilization and repair progression of apical lesions. The aim of this study was to investigate the effect of calcium hydroxide as an intracanal medicament on the apical microleakage of root filling.Materials and Methods: In this experimental study, 46 extracted single-rooted human teeth were instrumented with step-back technique to master apical file (MAF size 35. Specimens were randomly divided into 2 groups (n = 20. In group 1, the specimens were treated with calcium hydroxide intracanal medication; and in group 2, the samples did not receive any medication. The teeth were incubated in 100% humidity at 37°C for one week. After that, calcium hydroxide was removed using irrigation with normal saline and reaming with MAF. The root canals were obturated with gutta- percha and AH26 sealer using lateral compaction technique. Specimens were incubated in 100% humility at 37°C for 72 hours and then immersed in India ink for 1 week. Finally, the teeth were cleared and the maximum linear dye penetration was measured under a stereomicroscope at 4X magnification. The data were analyzed by T-test and Chi-square.Results: There was no significant difference between the two experimental groups (P=0.068. Conclusion: The findings of this study indicated that using calcium hydroxide as an intracanal medicament did not influence the apical microleakage after final obturation of the root canal system.

  12. Zimmer slipstream magnesium hydroxide recovery demonstration. Volume II of II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Dravo Lime has for many years supplied magnesium containing lime in the ranges of 3-6% MgO. Several years ago Dravo Lime realized the potential operating savings its FGD customers could benefit from if magnesium could be recovered from FGD waste streams. As a result, several different proprietary processes have been developed for the recovery of magnesium hydroxide. These recovery processes include steps for magnesium hydroxide separation, purification, and crystal growth. The process implemented at The Cincinnati Gas Electric Company`s Wm. H. Zimmer Station was piloted by Dravo Lime Company at Allegheny Power System`s Mitchell Station near Monongahela, PA during the fourth quarter in 1989 and first quarter in 1990. This pilot work was the foundation for further development of the ThioClear process at Dravo`s pilot plant at CG&E Miami Fort Station. The ThioClear process is a closed loop version of the magnesium hydroxide recovery process with the same unit operations and products but also including an absorber tower for scrubbing flue gas. Testing at Miami Fort of the ThioClear process led to improvements in separation of magnesium hydroxide from gypsum that are part of the magnesium hydroxide recovery process installed at Zimmer Station. This document contains the Appendices for this report.

  13. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    Science.gov (United States)

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007

  14. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    Directory of Open Access Journals (Sweden)

    Hirokazu Nakayama

    2014-07-01

    Full Text Available The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  15. Relationship between sealing ability of Activ GP and Gutta Flow and methods of calcium hydroxide removal

    Directory of Open Access Journals (Sweden)

    Vineeta Nikhil

    2012-01-01

    Full Text Available Aim: To evaluate the effect of method of calcium hydroxide intracanal dressing removal, on sealing ability of Gutta Flow and Activ GP. Materials and Methods: Seventy extracted mandibular premolars were sectioned at CEJ and canals were prepared with profile 4% rotary file till #40. Canals were filled with calcium hydroxide, coronally sealed with Cavit G and stored at 37°C. After 7 days, samples were divided on the basis of calcium hydroxide removal method (Master apical file, Navi Tip FX, and F File and obturating material (Activ GP and Gutta Flow. Three coats of nail polish were applied except 2 mm around apical foramen and samples were immersed in India ink dye, sectioned, and observed under stereomicroscope for microleakage. Results: The results were statistically analyzed with one way ANOVA-F with Tukey HSD test with the null hypothesis set as 5%. Conclusions: The seal of the canal system was adversely impacted by residual calcium hydroxide when Activ GP and Gutta Flow were used as obturating material and the sealing ability of Activ GP and Gutta Flow was better when MAF was used for removal of calcium hydroxide than F file or Navi tip FX.

  16. INFLUENCE OF HEAVY METALS HYDROXIDES ON WATER DISSOCIATION IN BIPOLAR MEMBRANE

    Directory of Open Access Journals (Sweden)

    Sheldeshov N. V.

    2015-12-01

    Full Text Available The results of study of bipolar membrane – analogue of MB-2, modified with chemically introduced chromium (III, iron (III and nickel (II hydroxides by the method of frequency spectrum of electrochemical impedance, by infrared spectroscopy and scanning electron microscopy in combination with X-ray spectrum analysis are presented. It is shown, that sequential treatment of cation-exchanger, contained in cationexchange membrane, with metal salt solution and alkali solution does not result in formation of complex compounds of these metals with ionic groups of ion exchanger. It was found that in these conditions the presence of heavy metals in the phase of cationexchanger confirmed by X-ray analysis, however, crystals of hydroxides of heavy metals are not detected in the size range of 1000 nm to 20 nm. These heavy metal compounds are thermally unstable and their catalytic activity in the reaction of dissociation of water molecules decreases with increasing temperature during heat treatment. The introduction of low-soluble hydroxides of d-metals (chromium (III, iron (III, nickel(II by chemical method can significantly improve the electrochemical characteristics of a bipolar membrane. The most effective catalysts in water dissociation reaction are the hydroxides of chromium (III and iron (III and, as a consequence, membranes with these hydroxides have a lower value of overpotential compared with original membrane at the same current density

  17. Adsorption and removal of radioiodine in the water supply by coprecipitation with iron (III) hydroxide

    International Nuclear Information System (INIS)

    The coprecipitation of radioiodine by iron (III) hydroxide flocculation method was studied as functions of pH and the concentrations of coexisting ions of the solutions for the removal of radioiodine on the water treatment system. The pH of the radioiodine solution included chloline water as oxidizer and iron (III) nitrate was adjusted to pH 9 to 9.5 for the precipitation of iron (III), and then readjusted to pH 4 to 6. Thus the iodate ion was absorbed by the electrostatic action on iron (III) hydroxide particle surface. The adsorption property is affected by contents of coexisting anions. Sulfate ion prevented the adsorption of iodate ion on the iron (III) hydroxide. The radioiodine removal effect at pH 6 decreased by carbonate ion, since the isoelectric point of the iron (III) hydroxide located lower pH 8.5. However, by the coexisting anions, the coagulation and settling abilities of the iron (III) hydroxide in the slightly acid solutions were improved. The removal rate of radioiodine was more than 95% at pH 3 to 4 of the solution, in which the anions of the natural river water level of Japan (SO42-, CO32-<0.4, 30 mg/l) were coexisted. (author)

  18. Electrochromic and electrochemical properties of amorphous porous nickel hydroxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inamdar, A.I. [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Sonavane, A.C. [Thin Films Materials Laboratory, Department of physics, Shivaji University, Kolhapur 416 004 (India); Pawar, S.M. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, YoungSam [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Patil, P.S. [Thin Films Materials Laboratory, Department of physics, Shivaji University, Kolhapur 416 004 (India); Jung, Woong [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Im, Hyunsik, E-mail: hyunsik7@dongguk.edu [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Kim, Dae-Young [Department of Biological and Environmental Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Kim, Hyungsang [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2011-09-01

    Nickel hydroxide films were prepared using the chemical bath deposition (CBD) technique. The amorphous nature of the films was confirmed by X-ray diffraction measurements. X-ray photoelectron spectroscopy (XPS) measurements showed that the films exhibited nickel hydroxide nature. The porosity of the films was studied using optical measurements. The electrochromic properties of the porous nickel hydroxide layers were investigated, using cyclic voltammetry, chronoamperometry, in situ transmittance, UV-vis spectroscopy, and impedance spectroscopy. The change in the optical density ({Delta}OD) was found to be 0.79 for the as-deposited nickel hydroxide films, whereas it is 0.53 and 0.50 for the films annealed at 150 deg. C and 200 deg. C, respectively. The in situ transmittance and chronoamperometry curves revealed that the annealed films had a very fast colouration (t{sub c} < 290 ms) and decolouration (t{sub b} < 130 ms). The measured colouration efficiencies range between 30 and 40 cm{sup 2}/C. The impedance measurements revealed the faster colouration and good electrochromic properties for the annealed nickel hydroxide films.

  19. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Aritra [Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tokmakoff, Andrei, E-mail: tokmakoff@uchicago.edu [Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-11-21

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm{sup −1}. We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.

  20. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    International Nuclear Information System (INIS)

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm−1. We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions

  1. A study of the association between urinary aluminum concentration and pre-clinical findings among aluminum-handling and non-handling workers

    OpenAIRE

    OGAWA,Masanori; Kayama, Fujio

    2015-01-01

    Background Aluminum is considered to be a relatively safe metal for humans. However, there are some reports that aluminum can be toxic to humans and animals. In order to estimate the toxicity of aluminum with respect to humans, we measured the aluminum concentration in urine of aluminum-handling and non-handling workers and investigated the relationships between their urinary aluminum concentrations and pre-clinical findings. Methods Twenty-three healthy aluminum-handling workers and 10 healt...

  2. Interaction of catechins with aluminum in vitro

    Institute of Scientific and Technical Information of China (English)

    唐德松; 沈生荣; 陈勋; 张玉艳; 许重阳

    2004-01-01

    Tea is one of the most popular beverages, consumed by over two thirds of the world's population; but the aluminum accumulation property of tea plant is becoming the focus of many researches because of aluminum's known adverse effect on human health. Investigation of the interactions of catechins with Al3+ showed that during the interaction of catechins with Al3+, the UV-vis spectrum of catechins was changed. Absorption of EGCG at 274 nm decreased and increased at 322 nm; EC and C's at 278 nm changed little. The ratio of Al3+ to EGCG was 1:1 in pH 5.0 buffer solution; in pH 6.2 buffer solution, the ratio in the Al-EGCG complex was 1:1. Interestingly, while the ratio reached to over 2, after the complex of Al-EGCG started polymerization, the ratio in the polymer was 2:1. In pH 6.2 buffer solution, the complex behavior of C with Al3+ was the same as that of EGCG, with a little difference for EC. When the ratio of Al3+ to EC was 1. It was found that the ratio of Al3+ to EC in the polymer was 1:1. Polymerization of Al-catechin complexes might reduce aluminum absorption in the intestine. Kow value was also employed to study the properties of aluminum species in tea infusion (at gastric and intestine pH condition) and the effect of catechins and tea polyphenols on Kow in buffer solution. Results showed that Kow value rose much higher at the intestine pH than at the gastric pH. Tea polyphenols and catechins could greatly reduce aluminum Kow value in acetic buffer, indicating that these compounds may reduce aluminum absorption during tea intake.

  3. Interaction of catechins with aluminum in vitro

    Institute of Scientific and Technical Information of China (English)

    唐德松; 沈生荣; 陈勋; 张玉艳; 许重阳

    2004-01-01

    Tea is one of the most popular beverages, consumed by over two thirds of the world's population; but the aluminum accumulation property of tea plant is becoming the focus of many researches because of aluminum's known adverse effect on human health. Investigation of the interactions of catechins with A13+ showed that during the interaction of catechins with A13+, the UV-vis spectrum of catechins was changed. Absorption of EGCG at 274 nm decreased and increased at 322 nm; EC and C's at 278 nm changed little. The ratio of A13+ to EGCG was 1:1 in pH 5.0 buffer solution; in pH 6.2 buffer solution, the ratio in the A1-EGCG complex was 1:1. Interestingly, while the ratio reached to over 2, after the complex of A1-EGCG started polymerization, the ratio in the polymer was 2:1. In pH 6.2 buffer solution, the complex behavior of C with A13+ was the same as that of EGCG, with a little difference for EC. When the ratio of A13+ to EC was1. It was found that the ratio of A13+ to EC in the polymer was 1:1. Polymerization of A1-catechin complexes might reduce aluminum absorption in the intestine. Kow value was also employed to study the properties of aluminum species in tea infusion (at gastric and intestine pH condition) and the effect of catechins and tea polyphenols on Kow in buffer solution. Results showed that Kow value rose much higher at the intestine pH than at the gastric pH. Tea polyphenols and catechins could greatly reduce aluminum Kow value in acetic buffer,indicating that these compounds may reduce aluminum absorption during tea intake.

  4. Effect of Electrolyte on the Dissolution of Aluminum from Acid Sois and the Distribution of Aluminum Forms in Soil Solution

    Institute of Scientific and Technical Information of China (English)

    XURENKOU; JIGUOLIANG

    1997-01-01

    KCl,CaCl2,NH4Cl,NaCl,K2SO4 and KF solutions were used for studying the effects of cations and anions on the dissolution of aluminum and the distribution of aluminum forms respectively.Power of exchanging and releasing aluminum of four kinds of cations was in the decreasing order Ca2+>K+>NH4+>Na+,The dissolution of aluminum increased with the cation concentration.The adsorption affinity of various soils fro aluminum was different.The aluminum in the soil with a stronger adsorption affinity was diffcult to be exchanged and released by cations.The Al-F complexes were main species of inorganic aluminum at a low concentration of cations,while Al3+ became major species of inorganic aluminum at a hiht concentration of cations .The results on the effct of anions indicated that the concentrations of total aluminum,three kinds of inorganc aluminum(Al3+,Al-F and Al-OH complexes) and organic aluminum complexes(Al-OM) when SO42- was added into soil suspension were lower than those when Cl- was added.The dissolution of aluminum from soils and the distribution of aluminum forms in solution were affected by the adsorption of F- on the soil.For soils with strong affinity for F-,the concentrations of the three inorganic aluminum species in soil solution after addition of F- were lower than those after addition of Cl-;but for soils with weak affinity for F-,the concentrations of Al3+ and Al-OM were lower and the concentrations of Al-F complexes and total inorganic aluminum after addition of F- were higher than those after addition of Cl- .The increase of F- concentration in soil solution accelerated the dissolution of aluminum from soils.

  5. Refined Aluminum Industry Suffers From Deficit and Western Investment Accelerates

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>Under the backdrop of loss of the entire refined aluminum industry,the investment in electrolytic aluminum accelerates.The reporter learnt from a recent survey that,many companies including Shandong Xinfa Group,East Hope

  6. Low Mass, Aluminum NOFBX Combustion Chamber Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our team proposes to define a diffusion bonding process for aluminum as an enabling step to ultimately develop an innovative, lightweight, long life, aluminum...

  7. Composite purification technology and mechanism of recycled aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    房文斌; 耿耀宏; 安阁英; 叶荣茂

    2002-01-01

    Iron-rich inclusions in aluminum alloys can be effectively removed by composite purification of sedimentation and filtration technology.The results show that the purposed method has no negative effects on aluminum alloys and obviously improve their mechanical properties.

  8. Development of deep drawn aluminum piston tanks

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.C.; Bronder, R.L.; Kilgard, L.W.; Evans, M.C.; Ormsby, A.E.; Spears, H.R.; Wilson, J.D.

    1990-06-08

    An aluminum piston tank has been developed for applications requiring lightweight, low cost, low pressure, positive-expulsion liquid storage. The 3 liter (183 in{sup 3}) vessel is made primarily from aluminum sheet, using production forming and joining operations. The development process relied mainly on pressurizing prototype parts and assemblies to failure, as the primary source of decision making information for driving the tank design toward its optimum minimum-mass configuration. Critical issues addressed by development testing included piston operation, strength of thin-walled formed shells, alloy choice, and joining the end cap to the seamless deep drawn can. 9 refs., 8 figs.

  9. Aluminum plasmonic metamaterials for structural color printing.

    Science.gov (United States)

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-06-01

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  10. Macro deformation twins in single-crystal aluminum

    OpenAIRE

    Zhao, F.; Wang, L.; Fan, D.; B. X. Bie; Zhou, X. M.; Suo, T.; Y. L. Li; Chen, M. W.; Liu, C; Qi, M. L.; Zhu, M. H.; Luo, S. N.

    2015-01-01

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum, at scales beyond nanotwins. Here, we present the first experimental demonstration of macro deformation twins in single-crystal aluminum formed under ultrahigh strain-rate ($\\sim$10$^6$ s$^{-1}$), large shear strain (200$\\%$) via dynamic equal channel angular pressing. Deformation t...

  11. Sunshine Group Builds High-End Aluminum Product Industrial Base

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In order to propel development of the aluminum industry to move toward featured,specialized,and ecological directions,Sunlight Sanyuan Aluminum Company plans to expropriate 300 mu of land in Hanjiang District of Putian City,Fujian province,where it plans to construct high-end aluminum product industrial park,introduce the world’s most advanced fully automatic production equipment and technologies for aluminum profile and

  12. Corrosion behavior of aluminum exposed to a biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Ballote, L.; Maldonado-Lopez, L. [Departamento de Fisica Aplicada, CINVESTAV-IPN, Merida Yucatan, 97310 (Mexico); Lopez-Sansores, J.F. [Facultad de Quimica, UADY, Merida Yucatan, 97310 (Mexico); Garfias-Mesias, L.F. [Corrosion and Materials Technology Laboratory, DNV/CCT, Dublin, Ohio, 43017 (United States)

    2009-01-15

    Aluminum was exposed to biodiesel with different levels of contaminants and impurities, and its corrosion behavior was evaluated by conventional electrochemical techniques. It was found that the corrosion behavior of aluminum in biodiesel contaminated with alkalis is similar to the corrosion behavior of aluminum in aqueous solutions. In addition, it was demonstrated that corrosion of aluminum can be used as a quantitative indication of the biodiesel purity. (author)

  13. Aluminum base alloy powder metallurgy process and product

    Science.gov (United States)

    Paris, Henry G. (Inventor)

    1986-01-01

    A metallurgical method including cooling molten aluminum particles and consolidating resulting solidified particles into a multiparticle body, wherein the improvement comprises the provision of greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn. Aluminum containing greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn.

  14. Accidental periapical extrusion of non-setting calcium hydroxide: Unusual bone response and management

    Directory of Open Access Journals (Sweden)

    Divya S Sharma

    2014-01-01

    Full Text Available Premixed non-setting calcium hydroxide is frequently used as interim root canal dressing in endodontically involved permanent teeth and as obturating paste in deciduous teeth in pediatric dentistry. Wide apex in both cases makes it more prone for deliberate extrusion especially when applied with pressure delivery systems. Contrary to common belief the mix was not resorbed in two years with the complaint of insufficiency in mastication. Large mass of calcium hydroxide in bone delayed healing process even after its removal. The present case report intends to demonstrate unusual behavior of bone in response to oily non-setting preparation of calcium hydroxide. Therefore its application with pressure syringe should be reconsidered in pediatric dentistry.

  15. An empirical model to estimate density of sodium hydroxide solution: An activator of geopolymer concretes

    Science.gov (United States)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2016-02-01

    Geopolymer concrete is zero-Portland cement concrete containing alumino-silicate based inorganic polymer as binder. The polymer is obtained by chemical activation of alumina and silica bearing materials, blast furnace slag by highly alkaline solutions such as hydroxide and silicates of alkali metals. Sodium hydroxide solutions of different concentrations are commonly used in making GPC mixes. Often, it is seen that sodium hydroxide solution of very high concentration is diluted with water to obtain SHS of desired concentration. While doing so it was observed that the solute particles of NaOH in SHS tend to occupy lower volumes as the degree of dilution increases. This aspect is discussed in this paper. The observed phenomenon needs to be understood while formulating the GPC mixes since this influences considerably the relationship between concentration and density of SHS. This paper suggests an empirical formula to relate density of SHS directly to concentration expressed by w/w.

  16. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation

    Science.gov (United States)

    Fan, Ke; Chen, Hong; Ji, Yongfei; Huang, Hui; Claesson, Per Martin; Daniel, Quentin; Philippe, Bertrand; Rensmo, Håkan; Li, Fusheng; Luo, Yi; Sun, Licheng

    2016-06-01

    Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel-vanadium-layered double hydroxide that shows a current density of 27 mA cm-2 (57 mA cm-2 after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel-iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel-vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting.

  17. The Influence of Transmutation Conditions on the Adulteration Performance of Nano-scale Nickel Hydroxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Spherical Nano-scale nickel hydroxide was prepared through precipitation transmutation method by controlling the transmutation conditions in this paper. The measurement results of XRD and TEM indicate that the crystallization of the nano-scale nickel hydroxide isβ-style and its shape is spherical with a diameter of 40~70 nanometer. The adulteration experiment shows that the adulteration ratio of nano- scale Ni(OH)2 in common spherical micrometer-scale Ni(OH)2 exists a optimal value (1∶9). And at this point, the utilization ratio of Ni(OH)2 in electrodes can be raised by 10%, and the nano-scale nickel hydroxide with sphericity shape shows a better adulteration performance than that with needle shape.

  18. Removal of Indigo Carmine Dye from Aqueous Solution Using Magnesium Hydroxide as an Adsorbent

    Directory of Open Access Journals (Sweden)

    Thimmasandra Narayan Ramesh

    2015-01-01

    Full Text Available Magnesium hydroxide is used as an adsorbent for the removal of indigo carmine dye from aqueous solution. We have investigated the effectiveness of removal of indigo carmine dye from aqueous solutions at pH 6-7 and 12-13 using magnesium hydroxide thereby varying the dose of the adsorbent, concentration of the dye, duration, and temperature. Structural transformations of adsorbent during the adsorption process at different pH values are monitored using powder X-ray diffraction and infrared spectroscopy. Different types of adsorption isotherm models were evaluated and it was found that Langmuir isotherm fits well at both pH values (6-7 and 12-13. Adsorption of indigo carmine onto magnesium hydroxide at pH 6-7/pH 12-13 follows pseudo-second order rate kinetics.

  19. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation

    Science.gov (United States)

    Fan, Ke; Chen, Hong; Ji, Yongfei; Huang, Hui; Claesson, Per Martin; Daniel, Quentin; Philippe, Bertrand; Rensmo, Håkan; Li, Fusheng; Luo, Yi; Sun, Licheng

    2016-01-01

    Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel–vanadium-layered double hydroxide that shows a current density of 27 mA cm−2 (57 mA cm−2 after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel–iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel–vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting. PMID:27306541

  20. New Tax Rebate Policy Favorable to Aluminum Processing Industry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>China has made the decision to increase export tax rebate rate for part of the non-ferrous products from April 1, 2009, among which the export tax rebate for aluminum alloy hollow profiles and other aluminum alloy profiles goes up to 13%. The new policy is a piece of good news for aluminum processing

  1. Shanxi Will Build Aluminum Deep Processing Industrial Park

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As a province with high coal output,Shanx boasts rich electrolytic aluminum resources.On January 7,the reporter learned from the Provincial Commission of Economy and Information Technology that in order to continually expand the size of aluminum industry,extend aluminum industrial chain,so

  2. Status Quo of China’s Aluminum Sheet & Strip Industry

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Aluminum sheet & strip products are one of the major product varieties in the aluminum processing industry, they also provide indis-pensable basic materials for the development of national economy. In recent years, driven by rapid economic growth, China’s investment in aluminum sheet & strip industry continued to

  3. 2009 China’s Aluminum Fabrication Industrial Development Report

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>1 Overview of Aluminum Fabrication Industry Despite the impact of 2008’s financial crisis on China’s aluminum fabrication industry, China’s output of aluminum products remained the world’s largest in 2009, against overall steady

  4. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  5. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  6. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  7. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  8. [Science and Technology and Recycling: Instructional Materials on Aluminum.

    Science.gov (United States)

    Aluminum Association, New York, NY.

    Educational materials on the manufacture and use of aluminum are assembled in this multi-media unit for use by junior high and secondary school students. Student booklets and brochures include: "The Story of Aluminum,""Uses of Aluminum,""Independent Study Guide for School Research Projects,""Questions and Answers About Litter, Solid Waste, and…

  9. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  10. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  11. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  12. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  13. Shanxi Zhaofeng Aluminum Industry is Planning Oversea Listing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Shanxi Yangquan Coal Industry(Group)Co., Ltd.intends to promote its subsidiary company Shanxi Zhaofeng Aluminum Metallurgy Co Ltd (hereinafter referred to as Zhaofeng Aluminum Metallurgy)to seek oversea listing.If its effort succeeds,Zhaofeng Aluminum Metallurgy will become the third public listed company under Yangquan Group.

  14. Influence of calcium hydroxide on the post-treatment pain in Endodontics: A systematic review

    Directory of Open Access Journals (Sweden)

    K Anjaneyulu

    2014-01-01

    Full Text Available Introduction: Pain of endodontic origin has been a major concern to the patients and the clinicians for many years. Post-operative pain is associated with inflammation in the periradicular tissues caused by irritants egressing from root canal during treatment. It has been suggested that calcium hydroxide intra-canal medicament has pain-preventive properties because of its anti-microbial or tissue altering effects. Some dispute this and reasoned that calcium hydroxide may initiate or increase pain by inducing or increasing inflammation. Objective: To evaluate the effectiveness of calcium hydroxide in reducing the post-treatment pain when used as an intra-canal medicament Materials and Methods: The following databases were searched: PubMed CENTRAL (until July 2013, MEDLINE, and Cochrane Database of Systematic Reviews. Bibliographies of clinical studies and reviews identified in the electronic search were analyzed for studies published outside the electronically searched journals. The primary outcome measure was to evaluate the post-treatment pain reduction when calcium hydroxide is used as an intra-canal medicament in patients undergoing root canal therapy. Results: The reviews found some clinical evidence that calcium hydroxide is not very effective in reducing post-treatment pain when it is used alone, but its effectiveness can be increased when used in combination with other medicaments like chlorhexidine and camphorated monochlorophenol (CMCP. Conclusion: Even though calcium hydroxide is one of the most widely used intra-canal medicament due to its anti-microbial properties, there is no clear evidence of its effect on the post-treatment pain after the chemo-mechanical root canal preparation.

  15. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    Institute of Scientific and Technical Information of China (English)

    DU GaoXiang; ZHENG ShuiLin; DING Hao

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The op-timum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liq-uid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  16. 采用ICP-AES测定高纯氢氧化钠中Ca、Al、Si的含量%Using ICP-AES to determine the concentration of Ca, Al and Si in high-purity sodium hydroxide

    Institute of Scientific and Technical Information of China (English)

    丁珺

    2012-01-01

    介绍了等离子体原子发射光谱,采用标准加入法测定高纯氢氧化钠中痕量Ca、Al、Si含量的方法,该方法的准确度和精密度都符合定量要求。目前,该方法已应用于高纯氢氧化钠中杂质氧化钙、氧化铝、氧化硅含量的测定,且具有操作简便、省时、省材和高灵敏度等特点,适用于批量样品的测定。%This report introduces a novel method to determine the concentration of trace impurities in high- purity sodium hydroxide. The method uses ICP-AES combined with standard addition, thus its accuracy and precision fits the requirement of quantitative measurement. This method has been successfully applied to determine the concentration of calcium oxide (CaO), aluminum oxide (A1203) and silicon dioxide (SiO2) in high-purity sodium hydroxide. The method is not only convenient, fast but also very sensitive, therefore is suitable for batch analysis.

  17. Loften Aluminum Aluminum Foil Output to Reach 120,000 Tons in 2012

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Loften Aluminum Co., Ltd. was founded in 2000 Boxing County, Shandong Province. On 31 March 2010, Loften became an A-share listed company, creating favorable conditions for raising funds to expand its operations.

  18. Cobalt hydroxide/oxide hexagonal ring-graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: energy storage applications.

    Science.gov (United States)

    Nethravathi, C; Rajamathi, Catherine R; Rajamathi, Michael; Wang, Xi; Gautam, Ujjal K; Golberg, Dmitri; Bando, Yoshio

    2014-03-25

    The reaction of β-Co(OH)2 hexagonal platelets with graphite oxide in an aqueous colloidal dispersion results in the formation of β-Co(OH)2 hexagonal rings anchored to graphene oxide layers. The interaction between the basic hydroxide layers and the acidic groups on graphene oxide induces chemical etching of the hexagonal platelets, forming β-Co(OH)2 hexagonal rings. On heating in air or N2, the hydroxide hybrid is morphotactically converted to porous Co3O4/CoO hexagonal ring-graphene hybrids. Porous NiCo2O4 hexagonal ring-graphene hybrid is also obtained through a similar process starting from β-Ni0.33Co0.67(OH)2 platelets. As electrode materials for supercapacitors or lithium-ion batteries, these materials exhibit a large capacity, high rate capability, and excellent cycling stability. PMID:24527661

  19. Cobalt hydroxide/oxide hexagonal ring-graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: energy storage applications.

    Science.gov (United States)

    Nethravathi, C; Rajamathi, Catherine R; Rajamathi, Michael; Wang, Xi; Gautam, Ujjal K; Golberg, Dmitri; Bando, Yoshio

    2014-03-25

    The reaction of β-Co(OH)2 hexagonal platelets with graphite oxide in an aqueous colloidal dispersion results in the formation of β-Co(OH)2 hexagonal rings anchored to graphene oxide layers. The interaction between the basic hydroxide layers and the acidic groups on graphene oxide induces chemical etching of the hexagonal platelets, forming β-Co(OH)2 hexagonal rings. On heating in air or N2, the hydroxide hybrid is morphotactically converted to porous Co3O4/CoO hexagonal ring-graphene hybrids. Porous NiCo2O4 hexagonal ring-graphene hybrid is also obtained through a similar process starting from β-Ni0.33Co0.67(OH)2 platelets. As electrode materials for supercapacitors or lithium-ion batteries, these materials exhibit a large capacity, high rate capability, and excellent cycling stability.

  20. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhang, Jintao; Hu, Han; Li, Zhen; Lou, Xiong Wen David

    2016-03-14

    Lithium-sulfur (Li-S) batteries have been considered as a promising candidate for next-generation electrochemical energy-storage technologies because of their overwhelming advantages in energy density. Suppression of the polysulfide dissolution while maintaining a high sulfur utilization is the main challenge for Li-S batteries. Here, we have designed and synthesized double-shelled nanocages with two shells of cobalt hydroxide and layered double hydroxides (CH@LDH) as a conceptually new sulfur host for Li-S batteries. Specifically, the hollow CH@LDH polyhedra with complex shell structures not only maximize the advantages of hollow nanostructures for encapsulating a high content of sulfur (75 wt %), but also provide sufficient self-functionalized surfaces for chemically bonding with polysulfides to suppress their outward dissolution. When evaluated as cathode material for Li-S batteries, the CH@LDH/S composite shows a significantly improved electrochemical performance. PMID:26894940

  1. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  2. Removal of Indigo Carmine Dye from Aqueous Solution Using Magnesium Hydroxide as an Adsorbent

    OpenAIRE

    Thimmasandra Narayan Ramesh; Vani Pavagada Sreenivasa

    2015-01-01

    Magnesium hydroxide is used as an adsorbent for the removal of indigo carmine dye from aqueous solution. We have investigated the effectiveness of removal of indigo carmine dye from aqueous solutions at pH 6-7 and 12-13 using magnesium hydroxide thereby varying the dose of the adsorbent, concentration of the dye, duration, and temperature. Structural transformations of adsorbent during the adsorption process at different pH values are monitored using powder X-ray diffraction and infrared spec...

  3. Electrochemical properties of Fe and Al hydroxides as affected by different supporting electrolytes

    OpenAIRE

    Melis, Pietro; Premoli, Alessandra Maria; Solinas, Vincenzo; Deiana, Salvatore Andrea

    1984-01-01

    Potentiometric titration curves of Fe and Al hydroxides, carried out in presence of different electrolytes (KCI, Kbr, KI, KNO3, KCIO4) were elaborated by the Stern theory through a computered program. The zero points of charge (zpc), calculated from the intersection point of the titration curves at different ionic strenght, varied from pH 7.10 to pH 7.65 for Fe hydroxides and from pH 9.10 pH 9.45 for Al hydroxi des. For Fe compounds, a good match was found between the experimen...

  4. Autopsy results of a case of ingestion of sodium hydroxide solution

    OpenAIRE

    EMOTO, Yuko; Yoshizawa, Katsuhiko; SHIKATA, NOBUAKI; Tsubura, Airo; Nagasaki, Yasushi

    2015-01-01

    Sodium hydroxide is a strongly corrosive alkali. We describe herein a case of suicide by ingestion of sodium hydroxide. A man in his 80s was found dead with a mug and a bottle of caustic soda. Macroscopically, liquefaction and/or disappearance of esophagus, trachea and lung tissue and a grayish discoloration of the mucosa of the stomach were seen along with blackish brown coloration of the skin, mouth, and oral cavity. The contents of the gastrointestinal tract showed a pH level of 7–8 on pH ...

  5. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides.

    Science.gov (United States)

    Papassiopi, N; Vaxevanidou, K; Christou, C; Karagianni, E; Antipas, G S E

    2014-01-15

    Chromium is a common contaminant of soils and aquifers and constitutes a major environmental problem. In nature, chromium usually exists in the form of two oxidation states, trivalent, Cr(III), which is relatively innocuous for biota and for the aquatic environment, and hexavalent, Cr(VI) which is toxic, carcinogenic and very soluble. Accordingly, the majority of wastewater and groundwater treatment technologies, include a stage where Cr(VI) is reduced to Cr(III), in order to remove chromium from the aqueous phase and bind the element in the form of environmentally stable solid compounds. In the absence of iron the final product is typically of the form Cr(OH)3·xH2O whereas in the presence of iron the precipitate is a mixed Fe(1-x)Crx(OH)3 phase. In this study, we report on the synthesis, characterisation and stability of mixed (Fex,Cr1-x)(OH)3 hydroxides as compared to the stability of Cr(OH)3. We established that the plain Cr(III) hydroxide, abiding to the approximate molecular formula Cr(OH)3·3H2O, was crystalline, highly soluble, i.e. unstable, with a tendency to transform into the stable amorphous hydroxide Cr(OH)3(am) phase. Mixed Fe0.75Cr0.25(OH)3 hydroxides were found to be of the ferrihydrite structure, Fe(OH)3, and we correlated their solubility to that of a solid solution formed by plain ferrihydrite and the amorphous Cr(III) hydroxide. Both our experimental results and thermodynamic calculations indicated that mixed Fe(III)-Cr(III) hydroxides are more effective enhancers of groundwater quality, in comparison to the plain amorphous or crystalline Cr(III) hydroxides, the latter found to have a solubility typically higher than 50μg/l (maximum EU permitted Cr level in drinking water), while the amorphous Cr(OH)3(am) phase was within the drinking water threshold in the range 5.7hydroxides studied were of extended stability in the 4.8

  6. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge

    DEFF Research Database (Denmark)

    Hansen, H.K.; Christensen, Iben Vernegren; Ottosen, Lisbeth M.;

    2003-01-01

    Electroosmotic dewatering has been tested in laboratory cells on four different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material....... Casagrande's coefficients were determined for the four materials at different water contents. The experiments in this work showed that chalk could be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM by electroosmosis...

  7. Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Gado, M, E-mail: parq28@yahoo.com; Zaki, S [Nuclear Materials Authority, P. O. Box 530 El Maadi, Cairo (Egypt)

    2016-01-01

    The titanium hydroxide prepared from Rosetta ilmenite concentrate has been applied for Th (IV) adsorption from its acid aqueous solutions. The prepared hydroxide is first characterized by both Fourier transform infrared (FT-IR) spectrum and thermogravimetric analysis. The relevant factors affecting the adsorption process have been studied. The obtained equilibrium data fits well with the Langmuir isotherm rather than Freundlich isotherm, while the adsorption kinetic data follow the pseudo-second order model. The different thermodynamic parameters have also been calculated and indicate that the adsorption process is spontaneous.

  8. A study of thermally activated Mg–Fe layered double hydroxides as potential environmental catalysts

    OpenAIRE

    MILICA S. HADNAĐEV-KOSTIĆ; TATJANA J. VULIĆ; RADMILA P. MARINKOVIĆ-NEDUČIN

    2010-01-01

    Layered double hydroxides (LDHs) and mixed oxides derived after thermal decomposition of LDHs with different Mg–Fe contents were investigated. These materials were chosen because of the possibility to tailor their various properties, such as ion-exchange capability, redox and acid–base and surface area. Layered double hydroxides, [Mg1-xFex(OH)2](CO3)x/2×mH2O (where x presents the content of trivalent ions, x = M(III)/(M(II) + M(III)) were synthesized using the low supersaturation precipitatio...

  9. Corrosion inhibition of aluminium alloys by layered double hydroxides: the role of copper

    OpenAIRE

    Travassos, Maria Antónia; Rangel, C. M.

    2009-01-01

    Layered double hydroxides represented by the general formula [M2 2+M3+(OH)6]+X1/n n-.zH2O are being researched as anion-exchange materials with interesting intercalation chemistry that accommodate a wide range of applications, including corrosion resistance. In this work, it is shown that the formation of layered double hydroxides (LDHs) on the surface of copper-rich Al alloys promotes corrosion resistance. For that purpose a LDH of the type [M+M3+ 2(OH)6[An- 1/n].zH2O], where the intercalate...

  10. Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation

    DEFF Research Database (Denmark)

    Gerds, Nathalie Christiane; Katiyar, Vimal; Koch, Christian Bender;

    2012-01-01

    Effective utilization of layered double hydroxides (LDH) for industrial applications requires the synthesis of pure and well-defined LDH phases. In the present study, dodecanoate (laurate) anions were intercalated into Mg–Al-layered double hydroxide (LDH-C12) by coprecipitation in the presence...... intercalated structure, but we here demonstrate it to be magnesium laurate (Mg-C12). The LDH-C12 compound showed high structural order with a basal spacing of 2.41nm. Fourier-transform IR-spectra confirmed the intercalation of the laurate anions in the interlayer. Transmission electron microscopy showed plate...

  11. Sulfur removal from Gediz lignite using aqueous sodium hydroxide solutions under mild oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Kuecuekbayrak, S. [Istanbul Technical Univ. (Turkey). Chemical and Metallurgical Engineering Faculty

    1999-11-01

    Sulfur removal from a high-sulfur Turkish lignite (Gediz) using aqueous sodium hydroxide solutions having dissolved oxygen was investigated under mild oxidative conditions. Effects of the parameters such as sodium hydroxide/lignite weight ratio, temperature, and partial pressure of oxygen were investigated within the ranges of 0.05--0.8, 423--498 K, and 1--2 MPa, respectively. Optimum values of these parameters were determined regarding sulfur removal and coal recovery. Influences of dry oxidation of the lignite sample as a pretreatment at 573 K and subsequent washing of some treated lignite samples with 1 N HCl were investigated.

  12. Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate

    International Nuclear Information System (INIS)

    The titanium hydroxide prepared from Rosetta ilmenite concentrate has been applied for Th (IV) adsorption from its acid aqueous solutions. The prepared hydroxide is first characterized by both Fourier transform infrared (FT-IR) spectrum and thermogravimetric analysis. The relevant factors affecting the adsorption process have been studied. The obtained equilibrium data fits well with the Langmuir isotherm rather than Freundlich isotherm, while the adsorption kinetic data follow the pseudo-second order model. The different thermodynamic parameters have also been calculated and indicate that the adsorption process is spontaneous

  13. Root canal treatment of pulpless immature teeth using calcium hydroxide paste. Roentgenographic study

    International Nuclear Information System (INIS)

    Calcium hydroxide paste was used as a temporary dressing and the renewal was done each three months in the root treatment of immature teeth with open apex and necrotic pulps. Clinical and radiographic controls were made to observe foraminal closure. After that, the root canals were filled, employing the conventional technique with gutta-percha cones and zinc oxide eugenol cements. The calcium hydroxide paste was applied in the apical region before the root canal filling. The follow-up was done periodically and the cases have more than two years of control. (author)

  14. Development of drug delivery systems based on layered hydroxides for nanomedicine.

    Science.gov (United States)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-01-01

    Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life. PMID:24802876

  15. Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine

    Directory of Open Access Journals (Sweden)

    Farahnaz Barahuie

    2014-05-01

    Full Text Available Layered hydroxides (LHs have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.

  16. Inelastic Deformation Analysis of Aluminum Bending Members

    Institute of Scientific and Technical Information of China (English)

    CHENG Ming; SHI Yongjiu; WANG Yuanqing

    2006-01-01

    Aluminum alloys are typical nonlinear materials, and consequently bending members made of this material exhibit a nonlinear behavior. Most design codes do not pay much attention to such deformations and adopt a simple linear analysis for the calculation of deflections. This paper presents an investigation of the nonlinear deformation of aluminum bending members using the finite-element analysis (FEA). The plastic adaptation coefficient, which can be used to limit the residual deflection, is introduced, and the influence of residual deflection is investigated. A method for evaluating the plastic adoption coefficient is proposed. This paper also shows the load-deflection curve of aluminum bending members and the influence of several parameters. A semi-empirical formula is derived, and some numerical examples are given by FEA. The coefficients of the semi-empirical formula are modified by the FEA results using the nonlinear fitting method. Based on these results, two improved design methods for strength and deformation of aluminum bending members are proposed. Through the comparison with test data, these methods are proved to be suitable for structural design.

  17. Molybdate Coatings for Protecting Aluminum Against Corrosion

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  18. 75 FR 80527 - Aluminum Extrusions From China

    Science.gov (United States)

    2010-12-22

    ... Republic of China: Postponement of Final Determination of Sales at Less Than Fair Value, 75 FR 73041... Sales at Less Than Fair Value, and Preliminary Determination of Targeted Dumping, 75 FR 69403, November... Affirmative Countervailing Duty Determination, 75 FR 54302, September 7, 2010, and Aluminum Extrusions...

  19. A successful management of aluminum phosphide intoxication

    OpenAIRE

    Moazezi, Zoleika; Abedi, Seyed Hassan

    2011-01-01

    Background: Aluminum Phosphide or rice tablet is one of the most common pesticides which leads to accidental or intentional acute intoxication and finally death. In this paper, we describe a successful management of intoxication with rice tablet in a young girl.

  20. Reduction of porosity in aluminum weldments

    Science.gov (United States)

    Lee, W. S.

    1972-01-01

    Method is described for elimination of porosity of aluminum weldments by replacing polyvinyl chloride tubing (used to connect welder to gas source, and is permeable to moisture at high humidity) with copper tubing. In addition liquid argon gas is used at weld stations.