WorldWideScience

Sample records for aluminum hydride phases

  1. Solid State NMR Studies of the Aluminum Hydride Phases

    Science.gov (United States)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  2. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  3. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD... Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT...of both Aluminum Hydride Cluster Anions and Boron Aluminum Hydride Cluster Anions with Oxygen: Anionic Products The anionic products of reactions

  4. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  5. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  6. Regeneration of lithium aluminum hydride.

    Science.gov (United States)

    Graetz, Jason; Wegrzyn, James; Reilly, James J

    2008-12-31

    Lithium aluminum hydride (LiAlH(4)) is a promising compound for hydrogen storage, with a high gravimetric and volumetric hydrogen density and a low decomposition temperature. Similar to other metastable hydrides, LiAlH(4) does not form by direct hydrogenation at reasonable hydrogen pressures; therefore, there is considerable interest in developing new routes to regenerate the material from the dehydrogenated products LiH and Al. Here we demonstrate a low-energy route to regenerate LiAlH(4) from LiH and Ti-catalyzed Al. The initial hydrogenation occurs in a tetrahydrofuran slurry and forms the adduct LiAlH(4).4THF. The thermodynamics of this reversible reaction were investigated by measuring pressure-composition isotherms, and the free energy was found to be small and slightly negative (DeltaG = -1.1 kJ/mol H(2)), suggesting an equilibrium hydrogen pressure of just under 1 bar at 300 K. We also demonstrate that the adduct LiAlH(4).4THF can be desolvated at low temperature to yield crystalline LiAlH(4).

  7. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  8. Aluminum Hydride Catalyzed Hydroboration of Alkynes.

    Science.gov (United States)

    Bismuto, Alessandro; Thomas, Stephen P; Cowley, Michael J

    2016-12-05

    An aluminum-catalyzed hydroboration of alkynes using either the commercially available aluminum hydride DIBAL-H or bench-stable Et 3 Al⋅DABCO as the catalyst and H-Bpin as both the boron reagent and stoichiometric hydride source has been developed. Mechanistic studies revealed a unique mode of reactivity in which the reaction is proposed to proceed through hydroalumination and σ-bond metathesis between the resultant alkenyl aluminum species and HBpin, which acts to drive turnover of the catalytic cycle. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Aluminum Hydride as a Fuel Supplement to NanoThermites

    Science.gov (United States)

    2014-01-01

    SECURITY CLASSIFICATION OF: An experimental study was conducted in which aluminum hydride (alane, AlH3) replaced nanoaluminum incrementally as a fuel in a...pressurization rate, and burning velocity when micron-scale aluminum hydride was used as a minor fuel component in a nanoaluminum–copper-oxide thermite...mixture. Peak pressurization rates were found when the aluminum hydride made up about 25% of the fuel by mole. Pressurization rates increase by a

  10. Photoelectron spectroscopic study of carbon aluminum hydride cluster anions

    Science.gov (United States)

    Zhang, Xinxing; Wang, Haopeng; Ganteför, Gerd; Eichhorn, Bryan W.; Kiran, Boggavarapu; Bowen, Kit H.

    2016-10-01

    Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

  11. Parametrization of a reactive force field for aluminum hydride.

    Science.gov (United States)

    Ojwang, J G O; van Santen, Rutger A; Kramer, Gert Jan; van Duin, Adri C T; Goddard, William A

    2009-07-28

    A reactive force field, REAXFF, for aluminum hydride has been developed based on density functional theory (DFT) derived data. REAXFF(AlH(3)) is used to study the dynamics governing hydrogen desorption in AlH(3). During the abstraction process of surface molecular hydrogen charge transfer is found to be well described by REAXFF(AlH(3)). Results on heat of desorption versus cluster size show that there is a strong dependence of the heat of desorption on the particle size, which implies that nanostructuring enhances desorption process. In the gas phase, it was observed that small alane clusters agglomerated into a bigger cluster. After agglomeration molecular hydrogen was desorbed from the structure. This thermodynamically driven spontaneous agglomeration followed by desorption of molecular hydrogen provides a mechanism on how mobile alane clusters can facilitate the mass transport of aluminum atoms during the thermal decomposition of NaAlH(4).

  12. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  13. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup −}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  14. Photoelectron spectroscopy of boron aluminum hydride cluster anions.

    Science.gov (United States)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H; Li, Xiang; Kiran, Boggavarapu; Kandalam, Anil K

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, BxAlyHz(-), were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  15. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  16. Synthesis and Hydrogen Desorption Properties of Aluminum Hydrides.

    Science.gov (United States)

    Jeong, Wanseop; Lee, Sang-Hwa; Kim, Jaeyong

    2016-03-01

    Aluminum hydride (AlH3 or alane) is known to store maximum 10.1 wt.% of hydrogen at relatively low temperature (aluminum. Our results show that the total amount of desorbed hydrogen from α-AlH3 exceeded 9.05 wt.%, with a possibility of further increase. Easy synthesis, thermal stability, and a large amount of hydrogen desorption of alane fulfill the requirements for light-weight hydrogen storage materials once the pathway of hydrogen cycling is provided.

  17. Synthesis of Renewable Energy Materials, Sodium Aluminum Hydride by Grignard Reagent of Al

    OpenAIRE

    Jun-qin Wang; Jian-feng Gao; Zhi-gang Wu; Guo-li Ou; Yu Wang

    2015-01-01

    The research on hydrogen generation and application has attracted widespread attention around the world. This paper is to demonstrate that sodium aluminum hydride can be synthesized under simple and mild reaction condition. Being activated through organics, aluminum powder reacts with hydrogen and sodium hydride to produce sodium aluminum hydride under atmospheric pressure. The properties and composition of the sample were characterized by FTIR, XRD, SEM, and so forth. The results showed that...

  18. Synthesis of Renewable Energy Materials, Sodium Aluminum Hydride by Grignard Reagent of Al

    Directory of Open Access Journals (Sweden)

    Jun-qin Wang

    2015-01-01

    Full Text Available The research on hydrogen generation and application has attracted widespread attention around the world. This paper is to demonstrate that sodium aluminum hydride can be synthesized under simple and mild reaction condition. Being activated through organics, aluminum powder reacts with hydrogen and sodium hydride to produce sodium aluminum hydride under atmospheric pressure. The properties and composition of the sample were characterized by FTIR, XRD, SEM, and so forth. The results showed that the product through this synthesis method is sodium aluminum hydride, and it has higher purity, perfect crystal character, better stability, and good hydrogen storage property. The reaction mechanism is also discussed in detail.

  19. Ab initio studies on the electronic structure and properties of aluminum hydrides that are analogues of boron hydrides.

    Science.gov (United States)

    Srinivasu, K; Chandrakumar, K R S; Ghosh, Swapan K

    2010-11-25

    Although the boron hydrides are well-known in the literature, the aluminum hydride chemistry is limited to very few systems such as AlH(3), its dimer, and its polymeric form. In view of the recent experimental studies on the possible existence of the aluminum hydrides, herein, we have undertaken a systematic study on the electronic structure and properties of these aluminum hydrides. Under this, we have studied different classes of hydrides, viz., closo (Al(n)H(n+2)), nido (Al(n)H(n+4)), and arachno (Al(n)H(n+6)), similar to the boranes. All the aluminum hydrides are found to have exceptionally large highest-occupied molecular orbital-lowest-unoccupied molecular orbital gaps, low electron affinities, large ionization potentials and also large enthalpy and free energy of atomization. In addition, most of the structures are also found to have high symmetries. These exceptional properties can be indicative of the pronounced stability, and hence, it is expected that other aluminum hydride complexes can indeed be observed experimentally.

  20. Electronically Unsaturated Three-Coordinate Aluminum Hydride and Organoaluminum Cations.

    Science.gov (United States)

    Prashanth, Billa; Bhandari, Mamta; Ravi, Satyam; Shamasundar, K R; Singh, Sanjay

    2018-02-16

    New three-coordinate and electronically unsaturated aluminum hydride [LAlH] + [HB(C 6 F 5 ) 3 ] - (LH=[{(2,6-iPr 2 C 6 H 3 N)P(Ph 2 )} 2 N]H) and aluminum methyl [LAlMe] + [MeB(C 6 F 5 ) 3 ] - cations have been prepared. The quantitative estimation of Lewis acidity by Gutmann-Beckett method revealed [LAlH] + [HB(C 6 F 5 ) 3 ] - to be better Lewis acid than B(C 6 F 5 ) 3 and AlCl 3 making these compounds ideal catalysts for Lewis acid-mediated reactions. To highlight that the work is of fundamental importance, catalytic hydroboration of aliphatic and aromatic aldehydes and ketones have been demonstrated. Important steps of the catalytic cycle have been probed by using multinuclear NMR measurements, including successful characterization of the proposed aluminum benzyloxide cationic intermediate, [LAl-O-CH 2 Ph] + [HB(C 6 F 5 ) 3 ] - . The proposed catalytic cycle has been found to be consistent with experimental observations and computational studies clearly indicating the migration of hydride from cationic aluminum center to the carbonyl carbon is the rate-limiting step of the catalytic cycle. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Parametrization of a reactive force field for aluminum hydride

    OpenAIRE

    Ojwang, J. G. O.; van Santen, Rutger A.; Kramer, Gert Jan; van Duin, Adri C. T.; Goddard, William A., III

    2009-01-01

    A reactive force field, REAXFF, for aluminum hydride has been developed based on density functional theory (DFT) derived data. REAXFF_(AlH_3) is used to study the dynamics governing hydrogen desorption in AlH_3. During the abstraction process of surface molecular hydrogen charge transfer is found to be well described by REAXFF_(AlH_3). Results on heat of desorption versus cluster size show that there is a strong dependence of the heat of desorption on the particle size, which implies that nan...

  2. Studying aluminum hydride by means of thermal analysis

    Science.gov (United States)

    Milekhin, Yu. M.; Koptelov, A. A.; Matveev, A. A.; Baranets, Yu. N.; Bakulin, D. A.

    2015-07-01

    Chemical reactions and physical transformations that occur upon heating aluminum hydride (AlH3, alane), stored for 25 years, in the temperature range of 50-1200°C in an atmosphere of nitrogen, argon, and air are studied by means of thermogravimetric analysis and differential scanning calorimetry. The heat of thermal decomposition and the hydrogen content are determined for the AlH3 samples and are found to be 318 ± 25 J/g and 9.32 ± 0.24 wt %, respectively. It is established that the estimated enthalpy of formation of AlH3 in stoichiometric composition (Δf H ≈ -10.3 kJ/mol) agrees with the literature data. After the release of hydrogen, the mass of the precipitate increases by 0.5 ± 0.3%, relative to the initial mass of the AlH3 samples; the most likely reason for this effect is the adsorption of nitrogen (argon) in the micropores and mesopores that form. Thermal phenomena associated with the crystallization of the amorphous aluminum that forms after hydrogen is released from the alane particles are analyzed. It is established that the aluminum contained in initial AlH3 samples is almost completely transformed into aluminum nitride and oxide (AlN and Al3O3) upon heating to 1200°C in nitrogen and air, respectively.

  3. Pressure-induced hydrogen-dominant metallic state in aluminum hydride.

    Science.gov (United States)

    Goncharenko, Igor; Eremets, M I; Hanfland, M; Tse, J S; Amboage, M; Yao, Y; Trojan, I A

    2008-02-01

    Two structural transitions in covalent aluminum hydride AlH3 were characterized at high pressure. A metallic phase stable above 100 GPa is found to have a remarkably simple cubic structure with shortest first-neighbor H-H distances ever measured except in H2 molecule. Although the high-pressure phase is predicted to be superconductive, this was not observed experimentally down to 4 K over the pressure range 120-164 GPa. The results indicate that the superconducting behavior may be more complex than anticipated.

  4. Magnesium hydrides and their phase transitions

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2016-01-01

    Roč. 41, č. 23 (2016), s. 9769-9773 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LD13069 Institutional support: RVO:68378271 Keywords : hydrogen * magnesium and transition metal hydrides * crystal structure stability * displacive phase transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.582, year: 2016

  5. Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage.

    Science.gov (United States)

    Weidenthaler, Claudia; Pommerin, André; Felderhoff, Michael; Sun, Wenhao; Wolverton, Christopher; Bogdanović, Borislav; Schüth, Ferdi

    2009-11-25

    A novel type of complex rare-earth aluminum hydride was prepared by mechanochemical preparation. The crystal structure of the REAlH(6) (with RE = La, Ce, Pr, Nd) compounds was calculated by DFT methods and confirmed by preliminary structure refinements. The trigonal crystal structure consists of isolated [AlH(6)](3-) octahedra bridged via [12] coordinated RE cations. The investigation of the rare-earth aluminum hydrides during thermolysis shows a decrease of thermal stability with increasing atomic number of the RE element. Rare-earth hydrides (REH(x)) are formed as primary dehydrogenation products; the final products are RE-aluminum alloys. The calculated decomposition enthalpies of the rare-earth aluminum hydrides are at the lower end for reversible hydrogenation under moderate conditions. Even though these materials may require somewhat higher pressures and/or lower temperatures for rehydrogenation, they are interesting examples of low-temperature metal hydrides for which reversibility might be reached.

  6. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  7. Microwave irradiation effects on reversible hydrogen desorption in sodium aluminum hydrides (NaAlH4)

    International Nuclear Information System (INIS)

    Krishnan, Rahul; Agrawal, Dinesh; Dobbins, Tabbetha

    2009-01-01

    The effect of microwave irradiation on the reversible desorption reaction in sodium aluminum hydride (NaAlH 4 ) is explored. NaAlH 4 is doped with 2 mol% TiCl 2 and pre-activated by high energy ball milling and aging to show the presence of metallic aluminum phase. As a catalyst, Ti 2+ has been used to improve desorption kinetics in sodium alanate. X-ray diffraction was performed on the samples exposed to microwave irradiation for 10, 20, 30, 40 and 50 min. Results show that when the powders show the presence of aluminum, a steady increase in the formation of the hexahydride (Na 3 AlH 6 ) phase and Al occurs during microwave irradiation; and is accompanied by a steady reduction in the NaAlH 4 phase XRD peak (h k l) intensities. This data suggests that microwave irradiation drives the reversible H 2 desorption reaction in NaAlH 4 . NaAlH 4 doped with 2 mol% TiCl 2 which does not show the presence of Al phase, undergoes a reduction in NaAlH 4 peak intensities with increasing microwave exposure (and no reversible product phases are detected in this case). Dielectric studies on NaAlH 4 indicate that microwave penetration is low. Therefore, it is proposed that microwave irradiation heating of the Al particulate phase is responsible for the hydrogen desorption reaction pathway which is similar to that of conventional heating

  8. Aluminum hydride cations stabilized by weakly coordinating carbaalanates.

    Science.gov (United States)

    Stasch, Andreas; Roesky, Herbert W; Noltemeyer, Mathias; Schmidt, Hans-Georg

    2005-08-08

    The reactions of t-BuCCLi with a mixture of AlH(3).NMe(3) and ClAlH(2).NMe(3) in boiling toluene with the addition of [t-BuCH(2)(Bzl)NMe(2)]Cl, or a bulky beta-diketimine instead, and [n-Bu(4)N]Cl led to the carbaalanates [H(2)Al(NMe(3))(2)](2)[(AlH)(8)(CCH(2)t-Bu)(6)], 3, and [n-Bu(4)N](2)[(AlH)(8)(CCH(2)t-Bu)(6)], 4, respectively. The reaction of Me(3)N.Al(CCt-Bu)(3) 5 and AlH(3).NMe(3) in boiling toluene yielded [H(n-Bu)Al(NMe(3))(2)][(AlH)(7)(AlNMe(3))(CCH(2)t-Bu)(6)], 6, in trace amounts. The single-crystal X-ray structures of 3 and 6 are reported. The compounds 3, 4, and 6 consist of well-separated ion pairs introducing carbaalanates as weakly coordinating anions and stabilizing aluminum hydride cations.

  9. Multi-scale characterization of nanostructured sodium aluminum hydride

    Science.gov (United States)

    NaraseGowda, Shathabish

    instruments were utilized for this work and their data collection and analysis are reported. Quasielastic neutron scattering experiments were conducted at NIST Center for Neutron Research to characterize atomic hydrogen diffusion in bulk and nano-confined NaAlH4. It was observed that upon confinement of NaAlH4, a significantly higher fraction of hydrogen atoms were involved in diffusive motion on the pico-second to nano-second timescales. However, the confinement had no impact on the lattice diffusivities (jump/hopping rates) of atomic hydrogen, indicating that the improved hydrogen release rates were not due to any kinetic destabilization effects. Instead, the investigation strongly suggested thermodynamic destabilization as the major effect of nano-confinement. The local interaction of the metal sites in metal organic frameworks with the infiltrated hydride was studied using extended x-ray absorption spectroscopy technique. The experiments were conducted at Center for Advanced Microstructures and Devices at Louisiana State University. The metal sites were found to be chemically un-altered, hence ruling out any catalytic role in the dehydrogenation at room temperatures. The fractal morphology of NaAlH4 was characterized by ultra-small angle x-ray scattering experiments performed at Argonne National Lab. The studies quantitatively estimated the extent of densification in the course of one desorption cycle. The particle sizes were found to increase two-fold during heat treatment. Also, the nano-confinement procedure was shown to produce dense mass fractals as opposed to pristine NaAlH4, exhibiting a surface fractal morphology. Based on this finding, a new method to identify confined material from un-confined material in nano-composites was developed and is presented. Preliminary results of modeling and correlating multi-scale phenomena using a phase-field approach are also presented as the foundation for future work.

  10. Transmission Electron Microscopy Studies on Titanium-doped Sodium Aluminum Hydride

    Science.gov (United States)

    Culnane, Lance F.

    Hydrogen fuel cells play an important role in today's diverse and blossoming alternative energy industry. One of the greatest technological barriers for vehicular applications is the storage of hydrogen (which is required to power hydrogen fuel cells). Storing hydrogen as a gas is not volume efficient, and storing it as a liquid is not cost effective, therefore solid-state storage of hydrogen, such as in metal hydrides offers the most potential for success since many metal hydrides have attractive qualities for hydrogen storage such as: high volumetric capacity, cost efficiency, weight efficiency, low refueling times, and most importantly, high safety. Unfortunately, a compound has not been discovered which contains all of the attractive hydrogen storage qualities for vehicular applications. Sodium aluminum hydride (NaAlH 4) is one of the few compounds which is close to meeting requirements for car manufacturers, and has perhaps been researched the most extensively out of all metal hydrides in the last 15 years. This arises from the remarkable discovery by Bogdanovic who found that doping NaAlH4 with Ti dopants enabled the reversible dehydrogenation and hydrogenation of NaAlH 4 at mild conditions. Various evidence and theories have been proposed to suggest explanations for the enhanced kinetic effect that Ti-doping and ball-milling provide. However, the research community has not reached a consensus as to the exact role of Ti-dopants. If the role of titanium in the NaAlH4 dehydrogenation/hydrogenation mechanism could be understood, then more attractive metal hydrides could be designed. To this end, we conducted Transmission Electron Microscopy (TEM) studies to explain the role of the Ti dopants. The first known thorough particle size analysis of the NaAlH4 system was conducted, as well as TEM-EELS (Electron Energy Loss Spectroscopy), TEM-EDS (Energy Dispersive X-ray Spectroscopy), and in-situ imaging studies. Preparation methods were found to be important for the

  11. Adhesion of oxide layer to metal-doped aluminum hydride surface: Density functional calculations

    Science.gov (United States)

    Takezawa, Tomoki; Itoi, Junichi; Kannan, Takashi

    2017-07-01

    The density functional theory (DFT) calculations were carried out to evaluate the adhesion energy of the oxide layer to the metal-doped surface of hydrogen storage material, aluminum hydride (alane, AlH3). The total energy calculations using slab model revealed that the surface doping of some metals to aluminum hydride weakens the adhesion strength of the oxide layer. The influence of titanium, iron, cobalt, and zirconium doping on adhesion strength were evaluated. Except for iron doping, the adhesion strength becomes weak by the doping.

  12. The Influence of Titanium Hydride Pretreatment on the Compressive Properties of Aluminum Foam

    Directory of Open Access Journals (Sweden)

    Zan ZHANG

    2014-12-01

    Full Text Available Macrostructure has an important effect on the compressive properties of closed-cell aluminum foams. Meanwhile, the decomposition behavior of a foaming agent has a significant influence on the macrostructure of closed-cell aluminum foams. In order to get optimal compressive properties on aluminum foams, it is important to obtain the optimal decomposition behavior of a foaming agent. In this paper, different heat treatment temperatures and fixed heat treatment were employed to investigate the decomposition behavior of titanium hydride. For a more intuitive understanding of their decomposition characteristics of the pretreated titanium hydrides, closed-cell commercially pure Al foams were prepared by melt foaming method using different types of pretreated titanium hydrides as foaming agent. In addition, the macrostructures and quasi-static compressive properties were used to evaluate the pretreatment effect. The results showed that pretreatments have a significant influence on the macrostructure and compressive properties of aluminum foams. The decomposition characteristics of titanium hydride pretreated at 753 K for 30 min are most suitable for the preparation of closed-cell aluminum foams under present conditions, as the foams possess good combination of pore size distribution, yield strength and energy absorption capacity. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6082

  13. Study on an innovative fast reactor utilizing hydride neutron absorber - Final report of phase I study

    International Nuclear Information System (INIS)

    Konashi, K.; Iwasaki, T.; Itoh, K.; Hirai, M.; Sato, J.; Kurosaki, K.; Suzuki, A.; Matsumura, Y.; Abe, S.

    2010-01-01

    (Aluminum diffusion coating) and oxidation was developed and the hydrogen transfer coefficient was drastically reduced. As the hydride compatibility with sodium was confirmed by the experiment, a sodium bonding pin was also developed along with the helium bonding pin. In addition, the hydrides were irradiated in the experimental Fast Reactor 'Joyo' without any defects. The phase II study has started in 2009 to extend the research for the hydride absorber application to FBR. (authors)

  14. Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material

    Science.gov (United States)

    Poindexter, A. M.

    1967-01-01

    Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.

  15. Closo-alanes (Al4H4, AlnHn+2, 4 aluminum hydride chemistry.

    Science.gov (United States)

    Grubisic, A; Li, X; Stokes, S T; Cordes, J; Ganteför, G F; Bowen, K H; Kiran, B; Jena, P; Burgert, R; Schnöckel, H

    2007-05-09

    Anion photoelectron spectroscopy and density functional theory were employed to study aluminum hydride clusters, AlnHm- (4 aluminum versions of hypothetical diprotonated closo-borane dianions (BnHn2- + 2H+). In addition, Al4H4 assumes a closo-tetrahedral geometry, while Al4H6 takes on a distorted tetrahedral (D2d) structure with two counter-positioned bridging hydrogen atoms and has the largest HOMO-LUMO gap (1.9 eV) of all the alanes we studied. All of these species can be understood in terms of underlying polyhedral skeletal electron pair theory (PSEPT) concepts. Although, the herein studied alanes do not have direct borane analogues, the ability to understand their structures in terms of the Wade-Mingos rules and the underlying PSEPT concepts suggests that they can be considered as borane analogues, thereby opening a new chapter in aluminum hydride chemistry.

  16. Hydride vapor phase epitaxy growth of GaN, InGaN, ScN, and ScAIN

    NARCIS (Netherlands)

    Bohnen, T.

    2010-01-01

    Chemical vapor deposition (CVD); hydride vapor phase epitaxy (HVPE); gallium nitride (GaN); indium gallium nitride (InGaN); scandium nitride (ScN); scandium aluminum nitride (ScAlN); semiconductors; thin films; nanowires; III nitrides; crystal growth - We studied the HVPE growth of different III

  17. ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    One of the challenges of implementing the hydrogen economy is finding a suitable solid H{sub 2} storage material. Aluminium (alane, AlH{sub 3}) hydride has been examined as a potential hydrogen storage material because of its high weight capacity, low discharge temperature, and volumetric density. Recycling the dehydride material has however precluded AlH{sub 3} from being implemented due to the large pressures required (>10{sup 5} bar H{sub 2} at 25 C) and the thermodynamic expense of chemical synthesis. A reversible cycle to form alane electrochemically using NaAlH{sub 4} in THF been successfully demonstrated. Alane is isolated as the triethylamine (TEA) adduct and converted to unsolvated alane by heating under vacuum. To complete the cycle, the starting alanate can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride (NaH) This novel reversible cycle opens the door for alane to fuel the hydrogen economy.

  18. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  19. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Fewox, C; Ragaiy Zidan, R; Brenda Garcia-Diaz, B

    2008-12-31

    Hydrogen storage is one of the greatest challenges for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods; the direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  20. Preparation of A356 Foam Aluminum by Means of Titanium Hydride

    Science.gov (United States)

    Sarajan, Zohair

    2017-09-01

    The effect of heating temperature and stirring time during preparation of foam aluminum alloy A356 on its relative porosity is studied. The optimum amount of the foam-forming agent, i.e., titanium hydride TiH2, facilitating uniform distribution of pores throughout the whole cross section of a hardened casting is determined. Optimum conditions are established for foam formation in a melt during stirring using a mixer are described.

  1. Fabrication and Analysis of Microscale Aluminum Foam Precursor Particles by Use of Titanium Hydride

    Science.gov (United States)

    Key, Deanna E.

    The creation of aluminum foam precursor particles by use of a blowing agent, Titanium Hydride, is examined. The production of these precursor particles is highly dependent on the mechanical milling process, and the use of a process control agent (methanol) during milling. The effects of the process control agent allow for faster milling times, and the achievement of micro-scale particle sizes is achieved. In addition, the foaming characteristics of these particles are explored in depth, with the comparison of foaming environments, air vs. argon. The argon foaming environment was found to yield better foaming characteristics than that of air. This study is the first to create individual micro-scale aluminum foam precursor particles, as previous studies focused on that of bulk powder compacts. The successful creation of the micron scale aluminum foam precursor particles opens doors for the creation of hybrid foams.

  2. High Growth Rate Hydride Vapor Phase Epitaxy at Low Temperature through Use of Uncracked Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Kevin L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simon, John D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ptak, Aaron J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Braun, Anna [Rose-Hulman Institute of Technology

    2018-01-22

    We demonstrate hydride vapor phase epitaxy (HVPE) of GaAs with unusually high growth rates (RG) at low temperature and atmospheric pressure by employing a hydride-enhanced growth mechanism. Under traditional HVPE growth conditions that involve growth from Asx species, RG exhibits a strong temperature dependence due to slow kinetics at the surface, and growth temperatures >750 degrees C are required to obtain RG > 60 um/h. We demonstrate that when the group V element reaches the surface in a hydride, the kinetic barrier is dramatically reduced and surface kinetics no longer limit RG. In this regime, RG is dependent on mass transport of uncracked AsH3 to the surface. By controlling the AsH3 velocity and temperature profile of the reactor, which both affect the degree of AsH3 decomposition, we demonstrate tuning of RG. We achieve RG above 60 um/h at temperatures as low as 560 degrees C and up to 110 um/h at 650 degrees C. We incorporate high-RG GaAs into solar cell devices to verify that the electronic quality does not deteriorate as RG is increased. The open circuit voltage (VOC), which is a strong function of non-radiative recombination in the bulk material, exhibits negligible variance in a series of devices grown at 650 degrees C with RG = 55-110 um/h. The implications of low temperature growth for the formation of complex heterostructure devices by HVPE are discussed.

  3. Hydride phase equilibria in V-Ti-Ni alloy membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Michael D., E-mail: michael.dolan@csiro.au [CSIRO Energy, Pullenvale, Queensland (Australia); Kochanek, Mark A.; Munnings, Christopher N. [CSIRO Energy, Pullenvale, Queensland (Australia); McLennan, Keith G. [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland (Australia); Viano, David M. [CSIRO Energy, Pullenvale, Queensland (Australia)

    2015-02-15

    Highlights: • V{sub 70}Ti{sub 15}Ni{sub 15} (at.%) comprises a vanadium solid solution plus NiTi and NiTi{sub 2}. • Dissolution of Ni and Ti into vanadium solid solution increase critical temperature for BCT β-hydride formation. • Three V{sub SS} hydride phase fields were observed: BCC, BCC + BCT, BCT + BCT. • NiTi and NiTi{sub 2} phases do not stabilise the alloy against brittle failure. - Abstract: Vanadium is highly permeable to hydrogen which makes it one of the leading alternatives to Pd alloys for hydrogen-selective alloy membrane applications, but it is prone to brittle failure through excessive hydrogen absorption and transitions between the BCC α and BCT β phases. V-Ti-Ni alloys are a prospective class of alloy for hydrogen-selective membrane applications, comprising a highly-permeable vanadium solid solution and several interdendritic Ni-Ti compounds. These Ni-Ti compounds are thought to stabilise the alloy against brittle failure. This hypothesis was investigated through a systematic study of V{sub 70}Ti{sub 15}Ni{sub 15} by hydrogen absorption and X-ray diffraction under conditions relevant to membrane operation. Dissolved hydrogen concentration in the bulk alloy and component phases, phase identification, thermal and hydrogen-induced expansion, phase quantification and hydride phase transitions under a range of pressures and temperatures have been determined. The vanadium phase passes through three different phase fields (BCC, BCC + BCT, BCT + BCT) during cooling under H{sub 2} from 400 to 30 °C. Dissolution of Ni and Ti into the vanadium phase increases the critical temperature for β-hydride formation from <200 to >400 °C. Furthermore, the Ni-Ti phases also exhibit several phase transitions meaning their ability to stabilise the alloy is questionable. We conclude that this alloy is significantly inferior to V with respect to its stability when used as a hydrogen-selective membrane, but the hydride phase transitions suggest potential

  4. A theoretical study of the reaction of lithium aluminum hydride with formaldehyde and cyclohexanone.

    Science.gov (United States)

    Luibrand, R T; Taigounov, I R; Taigounov, A A

    2001-11-02

    Geometries and energies of the reactants, complexes, and transition states for the reactions of lithium aluminum hydride with formaldehyde and cyclohexanone were obtained using ab initio and density functional (Becke3LYP/6-31G**) molecular orbital calculations. Two pathways for reaction with formaldehyde and four transition states corresponding to axial and equatorial attack at cyclohexanone were located. The transition state structures had reactant-like geometries. Predicted stereoselectivity of the reduction of cyclohexanone strongly favors axial approach of hydrogen, in agreement with experimental data. Analysis of the transition state structures suggests that electronic effects are more important than torsional effects in controlling stereoselectivity.

  5. Hyperfine Parameters for Aluminum Hydride: An ab Initio Molecular Orbital Study.

    Science.gov (United States)

    Gee, Myrlene; Wasylishen, Roderick E.

    2001-06-01

    An extensive ab initio molecular orbital study of the (27)Al nuclear spin-rotation and nuclear quadrupolar coupling constants in aluminum hydride, AlH, has been performed. The (27)Al nuclear spin-rotation constant (C( perpendicular)), calculated to be approximately 300 kHz, was neglected in a previous analysis of the hyperfine structure in the microwave spectrum (M. Goto and S. Saito, Astrophys. J. 452, L147-148 (1995)). Unfortunately, the ab initio calculations do not provide a definitive value for the aluminum nuclear quadrupolar coupling constant, but suggest a value of -49+/-4 MHz. It is apparent that the microwave study of AlH should be repeated. Copyright 2001 Academic Press.

  6. High growth rate hydride vapor phase epitaxy at low temperature through use of uncracked hydrides

    Science.gov (United States)

    Schulte, Kevin L.; Braun, Anna; Simon, John; Ptak, Aaron J.

    2018-01-01

    We demonstrate hydride vapor phase epitaxy (HVPE) of GaAs with unusually high growth rates (RG) at low temperature and atmospheric pressure by employing a hydride-enhanced growth mechanism. Under traditional HVPE growth conditions that involve growth from Asx species, RG exhibits a strong temperature dependence due to slow kinetics at the surface, and growth temperatures >750 °C are required to obtain RG > 60 μm/h. We demonstrate that when the group V element reaches the surface in a hydride, the kinetic barrier is dramatically reduced and surface kinetics no longer limit RG. In this regime, RG is dependent on mass transport of uncracked AsH3 to the surface. By controlling the AsH3 velocity and temperature profile of the reactor, which both affect the degree of AsH3 decomposition, we demonstrate tuning of RG. We achieve RG above 60 μm/h at temperatures as low as 560 °C and up to 110 μm/h at 650 °C. We incorporate high-RG GaAs into solar cell devices to verify that the electronic quality does not deteriorate as RG is increased. The open circuit voltage (VOC), which is a strong function of non-radiative recombination in the bulk material, exhibits negligible variance in a series of devices grown at 650 °C with RG = 55-110 μm/h. The implications of low temperature growth for the formation of complex heterostructure devices by HVPE are discussed.

  7. Stereospecific reduction of phosphine oxides to phosphines by the use of a methylation reagent and lithium aluminum hydride.

    Science.gov (United States)

    Imamoto, T; Kikuchi, S; Miura, T; Wada, Y

    2001-01-11

    [figure: see text] Various phosphine oxides are efficiently reduced by the use of a methylation reagent and lithium aluminum hydride. Optically active P-chirogenic phosphine oxides are also reduced with inversion of configuration at phosphorus atom by treatment with methyl triflate, followed by reaction with LiAlH4.

  8. Insertion, reduction, and carbon-carbon coupling induced by monomeric aluminum hydride compounds bearing substituted pyrrolyl ligands.

    Science.gov (United States)

    Lin, Che-Yu; Tsai, Chia-Fu; Chen, Hsing-Jen; Hung, Chen-Hsiung; Yu, Ru-Ching; Kuo, Pei-Cheng; Lee, Hon Man; Huang, Jui-Hsien

    2006-04-03

    A monomeric aluminum hydride complex bearing substituted pyrrolyl ligands, AlH[C(4)H(3)N(CH(2)NMe(2))-2](2) (1), was synthesized and structurally characterized. To further confirm the presence of Al--H bonds, the compound AlD[C(4)H(3)N(CH(2)NMe(2))-2](2) ([D]1) was synthesized by reacting LiAlD(4) with [C(4)H(4)N(CH(2)NMe(2))-2]. Compound 1 and [D]1 react with phenyl isothiocyanate yielding Al[C(4)H(3)N(CH(2)NMe(2))-2](2)[eta(3)-SCHNPh] (2) and Al[C(4)H(3)N(CH(2)NMe(2))-2](2)[eta(3)-SCDNPh] ([D]2) by insertion. The reactions of 1 with 9-fluorenone and benzophenone generated the unusual aluminum alkoxide complexes 3 and 4, respectively, through intramolecular proton abstraction and C-C coupling. A mechanistic study shows that 9-fluorenone coordinates to [D]1 and releases one equivalent of HD followed by C-C coupling and hydride transfer to yield the final product. Reduction of benzil with 1 affords aluminum enediolate complex 5 in moderate yield. Mechanistic studies also showed that the benzil was inserted into the aluminum hydride bond of [D]1 through hydroalumination followed by proton transfer to generate the final product [D]5. All new complexes have been characterized by (1)H and (13)C NMR spectroscopy and X-ray crystallography.

  9. Spontaneous formation of GaN/AlN core-shell nanowires on sapphire by hydride vapor phase epitaxy

    Science.gov (United States)

    Trassoudaine, Agnès; Roche, Elissa; Bougerol, Catherine; André, Yamina; Avit, Geoffrey; Monier, Guillaume; Ramdani, Mohammed Réda; Gil, Evelyne; Castelluci, Dominique; Dubrovskii, Vladimir G.

    2016-11-01

    Spontaneous GaN/AlN core-shell nanowires with high crystal quality were synthesized on sapphire substrates by vapor-liquid-solid hydride vapor phase epitaxy (VLS-HVPE) without any voluntary aluminum source. Deposition of aluminum is difficult to achieve in this growth technique which uses metal-chloride gaseous precursors: the strong interaction between the AlCl gaseous molecules and the quartz reactor yields a huge parasitic nucleation on the walls of the reactor upstream the substrate. We open up an innovative method to produce GaN/AlN structures by HVPE, thanks to aluminum etching from the sapphire substrate followed by redeposition onto the sidewalls of the GaN core. The paper presents the structural characterization of GaN/AlN core-shell nanowires, speculates on the growth mechanism and discusses a model which describes this unexpected behavior.

  10. Synthesis and formation process of Al2CuHx: A new class of interstitial aluminum-based alloy hydride

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saitoh

    2013-09-01

    Full Text Available Aluminum-based alloy hydride Al2CuHx (x ∼ 1 is synthesized by hydrogenating Al2Cu alloy using high-temperature and high-pressure hydrogen atmosphere. Al8Cu square antiprisms in Al2Cu twist around the c axis of a tetragonal unit cell by hydrogenation. The twist enlarges the interstitial spaces for accommodating hydrogen atoms which align linearly parallel to the c axis in Al2CuHx. Thermodynamic stability of Al2CuHx results from the balance of stabilization by H 1s and Al 3sp hybridization and destabilization owing to the Fermi-level lifting upon hydrogenation. The crystal and electronic structures of Al2CuHx illustrate the formation of an interstitial hydride of aluminum-based alloy.

  11. Molecular aluminum hydrides identified by inelastic neutron scattering during H2 regeneration of catalyst-doped NaAlH4.

    Science.gov (United States)

    Fu, Qi Jia; Ramirez-Cuesta, A J; Tsang, Shik Chi

    2006-01-19

    Catalyst-doped sodium aluminum hydrides have been intensively studied as solid hydrogen carriers for onboard proton-exchange membrane (PEM) fuel cells. Although the importance of catalyst choice in enhancing kinetics for both hydrogen uptake and release of this hydride material has long been recognized, the nature of the active species and the mechanism of catalytic action are unclear. We have shown by inelastic neutron scattering (INS) spectroscopy that a volatile molecular aluminum hydride is formed during the early stage of H2 regeneration of a depleted, catalyst-doped sodium aluminum hydride. Computational modeling of the INS spectra suggested the formation of AlH3 and oligomers (AlH3)n (Al2H6, Al3H9, and Al4H12 clusters), which are pertinent to the mechanism of hydrogen storage. This paper demonstrates, for the first time, the existence of these volatile species.

  12. On the thermodynamics of phase transitions in metal hydrides

    Science.gov (United States)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  13. Well-Defined Silica Supported Aluminum Hydride: Another Step Towards the Utopian Single Site Dream?

    KAUST Repository

    Werghi, Baraa

    2015-07-17

    Reaction of triisobutylaluminum with SBA15700 at room temperature occurs by two parallel pathways involving either silanol or siloxane bridges. It leads to the formation of a well-defined bipodal [(≡SiO)2Al-CH2CH(CH3)2] 1a, silicon isobutyl [≡Si-CH2CH(CH3)2] 1b and a silicon hydride [≡Si-H] 1c. Their structural identity was characterized by FT-IR and advance solid-state NMR spectroscopies (1H, 13C, 29Si, 27Al and 2D multiple quantum), elemental and gas phase analysis, and DFT calculations. The reaction involves the formation of a highly reactive monopodal intermediate: [≡SiO-Al-[CH2CH(CH3)2]2], with evolution of isobutane. This intermediate undergoes two parallel routes: Transfer of either one isobutyl fragment or of one hydride to an adjacent silicon atom. Both processes occur by opening of a strained siloxane bridge, ≡Si-O-Si≡ but with two different mechanisms, showing that the reality of “single site” catalyst may be an utopia: DFT calculations indicate that isobutyl transfer occurs via a simple metathesis between the Al-isobutyl and O-Si bonds, while hydride transfer occurs via a two steps mechanism, the first one is a ß-H elimination to Al with elimination of isobutene, whereas the second is a metathesis step between the formed Al-H bond and a O-Si bond. Thermal treatment of 1a (at 250 °C) under high vacuum (10-5 mbar) generates Al-H through a ß-H elimination of isobutyl fragment. These supported well-defined Al-H which are highly stable with time, are tetra, penta and octa coordinated as demonstrated by IR and 27Al–1H J-HMQC NMR spectroscopy. All these observations indicate that surfaces atoms around the site of grafting play a considerable role in the reactivity of a single site system.

  14. Well-defined silica supported aluminum hydride: another step towards the utopian single site dream?

    Science.gov (United States)

    Werghi, Baraa; Bendjeriou-Sedjerari, Anissa; Sofack-Kreutzer, Julien; Jedidi, Abdesslem; Abou-Hamad, Edy; Cavallo, Luigi; Basset, Jean-Marie

    2015-10-01

    Reaction of triisobutylaluminum with SBA15 700 at room temperature occurs by two parallel pathways involving either silanol or siloxane bridges. It leads to the formation of a well-defined bipodal [( 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 SiO) 2 Al-CH 2 CH(CH 3 ) 2 ] 1a , silicon isobutyl [Si-CH 2 CH(CH 3 ) 2 ] 1b and a silicon hydride [Si-H] 1c . Their structural identity was characterized by FT-IR and advanced solid-state NMR spectroscopies ( 1 H, 13 C, 29 Si, 27 Al and 2D multiple quantum), elemental and gas phase analysis, and DFT calculations. The reaction involves the formation of a highly reactive monopodal intermediate: [SiO-Al-[CH 2 CH(CH 3 ) 2 ] 2 ], with evolution of isobutane. This intermediate undergoes two parallel routes: transfer of either one isobutyl fragment or of one hydride to an adjacent silicon atom. Both

  15. Effect of thermal decomposition kinetics on phase composition of hydrides based on zirconium

    International Nuclear Information System (INIS)

    Lunin, V.V.; Solovetskij, Yu.I.; Chernavskij, P.A.; Ryabchenko, P.V.

    1981-01-01

    Kinetics of hydrogen separation from hydrides ZrHsub(1,95), ZrNiHsub(2,88), ZrCoHsub(2,88), ZrFeHsub(0,52) and ZrCosub(2)Hsub(0,20) (approximately 500-1000 K) is studied using a revised carrying-gas technique. The curves of the time dependence of the relative rate of hydrogen evolution for hydrides ZrCoHsub(2,88) and ZrHsub(1,95) have two well expressed maxima. It is established that hydrogen evolution from ZrHsub(1,95) hydride is accompanied by two phase transformations from epsilon phase into delta-phase and from delta-phase into (#betta#+delta)-phase, a local maximum on the curve corresponding to each phase transformation. On the kinetic curve of ZrCoHsub(2,88) a phase transformation from (α+#betta# 2 )-to α-phase corresponds to one of the maxima. However, the other (the first) maximum is not accompanied by a phase transformation and evidently applears as a result of hydrogen evolution, the hydrogen differing by a weaker bond with the intermetallide crystal lattice. Activation energies of hydrogen evolution from different phases of hydrides are determined. For hydrides ZrNiHsub(2,88), ZrCosub(2)Hsub(0,20) and ZrFeHsub(0,52) within the experiment accuracy range only one maximum has been observed on the kinetic curves of hydrogen evolution. A supposition is made that the process of hydrogen evolution for these hydrides proceeds without changes in their phase composition

  16. Analysis of hydrogen storage in metal hydride tanks introducing an induced phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Gondor, Germain; Lexcellent, Christian [Institut FEMTO-ST, Departement de Mecanique Appliquee (LMARC), Universite de Franche-Comte, UMR CNRS 6174, 24 Chemin de l' Epitaphe, 25000 Besancon (France)

    2009-07-15

    Hydrogen absorption in a metal hydride tank is generally studied based on a heat and mass transfer analysis. The originality of this investigation is that the phase transformation from a solid ({alpha} phase) to hydride ({beta} phase) solution is included in the hydrogen absorption mechanism. Toward this end, a modelling of the equilibrium pressure, composition (absorbed or desorbed hydrogen atoms per metal atoms), and isothermal curves of a LaNi{sub 5} alloy is performed. Moreover, a kinetic model is developed taking into account the steps of hydrogen absorption and desorption (i.e., physisorption, chemisorption, surface penetration, nucleation and growth of the hydride phase and diffusion). Simulations are then performed to show the impact of external conditions (hydrogen gas pressure and temperature) and parameter values (wall heat transfer, conductivities of gas and solid, viscosity, porosity, etc.) on refilling time. The physical nature of the phase transformation associated to the hydrogen storage remains an open problem. (author)

  17. Reduction of prion infectivity and levels of scrapie prion protein by lithium aluminum hydride: implications for RNA in prion diseases.

    Science.gov (United States)

    Jeong, Byung-Hoon; Kim, Nam-Ho; Jin, Jae-Kwang; Choi, Jin-Kyu; Lee, Yun-Jung; Kim, Jae-Il; Choi, Eun-Kyoung; Carp, Richard I; Kim, Yong-Sun

    2009-08-01

    Previous studies indicate that RNA may be required for proteinase-resistant prion protein (PrP) amplification and for infectious prion formation in vitro, suggesting that RNA molecules may function as cellular cofactors for abnormal PrP (PrPSc) formation and become part of the structure of the infectious agent. To address this question, we used chemicals that can cleave phosphodiester bonds of RNA and assessed their effects on the infectious agent. Lithium aluminum hydride, a reducing agent that can induce reductive cleavage of oxidized molecules such as carbonyls, carboxyl acids, esters, and phosphodiester bonds, did not affect cellular PrP degradation; however, it destroyed PrPSc, extended the scrapie incubation period, and markedly reduced total RNA concentrations. These results prompted us to investigate whether RNA molecules are cofactors for PrPSc propagation. RNase A treatment of partially purified PrP and of 263K scrapie brain homogenates was sufficient to increase the sensitivity of PrPSc to proteinase K degradation. This is the first evidence that suggests that RNA molecules are a component of PrPSc. Treatment with RNase A alone and PrP degradation by RNase A plus proteinase K in vitro, however, did not result in loss of scrapie infectivity compared with the effects of lithium aluminum hydride. Together, these data suggest that RNA molecules may be important for maintaining the structure of PrPSc and that oxidized molecules can be important in scrapie agent replication and prion infectivity.

  18. Phases in lanthanum-nickel-aluminum alloys

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi 5 -phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified

  19. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    Science.gov (United States)

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  20. Characterization of a U-Mo alloy subjected to direct hydriding of the gamma phase

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.

    2003-01-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has imposed the need to develop plate-type fuel elements based on high density uranium compounds, such as U-Mo alloys. One of the steps in the fabrication of the fuel elements is the pulverization of the fissile material. In the case of the U-Mo alloys, the pulverization can be accomplished through hydriding - dehydriding. Two alternative methods of the hydriding-dehydriding process, namely the selective hydriding in alpha phase (HS-alpha) and the massive hydriding in gamma phase (HM-gamma) are currently being studied at the Comision Nacional de Energia Atomica. The HM-gamma method was reproduced at laboratory scale starting from a U-7 wt % Mo alloy. The hydrided and dehydrided materials were characterized using metallographic techniques, scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction. These results are compared with previous results of the HS-alpha method. (author)

  1. The Influence of Titanium Hydride Pretreatment on the Compressive Properties of Aluminum Foam

    OpenAIRE

    Zan ZHANG; Xingchuan XIA; Weimin ZHAO; Xiaowei CHEN; Xu CHEN

    2014-01-01

    Macrostructure has an important effect on the compressive properties of closed-cell aluminum foams. Meanwhile, the decomposition behavior of a foaming agent has a significant influence on the macrostructure of closed-cell aluminum foams. In order to get optimal compressive properties on aluminum foams, it is important to obtain the optimal decomposition behavior of a foaming agent. In this paper, different heat treatment temperatures and fixed heat treatment were employed to investigate the d...

  2. Initiation of the structure phase transitions in zirconium hydride by helium

    International Nuclear Information System (INIS)

    Kupryazhkin, A.Ya.; Pletnev, R.N.; Ivanovskij, A.L.; Shchepetkin, A.A.; Alyamovskij, S.I.; Zabolotskaya, E.V.; Gubanov, V.A.

    1986-01-01

    Reasons for zirconium hydride cubic σ-phase appearance and change in the lattice parameters in the initial tetragonal ε phase when helium interacting with ZrH x (x=1.6-2.0) have been investigated. The semiempirical self-consistent method has shown that helium introduction into ZrH x lattice increases overlapping of AO Zr-Zr and Zr-H for atoms near the impurity center, and also causes ratio change in the total single-electron energy for the strucure clusters of both phases in order to stabilize the cubic hydride phase. Helium interaction with the surface and grain boundaries and in this case disposal from the volume of the oxygen impurity specimen stabilizing the tetragonal phase can be a mechanism of initiation of ε-δ phase transition

  3. Hydride phase dissolution enthalpy in neutron irradiated Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abraham D.

    2003-01-01

    The differential calorimetric technique has been applied to measure the dissolution enthalpy, ΔH irrad δ→α , of zirconium hydrides precipitated in structural components removed from the Argentine Atucha 1 PHWR nuclear power plant after 10.3 EFPY. An average value of ΔH irrad δ→α = 5 kJ/mol H was obtained after the first calorimetric run. That value is seven times lower than the value of ΔH δ→α = 37.7 kJ/mol H recently determined in Zircaloy-4 specimens taken from similar unirradiated structural components using the same calorimetric technique, [1]. Post-irradiation thermal treatments gradually increase that low value towards the unirradiated value with increasing annealing temperature similar to that observed for TSSd irrad . Therefore the same H atom trapping mechanism during reactor operation already proposed to explain the evolution of TSSd irrad is also valid for Q irrad δ→α . As the ratio Q/ΔH is proportional to the number N H of H atoms precipitated as hydrides, the increment of Q irrad δ→α with the thermal treatment indicates that the value of N H also grows with the annealing reaching the value corresponding to the bulk H concentration when ΔH irrad δ→α ≅ 37 kJ/mol H. That is a direct indication that the post-irradiation thermal treatment releases the H atoms from their traps increasing the number of H atoms available to precipitate at the end of each calorimetric run and/or isothermal treatment. (author)

  4. New nanomaterials for hydrogen storage. A new class of aluminum hydrides; Neue Nanomaterialien zur Wasserstoffspeicherung. Eine neue Klasse von Aluminiumhydriden

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, Joern

    2009-02-13

    In this work, Aluminum was vaporized in a PACIS cluster source, while molecular Hydrogen was also provided, thus producing Aluminum hydride clusters. These clusters were mass selected and investigated via Photoelectron Spectroscopy with anions in order to determine their electronic structure. In a cooperation with Puru Jena et al. at the Virginia Commonwealth University, electronic and geometric structures of the clusters were also calculated using Density Functional Theory. A group of clusters, specifically Al{sub 4}H{sub 4}, Al{sub 4}H{sub 6} and a series of clusters Al{sub n}H{sub n+2} (5 {<=} n {<=} 8) showed large HOMO-LUMO-Gaps and relatively small adiabatic electron affinities, hinting towards an increased stability of these clusters. The resemblance of the structures of already known and stable Boranes (BnHm) led to investigations whether ''Wade's Rules'' could also be applied to the new Alanes Al{sub n}H{sub m}. Comparison of the experimentally found values for the HOMO-LUMO-Gap, Adiabatic electron Affinity and Vertical Detachment Energy with the calculated values led to geometric structures of the ground states that, in case of the clusters Al{sub n}H{sub n+2} (5 {<=} n {<=} 8) follow Wade's (n+1) rule: They adopt hollow, cage-like closo-structures with one terminal Hydrogen atom per Aluminum atom and two additional Hydrogen atoms on bridge-sites. The clusters Al{sub 4}H{sub 4} and Al{sub 4}H{sub 6} have tetrahedron-shaped structures. While Al{sub 4}H{sub 4} is a perfect tetrahedron, Al{sub 4}H{sub 6} adopts a slightly distorted tetrahedral geometry with D{sub 2d} symmetry and two Hydrogen atoms on bridge sites. Furthermore, Al{sub 4}H{sub 6} showed the biggest HOMO-LUMO-Gap of all investigated clusters with a value of 1.9 {+-} 0.1 eV. These findings seem to contradict Wade's (n+1) rule, but can be understood in terms of the Polyhedral Skeletal Electron Pair Theory (PSEPT). The molecular orbitals predicted by the PSEPT

  5. Photoelectron spectroscopy of the aluminum hydride anions: AlH2(-), AlH3(-), Al2H6(-), Al3H9(-), and Al4H12(-).

    Science.gov (United States)

    Zhang, Xinxing; Wang, Haopeng; Collins, Evan; Lim, Alane; Ganteför, Gerd; Kiran, Boggavarapu; Schnöckel, Hansgeorg; Eichhorn, Bryan; Bowen, Kit

    2013-03-28

    We report measurements of the negative ion photoelectron spectra of the simple aluminum hydride anions: AlH2(-), AlH3(-), Al2H6(-), Al3H9(-), and Al4H12(-). From these spectra, we measured the vertical detachment energies of the anions, and we estimated the electron affinities of their neutral counterparts. Our results for AlH2(-), AlH3(-), and Al2H6(-) were also compared with previous predictions by theory.

  6. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  7. Cationic aluminum hydride complexes: reactions of carbene-alane adducts with trityl-borate.

    Science.gov (United States)

    Cao, Levy L; Daley, Erika; Johnstone, Timothy C; Stephan, Douglas W

    2016-04-18

    Reaction of (Idipp)AlH3 with [Ph3C][B(C6F5)4] in toluene affords the dimeric aluminum dication [((Idipp)AlH(μ-H))2][B(C6F5)4]22. In contrast, the reaction of (IBn)AlH3 with [Ph3C][B(C6F5)4] in bromobenzene gives a redistribution product, the salt of a monomeric dication [(IBn)2AlH][B(C6F5)4]24.

  8. Novel 3-hydroxypropyl-bonded phase by direct hydrosilylation of allyl alcohol on amorphous hydride silica.

    Science.gov (United States)

    Gómez, Jorge E; Navarro, Fabián H; Sandoval, Junior E

    2014-09-01

    A novel 3-hydroxypropyl (propanol)-bonded silica phase has been prepared by hydrosilylation of allyl alcohol on a hydride silica intermediate, in the presence of platinum (0)-divinyltetramethyldisiloxane (Karstedt's catalyst). The regio-selectivity of this synthetic approach had been correctly predicted by previous reports involving octakis(dimethylsiloxy)octasilsesquioxane (Q8 M8 (H) ) and hydrogen silsesquioxane (T8 H8 ), as molecular analogs of hydride amorphous silica. Thus, C-silylation predominated (∼94%) over O-silylation, and high surface coverages of propanol groups (5 ± 1 μmol/m(2) ) were typically obtained in this work. The propanol-bonded phase was characterized by spectroscopic (infrared (IR) and solid-state NMR on silica microparticles), contact angle (on fused-silica wafers) and CE (on fused-silica tubes) techniques. CE studies of the migration behavior of pyridine, caffeine, Tris(2,2'-bipyridine)Ru(II) chloride and lysozyme on propanol-modified capillaries were carried out. The adsorption properties of these select silanol-sensitive solutes were compared to those on the unmodified and hydride-modified tubes. It was found that hydrolysis of the SiH species underlying the immobilized propanol moieties leads mainly to strong ion-exchange-based interactions with the basic solutes at pH 4, particularly with lysozyme. Interestingly, and in agreement with water contact angle and electroosmotic mobility figures, the silanol-probe interactions on the buffer-exposed (hydrolyzed) hydride surface are quite different from those of the original unmodified tube. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A C(sp2)-H Dehydrogenation of Heteroarenes and Arenes by a Functionalized Aluminum Hydride.

    Science.gov (United States)

    Chen, Shimin; Li, Bin; Wang, Xiaoping; Huang, Yanting; Li, Jiancheng; Zhu, Hongping; Zhao, Lili; Frenking, Gernot; Roesky, Herbert W

    2017-10-04

    The 2-aminophenylaluminum dihydride (2-TMP-C 6 H 4 )AlH 2  (2) has been prepared and characterized for the first time. Compound 2 features an intramolecular N⋅⋅⋅Al donor-acceptor bond. 2 reacted with N-methylpyrrole and N-methylindole (both at 50 °C) by means of the elusive AlH C(sp 2 )-H dehydroalumination to aluminum heteroaryls (3 and 4). Moreover, 2 reacted with PhCCSiMe 3 (at room temperature) and Ph 2 CCNR (R=iPr or 2,6-iPr 2 C 6 H 3 , at -30 to 20 °C ) to yield aluminaindene heterocycle (8) and alumina-aza-naphthalene heterocycle (9 and 10), respectively. These reactions underwent hydroalumination followed by AlH C(sp 2 )-H dehydroalumination. The reaction mechanism has been studied by combining experiment and quantum chemical calculations, with the result that the key heteroarene or arene C(sp 2 )-H bond activation is involved under cooperative interaction by the inherent N/Al donor/acceptor pair. The reported reactions open a straightforward route to heteroaryl and unique heterocyclic aluminum compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An Aluminum Hydride That Functions like a Transition-Metal Catalyst.

    Science.gov (United States)

    Yang, Zhi; Zhong, Mingdong; Ma, Xiaoli; De, Susmita; Anusha, Chakkittakandiyil; Parameswaran, Pattiyil; Roesky, Herbert W

    2015-08-24

    The reaction of [LAlH2 ] (L=HC(CMeNAr)2 , Ar=2,6-iPr2 C6 H3 ) with MeOTf (Tf=SO2 CF3 ) resulted in the formation of [LAlH(OTf)] (1) in high yield. The triflate substituent in 1 increases the positive charge at the aluminum center, which implies that 1 has a strong Lewis acidic character. The excellent catalytic activity of 1 for the hydroboration of organic compounds with carbonyl groups was investigated. Furthermore, it was shown that 1 effectively initiates the addition reaction of trimethylsilyl cyanide (TMSCN) to both aldehydes and ketones. Quantum mechanical calculations were carried out to explore the reaction mechanism. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  12. The self-healing of defects induced by the hydriding phase transformation in palladium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ulvestad, A.; Yau, A.

    2017-11-09

    Nanosizing can dramatically alter material properties by enhancing surface thermodynamic contributions, shortening diffusion lengths, and increasing the number of catalytically active sites per unit volume. These mechanisms have been used to explain the improved properties of catalysts, battery materials, plasmonic materials, etc. Here we show that Pd nanoparticles also have the ability to self-heal defects in their crystal structures. Using Bragg coherent diffractive imaging, we image dislocations nucleated deep in a Pd nanoparticle during the forward hydriding phase transformation that heal during the reverse transformation, despite the region surrounding the dislocations remaining in the hydrogen-poor phase. We show that defective Pd nanoparticles exhibit sloped isotherms, indicating that defects act as additional barriers to the phase transformation. Our results resolve the formation and healing of structural defects during phase transformations at the single nanoparticle level and offer an additional perspective as to how and why nanoparticles differ from their bulk counterparts.

  13. Higher Strength, Lighter Weight Aluminum Spacecraft Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I program proposes to develop a bulk processing technology for producing ultra fine grain (UFG) aluminum alloy structures. The goal is to demonstrate...

  14. Metal hydride/chemical heat-pump development project. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Argabright, T.A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  15. First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys

    Science.gov (United States)

    da Silva, Thiago H.; Nelson, Eric B.; Williamson, Izaak; Efaw, Corey M.; Sapper, Erik; Hurley, Michael F.; Li, Lan

    2018-05-01

    First-principles density functional theory-based calculations were performed to study θ-phase Al2Cu, S-phase Al2CuMg surface stability, as well as their interactions with water molecules and chloride (Cl-) ions. These secondary phases are commonly found in aluminum-based alloys and are initiation points for localized corrosion. Density functional theory (DFT)-based simulations provide insight into the origins of localized (pitting) corrosion processes of aluminum-based alloys. For both phases studied, Cl- ions cause atomic distortions on the surface layers. The nature of the distortions could be a factor to weaken the interlayer bonds in the Al2Cu and Al2CuMg secondary phases, facilitating the corrosion process. Electronic structure calculations revealed not only electron charge transfer from Cl- ions to alloy surface but also electron sharing, suggesting ionic and covalent bonding features, respectively. The S-phase Al2CuMg structure has a more active surface than the θ-phase Al2Cu. We also found a higher tendency of formation of new species, such as Al3+, Al(OH)2+, HCl, AlCl2+, Al(OH)Cl+, and Cl2 on the S-phase Al2CuMg surface. Surface chemical reactions and resultant species present contribute to establishment of local surface chemistry that influences the corrosion behavior of aluminum alloys.

  16. Influence of the V/III ratio in the gas phase on thin epitaxial AlN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Claudel, A., E-mail: arnaud.claudel@grenoble-inp.org [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Fellmann, V. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Gélard, I. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Coudurier, N. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Sauvage, D. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Balaji, M. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Crystal Growth Center, Anna University, Chennai 600025 (India); and others

    2014-12-31

    Thin (0001) epitaxial aluminum nitride (AlN) layers were grown on c-plane sapphire using high temperature hydride vapor phase epitaxy. The experimental set-up consists of a vertical cold-wall quartz reactor working at low pressure in which the reactions take place on a susceptor heated by induction. The reactants used are ammonia and aluminum chlorides in situ formed via hydrogen chloride reaction with high purity aluminum pellets. As-grown AlN layers have been characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence and Raman spectroscopies. The influence of the V/III ratio in the gas phase, from 1.5 to 15, on growth rate, surface morphology, roughness and crystalline quality is investigated in order to increase the quality of thin epitaxial AlN layers grown at high temperature. Typical growth rates of around 0.45 μm/h were obtained for such thin epitaxial AlN layers. The growth rate was unaffected by the V/III ratio. An optimum for roughness, crystalline quality and optical properties seems to exist at V/III = 7.5. As a matter of fact, for a V/III ratio of 7.5, best root mean square roughness and crystalline quality — measured on 0002 symmetric reflection — as low as 6.9 nm and 898 arcsec were obtained, respectively. - Highlights: • Growth of thin epitaxial AlN layers by high temperature hydride vapor phase epitaxy • Influence of V/III ratio on growth rate, morphology and crystalline quality • The effect of surface morphology on strain state and crystal quality is established.

  17. Solute hydrogen and hydride phase implications on the plasticity of zirconium and titanium alloys: a review and some recent advances.

    Science.gov (United States)

    Conforto, E; Guillot, I; Feaugas, X

    2017-07-28

    In this contribution, we propose a review of the possible implications of hydrogen on mechanical behaviour of Zr and Ti alloys with emphasis on the mechanisms of plasticity and strain hardening. Recent advances on the impact of oxygen and hydrogen on the activation volume show that oxygen content hinders creep but hydrogen partially screens this effect. Both aspects are discussed in terms of a locking-unlocking model of the screw dislocation mobility in prismatic slip. Additionally, possible extension of this behaviour is suggested for the [Formula: see text] pyramidal slip. The low hydrogen solubility in both Zr and Ti leads in many cases to hydride precipitation. The nature of these phases depends on the hydrogen content and can show crystallographic orientation relationships with the hexagonal compact structure of the alloys. Some advances on the thermal stability of these phases are illustrated and discussed in relation with the deepening of the misfit dislocations. Under tensile loading, we showed that hydrides enhance the hardening process in relation with internal stress due to strain incompatibilities between the Zr and Ti matrix and hydride phases. Different plastic yielding processes of hydrides were identified, which progressively reduce these strain incompatibilities.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  18. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  19. Synthesis and crystal structure of Sr(2)AlH(7): a new structural type of alkaline earth aluminum hydride.

    Science.gov (United States)

    Zhang, Qing-An; Nakamura, Yumiko; Oikawa, Ken-ich; Kamiyama, Takashi; Akiba, Etsuo

    2002-12-16

    The title hydride and its deuteride were successfully synthesized. The heavy atom structure and hydrogen positions were determined respectively by X-ray powder diffraction and time-of-flight neutron powder diffraction. They crystallize with a new monoclinic structure in space group I2 (No. 5); cell parameters: a = 12.575(1) A, b = 9.799(1) A, c = 7.9911(8) A, beta = 100.270(4) degrees (hydride), a = 12.552(1) A, b = 9.7826(8) A, c = 7.9816(7) A, beta = 100.286(4) degrees (deuteride), Z = 8. Sr(2)AlH(7) is the first example that consists of isolated [AlH(6)] units and infinite one-dimensional twisted chains of edge-sharing [HSr(4)] tetrahedra along the crystallographic c axis.

  20. Formation of Gas-Phase Formate in Thermal Reactions of Carbon Dioxide with Diatomic Iron Hydride Anions.

    Science.gov (United States)

    Jiang, Li-Xue; Zhao, Chongyang; Li, Xiao-Na; Chen, Hui; He, Sheng-Gui

    2017-04-03

    The hydrogenation of carbon dioxide involves the activation of the thermodynamically very stable molecule CO 2 and formation of a C-H bond. Herein, we report that HCO 2 - and CO can be formed in the thermal reaction of CO 2 with a diatomic metal hydride species, FeH - . The FeH - anions were produced by laser ablation, and the reaction with CO 2 was analyzed by mass spectrometry and quantum-chemical calculations. Gas-phase HCO 2 - was observed directly as a product, and its formation was predicted to proceed by facile hydride transfer. The mechanism of CO 2 hydrogenation in this gas-phase study parallels similar behavior of a condensed-phase iron catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Triethylborane-induced radical reactions with gallium hydride reagent HGaCl2.

    Science.gov (United States)

    Mikami, S; Fujita, K; Nakamura, T; Yorimitsu, H; Shinokubo, H; Matsubara, S; Oshima, K

    2001-06-14

    [see reaction]. A gallium hydride reagent, HGaCl2, was found to act as a radical mediator, like tributyltin hydride. Treatment of alkyl halides with the gallium hydride reagent, generated from gallium trichloride and sodium bis(2-methoxyethoxy)aluminum hydride, provided the corresponding reduced products in excellent yields. Radical cyclization of halo acetals was also successful with not only the stoichiometric gallium reagent but also a catalytic amount of gallium trichloride combined with stoichiometric aluminum hydride as a hydride source.

  2. A Kinetic Model for GaAs Growth by Hydride Vapor Phase Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Kevin L.; Simon, John; Jain, Nikhil; Young, David L.; Ptak, Aaron J.

    2016-11-21

    Precise control of the growth of III-V materials by hydride vapor phase epitaxy (HVPE) is complicated by the fact that the growth rate depends on the concentrations of nearly all inputs to the reactor and also the reaction temperature. This behavior is in contrast to metalorganic vapor phase epitaxy (MOVPE), which in common practice operates in a mass transport limited regime where growth rate and alloy composition are controlled almost exclusively by flow of the Group III precursor. In HVPE, the growth rate and alloy compositions are very sensitive to temperature and reactant concentrations, which are strong functions of the reactor geometry. HVPE growth, particularly the growth of large area materials and devices, will benefit from the development of a growth model that can eventually be coupled with a computational fluid dynamics (CFD) model of a specific reactor geometry. In this work, we develop a growth rate law using a Langmuir-Hinshelwood (L-H) analysis, fitting unknown parameters to growth rate data from the literature that captures the relevant kinetic and thermodynamic phenomena of the HVPE process. We compare the L-H rate law to growth rate data from our custom HVPE reactor, and develop quantitative insight into reactor performance, demonstrating the utility of the growth model.

  3. Evidence of the facile hydride and enolate addition to the imine bond of an aluminum-salophen complex.

    Science.gov (United States)

    Cametti, Massimo; Dalla Cort, Antonella; Colapietro, Marcello; Portalone, Gustavo; Russo, Luca; Rissanen, Kari

    2007-10-29

    The isolation of complexes 2 and 3, unambiguously characterized by single-crystal X-ray diffraction, demonstrates that nucleophilic additions to the aluminum-coordinated imino bond of salophen complex 1 can be achieved under very mild conditions.

  4. High Productivity Aluminum Manufacturing: Phase 1

    Science.gov (United States)

    2013-07-31

    recommended not to continue this program to the planned second year, Phase 2 tasks. 15. SUBJECT TERMS butt welding, LCS, high deposition , GMAW...10 Figure 1B High Deposition GMAW...length of the “stem of wine glass” for each weld condition

  5. Determination of arsenic and selenium by hydride generation and headspace solid phase microextraction coupled with optical emission spectrometry

    Science.gov (United States)

    Tyburska, Anna; Jankowski, Krzysztof; Rodzik, Agnieszka

    2011-07-01

    A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL - 1 , respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.

  6. Silica hydride based phases for small molecule separations using automated liquid chromatography-mass spectrometry method development.

    Science.gov (United States)

    Appulage, Dananjaya K; Schug, Kevin A

    2017-07-21

    Silica hydride, or Type C silica, has been developed as an alternative chromatographic support material for liquid chromatography. There are various bonded phases available with this new support. For four such phases (Cholesterol, Bidentate C18, Diamond Hydride, and Diol), retention and selectivity behavior were investigated using liquid chromatography coupled with triple quadrupole mass spectrometry. A set of small molecules from several chemical classes of interest, and varying in their physicochemical properties, were chromatographed under both reversed-phase and aqueous normal phase modes. To screen the columns, column switching was performed using an automated platform controlled by associated software and an additional valve. A typical scouting gradient was implemented. The separation conditions were not further optimized since the goal was simply to evaluate the variable retention behavior of the phases and selectivity under generic conditions. Further, retention of the analytes were evaluated under isocratic conditions with varying percentages of organic phase to visualize the potential for dual retention modes on the same column for certain analytes. Four analytes (fentanyl, hydrocodone, hydromorphone, and matrine) showed dual mode retention behavior with all four phases. Especially, fentanyl exhibited dramatic "U-shaped" retention profiles on Cholesterol and Bidentate C18 phases. Overall, changes in the retention order between reversed phase and aqueous normal phases emphasized the potential for altered selectivity. Results showed that the Cholesterol phase provided the highest retention for most analytes compared to the other phases. The more polar Diol phase still provided good retention in reversed phase mode. Retention and selectivity were all highly reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  8. Next Generation Energetic Materials: New Cluster Hydrides and Metastable Alloys of Aluminum in Very Low Oxidation States

    Science.gov (United States)

    2016-10-01

    aluminum clusters, energetic materials, cluster compounds, low oxidation Unclassified Unclassified Unclassified SAR 38 Allen Dalton 703...dialumane supported by pyrazolate ligands”, Snyder, C. J.; Zavalij, P.; Bowen, K. H.; Schnöckel, H.; Eichhorn, B. W. Dalton Transactions. 44, 2956–2958...elementary steps, we additionally per- formed density functional theory calculations. The results show that for both even- and odd-numbered clusters the

  9. Environmentally friendly method to grow wide-bandgap semiconductor aluminum nitride crystals: Elementary source vapor phase epitaxy.

    Science.gov (United States)

    Wu, PeiTsen; Funato, Mitsuru; Kawakami, Yoichi

    2015-11-30

    Aluminum nitride (AlN) has attracted increasing interest as an optoelectronic material in the deep ultraviolet spectral range due to its wide bandgap of 6.0 eV (207 nm wavelength) at room temperature. Because AlN bulk single crystals are ideal device substrates for such applications, the crystal growth of bulky AlN has been extensively studied. Two growth methods seem especially promising: hydride vapor phase epitaxy (HVPE) and sublimation. However, the former requires hazardous gases such as hydrochloric acid and ammonia, while the latter needs extremely high growth temperatures around 2000 °C. Herein we propose a novel vapor-phase-epitaxy-based growth method for AlN that does not use toxic materials; the source precursors are elementary aluminum and nitrogen gas. To prepare our AlN, we constructed a new growth apparatus, which realizes growth of AlN single crystals at a rate of ~18 μm/h at 1550 °C using argon as the source transfer via the simple reaction Al + 1/2N2 → AlN. This growth rate is comparable to that by HVPE, and the growth temperature is much lower than that in sublimation. Thus, this study opens up a novel route to achieve environmentally friendly growth of AlN.

  10. Environmentally friendly method to grow wide-bandgap semiconductor aluminum nitride crystals: Elementary source vapor phase epitaxy

    Science.gov (United States)

    Wu, Peitsen; Funato, Mitsuru; Kawakami, Yoichi

    2015-11-01

    Aluminum nitride (AlN) has attracted increasing interest as an optoelectronic material in the deep ultraviolet spectral range due to its wide bandgap of 6.0 eV (207 nm wavelength) at room temperature. Because AlN bulk single crystals are ideal device substrates for such applications, the crystal growth of bulky AlN has been extensively studied. Two growth methods seem especially promising: hydride vapor phase epitaxy (HVPE) and sublimation. However, the former requires hazardous gases such as hydrochloric acid and ammonia, while the latter needs extremely high growth temperatures around 2000 °C. Herein we propose a novel vapor-phase-epitaxy-based growth method for AlN that does not use toxic materials; the source precursors are elementary aluminum and nitrogen gas. To prepare our AlN, we constructed a new growth apparatus, which realizes growth of AlN single crystals at a rate of ~18 μm/h at 1550 °C using argon as the source transfer via the simple reaction Al + 1/2N2 → AlN. This growth rate is comparable to that by HVPE, and the growth temperature is much lower than that in sublimation. Thus, this study opens up a novel route to achieve environmentally friendly growth of AlN.

  11. Novel aluminum hydride derivatives from the reaction of H(3)Al.NMe(3) with the cyclosilazanes.

    Science.gov (United States)

    Fooken, U; Khan, M A; Wehmschulte, R J

    2001-03-12

    The amine hydrogen atoms of the cyclic trimeric silazane [Me(2)SiNH](3) are readily replaced by the H(2)Al. NMe(3) group in a simple aminolyis reaction of [Me(2)SiNH](3) with H(3)Al.NMe(3) to afford the aluminum amides (Me(2)SiNAlH(2).NMe(3))(n)(Me(2)SiNH)(3-n) (1, n = 3; 2, n = 1; 4, n = 2). The monosubstituted amide 2 could not be isolated, because it undergoes condensation to the tricyclic compound 1,1',2,2'-(HAlNMe(3))(2) (3). Contrary to these results the analogous reactions of the more flexible cyclic tetrameric silazane [Me(2)SiNH](4) with H(3)Al.NMe(3) did not give simple aluminum amides, but complicated mixtures were obtained from which the interesting polycyclic species Al(5)C(22)H(73)N(10)Si(8).C(6)H(6) (5) and Al(6)C(22)H(76)N(10)Si(8).1/4 C(6)H(14) (6) could be isolated in low yields. A key step in the formation of 5 and 6 is a low-temperature dehydrosilylation reaction which leads to cleavage of the silazane ring. Compounds 1, 3, and 4 were characterized spectroscopically ((1)H, (13)C, (27)Al NMR and FTIR) and by single crystal X-ray diffraction, whereas 5 and 6 were characterized by X-ray diffraction only. Thermolysis experiments involving 1 and 3 indicate that the onset of Al-N bond formation via dehydrosilylation is accompanied by loss of trimethylamine and formation of larger aggregates, which are stable to further silane elimination to at least 620 degrees C.

  12. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France); Nakhl, M. [Universite Libanaise, Laboratoire de Chimie-Physique des Materiaux LCPM, Fanar (Lebanon); Al Alam, A.F.; Ouaini, N. [Universite Saint-Esprit de Kaslik, Faculte des Sciences et de Genie Informatique, Jounieh (Lebanon); Chevalier, B. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France)

    2010-11-25

    Graphical abstract: Base centered orthorhombic YNiH{sub X} structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH{sub 4} is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH{sub 3} and YNiH{sub 4} hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  13. Structural and Electronic Flexibility in Hydrides of Zintl Phases with Tetrel-Hydrogen and Tetrel-Tetrel Bonds.

    Science.gov (United States)

    Auer, Henry; Schlegel, Robert; Oeckler, Oliver; Kohlmann, Holger

    2017-09-25

    The hydrogenation of Zintl phases enables the formation of new structural entities with main-group-element-hydrogen bonds in the solid state. The hydrogenation of SrSi, BaSi, and BaGe yields the hydrides SrSiH 5/3-x, BaSiH 5/3-x and BaGeH 5/3-x . The crystal structures show a sixfold superstructure compared to the parent Zintl phase and were solved by a combination of X-ray, neutron, and electron diffraction and the aid of DFT calculations. Layers of connected HSr 4 (HBa 4 ) tetrahedra containing hydride ions alternate with layers of infinite single- and double-chain polyanions, in which hydrogen atoms are covalently bound to silicon and germanium. The idealized formulae AeTtH 5/3 (Ae=alkaline earth, Tt=tetrel) can be rationalized with the Zintl-Klemm concept according to (Ae 2+ ) 3 (TtH - )(Tt 2 H 2- )(H - ) 3 , where all Tt atoms are three-binding. The non-stoichiometry (SrSiH 5/3-x , x=0.17(2); BaGeH 5/3-x , x=0.10(3)) can be explained by additional π-bonding of the Tt chains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder

    Science.gov (United States)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.

    1996-01-01

    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  15. Low Mass, Aluminum NOFBX Combustion Chamber Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our team proposes to define a diffusion bonding process for aluminum as an enabling step to ultimately develop an innovative, lightweight, long life, aluminum...

  16. Hydrogenation using hydrides and acid

    Science.gov (United States)

    Bullock, R. Morris

    1990-10-30

    A process for the non-catalytic hydrogenation of organic compounds, which contain at least one reducible functional group, which comprises reacting the organic compound, a hydride complex, preferably a transition metal hydride complex or an organosilane, and a strong acid in a liquid phase.

  17. Point defect dynamics in sodium aluminum hydrides - a combined quasielastic neutron scattering and density functional theory study

    DEFF Research Database (Denmark)

    Shi, Qing; Voss, Johannes; Jacobsen, H.S.

    2007-01-01

    we study hydrogen dynamics in undoped and TiCl3-doped samples of NaAlH4 and Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. Hydrogen dynamics is found to be limited and mediated by hydrogen vacancies in both alanate phases, requiring...

  18. Direct synthesis of catalyzed hydride compounds

    Science.gov (United States)

    Gross, Karl J.; Majzoub, Eric

    2004-09-21

    A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  19. Determination of inorganic arsenic in algae using bromine halogenation and on-line nonpolar solid phase extraction followed by hydride generation atomic flourescence spectrometry

    Science.gov (United States)

    Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydrid...

  20. Metal hydride/chemical heat-pump development project, phase 1

    Science.gov (United States)

    Argabright, T. A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 1100 C (160 to 2300 F) for the source heat and 140 to 1900 C (280 to 3750 F) for the product heat.

  1. Superconductivity and the structural phase transitions in palladium hydride and palladium deuteride

    International Nuclear Information System (INIS)

    Standley, R.W.

    1980-01-01

    The results of two experimental studies of the superconducting transition temperature, T/sub c/, of palladium hydride, PdH/sub x/, and palladium deuteride, PdD/sub x/, are presented. In the first study, the superconducting transition temperature of PdH/sub x/(D/sub x/) is studied as a function of H(D) concentration, x, in the temperature range from 0.2 K to 4K. The data join smoothly with those reported previously by Miller and Satterthwaite at higher temperatures, and the composite data are described by the empirical relation T/sub c/ = 150.8 (x-x/sub o/) 2 244 , where x/sub o/ = 0.715 for hydride samples and 0.668 for deuteride samples. The results, when compared with the theoretical predictions of Klein and Papaconstantopoulos, et al., raise questions about the validity of their explanation of the reverse isotope effect, which is based solely on a difference in force constants. In the second study, the effect of the order-disorder structural transition associated with the 50 K anomaly on the superconductivity of PdH/sub x/(D/sub x/) is investigated. Samples were quenched to low temperatures in the disordered state, and their transition temperatures measured. The samples were then annealed just below the anomaly temperature, and the ordering process followed by monitoring the change in sample resistance. The transition temperatures in the ordered state were then measured

  2. Characteristics of stimulated emission from optically pumped freestanding GaN grown by hydride vapor-phase epitaxy

    CERN Document Server

    Lee, M H; Kim, S T; Chung, S H; Moon, D C

    1999-01-01

    In this study, we observed optically pumped stimulated emission at room temperature in quasi-bulk GaN prepared from thick-film GaN grown on a sapphire substrate by using hydride vapor-phase epitaxy and subsequent mechanical removal of the sapphire substrate. The stimulated emission from the surface and 1-mm-wide-cleaved cavity of the GaN was red-shifted compared to the spontaneous emission by increasing the optical pumping-power density, and the full width at half maximum (FWHM) of the peak decreased. The stimulated emission was demonstrated to have a highly TE-mode polarized nature, and the super-linear dependence of the integrated emission intensity on the excitation power indicated a threshold pump-power density of I sub t sub h = 2 MW/cm sup 2 for one set of stimulated emissions.

  3. Monolithic Approach to Oxide Dispersion Strengthened Aluminum, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nassau Stern Company is investigating an approach for manufacturing oxide dispersion strengthened (ODS) aluminum in bulk rather than powder form. The approach...

  4. Low Cost P/M Aluminum Syntactic Foam for Blade Containment in Turbine Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I SBIR proposes a low density (0.75-1.2g/cc)syntactic aluminum foam energy absorber co-manufactured inside a composite fan case for turbine...

  5. Super Polishing of Aluminum 6061-T6 Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative 2D super-polishing process for Aluminum 6061-T6 planar mirrors which removes diamond point turning (DPT) grooves and attains rms surface finishes below...

  6. Aluminum-CNF Lightweight Radiator Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal relates to a new materials concept for an aluminum-carbon nanofiber composite, high thermal conductivity ultra lightweight material that will form the...

  7. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    International Nuclear Information System (INIS)

    Dabbs, Daniel M.; Aksay, Ilhan A.

    2005-01-01

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations

  8. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Dabbs; Ilhan A. Aksay

    2005-01-12

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations.

  9. Hydrid Antibiotics

    Czech Academy of Sciences Publication Activity Database

    Běhal, Vladislav

    2003-01-01

    Roč. 48, č. 1 (2003), s. 17-25 ISSN 0015-5632 R&D Projects: GA ČR GA204/01/1004 Institutional research plan: CEZ:AV0Z5020903 Keywords : hydrid * antibiotics Subject RIV: EE - Microbiology, Virology Impact factor: 0.857, year: 2003

  10. Fabrication of selective-area growth InGaN LED by mixed-source hydride vapor-phase epitaxy

    Science.gov (United States)

    Bae, Sung Geun; Jeon, Injun; Jeon, Hunsoo; Kim, Kyoung Hwa; Yang, Min; Yi, Sam Nyung; Lee, Jae Hak; Ahn, Hyung Soo; Yu, Young Moon; Sawaki, Nobuhiko; Kim, Suck-Whan

    2018-01-01

    We prepared InGaN light-emitting diodes (LEDs) with the active layers grown from a mixed source of Ga–In–N materials on an n-type GaN substrate by a selective-area growth method and three fabrication steps: photolithography, epitaxial layer growth, and metallization. The preparation followed a previously developed experimental process using apparatus for mixed-source hydride vapor-phase epitaxy (HVPE), which consisted of a multi-graphite boat, for insulating against the high temperature and to control the growth rate of epilayers, filled with the mixed source on the inside and a radio-frequency (RF) heating coil for heating to a high temperature (T > 900 °C) and for easy control of temperature outside the source zone. Two types of LEDs were prepared, with In compositions of 11.0 and 6.0% in the InGaN active layer, and room-temperature electroluminescence measurements exhibited a main peak corresponding to the In composition at either 420 or 390 nm. The consecutive growth of InGaN LEDs by the mixed-source HVPE method provides a technique for the production of LEDs with a wide range of In compositions in the active layer.

  11. Influence of lateral growth on the optical properties of GaN nanowires grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Wu, Shaoteng; Wang, Liancheng; Yi, Xiaoyan; Liu, Zhiqiang; Wei, Tongbo; Yuan, Guodong; Wang, Junxi; Li, Jinmin

    2017-11-01

    GaN nanowires (NWs) are synthesized on Si (111) using vapor-liquid-solid hydride vapor phase epitaxy at low temperature (740-780 °C). We find that the flow rate of the GaCl (HCl) gas has a large impact on the NW lateral growth rate, which affects the NW morphology, axial growth rate, and optical property. Upon increasing the flow rate of GaCl, the uncatalyzed vapor solid lateral growth increases rapidly, leading to variations in NW morphology from wire-like to tower-like and rod-like. The photoluminescence spectrum shows a broad red luminescence (RL) at around 660 nm and a weak near-band-edge luminescence at around 400 nm when lateral growth is at a significant level. Furthermore, spatially resolved cathodoluminescence and high-resolution transmission electron microscopy observations confirmed that this RL originates from the defective lateral growth. Finally, by inhibiting the lateral growth, GaN NWs with a high aspect ratio and excellent crystal quality (no RL observed at around 660 nm) were successfully synthesized with a rapid growth rate of 170 μm/h.

  12. Metastable phase formation in ion-irradiated nickel-aluminum alloys

    International Nuclear Information System (INIS)

    Eridon, J.M.

    1986-01-01

    Phase transformations induced by ion beam mixing of nickel-aluminum alloys with 500-keV krypton ions were investigated over a range of temperatures (80 K to 300K), composition (NiAl 3 , NiAl, Ni 1 Al), initial structures (both nickel-aluminum layers and ordered intermetallic compounds), and doses (ranging from 2 x 10 14 cm -2 to 5 x 10 16 cm -2 ). Samples were formed by alternate evaporation of layers of nickel and aluminum in high vacuum onto copper grids. These samples were check for purity with energy dispersive-x-ray spectroscopy, electron energy-loss spectroscopy, and Rutherford backscattering spectrometry. A portion of these samples was annealed to form the intermetallic compounds appropriate to the given composition. Irradiations were performed at both room temperature (300 K) and 80 K using the 2-MV ion accelerator at Argonne National Laboratory. Phase transformations were observed during both in-situ irradiations in the High Voltage Electron Microscopy at Argonne and also in subsequent electron-diffraction analysis of an array of samples irradiated in a target chamber. Metastable phases formed include disordered crystalline structures at composition s of 25% and 50% aluminum, an amorphous structure at 75% aluminum, and a hexagonal closed-packed structure formed at 25% aluminum. These metastable states were all converted to the stable intermetallic compounds through annealing treatments

  13. Superconducting phases of phosphorus hydride under pressure. Stabilization by mobile molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Tiange; Miller, Daniel P.; Shamp, Andrew; Zurek, Eva [Department of Chemistry, State University of New York, Buffalo, NY (United States)

    2017-08-14

    At 80 GPa, phases with the PH{sub 2} stoichiometry, which are composed of simple cubic like phosphorus layers capped with hydrogen atoms and layers of H{sub 2} molecules, are predicted to be important species contributing to the recently observed superconductivity in compressed phosphine. The electron-phonon coupling in these phases results from the motions of the phosphorus atoms and the hydrogen atoms bound to them. The role of the mobile H{sub 2} layers is to decrease the Coulomb repulsion between the negatively charged hydrogen atoms capping the phosphorus layers. An insulating PH{sub 5} phase, the structure and bonding of which is reminiscent of diborane, is also predicted to be metastable at this pressure. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Synthesis and HPLC evaluation of carboxylic acid phases on a hydride surface.

    Science.gov (United States)

    Pesek, Joseph J; Matyska, Maria T; Gangakhedkar, Surekha; Siddiq, Rukhsana

    2006-04-01

    Three organic moieties containing carboxylic acid functional groups are attached to a particulate silica surface through silanization/hydrosilation. Two compounds (undecylenic acid and 10-undecynoic acid) have 11 carbon chains and the other is a five-carbon acid (pentenoic acid). Bonding is confirmed through carbon elemental analysis, diffuse reflectance infrared fourier transform spectroscopy, and carbon-13 and silicon-29 CP-MAS NMR spectroscopy. The bonded phases are tested by HPLC using PTH amino acids, nucleic acids, theophylline-related compounds, anilines, benzoic acid compounds, choline, and tobramycin. The latter two compounds are used to investigate the aqueous normal phase properties of the three bonded materials.

  15. Cast Aluminum Structures Technology (CAST). Phase I. Preliminary Design

    Science.gov (United States)

    1977-05-01

    achieved by the following design features: 0 Areas between beams and high load fittings were filled with a sheet aluminum web sized by shear load only... Springback (60-40 Dist.)- Ultimate Loads ..... ... ..................... 35 20 Web Ultimate Shear Stress (Shear Resistant Web Design) 39 21 Shear Resistant...to meet the requirements of a spe:ification. In the case nf wrought metal products, the properties data are segregated by product form, , sheet

  16. New alkaline earth aluminum hydride with one-dimensional zigzag chains of [AlH6]: synthesis and crystal structure of BaAlH5.

    Science.gov (United States)

    Zhang, Qing-An; Nakamura, Yumiko; Oikawa, Ken-ich; Kamiyama, Takashi; Akiba, Etsuo

    2002-12-30

    The title hydride and its deuteride were successfully synthesized. The crystal structure of the deuteride was determined by time-of-flight neutron powder diffraction. BaAlD(5) crystallizes with a new orthorhombic structure in space group Pna2(1) (No. 33), cell parameters a = 9.194(1) A, b = 7.0403(9) A, and c = 5.1061(6) A, Z = 4. BaAlH(5) is the first example that contains one-dimensional zigzag chains of [AlH(6)] along the crystallographic c axis.

  17. Boron Hydrides

    Science.gov (United States)

    1946-07-01

    of direct interest could be b.P.4d. ’Thus the discovory of a now proj.ect, since silano is probably too readily infla-zmablo for practical usc’ this...devoted, ho specc4fie compounds vhitih a’-ould be tocdte at prescnt arc: nron tiy * silano , %;2.SiFi3 , diothyl sila~no, (C2 115 )2 Si112, mono r.-rop; ! (n...Bcrohydrido or Li h.... I .A-4A- The prepuation of Silano med of Stannane by the interaction or lithium aluzirun hydride v-ithl silicon tetrtchiorido and

  18. On a reduction in cracking upon the growth of AlN on Si substrates by hydride vapor-phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sharofidinov, Sh. Sh., E-mail: shukrillo71@mail.ru; Nikolaev, V. I.; Smirnov, A. N.; Chikiryaka, A. V.; Nikitina, I. P. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Odnoblyudov, M. A. [St. Petersburg State Polytechnic University (Russian Federation); Bugrov, V. E. [St. Petersburg National Research University of Information Technologies, Mechanics and Optics (Russian Federation); Romanov, A. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-04-15

    The main problem of the epitaxial growth of thick AlN layers on a Si substrate consists in the formation of cracks, which complicates the application of structures of this kind in the fabrication of semiconductor devices. The possibility of obtaining crack-free AlN layers with a thickness exceeding 1 μm and a mirror- smooth surface by hydride vapor-phase epitaxy is demonstrated. The properties of the layers are studied by X-diffraction analysis, optical and scanning electron microscopy, and Raman spectroscopy.

  19. Mineral phases and metals in baghouse dust from secondary aluminum production

    Science.gov (United States)

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78...

  20. Evolution of Intermetallic Phases in Soldering of the Die Casting of Aluminum Alloys

    Science.gov (United States)

    Song, Jie; Wang, Xiaoming; DenOuden, Tony; Han, Qingyou

    2016-06-01

    Most die failures are resulted from chemical reactions of dies and molten aluminum in the die casting of aluminum. The formation of intermetallic phases between a steel die and molten aluminum is investigated by stationary immersion tests and compared to a real die casting process. Three intermetallic phases are identified in the stationary immersion tests: a composite layer and two compact layers. The composite layer is a mixture of α bcc, Al, and Si phases. The α bcc phase changes in morphology from rod-like to spherical shape, while the growth rate of the layer changes from parabolic to linear pattern with immersion time. The first compact layer forms rapidly after immersion and maintains a relatively constant thickness. The second compact layer forms after 4 hours of immersion and exhibits parabolic growth with immersion time. In comparison, only a composite layer and the first compact layer are observed in a real die casting process. The fresh molten aluminum of high growth rate washes away the second intermetallic layer easily.

  1. Nickel-aluminum diffusion: A study of evolution of microstructure and phase

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; Kjartansdóttir, Cecilía Kristín; Burrows, Andrew

    2017-01-01

    Microstructural and phase evolution of an aluminum deposit on nickel, after heat treatment at 883 K, is studied by means of various microscopy techniques, i.e. energy dispersive X-ray spectroscopy, backscattered electron imaging, electron backscatter diffraction, ion channeling contrast imaging...

  2. Phase Transitions in Aluminum Under Shockless Compression at the Z Machine

    Science.gov (United States)

    Davis, Jean-Paul; Brown, Justin; Shulenburger, Luke; Knudson, Marcus

    2017-06-01

    Aluminum 6061 alloy has been used extensively as an electrode material in shockless ramp-wave experiments at the Z Machine. Previous theoretical work suggests that the principal quasi-isentrope in aluminum should pass through two phase transitions at multi-megabar pressures, first from the ambient fcc phase to hcp at around 200 GPa, then to bcc at around 320 GPa. Previous static measurements in a diamond-anvil cell have detected the hcp phase above 200 GPa along the room-temperature isentherm. Recent laser-based dynamic compression experiments have observed both the hcp and bcc phases using X-ray diffraction. Here we present high-accuracy velocity waveform data taken on pure and alloy aluminum materials at the Z Machine under shockless compression with 200-ns rise-time to 400 GPa using copper electrodes and lithium-fluoride windows. These are compared to recent EOS tables developed at Los Alamos National Laboratory, to our own results from diffusion quantum Monte-Carlo calculations, and to multi-phase EOS models with phase-transition kinetics. We find clear evidence of a fast transition around 200 GPa as expected, and a possible suggestion of a slower transition at higher pressure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000.

  3. Pressureless Reaction Sintering of AlON using Aluminum Orthophosphate as a Transient Liquid Phase

    Energy Technology Data Exchange (ETDEWEB)

    Michael Bakas; Henry Chu

    2009-01-01

    Use of aluminum oxynitride (AlON) in transparent armor systems has been difficult due to the expense and limitations of the processing methods currently necessary to achieve transparency. Development of a pressureless processing method based on direct reaction sintering of alumina and aluminum nitride powders would reduce costs and provide a more flexible and practical manufacturing method. It may be possible to develop such a processing method using liquid phase sintering; as long as the liquid phase does not remain in the final sample. AlPO4 forms a liquid phase with Al2O3 and AlN at the temperatures required to sinter AlON, and slowly decomposes into P2O5 and alumina. Therefore, it was investigated as a possible transient liquid phase for reaction-sintered AlON. Small compacts of alumina and aluminum nitride with up to of 15wt% AlPO4 additive were pressed and sintered. It was found that AlPO4 formed the requisite transient liquid phase, and it was possible to adjust the process to produce AlON samples with good transmission and densities of 3.66-3.67 g/cc. XRD confirmed the samples formed were AlON, with no trace of any remaining phosphate phases or excess alumina or aluminum nitride. Based on the results, it was concluded that AlPO4 could be utilized as a transient liquid phase to improve the density and transmission of AlON produced by pressureless reaction sintering.

  4. Phase transformations and thermodynamics of aluminum-based metallic glasses

    Science.gov (United States)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  5. Mineral phases and metals in baghouse dust from secondary aluminum production.

    Science.gov (United States)

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). Published by Elsevier Ltd.

  6. Thermomechanical properties of hafnium hydride

    International Nuclear Information System (INIS)

    Ito, Masato; Kurosaki, Ken; Muta, Hiroaki; Yamanaka, Shinsuke; Uno, Masayoshi; Konashi, Kenji

    2010-01-01

    Fine bulk samples of delta-phase Hf hydride with various hydrogen contents (C H ) ranging from 1.62 to 1.72 in the atomic ratio (H/Hf) were prepared, and their thermomechanical properties were characterized. At room temperature, the sound velocity and Vickers hardness were measured. The elastic modulus was calculated from the measured sound velocity. In the temperature range from room temperature to 673 K, the thermal expansion was measured by using a dilatometer, and the linear thermal expansion coefficient was calculated. Empirical equations describing the thermomechanical properties of Hf hydride as a function of C H were proposed. (author)

  7. Solid phase synthesis of purines from pyrimidines.

    Science.gov (United States)

    Di Lucrezia, R; Gilbert, I H; Floyd, C D

    2000-01-01

    In this paper the solid phase synthesis of various substituted purines is described starting from 4,6-dichloro-5-nitropyrimidine. The 4,6-dichloro-5-nitropyrimidine was coupled to Rink amide resin followed by displacement of the second chloride by an amino compound. Reduction of the nitro compound proved to be problematic but was achieved using lithium aluminum hydride/aluminum trichloride. The diamines (13) were then elaborated to purines by three different routes.

  8. GaAs Solar Cells Grown by Hydride Vapor-Phase Epitaxy and the Development of GaInP Cladding Layers

    Energy Technology Data Exchange (ETDEWEB)

    Simon, John; Schulte, Kevin L.; Young, David L.; Haegel, Nancy M.; Ptak, Aaron J.

    2016-01-01

    The high cost of high-efficiency III-V photovoltaic devices currently limits them to niche markets. Hydride vapor-phase epitaxy (HVPE) growth of III-V materials recently reemerged as a low-cost, high-throughput alternative to conventional metal- organic vapor-phase epitaxy (MOVPE) growth of high-efficiency solar cells. Previously, we demonstrated unpassivated HVPEgrown GaAs p-n junctions with good quantum efficiency and high open-circuit voltage (Voc). In this work, we demonstrate the growth of GaInPby HVPE for use as a high-quality surface passivation layer to GaAs solar cells. Solar cells grown with GaInP window layers show significantly improved quantum efficiency compared with unpassivated cells, increasing the short-circuit current (JSC) of these low-cost devices. These results show the potential of low-cost HVPE for the growth of high-quality III-V devices.

  9. Phase transformations in nickel-aluminum alloys during ion beam mixing

    International Nuclear Information System (INIS)

    Eridon, J.; Rehn, L.; Was, G.

    1986-01-01

    The effect of ion beam mixing of nickel-aluminum alloys with 500 keV krypton ions has been investigated over a range of temperature, composition, ion dose, and post-irradiation thermal treatments. Samples were formed by alternate evaporation of layers of aluminum and nickel. A portion of these samples was subsequently annealed to form intermetallic compounds. Irradiations were performed at both room temperature and 80 0 K using the 2MV ion accelerator at Argonne National Laboratory. Phase transformations were observed during both in situ irradiations in the High Voltage Electron Microscope (HVEM) at Argonne, and also in subsequent analysis of an array of irradiated samples. Electron diffraction indicates the presence of metastable crystalline structures not present in the conventional nickel-aluminum phase diagram. Transformations occur at doses as low as 5 x 10 14 cm -2 and continue to develop as the irradiation progresses up to 2 x 10 16 cm -2 . Layer mixing is followed through Rutherford Backscattering analysis. Samples are also checked with x-rays and Electron Energy Loss Spectroscopy (EELS). A thermodynamic argument is presented to explain the phase transformations in terms of movements on a free energy diagram. This analysis explains the interesting paradox concerning the radiation hardness of the NiAl phase and the amorphous structure of mixed Ni-50% Al layers

  10. Silica-supported aluminum chloride-assisted solution phase synthesis of pyridazinone-based antiplatelet agents.

    Science.gov (United States)

    El Maatougui, Abdelaziz; Azuaje, Jhonny; Sotelo, Eddy; Caamaño, Olga; Coelho, Alberto

    2011-01-10

    A solution phase protocol that enabled the synthesis of three diverse libraries of pyridazin-3-ones incorporating α,β-unsaturated moieties at position 5 of the heterocyclic core has been developed using silica-supported aluminum trichloride as a heterogeneous and reusable catalyst. This robust procedure has facilitated the hit to lead process for these series of compounds and allowed the identification of new potent derivatives that elicit antiplatelet activity in the low micromolar range.

  11. Well-defined silica supported aluminum hydride: another step towards the utopian single site dream?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc02276b Click here for additional data file.

    Science.gov (United States)

    Werghi, Baraa; Bendjeriou-Sedjerari, Anissa; Sofack-Kreutzer, Julien; Jedidi, Abdesslem; Abou-Hamad, Edy

    2015-01-01

    Reaction of triisobutylaluminum with SBA15700 at room temperature occurs by two parallel pathways involving either silanol or siloxane bridges. It leads to the formation of a well-defined bipodal [( 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 SiO)2Al–CH2CH(CH3)2] 1a, silicon isobutyl [Si–CH2CH(CH3)2] 1b and a silicon hydride [Si–H] 1c. Their structural identity was characterized by FT-IR and advanced solid-state NMR spectroscopies (1H, 13C, 29Si, 27Al and 2D multiple quantum), elemental and gas phase analysis, and DFT calculations. The reaction involves the formation of a highly reactive monopodal intermediate: [SiO–Al–[CH2CH(CH3)2]2], with evolution of isobutane. This intermediate undergoes two parallel routes: transfer of either one isobutyl fragment or of one hydride to an adjacent silicon atom. Both processes occur by opening

  12. Phase Transformations of α-Alumina Made from Waste Aluminum via a Precipitation Technique

    Directory of Open Access Journals (Sweden)

    Khamirul Amin Matori

    2012-12-01

    Full Text Available We report on a recycling project in which α-Al2O3 was produced from aluminum cans because no such work has been reported in literature. Heated aluminum cans were mixed with 8.0 M of H2SO4 solution to form an Al2(SO43 solution. The Al2(SO43 salt was contained in a white semi-liquid solution with excess H2SO4; some unreacted aluminum pieces were also present. The solution was filtered and mixed with ethanol in a ratio of 2:3, to form a white solid of Al2(SO43·18H2O. The Al2(SO43·18H2O was calcined in an electrical furnace for 3 h at temperatures of 400–1400 °C. The heating and cooling rates were 10 °C /min. XRD was used to investigate the phase changes at different temperatures and XRF was used to determine the elemental composition in the alumina produced. A series of different alumina compositions, made by repeated dehydration and desulfonation of the Al2(SO43·18H2O, is reported. All transitional alumina phases produced at low temperatures were converted to α-Al2O3 at high temperatures. The X-ray diffraction results indicated that the α-Al2O3 phase was realized when the calcination temperature was at 1200 °C or higher.

  13. Removal of primary iron rich phase from aluminum-silicon melt by centrifugal separation

    Directory of Open Access Journals (Sweden)

    Seong Woo Kim

    2013-03-01

    Full Text Available Recycling is a major consideration in continued aluminum use due to the enormous demand for high quality products. Some impurity elements gradually accumulate through the repetitive reuse of aluminum alloy scrap. Of them, the iron content should be suppressed under the allowed limit. In the present research, a novel separation method was introduced to remove primary iron-rich intermetallic compounds by centrifugation during solidification of Al-Si-Fe alloys. This method does not use the density difference between two phases as in other centrifugal methods, but uses the order of solidification in Al-Si-Fe alloys, because iron promotes the formation of intermetallic compounds with other alloying elements as a primary phase. Two Al-Si-Fe alloys which have different iron contents were chosen as the starting materials. The iron-rich phase could be efficiently removed by centrifuging under a centrifugal force of 40 g. Coarse intermetallic compounds were found in the sample inside the crucible, while rather fine intermetallic compounds were found in the sample outside the crucible. Primary intermetallic compounds were linked to each other via aluminum-rich matrix, and formed like a network. The highest iron removal fraction is 67% and the lowest one is 7% for Al-12Si-1.7Fe alloy. And they are 82% and 18% for Al-12Si-3.4Fe alloy, respectively.

  14. The effect of thermal cycling on the movement of the αZr/ αZr hydride phase boundary in cold-worked Zr-2.5 wt% Nb alloy

    International Nuclear Information System (INIS)

    Cox, B.; Ling, V.C.

    1980-05-01

    A piece of CW Zr-2.5 wt% Nb alloy pressure tube was hydrided at one end in 40 g/L LiOH solution at 573 K (after nickel-plating that end). The result was a solid hydride layer 0.6 mm thick plus approximately 130 ppm hydrogen in the core under the nickel plate. Thermal cycling under conditions similar to those likely to be experienced during a reactor trip did not cause any significant movement of the α+hydridephase boundary along the tube for up to 2688 cycles from 573 to 523 K. Supercharging of the core was observed in the nickel-plated area. Some conclusions have been drawn concerning the origin of the hydrogen in the nickel-plated area, and the factors controlling the supercharging process. (auth)

  15. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  16. On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shamsayei, Maryam; Safari, Meysam; Rezaei, Fatemeh [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2016-05-30

    In this work, for the first time, a rapid, simple and sensitive microextraction procedure is demonstrated for the matrix separation, preconcentration and determination of inorganic selenium species in water samples using an electrochemically controlled in-tube solid phase microextraction (EC-in-tube SPME) followed by hydride generation atomic absorption spectrometry (HG-AAS). In this approach, in which EC-in-tube SPME and HG-AAS system were combined, the total analysis time, was decreased and the accuracy, repeatability and sensitivity were increased. In addition, to increases extraction efficiency, a novel nanostructured composite coating consisting of polypyrrole (PPy) doped with ethyleneglycol dimethacrylate (EGDMA) was prepared on the inner surface of a stainless-steel tube by a facile electrodeposition method. To evaluate the offered setup and the new PPy-EGDMA coating, it was used to extract inorganic selenium species in water samples. Extraction of inorganic selenium species was carried out by applying a positive potential through the inner surface of coated in-tube under flow conditions. Under the optimized conditions, selenium was detected in amounts as small as 4.0 parts per trillion. The method showed good linearity in the range of 0.012–200 ng mL{sup −1}, with coefficients of determination better than 0.9996. The intra- and inter-assay precisions (RSD%, n = 5) were in the range of 2.0–2.5% and 2.7–3.2%, respectively. The validated method was successfully applied for the analysis of inorganic selenium species in some water samples and satisfactory results were obtained. - Graphical abstract: An electrochemically controlled in-tube solid phase microextraction followed by hydride generation atomic absorption spectrometry was developed for extraction and determination ultra-trace amounts of Se in aqueous solutions. - Highlights: • A nanostructured composite coating consisting of PPy doped with EGDMA was prepared. • The coating was

  17. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  18. Structural Phase Evolution in Ultrasonic-Assisted Friction Stir Welded 2195 Aluminum Alloy Joints

    Science.gov (United States)

    Eliseev, A. A.; Fortuna, S. V.; Kalashnikova, T. A.; Chumaevskii, A. V.; Kolubaev, E. A.

    2017-10-01

    The authors examined the structural and phase state of fixed joints produced by method of friction stir welding (FSW) and ultrasonic-assisted friction stir welding (UAFSW) from extruded profile of aluminum alloy AA2195. In order to identify the role of ultrasonic application in the course of welding, such characteristics, as volume fraction and average size of secondary particles are compared in the base material and stir zones of FSW and UAFSW joints. By applying the methods of SEM and TEM analysis, researchers established the complex character of phase transitions as a result of ultrasonic application.

  19. Properties of nanoscale metal hydrides.

    Science.gov (United States)

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  20. Phase transformations of α-alumina made from waste aluminum via a precipitation technique.

    Science.gov (United States)

    Matori, Khamirul Amin; Wah, Loy Chee; Hashim, Mansor; Ismail, Ismayadi; Zaid, Mohd Hafiz Mohd

    2012-12-07

    We report on a recycling project in which α-Al(2)O(3) was produced from aluminum cans because no such work has been reported in literature. Heated aluminum cans were mixed with 8.0 M of H(2)SO(4) solution to form an Al(2)(SO(4))(3) solution. The Al(2)(SO(4))(3) salt was contained in a white semi-liquid solution with excess H(2)SO(4); some unreacted aluminum pieces were also present. The solution was filtered and mixed with ethanol in a ratio of 2:3, to form a white solid of Al(2)(SO(4))(3)·18H(2)O. The Al(2)(SO(4))(3)·18H(2)O was calcined in an electrical furnace for 3 h at temperatures of 400-1400 °C. The heating and cooling rates were 10 °C /min. XRD was used to investigate the phase changes at different temperatures and XRF was used to determine the elemental composition in the alumina produced. A series of different alumina compositions, made by repeated dehydration and desulfonation of the Al(2)(SO(4))(3)·18H(2)O, is reported. All transitional alumina phases produced at low temperatures were converted to α-Al(2)O(3) at high temperatures. The X-ray diffraction results indicated that the α-Al(2)O(3) phase was realized when the calcination temperature was at 1200 °C or higher.

  1. Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head

    Science.gov (United States)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.

  2. Cast B2-phase iron-aluminum alloys with improved fluidity

    Science.gov (United States)

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  3. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  4. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dabbs, Daniel M.; Aksay, I.A.

    2005-12-01

    In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting ''seed'' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The results of this work were recently published in Langmuir: D.M. Dabbs, U. Ramachandran, S. Lu, J. Liu, L.-Q. Wang, I.A. Aksay, ''Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid'' Langmuir, 21, 11690-11695 (2005). The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Citric acid, due to its unfavorable pKa values, was not expected to be useful with silicon-containing solutions. Here, the use of polyols was determined to be effective in maintaining silicon-containing particles under high pH conditions but at smaller size with respect to standard suspensions of silicon-containing particles. There were a number of difficulties working with highly alkaline silicon-containing solutions, particularly in solutions at or near the saturation limit. Small deviations in pH resulted in particle formation or dissolution in the absence of the organic agents. One of the more significant observations was that the polyols appeared to stabilize small particles of silicon oxyhydroxides across a wider range of pH, albeit this was difficult to quantify due to the instability of the solutions.

  5. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  6. Effect of manganese on the ferrum phases of B319 aluminum alloy in lost foam casting

    Directory of Open Access Journals (Sweden)

    Guohua WU

    2004-11-01

    Full Text Available By using ICP spectroscopy, energy dispersive spectroscopy (EDS analysis, X-ray diffraction, SEM and microscope analysis, the effects of Mn on the structure of B319 aluminum alloy are studied. The results show that without addition of Mn, there are coral-like Al2Cu phase and needle like Al5FeSi phase in the structure of casting with lost foam casting (LFC. Precipitation of Al2Cu can take plasce along the long sides of the Al5FeSi needles. Under the rapid cooling rates, such as ones in metallic mold, the Fe phase appears in the form of Chinese script α-Fe. With the addition of Mn, there are Chinese script α-Fe phases (Al15(Mn, Fe3Si2 in the structure of LFC casting. When Fe/Mn≦1.5, the needle-like β-Fe phases transform to Chinese script α-Fe completely. With the decrease of Fe/Mn ratio, the tensile strength and elongation increase, especially the elongation increases greatly. When Fe/Mn ratio decreases from 2.5 to1, the elongation ncreases from 1.2 to 1.9 % by 58 %.

  7. beta Phase Growth and Precipitation in the 5xxx Series Aluminum Alloy System

    Science.gov (United States)

    Scotto D'Antuono, Daniel

    The 5xxx series aluminum alloys are commonly used for structural applications due to their high strength to weight ratio, corrosion resistance, and weldability. This material system is a non-heat treatable aluminum and derives its strength from a super saturation of magnesium (3%>), and from cold rolling. While these materials have many admiral properties, they can undergo a process known as sensitization when exposed to elevated temperatures (50-280°C) for extended periods of time. During this process, magnesium segregates toward the grain boundaries and forms the secondary precipitate β phase (Al3Mg2). When exposed to harsh environments such as sea water, a galvanic couple is formed between the Al matrix and the β phase precipitates. The precipitates become anodic to the matrix and preferentially dissolve leaving gaps along the boundary network, ultimately leading to stress corrosion cracking. While this problem has been known to occur for some time now, questions relating to nucleation sites, misorientation dependence, effect of prior strain, and preferred temperature regimes remain unanswered. The work contained in this thesis attempted to better understand the kinetics, growth, and misorientation dependence, of β phase precipitation using in situ transmission electron microscopy experiments which allowed for direct visualization of the precipitation process. Orientation imaging using a Nanomegas/ASTAR system (OIM in TEM) coupled with the in situ experiments, along with elemental STEM EELs mapping were used to better understand the diffusion of Mg and found low angle boundaries as potential sites for nucleation. The resulting STEM EELs experiments also showed that Mg is much more stable at the grain boundaries than previously thought. Concurrent bulk ex-situ studies were used to compare various heat treatments, as well as to failed in service material showing that the low temperature treatments yield the metastable β’ phase more readily than the

  8. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Kasper T. Møller

    2017-10-01

    Full Text Available Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.

  9. Aluminum Gallium Nitride Alloys Grown via Metalorganic Vapor-Phase Epitaxy Using a Digital Growth Technique

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-04-01

    This work investigates the use of a digital growth technique as a viable method for achieving high-quality aluminum gallium nitride (Al x Ga1- x N) films via metalorganic vapor-phase epitaxy. Digital alloys are superlattice structures with period thicknesses of a few monolayers. Alloys with an AlN mole fraction ranging from 0.1 to 0.9 were grown by adjusting the thickness of the AlN layer in the superlattice. High-resolution x-ray diffraction was used to determine the superlattice period and c-lattice parameter of the structure, while reciprocal-space mapping was used to determine the a-lattice parameter and evaluate growth coherency. A comparison of the measured lattice parameter with both the nominal value and also the underlying buffer layer is discussed.

  10. Process for production of a metal hydride

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  11. Investigation of the effect of aluminum on the phase composition of Ti-Al-Nb-Mo gamma alloys

    Science.gov (United States)

    Terlikbaeva, A. Zh.; Alimzhanova, A. M.; Shayakhmetova, R. A.; Smagulov, D. U.; Osipov, P. A.

    2017-11-01

    A quantitative analysis of the influence of aluminum concentration on the phase composition of TNM-type Ti-Al-Nb-Mo γ-alloys has been carried out using the Thermo-Calc software and experimental methods. Isothermal and polythermal sections of the corresponding phase diagram have been calculated; the critical temperatures of phase transformations in the alloys of the system, and the chemical compositions of phases formed in them (β, α, α2, γ) have been determined. The influence of the annealing temperature on the microstructure and phase composition of the alloys containing 43 and 40% Al has been studied.

  12. Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation

    Science.gov (United States)

    Ghatge, Mayur; Tabrizian, Roozbeh

    2018-03-01

    A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.

  13. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Behzad Binesh

    2016-02-01

    Full Text Available Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD. During the isothermal heating, intermetallic precipitates were gradually dissolved through the phase transformations of α-Al + η (MgZn2 → liquid phase (L and then α-Al + Al2CuMg (S + Mg2Si → liquid phase (L. However, Fe-rich precipitates appeared mainly as square particles at the grain boundaries at low heating temperatures. Cu and Si were enriched at the grain boundaries during the isothermal treatment while a significant depletion of Mg was also observed at the grain boundaries. The mechanical behavior of different SIMA processed samples in the semi-solid state were investigated by means of hot compression tests. The results indicated that the SIMA processed sample with near equiaxed microstructure exhibits the highest flow resistance during thixoforming which significantly decreases in the case of samples with globular microstructures. This was justified based on the governing deformation mechanisms for different thixoformed microstructures.

  14. Carbonate-Foaming Agents in Aluminum Foams: Advantages and Perspectives

    Science.gov (United States)

    Soloki, Ali; Esmailian, Mohammad

    2015-04-01

    Aluminum foams are commonly produced using hydride foaming agents. Carbonates are inexpensive and more convenient to handle than hydrides. In this review article, the replacement of titanium hydride by carbonate foaming agents in aluminum and aluminum alloys was studied. Carbonate-foaming agents including calcium carbonate, magnesium carbonate, and dolomite were investigated for the production of aluminum and aluminum alloys. The thermal decomposition behavior of the foaming agents was evaluated in conjunction with the cell structure of the aluminum foams produced. From the results, magnesium carbonate and dolomite were selected as suitable foaming agents for aluminum alloys because of lower decomposition temperature than calcium carbonate. It was clarified that dolomite resulted in a fine and homogenous cell structures.

  15. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  16. Blistering and hydride embrittlement

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    The effects of hydrogen on the mechanical properties of metals have been categorized into several groups. Two of the groups, hydrogen blistering and hydride embrittlement, are reasonably well understood, and problems relating to their occurrence may be avoided if that understanding is used as a basis for selecting alloys for hydrogen service. Blistering and hydride embrittlement are described along with several techniques of materials selection and used to minimize their adverse effects. (U.S.)

  17. Hydride generation coupled to microfunnel-assisted headspace liquid-phase microextraction for the determination of arsenic with UV-Vis spectrophotometry.

    Science.gov (United States)

    Hashemniaye-Torshizi, Reihaneh; Ashraf, Narges; Arbab-Zavar, Mohammad Hossein

    2014-12-01

    In this research, a microfunnel-assisted headspace liquid-phase microextraction technique has been used in combination with hydride generation to determine arsenic (As) by UV-Vis spectrophotometry. The method is based on the reduction of As to arsine (AsH3) in acidic media by sodium tetrahydroborate (NaBH4) followed by its subsequent reaction with silver diethyldithiocarbamate (AgDDC) to give an absorbing complex at 510 nm. The complexing reagent (AgDDC) has been dissolved in a 1:1 (by the volume ratio) mixture of chloroform/chlorobenzene microdroplet and exposed to the generated gaseous arsine via a reversed microfunnel in the headspace of the sample solution. Several operating parameters affecting the performance of the method have been examined and optimized. Acetonitrile solvent has been added to the working samples as a sensitivity enhancement agent. Under the optimized operating conditions, the detection limit has been measured to be 0.2 ng mL(-1) (based on 3sb/m criterion, n b = 8), and the calibration curve was linear in the range of 0.5-12 ng mL(-1). The relative standard deviation for eight replicate measurements was 1.9 %. Also, the effects of several potential interferences have been studied. The accuracy of the method was validated through the analysis of JR-1 geological standard reference material. The method has been successfully applied for the determination of arsenic in raw and spiked soft drink and water samples with the recoveries that ranged from 91 to 106 %.

  18. Critical issues for homoepitaxial GaN growth by molecular beam epitaxy on hydride vapor-phase epitaxy-grown GaN substrates

    Science.gov (United States)

    Storm, D. F.; Hardy, M. T.; Katzer, D. S.; Nepal, N.; Downey, B. P.; Meyer, D. J.; McConkie, Thomas O.; Zhou, Lin; Smith, David J.

    2016-12-01

    While the heteroepitaxial growth of gallium nitride-based materials and devices on substrates such as SiC, sapphire, and Si has been well-documented, the lack of a cost-effective source of bulk GaN crystals has hindered similar progress on homoepitaxy. Nevertheless, freestanding GaN wafers are becoming more widely available, and there is great interest in growing GaN films and devices on bulk GaN substrates, in order to take advantage of the greatly reduced density of threading dislocations, particularly for vertical devices. However, homoepitaxial GaN growth is far from a trivial task due to the reactivity and different chemical sensitivities of N-polar (0001) and Ga-polar (0001) GaN surfaces, which can affect the microstructure and concentrations of impurities in homoepitaxial GaN layers. In order to achieve high quality, high purity homoepitaxial GaN, it is necessary to investigate the effect of the ex situ wet chemical clean, the use of in situ cleaning procedures, the sensitivity of the GaN surface to thermal decomposition, and the effect of growth temperature. We review the current understanding of these issues with a focus on homoepitaxial growth of GaN by molecular beam epitaxy (MBE) on c-plane surfaces of freestanding GaN substrates grown by hydride vapor phase epitaxy (HVPE), as HVPE-grown substrates are most widely available. We demonstrate methods for obtaining homoepitaxial GaN layers by plasma-assisted MBE in which no additional threading dislocations are generated from the regrowth interface and impurity concentrations are greatly reduced.

  19. Determination of inorganic arsenic in algae using bromine halogenation and on-line nonpolar solid phase extraction followed by hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Zhang, Weihong; Qi, Yuehan; Qin, Deyuan; Liu, Jixin; Mao, Xuefei; Chen, Guoying; Wei, Chao; Qian, Yongzhong

    2017-08-01

    Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydride generation atomic fluorescence spectrometry (HG-AFS). The separation of iAs from algae was first performed by nonpolar SPE sorbent using Br - for arsenic halogenation. Algae samples were extracted with 1% perchloric acid. Then, 1.5mL extract was reduced by 1% thiourea, and simultaneously reacted (for 30min) with 50μL of 10% KBr for converting iAs to AsBr 3 after adding 3.5mL of 70% HCl to 5mL. A polystyrene (PS) resin cartridge was employed to retain arsenicals, which were hydrolyzed, eluted from the PS resin with H 2 O, and categorized as iAs. The total iAs was quantified by HG-AFS. Under optimum conditions, the spiked recoveries of iAs in real algae samples were in the 82-96% range, and the method achieved a desirable limit of detection of 3μgkg -1 . The inter-day relative standard deviations were 4.5% and 4.1% for spiked 100 and 500μgkg -1 respectively, which proved acceptable for this method. For real algae samples analysis, the highest presence of iAs was found in sargassum fusiforme, followed by kelp, seaweed and laver. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  1. Elemental Water Impact Test: Phase 3 Plunge Depth of a 36-Inch Aluminum Tank Head

    Science.gov (United States)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA water landing simulations. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 3 featured a composite tank head that was tested at a range of heights to verify the ability to predict structural failure of composites. To support planning for Phase 3, a test series was conducted with an aluminum tank head dropped from heights of 2, 6, 10, and 12 feet to verify that the test article would not impact the bottom of the test pool. This report focuses on the comparisons of the measured plunge depths to LS-DYNA predictions. The results for the tank head model demonstrated the following. 1. LS-DYNA provides accurate predictions for peak accelerations. 2. LS-DYNA consistently under-predicts plunge depth. An allowance of at least 20% should be added to the LS-DYNA predictions. 3. The LS-DYNA predictions for plunge depth are relatively insensitive to the fluid-structure coupling stiffness.

  2. Absence of magnetic ordering and field-induced phase diagram in the gadolinium aluminum garnet

    Science.gov (United States)

    Florea, O.; Lhotel, E.; Jacobsen, H.; Knee, C. S.; Deen, P. P.

    2017-12-01

    The robustness of spin liquids with respect to small perturbations, and the way magnetic frustration can be lifted by slight changes in the balance between competing magnetic interactions, remains a rich and open issue. We address this question through the study of the gadolinium aluminum garnet Gd3Al5O12 , a related compound to the extensively studied Gd3Ga5O12 . We report on its magnetic properties at very low temperatures. We show that despite a freezing at about 300 mK, no magnetic transition is observed, suggesting the presence of a spin-liquid state down to the lowest temperatures, similarly to Gd3Ga5O12 , in spite of a larger ratio between exchange and dipolar interactions. Finally, the phase diagram as a function of field and temperature is strongly reminiscent of the one reported in Gd3Ga5O12 . This study reveals the robust nature of the spin-liquid phase for Gd ions on the garnet lattice, in stark contrast to Gd ions on the pyrochlore lattice for which a slight perturbation drives the compound into a range of magnetically ordered states.

  3. Aluminum-doped ZnO nanoparticles: gas-phase synthesis and dopant location

    Science.gov (United States)

    Schilling, Carolin; Zähres, Manfred; Mayer, Christian; Winterer, Markus

    2014-07-01

    Aluminum-doped ZnO (AZO) nanoparticles are studied widely as transparent conducting alternatives for indium tin oxide. However, the properties of AZO vary in different investigations not only with the amount of dopant and the particle size, but also with other parameters such as synthesis method and conditions. Hence, AZO nanoparticles, synthesized in the gas phase, were investigated to study the influence of the synthesis parameters dopant level, reactor temperature and residence time in the reaction zone on the particle characteristics. The local structure of the dopant in semiconductors determines whether the doping is functional, i.e., whether mobile charge carriers are generated. Therefore, information obtained from 27Al solid-state NMR spectroscopy, X-ray diffraction, photoluminescence and UV-Vis spectroscopy was used to understand how the local structure influences particles characteristics and how the local structure itself can be influenced by the synthesis parameters. In addition to AZO particles of different Al content, pure ZnO, Al2O3, ZnAl2O4 and core-shell particles of ZnO and Al2O3 were synthesized for comparison and aid to a deeper understanding of the formation of AZO nanoparticles in the gas phase.

  4. ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-28

    A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydrides in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of

  5. Process for massively hydriding zirconium--uranium fuel elements

    Science.gov (United States)

    Katz, N.H.

    1973-12-01

    A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)

  6. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    Science.gov (United States)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163 (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The Orion MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a single-piece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment were the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  7. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    Science.gov (United States)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  9. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  10. The structure of gas-phase [Al·nH2O]+: hydrated monovalent aluminium Al+ (H2O)n or hydride-hydroxide HAlOH+ (H2O)(n-1)?

    Science.gov (United States)

    van der Linde, Christian; Beyer, Martin K

    2011-04-21

    Theoretical studies predict that [Al·nH(2)O](+) clusters are present as hydride-hydroxide species HAlOH(+)(H(2)O)(n-1) in gas-phase experiments, energetically favoured by 200 kJ mol(-1) over Al(+)(H(2)O)(n). After collisions with D(2)O, however, no H/D scrambling occurs between H(2)O and D(2)O in clusters with n > 38, indicating that large clusters are present as the higher-energy isomers Al(+)(H(2)O)(n).

  11. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Rico, A., E-mail: alvaro.rico@urjc.es [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Martin-Rengel, M.A., E-mail: mamartin@mater.upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Ruiz-Hervias, J., E-mail: jesus.ruiz@upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Rodriguez, J. [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Gomez-Sanchez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, S.L, Madrid (Spain)

    2014-09-15

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  12. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    International Nuclear Information System (INIS)

    Rico, A.; Martin-Rengel, M.A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F.J.

    2014-01-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found

  13. High-pressure synthesis of noble metal hydrides.

    Science.gov (United States)

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-07

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  14. Aluminum and silicon based phase change materials for high capacity thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Zhengyun; Wang, Hui; Li, Xiaobo; Wang, Dezhi; Zhang, Qinyong; Chen, Gang; Ren, Zhifeng

    2015-01-01

    Six compositions of aluminum (Al) and silicon (Si) based materials: 87.8Al-12.2Si, 80Al–20Si, 70Al–30Si, 60Al–40Si, 45Al–40Si–15Fe, and 17Al–53Si–30Ni (atomic ratio), were investigated for potentially high thermal energy storage (TES) application from medium to high temperatures (550–1200 °C) through solid–liquid phase change. Thermal properties such as melting point, latent heat, specific heat, thermal diffusivity and thermal conductivity were investigated by differential scanning calorimetry and laser flash apparatus. The results reveal that the thermal storage capacity of the Al–Si materials increases with increasing Si concentration. The melting point and latent heat of 45Al–40Si–15Fe and 17Al–53Si–30Ni are ∼869 °C and ∼562 J g −1 , and ∼1079 °C and ∼960 J g −1 , respectively. The measured thermal conductivity of Al–Si binary materials depend on Si concentration and is higher than 80 W m −1  K −1 from room temperature to 500 °C, which is almost two orders of magnitude higher than those of salts that are commonly used phase change material for thermal energy storage. - Highlights: • Six kinds of materials were investigated for thermal energy storage (550–1200 °C). • Partial melting of Al–Si materials show progressively changing temperatures. • Studied materials can be used in three different working temperature ranges. • Materials are potentially good candidates for thermal energy storage applications.

  15. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Mirna, E-mail: msigrist@fiq.unl.edu.ar [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Albertengo, Antonela; Beldomenico, Horacio [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Tudino, Mabel [Laboratorio de Analisis de Trazas, Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria (1428), Buenos Aires (Argentina)

    2011-04-15

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH{sub 3} generation using 3.5 mol L{sup -1} HCl as carrier solution and 0.35% (m/v) NaBH{sub 4} in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl{sup -}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, HPO{sub 4}{sup 2-}, HCO{sub 3}{sup -} on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C{sub 6}H{sub 8}O{sub 6} solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 {mu}g L{sup -1} and 0.6 {mu}g L{sup -1} for As(III) and inorganic total As, respectively, were obtained for a 500 {mu}L sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h{sup -1}. The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species

  16. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Balaji, M.; Claudel, A.; Fellmann, V.; Gélard, I.; Blanquet, E.; Boichot, R.; Pierret, A.

    2012-01-01

    Highlights: ► Growth of AlN Nucleation layers and its effect on high temperature AlN films quality were investigated. ► AlN nucleation layers stabilizes the epitaxial growth of AlN and improves the surface morphology of AlN films. ► Increasing growth temperature of AlN NLs as well as AlN films improves the structural quality and limits the formation of cracks. - Abstract: AlN layers were grown on c-plane sapphire substrates with AlN nucleation layers (NLs) using high temperature hydride vapor phase epitaxy (HT-HVPE). Insertion of low temperature NLs, as those typically used in MOVPE process, prior to the high temperature AlN (HT-AlN) layers has been investigated. The NLs surface morphology was studied by atomic force microscopy (AFM) and NLs thickness was measured by X-ray reflectivity. Increasing nucleation layer deposition temperature from 650 to 850 °C has been found to promote the growth of c-oriented epitaxial HT-AlN layers instead of polycrystalline layers. The growth of polycrystalline layers has been related to the formation of dis-oriented crystallites. The density of such disoriented crystallites has been found to decrease while increasing NLs deposition temperature. The HT-AlN layers have been characterized by X-ray diffraction θ − 2θ scan and (0 0 0 2) rocking curve measurement, Raman and photoluminescence spectroscopies, AFM and field emission scanning electron microscopy. Increasing the growth temperature of HT-AlN layers from 1200 to 1400 °C using a NL grown at 850 °C improves the structural quality as well as the surface morphology. As a matter of fact, full-width at half-maximum (FWHM) of 0 0 0 2 reflections was improved from 1900 to 864 arcsec for 1200 °C and 1400 °C, respectively. Related RMS roughness also found to decrease from 10 to 5.6 nm.

  17. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sigrist, Mirna; Albertengo, Antonela; Beldomenico, Horacio; Tudino, Mabel

    2011-01-01

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH 3 generation using 3.5 mol L -1 HCl as carrier solution and 0.35% (m/v) NaBH 4 in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl - , SO 4 2- , NO 3 - , HPO 4 2- , HCO 3 - on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C 6 H 8 O 6 solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 μg L -1 and 0.6 μg L -1 for As(III) and inorganic total As, respectively, were obtained for a 500 μL sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h -1 . The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species separation was performed through the employ of a serial connection of membrane filters and

  18. Tritium removal using vanadium hydride

    International Nuclear Information System (INIS)

    Hill, F.B.; Wong, Y.W.; Chan, Y.N.

    1978-01-01

    The results of an initial examination of the feasibility of separation of tritium from gaseous protium-tritium mixtures using vanadium hydride in cyclic processes is reported. Interest was drawn to the vanadium-hydrogen system because of the so-called inverse isotope effect exhibited by this system. Thus the tritide is more stable than the protide, a fact which makes the system attractive for removal of tritium from a mixture in which the light isotope predominates. The initial results of three phases of the research program are reported, dealing with studies of the equilibrium and kinetics properties of isotope exchange, development of an equilibrium theory of isotope separation via heatless adsorption, and experiments on the performance of a single heatless adsorption stage. In the equilibrium and kinetics studies, measurements were made of pressure-composition isotherms, the HT--H 2 separation factors and rates of HT--H 2 exchange. This information was used to evaluate constants in the theory and to understand the performance of the heatless adsorption experiments. A recently developed equilibrium theory of heatless adsorption was applied to the HT--H 2 separation using vanadium hydride. Using the theory it was predicted that no separation would occur by pressure cycling wholly within the β phase but that separation would occur by cycling between the β and γ phases and using high purge-to-feed ratios. Heatless adsorption experiments conducted within the β phase led to inverse separations rather than no separation. A kinetic isotope effect may be responsible. Cycling between the β and γ phases led to separation but not to the predicted complete removal of HT from the product stream, possibly because of finite rates of exchange. Further experimental and theoretical work is suggested which may ultimately make possible assessment of the feasibility and practicability of hydrogen isotope separation by this approach

  19. Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Hareesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-19

    This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution of mechanical fields due to dislocations was found to have a non-negligible effect on such process.

  20. Aluminum-Lithium Alloy 2050 for Reduced-Weight, Increased-Stiffness Space Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Touchstone Research Laboratory, along with Alcan Rolled Products -- Ravenswood WV, has identified the Aluminum-Lithium Alloy 2050 as a potentially game-changing...

  1. Effect of Catalyst Precursor and Its Pretreatment on the Amount of ß-Pd Hydride Phase and HDS Activity of Pd-Pt/Silica-Alumina

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk; Gulková, Daniela; Kaluža, Luděk; Boaro, M.

    2014-01-01

    Roč. 146, SI (2014), s. 213-220 ISSN 0926-3373. [International Conference on Environmental Catalysis /7./. Lyon, 02.09.2012-06.09.2012] R&D Projects: GA ČR GA104/09/0751; GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : Pd-Pt catalyst * hydrodesulfurization * Pd hydride Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.435, year: 2014

  2. Bonding of xenon hydrides

    NARCIS (Netherlands)

    Perez-Peralta, N.; Juarez, R.; Cerpa, E.; Bickelhaupt, F.M.; Merino, G.

    2009-01-01

    We have computed the structure and stability of the xenon hydrides HXeY (with Y = F, Cl, Br, I, CCH, CN, NC) using relativistic density functional theory (DFT) at ZORA-BP86/TZ2P level. All model systems HXeY studied here are bound equilibrium structures, but they are also significantly destabilized

  3. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    Science.gov (United States)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  4. Electrolytic hydriding and hydride distribution in zircaloy-4

    International Nuclear Information System (INIS)

    Gomes, M.H.L.

    1974-01-01

    A study has been made of the electrolytic hydriding of zircaloy-4 in the range 20-80 0 C, for reaction times from 5 to 30 hours, and the effect of potential, pH and dissolved oxygen has been investigated. The hydriding reaction was more sensitive to time and temperature conditions than to the electrochemical variables. It has been shown that a controlled introduction of hydrides in zircaloy is feasible. Hydrides were found to be plate like shaped and distributed mainly along grain-boundaries. It has been shown that hydriding kinetics do not follow a simple law but may be described by a Johnson-Mehl empirical equation. On the basis of this equation an activation energy of 9.400 cal/mol has been determined, which is close to the activation energy for diffusion of hydrogen in the hydride. (author)

  5. Effect of hydrogenation conditions on the microstructure and mechanical properties of zirconium hydride

    Science.gov (United States)

    Muta, Hiroaki; Nishikane, Ryoji; Ando, Yusuke; Matsunaga, Junji; Sakamoto, Kan; Harjo, Stefanus; Kawasaki, Takuro; Ohishi, Yuji; Kurosaki, Ken; Yamanaka, Shinsuke

    2018-03-01

    Precipitation of brittle zirconium hydrides deteriorate the fracture toughness of the fuel cladding tubes of light water reactor. Although the hydride embrittlement has been studied extensively, little is known about physical properties of the hydride due to the experimental difficulties. In the present study, to elucidate relationship between mechanical properties and microstructure, two δ-phase zirconium hydrides and one ε-phase zirconium hydride were carefully fabricated considering volume changes at the metal-to-hydride transformation. The δ-hydride that was fabricated from α-zirconium exhibits numerous inner cracks due to the large volume change. Analyses of the neutron diffraction pattern and electron backscatter diffraction (EBSD) data show that the sample displays significant stacking faults in the {111} plane and in the pseudo-layered microstructure. On the other hand, the δ-hydride sample fabricated from β-zirconium at a higher temperature displays equiaxed grains and no cracks. The strong crystal orientation dependence of mechanical properties were confirmed by indentation test and EBSD observation. The δ-hydride hydrogenated from α-zirconium displays a lower Young's modulus than that prepared from β-zirconium. The difference is attributed to stacking faults within the {111} plane, for which the Young's modulus exhibits the highest value in the perpendicular direction. The strong influence of the crystal orientation and dislocation density on the mechanical properties should be considered when evaluating hydride precipitates in nuclear fuel cladding.

  6. A Twist on Facial Selectivity of Hydride Reductions of Cyclic Ketones: Twist-Boat Conformers in Cyclohexanone, Piperidone, and Tropinone Reactions

    OpenAIRE

    Neufeldt, Sharon R.; Jim?nez-Os?s, Gonzalo; Comins, Daniel L.; Houk, K. N.

    2014-01-01

    The role of twist-boat conformers of cyclohexanones in hydride reductions was explored. The hydride reductions of a cis-2,6-disubstituted N-acylpiperidone, an N-acyltropinone, and tert-butylcyclohexanone by lithium aluminum hydride and by a bulky borohydride reagent were investigated computationally and compared to experiment. Our results indicate that in certain cases, factors such as substrate conformation, nucleophile bulkiness, and remote steric features can affect stereoselectivity in wa...

  7. Electrochemical process and production of novel complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  8. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  9. Long-term cycle stability of metal hydride-graphite composites

    OpenAIRE

    Dieterich, Mila; Pohlmann, Carsten; Bürger, Inga; Linder, Marc; Röntzsch, Lars

    2015-01-01

    Recently, metal hydride composites (MHC) have been proposed which consist of a hydride forming metal alloy and a highly heat conduction secondary phase such as expanded natural graphite (ENG) in order to improve the thermal conductivity of metal hydride powder beds. However, only little data is available in the literature on the effects of extensive cycling on technically relevant properties of MHC. In this paper, hydrogenation characteristics, thermal conductivity and geometrical stability o...

  10. Modeling and simulation of phase-transitions in multicomponent aluminum alloy casting

    NARCIS (Netherlands)

    Ten Cate, A.; Geurts, B.J.; Muskulus, M.; Köster, D.; Muntean, A.; Van Opheusden, J.; Peschansky, A.; Vreman, B.; Zegeling, P.

    2008-01-01

    The casting process of aluminum products involves the spatial distribution of alloying elements. It is essential that these elements are uniformly distributed in order to guarantee reliable and consistent products. This requires a good understanding of the main physical mechanisms that affect the

  11. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  12. Method for preparing porous metal hydride compacts

    Science.gov (United States)

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  13. The Evolution of Second-Phase Particles in 6111 Aluminum Alloy Processed by Hot and Cold Rolling

    Science.gov (United States)

    Zhang, Lixin; Wang, Yihan; Ni, Song; Chen, Gang; Li, Kai; Du, Yong; Song, Min

    2018-03-01

    The evolution of coarse Al9.9Fe2.65Ni1.45 phase, spherical Al12(Mn,Fe)3Si phase and rod-like Q phase in a 6111 aluminum alloy during hot and cold rolling deformation processes was systematically investigated in this work. The results showed that the coarse Al9.9Fe2.65Ni1.45 particles are mainly distributed at the grain boundaries, accompanied by the co-formation of Al12(Fe,Mn)3Si phase and Mg2Si phase, while the spherical Al12(Mn,Fe)3Si particles are mainly distributed in the grain interiors. Hot rolling has little effects on the size and distribution of both phases, but cold deformation can severely decrease the size of the particles by breaking the particles into small pieces. In addition, the temperature of 450 °C is not high enough for the dissolution of Q phase in the Al matrix, but the Q particles can be broken into small pieces due to the stress concentration during both hot and cold rolling deformation. In addition, the influences of phase evolution, dislocations and recrystallization on the mechanical properties evolution were also discussed.

  14. Identification and characterization of a new zirconium hydride; Identification et caracterisation d'un nouvel hydrure de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Morniroli, J.P.; Legris, A.; Thuinet, L. [Universite des Sciences et Technologies de Lille, USTL, ENSCL, CNRS, 59 - Villeneuve d' Ascq (France); Zhao, Zhao; Blat-Yrieix, M.; Ambard, A.; Legras, L. [Electricite de France (EDF/RD), Centre des Renardieres, 77 - Moret sur Loing (France); Kihn, Y. [CEMES-CNRS, 31 - Toulouse (France)

    2007-07-01

    A study of hydrides characterization has been carried out in using the transmission electron microscopy technique. It has revealed the presence of small hydrides of acicular form whose length does not exceed 500 nm, among the zircaloy-4 samples hydrided by cathodic way. The electronic diffraction has shown that these small hydrides have a crystallographic structure different of those of the hydrides phases already index in literature. A more complete identification study has then been carried out. In combining the different electronic microscopy techniques (precession electronic micro diffraction and EELS) with ab initio calculations, a new hydride phase has been identified. It is called hydride {zeta}, is of trigonal structure with lattice parameters a{sub {zeta}} = a{sub {alpha}}{sub Zr} = 0.33 nm and c{sub {zeta}} 2c{sub {alpha}}{sub Zr} = 1.029 nm, its spatial group being P3m1. (O.M.)

  15. Low-resistivity m-plane freestanding GaN substrate with very low point-defect concentrations grown by hydride vapor phase epitaxy on a GaN seed crystal synthesized by the ammonothermal method

    Science.gov (United States)

    Kojima, Kazunobu; Tsukada, Yusuke; Furukawa, Erika; Saito, Makoto; Mikawa, Yutaka; Kubo, Shuichi; Ikeda, Hirotaka; Fujito, Kenji; Uedono, Akira; Chichibu, Shigefusa F.

    2015-09-01

    An m-plane freestanding GaN substrate satisfying both low resistivity (ρ = 8.5 × 10-3 Ω·cm) and a low point-defect concentration, being applicable to vertically conducting power-switching devices, was grown by hydride vapor phase epitaxy on a nearly bowing-free bulk GaN seed wafer synthesized by the ammonothermal method in supercritical ammonia using an acidic mineralizer. Its threading dislocation and basal-plane staking-fault densities were approximately 104 cm-2 and lower than 100 cm-1, respectively. A record-long fast-component photoluminescence lifetime of 2.07 ns at room temperature was obtained for the near-band-edge emission, reflecting a significantly low concentration of nonradiative recombination centers composed of Ga vacancies.

  16. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage

    International Nuclear Information System (INIS)

    Fang, Guiyin; Li, Hui; Cao, Lei; Shan, Feng

    2012-01-01

    Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 °C with a latent heat of 84.48 kJ kg −1 and solidify at 56.86 °C with a latent heat of 78.79 kJ kg −1 when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites. -- Highlights: ► Form-stable PA/active aluminum oxide composites as PCMs were prepared. ► Chemical structure, crystalloid phase and microstructure of composites were determined. ► Thermal properties and thermal stability of the composites were investigated. ► Expanded graphite can improve thermal conductivity of the composites.

  17. The Role of Second Phase Intermetallic Particles on the Spall Failure of 5083 Aluminum

    Science.gov (United States)

    2016-12-01

    Thomas GJ, Hazell PJ (2010) A study on the strength of an armour -grade aluminum under high strain-rate loading. J Appl Phys 107:123508 3. Whelchel RL...weight and strain-hardened material used in high strain-rate applications such as those experienced under shock loading. Symmetric real-time (in...experienced under shock loading. Symmetric real-time (in situ) and end-state (ex situ recovery) plate impact shock experiments were conducted to

  18. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  19. Hydridation of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Domizzi, G; Luppo, M.I; Ortiz, M; Vigna, G

    2004-01-01

    The production of Ti pieces or their alloys through powder metallurgy is an economical alternative that replaces the costly methods commonly used. The Ti-6AI-4V alloy is widely used in the aerospace, chemical and medical industries. The use of powder from the alloy instead of using more pure alloyed titanium powders, further simplifies the production process. The presence of V allows the phase β to stabilize at very low temperatures and both alloys alter the Ti-H equilibrium diagram. This work analyzes to what degree these effects influence the obtaining of powders from this alloy from that of hydridation and dehydridation. Although it has slower kinetics, powders can be produced in times similar to those found for grade 2 Ti since the distribution of hydrides in the sample is uniform and the material is fragile enough for concentrations of approximately 0.7 H/Ti (CW)

  20. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    Science.gov (United States)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof

  1. Modelling of fuel rod hydriding failures in water reactors

    International Nuclear Information System (INIS)

    Afanas'eva, E.Yu.; Evdokimov, I.A.; Khoruzhij, O.V.; Likhanskij, V.V.; Sorokin, A.A.

    2003-01-01

    Mechanistic models which were developed to describe primary hydriding phenomena in claddings of initially intact rods with residual moisture are described. The models include the following key processes: fuel rod thermal behavior, UO 2 fuel oxidation in steam-hydrogen atmosphere under irradiation, hydrogen diffusion in zirconium and in the hydride, growth of the hydride phase. Fuel rod thermomechanical behavior is calculated by using RTOP integral fuel code. An oxidation model represents the effects of temperature dynamics and temperature profile along fuel axis and radius on fuel oxidation as well as on hydrogen accumulation inside the fuel rod. Along with ordinary thermal dissociation of water molecules, the oxidation model also addresses radiolysis of the steam-hydrogen mixture due to fission fragments. The present radiolysis model takes into account the effects of the gas mixture composition, temperature and pressure. A new model of cladding hydriding is proposed in which calculation of the massive hydride growth is performed in 2-D geometry. Hydrogen transport in zirconium cladding is modeled with account for thermodiffusion. The RTOP code comprising the models developed allows us to calculate different scenarios of hydriding rod failures under given operation conditions. Test calculations were carried out and compared to available data. It is shown that there are threshold values of initial steam content inside the intact fuel rod which lead to the possibility of through-cladding hydride growth and formation of the primary defect. The threshold values depend on the oxidation state of the cladding inner surface, linear power profile in the fuel rod, fuel rod geometry, cladding temperature conditions and hydrogen diffusivities in zirconium and zirconium hydride

  2. Phase transformation and its role in stabilizing simulated lead-laden sludge in aluminum-rich ceramics.

    Science.gov (United States)

    Lu, Xingwen; Shih, Kaimin

    2011-10-15

    This study investigated the mechanisms of stabilizing lead-laden sludge by blending it into the production process of aluminum-rich ceramics, and quantitatively evaluated the prolonged leachability of the product phases. Sintering experiments were performed using powder mixtures of lead oxide and γ-alumina with different Pb/Al molar ratios within the temperature range of 600-1000 °C. By mixing lead oxide with γ-alumina at a Pb/Al molar ratio of 0.5, the formation of PbAl2O4 is initiated at 700 °C, but an effective formation was observed when the temperature was above 750 °C for a 3-h sintering time. The formation and decomposition of the intermediate phase, Pb9Al8O21, was detected in this system within the temperature range of 800-900 °C. When the lead oxide and γ-alumina mixture was sintered with a Pb/Al molar ratio of 1:12, the PbAl12O19 phase was found at 950 °C and effectively formed at 1000 °C. In this system, an intermediate phase Pb3(CO3)2(OH)2 was observed at the temperature range of 700-950 °C. Over longer leaching periods, both PbAl2O4 and PbAl12O19 were superior to lead oxide in immobilizing lead. Comparing the leaching results of PbAl2O4 and PbAl12O19 demonstrated the higher intrinsic resistance of PbAl12O19 against acid attack. To reduce metal mobility, this study demonstrated a preferred mechanism of stabilizing lead in the aluminate structures by adding metal-bearing waste sludge to the ceramic processing of aluminum-rich products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Phase Transformation Behavior of Medium Manganese Steels with 3 Wt Pct Aluminum and 3 Wt Pct Silicon During Intercritical Annealing

    Science.gov (United States)

    Sun, Binhan; Fazeli, Fateh; Scott, Colin; Yue, Stephen

    2016-10-01

    Medium manganese steels alloyed with sufficient aluminum and silicon amounts contain high fractions of retained austenite adjustable to various transformation-induced plasticity/twinning-induced plasticity effects, in addition to a reduced density suitable for lightweight vehicle body-in-white assemblies. Two hot rolled medium manganese steels containing 3 wt pct aluminum and 3 wt pct silicon were subjected to different annealing treatments in the present study. The evolution of the microstructure in terms of austenite transformation upon reheating and the subsequent austenite decomposition during quenching was investigated. Manganese content of the steels prevailed the microstructural response. The microstructure of the leaner alloy with 7 wt pct Mn (7Mn) was substantially influenced by the annealing temperature, including the variation of phase constituents, the morphology and composition of intercritical austenite, the Ms temperature and the retained austenite fraction. In contrast, the richer variant 10 wt pct Mn steel (10Mn) exhibited a substantially stable ferrite-austenite duplex phase microstructure containing a fixed amount of retained austenite which was found to be independent of the variations of intercritical annealing temperature. Austenite formation from hot band ferrite-pearlite/bainite mixtures was very rapid during annealing at 1273 K (1000 °C), regardless of Mn contents. Austenite growth was believed to be controlled at early stages by carbon diffusion following pearlite/bainite dissolution. The redistribution of Mn in ferrite and particularly in austenite at later stages was too subtle to result in a measureable change in austenite fraction. Further, the hot band microstructure of both steels contained a large fraction of coarse-grained δ-ferrite, which remained almost unchanged during intercritical annealing. A recently developed thermodynamic database was evaluated using the experimental data. The new database achieved a better agreement

  4. Kinetics and mechanism of the hydridation of uranium and rare-earth metals

    International Nuclear Information System (INIS)

    Bloch, J.

    1989-07-01

    The purpose of this work was to study the rate and the mechanism of the hydridation reaction of uranium and the lanthanide metals. Surface sensitive analysis was used to study the reaction of the metal surface with residual gases of the high vacuum atmosphere. The initial stages of the uranium-hydrogen reaction, taking place on a polished metal surface, were investigated utilizing a hot-stage microscope equipped with TV camera and a video-recorder. The characteristics of formation and advance mechanism of hydride phase in bulk uranium and lanthanide metals were studied utilizing metallographic examination of partially hydrided thin foil samples at different stages of the reaction. The interface velocity of the hydride in uranium was measured as a function of pressure and temprature in a constant volume system. A probabilistic kinetic model for a gas-solid interaction, controlled by a phase transformation step, was developed and applied to the hydridation of uranium and gadolinium

  5. Determination and Uncertainty Analysis of Inorganic Arsenic in Husked Rice by Solid Phase Extraction and Atomic Absorption Spectrometry with Hydride Generation.

    Science.gov (United States)

    Saxena, Sushil Kumar; Karipalli, Agnes Raju; Krishnan, Anoop A; Rangasamy, Rajesh; Malekadi, Praveen; Singh, Dhirendra P; Vasu, Vimesh; Singh, Vijay K

    2017-05-01

    This study enables the selective determination of inorganic arsenic (iAs) with a low detection limit using an economical instrument [atomic absorption spectrometer with hydride generation (HG)] to meet the regulatory requirements as per European Commission (EC) and Codex guidelines. Dry rice samples (0.5 g) were diluted using 0.1 M HNO3-3% H2O2 and heated in a water bath (90 ± 2°C) for 60 min. Through this process, all the iAs is solubilized and oxidized to arsenate [As(V)]. The centrifuged extract was loaded onto a preconditioned and equilibrated strong anion-exchange SPE column (silica-based Strata SAX 500 mg/6 mL), followed by selective and sequential elution of As(V), enabling the selective quantification of iAs using atomic absorption spectrometry with HG. In-house validation showed a mean recovery of 94% and an LOQ of 0.025 mg/kg. The repeatability (HorRatr) and reproducibility (HorRatR) values were <2, meeting the performance criteria mandated by the EC. The combined standard measurement uncertainty by this method was less than the maximum standard measurement uncertainty; thus, the method can be considered for official control purposes. The method was applied for the determination of iAs in husked rice samples and has potential applications in other food commodities.

  6. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  7. A twist on facial selectivity of hydride reductions of cyclic ketones: twist-boat conformers in cyclohexanone, piperidone, and tropinone reactions.

    Science.gov (United States)

    Neufeldt, Sharon R; Jiménez-Osés, Gonzalo; Comins, Daniel L; Houk, K N

    2014-12-05

    The role of twist-boat conformers of cyclohexanones in hydride reductions was explored. The hydride reductions of a cis-2,6-disubstituted N-acylpiperidone, an N-acyltropinone, and tert-butylcyclohexanone by lithium aluminum hydride and by a bulky borohydride reagent were investigated computationally and compared to experiment. Our results indicate that in certain cases, factors such as substrate conformation, nucleophile bulkiness, and remote steric features can affect stereoselectivity in ways that are difficult to predict by the general Felkin-Anh model. In particular, we have calculated that a twist-boat conformation is relevant to the reactivity and facial selectivity of hydride reduction of cis-2,6-disubstituted N-acylpiperidones with a small hydride reagent (LiAlH4) but not with a bulky hydride (lithium triisopropylborohydride).

  8. Phase-dependent interference between frequency doubled comb lines in a χ(2) phase-matched aluminum nitride microring.

    Science.gov (United States)

    Jung, Hojoong; Guo, Xiang; Zhu, Na; Papp, Scott B; Diddams, Scott A; Tang, Hong X

    2016-08-15

    Nonlinear optical conversion with frequency combs is important for self-referencing and for generating shorter wavelength combs. Here we demonstrate efficient frequency comb doubling through the combination of second-harmonic generation (SHG) and sum-frequency generation (SFG) of an input comb with a high Q, phase-matched χ(2) microring resonator. Phase coherence of the SHG and SFG nonlinear conversion processes is confirmed by sinusoidal phase-dependent interference between frequency doubled comb lines.

  9. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  10. Ring-opening of cyclic ethers by aluminum hydridotriphenylborate.

    Science.gov (United States)

    Mukherjee, Debabrata; Osseili, Hassan; Truong, Khai-Nghi; Spaniol, Thomas P; Okuda, Jun

    2017-03-25

    Molecular aluminum hydride [(L)AlH 2 ] (L = Me 3 TACD) reacted with 2 equiv. of BPh 3 in THF or THP to give the cationic alkoxides [(L)Al(OR)][HBPh 3 ] (R = nBu, nPent) by facile ring-opening of the cyclic ethers. The C α -O bond cleavage which involves the isolable intermediate [(L)AlH][HBPh 3 ] is a result of hydride transfer to C α from [HBPh 3 ] - .

  11. Low oxidation state aluminum-containing cluster anions: Cp∗AlnH-, n = 1-3

    Science.gov (United States)

    Zhang, Xinxing; Ganteför, Gerd; Eichhorn, Bryan; Mayo, Dennis; Sawyer, William H.; Gill, Ann F.; Kandalam, Anil K.; Schnöckel, Hansgeorg; Bowen, Kit

    2016-08-01

    Three new, low oxidation state, aluminum-containing cluster anions, Cp*AlnH-, n = 1-3, were prepared via reactions between aluminum hydride cluster anions, AlnHm-, and Cp*H ligands. These were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory based calculations. Agreement between the experimentally and theoretically determined vertical detachment energies and adiabatic detachment energies validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands provide a new avenue for discovering low oxidation state, ligated aluminum clusters.

  12. Aluminum-centered tetrahedron-octahedron transition in advancing Al-Sb-Te phase change properties.

    Science.gov (United States)

    Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang

    2015-02-24

    Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology.

  13. Spin Forming of an Aluminum 2219-T6 Aft Bulkhead for the Orion Multi-Purpose Crew Vehicle: Phase II Supplemental Report

    Science.gov (United States)

    Piascik, Robert S.; Squire, Michael D.; Domack, Marcia S.; Hoffman, Eric K.

    2015-01-01

    The principal focus of this project was to assist the Orion Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the aft bulkhead of the pressure vessel. The spin forming process will enable a single piece aluminum (Al) 2219 aft bulkhead which will eliminate the current multiple piece welded construction, simplify fabrication, and lead to an enhanced design that will reduce vehicle weight by eliminating welds. Phase I of this assessment explored spin forming the single-piece forward pressure vessel bulkhead from aluminum-lithium 2195.

  14. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  15. Two-phase refrigerant distribution in a combining/dividing header of a brazed aluminum evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nae Hyun; Byun, Ho Won; Go, Min Geon [School of Mechanical System Engineering, Incheon National University, Incheon (Korea, Republic of)

    2016-12-15

    For a brazed aluminum evaporator, it is very important to distribute the refrigerant (especially the liquid) evenly into each channel. If not, the liquid-deficient channel will be soon dry, and reduce the thermal performance of the evaporator. In this study, tests were conducted for a two pass evaporator having 10 combing channels and 14 dividing channels. Both lower and upper header configurations were considered. Effects of mass flux or vapor quality on flow distribution in the combining/dividing header were investigated. Data are also compared with those obtained from the header having 12 dividing channels. In the lower combining/dividing header, the effect of dividing header length on liquid distribution is different based on vapor quality. The centrifugal force, whose strength depends on header length and vapor quality, appears to play a significant role on flow distribution. In the upper combining/dividing header, the flow distribution is better for the header having shorter header length. The reason was attributed to more uniform height of the liquid pool, which is formed by the drained liquid film from top of the header. The effects of mass flux or vapor quality on flow distribution are also discussed.

  16. 3D microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys

    Science.gov (United States)

    Adam, Khaled; Zöllner, Dana; Field, David P.

    2018-04-01

    Modeling the microstructural evolution during recrystallization is a powerful tool for the profound understanding of alloy behavior and for use in optimizing engineering properties through annealing. In particular, the mechanical properties of metallic alloys are highly dependent upon evolved microstructure and texture from the softening process. In the present work, a Monte Carlo (MC) Potts model was used to model the primary recrystallization and grain growth in cold rolled single-phase Al alloy. The microstructural representation of two kinds of dislocation densities, statistically stored dislocations and geometrically necessary dislocations were quantified based on the ViscoPlastic Fast Fourier transform method. This representation was then introduced into the MC Potts model to identify the favorable sites for nucleation where orientation gradients and entanglements of dislocations are high. Additionally, in situ observations of non-isothermal microstructure evolution for single-phase aluminum alloy 1100 were made to validate the simulation. The influence of the texture inhomogeneity is analyzed from a theoretical point of view using an orientation distribution function for deformed and evolved texture.

  17. Development of an elevated temperature aluminum alloy containing Al3X-type dispersed phases

    International Nuclear Information System (INIS)

    Zedalis, M.S.

    1985-01-01

    The extents of solid solubility in the equilibrium, tetragonal Al 3 X-type dispersed phases (X represents binary and ternary combinations of Hf, Ti, V, and Zr) were examined using powder x-ray diffraction methods. Minimum lattice disregistry (delta) with the Al(ss) matrix was achieved by maximizing the amount of Ti or V added to the Al 3 Hf and/or Al 3 Zr phases without forming a co-intermetallic compound exhibiting a DO 22 crystal structure. In comparison to Al 3 Zr, with a (delta) equal to 2.88%, the addition of V to Al 3 Zr in the ratio 7:1, i.e., Al 3 (v/sub 0.875/Zr/sub 0.125/), results in a decrease in (delta) by approximately 17%. Electron diffraction revealed that the addition of V to the metastable cubic (L1 2 ) Al 3 Zr phase also resulted in a reduction in the lattice disregistry across the precipitate/matrix boundary. In comparison with the cubic Al 3 Zr phase, with a (delta) of approximately 1.0%, the Al 3 (V/sub 0.875/Zr/sub 0.125/) phase exhibits a mismatch of approximately -0.14%. The cubic Al 3 (V/sub 0.875/Zr/sub 0.125/) phase was observed by TEM to be substantially more stable, i.e., resist transformation to the equilibrium tetragonal phase, when compared to the cubic Al 3 Zr phase. It is proposed that a reduction in lattice disregistry results in a decrease in the strain energy component of the system's total free energy. A systematic decrease in the coarsening rate with a reduction in the lattice disregistry for the cubic Al 3 Zr, Al 3 (V/sub 0.725/Zr/sub 0.275/) and Al 3 (V/sub 0.875/Zr/sub 0.125/) and tetragonal Al 3 Zr and Al 3 (V/sub 0.875/Zr/sub 0.125/) phases is proposed to be representative of a decrease in the interfacial energy across the precipitate/matrix boundary

  18. Observation of kinetics γzirconium hydride formation in Zr-2.5Nb by neutron diffraction

    International Nuclear Information System (INIS)

    Small, W.M.; Root, J.H.; Khatamian, D.

    1998-05-01

    Neutron diffraction was employed to observe an isothermal transformation among zirconium hydrides in a commercial zirconium alloy. A specimen of Zr-2.5Nb, which contained about 200 mg deuterium/kg of alloy, was heated to 450 degrees C for almost 17 h, then cooled directly to 17 degrees C and held at this temperature for an extended time. A series of neutron diffraction patterns was collected during this thermal cycle. The diffraction patterns show that a small amount of the tetragonal γ-phase zirconium hydride appeared soon after cooling, along with a predominant quantity of the cubic δ-phase hydride. Over three subsequent days at 17 degrees C, the amount of γ-phase hydride increased while there was a corresponding reduction in the amount of δ-phase hydride. (author)

  19. Effects of beryllium and iron additions on iron-bearing phase in A357 aluminum alloys

    Directory of Open Access Journals (Sweden)

    Chen Zhongwei

    2010-08-01

    Full Text Available Iron is the most deleterious impurity in the Al-Si-Mg casting alloys and can easily form inter-metallic compounds that can significantly affect the subsequent behavior of material properties. Using differential scanning calorimetry (DSC and microstructural analysis, how the Be and Fe additions affect the iron-bearing phase in A357 alloys was investigated. The results show that the iron-bearing phase in A357 alloy comprises mainly the plate-like β-Al5FeSi and a small quantity of the script-type π-Al8FeMg3Si6; and that the plate-like β-Al5FeSi proportion increases with increasing iron content in the alloy. The iron-bearing phase is mostly transformed from the plate-like β-Al5FeSi to the script-type π-Al8FeMg3Si6 with the addition of Be in the alloy. The hardness of alloy samples was also tested. The results show that both the increasing iron content and Be content can increase the hardness of the alloy. This may be contributed to the change of morphology and distribution of the iron-bearing phase in A357 alloy with the addition of iron or Be to the alloy.

  20. Reaction Kinetics with Hydrogen and Temperature Dependence of the Hydriding Rate for a Magnesium-Based Nickel Iron Oxide Alloy

    International Nuclear Information System (INIS)

    Song, Myoung Youp; Baek, Sung Hwan; Park, Hye Ryoung

    2012-01-01

    A 71.5 wt%Mg-23.5 wt%Ni-5 wt%Fe 2 O 3 (Mg-23.5Ni-5Fe 2 O 3 ) sample was prepared by a quite simple process, reactive mechanical grinding, and its hydriding and dehydriding properties were then investigated. The reactive mechanical grinding of Mg with Ni and Fe 2 O 3 is considered to facilitate nucleation and shorten the diffusion distances of the hydrogen atoms. After the hydriding-dehydriding cycling, the Mg-23.5Ni-5Fe 2 O 3 sample contained Mg 2 Ni phase. Expansion and contraction of the hydride-forming materials (Mg and Mg 2 Ni) with the hydriding and dehydriding reactions are also considered to increase the hydriding and dehydriding rates of the mixture by forming defects and cracks leading to the fragmentation of the particles. The temperature dependence of the hydriding rate of the sample is discussed.

  1. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  2. Comparative Studies of Silicon Dissolution in Molten Aluminum Under Different Flow Conditions, Part I: Single-Phase Flow

    Science.gov (United States)

    Seyed Ahmadi, Mehran; Argyropoulos, Stavros A.; Bussmann, Markus; Doutre, Don

    2015-02-01

    This manuscript presents research work related to the assimilation of Silicon (Si) in molten Aluminum (Al) under natural and forced convection conditions. The effects of impurity levels of solid Si, Al bath temperature, and fluid flow conditions were investigated. It was found that a polycrystalline metallurgical grade Si (MGSi) with higher levels of impurities dissolved more slowly than high purity polycrystalline MGSi, which showed a similar dissolution rate to monocrystalline electronic grade Si. For high-purity Si cylinders, the experimental data under natural convection conditions exhibit good agreement with a correlation for vertical cylinders: overline{Sh} = ( 0. 1 1 {{to}}0.129)(Gr_m Sc)^{1/3} . Under forced convection conditions, by rotating the molten Al, the mass transfer rate increased at higher liquid velocities, implying that the dissolution process is controlled by liquid phase diffusion. When the forced convection prevails, the experimental data are well predicted by a correlation for vertical cylinders in cross flow: overline{Sh} = 0.3 + {0.62{Re}^{1/2} Sc^{1/3} }/{[ {1 + (0.4/Sc)^{2/3 } ]^{1/4} }}[ {1 + ( {{Re} /282000} )^{5/8} } ]^{4/5} . Finally, at lower velocities of liquid Al, the combined effect of natural and forced convection must be considered, and a correlation is proposed based on the buoyancy force normal to the direction of the flow.

  3. Coordination of arsenic and nickel to aluminum and magnesium phases in uranium mill raffinate precipitates

    International Nuclear Information System (INIS)

    Robertson, Jared; Essilfie-Dughan, J.; Lin, J.; Hendry, M. Jim

    2017-01-01

    The Key Lake U mill uses a stepwise neutralization process (pH 4.0, 6.5, 9.5, and 10.5) to treat raffinate (acidic, metal-rich wastewater) prior to safely releasing effluent to the environment. This process generates a complex mixture of precipitates that are deposited to a tailings facility. In this study, the coordination environments of As and Ni with respect to Al-Mg phases precipitated in the presence and absence of Fe in mill-generated and synthetic precipitates were defined using bulk X-ray absorption spectroscopy complemented with bulk X-ray diffraction. In low pH (pH 4.0–4.6) samples, As(V) precipitates as ferric arsenate and adsorbs to AlOHSO 4 (an amorphous hydrobasaluminite-like phase) and ferrihydrite via bidentate-binuclear complexes. Nickel(II) predominantly adsorbs to amorphous Al(OH) 3 via edge-sharing bidentate-mononuclear complexes. In high pH (pH 9.5–9.9) samples, As(V) adsorbs to amorphous Al(OH) 3, ferrihydrite, and MgAlFe-hydrotalcite (bidentate complex). Nickel(II) octahedra adsorb to amorphous Al(OH) 3 and likely form a Ni-Al layered double hydroxide (LDH) surface precipitate on MgAlFe-hydrotalcite via Al dissolution-precipitation. In the final solids (blended low and high pH precipitates) discharged at ∼ pH 10.5, As(V) adsorbs to amorphous Al(OH) 3, ferrihydrite, and MgAlFe-hydrotalcite. Nickel(II) adsorbs to amorphous Al(OH) 3 and forms Ni-Al LDH surface precipitates on hydrotalcite. This study demonstrates that neutralization of chemically complex wastewater precipitates multiple phases capable of controlling dissolved As and Ni concentrations. Knowledge gained from this study will aid investigations in understanding the long-term fate of these potential contaminants in the environment and can be applied to other industries and environmental systems with similar conditions. - Highlights: • Adds to the current model of aqueous contaminant control in U tailings. • As(V) adsorbs to Al(OH) 3 /hydrotalcite/ferrihydrite via

  4. Aluminum: Reflective Aluminum Chips

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    This fact sheet reveals how the use of reflective aluminum chips on rooftops cuts down significantly on heat absorption, thus decreasing the need for air conditioning. The benefits, including energy savings that could reach the equivalent of 1.3 million barrels of oil annually for approximately 100,000 warehouses, are substantial.

  5. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  6. The Resource-Saving Technology of Aluminum Nitride Obtaining During Combustion of Aluminum Nanopowder in Air

    OpenAIRE

    Ilyin, Aleksandr Petrovich; Mostovshchikov, Andrey Vladimirovich; Root, Lyudmila Olegovna

    2016-01-01

    The resource-saving technology of aluminum nitride obtaining during the combustion of aluminum nanopowder in air has been analyzed in the article. The investigation of the crystal phases of aluminum nanopowder combustion products obtained under the magnetic field exposure has been made. The experimental results showed the increase of aluminum nitride content up to 86 wt. % in comparison with the aluminum nitride content in combustion products without any exposure. The mechanism of aluminum ni...

  7. Aluminum nitride electro-optic phase shifter for backend integration on silicon.

    Science.gov (United States)

    Zhu, Shiyang; Lo, Guo-Qiang

    2016-06-13

    An AlN electro-optic phase shifter with a parallel plate capacitor structure is fabricated on Si using the back-end complementary metal-oxide-semiconductor technology, which is feasible for multilayer photonics integration. The modulation efficiency (Vπ⋅Lπ product) measured from the fabricated waveguide-ring resonators and Mach-Zehnder Interferometer (MZI) modulators near the 1550-nm wavelength is ∼240 V⋅cm for the transverse electric (TE) mode and ∼320 V⋅cm for the transverse magnetic (TM) mode, from which the Pockels coefficient of the deposited AlN is deduced to be ∼1.0 pm/V for both TE and TM modes. The methods for further modulation efficiency improvement are addressed.

  8. Bond and electron beam welding quality control of the aluminum stabilized and reinforced CMS conductor by means of ultrasonic phased-array technology

    CERN Document Server

    Neuenschwander, J; Horváth, I L; Luthi, T; Marti, H

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. The coils for CNIS are wound of aluminum-stabilized Rutherford type superconductors reinforced with high-strength aluminum alloy. For optimum performance of the conductor a void-free metallic bonding between the high-purity aluminum and the Rutherford type cable as well as between the electron beam welded reinforcement and the high-purity aluminum must be guaranteed. It is the main task of this development work to assess continuously the bond quality over the whole width and the total length of the conductors during manufacture. To achieve this goal we use the ultrasonic phased-array technology. The application of multi- element transducers allows an electronic scanning perpendicular to the direction of production. Such a testing is sufficiently fast in order to allow a continuous a...

  9. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  10. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Science.gov (United States)

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  11. Low oxidation state aluminum-containing cluster anions: Cp(∗)AlnH(-), n = 1-3.

    Science.gov (United States)

    Zhang, Xinxing; Ganteför, Gerd; Eichhorn, Bryan; Mayo, Dennis; Sawyer, William H; Gill, Ann F; Kandalam, Anil K; Schnöckel, Hansgeorg; Bowen, Kit

    2016-08-21

    Three new, low oxidation state, aluminum-containing cluster anions, Cp*AlnH(-), n = 1-3, were prepared via reactions between aluminum hydride cluster anions, AlnHm (-), and Cp*H ligands. These were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory based calculations. Agreement between the experimentally and theoretically determined vertical detachment energies and adiabatic detachment energies validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands provide a new avenue for discovering low oxidation state, ligated aluminum clusters.

  12. Temporal and spatial imaging of hydrogen storage materials: watching solvent and hydrogen desorption from aluminium hydride by transmission electron microscopy.

    Science.gov (United States)

    Beattie, Shane D; Humphries, Terry; Weaver, Louise; McGrady, G Sean

    2008-10-07

    An in situ thermal desorption study of solvated aluminum hydride (alane) by transmission electron microscopy and selected area diffraction has permitted characterisation of the structural and morphological changes during desorption of solvent and hydrogen in real-time; this powerful technique for studying hydrogen storage materials complements several others already employed.

  13. Kinetics of hydrogen evolution from hydrides based on titanium and zirconium

    International Nuclear Information System (INIS)

    Solovetskij, Yu.I.; Chernavskij, P.A.; Lunin, V.V.

    1982-01-01

    Hydrogen evolution from intermetallide hydrides of the composition Zr-Me-H (Me=Co, Fe, Ni) has been studied. Hydrogen evolution from hydrides ZrHsub(1.98) and ZrCoHsub(2.88) is accompanied by phase transitions. On the basis of kinetics (the range 570-680 K) of hydrogen evolution for the systems ZrCosub(2)Hsub(0.20), ZrFeHsub(0.52) and ZrNiHsub(2.88) a conclusion is made on the constant character of their phase composition. For the hydrides mentioned as well as for TiHsub(1.93) kinetic dependences are presented. It is pointed out that the composition of surface and time of hydride storage make a considerable effect on kinetics of hydrogen evolution

  14. Iron and aluminum solid phase dynamics and carbon storage across a water balance gradient in volcanic soils

    Science.gov (United States)

    Bateman, J. B.; Fendorf, S. E.; Vitousek, P.

    2017-12-01

    Iron (Fe) and Aluminum (Al) are major components of volcanic soils, and strongly influence the stability of soil carbon (C). The stability of Fe and Al phases is dictated by the redox conditions and pH of soils, respectively. The water balance of a soil, defined as annual precipitation minus evapotranspiration, ultimately controls pH and redox conditions. Consequently, we hypothesize that water balance influences Fe/Al solid phase dynamics in volcanic soils when the climatic regime has persisted on timescales of 20 ky. To test this hypothesis, we collected soils from a naturally occurring water balance gradient on the windward side of Mauna Kea Volcano in Hawaii, across which water balance ranges from -1270 mm/y to +2000 mm/y. Sampling included complete soil profiles, and 30 cm surface soil samples. We determined the solid phases of Fe/Al with selective extractions and total C via combustion. Extracted Fe/Al were then partitioned into operational pools: organically bound, amorphous, crystalline, primary mineral, primary glass, and residual. All soils in the study were acidic, with pH between 3.4 and 6.4. Soil C varied considerably across the gradient, from 15% C by weight. Across sites, soil pH, Fe in primary minerals and glasses, and residual Al are negatively correlated with water balance, while soil C, organic Fe and Al, and crystalline Fe correlated positively with water balance. Organically bound Al increases linearly with water balance, while organically bound Fe is uncorrelated with water balance in soils where water balance is negative and is positively correlated with water balance in wetter sites. These results show that soils developing from the same parent material, though under different water balance regimes, range from lightly weathered ash deposits with little C accumulation in the driest regions, to heavily weathered soils composed of crystalline Fe, organic matter, and organically bound Fe/Al in the wettest regions. Al appears to be the primary

  15. High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication.

    Science.gov (United States)

    Biring, Sajal; Tsai, Kun-Tong; Sur, Ujjal Kumar; Wang, Yuh-Lin

    2008-09-03

    A high fidelity electrochemical replication technique for the rapid fabrication of Al nanostructures with 10 nm lateral resolution has been successfully demonstrated. Aluminum is electrodeposited onto a lithographically patterned Si master using a non-aqueous organic hydride bath of aluminum chloride and lithium aluminum hydride at room temperature. Chemical pretreatment of the Si surface allows a clean detachment of the replicated Al foil from the master, permitting its repetitive use for mass replication. This high throughput technique opens up new possibilities in the fabrication of Al-related nanostructures, including the growth of long range ordered anodic alumina nanochannel arrays.

  16. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  17. Delayed hydride cracking in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Domizzi, Gladys; Vigna, Gustavo L.

    2007-01-01

    Zr-2.5 Nb alloy from CANDU pressure tubes are prone to failure by hydrogen intake. One of the degradation mechanisms is delayed hydride cracking, which is characterized by the velocity of cracking. In this work, we study the effect of beta zirconium phase transformation over delayed hydride cracking velocity in Zr-2.5 Nb alloy from pressure tubes. Acoustic emission technique was used for cracking detection. (author) [es

  18. Chemical synthesis of aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ghanta, Sekher Reddy; Muralidharan, Krishnamurthi, E-mail: kmsc@uohyd.ernet.in [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad (India)

    2013-06-15

    An alternate synthetic route has been described for the production of aluminum nanoparticles (Al-NPs). These Al-NPs were obtained through a reduction of aluminum acetylacetonate [Al(acac){sub 3}] by lithium aluminum hydride (LiAlH{sub 4}) in mestitylene at 165 Degree-Sign C. The side products were removed by repeated washing with dry, ice cold methanol and the reaction mixture was filtered to obtain gray-colored Al-NPs. The synthesized nanoparticles were characterized by Powder X-ray diffraction pattern and {sup 27}Al-MAS-NMR spectrum. The X-ray diffraction pattern confirmed the formation of face-centered cubic (fcc) form of aluminum. The size and morphology were investigated by scanning electron microscope and transmission electron microscope which showed particle of varying shapes with size ranging from 50 to 250 nm. The weight loss from the nanoparticles was studied by thermo gravimetric analysis which indicated that the nanoparticles were tightly bound with an unknown amorphous organic residue which cannot be removed by simple washing. The carbonaceous residue might be outcome of the decomposition of acac ligand which was responsible in stabilizing aluminum nanoparticles.

  19. Process for production of an aluminum hydride compound

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Miller, Dean Michael; Molzahn, David Craig

    2013-08-06

    A compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl substituted by at least one of: (i) an alkoxy group having from one to six carbon atoms; and (ii) an alkyl group having from three to twelve carbon atoms; wherein M is an alkali metal, Be or Mg; and y is one or two.

  20. Kinetics of Thermal Decomposition of Aluminum Hydride in Argon

    National Research Council Canada - National Science Library

    Ismail, Ismail M; Hawkins, Tom W

    2005-01-01

    ...) in argon atmosphere and to shed light on the mechanism of alane decomposition. Two kinetic models have been successfully developed and used to propose a mechanism for the complete decomposition of alane and to predict its shelf-life during storage...

  1. The renaissance of hydrides as energy materials

    Science.gov (United States)

    Mohtadi, Rana; Orimo, Shin-Ichi

    2017-02-01

    Materials based on hydrides have been the linchpin in the development of several practical energy storage technologies, of which the most prominent example is nickel-metal hydride batteries. Motivated by the need to meet the future's energy demand, the past decade has witnessed substantial advancements in the research and development of hydrides as media for hydrogen energy storage. More recently, new and rapidly evolving discoveries have positioned hydrides as highly promising materials for future electrochemical energy storage, such as electrolytes for mono- and divalent batteries, and anodes for lithium-ion batteries. In addition, the potential of hydrides in efficient power transmission has been recently revealed. In this Review, we highlight key advances and illustrate how the versatility of hydrides has not only yielded a meaningful past, but also ensures a very bright future.

  2. Structural stability of complex hydrides LiBH4 revisited

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Vegge, Tejs

    2004-01-01

    A systematic approach to study the phase stability of LiBH4 based on ab initio calculations is presented. Three thermodynamically stable phases are identified and a new phase of Cc symmetry is proposed for the first time for a complex hydride. The x-ray diffraction pattern and vibrational spectra...

  3. Phase Diagram of Al-Ca-Mg-Si System and Its Application for the Design of Aluminum Alloys with High Magnesium Content

    Directory of Open Access Journals (Sweden)

    Nikolay A. Belov

    2017-10-01

    Full Text Available The phase transformations in the Al-Ca-Mg-Si system have been studied using thermodynamic calculations and experimental methods. We show that at 10% Magnesium (Mg, depending on the concentrations of calcium (Ca and silicon (Si, the following phases crystallize first (apart from the aluminum (Al solid solution: Al4Ca, Mg2Si, and Al2CaSi2. We have found that the major part of the calculated concentration range is covered by the region of the primary crystallization of the Al2CaSi2 phase. Regardless of the Ca and Si content, the solidification of the aluminum-magnesium alloys ends with the following nonvariant eutectic reaction: L → (Al + Al4Ca + Mg2Si + Al3Mg2. With respect to the temperature and composition of the liquid phase, this reaction is close to the eutectic reaction in the Al-Mg binary system. The addition of Ca and Si to the Al-10% Mg base alloy increases its hardness, reduces its density, and has no negative influence on its corrosion resistance. We have also established that the near-eutectic alloy containing about 3% Ca and 1% Si has the optimum structure.

  4. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly followed...... by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated...

  5. Effects of outgassing of loader chamber walls on hydriding of thin films for commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Provo, James L., E-mail: jlprovo@verizon.net [Consultant, J.L. Provo Consulting, Trinity, Florida 34655-7179 (United States)

    2014-07-01

    An important aspect of understanding industrial processing is to know the characteristics of the materials used in such processes. A study was performed to determine the effects of hydriding chamber material on the degree of hydriding for the commercial production of thin film hydride targets for various research universities, commercial companies, and government national laboratories. The goal was to increase the degree of hydriding of various thin film hydrides and to study the vacuum environment during air-exposure hydriding. For this purpose, dynamic residual gas analysis during deuterium gas hydride processing was utilized with erbium thin films, employing a special set-up for direct dynamic hydride gas sampling during processing at elevated temperature and full loading gas pressure. Complete process data for (1) a copper–(1.83 wt. %)beryllium wet hydrogen fired passivated (600 °C–1 h) externally heated pipe hydriding chamber are reported. Dynamic residual gas analysis comparisons during hydriding are presented for hydriding chambers made from (2) alumina (99.8 wt. %), (3) copper (with an interior aluminum coating ∼10 k Å thick, and (4) for a stainless-steel air-fired passivated (900 °C–1 h) chamber. Dynamic data with deuterium gas in the chamber at the hydriding temperature (450 °C) showed the presence and growth of water vapor (D{sub 2}O) and related mixed ion species(H{sub 2}O{sup +}, HDO{sup +}, D{sub 2}O{sup +}, and OD{sup +}) from hydrogen isotope exchange reactions during the 1 h process time. Peaks at mass-to-charge ratios (i.e., m/e) of 12(C{sup +}), 16(CD{sub 2}{sup +}), 17(CHD{sub 2}{sup +}), and 18(CD{sub 3}{sup +}, OD{sup +}) increased for approximately the first half hour of a 1 h hydriding process and then approach steady state. Mass-to-charge peaks at 19(HDO{sup +}) and 20(D{sub 2}O{sup +}) continue to increase throughout the process cycle. Using the m/e = 20 (D{sub 2}O{sup +}) peak intensity from chamber (1

  6. Inert blanketing of a hydride bed using typical grade protium

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E. [Savannah River National Laboratory, Aiken (United States)

    2015-03-15

    This paper describes the impact of 500 ppm (0.05%) impurities in protium on the absorption rate of a 9.66 kg LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride bed. The presence of 500 ppm or less inerts (i.e. non-hydrogen isotopes) can significantly impact hydrogen bed absorption rates. The impact on reducing absorption rates is significantly greater than predicted assuming uniform temperature, pressure, and compositions throughout the bed. Possible explanations are discussed. One possibility considered was the feed gas contained impurity levels higher than 500 ppm. It was shown that a level of 5000 ppm of inerts would have been necessary to fit the experimental result so this possibility wa dismissed. Another possibility is that the impurities in the protium supply reacted with the hydride material and partially poisoned the hydride. If the hydride were poisoned with CO or another impurity, the removal of the over-pressure gas in the bed would not be expected to allow the hydride loading of the bed to continue as the experimental results showed, so this possibility was also dismissed. The last possibility questions the validity of the calculations. It is assumed in all the calculations that the gas phase composition, temperature, and pressure are uniform throughout the bed. These assumptions are less valid for large beds where there can be large temperature, pressure, and composition gradients throughout the bed. Eventually the impact of 0.05% inerts in protium on bed absorption rate is shown and explained in terms of an increase in inert partial pressure as the bed was loaded.

  7. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Tomassetti, G.

    2014-01-01

    Roč. 19, č. 7 (2014), s. 2313-2333 ISSN 1531-3492 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:61388998 Keywords : metal-hydrid phase transformation * hydrogen diffusion * swelling Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2014 http://aimsciences.org/journals/pdfs.jsp?paperID=10195&mode=full

  8. Hydrogen /Hydride/-air secondary battery

    Science.gov (United States)

    Sarradin, J.; Bronoel, G.; Percheron-Guegan, A.; Achard, J. C.

    1979-01-01

    The use of metal hydrides as negative electrodes in a hydrogen-air secondary battery seems promising. However, in an unpressurized cell, more stable hydrides that LaNi5H6 must be selected. Partial substitutions of nickel by aluminium or manganese increase the stability of hydrides. Combined with an air reversible electrode, a specific energy close to 100 Wh/kg can be expected.

  9. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  10. Synthesis and Processing of Nanocrystalline Aluminum Nitride

    OpenAIRE

    Duarte, Matthew Albert

    2016-01-01

    Synthesis, processing and characterization of nanocrystalline aluminum nitride has been systematically studied. Non-carbon based gas nitridation was used to reduce nanocrystalline γ-alumina, having a grain size of ~80 nm. Single phase aluminum nitride powder was obtained at firing temperatures of 1200°C. Further processing of AlN powders was performed by CAPAD (Current Activated Pressure Assisted Densification) to obtain dense single phase aluminum nitride. Dense bulk aluminum nitride was ob...

  11. Hydrogen vibrations in nickel hydride

    International Nuclear Information System (INIS)

    Eckert, J.; Daniels, W.B.; Kitchens, T.A.; Majkrzak, C.F.; Passell, L.

    1983-01-01

    This chapter examines nickel hydride which was prepared in a BeCu high pressure cell at room temperature by applying a hydrogen gas pressure of 7kbar to pellets pressed from fine nickel powder. It explains that the rate and degree of completion of the hydride formation was first checked by neutron diffraction using deuterium gas with the result that a deuterium to metal ratio of approximately 0.75 was reached. It points out that after desorption of the deuterium, the nickel sample was charged with hydrogen for the inelastic incoherent neutron scattering measurements. The chapter notes that measurements were performed with the Be filter technique at the Brookhaven High Flux Beam Reactor, and finds that the optic modes appear as a broad band in the phonon density of states from about 70 to 110 MeV with peaks at approximately 88 and 108 MeV. It finally discusses the effect of hydride formation on the acoustic phonon density of states

  12. Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in zirconium alloys

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Mukherjee, S.; Roychowdhury, S.; Srivastava, D.; Sinha, T.K.; De, P.K.; Banerjee, S.; Gopalan, B.; Kameswaran, R.; Sheelvantra, Smita S.

    2003-12-01

    Gaseous and electrolytic hydrogen charging techniques for introducing controlled amount of hydrogen in zirconium alloy is described. Zr-1wt%Nb fuel tube, zircaloy-2 pressure tube and Zr-2.5Nb pressure tube samples were charged with up to 1000 ppm of hydrogen by weight using one of the aforementioned methods. These hydrogen charged Zr-alloy samples were analyzed for estimating the total hydrogen content using inert gas fusion technique. Influence of sample surface preparation on the estimated hydrogen content is also discussed. In zirconium alloys, hydrogen in excess of the terminal solid solubility precipitates out as brittle hydride phase, which acquire platelet shaped morphology due to its accommodation in the matrix and can make the host matrix brittle. The F N number, which represents susceptibility of Zr-alloy tubes to hydride embrittlement was measured from the metallographs. The volume fraction of the hydride phase, platelet size, distribution, interplatelet spacing and orientation were examined metallographically using samples sliced along the radial-axial and radial-circumferential plane of the tubes. It was observed that hydride platelet length increases with increase in hydrogen content. Considering the metallographs generated by Materials Science Division as standard, metallographs prepared by the IAEA round robin participants for different hydrogen concentration was compared. It is felt that hydride micrographs can be used to estimate not only that approximate hydrogen concentration of the sample but also its size, distribution and orientation which significantly affect the susceptibility to hydride embrittlement of these alloys. (author)

  13. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  14. Solidification : Real-time investigation of grain nucleation and growth during liquid to solid phase transformation of aluminum alloys

    NARCIS (Netherlands)

    Iqbal, N.

    2005-01-01

    Aluminum, the most common metallic element in the earth's crust, offers structural materials with high strength and light weight. It is widely used throughout the world economy, particularly in the transportation, packaging, and construction industries. Once extracted from ore, solidification is the

  15. Behaviour of aluminum foam under fire conditions

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2008-07-01

    Full Text Available Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1. Figure 1 presents the relationship graphically. Boundary values of the vs content resulting from the above relationship is too low, taking into account the data obtained from the technology of suspension composites [4]. Therefore, based on the structure assumed for the suspension shown in Figure 2 these authors proposed another way of determining the contents, the value of which is determined by the relationship (3 [5].For purposes of the experimental study presented in the paper two foams have been molten: a commercially available one, made by aluminum foaming with titanium hydride, and a foam manufactured in the Marine Materials Plant of the Maritime University of Szczecin by blowing the AlSi7 +20% SiC composite with argon. Macrophotographs of foam cross-sections are shown in Figure 3. The foams have been molten in the atmosphere of air at a temperature of 750ºC. The products of melting are presented in Figure 4. It appears that molten aluminum foam may have no liquid consistency, being unable to flow, which is a desired property from the point of view of fire-protection. The above feature of the molten foam results from the fact that it may be a discontinuous suspension of solid particles in a liquid metal. The suspended particles may be solid particles of the composite that served for making the foam or oxide membranes formed on extended metal surface of the bubbles included in the foam. The desired foam ability to form a discontinuous suspension after melting may be

  16. The progress of nanocrystalline hydride electrode materials

    International Nuclear Information System (INIS)

    Jurczyk, M.

    2004-01-01

    This paper reviews research at the Institute of Materials Science and Engineering, Poznan University of Technology, on the synthesis of nanocrystalline hydride electrode materials. Nanocrystalline materials have been synthesized by mechanical alloying (MA) followed by annealing. Examples of the materials include TiFe - , ZrV 2- , LaNi 5 and Mg 2 Ni-type phases. Details on the process used and the enhancement of properties due to the nanoscale structures are presented. The synthesized alloys were used as negative electrode materials for Ni-MH battery. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. For example, it was found that the respective replacement of Fe in TiFe by Ni and/or by Cr, Co, Mo improved not only the discharge capacity but also the cycle life of these electrodes. The hydrogen storage properties of nanocrystalline ZrV 2 - and LaNi 5 -type powders prepared by mechanical alloying and annealing show no big difference with those of melt casting (polycrystalline) alloys. On the other hand, a partial substitution of Mg by Mn or Al in Mg 2 Ni alloy leads to an increase in discharge capacity, at room temperature. Furthermore, the effect of the nickel and graphite coating on the structure of some nanocrystalline alloys and the electrodes characteristics were investigated. In the case of Mg 2 Ni-type alloy mechanical coating with graphite effectively reduced the degradation rate of the studied electrode materials. The combination of a nanocrystalline TiFe - , ZrV 2 - and LaNi 5 -type hydride electrodes and a nickel positive electrode to form a Ni-MH battery, has been successful. (authors)

  17. Low oxidation state aluminum-containing cluster anions: LAlH-and LAln-(n = 2-4, L = N[Si(Me)3]2).

    Science.gov (United States)

    Zhang, Xinxing; Wang, Linjie; Montone, Georgia R; Gill, Ann F; Ganteför, Gerd; Eichhorn, Bryan; Kandalam, Anil K; Bowen, Kit H

    2017-06-14

    Several low oxidation state aluminum-containing cluster anions, LAlH - and LAl n - (n = 2-4, L = N[Si(Me) 3 ] 2 ), were produced via reactions between aluminum hydride cluster anions, Al x H y - , and hexamethyldisilazane (HMDS). These clusters were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory (DFT) based calculations. Agreement between the experimental and theoretical vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands promise to be a new synthetic scheme for low oxidation state, ligated aluminum clusters.

  18. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.

    1999-01-01

    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Obtaining zircaloy powder through hydriding

    International Nuclear Information System (INIS)

    Dupim, Ivaldete da Silva; Moreira, Joao M.L.

    2009-01-01

    Zirconium alloys are good options for the metal matrix in dispersion fuels for power reactors due to their low thermal neutron absorption cross-section, good corrosion resistance, good mechanical strength and high thermal conductivity. A necessary step for obtaining such fuels is producing Zr alloy powder for the metal matrix composite material. This article presents results from the Zircaloy-4 hydrogenation tests with the purpose to embrittle the alloy as a first step for comminuting. Several hydrogenation tests were performed and studied through thermogravimetric analysis. They included H 2 pressures of 25 and 50 kPa and temperatures ranging between from 20 to 670 deg C. X-ray diffraction analysis showed in the hydrogenated samples the predominant presence of ZrH 2 and some ZrO 2 . Some kinetics parameters for the Zircaloy-4 hydrogenation reaction were obtained: the time required to reach the equilibrium state at the dwell temperature was about 100 minutes; the hydrogenation rate during the heating process from 20 to 670 deg C was about 21 mg/h, and at constant temperature of 670 deg C, the hydride rate was about 1.15 mg/h. The hydrogenation rate is largest during the heating process and most of it occurs during this period. After hydrogenated, the samples could easily be comminuted indicating that this is a possible technology to obtain Zircaloy powder. The results show that only few minutes of hydrogenation are necessary to reach the hydride levels required for comminuting the Zircaloy. The final hydride stoichiometry was between 2.7 and 2.8 H for each Zr atom in the sample (author)

  20. A NOVEL METHOD OF THE HYDRIDE SEPARATION FOR THE DETERMINATION OF ARSENIC AND ANTIMONY BY AAS

    Directory of Open Access Journals (Sweden)

    Ganden Supriyanto

    2010-06-01

    Full Text Available A novel method is proposed for the hydride separation when determinining of arsenic and antimony by AAS. A chromatomembrane cell was used as preconcentration-, extraction- and separation-manifold instead of the U-tube phase separator, which is normally fitted in continuous flow vapour systems generating conventionaly the hydrides. The absorbances of the hydrides produced were measured by an atomic absorption spectrophotometer at 193.7 nm and 217.6 nm. Under optimized analytical conditions, the calibration plot for arsenic was linear from 50 to 500 ng.mL-1 (r2 = 0.9982. The precision for three subsequent measurements of 500 ng.mL-1 arsenic gave rise to a relative standard deviation of 0.4%. The detection limit was 15 ng.mL-1, which is much lower compared with that of the conventional hydride system (2000 ng.mL-1. A similar result was observed in case of antimony: the detection limit was 8 ng.mL-1 when the proposed method was applied. Consequently, the sensitivity of the novel method surpasses systems with conventional hydride generation, i.e. the precision and the acuracy increase whereas the standard deviation and the detection limit decrease. The proposed method was applied in pharmacheutial analysis and the certified As-content of a commercial product was very sufficiently confirmed.   Keywords: Chromatomembrane Cell, Hydride separation, Arsenic detection, Antimony detection, AAS

  1. Influence of Milling Conditions on the Hydriding Properties of Mg-C Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hristina Stoyadinova

    2015-01-01

    Full Text Available Mg75 at.%, CB25 at.% (CB: carbon black composites were synthesized at different ball milling conditions (milling energy, milling duration, and environment and their hydriding properties were characterized by high-pressure DSC. The SEM observations revealed that the samples consist of 5–15 μm Mg particles, surrounded and in some cases coated by carbon particles. X-ray diffraction analysis showed that the Mg phase of all as-obtained composite powders is nanocrystalline with average crystallite size in the range 20–30 nm, depending on the milling conditions. The best hydriding properties, expressed in low-temperature hydriding (below 150°C and improved cycle life, showed the composites milled at dry conditions. This is obviously due mainly to the successful Mg surface protection by the carbon. Additional decrease of the hydriding temperature (<100°C was achieved applying higher-energy milling, but at the same time the cycling stability deteriorated, due to the extremely fine particles and microstructure achieved under these conditions. The composites milled in the presence of heptane showed rapid capacity decline during cycling as well. The observed difference in the hydriding behavior of the Mg-CB composites is attributed to the different coating efficiency of the carbon milled under different conditions with Mg, which is supposed to protect magnesium from oxidation and plays a catalytic role for the hydriding reaction.

  2. Low and high-pressure hydriding of V-0.5at.%C

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Joshua [University of Nevada, Reno, M.S. 388, Reno, NV 89557 (United States); Chandra, Dhanesh, E-mail: dchandra@unr.ed [University of Nevada, Reno, M.S. 388, Reno, NV 89557 (United States); Coleman, Michael; Sharma, Archana; Cathey, William N. [University of Nevada, Reno, M.S. 388, Reno, NV 89557 (United States); Paglieri, Stephen N. [TDA Research, Inc., 12345 W. 52nd Ave., Wheat Ridge, CO 80033 (United States); Wermer, Joseph R. [Los Alamos National Laboratory, P.O. Box 1663, MS-C927, Los Alamos, NM 87545 (United States); Bowman, Robert C. [Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 79-24, Pasadena, CA 91109 (United States); Lynch, Franklin E. [HCI, 12400 Dumont Way, Littleton, CO 80125 (United States)

    2010-04-01

    The low-pressure hydriding characteristics of V-0.5at.%C alloy were determined in this study. There are several prior reports on the pressure-composition-temperature (p-c-T) isotherms and stability of the low-pressure vanadium hydride phases (V{sub 2}H or beta{sub 1}), and of vanadium alloyed with transition elements, but there are no reports on the hydrides of V-C alloys. The thermodynamic properties of the vanadium did not change significantly with the addition of carbon. In addition to low-pressure studies on V-0.5at.%C, we also performed high-pressure studies on V{sub 2}H reversible VH reversible VH{sub 2} (beta{sub 1} reversible beta{sub 2} reversible gamma) hydrides, including thermal cycling (778 cycles) between the beta and gamma phases. Thermal cycling between VH reversible VH{sub 2} increased the pressure hysteresis. The effects of thermal cycling (4000 cycles) on the absorption and desorption isotherms of V-0.5at.%C and on the H/M ratios for the beta{sub 1}-, beta{sub 2}- and gamma-phase hydrides are also presented. There was minimal decrepitation (pulverization) of the alloy; decrepitation of the V-0.5at.%C alloy was dramatically less than that of pure vanadium.

  3. First Evidence of Rh Nano-Hydride Formation at Low Pressure.

    Science.gov (United States)

    Zlotea, Claudia; Oumellal, Yassine; Msakni, Mariem; Bourgon, Julie; Bastide, Stéphane; Cachet-Vivier, Christine; Latroche, Michel

    2015-07-08

    Rh-based nanoparticles supported on a porous carbon host were prepared with tunable average sizes ranging from 1.3 to 3.0 nm. Depending on the vacuum or hydrogen environment during thermal treatment, either Rh metal or hydride is formed at nanoscale, respectively. In contrast to bulk Rh that can form a hydride phase under 4 GPa pressure, the metallic Rh nanoparticles (∼2.3 nm) absorb hydrogen and form a hydride phase at pressure below 0.1 MPa, as evidenced by the presence of a plateau pressure in the pressure-composition isotherm curves at room temperature. Larger metal nanoparticles (∼3.0 nm) form only a solid solution with hydrogen under similar conditions. This suggests a nanoscale effect that drastically changes the Rh-H thermodynamics. The nanosized Rh hydride phase is stable at room temperature and only desorbs hydrogen above 175 °C. Within the present hydride particle size range (1.3-2.3 nm), the hydrogen desorption is size-dependent, as proven by different thermal analysis techniques.

  4. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  5. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  6. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Luc Aymard

    2015-08-01

    Full Text Available The state of the art of conversion reactions of metal hydrides (MH with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0 and the lowest electrode polarization (2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent

  7. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries.

    Science.gov (United States)

    Aymard, Luc; Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should

  8. Synthesis and Characterization of Metal Hydride/Carbon Aerogel Composites for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin

    2012-01-01

    Full Text Available Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4, a complex metal hydride, and carbon aerogels (CAs, a light porous material connected by several spherical nanoparticles. The objectives of the present work have been to investigate the synthesis, characterization, and hydrogenation behavior of Pd-, Ti- or Fe-doped CAs, NaAlH4, and MgH2 nanocomposites. The diameters of Pd nanoparticles onto CA’s surface and BET surface area of CAs were 3–10 nm and 700–900 m2g−1, respectively. The H2 storage capacity of metal hydrides has been studied using high-pressure TGA microbalance and they were 4.0, 2.7, 2.1, and 1.2 wt% for MgH2-FeTi-CAs, MgH2-FeTi, CAs-Pd, and 8 mol% Ti-doped NaAlH4, respectively, at room temperature. Carbon aerogels with higher surface area and mesoporous structures facilitated hydrogen diffusion and adsorption, which accounted for its extraordinary hydrogen storage phenomenon. The hydrogen adsorption abilities of CAs notably increased after inclusion of metal hydrides by the “hydrogen spillover” mechanisms.

  9. Autocatalytic effects in the mechanically induced hydriding of refractory metals

    International Nuclear Information System (INIS)

    Bab, M.A.; Baum, L.A.; Mendoza-Zelis, L.

    2007-01-01

    Mechanical milling of powders in a gaseous ambient is an efficient tool to induce gas-solid reactions and several nanocrystalline metallic oxides, nitrides and hydrides may be obtained at room temperature and moderated pressures by this route. We present here a study of the mechanically induced hydriding of Ti, Zr and Hf elemental powders, ground in an oscillatory mill under hydrogen gas at constant volume. The final formation of nanocrystalline cubic δ-MH 2 , together with a varying fraction of tetragonal ε-MH 2 , was verified by X-ray diffraction. From the measured pressure drop during the milling process the hydriding kinetics was determined and two distinct regimes were observed. For Ti and-at low milling frequencies-for Zr and Hf, a normal regime, characterized by a sigmoidal trend and a linear dependence of the rate constant on the milling intensity, was found. Otherwise, a sudden increase in the reacted fraction was observed in the absorption curve, typical of a self-sustained regime. The magnitude of the observed jump increases with the milling intensity and afterwards the reaction proceeds normally until it is completed. This critical behavior is discussed in terms of the reaction rate, the degree of transformation and the ε-phase content

  10. A study of environmental characterization of conventional and advanced aluminum alloys for selection and design. Phase 1: Literature review

    Science.gov (United States)

    Sprowls, D. O.

    1984-01-01

    A review of the literature is presented with the objectives of identifying relationships between various accelerated stress corrosion testing techniques, and for determining the combination of test methods best suited to selection and design of high strength aluminum alloys. The following areas are reviewed: status of stress-corrosion test standards, the influence of mechanical and environmental factors on stress corrosion testing, correlation of accelerated test data with in-service experience, and procedures used to avoid stress corrosion problems in service. Promising areas for further work are identified.

  11. Gas-Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum-Vanadium-Molybdenum.

    Science.gov (United States)

    Lotfi, Samira; Boffito, Daria C; Patience, Gregory S

    2015-10-26

    Lignin is a complex polymer that is a potential feedstock for aromatic compounds and carboxylic acids by cleaving the β-O-4 and 5-5' linkages. In this work, a syringe pump atomizes an alkaline solution of lignin into a catalytic fluidized bed operating above 600 K. The vanadium heterogeneous catalysts convert all the lignin into carboxylic acids (up to 25 % selectivity), coke, carbon oxides, and hydrogen. Aluminum-vanadium-molybdenum mostly produced lactic acid (together with formic acid, acrylic acid, and maleic anhydride), whereas the vanadium pyrophosphate catalyst produced more maleic anhydride. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydride observations using the neutrography technique

    International Nuclear Information System (INIS)

    Meyer, G.; Baruj, A.; Borzone, E.M.; Cardenas, R.; Szames, E.; Somoza, J.; Rivas, S.; Sanchez, F.A.; Marin, J.

    2012-01-01

    Neutron radiography observations were performed at the RA-6 experimental nuclear facility in Bariloche. Images from a prototype of a hydride-based hydrogen storage device have been obtained. The technique allows visualizing the inner hydride space distribution. The hydride appeared compacted at the lower part of the prototype after several cycles of hydrogen charge and discharge. The technique has also been applied to the study of Zr/ZrH 2 samples. There is a linear relation between the sample width/hydrogen concentration and the photograph grey scale. This information could be useful for the study of nuclear engineering materials and to determine their possible degradation by hydrogen pick up (author)

  13. Safety and immunogenicity of inactivated poliovirus vaccine based on Sabin strains with and without aluminum hydroxide: a phase I trial in healthy adults.

    Science.gov (United States)

    Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Oberste, M Steven; Boog, Claire J; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M

    2013-11-12

    An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle income countries in the context of the Global Polio Eradication Initiative. Safety and immunogenicity of the Sabin-IPV was evaluated in a double-blind, randomized, controlled, phase I 'proof-of-concept' trial. Healthy male adults received a single intramuscular injection with Sabin-IPV, Sabin-IPV adjuvanted with aluminum hydroxide or conventional IPV. Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after vaccination. No vaccine-related serious adverse events were observed, and all local and systemic reactions were mild or moderate and transient. In all subjects, an increase in antibody titer for all types of poliovirus (both Sabin and wild strains) was observed 28 days after vaccination. Sabin-IPV and Sabin-IPV adjuvanted with aluminum hydroxide administered as a booster dose were equally immunogenic and safe as conventional IPV. EudraCTnr: 2010-024581-22, NCT01708720. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Aluminum Analysis.

    Science.gov (United States)

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  15. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  16. Method of making alkali metal hydrides

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek; Hlova, Ihor; Castle, Andra

    2017-05-30

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  17. The Resource-Saving Technology of Aluminum Nitride Obtaining During Combustion of Aluminum Nanopowder in Air

    Directory of Open Access Journals (Sweden)

    Ilyin Alexander

    2016-01-01

    Full Text Available The resource-saving technology of aluminum nitride obtaining during the combustion of aluminum nanopowder in air has been analyzed in the article. The investigation of the crystal phases of aluminum nanopowder combustion products obtained under the magnetic field exposure has been made. The experimental results showed the increase of aluminum nitride content up to 86 wt. % in comparison with the aluminum nitride content in combustion products without any exposure. The mechanism of aluminum nitride formation and stabilization in air was due to the oxygen molecules deactivation by light emission during combustion.

  18. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4

    International Nuclear Information System (INIS)

    Racine, A.

    2005-09-01

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  19. Hydrogen isotope exchange in a metal hydride tube

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report describes a model of the displacement of one hydrogen isotope within a metal hydride tube by a different isotope in the gas phase that is blown through the tube. The model incorporates only the most basic parameters to make a clear connection to the theory of open-tube gas chromatography, and to provide a simple description of how the behavior of the system scales with controllable parameters such as gas velocity and tube radius. A single tube can be seen as a building block for more complex architectures that provide higher molar flow rates or other advanced design goals.

  20. Interface Enthalpy-Entropy Competition in Nanoscale Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Nicola Patelli

    2018-01-01

    Full Text Available We analyzed the effect of the interfacial free energy on the thermodynamics of hydrogen sorption in nano-scaled materials. When the enthalpy and entropy terms are the same for all interfaces, as in an isotropic bi-phasic system, one obtains a compensation temperature, which does not depend on the system size nor on the relative phase abundance. The situation is different and more complex in a system with three or more phases, where the interfaces have different enthalpy and entropy. We also consider the possible effect of elastic strains on the stability of the hydride phase and on hysteresis. We compare a simple model with experimental data obtained on two different systems: (1 bi-phasic nanocomposites where ultrafine TiH2 crystallite are dispersed within a Mg nanoparticle and (2 Mg nanodots encapsulated by different phases.

  1. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused by...... to irradiation-induced swelling....

  2. Modifications of the hydriding kinetics of a metallic surface, using ion implantation

    International Nuclear Information System (INIS)

    Crusset, D.

    1992-10-01

    Uranium reacts with hydrogen to form an hydride: this reaction leads to the total destruction of the material. To modify the reactivity of an uranium surface towards hydrogen, ion implantation was selected, among surface treatments techniques. Four elements (carbon, nitrogen, oxygen, sulfur) were implanted to different doses. The results show a modification of the hydriding mechanism and a significant increase in the reaction induction times, notably at high implantation doses. Several techniques (SIMS, X-rays phases analysis and residual stresses determination) were used to characterize the samples and understand the different mechanisms involved

  3. Syntheses and properties of several metastable and stable hydrides derived from intermetallic compounds under high hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, S.M., E-mail: sfilipek@unipress.waw.pl [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Paul-Boncour, V. [ICMPE-CMTR, CNRS-UPEC, 2-8 rue Henri Dunant, 94320 Thiais (France); Liu, R.S. [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Jacob, I. [Unit Nuclear Eng., Ben Gurion University of the Negev, Beer-Sheva (Israel); Tsutaoka, T. [Dept. of Sci. Educ., Grad. School of Educ., Hiroshima University, Hiroshima (Japan); Budziak, A. [Institute of Nuclear Physics PAS, 31-342 Kraków (Poland); Morawski, A. [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Sugiura, H. [Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Zachariasz, P. [Institute of Electron Technology Cracow Division, ul. Zablocie 39, 30-701 Krakow (Poland); Dybko, K. [Institute of Physics, PAS, 02-668 Warsaw (Poland); Diduszko, R. [Tele and Radio Research Institute, ul. Ratuszowa 11, Warsaw (Poland)

    2016-12-01

    Brief summary of our former work on high hydrogen pressure syntheses of novel hydrides and studies of their properties is supplemented with new results. Syntheses and properties of a number of hydrides (unstable, metastable or stable in ambient conditions) derived under high hydrogen pressure from intermetallic compounds, like MeT{sub 2}, MeNi{sub 5}, Me{sub 7}T{sub 3}, Y{sub 6}Mn{sub 23} and YMn{sub 12} (where Me = zirconium, yttrium or rare earth; T = transition metal) are presented. Stabilization of ZrFe{sub 2}H{sub 4} due to surface phenomena was revealed. Unusual role of manganese in hydride forming processes is pointed out. Hydrogen induced phase transitions, suppression of magnetism, antiferromagnetic-ferromagnetic and metal-insulator or semimetal-metal transitions are described. Equations of state (EOS) of hydrides submitted to hydrostatic pressures up to 30 GPa are presented and discussed.

  4. Phenolic composition of pomegranate peel extracts using an LC-MS approach with silica hydride columns

    Science.gov (United States)

    The peels of different pomegranate cultivars (Molla Nepes, Parfianka, Purple Heart, Wonderful and Vkunsyi) were compared in terms of phenolic composition and total phenolics. Analyses were performed on two silica hydride-based stationary phases: phenyl and undecenoic acid columns. Quantitation was ...

  5. Manufacturing and investigation of U-Mo LEU fuel granules by hydride-dehydride processing

    International Nuclear Information System (INIS)

    Stetskiy, Y.A.; Trifonov, Y.I.; Mitrofanov, A.V.; Samarin, V.I.

    2002-01-01

    Investigations of hydride-dehydride processing for comminution of U-Mo alloys with Mo content in the range 1.9/9.2% have been performed. Some regularities of the process as a function of Mo content have been determined as well as some parameters elaborated. Hydride-dehydride processing has been shown to provide necessary phase and chemical compositions of U-Mo fuel granules to be used in disperse fuel elements for research reactors. Pin type disperse mini-fuel elements for irradiation tests in the loop of 'MIR' reactor (Dmitrovgrad) have been fabricated using U-Mo LEU fuel granules obtained by hydride-dehydride processing. Irradiation tests of these mini-fuel elements loaded to 4 g U tot /cm 3 are planned to start by the end of this year. (author)

  6. Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape.

    Science.gov (United States)

    Syrenova, Svetlana; Wadell, Carl; Nugroho, Ferry A A; Gschneidtner, Tina A; Diaz Fernandez, Yuri A; Nalin, Giammarco; Świtlik, Dominika; Westerlund, Fredrik; Antosiewicz, Tomasz J; Zhdanov, Vladimir P; Moth-Poulsen, Kasper; Langhammer, Christoph

    2015-12-01

    Physicochemical properties of nanoparticles may depend on their size and shape and are traditionally assessed in ensemble-level experiments, which accordingly may be plagued by averaging effects. These effects can be eliminated in single-nanoparticle experiments. Using plasmonic nanospectroscopy, we present a comprehensive study of hydride formation thermodynamics in individual Pd nanocrystals of different size and shape, and find corresponding enthalpies and entropies to be nearly size- and shape-independent. The hysteresis observed is significantly wider than in bulk, with details depending on the specifics of individual nanoparticles. Generally, the absorption branch of the hysteresis loop is size-dependent in the sub-30 nm regime, whereas desorption is size- and shape-independent. The former is consistent with a coherent phase transition during hydride formation, influenced kinetically by the specifics of nucleation, whereas the latter implies that hydride decomposition either occurs incoherently or via different kinetic pathways.

  7. Preliminary development of flaw evaluation procedures for delayed hydride cracking initiation under hydride non-ratcheting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Cui, J.; Kawa, D.; Shek, G.K.; Scarth, D.A. [Kinectrics Inc., Toronto, Ontario (Canada)

    2006-07-01

    The flaw evaluation procedure for Delayed Hydride Cracking (DHC) initiation currently provided in the CSA Standard N285.8 was developed for hydride ratcheting conditions, in which flaw-tip hydrides do not completely dissolve at peak temperature. Test results have shown that hydrided regions formed under non-ratcheting conditions, in which flaw-tip hydrides completely dissolve at peak temperature, have significantly higher resistance to cracking than those formed under ratcheting conditions. This paper presents some preliminary work on the development of a procedure for the evaluation of DHC initiation for flaws under hydride non-ratcheting conditions. (author)

  8. Fabrication of Aluminum Foams with Small Pore Size by Melt Foaming Method

    Science.gov (United States)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Shi, Tong; Liu, Zhiyong; Wang, Ningzhen

    2017-04-01

    This article introduces an improvement to the fabrication of aluminum foams with small pore size by melt foaming method. Before added to the melt, the foaming agent (titanium hydride) was pretreated in two steps. It firstly went through the traditional pre-oxidation treatment, which delayed the decomposition of titanium hydride and made sure the dispersion stage was controllable. Then such pre-oxidized titanium hydride powder was mixed with copper powder in a planetary ball mill. This treatment can not only increase the number of foaming agent particles and make them easier to disperse in the melt, which helps to increase the number of pores, but also reduce the amount of hydrogen released in the foaming stage. Therefore, the pore size could be decreased. Using such a ball-milled foaming agent in melt foaming method, aluminum foams with small pore size (average size of 1.6 mm) were successfully fabricated.

  9. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don; Harmon, Laurel

    2011-02-14

    UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 LiAlH4Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the

  10. Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: High-resolution neutron radiography imaging and BISON finite element analysis

    Science.gov (United States)

    Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.

    2017-12-01

    High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.

  11. Effect of previous phase formation on densification and microstructure of aluminum titanate; Efeito da pre-formacao de fase na densificacao e microestrutura do titanato de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Guedes e Silva, C.C.; Zaninelli, G.; Genova, L.A., E-mail: cecilia.guedes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carvalho, F.M.S. [Universidade de Sao Paulo (IGC/USP), Sao Paulo, SP (Brazil). Instituto de Geociencias

    2011-07-01

    Aluminum titanate based ceramics are potential candidates for many industrial applications mainly due to their low coefficient of thermal expansion and high thermal shock resistance. However, these ceramics are susceptible to phase dissociation in temperature range between 1100 and 1300 deg C, with consequent deterioration of properties. In this paper, it was assessed the effect of previous formation of Al{sub 2}TiO{sub 5}, obtained by calcination and subsequent grinding of equimolar mixtures of Al{sub 2}O{sub 3} and TiO{sub 2}, containing MgO and SiO{sub 2}, additives which promote Al{sub 2}TiO{sub 5} stabilization. Compacted samples from calcinated and non-calcinated powders were evaluated considering densification, formed crystalline phases, as well as grains size and morphology, by means of dilatometer studies, sintering treatments, X-ray diffraction and scanning electron microscopy. The effect of previous formation of Al{sub 2}TiO{sub 5} was associated with the properties and obtained features. (author)

  12. Dimeric aluminum-phosphorus compounds as masked frustrated Lewis pairs for small molecule activation

    NARCIS (Netherlands)

    Roters, S.; Appelt, C.; Westenberg, H.; Hepp, A.; Slootweg, J.C.; Lammertsma, K.; Uhl, W.

    2012-01-01

    Hydroalumination of aryldialkynylphosphines RP(CC-tBu) 2 (R = Ph, Mes) with equimolar quantities of diethylaluminum hydride afforded mixed alkenyl-alkynyl cyclic dimers in which the dative aluminum-phosphorus bonds are geminal to the exocyclic alkenyl groups. Addition of triethylaluminum

  13. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    African Journals Online (AJOL)

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  14. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  15. Decarbonization process for carbothermically produced aluminum

    Science.gov (United States)

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  16. Experimental investigation of strain, damage and failure of hydrided zircaloy-4 with various hydride orientations

    International Nuclear Information System (INIS)

    Racine, A; Catherine, C.S.; Cappelaere, C.; Bornert, M.; Caldemaison, D.

    2005-01-01

    This experimental investigation is devoted to the influence of the orientation of hydrides on the mechanical response of Zircaloy-4. Ring tensile tests are performed on unirradiated CWSR Zircaloy-4, charged with about 200 or 500wppm hydrogen. Hydrides are oriented either parallel ('tangential'), or perpendicular ('radial') to the circumferential tensile direction. Tangential hydrides are usually observed in cladding tubes, however, hydrides can be reoriented after cooling under stress to become radial and then trigger brittle behavior. In this investigation, we perform, 'macroscopic' or SEM in-situ tensile tests on smooth rings, at room temperature. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. The results lead to the following conclusions: neither the tensile stress-strain response nor the strain modes are affected by hydrogen content or hydride orientation, but the failure modes are. Indeed, only 200wppm radial hydrides embrittle Zy-4: sample fails in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases samples reach at least 750 MPa before failure, with ductile or brittle mode. (authors)

  17. Hydriding and dehydriding rates and hydrogen-storage capacity of ...

    Indian Academy of Sciences (India)

    Fe2O3 (expected to increase hydriding rate) was selected as an oxide to be added. Ti was also selected since, it was considered to increase the hydriding and dehydriding rates by forming Ti hydride. A sample, Mg–14Ni–3Fe2O3–3Ti, was prepared by reactive mechanical grinding and its hydrogen storage properties were ...

  18. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  19. Production of anhydrous aluminum chloride composition

    Science.gov (United States)

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  20. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  1. Phase Identification of Nanometric Precipitates in Al-Si-Cu Aluminum Alloy by Hr-Stem Investigations

    Directory of Open Access Journals (Sweden)

    Pawlyta M.

    2016-09-01

    Full Text Available Aluminium recycling is cost-effective and beneficial for the environment. It is expected that this trend will continue in the future, and even will steadily increase. The consequence of the use of recycled materials is variable and difficult to predict chemical composition. This causes a significant reduction in the production process, since the properties of produced alloy are determined by the microstructure and the presence of precipitates of other phases. For this reason, the type and order of formation of precipitates were systematically investigated in recent decades. These studies involved, however, only the main systems (Al-Cu, Al-Mg-Si, Al-Cu-Mg, Al-Mg-Si-Cu, while more complex systems were not analysed. Even trace amounts of additional elements can significantly affect the alloy microstructure and composition of precipitates formed. This fact is particularly important in the case of new technologies such as laser surface treatment. As a result of extremely high temperature and temperature changes after the laser remelting large amount of precipitates are observed. Precipitates are nanometric in size and have different morphology and chemical composition. A full understanding of the processes that occur during the laser remelting requires their precise but also time effectively phase identification, which due to the diversity and nanometric size, is a major research challenge. This work presents the methodology of identification of nanometer phase precipitates in the alloy AlSi9Cu, based on the simultaneous TEM imaging and chemical composition analysis using the dispersion spectroscopy using the characteristic X-ray. Verification is performed by comparing the simulation unit cell of the identified phase with the experimental high-resolution image.

  2. A Designer Fluid for Aluminum Phase Change Devices, Vol. 1 of 3: General Inorganic Aqueous Solution (IAS) Chemistry

    Science.gov (United States)

    2016-11-17

    thermo-syphon: (a) before charge, (b) sealed by cold welder, (c) protected by J-B weld adhesive...out in wicked phase change heat transfer devices. Wen [18] used nanoparticle suspensions to successfully increase the boiling heat transfer...heat fluxes. He found that the critical axial and radial heat fluxes of the Qu tube were much larger than found for off the shelf similar size heat

  3. Four-phase fully-coupled mold-filling and solidification simulation for gas porosity prediction in aluminum sand casting

    Science.gov (United States)

    Jakumeit, J.; Jana, S.; Waclawczyk, T.; Mehdizadeh, A.; Sadiki, A.; Jouani, J.

    2012-07-01

    The impact of mold-filling and oxide film enclosure on gas porosity in A356 was investigated using a three-phase, fully-coupled, mold-filling and solidification simulation. For the prediction of gas porosity, a fourth hydrogen phase was added. At the solidification front hydrogen is rejected from the solid and accumulates in the melt. Pores nucleate if the solute gas exceeds the solubility limit. Air and melt are separated by a volume of fluid interface and special treatment of the hydrogen phase convection was necessary to limit the hydrogen to the melt. Folding of the melt surface was used as a source for oxide film entrainment. These oxide films were transported with the melt and used as nucleation sites for gas porosity formation. The influence of melt flow due to filling and oxide film distribution was analyzed using a simple 3-block test geometry. The test geometry was cast in A356 and analyzed by computer tomography to validate the porosity prediction.

  4. Solid Aluminum Borohydrides for Prospective Hydrogen Storage.

    Science.gov (United States)

    Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav

    2017-12-08

    Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena; Weck, Philippe F.; Schultz, Peter Andrew; Clark, Blythe; Glazoff, Michael V.; Homer, Eric R.

    2014-07-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

  6. Structure of the novel ternary hydrides Li4Tt2D (Tt=Si and Ge)

    International Nuclear Information System (INIS)

    Wu Hui; Rush, J.J.; Maryland Univ., College Park, MD; Hartman, M.R.; Oregon State Univ., Corvallis, OR; Udovic, T.J.; Zhou Wei; Pennsylvania Univ., Philadelphia, PA; Bowman, R.C. Jr.; Vajo, J.J.

    2007-01-01

    The crystal structures of newly discovered Li 4 Ge 2 D and Li 4 Si 2 D ternary phases were solved by direct methods using neutron powder diffraction data. Both structures can be described using a Cmmm orthorhombic cell with all hydrogen atoms occupying Li 6 -octahedral interstices. The overall crystal structure and the geometry of these interstices are compared with those of other related phases, and the stabilization of this novel class of ternary hydrides is discussed. (orig.)

  7. Modelling of fluid flow phenomenon in laser+GMAW hybrid welding of aluminum alloy considering three phase coupling and arc plasma shear stress

    Science.gov (United States)

    Xu, Guoxiang; Li, Pengfei; Cao, Qingnan; Hu, Qingxian; Gu, Xiaoyan; Du, Baoshuai

    2018-03-01

    The present study aims to develop a unified three dimensional numerical model for fiber laser+GMAW hybrid welding, which is used to study the fluid flow phenomena in hybrid welding of aluminum alloy and the influence of laser power on weld pool dynamic behavior. This model takes into account the coupling of gas, liquid and metal phases. Laser heat input is described using a cone heat source model with changing peak power density, its height being determined based on the keyhole size. Arc heat input is modeled as a double ellipsoid heat source. The arc plasma flow and droplet transfer are simulated through the two simplified models. The temperature and velocity fields for different laser powers are calculated. The computed results are in general agreement with the experimental data. Both the peak and average values of fluid flow velocity during hybrid welding are much higher than those of GMAW. At a low level of laser power, both the arc force and droplet impingement force play a relatively large role on fluid flow in the hybrid welding. Keyhole depth always oscillates within a range. With an increase in laser power, the weld pool behavior becomes more complex. An anti-clockwise vortex is generated and the stability of keyhole depth is improved. Besides, the effects of laser power on different driving forces of fluid flow in weld pool are also discussed.

  8. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver

    2010-01-01

    The dissociative sticking probability for H-2 on Pd films supported on sputtered Highly Ordered Pyrolytic Graphite (HOPG) has been derived from measurements of the rate of the H-D exchange reaction at 1 bar. The sticking probability for H-2, S. is higher on Pd hydride than on Pd (a factor of 1...... strongly to Pd hydride than to Pd. The activation barrier for desorption at a H coverage of one mono layer is slightly lower on Pd hydride, whereas the activation energy for adsorption is similar on Pd and Pd hydride. It is concluded that the higher sticking probability on Pd hydride is most likely caused...

  9. Sealed metal-hydride batteries for aerospace applications

    Science.gov (United States)

    Coates, Dwaine; Wright, R. D.

    Nickel and silver-metal hydride batteries are being developed for aerospace applications by Eagle-Picher. Metal hydride batteries offer a number of advantages over other aerospace battery systems. Nickel-metal hydride batteries have twice the gravimetric energy density of nickel-cadmium batteries and twice the volumetric energy density of nickel-hydrogen batteries. Silver-metal hydride batteries have the potential of three times the energy density of nickel-metal hydride. Aerospace metal hydride batteries are hermetically sealed, operate at low pressure and are prismatic in geometry. They exhibit excellent overcharge and overdischarge capability. The objective of current programs at Eagle-Picher is to develop high energy density, long cycle life metal-hydride batteries for the aerospace market and to establish a testing database to support future applications.

  10. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  11. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  12. Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

    Science.gov (United States)

    Kubo, T.; Kobayashi, Y.

    2013-08-01

    Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data. The stress distribution around the crack tip is significantly altered by precipitation of hydride. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed

  13. Are RENiAl hydrides metallic?

    Czech Academy of Sciences Publication Activity Database

    Eichinger, K.; Havela, L.; Prokleška, J.; Stelmakhovych, O.; Daniš, S.; Šantavá, Eva; Miliyanchuk, K.

    2009-01-01

    Roč. 100, č. 9 (2009), s. 1200-1202 ISSN 1862-5282 Grant - others:GA ČR(CZ) GA202/07/0418 Institutional research plan: CEZ:AV0Z10100520 Keywords : rare earth metals * magnetism * hydrides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  14. Fabrication of Lotus-Type Porous Aluminum through Thermal Decomposition Method

    Science.gov (United States)

    Kim, S. Y.; Park, J. S.; Nakajima, H.

    2009-04-01

    Lotus-type porous aluminum with cylindrical pores was fabricated by unidirectional solidification through thermal decomposition of calcium hydroxide, sodium bicarbonate, or titanium hydride. The pore-forming gas decomposed from calcium hydroxide, sodium bicarbonate, and titanium hydride is identified as hydrogen. The elongated pores are evolved due to the solubility gap between liquid and solid when the melt dissolving hydrogen is solidified unidirectionally. The porosity of lotus aluminum is as high as 20 pct despite the type of the compounds. The pore size decreases and the pore density increases with increasing amount of calcium hydroxide, which is explained by an increase in the number of pore nucleation sites. The porosity and pore size in lotus aluminum fabricated using calcium hydroxide decrease with increasing argon pressure, which is explained by Boyle’s law. It is suggested that this fabrication method is simple and safe, which makes it superior to the conventional technique using high-pressure hydrogen gas.

  15. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  16. Recycling of automotive aluminum

    OpenAIRE

    Cui, Jirang; Roven, Hans Jørgen

    2010-01-01

    With the global warming of concern, the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits. In this work, recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling, use of aluminum alloys in automotive applications, automotive recycling process, and new technologies in aluminum scrap process. Literature survey shows that newly developed t...

  17. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Börries, S., E-mail: stefan.boerries@hzg.de [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Metz, O.; Pranzas, P.K. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Bücherl, T. [ZTWB Radiochemie München (RCM), Technische Universität München (TUM), Walther-Meissner-Str. 3, D-85748 Garching (Germany); Söllradl, S. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII), Technische Universität München (TUM), Lichtenbergstr. 1, D-85748 Garching (Germany); Dornheim, M.; Klassen, T.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

    2015-10-11

    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  18. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bücherl, T.; Söllradl, S.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2015-10-01

    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  19. Thermophysical Properties of Liquid Aluminum

    Science.gov (United States)

    Leitner, Matthias; Leitner, Thomas; Schmon, Alexander; Aziz, Kirmanj; Pottlacher, Gernot

    2017-06-01

    Ohmic pulse-heating with sub-microsecond time resolution is used to obtain thermophysical properties for aluminum in the liquid phase. Measurement of current through the sample, voltage drop across the sample, surface radiation, and volume expansion allow the calculation of specific heat capacity and the temperature dependencies of electrical resistivity, enthalpy, and density of the sample at melting and in the liquid phase. Thermal conductivity and thermal diffusivity as a function of temperature are estimated from resistivity data using the Wiedemann-Franz law. Data for liquid aluminum obtained by pulse-heating are quite rare because of the low melting temperature of aluminum with 933.47 K (660.32 °C), as the fast operating pyrometers used for the pulse-heating technique with rise times of about 100 ns generally might not be able to resolve the melting plateau of aluminum because they are not sensitive enough for such low temperature ranges. To overcome this obstacle, we constructed a new, fast pyrometer sensitive in this temperature region. Electromagnetic levitation, as the second experimental approach used, delivers data for surface tension (this quantity is not available by means of the pulse-heating technique) and for density of aluminum as a function of temperature. Data obtained will be extensively compared to existing literature data.

  20. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  1. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  2. Pressure and high-Tc superconductivity in sulfur hydrides

    Science.gov (United States)

    Gor'Kov, Lev P.; Kresin, Vladimir Z.

    2016-05-01

    The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy.

  3. Evolution of deep centers in GaN grown by hydride vapor phaseepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.-Q.; Look, D.C.; Jasinski, J.; Benamara, M.; Liliental-Weber, Z.; Molnar, R.J.

    2001-04-18

    Deep centers and dislocation densities in undoped n GaN, grown by hydride vapor phase epitaxy (HVPE), were characterized as a function of the layer thickness by deep level transient spectroscopy and transmission electron microscopy, respectively. As the layer thickness decreases, the variety and concentration of deep centers increase, in conjunction with the increase of dislocation density. Based on comparison with electron irradiation induced centers, some dominant centers in HVPE GaN are identified as possible point defects.

  4. Nickel metal hydride LEO cycle testing

    Science.gov (United States)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  5. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    McCoy, K.

    2000-01-01

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation

  6. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  7. Identification of the zirconium hydrides metallography in zircaloy-2

    International Nuclear Information System (INIS)

    Garcia Gonzalez, F.

    1968-01-01

    Technique for the Identification of the zirconium hydrides in metallographic specimens have been developed. Microhardness, quantitative estimation and relative orientation of the present hydrides as well as grain size determination of the different Zircaloy-2 tube specimens have also been made. The specimens used were corrosion- tested in water during various periods of time at 300 degree castrating, prior to the metallographic examination. Reference specimens, as received, and heavily hydride specimens in a hydrogen atmosphere at 800 degree centigrees, have been used in the previous stages of the work. No difficulties have been met in this early stage of acquaintanceship with the zirconium hydrides. (Author) 5 refs

  8. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    Rezchikov, V.G.; Skachkova, I.N.; Kuznetsova, T.S.; Khrushcheva, V.V.

    1985-01-01

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10 -3 % vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  9. THE STEREOCHEMISTRY AND MECHANISM OF HYDRIDE REDUCTIONS OF CYCLOHEXENE OXIDES.

    Science.gov (United States)

    HYDRIDES, *OXIDATION REDUCTION REACTIONS), (* CYCLOHEXANOLS , SYNTHESIS (CHEMISTRY)), (*STEREOCHEMISTRY, CYCLOHEXANES), (*BOROHYDRIDES, REDUCTION...CHEMISTRY)), DIBORANES, OXYGEN HETEROCYCLIC COMPOUNDS, CYCLOHEXANONES, CYCLOHEXENES , MOLECULAR ISOMERISM, ORGANIC SOLVENTS, GAS CHROMATOGRAPHY

  10. Preparation, characterization, and use of metal hydrides for fuel systems. Progress report, September 1, 1976--May 31, 1977

    International Nuclear Information System (INIS)

    Herley, P.J.

    1977-05-01

    The isothermal decomposition kinetics of unirradiated and irradiated powdered lithium aluminum hydride have been determined in the temperature range 125 to 155 0 C. The resulting activation energies for unirradiated material for the induction, acceleratory, decay and slow final rate were, respectively, 116.8, 94.3, 87.1 and 12.9 +- 4.6 KJ/mole. For preirradiated powders (1.25 x 10 5 rad) activation energies for the same periods were 119.0, 99.5, 80.5 and 10.0 +- 4.6 KJ/mole, respectively. Admixture with powdered aluminum, nickel and final reaction product did not affect the subsequent thermal decomposition. Exposure to dry air and carbon dioxide do not affect the decomposition, but 2 minute exposure to saturated water vapor reduces the percentage decomposition by almost 50%. An extensive differential scanning calorimeter study has been made of LiAlH 4 (irradiation and water vapor effects), AlH 3 and NaAlH 3 (irradiation effects). The results indicate that irradiation tends to move the existing peaks to lower temperatures and at higher doses may even introduce additional peaks. The data above were analyzed using a cubic acceleratory period equation and a monomolecular decay law. In addition the analysis shows that irradiation increased the concentration of decomposition nuclei and the rate that potential decomposition sites are converted to active sites. These observations suggest that the same process is occurring in both irradiated and unirradiated lithium aluminum hydride, but that the rate constants are increased by prior irradiation. The photolytic decomposition of powdered LiAlH 4 and AlH 3 is markedly reproducible with no dark rate occurring in both instances. Magnesium hydride is also readily photolyzed with the BH 6 lamp and the actinic wavelength and intensity-rate relationships are being determined

  11. Initiation of delayed hydride cracking in zirconium-2.5 wt% niobium

    International Nuclear Information System (INIS)

    Shalabi, A.F.; Meneley, D.A.

    1990-01-01

    Delayed hydride cracking in zirconium alloys is caused by the repeated precipitation and cracking of brittle hydrides. The growth kinetic of the hydrides have been measured to evaluate the critical hydride length for crack initiation. Hydride growth leading to crack initiation follows an approximate (time) 1/3 law on the average; crack propagation proceeds in a stepwise fashion. The critical length of hydride for crack initiation increases with stress and temperature. The fracture criterion for crack initiation predicts the critical hydride length at a give stress level and temperature. The fracture initiation mechanism of the hydride confirms the temperature effects for heating and cooling cycles under services loads. (orig.)

  12. Topotactic Solid-State Metal Hydride Reductions of Sr2MnO4.

    Science.gov (United States)

    Hernden, Bradley C; Lussier, Joey A; Bieringer, Mario

    2015-05-04

    We report novel details regarding the reactivity and mechanism of the solid-state topotactic reduction of Sr2MnO4 using a series of solid-state metal hydrides. Comprehensive details describing the active reducing species are reported and comments on the reductive mechanism are provided, where it is shown that more than one electron is being donated by H(-). Commonly used solid-state hydrides LiH, NaH, and CaH2, were characterized in terms of reducing power. In addition the unexplored solid-state hydrides MgH2, SrH2, and BaH2 are evaluated as potential solid-state reductants and characterized in terms of their reductive reactivities. These 6 group I and II metal hydrides show the following trend in terms of reactivity: MgH2 < SrH2 < LiH ≈ CaH2 ≈ BaH2 < NaH. The order of the reductants are discussed in terms of metal electronegativity and bond strengths. NaH and the novel use of SrH2 allowed for targeted synthesis of reduced Sr2MnO(4-x) (0 ≤ x ≤ 0.37) phases. The enhanced control during synthesis demonstrated by this soft chemistry approach has allowed for a more comprehensive and systematic evaluation of Sr2MnO(4-x) phases than previously reported phases prepared by high temperature methods. Sr2MnO3.63(1) has for the first time been shown to be monoclinic by powder X-ray diffraction and the oxidative monoclinic to tetragonal transition occurs at 450 °C.

  13. Polarity Control and Doping in Aluminum Gallium Nitride

    Science.gov (United States)

    2013-06-01

    Kontrolle der Polarität und Dotierung in Aluminium Gallium Nitrid vorgelegt von Diplom-Physiker Marc Patrick Hoffmann aus Berlin von der...that are either in metalorganic or hydride form. The MOCVD system is specifically designed for AlGaN alloy growth, including pure GaN and AlN. Both...free exciton transitions in nominally undoped GaN samples grown by hydride vapor phase epitaxy (HVPE) were found at 3.478 eV (FXA) and 3.484 eV (FXB

  14. Influence of SiO2/Al2O3 Molar Ratio on Phase Composition and Surfaces Quality of Aluminum Silicate Sanitary Glazes in the SiO2-Al2O3-CaO-Na2O System

    Directory of Open Access Journals (Sweden)

    Leśniak M.

    2016-12-01

    Full Text Available This paper presents the results of research on aluminum silicate sanitary glazes in the SiO2-Al2O3-CaO-Na2O system with different SiO2/Al2O3 molar ratio. XRD, SEM-EDS and FITR measurement indicated that SiO2/Al2O3 molar ratio has a significant impact on the phase composition of the obtained glazes. Glass-ceramic glazes were obtained that consisted of both the glass phase and pseudowollastonite (Ca3[SiO3]3 or anorthite (Ca[Al2Si2O8] crystals. Subsequently, the influence of phase composition on surface quality (roughness was examined for the obtained samples. On the basis of the conducted examination of glaze surface roughness was observed that glazes of extreme SiO2/Al2O3 molar ratio are characterized with greatest surface roughness when compared to other glazes.

  15. Pyrophoric behaviour of uranium hydride and uranium powders

    Science.gov (United States)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (Oxidation mechanisms are proposed.

  16. Ultra-sonic observation in niobium hydride precipitation

    International Nuclear Information System (INIS)

    Florencio, O.; Pinatti, Dyonisio G.

    1982-01-01

    The hidrogen embrittlement of exothermic ocluders, had been considered as due to applied stress induced hydride precipitates leading to brittle fracture. The results of simultaneous measurements of macroscopic deformation and elastic change due to hydride precipitation, using the ultrasonic pulse-echo technique are showed. THen it was tested the possibility of kinectis precipitation parameters evoluation. (Author) [pt

  17. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  18. Modular hydride beds for mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, M.E.; Stewart, K.D.

    1997-08-01

    Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

  19. Determination of a massive zirconium hydride production cycle

    International Nuclear Information System (INIS)

    Loche, J.-P.

    1979-06-01

    This note includes: a bibliographical study on the physical, chemical and metallurgical properties of zirconium and its hydride, a brief review of the different methods of zirconium hydride conditioning and a more detailed study of the conditioning process by massive hydride formation. A systematic study was devoted to the thermal method of hydrogen incorporation with a view to obtaining articles of homogeneous composition and of hydrogen concentration as close as possible to the formula ZrH 2 . This was achieved by original tests designed to measure the plasticity of the metal or of its hydride during the process. The hydride formation cycle considered optimum is described for an initial metal of carefully selected chemical and metallurgical properties [fr

  20. Surface melting of deuterium hydride thick films

    OpenAIRE

    Zeppenfeld, P.; Bienfait, M.; Feng Chuan Liu,; Vilches, O.E.; Coddens, G.

    1990-01-01

    Quasi-elastic neutron scattering has been used to measure, below the bulk melting temperature, the thickness and the diffusion coefficient of the mobile surface layer of 8 and 10 layer thick films of deuterium hydride (HD) condensed on MgO(100). The measurements show that the close-packed surface of solid HD surface melts gradually, with the thickness of the melted layer increasing from 0.5 to 6 molecular layers as the temperature rises from 4 K to 0.05 K below the bulk melting temperature. T...

  1. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    , explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  2. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    2006-01-01

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  3. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki [Mobile Energy Company, Sanyo Electric Co. Ltd., 7-3-2, Ibukidai-higashimachi Nishi-ku, Kobe, Hyogo 651-2242 (Japan); Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito [Sanyo Energy Twicell Co. Ltd., 307-2 Koyagimachi, Takasaki, Gunma 370-0071 (Japan)

    2006-06-01

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu{sub 5} structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  4. Fine Grain Aluminum Superplasticity

    Science.gov (United States)

    1980-02-01

    Continua on ravaraa sida H nacaaaary and identify by block numbar) Superplastic aluminum, Superplasticity, Superplastic forming. High strength aluminum...size. The presence of precipitate particles also acts to impede grain boundary migration during recrystallization, further aiding in maintaining a

  5. Development of a 'pressure composition temperature' (PCT) apparatus for in-situ neutron diffraction studies of hydrides

    International Nuclear Information System (INIS)

    Watson, M.; Shahrukh, A.; Yonkeu, A.L.; Swainson, I.P.; Cranswick, L.

    2006-01-01

    'Full text:' Unlike x-ray diffraction, neutron diffraction unambiguously enables the study of atomic position of hydrogen in hydrides, structural phase transitions between hydride structures, and the ability to discern whether the hydrogen is in solid solution, or in distinct hydrides phases. In-situ neutron diffraction is therefore a critical tool for a fundamental understanding of the mechanism of hydrogen storage, facilitating therefore the development of advanced hydrogen storage materials. NRC-CNBC has designed and built an in-situ neutron apparatus to enable the measurement of the structural state of hydride systems (during hydrogenation or dehydrogenation) with a neutron diffractometer under controlled pressure-temperature conditions. This equipment is designed to be used for up to 9 bar gas pressure and is fully controlled by a computer using Labview software. The temperature range for in-situ neutron diffraction measurements is between 80 and 673K. Three types of gas (hydrogen, deuterium and helium) can be used for experiments with helium being used as a purge gas. The amount of sample for experiments is set to be around 0.8 cc. The apparatus is to be used on the high resolution C2 diffractometer (Chalk River), which is open to Canadian and international research communities. (author)

  6. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  7. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  8. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  9. Neutron scattering on hydrides of intermetallic compounds

    International Nuclear Information System (INIS)

    Hempelmann, R.

    1986-11-01

    This review surveys the application of neutron scattering for the investigation of the microscopic behaviour of hydrogen in intermetallic compounds. This concerns the structure as well as the dynamics. Neutron diffraction experiments were performed on Ti 1.2 Mn 1.8 D 3 and LaNi 5 D 7 . In the latter case the dominant nickel scattering could be suppressed by isotope substitution with 60 Ni, and the anisotropic broadening of the Bragg peaks could be modelled in a correspondingly modified Rietveld-profile refinement. For the investigation of hydrogen diffusion in intermetallic hydrides by means of quasielastic neutron scattering an iterative multiple scattering correction procedure has been developped which allows a reliable determination of hydrogen diffusion coefficients. The mechanism of hydrogen diffusion in intermetallic hydrides comprises three types of jumps: escape jumps out of energetically lower interstitials, transport jumps over the energetically higher sites and locally restricted jump processes. For Ti 1.2 Mn 1.8 H 3 the main features of the diffusional behaviour could be described quantitatively in the framework of a three state model. By means of neutron vibrational spectroscopy information about the occupied hydrogen sites and thus about the structure can be extracted from the symmetry splitting of the vibrational modes. In this way we showed that in α-LaNi 5 H x , La 2 Ni 4 -octahedral and La 2 Ni 2 -tetrahedral interstitial sites are occupied. (orig./GG)

  10. Catalysis by aluminum(III) complexes of non-innocent ligands.

    Science.gov (United States)

    Berben, Louise A

    2015-02-09

    Non-Innocent ligand complexes of aluminum are described in this Concept article, beginning with a discussion of their synthesis, and then structural and electronic characterization. The main focus concerns the ability of the ligands in these complexes to mediate proton transfer reactions. As examples, aluminum-ligand cooperation in the activation of polar bonds is described, as is the importance of hydrogen bonding to stabilization of a transition state for β-hydride abstraction. Taken together these reactions enable catalytic processes such as the dehydrogenation of formic acid. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Group 13 β-ketoiminate compounds: gallium hydride derivatives as molecular precursors to thin films of Ga2O3.

    Science.gov (United States)

    Pugh, David; Marchand, Peter; Parkin, Ivan P; Carmalt, Claire J

    2012-06-04

    Bis(β-ketoimine) ligands, [R{N(H)C(Me)-CHC(Me)═O}(2)] (L(1)H(2), R = (CH(2))(2); L(2)H(2), R = (CH(2))(3)), linked by ethylene (L(1)) and propylene (L(2)) bridges have been used to form aluminum, gallium, and indium chloride complexes [Al(L(1))Cl] (3), [Ga(L(n))Cl] (4, n = 1; 6, n = 2) and [In(L(n))Cl] (5, n = 1; 7, n = 2). Ligand L(1) has also been used to form a gallium hydride derivative [Ga(L(1))H] (8), but indium analogues could not be made. β-ketoimine ligands, [Me(2)N(CH(2))(3)N(H)C(R')-CHC(R')═O] (L(3)H, R' = Me; L(4)H, R' = Ph), with a donor-functionalized Lewis base have also been synthesized and used to form gallium and indium alkyl complexes, [Ga(L(3))Me(2)] (9) and [In(L(3))Me(2)] (10), which were isolated as oils. The related gallium hydride complexes, [Ga(L(n))H(2)] (11, n = 3; 12, n = 4), were also prepared, but again no indium hydride species could be made. The complexes were characterized mainly by NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The β-ketoiminate gallium hydride compounds (8 and 11) have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted (AA)CVD with toluene as the solvent. The quality of the films varied according to the precursor used, with the complex [Ga(L(1))H] (8) giving by far the best quality films. Although the films were amorphous as deposited, they could be annealed at 1000 °C to form crystalline Ga(2)O(3). The films were analyzed by powder XRD, SEM, and EDX.

  12. Part A. Chemical neutron activation analysis of aluminum in biological samples. Part B. Stereochemical consequences of chlorine substitution reactions with (2S,3S)dl-2-chloro-3-fluoropentane and (2S,3S)dl-3-chloro-2-fluoropentane in the gas, liquid and solid phase

    International Nuclear Information System (INIS)

    Roman, F.R.

    1989-01-01

    A method was developed for determination of aluminum in biological samples by anion exchange chromatography and neutron activation analysis (NAA). The samples were digested with nitric acid at 65 degree C, converting the aluminum to Al +3 . The remaining solids were dissolved with dilute tiron solution, and the pH adjusted to six with ammonium hydroxide. The tiron forms a negative complex with aluminum, which is retained on the anion exchange resin. To remove the interfering ions ( 31 P, 24 Na, 37 Cl) present in biological material, ammonium citrate was eluted through the resin. The aluminum was stripped from the resin with nitric acid. Fractions eluting from the column were assayed for aluminum content using NAA. The aluminum recoveries were determined to be quantitative by the method of additive spikes. Urine, bone and tissue samples were analyzed for aluminum content. Previously reported recoil halogen-for-halogen substitution reactions of diastereomeric compounds in the gas, liquid and solid phases occurred predominantly with retention of configuration. The stereo-chemical consequences of translationally excited chlorine-for-halogen substitution reactions in 2,3-dihalopentanes were studied in the gas, liquid and solid phases, (2S,3S)-dl-3-chloro-2-fluoropentane and (2S,3S)dl-2-chloro-3-fluoropentane were prepared stereospecifically from cis-2-pentane. The purified diastereomers were individually activated by thermal neutrons, and the 38 Cl-labeled substitution products separated by capillary-radio-gas chromatography. Two substitution reactions pathways were found. Retention of configuration was determined to be the dominant pathway for 38 Cl-for-X (X = Cl,F) substitution reactions. The percent retention of configuration in the 38 Cl-for-Cl substitution was found to be phase-dependent, while the 38 Cl-for-F substitution was found to be relatively phase-independent

  13. Safety benefits of using a sub-atmospheric pressure hydride gas source for MOCVD

    Science.gov (United States)

    Raynor, Mark W.; Houlding, Virginia H.; Frye, Russell; Olander, Karl

    2004-12-01

    The reduced risks associated with storing toxic and flammable hydride gases on a high surface area substrate within a cylinder at sub-atmospheric pressures have been assessed. Tests have been performed on 2.2 and 49 L sub-atmospheric pressure cylinders filled to various pressures with arsine and phosphine to quantify the gas release rates that occur under conditions of simulated valve failure. Gas releases from sub-atmospheric pressure cylinders are diffusion rather than pressure-controlled and are found to be discrete rather than continuous. Average release concentrations measured at a ventilation air flow rate of 1.42 m 3/min are well below the permissible exposure limit for both hydride gases over the test period. The results are compared to calculated release rates from high-pressure arsine and phosphine cylinders fitted with a restrictive flow orifice under otherwise similar conditions. The findings show that gas release rates from high-pressure cylinders are approximately four orders of magnitude higher than those from sub-atmospheric pressure cylinders. In addition to lowering the safety risks, benefits of adsorbed phase gas storage include the possibility of having increased volumes of hydride gas on site, improved process repeatability and reduced installation and operating costs.

  14. Zr-Co hydride stability against heating - cooling cycles in a closed system

    International Nuclear Information System (INIS)

    Meleg, T.; Ducu, C.; Malinovschi, V.; Iosub, I.

    2004-01-01

    The reversible absorption-desorption of hydrogen isotopes in metals can be affected during repeated heating cycles by the presence of impurity gases, such as O 2 , H 2 O, CO, CO 2 or by the changes in characteristics of alloys in the presence of hydrogen in the system. Changes of hydrogen absorption-desorption characteristics of ZrCo alloy, during repeated heating-cooling, in a closed system has been studied. A measure of reversibility of hydriding reaction is the stability of equilibrium pressure at limiting temperatures of the cycles. After 43 heating cycles, between 100 and 6500 deg C (the pressure ranging between 2 and 0.3 bar), a reduction of storing capacity of 18% was observed. The cycling experiments carried out on Zr-Co alloy hydride reveals the presence of the absorption-desorption disproportion process. The effects of this process on the storing capacity are not as drastic as mentioned by other authors. The existing of a intermediate hydride reversible phase was made evident what suggest a mechanism a lot more complex of the absorption-desorption processes in the given experimental condition, the entire storing capacity of the alloy remaining unchanged. (authors)

  15. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Shugard, Andrew D.; Buffleben, George M.; Johnson, Terry A.; Robinson, David B.

    2014-01-01

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  16. Aluminum reference electrode

    Science.gov (United States)

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  17. Kinetics of thermal decomposition of titanium hydride powder using in situ high-temperature X-ray diffraction (HTXRD

    Directory of Open Access Journals (Sweden)

    Hugo Ricardo Zschommler Sandim

    2005-09-01

    Full Text Available The thermal decomposition of titanium hydride powder (delta-phase to titanium (alpha-phase was investigated by means of thermogravimetric analysis (TGA and high-temperature X-ray diffraction (HTXRD in high vacuum. The delta-to-alpha phase transformation was followed in situ by HTXRD at temperatures varying from room temperature up to 1000 °C. The transformation was also analyzed as a function of time at isothermal conditions from 450 to 650 °C. The results of TGA show that the decomposition of the titanium hydride becomes significant at about 450 °C. Above 500 °C the decomposition is completed in times shorter than 50 minutes. The apparent activation energy for hydrogen desorption was found to be 63 ± 6 kJ.mol-1.

  18. Carbon contaminant in the ion processing of aluminum oxide film

    International Nuclear Information System (INIS)

    Chaug, Y.; Roy, N.

    1989-01-01

    Ion processing can induce contamination on the bombarded surface. However, this process is essential for the microelectronics device fabrication. Auger electron spectroscopy has been used to study the simultaneous deposition of carbon impurity during ion bombardment of magnetron rf-sputtering deposited aluminum oxide film. Ion bombardment on aluminum oxide results in a preferential removal of surface oxygen and a formation of a metastable state of aluminum suboxide. Cosputtered implanted carbon contaminant appears to have formed a new state of stoichiometry on the surface of the ion bombarded aluminum oxide and existed as an aluminum carbide. This phase has formed due to the interaction of the implanted carbon and the aluminum suboxide. The Ar + ion sputter etching rate is reduced for the carbon contaminated oxide. The electrical resistance of the aluminum oxide between two gold strips has been measured. It is found that the electrical resistance is also reduced due to the formation of the new stoichiometry on the surface

  19. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  20. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  1. Investigation process of alcoholysis of hydride aluminium-adobe

    International Nuclear Information System (INIS)

    Numanov, M.I.; Normatov, I.Sh.; Mirsaidov, U.M.

    2001-01-01

    Considering of that process of acid treatment of aluminium-adobe hydride realizes in the ethyl alcohol media it was necessary study the process of alcoholysis of AlH 3 and aluminium additives. In the end of article authors became to conclusion that deficiency of spontaneous alcoholysis of AlH 3 in adobe caused by protective action of fiber; solvate ability of LiCl and alkoxy aluminium hydride of lithium-LiCl·CO 2 H 5 OH, Li Al(OC 2 H 5 ) 4 ·nC 2 H 5 OH decreasing the expectancy of responding of alcohol with aluminium hydride

  2. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    Science.gov (United States)

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

  3. Hydrogen mobility in Tisub(1.2)Mnsub(1.8) hydride: a quasi-elastic neutron scattering study

    International Nuclear Information System (INIS)

    Hempelmann, R.; Richter, D.

    1982-01-01

    The authors used high resolution quasi-elastic neutron scattering to investigate hydrogen diffusion in the intermetallic Laves phase hydride Tisub(1.2)Mnsub(1.8)H 3 at momentum transfers Q between 0.17 and 1.95 A - 1 in the temperature range 100-375 K. Two components in the spectra were resolved at small Q and three components at large Q. On a microscopic scale the hydrogen dynamics in intermetallic hydrides is governed by the existence of energetically different interstitial sites and by blocking effects due to the high hydrogen concentration. This behaviour is described in terms of three motional states where the hydrogen atoms (i) propagate over the energetically higher sites, (ii) are at rest in structural traps and (iii) exhibit a rapid local motion. The authors performed a successful quantitative evaluation of the quasi-elastic neutron scattering data in terms of this three-state model, which may have general validity for hydrogen diffusion in intermetallic hydrides, and obtained among other results the effective hydrogen self-diffusion coefficient and experimental evidence that the third state corresponds to the hydrogen back jumps theoretically predicted for metal hydrides with high hydrogen concentrations. (Auth.)

  4. Hydrogen storage properties of metallic hydrides

    International Nuclear Information System (INIS)

    Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Nowadays, energy needs are mainly covered by fossil energies leading to pollutant emissions mostly responsible for global warming. Among the different possible solutions for greenhouse effect reduction, hydrogen has been proposed for energy transportation. Indeed, H 2 can be seen as a clean and efficient energy carrier. However, beside the difficulties related to hydrogen production, efficient high capacity storage means are still to be developed. Many metals and alloys are able to store large amounts of hydrogen. This latter solution is of interest in terms of safety, global yield and long term storage. However, to be suitable for applications, such compounds must present high capacity, good reversibility, fast reactivity and sustainability. In this paper, we will review the structural and thermodynamic properties of metallic hydrides. (authors)

  5. Boron hydride analogues of the fullerenes

    International Nuclear Information System (INIS)

    Quong, A.A.; Pederson, M.R.; Broughton, J.Q.

    1994-01-01

    The BH moiety is isoelectronic with C. We have studied the stability of the (BH) 60 analogue of the C 60 fullerene as well as the dual-structure (BH) 32 icosahedron, both of them being putative structures, by performing local-density-functional electronic calculations. To aid in our analysis, we have also studied other homologues of these systems. We find that the latter, i.e., the dual structure, is the more stable although the former is as stable as one of the latter's lower homologues. Boron hydrides, it seems, naturally form the dual structures used in algorithmic optimization of complex fullerene systems. Fully relaxed geometries are reported as well as electron affinities and effective Hubbard U parameters. These systems form very stable anions and we conclude that a search for BH analogues of the C 60 alkali-metal supeconductors might prove very fruitful

  6. Solid-phase extraction and separation procedure for trace aluminum in water samples and its determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

    Science.gov (United States)

    Ciftci, Harun; Er, Cigdem

    2013-03-01

    In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.

  7. Method of Preventing Shrinkage of Aluminum Foam Using Carbonates

    Directory of Open Access Journals (Sweden)

    Takashi Nakamura

    2011-12-01

    Full Text Available Metallic foams are commonly produced using titanium hydride as a foaming agent. Carbonates produce aluminum foam with a fine and homogenous cell structure. However, foams produced using carbonates show marked shrinkage, which is clearly different from those produced using titanium hydride. It is essential for practical applications to clarify foam shrinkage and establish a method of preventing it. In this research, cell structures were observed to study the shrinkage of aluminum foam produced using carbonates. The cells of foam produced using dolomite as a foaming agent connected to each other with maximum expansion. It was estimated that foaming gas was released through connected cells to the outside. It was assumed that cell formation at different sites is effective in preventing shrinkage induced by cell connection. The multiple additions of dolomite and magnesium carbonate, which have different decomposition temperatures, were applied. The foam in the case with multiple additions maintained a density of 0.66 up to 973 K, at which the foam produced using dolomite shrank. It was verified that the multiple additions of carbonates are effective in preventing shrinkage.

  8. Precipitation of hydrides in high purity niobium after different treatments

    Energy Technology Data Exchange (ETDEWEB)

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  9. Artificial exomuscle investigations for applications-metal hydride

    International Nuclear Information System (INIS)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane

    2007-01-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  10. A mechanistic approach to develop the secondary hydriding criteria

    International Nuclear Information System (INIS)

    Evdokimov, I.; Sorokin, A.; Kanukova, V.; Likhanskii, V.

    2009-01-01

    Reliable criteria of secondary hydriding failures are important to assure safe operation of nuclear fuel in LWR power units. The present paper reviews available data on massive hydriding of Zirconium claddings covering out-of-pile studies and in-pile tests in research reactors. Analyses of these experimental data give evidence that threshold conditions leading to the onset of massive hydriding are drastically changed under irradiation. The changes are caused mainly by irradiation damage of oxygen sublattice in ZrO 2 by fission fragments leaving the periphery of fuel pellets. The tests in research reactors provide a basis to develop a parametric dependency which relates the threshold of massive hydriding to composition of steam-hydrogen mixture, irradiation dose rate and temperature

  11. DETERMINATION OF METAL HYDRIDE SYSTEMS CHARACTERISTICS WHILE HEATING

    Directory of Open Access Journals (Sweden)

    Yu. Kluchka

    2012-01-01

    Full Text Available Experimental dependence of the pressure of hydrogen in the hydride cartridge when it is heated is obtained. Experimental data prove the theoretical values with an accuracy of ≈ 6%.

  12. Reactions of zinc hydride and magnesium hydride with pyridine; synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes are described. Zinc hydride and magnesium hydride dissolve in and react with pyridine, and the reaction has been studied in detail in the case of zinc hydride. Evaporation of the solvent after 1–2 hours at 0°C

  13. Electronic structure and optical properties of lightweight metal hydrides

    NARCIS (Netherlands)

    van Setten, M.J.; Popa, V.A.; Popa, V.A.; de Wijs, G.A.; Brocks, G.

    2007-01-01

    We study the dielectric functions of the series of simple hydrides LiH, NaH, MgH2, and AlH3, and of the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4, and Mg(AlH4)2, using first-principles density-functional theory and GW calculations. All compounds are large gap insulators with GW

  14. Solving crystal structures of metal and chemical hydrides

    OpenAIRE

    Cerny, Radovan

    2008-01-01

    The methods of structural characterization of metal and chemical hydrides are reviewed. The existing difficulties and problems are outlined and possible solutions presented. It is shown that powder diffraction, and especially the Direct Space Method, is essential component of hydride research. Crystal structures containing as many as 55 independent atoms (including hydrogen) have been fully characterized using powder diffraction. This is of great importance, because rapid collection of powder...

  15. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  16. Hydrogen storage in lithium hydride: A theoretical approach

    Science.gov (United States)

    Banger, Suman; Nayak, Vikas; Verma, U. P.

    2018-04-01

    First principles calculations have been carried out to analyze structural stability of lithium hydride (LiH) in NaCl phase using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Calculations have been extended to physiosorbed H-atom compounds LiH·H2, LiH·3H2 and LiH·4H2. The obtained results are discussed in the paper. The results for LiH are in excellent agreement with earlier reported data. The obtained direct energy band gap of LiH is 3.0 eV which is in excellent agreement with earlier reported theoretical band gap. The electronic band structure plots of the hydrogen adsorbed compounds show metallic behavior. The elastic constants, anisotropy factor, shear modulus, Young's modulus, Poisson's ratio and cohesive energies of all the compounds are calculated. Calculation of the optical spectra such as the real and imaginary parts of dielectric function, optical reflectivity, absorption coefficient, optical conductivity, refractive index, extinction coefficient and electron energy loss are performed for the energy range 0-15 eV. The obtained results for LiH·H2, LiH·3H2 and LiH·4H2, are reported for the first time. This study has been made in search of materials for hydrogen storage. It is concluded that LiH is a promising material for hydrogen storage.

  17. Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination.

    Science.gov (United States)

    Tuzen, Mustafa; Citak, Demirhan; Mendil, Durali; Soylak, Mustafa

    2009-04-15

    A speciation procedure for As(III) and As(V) ions in environmental samples has been presented. As(V) was quantitatively recovered on aluminum hydroxide precipitate. After oxidation of As(III) by using dilute KMnO(4), the developed coprecipitation was applied to determination of total arsenic. Arsenic(III) was calculated as the difference between the total arsenic content and As(V) content. The determination of arsenic levels was performed by hydride generation atomic absorption spectrometry (HG-AAS). The analytical conditions for the quantitative recoveries of As(V) including pH, amount of aluminum as carrier element and sample volume, etc. on the presented coprecipitation system were investigated. The effects of some alkaline, earth alkaline, metal ions and also some anions were also examined. Preconcentration factor was calculated as 25. The detection limits (LOD) based on three times sigma of the blank (N: 21) for As(V) was 0.012 microg L(-1). The satisfactory results for the analysis of arsenic in NIST SRM 2711 Montana soil and LGC 6010 Hard drinking water certified reference materials for the validation of the method was obtained. The presented procedure was successfully applied to real samples including natural waters for arsenic speciation.

  18. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Second interim technical report, Phase C for the period 1980 April 1-1980 June 30

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, M.J.

    1980-10-01

    Beneficiation of bauxite by high intensity wet magnetic separation to remove Fe and Ti was not successful. Pilot reactor VSR-3 was modified and operated to evaluate the blast-arc reduction process concept. Modifications included a tapered upper shaft section, vertical stroke ram, and CO preheater system. The taper/ram revisions were successful in maintaining bed movement, resulting in several continuous runs in which large quantities of burden were fed and metal product was recovered. Pilot VSR samples were also analyzed. The major phases contained Si and FeSi/sub 2/Al/sub 4/ intermetallics in a matrix of eutectic Al-Si.

  19. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  20. Computational Fluid Dynamics-Population Balance Model Simulation of Effects of Cell Design and Operating Parameters on Gas-Liquid Two-Phase Flows and Bubble Distribution Characteristics in Aluminum Electrolysis Cells

    Science.gov (United States)

    Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong

    2018-02-01

    The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.

  1. Kinetics of hydrogen evolution in the thermal dissociation of the hydride ZrNiH /SUB 2.8/

    International Nuclear Information System (INIS)

    Chernavskii, P.A.; Lunin, V.V.

    1985-01-01

    The kinetics of hydrogen evolution in the thermal decomposition of ZrNiH /SUB 2.8/ has been studied. The kinetic curve has two rate maxima. It is presumed that the second maximum is related to the phenomenon of critical inhibition that accompanies the phase transition. Apparent activation energies were determined for hydrogen evolution in argon and argon-ethylene atmospheres. The apparent energy increases in the argon-ethylene mixture. On the basis of the activation energy measurements it is presumed that the rate-determining step in hydrogen evolution is either the formation of hydrogen molecules from atoms on the surface of the lateral diffusion of atomic hydrogen. In the region of hydrogen concentration in the hydride corresponding to the phase transition, the rate-determining step is hydrogen diffusion in the hydride

  2. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  3. Kinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System

    OpenAIRE

    Miyaoka, Hiroki; Wang, Yongming; Hino, Satoshi; Isobe, Shigehito; Tokoyoda, Kazuhiko; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2015-01-01

    Various synthesis and rehydrogenation processes of lithium hydride (LiH) and magnesium amide (Mg(NH2)2) system with 8:3 molar ratio are investigated to understand the kinetic factors and effectively utilize the essential hydrogen desorption properties. For the hydrogen desorption with a solid-solid reaction, it is expected that the kinetic properties become worse by the sintering and phase separation. In fact, it is experimentally found that the low crystalline size and the close contact of L...

  4. Influence of disorder on phonon resistivity of ion-implanted nickel hydride

    International Nuclear Information System (INIS)

    Brossard, L.; Bernas, H.; Thome, L.; Traverse, A.; Nedellec, P.

    1982-01-01

    Metastable nickel hydride NiHsub(1.00) is produced by low energy proton implantation into thin nickel films at 6 K. After annealing at different temperatures (125, 185 K), the sample resistivity-temperature dependence is studied by cycling between 4.2 K and the annealing temperature. The temperature-dependent term in the resistivity is thus determined - for the first time - in an implanted system. A T 3 -dependence is found, in contrast to the T 5 -dependence of the ordered NiH β-phase obtained by electrolytic charging. This result is ascribed to implantation induced disorder. Isochronal annealing experiments are discussed elsewhere. (author)

  5. Elimination of aluminum adjuvants.

    Science.gov (United States)

    Hem, Stanley L

    2002-05-31

    In vitro dissolution experiments although perhaps not at typical body concentrations and temperatures demonstrated that the alpha-hydroxycarboxylic acids present in interstitial fluid (citric acid, lactic acid, and malic acid) are capable of dissolving aluminum-containing adjuvants. Amorphous aluminum phosphate adjuvant dissolved more rapidly than crystalline aluminum hydroxide adjuvant. Intramuscular administration in New Zealand White rabbits of aluminum phosphate and aluminum hydroxide adjuvants, which were labelled with 26Al, revealed that 26Al was present in the first blood sample (1 h) for both adjuvants. The area under the blood level curve for 28 days indicated that three times more aluminum was absorbed from aluminum phosphate adjuvant than aluminum hydroxide adjuvant. In vivo studies using 26Al-labelled adjuvants are relatively safe because accelerator mass spectrometry (AMS) can quantify quantities of 26Al as small as 10(-17) g. A similar study in humans would require a whole-body exposure of 0.7 microSv per year compared to the natural background exposure of 3000 microSv per year. The in vitro dissolution and in vivo absorption studies indicate that aluminum-containing adjuvants which are administered intramuscularly are dissolved by alpha-hydroxycarboxylic acids in interstitial fluid, absorbed into the blood, distributed to tissues, and eliminated in the urine.

  6. Hydrogenation of cyclohexene with LaNi5−xAlxHn metal hydrides suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Versteeg, G.F.; Swaaij, W.P.M. van

    1993-01-01

    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  7. Hydrogenation of cyclohexene with LaNi@#5@#-@#x@#Al@#x@#Hn metal hydrides, suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Snijder, E.D.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1993-01-01

    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  8. Synthesis and properties of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride

    Energy Technology Data Exchange (ETDEWEB)

    Verbovytskyy, Yu. [Physico-Mechanical Institute, NAS of Ukraine, 5 Naukova str., 79601 Lviv (Ukraine); Zhang, J.; Cuevas, F.; Paul-Boncour, V. [Institut de Chimie et des Materiaux de Paris Est, CMTR, UMR 7182, CNRS-UPEC, 2-8 rue H. Dunant, 94320 Thiais (France); Zavaliy, I., E-mail: zavaliy@ipm.lviv.ua [Physico-Mechanical Institute, NAS of Ukraine, 5 Naukova str., 79601 Lviv (Ukraine)

    2015-10-05

    Graphical abstract: Crystal structure of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride. - Highlights: • Preparation of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride by reactive ball milling. • Crystal structure determination by X-ray powder diffraction. • Electrochemical studies of the ball milled MH/Ni electrodes. - Abstract: The Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride with a grain size of 16 nm was prepared by reactive ball milling. Its crystal structure was studied by X-ray powder diffraction. A tetragonal Mg{sub 2}CoH{sub 5} structure type was suggested for the obtained hydride. The decomposition temperature of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} phase was observed at 213 °C. Electrochemical measurements as negative electrode of Ni–MH battery were also performed. Significant improvements can be made by ball-milling the hydride with nickel powder.

  9. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  10. Computer x-ray powder diffraction patterns and densities for corundum, aluminium, zirconium, delta-UZr2 and the zirconium hydrides

    International Nuclear Information System (INIS)

    Ferguson, I.F.

    1976-11-01

    The computer-calculated X-ray powder diffraction patterns and theoretical densities of α-Al 2 O 3 ; Al; α-Zr; β-Zr; delta-UZr 2 ; γ, delta - and epsilon-zirconium hydrides are presented. Brief comments are given on some of the published X-ray powder diffraction data on these phases. (author)

  11. Oriented xenon hydride molecules in the gas phase

    Czech Academy of Sciences Publication Activity Database

    Buck, U.; Fárník, Michal

    2006-01-01

    Roč. 25, č. 4 (2006), s. 583-612 ISSN 0144-235X Grant - others:Deutsche Forschungsgemeinschaft(DE) SFB 357 Institutional research plan: CEZ:AV0Z40400503 Keywords : photofragment translational spectroscopy * charge transfer molecules * low temperature matrices * neutral rare-gas Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.036, year: 2006

  12. Sealed CylindrIcal Silver Metal Hydride Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Space Science missions require energy systems with high energy density with power levels up to several kW. Advances in mission electronics technology have...

  13. Aluminum-stabilized Nb/sub 3/Sn superconductor

    Science.gov (United States)

    Scanlan, R.M.

    1984-02-10

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  14. Aluminum-stabilized Nb[sub 3]Sn superconductor

    Science.gov (United States)

    Scanlan, R.M.

    1988-05-10

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  15. Aluminum nitrate recrystallization and recovery from liquid extraction raffinates

    International Nuclear Information System (INIS)

    Griffith, W.L.; Compere, A.L.; Googin, J.M.; Huxtable, W.P.

    1991-09-01

    The solid sludges resulting form biodenitrification of discarded aluminum nitrate are the largest Y-12 Plant process solid waste. Aluminum nitrate feedstocks also represent a major plant materials cost. The chemical constraints on aluminum nitrate recycle were investigated to determine the feasibility of increasing recycle while maintaining acceptable aluminum nitrate purity. Reported phase behavior of analogous systems, together with bench research, indicated that it would be possible to raise the recycle rate from 35% to between 70 and 90% by successive concentration and recrystallization of the mother liquor. A full scale pilot test successfully confirmed the ability to obtain 70% recycle in existing process equipment

  16. Joining of parts via magnetic heating of metal aluminum powders

    Science.gov (United States)

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  17. New Promising Hydride Based on the Cu-Li-Mg System

    Energy Technology Data Exchange (ETDEWEB)

    Braga, M H; Acatrinei, A; Hartl, M; Vogel, S; Proffen, Th; Daemen, L, E-mail: mbraga@lanl.gov

    2010-11-01

    We investigated the ternary Cu-Li-Mg system, in particular the CuLi{sub x}Mg{sub 2-x} (x = 0.08) for hydrogen storage. Instead of crystallizing in an orthorhombic phase, as CuMg2, this phase presents a hexagonal structure very similar to that of NiMg{sub 2} and NiMg{sub 2}H{sub 0.3}. In this work we will discuss the structure of CuLi{sub x}Mg{sub 2-x} by the analysis of the neutron scattering data and first principles calculations. The first results for a hydride (deuteride) phase will also mentioned since preliminary studies at LANSCE showed that CuLi{sub x}Mg{sub 2-x} might absorb approximately 5.3 to 6 wt% of H at an equilibrium pressure of approximately 27 bar at 200 deg. C. If these results are confirmed in future work, this will mean that, not only CuLi{sub x}Mg{sub 2-x} absorbs a considerable amount of hydrogen (close to DOE's expectations for hydrogen storage materials), but also will probably release it at a temperature in the range of 50 to 150 deg. C, where applications are easier to develop. Hence it should be possible to use this alloy with fuel cells or in batteries. Another important observation is that cycling has a strong effect on the structure of the hydride.

  18. Degradation mechanisms of high-energy bipolar nickel metal hydride battery with AB5 and A2B7 alloys

    International Nuclear Information System (INIS)

    Zhou, X.; Young, K.; West, J.; Regalado, J.; Cherisol, K.

    2013-01-01

    Highlights: •Failure modes of NiMH battery with AB 5 and A 2 B 7 alloys were reported. •Stable gamma-NiOOH was formed with the incorporation of Al from negative electrode. •The formation of gamma-NiOOH caused capacity degradation in AB 5 -containing battery. •Pulverization of the main A 2 B 7 phase is the main failure mode for A 2 B 7 -containing battery. -- Abstract: The failure modes of nickel/metal hydride batteries made from conventional AB 5 and La-only Mg-containing A 2 B 7 metal hydride alloys were studied at the end of 70% state-of-charge cycle life testing (reaching below 3.1 Ah capacity in a 5.5 Ah design cell) by the combination of inductively coupled plasma, scanning electron microscope, X-ray energy dispersive spectroscopy and composition mapping, and X-ray diffraction analysis. The capacity degradation of cell with AB 5 alloy was found to have been caused by the combination of metal hydride alloy oxidation and non-reversible γ-NiOOH phase formation, which was promoted by the incorporation of Al leached out from the oxidation product of the Al-containing negative electrode. In the cell with Al-free A 2 B 7 alloy, the end of cycle life was the result of pulverization in the main A 2 B 7 phase

  19. Isolation of a mixed valence diiron hydride: evidence for a spectator hydride in hydrogen evolution catalysis.

    Science.gov (United States)

    Wang, Wenguang; Nilges, Mark J; Rauchfuss, Thomas B; Stein, Matthias

    2013-03-06

    The mixed-valence diiron hydrido complex (μ-H)Fe2(pdt)(CO)2(dppv)2 ([H1](0), where pdt =1,3-propanedithiolate and dppv = cis-1,2-C2H2(PPh2)2), was generated by reduction of the differous hydride [H1](+) using decamethylcobaltocene. Crystallographic analysis shows that [H1](0) retains the stereochemistry of its precursor, where one dppv ligand spans two basal sites and the other spans apical and basal positions. The Fe---Fe bond elongates to 2.80 from 2.66 Å, but the Fe-P bonds only change subtly. Although the Fe-H distances are indistinguishable in the precursor, they differ by 0.2 Å in [H1](0). The X-band electron paramagnetic resonance (EPR) spectrum reveals the presence of two stereoisomers, the one characterized crystallographically and a contribution of about 10% from a second symmetrical (sym) isomer wherein both dppv ligands occupy apical-basal sites. The unsymmetrical (unsym) arrangement of the dppv ligands is reflected in the values of A((31)P), which range from 31 MHz for the basal phosphines to 284 MHz for the apical phosphine. Density functional theory calculations were employed to rationalize the electronic structure of [H1](0) and to facilitate spectral simulation and assignment of EPR parameters including (1)H and (31)P hyperfine couplings. The EPR spectra of [H1](0) and [D1](0) demonstrate that the singly occupied molecular orbital is primarily localized on the Fe center with the longer bond to H, that is, Fe(II)-H···Fe(I). The coupling to the hydride is A((1)H) = 55 and 74 MHz for unsym- amd sym-[H1](0), respectively. Treatment of [H1](0) with H(+) gives 0.5 equiv of H2 and [H1](+). Reduction of D(+) affords D2, leaving the hydride ligand intact. These experiments demonstrate that the bridging hydride ligand in this complex is a spectator in the hydrogen evolution reaction.

  20. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  1. Deformation and Plateau Region of Functionally Graded Aluminum Foam by Amount Combinations of Added Blowing Agent

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Recently, to further improve the performance of aluminum foam, functionally graded (FG aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II hydride (TiH2 powder were fabricated by a friction stir welding (FSW route precursor foaming method. The combinations of 1.0–0 mass %, 0.4–0 mass %, and 0.2–0 mass % TiH2 were selected as the amounts of TiH2 relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH2 addition layer and shifted to the low-porosity (without TiH2 addition layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH2 (i.e., the combination of pore structures, can be fabricated.

  2. Deformation and Plateau Region of Functionally Graded Aluminum Foam by Amount Combinations of Added Blowing Agent.

    Science.gov (United States)

    Hangai, Yoshihiko; Utsunomiya, Takao; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-21

    Recently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH₂) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.0-0 mass %, 0.4-0 mass %, and 0.2-0 mass % TiH₂ were selected as the amounts of TiH₂ relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH₂ addition) layer and shifted to the low-porosity (without TiH₂ addition) layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH₂ ( i.e. , the combination of pore structures), can be fabricated.

  3. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  4. Is the Aluminum Hypothesis Dead?

    Science.gov (United States)

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  5. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    Science.gov (United States)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges

  6. Hydriding and neutron irradiation in zircaloy-4

    International Nuclear Information System (INIS)

    Ramos, Ruben Fortunato; Martin, Juan Ezequiel; Orellano, Pablo; Dorao, Carlos; Analia Soldati; Ghilarducci, Ada Albertina; Corso, Hugo Luis; Peretti, Hernan Americo; Bolcich, Juan Carlos

    2003-01-01

    The composition of Zircaloy-4 for nuclear applications is specified by the ASTM B350 Standard, that fixes the amount of alloying elements (Sn, Fe, Cr) and impurities (Ni, Hf, O, N, C, among others) to optimize good corrosion and mechanical behavior.The recycling of zircaloy-4 scrap and chips resulting from cladding tube fabrication is an interesting issue.However, changes in the final composition of the recycled material may occur due to contamination with tool pieces, stainless steel chips, turnings, etc. while scrap is stored and handled. Since the main components of the possible contaminants are Fe, Cr and Ni, it arises the interest in studying up to what limit the Fe, Ni and Cr contents could be exceeded beyond the standard specification without affecting significantly the alloy properties.Zircaloy-4 alloys elaborated with Fe, Cr and Ni additions and others of standard composition in use in nuclear plants are studied by tensile tests, SEM observations and EDS microanalysis.Some samples are tested in the initial condition and others after hydriding treatments and neutron irradiation in the RA6

  7. Efficacy of intramuscular and intraperitoneal deferoxamine for aluminum chelation.

    Science.gov (United States)

    Molitoris, B A; Alfrey, P S; Miller, N L; Hasbargen, J A; Kaehney, W D; Alfrey, A C; Smith, B J

    1987-04-01

    As intravenous administration of deferoxamine is difficult in home dialysis patients we set out to determine the efficacy of intramuscular (i.m.) and intraperitoneal (i.p.) deferoxamine for removal of aluminum. Patients with serum aluminum levels greater than 90 micrograms/liter were studied in a paired fashion with each patient serving as their own control. Serum and peritoneal fluid aluminum were determined using flameless atomic absorption. In hemodialysis patients 2 g of intravenous deferoxamine increased serum aluminum from 124.7 +/- 32.4 to 415 +/- 192.4 micrograms/liter. One g of deferoxamine given intravenously or intramuscularly resulted in 76.8 +/- 35.3% and 70.4 +/- 23.2%, respectively, of the 2 g i.v. response. The rate at which serum aluminum increased following i.v. deferoxamine infusion was biphasic, with an initial rapid phase lasting 139 minutes followed by a much slower phase. The volume of distribution of aluminum following deferoxamine administration was 12.6 +/- 1.61 and the half life (t1/2) for aluminum removal during hemodialysis was 9.0 +/- 2.0 hours. The increase in serum aluminum following deferoxamine was not due to chelation of erythrocyte aluminum as erythrocyte aluminum remained constant over 24 hours. In patients on continuous ambulatory peritoneal dialysis, 2 g intravenous deferoxamine resulted in the removal of 560 +/- 267 micrograms of aluminum over 24 hours while 2 g deferoxamine given intraperitoneally gave 91 +/- 13% of the intravenous response. Aluminum clearance over 48 hours was twice that for 24 hours for both i.v. and i.p. deferoxamine.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Comparison of the interactions in the rare gas hydride and Group 2 metal hydride anions

    International Nuclear Information System (INIS)

    Harris, Joe P.; Manship, Daniel R.; Wright, Timothy G.; Breckenridge, W. H.

    2014-01-01

    We study both the rare gas hydride anions, RG–H − (RG = He–Rn) and Group 2 (Group IIa) metal hydride anions, M IIa H − (M IIa = Be–Ra), calculating potential energy curves at the CCSD(T) level with augmented quadruple and quintuple basis sets, and extrapolating the results to the basis set limit. We report spectroscopic parameters obtained from these curves; additionally, we study the Be–He complex. While the RG–H − and Be–He species are weakly bound, we show that, as with the previously studied BeH − and MgH − species, the other M IIa H − species are strongly bound, despite the interactions nominally also being between two closed shell species: M(ns 2 ) and H − (1s 2 ). We gain insight into the interactions using contour plots of the electron density changes and population analyses. For both series, the calculated dissociation energy is significantly less than the ion/induced-dipole attraction term, confirming that electron repulsion is important in these species; this effect is more dramatic for the M IIa H − species than for RG–H − . Our analyses lead us to conclude that the stronger interaction in the case of the M IIa H − species arises from sp and spd hybridization, which allows electron density on the M IIa atom to move away from the incoming H −

  9. Comparison of the interactions in the rare gas hydride and Group 2 metal hydride anions.

    Science.gov (United States)

    Harris, Joe P; Manship, Daniel R; Breckenridge, W H; Wright, Timothy G

    2014-02-28

    We study both the rare gas hydride anions, RG-H(-) (RG = He-Rn) and Group 2 (Group IIa) metal hydride anions, MIIaH(-) (MIIa = Be-Ra), calculating potential energy curves at the CCSD(T) level with augmented quadruple and quintuple basis sets, and extrapolating the results to the basis set limit. We report spectroscopic parameters obtained from these curves; additionally, we study the Be-He complex. While the RG-H(-) and Be-He species are weakly bound, we show that, as with the previously studied BeH(-) and MgH(-) species, the other MIIaH(-) species are strongly bound, despite the interactions nominally also being between two closed shell species: M(ns(2)) and H(-)(1s(2)). We gain insight into the interactions using contour plots of the electron density changes and population analyses. For both series, the calculated dissociation energy is significantly less than the ion/induced-dipole attraction term, confirming that electron repulsion is important in these species; this effect is more dramatic for the MIIaH(-) species than for RG-H(-). Our analyses lead us to conclude that the stronger interaction in the case of the MIIaH(-) species arises from sp and spd hybridization, which allows electron density on the MIIa atom to move away from the incoming H(-).

  10. Atom probe tomography characterization of thin copper layers on aluminum deposited by galvanic displacement.

    Science.gov (United States)

    Zhang, Yi; Ai, Jiahe; Hillier, Andrew C; Hebert, Kurt R

    2012-01-24

    ″Ultrathin″ metallization layers on the order of nanometers in thickness are increasingly used in semiconductor interconnects and other nanostructures. Aqueous deposition methods are attractive methods to produce such layers due to their low cost, but formation of ultrathin layers has proven challenging, particularly on oxide-coated substrates. This work focused on the formation of thin copper layers on aluminum, by galvanic displacement from alkaline aqueous solutions. Analysis by atom probe tomography (APT) showed that continuous copper films of approximately 1 nm thickness were formed, apparently the first demonstration of deposition of ultrathin metal layers on oxidized substrates from aqueous solutions. The APT reconstructions indicate that deposited copper replaced a portion of the surface oxide film on aluminum. The results are consistent with mechanisms in which surface hydride species on aluminum mediate deposition, either by directly reducing cupric ions or by inducing electronic conduction in the oxide, thus enabling cupric ion reduction by Al metal.

  11. Influence of metallurgical variables on the velocity of crack propagation by delayed hydride cracking (DHC) in Zr-Nb

    International Nuclear Information System (INIS)

    Cirimelo, Pablo G.

    2002-01-01

    In the present thesis work the propagation of cracks due to the delayed hydride cracking (DHC) mechanism in Zr-2,5 % Nb pressure tubes is analyzed. For this purpose two different type of tubes of different origin were used: CANDU type (Canada) and RBMK type (Russia). The analyzed figurative parameters were: critical temperature Tc (highest temperature at which DHC phenomenon could occur) and crack propagation velocity by DHC, Vp, in the axial direction. The influence of the memory effect (phenomenon proper of hydride precipitation) was studied, as well as the type of cracks (fatigue or DHC) on Tc. However, no influence of these effects was found. Instead, it was found that Tc varies with the hydrogen content of the specimen, in agreement with previous works. Samples obtained from tubes with different microstructures and similar amounts of hydrogen presented similar Tc values. It was also shown that DHC propagation could occur without precipitated hydrides in the volume. Besides, Vp determinations were performed in temperature ranges and hydrogen amounts of technological importance. Two techniques were set up in order to determine Vp at different temperatures in a single specimen, thus saving time and material. An Arrhenius type variation was found for Vp vs. temperature, for temperatures lower than that corresponding to precipitation. For higher temperatures, but lower than the critical one, velocity decreases with temperature. Determination of Vp vs. temperature was performed for the two above-mentioned materials, whose microstructure and hardness were previously characterized. For RBMK material, which presents a spheroidal β phase, the velocity was lower than the corresponding to CANDU material, in which β phase is formed by continuous plates. In addition, yield stress σ Y is lower in RBMK material, which presents lower Vp. However, it is considered that the effect of microstructure is more important on Vp since it highly affects diffusion of hydrogen from the

  12. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr--2.5% Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles

  13. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  14. Decomposition kinetics study of zirconium hydride by interrupted thermal desorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Mingwang; Liang, Li; Tang, Binghua; Xiang, Wei; Wang, Yuan; Cheng, Yanlin; Tan, Xiaohua, E-mail: caepiee@163.com

    2015-10-05

    Highlights: • Interrupted TDS was applied to investigate the mechanism of ZrH{sub 2} decomposition. • The activation energies for the five desorption peaks were determined. • The origins of the five desorption peaks were identified. • The γZrH phase was observed at ambient conditions. - Abstract: Thermal desorption kinetics of zirconium hydride powder were studied using thermogravimetry and simultaneous thermal desorption spectroscopy. The activation energies for observed desorption peaks were estimated according to Kissinger relation. The intermediate phase composition was studied using X-ray diffraction by rapid cooling on different stages of heating. The origins of the peaks were described as the equilibrium hydrogen pressure of a number of consecutive phase regions that decomposition reaction passed through. The zirconium monohydride γZrH was observed for extended periods of time at ambient conditions, which has been supposed to be metastable for a long time.

  15. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    OpenAIRE

    Haileyesus Tsige-Tamirat; Luca Ammirabile

    2015-01-01

    Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR) has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron s...

  16. Calorimetric determination of the δ hydride dissolution enthalpy in Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abraham D.

    2003-01-01

    In this work, the dissolution enthalpy, ΔH δ→α , of the δ hydride phase in the αZr matrix in Zircaloy-4 has been determined with a differential scanning calorimeter (DSC) in two different ways: by means of a vant Hoff equation, measuring the terminal solubility temperature in dissolution, TSSd, and by direct measurement of the dissolution heat, Q δ→α , as the area between the base line and the calorimetric curve. The application of the DSC technique to the hydride dissolution heat measurements, a transformation which covers an extended temperature range, is completely original and requires a special treatment of the calorimetric curve. These measurements were done on samples, which practically cover the whole solubility range of hydrogen in αZr phase (80-640 ppm). The values obtained, 36.9 kJ/mol H and 39.3 kJ/mol H respectively, are self-consistent and in good agreement with the values of the more recent revisions, but reduces considerably the scatter of the literature data. (author)

  17. Zr - based alloys as hydride electrodes in Ni-MH batteries

    International Nuclear Information System (INIS)

    Biris, A.R.; Biris, A.S.; Misan, I.; Lupu, D.

    1999-01-01

    Hydrogen storage alloys, MH, are already used in Ni-MH alkaline batteries conquering an important share of the rechargeable nickel-cadmium battery market. This remarkable success is due not only to the replacement of the toxic material, cadmium, by metal hydrides but also to an increased specific energy, which makes them attractive for electric vehicles. Many research groups are concerned in the improvement of the hydride electrode characteristics: hydrogen storage capacity, high-rate discharge ability, increased cycle life. These properties can be modified by substitution of the base components of a given alloy. A comparison of two types of alloys suitable for MH electrodes LaNi 5 able to store 1.36 w/o hydrogen with Zr(Ti)-Ni alloys of the AB 2 Laves phase type structure showed that the latter could absorb higher amounts of hydrogen. We report part of studies on Zr-V-Cr-Ni of the 15 C type Laves phase structure using our original procedure for pasted electrodes. The substitution of Cr for V atoms in ZrV 0.5 Ni 1 . 5 did not increase the discharge capacity. However, it proved to have a remarkable effect on the discharge capacity C at low temperatures. C at - 12 deg. C as compared to 20 deg.C increases up to ∼ 65 % for Cr containing alloys. (authors)

  18. Buckyball-, carbon nanotube-, graphite-, and graphene-enhanced dehydrogenation of lithium aluminum hydride.

    Science.gov (United States)

    Hsu, Chih-Ping; Jiang, De-hao; Lee, Sheng-Long; Horng, Jain-Long; Ger, Ming-Der; Chang, Jeng-Kuei

    2013-10-09

    Compared to C60, carbon nanotubes, and graphite, graphene more effectively lowers the dehydrogenation temperature and improves the dehydrogenation kinetics of LiAlH4. With 15 wt% graphene incorporation, the initial hydrogen release temperature is ~80 °C (60 °C lower than that of pristine LiAlH4).

  19. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  20. Comparison of Hydrogen Elimination from Molecular Zinc and Magnesium Hydride Clusters

    NARCIS (Netherlands)

    Intemann, J.; Sirsch, Peter; Harder, Sjoerd

    2014-01-01

    In analogy to the previously reported tetranuclear magnesium hydride cluster with a bridged dianionic bis-beta-diketiminate ligand, a related zinc hydride cluster has been prepared. The crystal structures of these magnesium and zinc hydride complexes are similar: the metal atoms are situated at the

  1. Synthesis of highly active Mg-Based hydrides using hydriding combustion synthesis and NbF5 Additives

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Park, C. N.; Park, C. J.

    2012-01-01

    Superiority of the hydriding combustion (HC) technique over conventional metallurgical approach to the synthesis of cost-effective Mg based hydrides, which show promise as hydrogen storage materials, is well known. In the present research, we report further improvements in HC prepared Mg-based ma...... samples achieved the maximum absorption/desorption limits (5.3 wt.%) at as low as 100°C, underlining the possibility of the use of these materials in portable hydrogen storage devices.......Superiority of the hydriding combustion (HC) technique over conventional metallurgical approach to the synthesis of cost-effective Mg based hydrides, which show promise as hydrogen storage materials, is well known. In the present research, we report further improvements in HC prepared Mg......-based materials, achieved by optimizing the preparative parameters of HC and by catalytic addition. Mg90-Ni60-C40 composites prepared using optimized processing parameters were ball-milled with NbF5 (10 h) and characterized for their micro-structural and hydriding properties. The ball-milled/catalyzed powder...

  2. Hydrides and deuterides of lithium and sodium. Pt. 1

    International Nuclear Information System (INIS)

    Haque, E.

    1990-01-01

    An interionic potential model is developed for lighter and heavier alkali hydrides and deuterides. The method uses a combination of theoretical techniques, empirical fit, and a few plausible assumptions. An assessment of the derived potentials is made by calculating the lattice statics and dynamics of the crystals and by comparing both with experiment (where available) and with other calculations. The potentials are found to describe the elastic and dielectric properties reasonably well. The phonon dispersion curves of hydride and deuteride of sodium are compared with the calculations of Dyck and Jex based on force constant model approach and the results are discussed. The need for further experiments on heavier hydrides and deuterides is stressed. (author)

  3. Research in Nickel/Metal Hydride Batteries 2017

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2018-02-01

    Full Text Available Continuing from a special issue in Batteries in 2016, nineteen new papers focusing on recent research activities in the field of nickel/metal hydride (Ni/MH batteries have been selected for the 2017 Special Issue of Ni/MH Batteries. These papers summarize the international joint-efforts in Ni/MH battery research from BASF, Wayne State University, Michigan State University, FDK Corp. (Japan, Institute for Energy Technology (Norway, Central South University (China, University of Science and Technology Beijing (China, Zhengzhou University of Light Industry (China, Inner Mongolia University of Science and Technology (China, Shenzhen Highpower (China, and University of the Witwatersrand (South Africa from 2016–2017 through reviews of AB2 metal hydride alloys, Chinese and EU Patent Applications, as well as descriptions of research results in metal hydride alloys, nickel hydroxide, electrolyte, and new cell type, comparison work, and projections of future works.

  4. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Univ. of Rochester, NY (United States)

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  5. In operando neutron diffraction study of LaNdMgNi9H13 as a metal hydride battery anode

    Science.gov (United States)

    Nazer, N. S.; Denys, R. V.; Yartys, V. A.; Hu, Wei-Kang; Latroche, M.; Cuevas, F.; Hauback, B. C.; Henry, P. F.; Arnberg, L.

    2017-03-01

    La2MgNi9-related alloys are superior metal hydride battery anodes as compared to the commercial AB5 alloys. Nd-substituted La2-yNdyMgNi9 intermetallics are of particular interest because of increased diffusion rate of hydrogen and thus improved performance at high discharge currents. The present work presents in operando characterization of the LaNdMgNi9 intermetallic as anode for the nickel metal hydride (Ni-MH) battery. We have studied the structural evolution of LaNdMgNi9 during its charge and discharge using in situ neutron powder diffraction. The work included experiments using deuterium gas and electrochemical charge-discharge measurements. The alloy exhibited a high electrochemical discharge capacity (373 mAh/g) which is 20% higher than the AB5 type alloys. A saturated β-deuteride synthesized by solid-gas reaction at PD2 = 1.6 MPa contained 12.9 deuterium atoms per formula unit (D/f.u.) which resulted in a volume expansion of 26.1%. During the electrochemical charging, the volume expansion (23.4%) and D-contents were found to be slightly reduced. The reversible electrochemical cycling is performed through the formation of a two-phase mixture of the α-solid solution and β-hydride phases. Nd substitution contributes to the high-rate dischargeability, while maintaining a good cyclic stability. Electrochemical Impedance Spectroscopy (EIS) was used to characterize the anode electrode on cycling. A mathematical model for the impedance response of a porous electrode was utilized. The EIS showed a decreased hydrogen transport rate during the long-term cycling, which indicated a corresponding slowing down of the electrochemical processes at the surface of the metal hydride anode.

  6. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....

  7. Microcapsulated rare earth - nickel hydride-forming materials

    International Nuclear Information System (INIS)

    Ishikawa, H.; Oguro, K.; Kato, A.; Suzuki, H.; Ishii, E.

    1985-01-01

    Fine particles of hydride-forming alloys such as LaNi/sub 5/ and MmNi/sub 4.5/Mn/sub 0.5/ (MM : mischmetal) were coated with metallic copper thin layer by chemical plating method. Hydrogen storage capacities of alloys were not appreciably affected by the plating treatment. The capsulated alloy powders were easily pressed into pellets. The pellets obtained had high thermal conductivity and porosity enough to permeate hydrogen, leading to fast reaction kinetics. These were able to withstand more than 5,000 repeated hydriding-dehydriding cycles without disintegrating

  8. Hydriding and dehydriding properties of CaSi

    International Nuclear Information System (INIS)

    Aoki, Masakazu; Ohba, Nobuko; Noritake, Tatsuo; Towata, Shin-ichi

    2005-01-01

    The hydriding and dehydriding properties of CaSi were investigated both theoretically and experimentally. First-principles calculations suggested that CaSiH n is thermodynamically stable. Experimentally, the p -c isotherms clearly demonstrated plateau pressures in a temperature range of 473-573 K and the maximum hydrogen content was 1.9 weight % (wt.%) under a hydrogen pressure of 9 MPa at 473 K. The structure of CaSiH n is different from those of ZrNi hydrides, although CaSi has the CrB-type structure as well as ZrNi

  9. Research on secondary hydriding for advanced nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Kim, S. K. et al. [Hanyang Univ, Seoul (Korea)

    2000-04-01

    First, hydriding kinetics of zirconium alloys are derived as follows: Zircaloy-2 : 1.1X10{sup 7} exp(-20,800/RT), Zircaloy-4 : 6.9X10{sup 7} exp(-23,800/RT), ZIRLO{sup TM} : 1.5X10{sup 6} exp(-18,000/RT) and it is found that it is a linear kinetics. Second, H{sub 2}/H{sub 2}O-ratio-controlling experiments are performed as a function of the ratios, 10{sup 7}, 10{sup 5}. and 10{sup 3} in order to examine the oxidation enhancement under the competing environment of oxidation and hydriding. The results show that under the mixture environment hydriding reaction takes place initially, then reaction turn into oxidation with the growing oxide, and finally turn back into hydriding reaction because of oxide breakage. It is confirmed that the oxidation in the second stage is greatly enhanced due to hydride precipitation. Third, micro-structural analysis is carried out by using SEM/TEM to see the roles of the oxide in the massive hydriding process. It turns out that micro-structural changes of the oxide takes place at the beginning of the massive hydriding. Fourth experiments are carried out both in the pre-transition (at 370 deg C for 72 hours) and in the post-transition regime (at 700 deg C for 210 minutes) to see the pressure effects on the oxidation kinetics. Through this investigation, it is revealed that under 15MPa steam pressure the oxidation is enhanced by 50% in the pre-transition and by 150% in the post-transition regime, respectively. Last, the two stage diffusion FGR model originated from FRAPCON-III code is successfully transplanted in the FEMAXI-IV code and thoroughly reviewed and compared with single stage diffusion FGR model with grain boundary saturation of the FEMAXI-IV code. According to the benchmarking of the computation results against the high burn-up in-pile data it turns out that both predict quite well though the single stage diffusion FGR model somewhat underestimates the release rate. These results will be able to be applicable for the

  10. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....

  11. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  12. Observations on Hydride Structures at the Tip of Arrested Cracks Grown under Conditions of Delayed Hydride Cracking

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Oskarsson, Magnus; Bergqvist, Hans

    2003-04-01

    One sample of Zr2.5%Nb and one sample of cold worked and stress relieved Zircaloy-4 which have been tested for hydrogen induced crack growth have been examined in the crack tip region with the aim of determining the mechanism behind the growth of cracks. The proposed mechanisms are brittle failure of a crack tip hydride and hydrogen enhanced localized shear. The examinations were done by TEM and SEM. However attempts to produce a TEM specimen with a thinned region at the tip of the crack were unsuccessful in both samples. One feature observed in the Zr2.5%Nb material may however be an indication of intense shear deformation at the tip of the crack. On the other hand all observations on the Zircaloy-4 sample indicate precipitation of hydrides ahead of the crack tip and the presence of hydrides on the crack flanks

  13. Corrosion Protection of Aluminum

    Science.gov (United States)

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  14. Comparison of the interactions in the rare gas hydride and Group 2 metal hydride anions

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Joe P.; Manship, Daniel R.; Wright, Timothy G., E-mail: Tim.Wright@nottingham.ac.uk [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Breckenridge, W. H. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (United States)

    2014-02-28

    We study both the rare gas hydride anions, RG–H{sup −} (RG = He–Rn) and Group 2 (Group IIa) metal hydride anions, M{sub IIa}H{sup −} (M{sub IIa} = Be–Ra), calculating potential energy curves at the CCSD(T) level with augmented quadruple and quintuple basis sets, and extrapolating the results to the basis set limit. We report spectroscopic parameters obtained from these curves; additionally, we study the Be–He complex. While the RG–H{sup −} and Be–He species are weakly bound, we show that, as with the previously studied BeH{sup −} and MgH{sup −} species, the other M{sub IIa}H{sup −} species are strongly bound, despite the interactions nominally also being between two closed shell species: M(ns{sup 2}) and H{sup −}(1s{sup 2}). We gain insight into the interactions using contour plots of the electron density changes and population analyses. For both series, the calculated dissociation energy is significantly less than the ion/induced-dipole attraction term, confirming that electron repulsion is important in these species; this effect is more dramatic for the M{sub IIa}H{sup −} species than for RG–H{sup −}. Our analyses lead us to conclude that the stronger interaction in the case of the M{sub IIa}H{sup −} species arises from sp and spd hybridization, which allows electron density on the M{sub IIa} atom to move away from the incoming H{sup −}.

  15. Use of aluminum oxide as a permeation barrier for producing thin films on aluminum substrates

    Energy Technology Data Exchange (ETDEWEB)

    Provo, James L., E-mail: jlprovo@verizon.net [Consultant, J. L. Provo Consulting, Trinity, Florida 34655-7179 (United States)

    2016-07-15

    Aluminum has desirable characteristics of good thermal properties, good electrical characteristics, good optical properties, and the characteristic of being nonmagnetic and having a low atomic weight (26.98 g atoms), but because of its low melting point (660 °C) and ability as a reactive metal to alloy with most common metals in use, it has been ignored as a substrate material for use in processing thin films. The author developed a simple solution to this problem, by putting a permeation barrier of alumina (Al{sub 2}O{sub 3}) onto the surface of pure Al substrates by using a standard chemical oxidation process of the surface (i.e., anodization), before additional film deposition of reactive metals at temperatures up to 500 °C for 1-h, without the formation of alloys or intermetallic compounds to affect the good properties of Al substrates. The chromic acid anodization process used (MIL-A-8625) produced a film barrier of ∼(500–1000) nm of alumina. The fact that refractory Al{sub 2}O{sub 3} can inhibit the reaction of metals with Al at temperatures below 500 °C suggests that Al is a satisfactory substrate if properly oxidized prior to film deposition. To prove this concept, thin film samples of Cr, Mo, Er, Sc, Ti, and Zr were prepared on anodized Al substrates and studied by x-ray diffraction, Rutherford ion back scattering, and Auger/argon sputter surface profile analysis to determine any film substrate interactions. In addition, a major purpose of our study was to determine if ErD{sub 2} thin films could be produced on Al substrates with fully hydrided Er films. Thus, a thin film of ErD{sub 2} on an anodized Al substrate was prepared and studied, with and without the alumina permeation barrier. Films for study were prepared on 1.27 cm diameter Al substrates with ∼500 nm of the metals studied after anodization. Substrates were weighed, cleaned, and vacuum fired at 500 °C prior to use. The Al substrates were deposited using standard electron

  16. Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richards, Andrew Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Roland K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-20

    Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13, and the fourth generation model is now complete. Additional high-resolution experiments will be run to further test the model.

  17. Mechanism of the α-to-β phase transformation in the LaNi5-H2 system

    Energy Technology Data Exchange (ETDEWEB)

    Gray, E. MacA.; Blach, T. P.; Pitt, M. P.; Cookson, D. J. [Griffith U; (ASRP)

    2014-09-24

    High-energy synchrotron in situ X-ray powder diffraction has been used to elucidate the mechanism of the hydriding phase transformation in a LaNi5 model hydrogen storage intermetallic in real time. The transformation proceeds at 10 ºC via the transient growth of an interfacial phase, the {gamma} phase, with lattice parameters intermediate between those of the α (dilute solid solution) and β (concentrated hydride) phases. The γ phase forms to partially accommodate the 24% change in unit cell volume between the α and β phases during hydriding and dehydriding. The α, γ and β phases coexist at the nanoscopic level.

  18. System for exchange of hydrogen between liquid and solid phases

    Science.gov (United States)

    Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

    1985-02-22

    The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  19. Green luminescence of divalent europium in the hydride chloride EuHCl

    International Nuclear Information System (INIS)

    Kunkel, Nathalie; Kohlmann, Holger; Rudolph, Daniel; Schleid, Thomas; Meijerink, Andries; Rommel, Stefan; Weihrich, Richard

    2015-01-01

    Luminescence properties of divalent europium in the mixed-anion hydride chloride EuHCl were studied for the first time. Olive-green single crystals of EuHCl (PbFCl-type structure: tetragonal, P4/nmm, a = 406.58(3) pm, c = 693.12(5) pm, c/a = 1.705, Z = 2) resulted from the reaction of elemental europium (Eu), sodium hydride (NaH) and sodium chloride (NaCl), while powder samples were prepared from the binary components europium dihydride (EuH 2 ) and dichloride (EuCl 2 ). Low temperature X-ray powder diffraction proved the absence of phase transitions for 12(2) K ≤ T ≤ 295(2) K. Bright green emission was observed under UV-excitation and assigned to the 4f 6 5d 1 -4f 7 transition of divalent europium. Temperature-dependent luminescence absorption and emission, as well as lifetime measurements were carried out on single crystal and powder samples. Surprisingly, only limited concentration quenching was found. Additionally, two emission bands (485 and 510 nm) are observed, whose intensity ratio depends strongly on temperature. In order to explain this behavior for a single Eu 2+ site, we suggest either a dynamical Jahn-Teller effect in the excited 5d 1 state or emission from both a 4f 6 5d 1 state and a trapped exciton state. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides

    International Nuclear Information System (INIS)

    Al Alam, A.F.

    2009-06-01

    This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen: (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magneto-volume and chemical interactions (metal-H) effects within the following hydrided systems: binary Laves (e.g. ScFe 2 ) and Haucke (e.g. LaNi 5 ) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U 2 Ni 2 Sn) alloys on the other hand. (author)

  1. A Novel Zr-1Nb Alloy and a New Look at Hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Mariani; James I. Cole; Assel Aitkaliyeva

    2013-09-01

    A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys.

  2. Chronic aluminum intake causes Alzheimer's disease: applying Sir Austin Bradford Hill's causality criteria.

    Science.gov (United States)

    Walton, J R

    2014-01-01

    Industrialized societies produce many convenience foods with aluminum additives that enhance various food properties and use alum (aluminum sulfate or aluminum potassium sulfate) in water treatment to enable delivery of large volumes of drinking water to millions of urban consumers. The present causality analysis evaluates the extent to which the routine, life-long intake, and metabolism of aluminum compounds can account for Alzheimer's disease (AD), using Austin Bradford Hill's nine epidemiological and experimental causality criteria, including strength of the relationship, consistency, specificity, temporality, dose-dependent response, biological rationale, coherence with existing knowledge, experimental evidence, and analogy. Mechanisms that underlie the risk of low concentrations of aluminum relate to (1) aluminum's absorption rates, allowing the impression that aluminum is safe to ingest and as an additive in food and drinking water treatment, (2) aluminum's slow progressive uptake into the brain over a long prodromal phase, and (3) aluminum's similarity to iron, in terms of ionic size, allows aluminum to use iron-evolved mechanisms to enter the highly-active, iron-dependent cells responsible for memory processing. Aluminum particularly accumulates in these iron-dependent cells to toxic levels, dysregulating iron homeostasis and causing microtubule depletion, eventually producing changes that result in disconnection of neuronal afferents and efferents, loss of function and regional atrophy consistent with MRI findings in AD brains. AD is a human form of chronic aluminum neurotoxicity. The causality analysis demonstrates that chronic aluminum intake causes AD.

  3. Electrochemical hydride generation atomic absorption spectrometry for determination of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Arbab-Zavar, M.H. [Department of Chemistry, Faculty of Science, Ferdowsi University, Mashhad (Iran, Islamic Republic of)]. E-mail: arbab@um.ac.ir; Chamsaz, M. [Department of Chemistry, Faculty of Science, Ferdowsi University, Mashhad (Iran, Islamic Republic of); Youssefi, A. [Pare-Taavous Research Institute, Mashhad (Iran, Islamic Republic of); Aliakbari, M. [Department of Chemistry, Faculty of Science, Ferdowsi University, Mashhad (Iran, Islamic Republic of)

    2005-08-01

    An electrolytic hydride generation system for determination of another hydride forming element, cadmium, by catholyte variation electrochemical hydride generation (EcHG) atomic absorption spectrometry is described. A laboratory-made electrolytic cell with lead-tin alloy as cathode material is designed as electrolytic generator of molecular hydride. The influences of several parameters on the analytical signal have been evaluated using a Plackett-Burman experimental design. The significant parameters such as cathode surface area, electrolytic current, carrier gas flow rate and catholyte concentration have been optimized using univariate method. The analytical figures of merit of procedure developed were determined. The calibration curve was linear up to 20 ng ml{sup -1}of cadmium. The concentration detection limit (3{sigma}, n = 8) of 0.2 ng ml{sup -1} and repeatability (relative standard deviation, n = 7) of 3.1% were achieved at 10.0 ng ml{sup -1}. It was shown that interferences from major constituents at high concentrations were significant. The accuracy of method was verified using a real sample (spiked tap water) by standard addition calibration technique. Recovery of 104% was achieved for Cd in the spiked tap water sample.

  4. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  5. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.

    2008-01-01

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  6. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W [Aiken, SC

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  7. Fractal analysis of electrolytically-deposited palladium hydride dendrites

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin, Peng; Xudong, Fan.

    1990-01-01

    The fractal scaling characteristics of the surface profile of electrolytically-deposited palladium hydride dendritic structures have been obtained using conventional and high resolution transmission electron microscopy. The results are in remarkable agreement with the modified diffusion-limited aggregation model. 19 refs., 3 tabs., 13 figs

  8. A system of hydrogen powered vehicles with liquid organic hydrides

    International Nuclear Information System (INIS)

    Taube, M.

    1981-07-01

    A motor car system based on the hydrogen produced by nuclear power stations during the night in the summer, and coupled with organic liquid hydride seems to be a feasible system in the near future. Such a system is discussed and the cost is compared with gasoline. (Auth.)

  9. The Properties of Some Simple Covalent Hydrides: An Ab Initio ...

    African Journals Online (AJOL)

    Some properties of the monomeric binary hydrides of the elements of the first two rows of the periodic table have been determined using ab initio molecular orbital theory. The properties in question are the energetic, structural, electronic, topological and vibrational characteristics. In general, a gradual convergence towards ...

  10. Aluminium hydride: a reversible material for hydrogen storage.

    Science.gov (United States)

    Zidan, Ragaiy; Garcia-Diaz, Brenda L; Fewox, Christopher S; Stowe, Ashley C; Gray, Joshua R; Harter, Andrew G

    2009-07-07

    Aluminium hydride has been synthesized electrochemically, providing a synthetic route which closes a reversible cycle for regeneration of the material and bypasses expensive thermodynamic costs which have precluded AlH(3) from being considered as a H(2) storage material.

  11. New Orbital Hybridization Schemes for Metal Hydrides-Keeping p ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. New Orbital Hybridization Schemes for Metal Hydrides - Keeping p Orbitals out of the Picture. J Chandrasekhar. Research News ... J Chandrasekhar1. Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India ...

  12. Optimization of Internal Cooling Fins for Metal Hydride Reactors

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna Kukkapalli

    2016-06-01

    Full Text Available Metal hydride alloys are considered as a promising alternative to conventional hydrogen storage cylinders and mechanical hydrogen compressors. Compared to storing in a classic gas tank, metal hydride alloys can store hydrogen at nearly room pressure and use less volume to store the same amount of hydrogen. However, this hydrogen storage method necessitates an effective way to reject the heat released from the exothermic hydriding reaction. In this paper, a finned conductive insert is adopted to improve the heat transfer in the cylindrical reactor. The fins collect the heat that is volumetrically generated in LaNi5 metal hydride alloys and deliver it to the channel located in the center, through which a refrigerant flows. A multiple-physics modeling is performed to analyze the transient heat and mass transfer during the hydrogen absorption process. Fin design is made to identify the optimum shape of the finned insert for the best heat rejection. For the shape optimization, use of a predefined transient heat generation function is proposed. Simulations show that there exists an optimal length for the fin geometry.

  13. Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides

    OpenAIRE

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de; Viegas Jr., Cláudio; Victor, Maurício M.; Silveira, Leandro G. da

    2008-01-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride®) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring.

  14. Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides

    International Nuclear Information System (INIS)

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de; Viegas Junior, Claudio; Victor, Mauricio M.; Silveira, Leandro G. da

    2008-01-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride R ) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring. (author)

  15. Synthesis of hydrides by interaction of intermetallic compounds with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Boris P., E-mail: tarasov@icp.ac.ru [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Fokin, Valentin N.; Fokina, Evelina E. [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Yartys, Volodymyr A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim NO 7491 (Norway)

    2015-10-05

    Highlights: • Interaction of the intermetallics A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} with NH{sub 3} was studied. • The mechanism of interaction of the alloys with ammonia is temperature-dependent. • Hydrides, hydridonitrides, disproportionation products or metal–N–H compounds are formed. • NH{sub 4}Cl was used as an activator of the reaction between ammonia and intermetallics. • Interaction with ammonia results in the synthesis of the nanopowders. - Abstract: Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransition elements, Al and B). In presence of NH{sub 4}Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P–T conditions, at temperatures 100–200 °C and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal–nitrogen–hydrogen compounds like magnesium amide Mg(NH{sub 2}){sub 2}. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m{sup 2}/g.

  16. Aluminum industry options paper

    International Nuclear Information System (INIS)

    1999-10-01

    In 1990, Canada's producers of aluminum (third largest in the world) emitted 10 million tonnes of carbon dioxide and equivalent, corresponding to 6.4 tonnes of greenhouse gas intensity per tonne of aluminum. In 2000, the projection is that on a business-as-usual (BAU) basis Canadian producers now producing 60 per cent more aluminum than in 1990, will emit 10.7 million tonnes of carbon dioxide and equivalent, corresponding to a GHG intensity of 4.2 tonnes per tonne of aluminum. This improvement is due to production being based largely on hydro-electricity, and partly because in general, Canadian plants are modern, with technology that is relatively GHG-friendly. The Aluminum Association of Canada estimates that based on anticipated production, and under a BAU scenario, GHG emissions from aluminum production will rise by 18 per cent by 2010 and by 30 per cent by 2020. GHG emissions could be reduced below the BAU forecast first, by new control and monitoring systems at some operations at a cost of $4.5 to 7.5 million per smelter. These systems could reduce carbon dioxide equivalent emissions by 0.8 million tonnes per year. A second alternative would require installation of breaker feeders which would further reduce perfluorocarbon (PFC) emissions by 0.9 million tonnes of carbon dioxide equivalent. Cost of the breakers feeders would be in the order of $200 million per smelter. The third option calls for the the shutting down of some of the smelters with older technology by 2015. In this scenario GHG emissions would be reduced by 2010 by 0.8 million tonnes per year of carbon dioxide equivalent. However, the cost in this case would be about $1.36 billion. The industry would support measures that would encourage the first two sets of actions, which would produce GHG emissions from aluminum production in Canada of about 10.2 million tonnes per year of carbon dioxide equivalent, or about two per cent above 1990 levels with double the aluminum production of 1990. Credit for

  17. The Nondestructive Determination of the Aluminum Content in Pressed Skulls of Aluminum Dross

    Science.gov (United States)

    Kevorkijan, Varuzan; Škapin, Srečo Davor; Kovačec, Uroš

    2013-02-01

    During production of primary and secondary aluminum, various amounts (in some cases up to 200 kg) of aluminum dross, a mixture consisting of molten aluminum metal and different oxide compounds (the nonmetallic phase), are skimmed per tonne of molten metal. To preserve the maximum aluminum content in hot dross for further extraction, it is necessary to cool the dross immediately after skimming. One way to do this is to press the skimmed hot dross in a press. In this process, the skimmed dross is transformed into so-called pressed skulls, with characteristic geometry convenient for storage, transport, or further in-house processing. Because of its high aluminum content—usually between 30% and 70%—pressed skulls represent a valuable source of aluminum and hence are in great demand in the aluminum recycling industry. Because pressed skulls are generally valued on a free-metal recovery basis, which is influenced by the yield of recovery, or in other words, by the quality of the recycling process, it was recognized as important and useful to develop a method of fast and cost-effective nondestructive measurement of the free aluminum content in pressed skulls, independent of the technology of pressed skulls recycling. In the model developed in this work, the aluminum content in pressed skulls was expressed as a function of the pressed skulls density, the density of the nonmetallic phase, and the volume fraction of closed pores. In addition, the model demonstrated that under precisely defined conditions (i.e., skulls from the dross of the same aluminum alloy and skimmed, transported, cooled, and pressed in the same way and under the same processing conditions), when other parameters except the pressed skulls density remain constant, the aluminum content in pressed skulls can be expressed as a linear function of the pressed skulls density. Following the theoretical considerations presented in this work, a practical industrial methodology was developed for nondestructive

  18. Effect of Crack Tip Stresses on Delayed Hydride Cracking in Zr-2.5Nb Tubes

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Moo

    2007-01-01

    Delayed hydride cracking (DHC) tests have shown that the DHC velocity becomes faster in zirconium alloys with a higher yield stress. To account for this yield stress effect on the DHC velocity, they suggested a simple hypothesis that increased crack tip stresses due to a higher yield stress would raise the difference in hydrogen concentration between the crack tip and the bulk region and accordingly the DHC velocity. This hypothesis is also applied to account for a big leap in the DHC velocity of zirconium alloys after neutron irradiation. It should be noted that this is based on the old DHC models that the driving force for DHC is the stress gradient. Puls predicted that an increase in the yield stress of a cold worked Zr-2.5Nb tube due to neutron irradiation by about 300 MPa causes an increase of its DHC velocity by an order of magnitude or 2 to 3 times depending on the accommodation energy values. Recently, we proposed a new DHC model that a driving force for DHC is not the stress gradient but the concentration gradient arising from the stress-induced precipitation of hydrides at the crack tip. Our new DHC model and the supporting experimental results have demonstrated that the DHC velocity is governed primarily by hydrogen diffusion at below 300 .deg. C. Since hydrogen diffusion in Zr-2.5Nb tubes is dictated primarily by the distribution of the β-phase, the DHC velocity of the irradiated Zr-2.5Nb tube must be determined mainly by the distribution of the β-phase, not by the increased yield stress, which is in contrast with the hypothesis of the previous DHC models. In short, a controversy exists as to the effect on the DHC velocity of zirconium alloys of a change in the crack tip stresses by irradiation hardening or cold working or annealing. The aim of this study is to resolve this controversy and furthermore to prove the validity of our DHC model. To this end, we cited Pan et al.'s experiment where the delayed hydride cracking velocity, the tensile strengths

  19. Thermodynamic analysis of contamination by alloying elements in aluminum recycling.

    Science.gov (United States)

    Nakajima, Kenichi; Takeda, Osamu; Miki, Takahiro; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2010-07-15

    In previous studies on the physical chemistry of pyrometallurgical processing of aluminum scrap, only a limited number of thermodynamic parameters, such as the Gibbs free energy change of impurity reactions and the variation of activity of an impurity in molten aluminum, were taken into account. In contrast, in this study we thermodynamically evaluated the quantitative removal limit of impurities during the remelting of aluminum scrap; all relevant parameters, such as the total pressure, the activity coefficient of the target impurity, the temperature, the oxygen partial pressure, and the activity coefficient of oxidation product, were considered. For 45 elements that usually occur in aluminum products, the distribution ratios among the metal, slag, and gas phases in the aluminum remelting process were obtained. Our results show that, except for elements such as Mg and Zn, most of the impurities occurred as troublesome tramp elements that are difficult to remove, and our results also indicate that the extent to which the process parameters such as oxygen partial pressure, temperature, and flux composition can be changed in aluminum production is quite limited compared to that for iron and copper production, owing to aluminum's relatively low melting point and strong affinity for oxygen. Therefore, the control of impurities in the disassembly process and the quality of scrap play important roles in suppressing contamination in aluminum recycling.

  20. Experimental investigation on the combustion characteristics of aluminum in air

    Science.gov (United States)

    Feng, Yunchao; Xia, Zhixun; Huang, Liya; Yan, Xiaoting

    2016-12-01

    With the aim of revealing the detailed process of aluminum combustion in air, this paper reports an experimental study on the combustion of aluminum droplets. In this work, the aluminum wires were exposed and heated by a CO2 laser to produce aluminum droplets, and then these droplets were ignited and burnt in air. The changing processes of aluminum wires, droplets and flames were directly recorded by a high-speed camera, which was equipped with a high magnification zoom lens. Meanwhile, the spectrum distribution of the flame was also registered by an optical spectrometer. Besides, burning residuals were collected and analyzed by the methods of Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Experimental results show that, during combustion, the aluminum droplet is covered by a spherical vapor-phase flame, and the diameter of this flame is about 1.4 times of the droplet diameter, statistically. In the later stages of combustion, the molten aluminum and condensed oxide products can react to generate gaseous Al and Al2O spontaneously. Little holes are found on the surface of residuals, which are the transport channels of gaseous products, namely the gaseous Al and Al2O. The combustion residuals are consisted by lots of aluminum oxide particles with diameters less than 1 μm.

  1. Aluminum for plasmonics.

    Science.gov (United States)

    Knight, Mark W; King, Nicholas S; Liu, Lifei; Everitt, Henry O; Nordlander, Peter; Halas, Naomi J

    2014-01-28

    Unlike silver and gold, aluminum has material properties that enable strong plasmon resonances spanning much of the visible region of the spectrum and into the ultraviolet. This extended response, combined with its natural abundance, low cost, and amenability to manufacturing processes, makes aluminum a highly promising material for commercial applications. Fabricating Al-based nanostructures whose optical properties correspond with theoretical predictions, however, can be a challenge. In this work, the Al plasmon resonance is observed to be remarkably sensitive to the presence of oxide within the metal. For Al nanodisks, we observe that the energy of the plasmon resonance is determined by, and serves as an optical reporter of, the percentage of oxide present within the Al. This understanding paves the way toward the use of aluminum as a low-cost plasmonic material with properties and potential applications similar to those of the coinage metals.

  2. Characterization of salt cake from secondary aluminum production.

    Science.gov (United States)

    Huang, Xiao-Lan; Badawy, Amro El; Arambewela, Mahendranath; Ford, Robert; Barlaz, Morton; Tolaymat, Thabet

    2014-05-30

    Salt cake is a major waste component generated from the recycling of secondary aluminum processing (SAP) waste. Worldwide, the aluminum industry produces nearly 5 million tons of waste annually and the end-of-life management of these wastes is becoming a challenge in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 39 SAP waste salt cake samples collected from 10 different facilities across the U.S. were determined. The results showed that aluminum (Al), aluminum oxide, aluminum nitride and its oxides, spinel and elpasolite are the dominant aluminum mineral phases in salt cake. The average total Al content was 14% (w/w). The overall percentage of the total leachable Al in salt cake was 0.6% with approximately 80% of the samples leaching at a level less than 1% of the total aluminum content. The extracted trace metal concentrations in deionized water were relatively low (μgL(-1) level). The toxicity characteristic leaching procedure (TCLP) was employed to further evaluate leachability and the results indicated that the leached concentrations of toxic metals from salt cake were much lower than the EPA toxicity limit set by USEPA. Published by Elsevier B.V.

  3. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  4. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  5. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cordaro, Joseph Gabriel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sartor, George B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reeder, Craig L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  6. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  7. Efficient catalysis by MgCl2 in hydrogen generation via hydrolysis of Mg-based hydride prepared by hydriding combustion synthesis.

    Science.gov (United States)

    Zhao, Zelun; Zhu, Yunfeng; Li, Liquan

    2012-06-04

    Magnesium chloride efficiently catalyzed the hydrolysis of Mg-based hydride prepared by hydriding combustion synthesis. Hydrogen yield of 1635 mL g(-1) was obtained (MgH(2)), i.e. with 96% conversion in 30 min at 303 K.

  8. A computational study on the hydrogen adsorption capacity of various lithium-doped boron hydrides.

    Science.gov (United States)

    Pan, Sudip; Giri, Santanab; Chattaraj, Pratim K

    2012-02-05

    An aromatic boron hydride B(3)H(3)(2-) and its various Li/Li(+) doped isomers have been studied at the B3LYP/6-311+G(d) and M06/6-311+G(d) levels of theory to assess their hydrogen storage potential. Different types of interaction energies, reaction enthalpies and reaction electrophilicities associated with the hydrogen adsorption process suggest that B(3)H(3)(2-) itself and some of its Li-decorated analogues may turn out to be effective hydrogen storage material. Nucleus independent chemical shift and conceptual density functional theory based reactivity descriptors lend additional support. The temperature-pressure phase diagram identifies the temperature-pressure zone where the reaction Gibbs free energy for the hydrogen adsorption is negative making it a thermodynamically feasible process. Copyright © 2011 Wiley Periodicals, Inc.

  9. [Analysis of tartrazine aluminum lake and sunset yellow aluminum lake in foods by capillary zone electrophoresis].

    Science.gov (United States)

    Zhang, Yiding; Chang, Cuilan; Guo, Qilei; Cao, Hong; Bai, Yu; Liu, Huwei

    2014-04-01

    A novel analytical method for tartrazine aluminum lake and sunset yellow aluminum lake using capillary zone electrophoresis (CZE) was studied. The pigments contained in the color lakes were successfully separated from the aluminum matrix in the pre-treatment process, which included the following steps: dissolve the color lakes in 0.1 mol/L H2SO4, adjust the pH of the solution to 5.0, then mix it with the solution of EDTA x 2Na and heat it in a water bath, then use polyamide powder as the stationary phase of solid phase extraction to separate the pigments from the solution, and finally elute the pigments with 0.1 mol/L NaOH. The CZE conditions systematically optimized for tartrazine aluminum lake were: 48.50 cm of a fused silica capillary with 40.00 cm effective length and 50 microm i. d., the temperature controlled at 20.0 degrees C, 29.0 kV applied, HPO4(2-)-PO4(3-) (0.015 mol/L, pH 11.45) solution as running buffer, detection at 263 nm. The conditions for sunset yellow aluminum lake were: the same capillary and temperature, 25.0 kV applied, HPO4(2-)-PO4(3-) (0.025 mol/L, pH 11.45) solution as running buffer, detection at 240 nm. The limits of detection were 0.26 mg/L and 0.27 mg/L, and the linear ranges were 0.53-1.3 x 10(2) mg/L and 0.54-1.4 x 10(2) mg/L for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. The RSDs were 4.3% and 5.7% (run to run, n = 6), 5.6% and 6.0% (day to day, n = 6) for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. Further developments for this method could make it a routinely used method analyzing color lakes in foods.

  10. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  11. Applied Electrochemistry of Aluminum

    DEFF Research Database (Denmark)

    Li, Qingfeng; Qiu, Zhuxian

    Electrochemistry of aluminum is of special importance from both theoretical and technological point of view. It covers a wide range of electrolyte systems from molten fluoride melts at around 1000oC to room temperature molten salts, from aqueous to various organic media and from liquid to solid...

  12. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  13. Aluminum for Plasmonics

    Science.gov (United States)

    2014-01-01

    mini - mize the deleterious effects of the bulk metal oxide. Conversely, the optical scattering spectrum of an Al nanodisk can serve as a reporter of Al...Nanoparticles. J. Phys. Chem. C 2008, 112, 13958–13963. 22. Chowdhury, M. H.; Ray, K.; Gray, S. K.; Pond , J.; Lakowicz, J. R. Aluminum Nanoparticles as

  14. Aluminum battery alloys

    Science.gov (United States)

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  15. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  16. Irradiation effects on thermal properties of LWR hydride fuel

    Science.gov (United States)

    Terrani, Kurt; Balooch, Mehdi; Carpenter, David; Kohse, Gordon; Keiser, Dennis; Meyer, Mitchell; Olander, Donald

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  17. Hydride precipitation in zirconium studied by pendulum techniques

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Sprungmann, K.W.

    1983-12-01

    Measurements of the precipitation peak, the autotwisting strain and the properties of hydride dislocations have been used to map the hydrogen terminal solid solubility boundary in polycrystalline samples and a single-crystal sample of α-zirconium. A low-frequency torsion pendulum was employed for some of the measurements and a low-frequency flexure pendulum for others. These pendulum techniques were successful in extending measurements of the hydrogen terminal solid solubility boundary in α-zirconium to the relatively low hydrogen concentration range 2 to 50 μg/g of technological interest in the nuclear industry. In addition, the results were used to obtain qualitative and quantitative information about the stress dependence of the hydrogen terminal solid solubility boundary and the kinetics of hydride precipitation or dissolution in response to a step change in the applied stress

  18. Effects of metastability on hydrogen sorption in fluorine substituted hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Pinatel, E.R.; Corno, M.; Ugliengo, P.; Baricco, M., E-mail: marcello.baricco@unito.it

    2014-12-05

    Highlights: • Fluorine substitution in simple metal hydrides has been modelled. • The stability of the MH{sub (1−x)}F{sub x} solid solutions has been discussed. • Conditions for reversibility of sorption reactions have been suggested. - Abstract: In this work ab initio calculations and Calphad modelling have been coupled to describe the effect of fluorine substitution on the thermodynamics of hydrogenation–dehydrogenation in simple hydrides (NaH, AlH{sub 3} and CaH{sub 2}). These example systems have been used to discuss the conditions required for the formation of a stable hydride–fluoride solid solution necessary to obtain a reversible hydrogenation reaction.

  19. Positronium hydride defects in thermochemically reduced alkaline-Earth oxides

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1997-01-01

    Thermochemical reduction of both hydrogen-doped MgO and CaO single crystals results in large concentrations of hydride (H - ) ions. In MgO crystals, positron lifetime and Doppler broadening experiments show that positrons are trapped at H - centers forming positronium hydride molecules [e + - H - ]. A value of 640 ps is obtained for the lifetime of the PsH states located in an anion vacancy In MgO positrons are also trapped at H 2- sites at low temperatures. The H 2- ions were induced in the crystals by blue light illumination. The formation of PsH states in CaO could not be conclusively established. (orig.)

  20. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  1. Secondary Aluminum Processing Waste: Salt Cake ...

    Science.gov (United States)

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leachable metal content may still pose a contamination concern and potential human and ecological exposure if uncontrollably released to the environment. As a result, salt cake should always be managed at facilities that utilize synthetic liner systems with leachate collection (the salt content of the leachate will increase the hydraulic conductivity of clay liners within a few years of installation). The mineral phase analysis showed that various species of aluminum are present in the salt cake samples with a large degree of variability. The relative abundance of various aluminum species was evaluated but it is noted that the method used is a semi-quantitative method and as a result there is a limitation for the data use. The analysis only showed a few aluminum species present in salt cake which does not exclude the presence of other crystalline species especially in light of the variability observed in the samples. Results presented in this document are of particular importance when trying to understand concerns associated with the disposal of salt cake in MSW landfills. From the end-of-life management perspective, data presented here suggest that salt cake should not be size reduce

  2. The Hall Effect in Hydrided Rare Earth Films

    Science.gov (United States)

    Koon, D. W.; Azofeifa, D. E.; Clark, N.

    We describe two new techniques for measuring the Hall effect in capped rare earth films during hydriding. In one, we simultaneously measure resistivity and the Hall coefficient for a rare earth film covered with four different thicknesses of Pd, recovering the charge transport quantities for both materials. In the second technique, we replace Pd with Mn as the covering layer. We will present results from both techniques.

  3. Magnetization study of UNiSi and its hydride

    Czech Academy of Sciences Publication Activity Database

    Šebek, Josef; Andreev, Alexander V.; Honda, F.; Kolomiets, A. V.; Havela, L.; Sechovský, V.

    2003-01-01

    Roč. 34, č. 2 (2003), s. 1457-1460 ISSN 0587-4254. [International Conference on Strongly Correlated Electron Systems (SCES 02). Cracow, 10.07.2002-13.07.2002] R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914; CEZ:MSM 113200002 Keywords : UNiSi * magnetic measurements * hydride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.752, year: 2003

  4. Coated metal hydrides for stationary energy storage applications

    OpenAIRE

    Mistry, Priyen C.

    2016-01-01

    This thesis explores suitable materials for energy stores for stationary applications, specifically a prototype hydrogen store, domestic thermal store operating between 25-100 C and a moderate thermal store for a concentrated solar power (CSP) plant operating at 400 C. The approach incorporated a unique coating technique to deliver prototype hydrogen and thermal storage media, where the coating could offer commercial advantages, for example, in the form of hydride activation and enhanced kine...

  5. Testing setup for automatic cycling of metal hydride composites

    OpenAIRE

    Dieterich, Mila; Bürger, Inga; Linder, Marc Philipp

    2017-01-01

    In a future hydrogen community, metal hydrides can be used in several new applications. The most common application is as hydrogen storage material for stationary or mobile applications. However, there exist plenty of other applications like heat storage systems, thermal compressors, air conditioning systems, hydrogen purifying systems, etc. For all of these applications cycling stability is a major issue as it determines operational strategies as well as overall lifecycle cost. For pure m...

  6. Instrinsic defect energies of lithium hydride and lithium deuteride crystals

    International Nuclear Information System (INIS)

    Pandey, R.; Stoneham, A.M.

    1985-01-01

    A theoretical study has been made of the defect structure of lithium hydride and lithium deuteride. A potential model is obtained describing the statics and dynamics of these crystals. Intrinsic defect energies are calculated using the Harwell HADES program which is based on a generalised Mott-Littleton method. The results are in good agreement with the experimental data, and suggest that the vacancy and interstitial migration mechanisms of anions and cations are all comparable in their contribution to ionic conduction. (author)

  7. Equilibrium dissociation pressures of lithium hydride and lithium deuteride

    International Nuclear Information System (INIS)

    Smith, H.M.; Webb, R.E.

    1977-12-01

    The equilibrium dissociation pressures of plateau composition lithium hydride and lithium deuteride have been measured from 450 to 750 0 C. These data were used to derive the relationship of dissociation pressure with temperature over this range and to calculate several thermodynamic properties of these materials. Thermodynamic properties determined included the enthalpy, entropy, and free energy of formation; the enthalpy and entropy of fusion; and the melting points

  8. Optimization of hydride fueled pressurized water reactor cores

    International Nuclear Information System (INIS)

    Shuffler, Carter A.; Trant, Jarrod M.; Todreas, Neil E.

    2005-01-01

    Full text of publication follows: This paper reports the results of the thermal-hydraulic and economic analyses performed for hydride fueled PWR cores as part of a collaborative project on hydride fuels undertaken by MIT and UC Berkeley. The use of hydride fuels allows increased fuel to coolant ratios in a given core volume, and the achievement of higher burnups and thermal power from a core loading. A parametric study was developed to determine the optimum combination of lattice pitch, rod diameter, and channel shape - further referred to as geometry - for minimizing the cost of electricity associated with the use of UZrH 1.6 fuel in PWRs. Results of the steady-state and transient thermal hydraulic analyses are presented here. These are integrated with the results from fuel performance and neutronics studies into an economic model to reveal the desired optimal geometries. The thermal hydraulic analysis determines the maximum power that can be achieved for a given geometry, subject to steady-state and transient design constraints. Steady-state constraints include MDNBR, pressure drop, fuel temperature, and fuel rod vibrations. Transient constraints include the consideration of LOCA, LOFA, and over-power events. The fuel performance and neutronics analyses determine the maximum achievable burnup for a given geometry, subject to constraints on fuel internal pressure and fission gas release, clad oxidation, clad strain, and reactivity. All results are included in the economic model, which calculates the front and back end fuel cycle, operations and maintenance, and capital costs. Optimal designs include geometries where hydride fuel offers cost savings over oxide fuel, as well as geometries offering the lowest overall cost of electricity. All studies are performed for both UZrH 1.6 and UO 2 fuels, and the methodology is successfully validated by comparison of the predicted power, burnup, and cost of electricity for UO-2 fueled cores with corresponding data from

  9. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  10. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  11. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  12. The effect of sample preparation on uranium hydriding

    International Nuclear Information System (INIS)

    Banos, A.; Stitt, C.A.; Scott, T.B.

    2016-01-01

    Highlights: • Distinct differences in uranium hydride growth rates and characteristics between different surface preparation methods. • The primary difference between the categories of sample preparations is the level of strain present in the surface. • Greater surface-strain, leads to higher nucleation number density, implying a preferred attack of strained vs unstrained metal. • As strain is reduced, surface features such as carbides and grain boundaries become more important in controlling the UH3 location. - Abstract: The influence of sample cleaning preparation on the early stages of uranium hydriding has been examined, by using four identical samples but concurrently prepared using four different methods. The samples were reacted together in the same corrosion cell to ensure identical exposure conditions. From the analysis, it was found that the hydride nucleation rate was proportional to the level of strain exhibiting higher number density for the more strained surfaces. Additionally, microstructure of the metal plays a secondary role regarding initial hydrogen attack on the highly strained surfaces yet starts to dominate the system while moving to more pristine samples.

  13. A thermal neutron scattering law for yttrium hydride

    Science.gov (United States)

    Zerkle, Michael; Holmes, Jesse

    2017-09-01

    Yttrium hydride (YH2) is of interest as a high temperature moderator material because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws for hydrogen bound in yttrium hydride (H-YH2) and yttrium bound in yttrium hydride (Y-YH2) prepared using the ab initio approach are presented. Density functional theory, incorporating the generalized gradient approximation (GGA) for the exchange-correlation energy, is used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2 × 2 × 2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON are then used to determine the phonon dispersion relations and density of states. The calculated phonon density of states for H and Y in YH2 are used to prepare H-YH2 and Y-YH2 thermal scattering laws using the LEAPR module of NJOY2012. Analysis of the resulting integral and differential scattering cross sections demonstrates adequate resolution of the S(α,β) function. Comparison of experimental lattice constant, heat capacity, inelastic neutron scattering spectra and total scattering cross section measurements to calculated values are used to validate the thermal scattering laws.

  14. A thermal neutron scattering law for yttrium hydride

    Directory of Open Access Journals (Sweden)

    Zerkle Michael

    2017-01-01

    Full Text Available Yttrium hydride (YH2 is of interest as a high temperature moderator material because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws for hydrogen bound in yttrium hydride (H-YH2 and yttrium bound in yttrium hydride (Y-YH2 prepared using the ab initio approach are presented. Density functional theory, incorporating the generalized gradient approximation (GGA for the exchange-correlation energy, is used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2 × 2 × 2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON are then used to determine the phonon dispersion relations and density of states. The calculated phonon density of states for H and Y in YH2 are used to prepare H-YH2 and Y-YH2 thermal scattering laws using the LEAPR module of NJOY2012. Analysis of the resulting integral and differential scattering cross sections demonstrates adequate resolution of the S(α,β function. Comparison of experimental lattice constant, heat capacity, inelastic neutron scattering spectra and total scattering cross section measurements to calculated values are used to validate the thermal scattering laws.

  15. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Science.gov (United States)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  16. Synthesis of square-planar aluminum(III) complexes.

    Science.gov (United States)

    Thompson, Emily J; Myers, Thomas W; Berben, Louise A

    2014-12-15

    The synthesis of two four-coordinate and square planar (SP) complexes of aluminum(III) is presented. Reaction of a phenyl-substituted bis(imino)pyridine ligand that is reduced by two electrons, Na2((Ph)I2P(2-)), with AlCl3 afforded five-coordinate [((Ph)I2P(2-))Al(THF)Cl] (1). Square-planar [((Ph)I2P(2-))AlCl] (2) was obtained by performing the same reaction in diethyl ether followed by lyphilization of 2 from benzene. The four-coordinate geometry index for 2, τ4, is 0.22, where 0 would be a perfectly square-planar molecule. The analogous aluminum hydride complex, [((Ph)I2P(2-))AlH] (3), is also square-planar, and was characterized crystallographically and has τ4=0.13. Both 2 and 3 are Lewis acidic and bind 2,6-lutidine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characterization of aluminum nanopowders after long-term storage

    International Nuclear Information System (INIS)

    Nazarenko, O.B.; Amelkovich, Yu.A.; Sechin, A.I.

    2014-01-01

    Highlights: • The aluminum nanopowders produced by electrical explosion of wires after long-term storage (27 and 10 years) under natural conditions are characterized. • The phase composition and thermal stability of aluminum nanopowders after long-term storage are determined. • The surface chemical changes in the aged aluminum nanopowders are examined. • The high reactivity of aluminum nanopowder is due to the presence of the protective oxide–hydroxide layer on the particles surface. - Abstract: The characteristics of aluminum nanopowders obtained by electrical explosion of wires, passivated by air and stored for a long time under natural conditions are analyzed. The aluminum nanopowder produced in hydrogen had been stored for 27 years; the nanopowders produced in argon and nitrogen had been stored for 10 years. The powders were studied using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG) and Fourier transform infrared spectrometry (FTIR). The influence of the obtaining conditions and storage period of nanopowders on their thermal stability under heating in air is shown. The aluminum nanopowders after long-term storage in air under ambient conditions are found to be extremely active

  18. Aluminum involvement in the progression of Alzheimer's disease.

    Science.gov (United States)

    Walton, J R

    2013-01-01

    The neuroanatomic specificity with which Alzheimer's disease (AD) progresses could provide clues to AD etiopathology. Magnetic resonance imaging studies of AD clinical progression have confirmed general conclusions from earlier studies of AD neuropathological progression wherein neurofibrillary tangle pathology was observed to spread along a well-defined sequence of corticocortical and corticosubcortical connections, preferentially affecting certain cell types, while sparing others. Identical and non-identical twin studies have consistently shown AD has mixed (environmental and genetic) etiopathogenesis. The decades-long prodromal phase over which AD develops suggests slow but progressive accumulation of a toxic or infective agent over time. Major environmental candidates are reviewed to assess which best fits the profile of an agent that slowly accrues in susceptible cell types of AD-vulnerable brain regions to toxic levels by old age, giving rise to AD neuropathology without rapid neuronal lysis. Chronic aluminum neurotoxicity best matches this profile. Many humans routinely ingest aluminum salts as additives contained in processed foods and alum-treated drinking water. The physical properties of aluminum and ferric iron ions are similar, allowing aluminum to use mechanisms evolved for iron to enter vulnerable neurons involved in AD progression, accumulate in those neurons, and cause neurofibrillary damage. The genetic component of AD etiopathogenesis apparently involves a susceptibility gene, yet to be identified, that increases aluminum absorption because AD and Down syndrome patients have higher than normal plasma, and brain, aluminum levels. This review describes evidence for aluminum involvement in AD neuropathology and the clinical progression of sporadic AD.

  19. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  20. Reactivity patterns of transition metal hydrides and alkyls

    International Nuclear Information System (INIS)

    Jones, W.D. II.

    1979-05-01

    The complex PPN + CpV(CO) 3 H - (Cp=eta 5 -C 5 H 5 and PPN = (Ph 3 P) 2 ) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN + CpV(CO) 3 H - reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN + [CpV(C) 3 X] - and in some cases the binuclear bridging hydride PPN + [CpV(CO) 3 ] 2 H - . The borohydride salt PPN + [CpV(CO) 3 BH 4 ] - has also been prepared. The reaction between CpV(CO) 3 H - and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO) 3 H - . Sodium amalgam reduction of CpRh(CO) 2 or a mixture of CpRh(CO) 2 and CpCo(CO) 2 affords two new anions, PPN + [Cp 2 Rh 3 (CO) 4 ] - and PPN + [Cp 2 RhCo(CO) 2 ] - . CpMo(CO) 3 H reacts with CpMo(CO) 3 R (R=CH 3 ,C 2 H 5 , CH 2 C 6 H 5 ) at 25 to 50 0 C to produce aldehyde RCHO and the dimers [CpMo(CO) 3 ] 2 and [CpMo(CO) 2 ] 2 . In general, CpV(CO) 3 H - appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO) 3 H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO) 3 H - generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO) 3 H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species