WorldWideScience

Sample records for aluminum hydride phases

  1. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  2. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  3. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  4. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  5. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup −}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  6. Synthesis and Hydrogen Desorption Properties of Aluminum Hydrides.

    Science.gov (United States)

    Jeong, Wanseop; Lee, Sang-Hwa; Kim, Jaeyong

    2016-03-01

    Aluminum hydride (AlH3 or alane) is known to store maximum 10.1 wt.% of hydrogen at relatively low temperature (hydrogen desorption are still not clear. To understand the desorption properties of hydrogen in alane, thermodynamically stable α-AlH3 was synthesized by employing an ethereal reaction method. The dependence of pathways on phase formation and the properties of hydrogen evolution were investigated, and the results were compared with the ones for γ-AlH3. It was found that γ-AlH3 requires 10 degrees C higher than that of γ-AlH3 to form, and its decomposition rate demonstrated enhanced endothermic stabilities. For desorption, all hydrogen atoms of alane evolved under an isothermal condition at 138 degrees C in less than 1 hour, and the sample completely transformed to pure aluminum. Our results show that the total amount of desorbed hydrogen from α-AlH3 exceeded 9.05 wt.%, with a possibility of further increase. Easy synthesis, thermal stability, and a large amount of hydrogen desorption of alane fulfill the requirements for light-weight hydrogen storage materials once the pathway of hydrogen cycling is provided.

  7. Synthesis of Renewable Energy Materials, Sodium Aluminum Hydride by Grignard Reagent of Al

    OpenAIRE

    Jun-qin Wang; Jian-feng Gao; Zhi-gang Wu; Guo-li Ou; Yu Wang

    2015-01-01

    The research on hydrogen generation and application has attracted widespread attention around the world. This paper is to demonstrate that sodium aluminum hydride can be synthesized under simple and mild reaction condition. Being activated through organics, aluminum powder reacts with hydrogen and sodium hydride to produce sodium aluminum hydride under atmospheric pressure. The properties and composition of the sample were characterized by FTIR, XRD, SEM, and so forth. The results showed that...

  8. Synthesis of Renewable Energy Materials, Sodium Aluminum Hydride by Grignard Reagent of Al

    Directory of Open Access Journals (Sweden)

    Jun-qin Wang

    2015-01-01

    Full Text Available The research on hydrogen generation and application has attracted widespread attention around the world. This paper is to demonstrate that sodium aluminum hydride can be synthesized under simple and mild reaction condition. Being activated through organics, aluminum powder reacts with hydrogen and sodium hydride to produce sodium aluminum hydride under atmospheric pressure. The properties and composition of the sample were characterized by FTIR, XRD, SEM, and so forth. The results showed that the product through this synthesis method is sodium aluminum hydride, and it has higher purity, perfect crystal character, better stability, and good hydrogen storage property. The reaction mechanism is also discussed in detail.

  9. Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material

    Science.gov (United States)

    Poindexter, A. M.

    1967-01-01

    Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.

  10. Aluminum hydride as a hydrogen and energy storage material: Past, present and future

    International Nuclear Information System (INIS)

    Aluminum hydride (AlH3) and its associated compounds make up a fascinating class of materials that have motivated considerable scientific and technological research over the past 50 years. Due primarily to its high energy density, AlH3 has become a promising hydrogen and energy storage material that has been used (or proposed for use) as a rocket fuel, explosive, reducing agent and as a hydrogen source for portable fuel cells. This review covers the past, present and future research on aluminum hydride and includes the latest research developments on the synthesis of α-AlH3 and the other polymorphs (e.g., microcrystallization reaction, batch and continuous methods), crystallographic structures, thermodynamics and kinetics (e.g., as a function of crystallite size, catalysts and surface coatings), high-pressure hydrogenation experiments and possible regeneration routes.

  11. Micro-scale fracture experiments on zirconium hydrides and phase boundaries

    Science.gov (United States)

    Chan, H.; Roberts, S. G.; Gong, J.

    2016-07-01

    Fracture properties of micro-scale zirconium hydrides and phase boundaries were studied using microcantilever testing methods. FIB-machined microcantilevers were milled on cross-sectional surfaces of hydrided samples, with the most highly-stressed regions within the δ-hydride film, within the α-Zr or along the Zr-hydride interface. Cantilevers were notched using the FIB and then tested in bending using a nanoindenter. Load-displacement results show that three types of cantilevers have distinct deformation properties. Zr cantilevers deformed plastically. Hydride cantilevers fractured after a small amount of plastic flow; the fracture toughness of the δ-hydride was found to be 3.3 ± 0.4 MPam1/2 and SEM examination showed transgranular cleavage on the fracture surfaces. Cantilevers notched at the Zr-hydride interface developed interfacial voids during loading, at loads considerably lower than that which initiate brittle fracture of hydrides.

  12. Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-Hui; XIU Xiang-Qan; YAN Huai-Yue; ZHANG Rong; XIE Zi-Li; HAN Ping; SHI Yi; ZHENG You-Dou

    2011-01-01

    @@ GaN nanowires are grown by hydride vapor phase epitaxy using nickel as a catalyst.The properties of the obtained GaN nanowires are characterized by scanning and transmission electron microscopy,electron diffraction,roomtemperature photoluminescence and energy dispersive spectroscopy.The results show that the nanowires are wurtzite single crystals growing along the[0001]direction and a redshift in the photoluminescence is observed due to a superposition of several effects.The Raman spectra are close to those of the bulk GaN and the significantly broadening of those modes indicates the phonon confinement effects associated with the nanoscale dimensions of the system.%GaN nanowires are grown by hydride vapor phase epitaxy using nickel as a catalyst. The properties of the obtained GaN nanowires are characterized by scanning and transmission electron microscopy, electron diffraction, room-temperature photoluminescence and energy dispersive spectroscopy. The results show that the nanowires are wurtzite single crystals growing along the [0001] direction and a redshift in the photoluminescence is observed due to a superposition of several effects. The Raman spectra are close to those of the bulk GaN and the significantly broadening of those modes indicates the phonon confinement effects associated with the nanoscale dimensions of the system.

  13. Crystal structure of the superconducting phase of sulfur hydride

    Science.gov (United States)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya; Eremets, Mikhail I.; Drozdov, Alexander P.; Troyan, Ivan A.; Hirao, Naohisa; Ohishi, Yasuo

    2016-09-01

    A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with the theoretically predicted body-centred cubic (bcc) structure for H3S. The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure.

  14. Well-Defined Silica Supported Aluminum Hydride: Another Step Towards the Utopian Single Site Dream?

    KAUST Repository

    Werghi, Baraa

    2015-07-17

    Reaction of triisobutylaluminum with SBA15700 at room temperature occurs by two parallel pathways involving either silanol or siloxane bridges. It leads to the formation of a well-defined bipodal [(≡SiO)2Al-CH2CH(CH3)2] 1a, silicon isobutyl [≡Si-CH2CH(CH3)2] 1b and a silicon hydride [≡Si-H] 1c. Their structural identity was characterized by FT-IR and advance solid-state NMR spectroscopies (1H, 13C, 29Si, 27Al and 2D multiple quantum), elemental and gas phase analysis, and DFT calculations. The reaction involves the formation of a highly reactive monopodal intermediate: [≡SiO-Al-[CH2CH(CH3)2]2], with evolution of isobutane. This intermediate undergoes two parallel routes: Transfer of either one isobutyl fragment or of one hydride to an adjacent silicon atom. Both processes occur by opening of a strained siloxane bridge, ≡Si-O-Si≡ but with two different mechanisms, showing that the reality of “single site” catalyst may be an utopia: DFT calculations indicate that isobutyl transfer occurs via a simple metathesis between the Al-isobutyl and O-Si bonds, while hydride transfer occurs via a two steps mechanism, the first one is a ß-H elimination to Al with elimination of isobutene, whereas the second is a metathesis step between the formed Al-H bond and a O-Si bond. Thermal treatment of 1a (at 250 °C) under high vacuum (10-5 mbar) generates Al-H through a ß-H elimination of isobutyl fragment. These supported well-defined Al-H which are highly stable with time, are tetra, penta and octa coordinated as demonstrated by IR and 27Al–1H J-HMQC NMR spectroscopy. All these observations indicate that surfaces atoms around the site of grafting play a considerable role in the reactivity of a single site system.

  15. A quantitative phase field model for hydride precipitation in zirconium alloys: Part I. Development of quantitative free energy functional

    International Nuclear Information System (INIS)

    A temperature dependent, quantitative free energy functional was developed for the modeling of hydride precipitation in zirconium alloys within a phase field scheme. The model takes into account crystallographic variants of hydrides, interfacial energy between hydride and matrix, interfacial energy between hydrides, elastoplastic hydride precipitation and interaction with externally applied stress. The model is fully quantitative in real time and real length scale, and simulation results were compared with limited experimental data available in the literature with a reasonable agreement. The work calls for experimental and/or theoretical investigations of some of the key material properties that are not yet available in the literature

  16. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  17. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  18. New nanomaterials for hydrogen storage. A new class of aluminum hydrides; Neue Nanomaterialien zur Wasserstoffspeicherung. Eine neue Klasse von Aluminiumhydriden

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, Joern

    2009-02-13

    In this work, Aluminum was vaporized in a PACIS cluster source, while molecular Hydrogen was also provided, thus producing Aluminum hydride clusters. These clusters were mass selected and investigated via Photoelectron Spectroscopy with anions in order to determine their electronic structure. In a cooperation with Puru Jena et al. at the Virginia Commonwealth University, electronic and geometric structures of the clusters were also calculated using Density Functional Theory. A group of clusters, specifically Al{sub 4}H{sub 4}, Al{sub 4}H{sub 6} and a series of clusters Al{sub n}H{sub n+2} (5 {<=} n {<=} 8) showed large HOMO-LUMO-Gaps and relatively small adiabatic electron affinities, hinting towards an increased stability of these clusters. The resemblance of the structures of already known and stable Boranes (BnHm) led to investigations whether ''Wade's Rules'' could also be applied to the new Alanes Al{sub n}H{sub m}. Comparison of the experimentally found values for the HOMO-LUMO-Gap, Adiabatic electron Affinity and Vertical Detachment Energy with the calculated values led to geometric structures of the ground states that, in case of the clusters Al{sub n}H{sub n+2} (5 {<=} n {<=} 8) follow Wade's (n+1) rule: They adopt hollow, cage-like closo-structures with one terminal Hydrogen atom per Aluminum atom and two additional Hydrogen atoms on bridge-sites. The clusters Al{sub 4}H{sub 4} and Al{sub 4}H{sub 6} have tetrahedron-shaped structures. While Al{sub 4}H{sub 4} is a perfect tetrahedron, Al{sub 4}H{sub 6} adopts a slightly distorted tetrahedral geometry with D{sub 2d} symmetry and two Hydrogen atoms on bridge sites. Furthermore, Al{sub 4}H{sub 6} showed the biggest HOMO-LUMO-Gap of all investigated clusters with a value of 1.9 {+-} 0.1 eV. These findings seem to contradict Wade's (n+1) rule, but can be understood in terms of the Polyhedral Skeletal Electron Pair Theory (PSEPT). The molecular orbitals predicted by the PSEPT

  19. Possible "Magnéli" Phases and Self-Alloying in the Superconducting Sulfur Hydride

    Science.gov (United States)

    Akashi, Ryosuke; Sano, Wataru; Arita, Ryotaro; Tsuneyuki, Shinji

    2016-08-01

    We theoretically give an infinite number of metastable crystal structures for the superconducting sulfur hydride HxS under pressure. Previously predicted crystalline phases of H2S and H3S have been thought to have important roles for experimentally observed low and high Tc, respectively. The newly found structures are long-period modulated crystals where slablike H2S and H3S regions intergrow on a microscopic scale. The extremely small formation enthalpy for the H2S -H3S boundary indicated by first-principles calculations suggests possible alloying of these phases through the formation of local H3S regions. The modulated structures and gradual alloying transformations between them not only explain the peculiar pressure dependence of Tc in sulfur hydride observed experimentally, but also could prevail in the experimental samples under various compression schemes.

  20. Heat capacity and magnetic phase diagram of the hydride CeRuSiH

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J RodrIguez; Rojas, D P [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Gaudin, E; Chevalier, B, E-mail: rodrigufj@unican.es [CNRS, Universit de Bordeaux, ICMCB, 87 Avenue Dr. A. Schweitzer, 33608 Pessac (France)

    2011-01-01

    The hydride CeRuSiH exhibits antiferromagnetic order with two transitions at T{sub N1} = 7.5 and T{sub N2} = 3.1 K. Furthermore, magnetization measurements M (H) up to H = 45 kOe shows a metamagnetic double transition at low temperatures, suggesting a complex magnetic phase diagram. Here, we present magnetization measurements and heat capacity data up to 90 kOe, which allows as to complete the magnetic phase diagram. In addition, from the analysis of the heat capacity, we propose a model for the crystal field splitting.

  1. Multiphysics phase field modeling of hydrogen diffusion and delta-hydride precipitation in alpha-zirconium

    Science.gov (United States)

    Jokisaari, Andrea M.

    Hydride precipitation in zirconium is a significant factor limiting the lifetime of nuclear fuel cladding, because hydride microstructures play a key role in the degradation of fuel cladding. However, the behavior of hydrogen in zirconium has typically been modeled using mean field approaches, which do not consider microstructural evolution. This thesis describes a quantitative microstructural evolution model for the alpha-zirconium/delta-hydride system and the associated numerical methods and algorithms that were developed. The multiphysics, phase field-based model incorporates CALPHAD free energy descriptions, linear elastic solid mechanics, and classical nucleation theory. A flexible simulation software implementing the model, Hyrax, is built on the Multiphysics Object Oriented Simulation Environment (MOOSE) finite element framework. Hyrax is open-source and freely available; moreover, the numerical methods and algorithms that have been developed are generalizable to other systems. The algorithms are described in detail, and verification studies for each are discussed. In addition, analyses of the sensitivity of the simulation results to the choice of numerical parameters are presented. For example, threshold values for the CALPHAD free energy algorithm and the use of mesh and time adaptivity when employing the nucleation algorithm are studied. Furthermore, preliminary insights into the nucleation behavior of delta-hydrides are described. These include a) the sensitivities of the nucleation rate to temperature, interfacial energy, composition and elastic energy, b) the spatial variation of the nucleation rate around a single precipitate, and c) the effect of interfacial energy and nucleation rate on the precipitate microstructure. Finally, several avenues for future work are discussed. Topics encompass the terminal solid solubility hysteresis of hydrogen in zirconium and the effects of the alpha/delta interfacial energy, as well as thermodiffusion, plasticity

  2. Stable High-Energy Density Super-Atom Clusters of Aluminum Hydride

    Institute of Scientific and Technical Information of China (English)

    Ke-yan Lian; Yuan-fei Jiang; De-hou Fei; Wei Feng; Ming-xing Jin; Da-jun Ding; Yi Luo

    2012-01-01

    With the concept of super-atom,first principles calculations propose a new type of super stable cage clusters AlnH3n that are much more energetic stable than the well established clusters,AlnHn+2.In the new clusters,the aluminum core-frame acts as a super-atom with n vertexes and 2n Al-Al edges,which allow to adsorb n hydrogen atoms at the top-site and 2n at the bridge-site.Using Al12H36 as the basic unit,stable chain structures,(Al12H36)m,have been constructed following the same connection mechanism as for (AlH3)n linear polymeric structures.Apart from high hydrogen percentage per molecule,calculations have shown that these new clusters possess large heat of formation values and their combustion heat is about 4.8 times of the methane,making them a promising high energy density material.

  3. Verification and Validation Strategy for Implementation of Hybrid Potts-Phase Field Hydride Modeling Capability in MBM

    Energy Technology Data Exchange (ETDEWEB)

    Jason D. Hales; Veena Tikare

    2014-04-01

    The Used Fuel Disposition (UFD) program has initiated a project to develop a hydride formation modeling tool using a hybrid Potts­phase field approach. The Potts model is incorporated in the SPPARKS code from Sandia National Laboratories. The phase field model is provided through MARMOT from Idaho National Laboratory.

  4. Influence of the V/III ratio in the gas phase on thin epitaxial AlN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Claudel, A., E-mail: arnaud.claudel@grenoble-inp.org [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Fellmann, V. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Gélard, I. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Coudurier, N. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Sauvage, D. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Balaji, M. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Crystal Growth Center, Anna University, Chennai 600025 (India); and others

    2014-12-31

    Thin (0001) epitaxial aluminum nitride (AlN) layers were grown on c-plane sapphire using high temperature hydride vapor phase epitaxy. The experimental set-up consists of a vertical cold-wall quartz reactor working at low pressure in which the reactions take place on a susceptor heated by induction. The reactants used are ammonia and aluminum chlorides in situ formed via hydrogen chloride reaction with high purity aluminum pellets. As-grown AlN layers have been characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence and Raman spectroscopies. The influence of the V/III ratio in the gas phase, from 1.5 to 15, on growth rate, surface morphology, roughness and crystalline quality is investigated in order to increase the quality of thin epitaxial AlN layers grown at high temperature. Typical growth rates of around 0.45 μm/h were obtained for such thin epitaxial AlN layers. The growth rate was unaffected by the V/III ratio. An optimum for roughness, crystalline quality and optical properties seems to exist at V/III = 7.5. As a matter of fact, for a V/III ratio of 7.5, best root mean square roughness and crystalline quality — measured on 0002 symmetric reflection — as low as 6.9 nm and 898 arcsec were obtained, respectively. - Highlights: • Growth of thin epitaxial AlN layers by high temperature hydride vapor phase epitaxy • Influence of V/III ratio on growth rate, morphology and crystalline quality • The effect of surface morphology on strain state and crystal quality is established.

  5. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    OpenAIRE

    Sun, Jie; Sun, Yingchun

    2007-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system pH value played an important role in this experiment. The growth rate is 12 nm/h at room temperature. Post-growth annealing not only densifies and purifies the films, but results in film crystallization a...

  6. Ab initio study of H and He migrations in β-phase Sc, Y, and Er hydrides

    Institute of Scientific and Technical Information of China (English)

    Chen Ru-Cheng; Yang Li; Dai Yun-Ya; Zhu Zi-Qiang; Peng Shu-Ming; Long Xing-Gui; Gao Fei; Zu Xiao-Tao

    2012-01-01

    Ab initio calculations based on the density functional theory have been performed to investigate the migrations of hydrogen(H)and helium(He)atoms in β-phase scandium(Sc),yttrium(Y),and erbium(Er)hydrides with three different ratios of H to metal.The results show that the migration mechanisms of H and He atoms mainly depend on the crystal structures of hydrides,but their energy barriers are affected by the host-lattice in metal hydrides.The formation energies of octahedral-occupancy H(Hoct)and tetrahedral vacancy(Vtet)pairs are almost the same(about 1.2 eV).It is of interest to note that the migration barriers of H increase with increasing host-lattice atomic number.In addition,the results show that the favorable migration mechanism of He depends slightly on the Vtet in the Sc hydride,but strongly on that in the Y and Er hydrides,which may account for different behaviours of initial He release from ScT2 and ErT2.

  7. Luminescence transients in highly excited GaN grown by hydride vapor-phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Jursenas, S.; Miasojedovas, S.; Kurilcik, G.; Zukauskas, A. [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-2040 Vilnius (Lithuania); Hageman, P.R. [University of Nijmegen, Fac. of Science, Dept. of Exp. Solid State Physics III, Toernooiveld 1, 6525 ED Nijmegen (Netherlands)

    2004-01-01

    Luminescence transients has been studied in GaN grown by hydride vapor-phase epitaxy (HVPE) under intense photoexcitation conditions. The HVPE grown GaN layer exhibited luminescence decay time of 205 ps, that implies the room-temperature free-carrier lifetime of 420 ps. The obtained carrier lifetime of HVPE-grown GaN is significantly higher that the typical values of carrier lifetime measured for GaN heterolayers grown by metalorganic chemical vapor deposition, what suggests high potential of HVPE growth technique for light-emitting diode and blue laser applications. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Electrical, optical, and structural properties of GaN films prepared by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Highlights: • GaN films are prepared by hydride vapor phase epitaxy (HVPE). • Residual donors and deep traps show a minimum density versus growth temperature. • This minimum is located close to the HVPE growth temperature of 950 °C. • Good crystalline GaN with residual donor density < 1016 cm−3 can be grown at 950 °C. - Abstract: Two sets of undoped GaN films with the thickness of 10–20 μm were prepared by hydride vapor phase epitaxy (HVPE) and characterized by capacitance–voltage (C–V) profiling, microcathodoluminescence (MCL) spectra measurements, MCL imaging, electron beam induced current (EBIC) imaging, EBIC dependence on accelerating voltage, deep levels transient spectroscopy, high resolution X-ray diffraction measurements. The difference in growth conditions was mainly related to the lower (850 °C, group 1) or higher (950 °C, group 2) growth temperature. Both groups of samples showed similar crystalline quality with the dislocation density close to 108 cm−2, but very different electrical and optical properties. In group 1 samples the residual donors concentration was ∼1017 cm−3 or higher, the MCL spectra were dominated by the band-edge luminescence, and the diffusion length of charge carriers was close to 0.1 μm. Group 2 samples had a 2–4.5 μm thick highly resistive layer on top, for which MCL spectra were determined by green, yellow and red defect bands, and the diffusion length was 1.5 times higher than in group 1. We also present brief results of growth at the “standard” HVPE growth temperature of 1050 °C that show the presence of a minimum in the net donor concentration and deep traps density as a function of the growth temperature. Possible reasons for the observed results are discussed in terms of the electrical compensation of residual donors by deep traps

  9. Hangzhou Jinjiang Group Shanxi Fusheng Aluminum Phase I 800,000 t/a Aluminum Oxide Project Started Operation

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On October 19,the Shanxi Province Pinglu County Phase I 800,000t/a Aluminum Oxide Project of Shanxi Fusheng Aluminum Co.,Ltd,a subordinate of Hangzhou Jinjiang Group,started operation.This is the fourth Aluminum oxide project constructed and operated by Jinjiang Group.

  10. Point defect dynamics in sodium aluminum hydrides - a combined quasielastic neutron scattering and density functional theory study

    DEFF Research Database (Denmark)

    Shi, Qing; Voss, Johannes; Jacobsen, H.S.;

    2007-01-01

    Understanding the catalytic role of titanium-based additives on the reversible hydrogenation of complex metal hydrides is an essential step towards developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed catalytic effects, and here...

  11. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  12. Hysteresis in Metal Hydrides.

    Science.gov (United States)

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  13. Electrical, optical, and structural properties of GaN films prepared by hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A.Y. [National University of Science and Technology MISiS, Moscow (Russian Federation); School of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National University, Jeonju (Korea, Republic of); Smirnov, N.B. [National University of Science and Technology MISiS, Moscow (Russian Federation); Institute of Rare Metals, Moscow (Russian Federation); Yakimov, E.B. [Institute of Microelectronics Technology and High Purity Materials Russian Academy of Science, Chernogolovka (Russian Federation); Usikov, A.S. [Nitride Crystals, Inc., Deer Park (United States); Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg (Russian Federation); Helava, H. [Nitride Crystals, Inc., Deer Park (United States); Shcherbachev, K.D. [School of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National University, Jeonju (Korea, Republic of); Govorkov, A.V. [Institute of Rare Metals, Moscow (Russian Federation); Makarov, Yu N. [Nitride Crystals, Inc., Deer Park (United States); Lee, In-Hwan, E-mail: ihlee@jbnu.ac.kr [School of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National University, Jeonju (Korea, Republic of)

    2014-12-25

    Highlights: • GaN films are prepared by hydride vapor phase epitaxy (HVPE). • Residual donors and deep traps show a minimum density versus growth temperature. • This minimum is located close to the HVPE growth temperature of 950 °C. • Good crystalline GaN with residual donor density < 10{sup 16} cm{sup −3} can be grown at 950 °C. - Abstract: Two sets of undoped GaN films with the thickness of 10–20 μm were prepared by hydride vapor phase epitaxy (HVPE) and characterized by capacitance–voltage (C–V) profiling, microcathodoluminescence (MCL) spectra measurements, MCL imaging, electron beam induced current (EBIC) imaging, EBIC dependence on accelerating voltage, deep levels transient spectroscopy, high resolution X-ray diffraction measurements. The difference in growth conditions was mainly related to the lower (850 °C, group 1) or higher (950 °C, group 2) growth temperature. Both groups of samples showed similar crystalline quality with the dislocation density close to 10{sup 8} cm{sup −2}, but very different electrical and optical properties. In group 1 samples the residual donors concentration was ∼10{sup 17} cm{sup −3} or higher, the MCL spectra were dominated by the band-edge luminescence, and the diffusion length of charge carriers was close to 0.1 μm. Group 2 samples had a 2–4.5 μm thick highly resistive layer on top, for which MCL spectra were determined by green, yellow and red defect bands, and the diffusion length was 1.5 times higher than in group 1. We also present brief results of growth at the “standard” HVPE growth temperature of 1050 °C that show the presence of a minimum in the net donor concentration and deep traps density as a function of the growth temperature. Possible reasons for the observed results are discussed in terms of the electrical compensation of residual donors by deep traps.

  14. Determination of arsenic and selenium by hydride generation and headspace solid phase microextraction coupled with optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tyburska, Anna; Jankowski, Krzysztof, E-mail: kj@ch.pw.edu.pl; Rodzik, Agnieszka

    2011-07-15

    A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL{sup -1}, respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.

  15. Identification of Si and O donors in hydride-vapor-phase epitaxial GaN

    Science.gov (United States)

    Moore, W. J.; Freitas, J. A.; Braga, G. C. B.; Molnar, R. J.; Lee, S. K.; Lee, K. Y.; Song, I. J.

    2001-10-01

    Donor impurity excitation spectra in the infrared from two high-quality, not-intentionally doped, hydride-vapor-phase epitaxial GaN wafers are reported. Two previously observed shallow donors which we designate N1 and N2 were observed in both wafers. However, spectra of one wafer are dominated by N1 and spectra of the other by N2. A comparison of infrared and secondary ion mass spectroscopic data allows identification of N1 as Si and N2 as O. Silicon is the shallowest uncompensated donor in these samples with an activation energy of 30.18±0.1 meV in the freestanding Samsung wafer. The activation energy of O is found to be 33.20±0.1 meV. An unidentified third donor with an activation energy of 31.23±0.1 meV also was observed. Integrated absorption cross sections are found to be 8.5×10-14 cm for Si and 8.6×10-14 cm for O.

  16. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured GaxIn1−xP (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique

  17. Gradual variation method for thick GaN heteroepitaxy by hydride vapour phase epitaxy

    Institute of Scientific and Technical Information of China (English)

    Du Yan-Hao; Wu Jie-Jun; Luo Wei-Ke; John Goldsmith; Han Tong; Tao Yue-Bin; Yang Zhi-Jian; Yu Tong-Jun; Zhang Guo-Yi

    2011-01-01

    Two strain-state samples of GaN,labelled the strain-relief sample and the quality-improved sample,were grown by hydride vapour phase epitaxy (HVPE),and then characterized by high-resolution X-ray diffraction,photoluminescence and optical microscopy. Two strain states of GaN in HVPE,like 3D and 2D growth modes in metal-organic chemical vapour deposition (MOCVD),provide an effective way to solve the heteroepitaxial problems of both strain relief and quality improvement. The gradual variation method (GVM),developed based on the two strain states,is characterized by growth parameters' gradual variation alternating between the strain-relief growth conditions and the qualityimproved growth conditions. In GVM,the introduction of the strain-relief amplitude,which is defined by the range from the quality-improved growth conditions to the strain-relief growth conditions,makes the strain-relief control concise and effective. The 300-4m thick bright and crack-free GaN film grown on a two-inch sapphire proves the effectiveness of GVM.

  18. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Zuo, Jianmin; Braun, Paul V., E-mail: pbraun@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Sardela, Mauro [Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista (Sweden)

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  19. Nucleation of GaN on sapphire substrates at intermediate temperatures by Hydride Vapor Phase Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lukin, G.; Niederschlag, E.; Paetzold, O.; Stelter, M. [Institute of Nonferrous Metallurgy and Purest Materials, TU Bergakademie Freiberg (Germany); Roeder, C.; Kortus, J. [Institute of Theoretical Physics, TU Bergakademie Freiberg (Germany); Shashev, Y.; Muehle, U.; Rafaja, D. [Institute of Materials Science, TU Bergakademie Freiberg (Germany)

    2012-02-15

    A novel approach to deposit GaN layers directly on a sapphire substrate by Hydride Vapor Phase Epitaxy is presented. The two-step deposition process includes the growth of GaN nucleation layers at intermediate temperatures in the range of 750 - 900 C and subsequent high-temperature overgrowth at about 1040 C. Closed and non-closed nucleation layers with a thickness of up to 2 {mu}m were produced and characterized by scanning and transmission electron microscopy, micro-Raman spectroscopy and X-ray diffraction. A growth temperature of 780 C is found to be optimal with respect to density and size distribution of nucleation islands. Raman measurements performed on the nucleation layers reveal nearly zero residual stress indicating effective stress relaxation on cooling down from growth temperature. The results of first overgrowth experiments demonstrate the possibility to grow 10 {mu}m thick, crack-free GaN layers of high crystalline quality on the nucleation layers. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Computational fluid dynamics-aided analysis of a hydride vapor phase epitaxy reactor

    Science.gov (United States)

    Schulte, Kevin L.; Simon, John; Roy, Abhra; Reedy, Robert C.; Young, David L.; Kuech, Thomas F.; Ptak, Aaron J.

    2016-01-01

    We report the development of a computational fluid dynamics (CFD) model of a dual chamber hydride vapor phase epitaxial (HVPE) growth reactor. Uniformity of reactant concentrations in the growth stream, transient reactor flows, and cross doping between the two growth chambers, all factors critical to the deposition of uniform, low defect semiconductor layers, were modeled. Simulation results were generated by solving the fundamental continuity, momentum and energy equations over a discretized reactor volume by a finite volume analysis with the aid of CFD-ACE+ commercial software. We demonstrated uniformity of the vapor composition within ±1% across the substrate, achieved due to specific features of the reactor design. Small compositional non-uniformity (±2% absolute) in In1-xGaxP layers grown in our reactor was correlated with calculated temperature non-uniformity across the substrate. Gas switching was modeled and the transient time predicted by the model was confirmed by measurement of doping transients in a sample grown in the reactor. Lastly the gas curtains that chemically isolate the reactor chambers were modeled and the results were compared to experimental data for cross doping between the chambers. As an example, we demonstrate, based on insight from the model, that our HVPE reactor is suitable for the deposition of GaAs PV devices. CFD modeling is a critical tool for the scale up of laboratory level processes to industrial levels.

  1. Planarization and Processing of Metamorphic Buffer Layers Grown by Hydride Vapor-Phase Epitaxy

    Science.gov (United States)

    Zutter, Brian T.; Schulte, Kevin L.; Kim, Tae Wan; Mawst, Luke J.; Kuech, T. F.; Foran, Brendan; Sin, Yongkun

    2014-04-01

    Hydride vapor-phase epitaxy (HVPE) is a high-growth-rate, cost-effective means to grow epitaxial semiconductor material. Thick HVPE-based metamorphic buffer layers (MBLs) can serve as "pseudosubstrates" with controllable lattice parameter. In our structures, the indium content in In x Ga1- x As is gradually increased from zero to the final composition corresponding to the desired lattice constant, and then a thick (˜10 μm) constant-composition capping layer is grown. This thick capping layer promotes maximum strain relaxation while permitting use of polishing procedures to achieve surface planarity. Lattice-mismatched growth of MBLs invariably results in rough, cross-hatched surface morphology exhibiting up to 200 nm peak-to-valley roughness. This roughness can be eliminated by chemical mechanical planarization, thus creating a suitable surface for subsequent regrowth. Polishing of In x Ga1- x As is complicated by the sensitivity of the surface layer to the polishing parameters, particularly the applied pressure. Polishing at high applied pressure (12 psi) results in the formation of circular asperities hundreds of nanometers high and tens of microns in diameter. When lower applied pressure (4 psi) was used, the cross-hatching height of MBLs was lowered from 200 nm to <10 nm over a 350 μm lateral scale. The successfully planarized In0.20Ga0.80As MBLs were used as a substrate for a superlattice (SL) structure such as that used in quantum cascade lasers. Use of planarization before regrowth of the SL resulted in a reduction of the high-resolution x-ray diffraction peak full-width at half-maximum from 389″ to 159″.

  2. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  3. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    Institute of Scientific and Technical Information of China (English)

    SUN,Jie(孙捷); SUN,Ying-Chun(孙迎春)

    2004-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system's pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al2(SO4)3]=0.0837 mol·L-1, [NaHCO3]=0.214 mol·L-1, 15 ℃. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well, Excellent quality of A12O3 films in this work is supported by electron dispersion spectroscopy,Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.

  4. A New Reducing Regent: Dichloroindium Hydride

    Institute of Scientific and Technical Information of China (English)

    A. BABA; I. SHIBATA; N. HAYASHI

    2005-01-01

    @@ 1Introduction Among the hydride derivatives of group 13 elements, various types of aluminum hydrides and boron hydrides have been employed as powerful reduction tools. Indium hydrides have not received much attention,whereas the synthesis of indium trihydride (InH3) was reported several decades ago[1]. There have been no precedents for monometallic indium hydrides having practical reactivity, while activated hydrides such as an ate complex LiPhn InH4-n (n = 0- 2) and phosphine-coordinated indium hydrides readily reduce carbonyl compounds. In view of this background, we focused on the development of dichloroindium hydrides (Cl2InH) as novel reducing agents that bear characteristic features in both ionic and radical reactions.

  5. First Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Mei-Yin

    2014-09-29

    Complex metal hydrides are believed to be one of the most promising materials for developing hydrogen storage systems that can operate under desirable conditions. At the same time, these are also a class of materials that exhibit intriguing properties. We have used state-of-the-art computational techniques to study the fundamental properties of these materials.

  6. Effect of Reactor Pressure on Qualities of GaN Layers Grown by Hydride Vapour Phase Eqitaxy

    Institute of Scientific and Technical Information of China (English)

    QIU Kai; WANG Yu-Qi; YIN Zhi-Jun; LI Xin-Hua; ZHONG Fei; JI Chang-Jian; HAN Qi-Feng; CAO Xian-cun; CHEN Jia-Rong; LUO Xiang-Dong

    2007-01-01

    The influence of reactor pressure on GaN layers grown by hydride vapour phase epitaxy (HVPE) is investigated. By decreasing the reactor pressure from 0.7 to 0.5atm,he GaN layer growth mode changes from the island-like one to the step flow. The improvements in structural and optical properties and surface morphology of GaN layers are observed in the step now growth mode. The results clearly indicate that the reactor pressure, similarly to the growth temperature, is one of the important parameters to influence the qualities of GaN epilayers grown by HVPE, due to the change of growth mode.

  7. Flow analysis-hydride generation-gas phase derivative molecular absorption spectrophotometric determination of antimony in antileishmanial drugs

    Directory of Open Access Journals (Sweden)

    Máximo Gallignani

    2009-01-01

    Full Text Available In the present work, the development of a method based on the coupling of flow analysis (FA, hydride generation (HG, and derivative molecular absorption spectrophotometry (D-EAM in gas phase (GP, is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm of the absorption spectrum (190 - 300 nm is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.

  8. Guangxi Shanglin Aluminum Plant cross-regional technical upgrade project(phase 1)put into operation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The project(Phase 1)of cross-regional techni- cal upgrade of the aluminum plant of Guangxi Shanglin Nannan Industrial Co.was completed and put into operation on June 8,2007.The plant is a cross-regional technical upgrade pro- ject of Nanning Aluminum Plant,featuring the integration of coal,electricity and aluminum.

  9. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France); Nakhl, M. [Universite Libanaise, Laboratoire de Chimie-Physique des Materiaux LCPM, Fanar (Lebanon); Al Alam, A.F.; Ouaini, N. [Universite Saint-Esprit de Kaslik, Faculte des Sciences et de Genie Informatique, Jounieh (Lebanon); Chevalier, B. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France)

    2010-11-25

    Graphical abstract: Base centered orthorhombic YNiH{sub X} structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH{sub 4} is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH{sub 3} and YNiH{sub 4} hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  10. Ca2LiC3H: a new complex carbide hydride phase grown in metal flux.

    Science.gov (United States)

    Lang, David A; Zaikina, Julia V; Lovingood, Derek D; Gedris, Thomas E; Latturner, Susan E

    2010-12-15

    The reaction of carbon and CaH2 in a calcium/lithium flux mixture produces crystals of the new compound Ca2LiC3H. This phase forms with a new structure type in tetragonal space group P4/mbm (a = 6.8236(1) Å, c = 3.7518(1) Å, Z = 2, R1 = 0.0151). This is a stuffed variant of the Cs2(NH2)N3 structure, containing hydride anions in octahedral sites; the structure determination by single-crystal X-ray diffraction surprisingly allowed the hydrogen to be detected. The Ca2LiC3H structure also features the rarely seen C3(4-) carbide anion; the protolysis reaction of this compound with ammonium chloride produces C3H4. The electronic properties of Ca2LiC3H were studied by quantum-chemical calculations including band structure and electron localization function (ELF) analysis; the phase is a charge-balanced semiconductor with a calculated band gap of 0.48 eV. This is in agreement with (7)Li, (13)C, and (1)H MAS NMR data, which show resonances in the ionic region instead of the Knight shifted region. ELF analysis of the theoretical nonhydrided Ca2LiC3 structure confirms the ability of these calculations to properly locate hydrides and supports the structural model based on X-ray diffraction data.

  11. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder

    Science.gov (United States)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.

    1996-01-01

    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  12. Interstellar Hydrides

    CERN Document Server

    Gerin, Maryvonne; Goicoechea, Javier R

    2016-01-01

    Interstellar hydrides -- that is, molecules containing a single heavy element atom with one or more hydrogen atoms -- were among the first molecules detected outside the solar system. They lie at the root of interstellar chemistry, being among the first species to form in initially-atomic gas, along with molecular hydrogen and its associated ions. Because the chemical pathways leading to the formation of interstellar hydrides are relatively simple, the analysis of the observed abundances is relatively straightforward and provides key information about the environments where hydrides are found. Recent years have seen rapid progress in our understanding of interstellar hydrides, thanks largely to far-IR and submillimeter observations performed with the Herschel Space Observatory. In this review, we will discuss observations of interstellar hydrides, along with the advanced modeling approaches that have been used to interpret them, and the unique information that has thereby been obtained.

  13. Metal hydride/chemical heat-pump development project, phase 1

    Science.gov (United States)

    Argabright, T. A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 1100 C (160 to 2300 F) for the source heat and 140 to 1900 C (280 to 3750 F) for the product heat.

  14. Superconductivity and the structural phase transitions in palladium hydride and palladium deuteride

    International Nuclear Information System (INIS)

    The results of two experimental studies of the superconducting transition temperature, T/sub c/, of palladium hydride, PdH/sub x/, and palladium deuteride, PdD/sub x/, are presented. In the first study, the superconducting transition temperature of PdH/sub x/(D/sub x/) is studied as a function of H(D) concentration, x, in the temperature range from 0.2 K to 4K. The data join smoothly with those reported previously by Miller and Satterthwaite at higher temperatures, and the composite data are described by the empirical relation T/sub c/ = 150.8 (x-x/sub o/)2244, where x/sub o/ = 0.715 for hydride samples and 0.668 for deuteride samples. The results, when compared with the theoretical predictions of Klein and Papaconstantopoulos, et al., raise questions about the validity of their explanation of the reverse isotope effect, which is based solely on a difference in force constants. In the second study, the effect of the order-disorder structural transition associated with the 50 K anomaly on the superconductivity of PdH/sub x/(D/sub x/) is investigated. Samples were quenched to low temperatures in the disordered state, and their transition temperatures measured. The samples were then annealed just below the anomaly temperature, and the ordering process followed by monitoring the change in sample resistance. The transition temperatures in the ordered state were then measured

  15. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  16. Effect of vapor phase corrosion inhibitor on microbial corrosion of aluminum alloys.

    Science.gov (United States)

    Yang, S S; Ku, C H; Bor, H J; Lin, Y T

    1996-02-01

    Vapor phase corrosion inhibitors were used to investigate the antimicrobial activities and anticorrosion of aluminum alloy. Aspergillus flavus, A. niger, A. versicolor, Chaetomium globosum and Penicillium funiculosum had moderate to abundant growth on the aluminum alloy AA 1100 at Aw 0.901, while there was less growth at Aw 0.842. High humidity stimulated microbial growth and induced microbial corrosion. Dicyclohexylammonium carbonate had a high inhibitory effect on the growth of test fungi and the microbial corrosion of aluminum alloy, dicyclohexylammonium caprate and dicyclohexylammonium stearate were the next. Aluminum alloy coating with vapor phase corrosion inhibitor could prevent microbial growth and retard microbial corrosion. PMID:10592784

  17. Effect of AlN intermediate layer on growing GaN film by hydride vapor phase epitaxy

    Institute of Scientific and Technical Information of China (English)

    LIN Chaotong; RUTERANA Pierre; CHEN Jun; YU Guanghui; LEI Benliang; WANG Xinzhong; YE Haohua; MENG Sheng; QI Ming; LI Aizhen; NOUET Gérard

    2006-01-01

    Thick GaN layer deposited by hydride vapor phase epitaxy (HVPE) on a metalorganic chemical vapor deposition (MOCVD) GaN template with a thin low temperature (LT) AlN intermediate layer was investigated.High resolution X-ray resolution diffraction (HRXRD) shows that the crystalline quality of thick GaN layer was improved compared with the template.As confirmed by atomic force microscopy (AFM) observations, the surface morphology of AlN intermediate layer helps to improve the nucleation of GaN epilayer.Photoluminescence (PL) spectra measurement shows its high optical quality and low compressive stress, and micro Raman measurement confirms the latter result.Thus, the deposition of the LT-AlN interlayer has promoted the growth of an HVPE-GaN layer with an excellent crystalline quality.

  18. Properties of GaN on different polarity buffer layers by hydride vapour phase epitaxy

    Institute of Scientific and Technical Information of China (English)

    Qiu Kai; Zhong Fei; Li Xin-Hua; Yin Zhi-Jun; Ji Chang-Jian; Han Qi-Feng; Chen Jia-Rong; Cao Xian-Cun; Wang Yu-Qi

    2007-01-01

    This paper reports on N-, mixed-, and Ga-polarity buffer layers are grown by molecular beam epitaxy (MBE) on sapphire (0001) substrates, with the GaN thicker films grown on the buffer layer with different polarity by hydride vapour epitaxy technique (HVPE). The surface morphology, structural and optical properties of these HVPF-GaN epilayers are characterized by wet chemical etching, scanning electron microscope, x-ray diffraction, and photoluminescence spectrum respectively. It finds that the N-polarity film is unstable against the higher growth temperature and wet chemical etching,while that of GaN polarity one is stable. The results indicate that the crystalline quality of HVPE-GaN epilayers depends on the polarity of buffer layers.

  19. Hydride Generation for Headspace Solid-Phase Extraction with CdTe Quantum Dots Immobilized on Paper for Sensitive Visual Detection of Selenium.

    Science.gov (United States)

    Huang, Ke; Xu, Kailai; Zhu, Wei; Yang, Lu; Hou, Xiandeng; Zheng, Chengbin

    2016-01-01

    A low-cost, simple, and highly selective analytical method was developed for sensitive visual detection of selenium in human urine both outdoors and at home, by coupling hydride generation with headspace solid-phase extraction using quantum dots (QDs) immobilized on paper. The visible fluorescence from the CdTe QDs immobilized on paper was quenched by H2Se from hydride generation reaction and headspace solid-phase extraction. The potential mechanism was investigated by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) as well as Density Functional Theory (DFT). Potential interferences from coexisting ions, particularly Ag(+), Cu(2+), and Zn(2+), were eliminated. The selectivity was significantly increased because the selenium hydride was effectively separated from sample matrices by hydride generation. Moreover, due to the high sampling efficiency of hydride generation and headspace solid phase extraction, the sensitivity and the limit of detection (LOD) were significantly improved compared to conventional methods. A LOD of 0.1 μg L(-1) and a relative standard deviation (RSD, n = 7) of 2.4% at a concentration of 20 μg L(-1) were obtained when using a commercial spectrofluorometer as the detector. Furthermore, a visual assay based on the proposed method was developed for the detection of Se, 5 μg L(-1) of selenium in urine can be discriminated from the blank solution with the naked eye. The proposed method was validated by analysis of certified reference materials and human urine samples with satisfactory results. PMID:26631425

  20. Prediction of the zeta potentials and ionic descriptors of a silica hydride stationary phase with mobile phases of different pH and ionic strength.

    Science.gov (United States)

    Kulsing, Chadin; Yang, Yuanzhong; Matyska, Maria T; Pesek, Joseph J; Boysen, Reinhard I; Hearn, Milton T W

    2015-02-15

    In this study, the zeta potentials of a silica hydride stationary phase (Diamond Hydride™) in the presence of different water-acetonitrile mixtures (from 0-80% (v/v) acetonitrile) of different ionic strengths (from 0-40mM) and pH values (from pH 3.0-7.0) have been investigated. Debye-Hückel theory was applied to explain the effect of changes in the pH and ionic strength of these aqueous media on the negative zeta potential of this stationary phase. The experimental zeta potentials of the Diamond Hydride™ particles as a function of acetonitrile content up to 50% (v/v) correlated (R(2)=0.998) with the predicted zeta potential values based on this established theory, when the values of the dissociation constant of all related species, as well as viscosity, dielectric constant and refractive index of the aqueous medium were taken into consideration. Further, the retention behavior of basic, acidic and neutral analytes was investigated under mobile phase conditions of higher pH and lower ionic strength. Under these conditions, the Diamond Hydride™ stationary phase surface became more negative, as assessed from the increasingly more negative zeta potentials, resulting in the ion exchange characteristics becoming more dominant and the basic analytes showing increasing retention. Ionic descriptors were derived from these chromatographic experiments based on the assumption that linear solvation energy relationships prevail. The results were compared with predicted ionic descriptors based on the different calculated zeta potential values resulting in an overall correlation of R(2)=0.888. These studies provide fundamental insights into the impact on the separation performance of changes in the zeta potential of the Diamond Hydride™ surface with the results relevant to other silica hydride and, potentially, to other types of stationary phase materials.

  1. Determination of trace selenium in high purity tellurium by hydride generation atomic fluorescence spectrometry after solid phase extraction of a diaminobenzidine-selenium chelate

    Science.gov (United States)

    Tong, Wang; Ying, Zeng; Jinyong, Xu

    2016-09-01

    Macroporous adsorption resin was used as the sorbent for solid phase extraction and determination of the trace Se content in high purity tellurium prior to hydride generation atomic fluorescence spectrometry analysis. Selenium was converted into an organic Se chelate using 3,3‧-diaminobenzidine and was separated from the tellurium matrix by solid phase extraction. The resin was packed as a column for solid phase extraction. Under optimum conditions, trace Se can be quantitatively extracted and the tellurium matrix can be removed. The Se in the eluate was determined by hydride generation atomic fluorescence spectrometry. The limit of detection (3σ) of this method was 0.22 ng g- 1 and the relative standard deviation (RSD, n = 5) ranged from 2.0 to 2.5% for the three investigated tellurium samples. The proposed method was successfully applied for the determination of the trace Se content in high purity tellurium samples.

  2. Crystallographic measurement of the β to α phase transformation and δ-hydride precipitation in a laser-welded Zircaloy-2 tube by electron backscattering diffraction

    International Nuclear Information System (INIS)

    Crystallographic measurement of the β to α phase transformation and δ-hydride precipitation in a laser-welded Zircaloy-2 ferrule tube were carried out using an electron backscattering diffraction pattern (EBSP). A basket-weave structure with sub-micron lath width caused by quenching from the β to α phase was observed in the heat-affected and fusion zones, and mainly showed a grain boundary misorientation angle of 60 deg. with an rotation axis. This result is consistent with the Burgers orientation relationship of {1 1 0}β//(0 0 0 1)α and β//α for the β to α phase transformation. The texture of the quenched α' phase was strongly inherited from the original α phase, having a radial (0 0 0 1) basal pole and axial {1 1 2-bar0} textures, even in the fusion zone. The primary hydride habit plane in the welded Zircaloy-2 was (0 0 0 1)α//{1 1 1}δ, matching previously obtained results for recrystallized cladding tubes. In addition to the primary habit plane, secondary habit planes were observed for the other low-index planes {1 0 1-bar0} and {1 0 1-bar1} in the fusion zone. The heterogeneous accumulation of hydrides in the transition zone between heat-affected and unaffected zones was mainly due to the residual stress distribution in the narrow region.

  3. Crystallographic measurement of the β to α phase transformation and δ-hydride precipitation in a laser-welded Zircaloy-2 tube by electron backscattering diffraction

    Science.gov (United States)

    Une, K.; Ishimoto, S.

    2009-06-01

    Crystallographic measurement of the β to α phase transformation and δ-hydride precipitation in a laser-welded Zircaloy-2 ferrule tube were carried out using an electron backscattering diffraction pattern (EBSP). A basket-weave structure with sub-micron lath width caused by quenching from the β to α phase was observed in the heat-affected and fusion zones, and mainly showed a grain boundary misorientation angle of 60° with an rotation axis. This result is consistent with the Burgers orientation relationship of {1 1 0} β//(0 0 0 1) α and β// α for the β to α phase transformation. The texture of the quenched α' phase was strongly inherited from the original α phase, having a radial (0 0 0 1) basal pole and axial {1 1 2¯ 0} textures, even in the fusion zone. The primary hydride habit plane in the welded Zircaloy-2 was (0 0 0 1) α//{1 1 1} δ, matching previously obtained results for recrystallized cladding tubes. In addition to the primary habit plane, secondary habit planes were observed for the other low-index planes {1 0 1¯ 0} and {1 0 1¯ 1} in the fusion zone. The heterogeneous accumulation of hydrides in the transition zone between heat-affected and unaffected zones was mainly due to the residual stress distribution in the narrow region.

  4. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    International Nuclear Information System (INIS)

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations

  5. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Dabbs; Ilhan A. Aksay

    2005-01-12

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations.

  6. Density functional theory study on LaNi4.5Al0.5 hydride phase: electronic properties and sites occupation

    Institute of Scientific and Technical Information of China (English)

    Chen Dong; Yu Ben-Hai; Wang Chun-Lei; Gao Tao

    2007-01-01

    In this paper the crystal structure, electronic structure and hydrogen site occupation of LaNi4.5Al0.5Hy hydride phase (y=5.0, 6.0) have been investigated by using full-potential linearized augmented plane wave method. The hydrogen atoms were found to prefer the 6m, 12o and 12n sites, while no 4h sites were occupied. A narrowed Ni-d band is found due to the lattice expansion, the total density of states at EF increases with y, which indicates that the compounds become less stable. The interaction between Al and Ni, H plays a dominant role in the stability of LaNi4.sAl0.5Hy hydride phase. The smaller the shift of EF towards the higher energy region, the more stable the compounds will be. The obtained results are compared with experimental data and discussed in the light of previous works.

  7. Theoretical Study of Hydrogenated Tetrahedral Aluminum Clusters

    CERN Document Server

    Ichikawa, Kazuhide; Wagatsuma, Ayumu; Watanabe, Kouhei; Szarek, Pawel; Tachibana, Akitomo

    2011-01-01

    We report on the structures of aluminum hydrides derived from a tetrahedral aluminum Al4 cluster using ab initio quantum chemical calculation. Our calculation of binding energies of the aluminum hydrides reveals that stability of these hydrides increases as more hydrogen atoms are adsorbed, while stability of Al-H bonds decreases. We also analyze and discuss the chemical bonds of those clusters by using recently developed method based on the electronic stress tensor.

  8. Preparation of Porous GaN Buffer and Its Influence on the Residual Stress of GaN Epilayers Grown by Hydride Vapor Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The preparation of porous structure on the molecular beam epitaxy (MBE)-grown mixed-polarity GaN epilayers was reported by using the wet chemical etching method. The effect of this porous structure on the residual stress of subsequent-growth GaN epilayers was studied by Raman and photoluminescence (PL) spectrum.Substantial decrease in the biaxial stresse can be achieved by employing the porous buffers in the hydride vapour phase epitaxy (HVPE) epilayer growth.

  9. Photo-electrochemical etching of free-standing GaN wafer surfaces grown by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    An investigation into the photo-electrochemical (PEC) etching of free-standing GaN wafers produced by hydride vapor phase epitaxial growth (HVPE) has found that etching is only possible with UV illumination in an acidic or basic electrolyte. Through photo-current measurement and X-ray analysis it was determined that lack of etching in a neutral electrolyte can be attributed to the formation of an oxide film on the GaN surface. Surface damage was also found to be a significant factor, with the etching rate and photo current density of surfaces treated by grinding and mechanical polishing being markedly less compared to a finely polished surface. Subsequent investigation of the luminescence and the etching characteristics of the intentionally-introduced scratches indicated that subsurface damage is difficult to remove from GaN by PEC etching due to the trapping of photo-excited carriers. A peculiar surface feature of concentric ring structures made up of alternating small and large pores was observed on the GaN surface along with small island regions, which is attributed to variations in the electronic properties of the GaN crystal that is created during HVPE growth

  10. Hydride development for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C. [Sandia National Lab., Livermore, CA (United States); Sandrock, G. [SunaTech, Inc., Ringwood, NJ (United States)

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  11. Structural phase stability, electronic structure and mechanical properties of alkali metal hydrides AMH4 (A=Li, Na; M=B, AL)

    Science.gov (United States)

    Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    The structural stability of Alkali metal hydrides AMH4 (A=Li, Na; M=B, Al) is analyzed among the various crystal structures, namely hexagonal (P63mc), tetragonal (P42/nmc), tetragonal (P-421c), tetragonal (I41/a), orthorhombic (Pnma) and monoclinic (P21/c). It is observed that, orthorhombic (Pnma) phase is the most stable structure for LiBH4, monoclinic (P21/c) for LiAlH4, tetragonal (P42/nmc) for NaBH4 and tetragonal (I41/a) for NaAlH4 at normal pressure. Pressure induced structural phase transitions are observed in LiBH4, LiAlH4, NaBH4 and NaAlH4 at the pressures of 4 GPa, 36.1 GPa, 26.5 GPa and 46 GPa respectively. The electronic structure reveals that these metal hydrides are wide band gap insulators. The calculated elastic constants indicate that these metal hydrides are mechanically stable at normal pressure.

  12. Probing the cerium/cerium hydride interface using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Brierley, Martin, E-mail: martin.brierley@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); University of Manchester, Manchester M13 9PL (United Kingdom); Knowles, John, E-mail: john.knowles@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom)

    2015-10-05

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase.

  13. Probing the cerium/cerium hydride interface using nanoindentation

    International Nuclear Information System (INIS)

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase

  14. Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.; Gonzalez-Gonzalez, A.; Moya, J. S.; Remartinez, B.; Perez, S.; Sacedon, J. L. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Iberdrola, Tomas Redondo 3, 28033 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)

    2009-07-15

    The authors study the hydriding process on commercial nuclear fuel claddings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings, as well as the dissipated energy and the partial pressure of the desorbed H{sub 2} from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t{sup 1/2} potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the {delta}-ZrH{sub 1.5} phase. The measured H{sub 2} desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

  15. Formation of uniform magnetic structures and epitaxial hydride phases in Nd/Pr superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Bryn-Jacobsen, C.; McMorrow, D.F.;

    1997-01-01

    The chemical and magnetic structures of neodymium/praseodymium superlattices grown by molecular-beam epitaxy have been determined using x-ray and neutron-diffraction techniques. The x-ray measurements show that the superlattices have a dhcp structure of high crystalline quality, and that the stac...... these light rare-earth samples are found to react with hydrogen to form new single-crystal phases, which are coherent with the epitaxial structure.......The chemical and magnetic structures of neodymium/praseodymium superlattices grown by molecular-beam epitaxy have been determined using x-ray and neutron-diffraction techniques. The x-ray measurements show that the superlattices have a dhcp structure of high crystalline quality......, and that the stacking sequence is coherent over many bilayer repeats. The neutron measurements show that for the hexagonal sites of the dhcp structure, the Nd magnetic order propagates coherently through the Pr, whereas the order on the cubic sites is either suppressed or confined to single Nd blocks. It is also shown...

  16. Research on Metal Hydride Compressor System

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ti-Zr series Laves phase hydrogen storage alloys with good hydrogen storage properties, such as large hydrogen capacity, rapid hydriding and dehydriding rate, high compression ratio, gentle plateau, small hysteresis, easily being activated and long cyclic stability etc. for metal hydride compressor have been investigated. In addition, a hydride compressor with special characteristics, namely, advanced filling method, good heat transfer effect and reasonable structural design etc. has also been constructed. A hydride compressor cryogenic system has been assembled coupling the compressor with a J-T micro-throttling refrigeration device and its cooling capacity can reach 0.4 W at 25 K.

  17. Planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as stationary phase

    Science.gov (United States)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.

    2016-04-01

    The high selectivity of the adsorption layer for low-boiling alkanes is shown, the separation factor (α) couple iso-butane / butane is 1.9 at a column temperature of 50 °C.The paper presents sorption and selective properties of planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as the stationary phase.

  18. Guangxi Pingguo Aluminum Alumina 3rd Phase Project to Put Into Production

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In April,the handover ceremony was held for the first completed sub-project of the 3rd phase of 900,000-ton alumina project of China Alu- minum Guangxi Company (Pingguo Aluminum in short),standing for the commencement of

  19. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes. Final Report

    International Nuclear Information System (INIS)

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations. The principal focus of our research was to maintain the fluidity of aluminum- or silicon-containing suspensions and solutions during transport, whether by preventing particle formation, stabilizing colloidal particles in suspension, or by combining partial dissolution with particle stabilization. We have found that all of these can be effected in aluminum-containing solutions using the simple organic, citric acid. Silicon-containing solutions were found to be less tractable, but we have strong indications that chemistries similar to the citric acid/aluminum suspensions can be effective in maintaining silicon suspensions at high alkalinities. In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting 'seed' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Here, the use of polyols was determined to be effective in

  20. Catalyst-assisted hydride vapor phase epitaxy of GaN nanowires: exceptional length and constant rod-like shape capability

    Science.gov (United States)

    Lekhal, K.; Avit, G.; André, Y.; Trassoudaine, A.; Gil, E.; Varenne, C.; Bougerol, C.; Monier, G.; Castelluci, D.

    2012-10-01

    The hydride vapor phase epitaxy (HVPE) process exhibits unexpected properties when growing GaN semiconductor nanowires (NWs). With respect to the classical well-known methods such as metal organic vapor phase epitaxy and molecular beam epitaxy, this near-equilibrium process based on hot wall reactor technology enables the synthesis of nanowires with a constant cylinder shape over unusual length. Catalyst-assisted HVPE shows a record short time process (less than 20 min) coupled to very low precursor consumption. NWs are grown at a fast solidification rate (50 μm h-1), facilitated by the high decomposition frequency of the chloride molecules involved in the HVPE process as element III precursors. In this work growth temperature and V/III ratio were investigated to determine the growth mechanism which led to such long NWs. Analysis based on the Ni-Ga phase diagram and the growth kinetics of near-equilibrium HVPE is proposed.

  1. Numerical and experimental study of phase transformation in resistance spot welding of 6082 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Xinxin; SHA Ping; LUO Zhen; LUO Baofa

    2009-01-01

    Resistance spot welding(RSW) is an efficient and convenient joining process for aluminum alloy sheet assembly. Because the RSW has the character of energy concentration and quick cooling rate, the microstructure transformation of the base metal can be confined in the least limit. The material properties and the welding parameters have significant effects on thequality of the nugget. To predict the microstructure evolution in the melted zone and the heat-affected zone, an electrical, thermal, metallurgical and mechanical coupled finite element model is described and applied to simulate the welding process of the 6082 aluminum alloy. Experimental tests are also carried out. The comparison between experimental and numerical results shows that the adopted model is effective enough to well interpret and predict some important phenomena in terms of the phase transformation in spot welding of 6082 aluminum alloy.

  2. Electromagnetic separation of primary iron-rich phases from aluminum-silicon melt

    Institute of Scientific and Technical Information of China (English)

    李天晓; 许振明; 孙宝德; 疏达; 周尧和

    2003-01-01

    The difference of conductivity between primary iron-rich phases and aluminum melt has been used toseparate them by electromagnetic force (EMF) which is induced by imposing a direct electric current and a steadymagnetic field in molten Al-Si alloy. Theoretical analysis and experiments on self-designed electromagnetic separa-tion indicates that primary needle-like β phases are difficult to separate; while primary a iron-rich phases can be sepa-rated by electromagnetic separation. Primary iron-rich phases have been removed from the melt successfully whenthe molten metal flows horizontally through separation channel. The iron content is reduced from 1.13% to 0.41%.

  3. Interface properties and phase formation between surface coated SKD61 and aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Se-Weon CHOI; Young-Chan KIM; Se-Hun CHANG; Ik-Hyun OH; Joon-Sik PARK; Chang-Seog KANG

    2009-01-01

    The intermediate phase formation and surface protection effects between SKD61 die mold alloys and aluminum alloys were investigated during a simulated die-casting process. The surface coatings of SKD61 alloy were carried out via Si pack cementation coatings at 900 ℃ for 10 h and the e-FeSi phase formed. When the coated SKD61 alloy was dipped in the liquid aluminum alloy (ALDC12), the surface coated SKD61 alloys showed better surface properties compared with uncoated SKD61 alloys, i.e., the intermediate phases (FeSiAl compound) were not produced for the coated SKD61 alloy. The coating layer of e-FeSi served as a diffusion barrier for the formation of FeSiAl compounds.

  4. GaAs Solar Cells Grown by Hydride Vapor-Phase Epitaxy and the Development of GaInP Cladding Layers

    Energy Technology Data Exchange (ETDEWEB)

    Simon, John; Schulte, Kevin L.; Young, David L.; Haegel, Nancy M.; Ptak, Aaron J.

    2016-01-01

    The high cost of high-efficiency III-V photovoltaic devices currently limits them to niche markets. Hydride vapor-phase epitaxy (HVPE) growth of III-V materials recently reemerged as a low-cost, high-throughput alternative to conventional metal- organic vapor-phase epitaxy (MOVPE) growth of high-efficiency solar cells. Previously, we demonstrated unpassivated HVPEgrown GaAs p-n junctions with good quantum efficiency and high open-circuit voltage (Voc). In this work, we demonstrate the growth of GaInPby HVPE for use as a high-quality surface passivation layer to GaAs solar cells. Solar cells grown with GaInP window layers show significantly improved quantum efficiency compared with unpassivated cells, increasing the short-circuit current (JSC) of these low-cost devices. These results show the potential of low-cost HVPE for the growth of high-quality III-V devices.

  5. Thick orientation-patterned growth of GaP on wafer-fused GaAs templates by hydride vapor phase epitaxy for frequency conversion

    Science.gov (United States)

    Vangala, Shivashankar; Kimani, Martin; Peterson, Rita; Stites, Ron; Snure, Michael; Tassev, Vladimir

    2016-10-01

    Quasi-phase-matched (QPM) GaP layers up to 300 μm thick have been produced by low-pressure hydride vapor phase epitaxy (LP-HVPE) overgrowth on orientation-patterned GaAs (OPGaAs) templates fabricated using a wafer-fusion bonding technique. The growth on the OPGaAs templates resulted in up to 200 μm thick vertically propagating domains, with a total GaP thickness of 300 μm. The successful thick growth on OPGaAs templates is the first step towards solving the material problems associated with unreliable material quality of commercially available GaP wafers and making the whole process of designing QPM frequency conversion devices molecular beam epitaxy free and more cost-effective.

  6. Thermomechanical properties of hafnium hydride

    International Nuclear Information System (INIS)

    Fine bulk samples of delta-phase Hf hydride with various hydrogen contents (CH) ranging from 1.62 to 1.72 in the atomic ratio (H/Hf) were prepared, and their thermomechanical properties were characterized. At room temperature, the sound velocity and Vickers hardness were measured. The elastic modulus was calculated from the measured sound velocity. In the temperature range from room temperature to 673 K, the thermal expansion was measured by using a dilatometer, and the linear thermal expansion coefficient was calculated. Empirical equations describing the thermomechanical properties of Hf hydride as a function of CH were proposed. (author)

  7. Comminution by hydriding-dehydriding process of the U-Zr-Nb alloys stabilized at different phases by aging heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cantagalli, Natalia Mattar; Pais, Rafael Witter Dias; Braga, Daniel Martins; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Belo Horizonte, MG (Brazil)

    2011-07-01

    Powders of the U-Zr-Nb alloys are raw materials for obtaining plate-type dispersion fuel of high density and medium enrichment for research and test reactors as well as small power reactors. U-2.5Zr-7.5Nb and U-3Zr-9Nb (wt%) alloys, initially homogenized at high temperatures, were transformed at different phases by means aging heat treatments, and then comminuted by hydriding-dehydriding process to powder production. The phases transformations were obtained by the homogenization of the U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys at high temperatures (1000 deg C for 1 and 16 h), followed by aging heat treatment at 600 deg C, in times of 0.5 h, 3.0 h and 24h, and subsequently quenched in water to stabilize the desired phase. The comminution process was performed at 200 deg C for different times ranging from 20 minutes to 4 hours. The powders were then characterized by scanning electron microscopy, X-ray diffraction and determination of particle size distribution by means of laser equipment CILAS. One of the main objectives of this study was to verify the influence of the different phases in the characteristics of the obtained powders. It was found that alloys stabilized in gamma phase produced powders with smaller particles sizes than those with cellular structure of the {alpha} and {gamma} phases. Regardless of retained phases, the produced powders consist of agglomerates with irregular morphology. (author)

  8. Crystalline Phase and Decomposition Dynamics of Aluminum Titanate at Different Temperature

    Institute of Scientific and Technical Information of China (English)

    林寿; 阮玉忠; 沈阳; 罗金荣

    2012-01-01

    The crystalline phase formed during aluminum titanate at 750-1300 ℃ as well as the relationship between its content change and decomposition dynamics was mainly discussed in this paper.Dynamical equation was established for calculating the reaction activation energy.It aimed at providing dynamics basic data for taking up necessary measures to inhibit the decomposition of aluminum titanate.Experimental results showed that aluminum titanate would decompose into TiO2 and corundum at 750-1300 ℃.Content of aluminum titanate would reduce with the increase of decomposition time,and the order of decomposition rates at different temperature was 1100 1200 1000 900 ℃.The decomposition was a chemical reaction with control steps,and could meet the first order reaction dynamic equation-F(G) = [(1-G)-2/3-1] = Kt.According to the calculation,rate constants of different decomposition reaction dynamic equations were K900 = 2.2×10-3,K1000 = 1.2×10-2,K1100 = 4×10-1 and K1200 = 1.5×10-1,and the reaction activation energy ΔGave = 203.21 KJ/mol.

  9. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy

    Science.gov (United States)

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-06-01

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.

  10. Preparation of Ag Schottky contacts on n-type GaN bulk crystals grown in nitrogen rich atmosphere by the hydride vapor phase epitaxy technique

    Energy Technology Data Exchange (ETDEWEB)

    Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de; Kolkovsky, Vl.; Weber, J. [Technische Universität Dresden, 01062 Dresden (Germany); Leibiger, Gunnar; Habel, Frank [Freiberger Compound Materials GmbH, 09599 Freiberg (Germany)

    2014-10-14

    Electrical properties of Schottky contacts on n-type GaN grown in nitrogen rich atmosphere with different N/Ga ratios by hydride vapor phase epitaxy were investigated. We show that tunneling of electrons from the conduction band of GaN to the metal is dominant in our samples. The quality of Schottky contacts does not only depend on surface preparation but also on the growth conditions of the crystals. Schottky contacts on these crystals show an increasing deterioration when higher N/Ga growth ratios are used. We correlate our results with the presence of negatively charged gallium vacancies in the samples. These charges compensate the positively charged donors and lead to a significant increase in series resistance.

  11. GaN Growth with Low-Temperature GaN Buffer Layers Directly on Si(111) by Hydride Vapour Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    俞慧强; 陈琳; 张荣; 修向前; 谢自力; 叶宇达; 顾书林; 沈波; 施毅; 郑有蚪

    2004-01-01

    GaN films are grown on Si(111) with low-temperature GaN (LT-GaN) layers as buffer layers by hydride vapour phase epitaxy (HVPE). The deposition temperature of the LT-GaN layers is changed from 400 to 900 ℃. When the LT-GaN layer is deposited at 600 ℃, GaN films show only c-oriented GaN (0002) and have the band edge emission at 365 nm with no yellow luminescence bands. The results indicate that the LT-GaN layer can effectively block the unexpected Si etching by reactive gas during the GaN growth. However, the surface roughness of these GaN films grown on Si(111) is larger than that of GaN films on c-plane sapphire.

  12. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  13. Investigation of phase explosion in aluminum induced by nanosecond double pulse technique

    Energy Technology Data Exchange (ETDEWEB)

    Jafarabadi, Marzieh Akbari; Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir

    2015-08-15

    Highlights: • Single and collinear double pulse configurations were used for laser ablation of aluminum target in air. • The 5, 10, 15 and 20 ns delay times between pre pulse and main pulse in double pulse arrangement was investigated. • In comparison between single and double pulse regimes, the phase explosion threshold fluence is decreased in double pulse configuration. • The plasma shielding effect reduces the crater depth in lower laser fluence in double pulse configuration rather that its in single pulse configuration. - Abstract: In this paper, the influence of double pulse technique on phase explosion threshold in laser ablation of an aluminum target is investigated. Single and double pulse laser ablation of aluminum target was performed by a high power Nd:YAG laser beam in ambient air. In the double pulse excitation, the two pulses were from a single laser source which separated by a delay time in the range of 5–20 ns. Measuring ablation depth and rate, the phase explosion threshold was estimated in double pulse configuration as well as in the single pulse regime. The results show that in comparison between single and double pulse regimes, the phase explosion threshold fluence is decreased in double pulse configuration. The lowest phase explosion threshold fluence of 0.9 J/cm{sup 2} was obtained at 5 ns delay time. The results also show that plasma shielding effect reduced crater depth at a laser fluence which depended on the laser ablation configuration (single pulse or double pulse). The reduction of crater depth occurs at lower laser fluences for double pulse regime.

  14. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dabbs, Daniel M.; Aksay, I.A.

    2005-12-01

    In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting ''seed'' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The results of this work were recently published in Langmuir: D.M. Dabbs, U. Ramachandran, S. Lu, J. Liu, L.-Q. Wang, I.A. Aksay, ''Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid'' Langmuir, 21, 11690-11695 (2005). The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Citric acid, due to its unfavorable pKa values, was not expected to be useful with silicon-containing solutions. Here, the use of polyols was determined to be effective in maintaining silicon-containing particles under high pH conditions but at smaller size with respect to standard suspensions of silicon-containing particles. There were a number of difficulties working with highly alkaline silicon-containing solutions, particularly in solutions at or near the saturation limit. Small deviations in pH resulted in particle formation or dissolution in the absence of the organic agents. One of the more significant observations was that the polyols appeared to stabilize small particles of silicon oxyhydroxides across a wider range of pH, albeit this was difficult to quantify due to the instability of the solutions.

  15. A comparative study of interatomic potentials for copper and aluminum gas phase sputter atom transport simulations

    CERN Document Server

    Kuwata, K T; Doyle, J R

    2003-01-01

    A comparative study of interatomic potential models for use in gas phase sputter atom transport simulations is presented. Quantum chemical interatomic potentials for argon-copper and argon-aluminum are calculated using Kohn-Sham density functional theory utilizing the PW91 functional. These potentials (PW91) are compared to the commonly used Born-Mayer potentials calculated by Abrahamson [Phys. Rev. 178 (1969) 76] using the Thomas-Fermi-Dirac model (TFD) and the screened Coulomb potentials derived from the 'universal' form calculated by Ziegler, Biersack and Littmark (ZBL). Monte Carlo simulations of gas phase sputter atom transport were performed to determine the average energy of atoms arriving at the substrate versus pressure for the three potential models. Overall, the ZBL potential gave results in much better agreement with the PW91 potential than the TFD potential. A characteristic thermalization pressure-distance product of approx 0.11 mTorr cm was found for both copper and aluminum using the PW91 pote...

  16. The effect warming time of mechanical properties and structural phase aluminum alloy nickel

    International Nuclear Information System (INIS)

    Ferrous aluminum alloys as fuel cladding will experience the process of heat treatment above the recrystallization temperature. Temperature and time of heat treatment will affect the nature of the metal. Heating time allows will affect change in mechanical properties, thermal and structure of the metal phase. This study aims to determine the effect of time of heat treatment on mechanical properties and phase metal alloys. Testing the mechanical properties of materials, especially violence done by the method of Vickers. Observation of microstructural changes made by metallographic-optical and phase structure were analyzed Based on the x-ray diffraction patterns Elemental analysis phase alloy compounds made by EDS-SEM. Test results show the nature of violence AlFeNiMg alloy by heating at 500°C with a warm-up time 1 hour, 2 hours and 3 hours respectively decreased range 94.4 HV, 87.6 HV and 85.1 HV. The nature of violence AlFeNi alloy showed a decrease in line with the longer heating time. Metallographic-optical observations show the microstructural changes with increasing heating time. Microstructure shows the longer the heating time trend equi axial shaped grain structure of growing and the results showed a trend analyst diffraction pattern formation and phase θ α phase (FeAl3) in the alloy. (author)

  17. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    Science.gov (United States)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  18. Effect of previous phase formation on densification and microstructure of aluminum titanate

    International Nuclear Information System (INIS)

    Aluminum titanate based ceramics are potential candidates for many industrial applications mainly due to their low coefficient of thermal expansion and high thermal shock resistance. However, these ceramics are susceptible to phase dissociation in temperature range between 1100 and 1300 deg C, with consequent deterioration of properties. In this paper, it was assessed the effect of previous formation of Al2TiO5, obtained by calcination and subsequent grinding of equimolar mixtures of Al2O3 and TiO2, containing MgO and SiO2, additives which promote Al2TiO5 stabilization. Compacted samples from calcinated and non-calcinated powders were evaluated considering densification, formed crystalline phases, as well as grains size and morphology, by means of dilatometer studies, sintering treatments, X-ray diffraction and scanning electron microscopy. The effect of previous formation of Al2TiO5 was associated with the properties and obtained features. (author)

  19. Threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact

    International Nuclear Information System (INIS)

    Molecular dynamics method is used to study the threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact. Two effective simulation methods, piston-driven method and multi-scale shock technique, are used to simulate the shock wave. The simulation results from the two methods agree well with the experimental data, indicating that the shock wave velocity is linearly dependent on the particle velocity. The atom is considered to be ionized if the increase of its internal energy is larger than the first ionization energy. The critical impact velocity for plasma phase transition is about 13.0 km/s, corresponding to the threshold of pressure and temperature which is about 220 GPa and 11.0 × 103 K on the shock Hugoniot, respectively

  20. Threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yuanyuan; Zhang, Qingming, E-mail: qmzhang@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2015-12-15

    Molecular dynamics method is used to study the threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact. Two effective simulation methods, piston-driven method and multi-scale shock technique, are used to simulate the shock wave. The simulation results from the two methods agree well with the experimental data, indicating that the shock wave velocity is linearly dependent on the particle velocity. The atom is considered to be ionized if the increase of its internal energy is larger than the first ionization energy. The critical impact velocity for plasma phase transition is about 13.0 km/s, corresponding to the threshold of pressure and temperature which is about 220 GPa and 11.0 × 10{sup 3 }K on the shock Hugoniot, respectively.

  1. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  2. Pole figure measurement of the initial growth of GaN nanoneedles on GaN/Si(111) by using hydride vapor phase epitaxy

    Science.gov (United States)

    Jeon, Injun; Lee, Ha Young; Noh, Ji-Yeon; Ahn, Hyung Soo; Yi, Sam Nyung; Jeon, Hunsoo; Shin, Min Jeong; Yu, Young Moon; Ha, Dong Han

    2016-09-01

    We report on crystallographic analyses of one-dimensional GaN nanoneedles grown on a n-GaN epilayer by using hydride vapor phase epitaxy. The nanoneedles were grown with a HCl:NH3 gas flow ratio of 1:38 at 600 °C. The growth time of the GaN nanoneedles affected their morphologies. As time progressed, GaN dots nucleated and then evolved as nanoneedles. The vertical growth rate of GaN nanoneedles was higher than the lateral growth rate under optimized growth conditions. X-ray pole figure measurements were carried out using a four-axis diffractometer. For the sample grown for 20 min, we obtained discrete patterns with six strong dots and weak dough-nut and cotton swab patterns, indicating that most of the nanoneedles were grown ideally, but partially, in the x- y plane with an azimuthal rotation angle ϕ = 15 ~ 45° rotated to the substrate, and a few GaN nanoneedles were tilted by ±4° or by more than 32° from the vertical c-axis.

  3. Compression and phase diagram of lithium hydrides at elevated pressures and temperatures by first-principles calculation

    Science.gov (United States)

    Chen, Yang M.; Chen, Xiang R.; Wu, Qiang; Geng, Hua Y.; Yan, Xiao Z.; Wang, Yi X.; Wang, Zi W.

    2016-09-01

    High pressure and high temperature properties of AB (A  =  6Li, 7Li; B  =  H, D, T) are comprehensively investigated with first-principles methods. It is found that H‑sublattice features in the low-pressure electronic structure near the Fermi level of LiH are shifted to that dominated by the Li+ sublattice under compression. The lattice dynamics are studied in quasi-harmonic approximation, from which the phonon contribution to the free energy and the isotopic effects are accurately modelled with the aid of a parameterized double-Debye model. The equation of state (EOS) obtained matches perfectly with available static experimental data. The calculated principal Hugoniot is also in accordance with that derived from shock wave experiments. Using the calculated principal Hugoniot and the previous theoretical melting curve, we predict a shock melting point at 56 GPa and 1923 K. In order to establish the phase diagram for LiH, the phase boundaries between the B1 and B2 solid phases are explored. The B1–B2-liquid triple point is determined at about 241 GPa and 2413 K. The remarkable shift in the phase boundaries with isotopic effect and temperature reveal the significant role played by lattice vibrations. Furthermore, the Hugoniot of the static-dynamic coupling compression is assessed. Our EOS suggests that a precompression of the sample to 50 GPa will allow the shock Hugoniot to pass through the triple point and enter the B2 solid phase. This transition leads to a discontinuity with 4.6% volume collapse—about four times greater than the same B1–B2 transition at zero temperature.

  4. Compression and phase diagram of lithium hydrides at elevated pressures and temperatures by first-principles calculations

    CERN Document Server

    Chen, Yang M; Wu, Qiang; Geng, Hua Y; Yan, Xiao Z; Wang, Yi X; Wang, Zi W

    2016-01-01

    High pressure and high temperature properties of AB (A = $^6$Li, $^7$Li; B = H, D, T) are investigated with first-principles method comprehensively. It is found that the H$^{-}$ sublattice features in the low-pressure electronic structure near the Fermi level of LiH are shifted to that dominated by the Li$^{+}$ sublattice in compression. The lattice dynamics is studied in quasi-harmonic approximation, from which the phonon contribution to the free energy and the isotopic effects are accurately modelled with the aid of a parameterized double-Debye model. The obtained equation of state (EOS) matches perfectly with available static experimental data. The calculated principal Hugoniot is also in accordance with that derived from shock wave experiments. Using the calculated principal Hugoniot and the previous theoretical melting curve, we predict a shock melting point at 56 GPa and 1923 K. In order to establish the phase diagram for LiH, the phase boundaries between the B1 and B2 solid phases are explored. The B1-...

  5. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  6. On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry.

    Science.gov (United States)

    Asiabi, Hamid; Yamini, Yadollah; Seidi, Shahram; Shamsayei, Maryam; Safari, Meysam; Rezaei, Fatemeh

    2016-05-30

    In this work, for the first time, a rapid, simple and sensitive microextraction procedure is demonstrated for the matrix separation, preconcentration and determination of inorganic selenium species in water samples using an electrochemically controlled in-tube solid phase microextraction (EC-in-tube SPME) followed by hydride generation atomic absorption spectrometry (HG-AAS). In this approach, in which EC-in-tube SPME and HG-AAS system were combined, the total analysis time, was decreased and the accuracy, repeatability and sensitivity were increased. In addition, to increases extraction efficiency, a novel nanostructured composite coating consisting of polypyrrole (PPy) doped with ethyleneglycol dimethacrylate (EGDMA) was prepared on the inner surface of a stainless-steel tube by a facile electrodeposition method. To evaluate the offered setup and the new PPy-EGDMA coating, it was used to extract inorganic selenium species in water samples. Extraction of inorganic selenium species was carried out by applying a positive potential through the inner surface of coated in-tube under flow conditions. Under the optimized conditions, selenium was detected in amounts as small as 4.0 parts per trillion. The method showed good linearity in the range of 0.012-200 ng mL(-1), with coefficients of determination better than 0.9996. The intra- and inter-assay precisions (RSD%, n = 5) were in the range of 2.0-2.5% and 2.7-3.2%, respectively. The validated method was successfully applied for the analysis of inorganic selenium species in some water samples and satisfactory results were obtained. PMID:27154830

  7. Synthesis, structure and gas-phase reactivity of the mixed silver hydride borohydride nanocluster [Ag3(μ3-H)(μ3-BH4)L(Ph)3]BF4 (L(Ph) = bis(diphenylphosphino)methane).

    Science.gov (United States)

    Zavras, Athanasios; Ariafard, Alireza; Khairallah, George N; White, Jonathan M; Mulder, Roger J; Canty, Allan J; O'Hair, Richard A J

    2015-11-21

    Borohydrides react with silver salts to give products that span multiple scales ranging from discrete mononuclear compounds through to silver nanoparticles and colloids. The cluster cations [Ag3(H)(BH4)L3](+) are observed upon electrospray ionization mass spectrometry of solutions containing sodium borohydride, silver(I) tetrafluoroborate and bis(dimethylphosphino)methane (L(Me)) or bis(diphenylphosphino)methane (L(Ph)). By adding NaBH4 to an acetonitrile solution of AgBF4 and L(Ph), cooled to ca. -10 °C, we have been able to isolate the first mixed silver hydride borohydride nanocluster, [Ag3(μ3-H)(μ3-BH4)L(Ph)3]BF4, and structurally characterise it via X-ray crystallography. Combined gas-phase experiments (L(Me) and L(Ph)) and DFT calculations (L(Me)) reveal how loss of a ligand from the cationic complexes [Ag3(H)(BH4)L3](+) provides a change in geometry that facilitates subsequent loss of BH3 to produce the dihydride clusters, [Ag3(H)2Ln](+) (n = 1 and 2). Together with the results of previous studies (Girod et al., Chem. - Eur. J., 2014, 20, 16626), this provides a direct link between mixed silver hydride/borohydride nanoclusters, silver hydride nanoclusters, and silver nanoclusters.

  8. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  9. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  10. The effect of ductile phase reinforcements on dynamic fracture toughness of discontinuously reinforced aluminum (D.R.A.) alloys

    International Nuclear Information System (INIS)

    Discontinuously Reinforced Aluminum Alloys were tested under impact loading using the modified fracture bar apparatus. The apparatus is a modified version of split Hopkinson pressure bar and uses stress wave theory to give an experimental reading of Force-time history during crack initiation and propagation. Specimens of composite 840-854 materials under investigation were made of 7093 Al/SiC/15p toughened with different ductile phase -3 reinforcements. The ductile phase reinforcements were made with different Aluminum Alloys and commercially) sites, Journal of pure aluminum. The purpose of ductile phase reinforcements was to introduce impediments in the crack path thus increasing the crack propagation energy. The crack propagation velocity was measured using crack propagation gages. Stress intensity factor as a function of time was calculated to find out the peak values of K/sub dyn/(t) at crack initiation. Investigations were also made to find out the Crack Arrest Fracture Toughness. It was found out that the commercial purity aluminum reinforcements could act as crack arrestors by blunting the crack tip. (author)

  11. Characterization of Phases in an As-cast Copper-Manganese-Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    J.Iqbal, F.Hasan; F.Ahmad

    2006-01-01

    Copper-manganese-aluminum (CMA) alloys, containing small additions of Fe, Ni, and Si, exhibit good strength and remarkable corrosion resistance against sea water. The alloys are used in as-cast condition, and their microstructure can show wide variations. The morphology, crystallography and composition of the phases presented in an as-cast (CMA) alloy of nominal composition Cu-14%Mn-8%Al-3%Fe-2%Ni were investigated using optical, electron optical, and microprobe analytical techniques. The as-cast microstructure consisted of the grains of fcc α and bcc β-phases alongwith intermetallic precipitates of various morphologies. The dendritic-shaped particles and the cuboid-shaped precipitates, which were rich in Fe and Mn and had an fcc DO3 structure. These four different morphologies of intermetallic precipitates exhibited discrete orientationrelationships with the α-matrix. The β-grains only contained very small cuboid shaped precipitates, which could only be resolved through transmission electron microscopy. These precipitates were found to be based on Fe3Al and had the DO3 structure.

  12. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    Science.gov (United States)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163 (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The Orion MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a single-piece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment were the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  13. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  14. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  15. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Mirna, E-mail: msigrist@fiq.unl.edu.ar [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Albertengo, Antonela; Beldomenico, Horacio [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Tudino, Mabel [Laboratorio de Analisis de Trazas, Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria (1428), Buenos Aires (Argentina)

    2011-04-15

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH{sub 3} generation using 3.5 mol L{sup -1} HCl as carrier solution and 0.35% (m/v) NaBH{sub 4} in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl{sup -}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, HPO{sub 4}{sup 2-}, HCO{sub 3}{sup -} on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C{sub 6}H{sub 8}O{sub 6} solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 {mu}g L{sup -1} and 0.6 {mu}g L{sup -1} for As(III) and inorganic total As, respectively, were obtained for a 500 {mu}L sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h{sup -1}. The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species

  16. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, M. [Science et Ingenierie des Materiaux et des Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Heres (France); ACERDE, 452 rue des sources, 38920 Crolles (France); Crystal Growth Centre, Anna University-Chennai, Chennai 600025 (India); Claudel, A. [ACERDE, 452 rue des sources, 38920 Crolles (France); Fellmann, V. [Science et Ingenierie des Materiaux et des Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Heres (France); Gelard, I. [ACERDE, 452 rue des sources, 38920 Crolles (France); Blanquet, E., E-mail: elisabeth.blanquet@simap.grenoble-inp.fr [Science et Ingenierie des Materiaux et des Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Heres (France); Boichot, R. [Science et Ingenierie des Materiaux et des Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Heres (France); Pierret, A. [Departement de Mesures Physiques, ONERA, Chemin de la Huniere, 91761 Palaiseau Cedex (France); CEA-CNRS Group ' NanoPhysique et SemiConducteurs' , INAC/SP2M/NPSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, Cedex 9 (France); and others

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Growth of AlN Nucleation layers and its effect on high temperature AlN films quality were investigated. Black-Right-Pointing-Pointer AlN nucleation layers stabilizes the epitaxial growth of AlN and improves the surface morphology of AlN films. Black-Right-Pointing-Pointer Increasing growth temperature of AlN NLs as well as AlN films improves the structural quality and limits the formation of cracks. - Abstract: AlN layers were grown on c-plane sapphire substrates with AlN nucleation layers (NLs) using high temperature hydride vapor phase epitaxy (HT-HVPE). Insertion of low temperature NLs, as those typically used in MOVPE process, prior to the high temperature AlN (HT-AlN) layers has been investigated. The NLs surface morphology was studied by atomic force microscopy (AFM) and NLs thickness was measured by X-ray reflectivity. Increasing nucleation layer deposition temperature from 650 to 850 Degree-Sign C has been found to promote the growth of c-oriented epitaxial HT-AlN layers instead of polycrystalline layers. The growth of polycrystalline layers has been related to the formation of dis-oriented crystallites. The density of such disoriented crystallites has been found to decrease while increasing NLs deposition temperature. The HT-AlN layers have been characterized by X-ray diffraction {theta} - 2{theta} scan and (0 0 0 2) rocking curve measurement, Raman and photoluminescence spectroscopies, AFM and field emission scanning electron microscopy. Increasing the growth temperature of HT-AlN layers from 1200 to 1400 Degree-Sign C using a NL grown at 850 Degree-Sign C improves the structural quality as well as the surface morphology. As a matter of fact, full-width at half-maximum (FWHM) of 0 0 0 2 reflections was improved from 1900 to 864 arcsec for 1200 Degree-Sign C and 1400 Degree-Sign C, respectively. Related RMS roughness also found to decrease from 10 to 5.6 nm.

  17. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Science.gov (United States)

    Rico, A.; Martin-Rengel, M. A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F. J.

    2014-09-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young's modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young's modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  18. Submillimeter Spectroscopy of Hydride Molecules

    Science.gov (United States)

    Phillips, T. G.

    1998-05-01

    Simple hydride molecules are of great importance in astrophysics and astrochemistry. Physically they dominate the cooling of dense, warm phases of the ISM, such as the cores and disks of YSOs. Chemically they are often stable end points of chemical reactions, or may represent important intermediate stages of the reaction chains, which can be used to test the validity of the process. Through the efforts of astronomers, physicists, chemists, and laboratory spectroscopists we have an approximate knowledge of the abundance of some of the important species, but a great deal of new effort will be required to achieve the comprehensive and accurate data set needed to determine the energy balance and firmly establish the chemical pathways. Due to the low moment of inertia, the hydrides rotate rapidly and so have their fundamental spectral lines in the submillimeter. Depending on the cloud geometry and temperature profile they may be observed in emission or absorption. Species such as HCl, HF, OH, CH, CH(+) , NH_2, NH_3, H_2O, H_2S, H_3O(+) and even H_3(+) have been detected, but this is just a fraction of the available set. Also, most deduced abundances are not nearly sufficiently well known to draw definitive conclusions about the chemical processes. For example, the most important coolant for many regions, H_2O, has a possible range of deduced abundance of a factor of 1000. The very low submillimeter opacity at the South Pole site will be a significant factor in providing a new capabilty for interstellar hydride spectroscopy. The new species and lines made available in this way will be discussed.

  19. ENVIRONMENTALLY COMPLIANT CORROSION-ACTIVATED INHIBITOR SYSTEM FOR ALUMINUM ALLOYS - PHASE I

    Science.gov (United States)

    The federal government is estimated to spend $1 billion on painting/repainting aircraft annually. Aircraft have surfaces composed of aluminum alloys that are highly susceptible to corrosion and must be protected with corrosion-preventative treatments that typically conta...

  20. Results of NDE Technique Evaluation of Clad Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Dennis C. Kunerth

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  1. Gaseous Phase and Electrochemical Hydrogen Storage Properties of Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu for Nickel Metal Hydride Battery Applications

    Directory of Open Access Journals (Sweden)

    Jean Nei

    2016-07-01

    Full Text Available Structural, gaseous phase hydrogen storage, and electrochemical properties of a series of the Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu metal hydride alloys were studied. X-ray diffraction (XRD and scanning electron microscopy (SEM revealed the multi-phase nature of all alloys, which were composed of a stoichiometric TiNi matrix, a hyperstoichiometric TiNi minor phase, and a Ti2Ni secondary phase. Improvement in synergetic effects between the main TiNi and secondary Ti2Ni phases, determined by the amount of distorted lattice region in TiNi near Ti2Ni, was accomplished by the substitution of an element with a higher work function, which consequently causes a dramatic increase in gaseous phase hydrogen storage capacity compared to the Ti50Zr1Ni49 base alloy. Capacity performance is further enhanced in the electrochemical environment, especially in the cases of the Ti50Zr1Ni49 base alloy and Ti50Zr1Ni44Co5 alloy. Although the TiNi-based alloys in the current study show poorer high-rate performances compared to the commonly used AB5, AB2, and A2B7 alloys, they have adequate capacity performances and also excel in terms of cost and cycle stability. Among the alloys investigated, the Ti50Zr1Ni44Fe5 alloy demonstrated the best balance among capacity (394 mAh·g−1, high-rate performance, activation, and cycle stability and is recommended for follow-up full-cell testing and as the base composition for future formula optimization. A review of previous research works regarding the TiNi metal hydride alloys is also included.

  2. Preliminary results on the determination of ultratrace amounts of cadmium in tea samples using a flow injection on-line solid phase extraction separation and preconcentration technique to couple with a sequential injection hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Duan, Taicheng; Song, Xuejie; Jin, Dan; Li, Hongfei; Xu, Jingwei; Chen, Hangting

    2005-10-31

    In this work, a method was developed for determination of ultra-trace levels of Cd in tea samples by atomic fluorescence spectrometry (AFS). A flow injection solid phase extraction (FI-SPE) separation and preconcentration technique, to on-line couple with a sequential injection hydride generation (SI-HG) technique is employed in this study. Cd was preconcentrated on the SPE column, which was made from a neutral extractant named Cyanex 923, while other matrix ions or interfering ions were completely or mostly separated off. Conditions for the SPE separation and preconcentration, as well as conditions for the HG technique, were studied. Due to the separation of interfering elements, Cd hydride generation efficiency could be greatly enhanced with the sole presence of Co(2+) with a concentration of 200mugL(-1), which is much lower than those in other works previously reported. Interferences on both the Cd separation and preconcentration, and Cd hydride generation (HG) were investigated; it showed that both the separation and preconcentration system, and the HG system had a strong anti-interference ability. The SPE column could be repeatedly used at least 400 times, a R.S.D. of 0.97% was obtained for 6 measurements of Cd with 0.2mugL(-1) and a correlation coefficiency of 1.0000 was obtained for the measurement of a series of solutions with Cd concentrations from 0.1 to 2mugL(-1). The method has a low detection limit of 10.8ngL(-1) for a 25mL solution and was successfully validated by using two tea standard reference materials (GBW08513 and GBW07605).

  3. Properties of GaN film grown by hydride vapor phase epitaxy%氢化物气相外延生长GaN膜性质研究

    Institute of Scientific and Technical Information of China (English)

    刘战辉; 张李骊; 李庆芳; 修向前; 张荣; 谢自力

    2013-01-01

    利用氢化物气相外延技术在c 面蓝宝石上生长得到纤锌矿结构 GaN 膜.采用高分辨 X 射线衍射、拉曼光谱和光致发光谱对GaN 外延膜进行了结构表征和光学性质研究,重点探讨了光致发光谱的温度变化特性.样品(002)面和(102)面摇摆曲线半高宽分别为322和375 arcsec,表明生长的 GaN 膜具有较好的晶体质量.高分辨 X射线衍射、拉曼光谱和光致发光谱测试表明,外延膜中存在0.26 GPa 的面内压应力.变温光致发光谱研究发现 GaN 外延膜中 A 自由激子发射峰和施主束缚激子发射峰随温度变化服从能带收缩理论.但由于 A 自由激子单声子伴峰可能是一种与自由激子动能变化相关的自由激子-声子相互作用的复合机制,导致其峰位呈现先蓝移后红移变化,以及其积分强度出现先增加后降低的现象.%The high crystal quality GaN film has been successfully grown by hydride vapor phase epitaxy (HVPE)and the properties of GaN epilayers have been investigated by high-resolution X-ray diffraction (HRXRD),Raman and photoluminescence (PL)measurements.The temperature dependence of photolumines-cence has been studied particularly.X-ray rocking curves (XRC)showed that the full widths at half maximum (FWHM)of (002 )and (102 )were 322 and 375 arcsec,respectively.Temperature-dependent PL spectra showed that the neutral donor bound excitons (D0 X)emission and free A-excitons recombination peaks reflected the shrinkage of the band gap,but the peak energy and the integrated intensity of 1-longitudinal optical (LO) phonon replica of the free A-excitons exhibited non-monotonic variations with increasing temperature,which might be related to the exciton-polariton dispersion effects of the free excitons caused by gain extra kinetic ener-gy with increasing temperature.HRXRD measurements,Raman and PL spectra all revealed that biaxial in-plane compressive strain (about 0.26 GPa)existed in the GaN layer and the

  4. Fabrication and Structure Characterization of Alumina-Aluminum Interpenetrating Phase Composites

    Science.gov (United States)

    Dolata, Anna J.

    2016-08-01

    Alumina-Aluminum composites with interpenetrating networks structure belong to advanced materials with potentially better properties when compared with composites reinforced by particles or fibers. The paper presents the experimental results of fabrication and structure characterization of Al matrix composites locally reinforced via Al2O3 ceramic foam. The composites were obtained using centrifugal infiltration of porous ceramics by liquid aluminum alloy. Both scanning electron microscopy (SEM + EDS) and x-ray tomography were used to determine the structure of foams and composites especially in reinforced areas. The quality of castings, degree of pore filling in ceramic foams by Al alloy, and microstructure in area of interface were assessed.

  5. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  6. Electrochemical process and production of novel complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  7. Analysis of Intermetallic Phases Formed on Surface Vapor Oxidized H13 Hot Work Steels in Molten Aluminum

    Institute of Scientific and Technical Information of China (English)

    WANGRong; WUXiao-chun; MINYong-an

    2004-01-01

    In this paper, the author dipped surface vapor oxidized H13 steel specimens into 700℃ molten aluminum liquid for a certain period of time. Analyze the intermetallic phases formed on the H 13 samples surface with optical microscope and X-ray diffraction method. The observation of immersion test sample's cross-section shows that Fe304 film will protect die substrate from molten aluminum erosion. The identification of the intermetallic phases reveals that they consist of 2 parts, which is named as the composite layer and the compact layer. Further investigations are made in order to know the phase constituents of the 2 layers, they are Al8Fe2Si (outer composite layer), (AlCuMg) and Al5Fe2 (compact layer), respectively. The experimental results show that on the same specimen, a convex surface with bigger radius of curvature is more likely to be molten and the melting loss speed is also faster than a flat and smooth surface. The thickness of compact layer on a smooth surface is much bigger than that of the convex surface. Therefore, the author supposes the compact layer is favorable in stabilizing the die surface material from further melting loss, as their formation on the die surface, the melting loss speed will decrease.

  8. Analysis of Intermetallic Phases Formed on Surface Vapor Oxidized H13 Hot Work Steels in Molten Aluminum

    Institute of Scientific and Technical Information of China (English)

    WANG Rong; WU Xiao-chun; MIN Yong-an

    2004-01-01

    In this paper, the author dipped surface vapor oxidized H13 steel specimens into 700℃ molten aluminum liquid for a certain period of time. Analyze the intermetallic phases formed on the H13 samples surface with optical microscope and X-ray diffraction method. The observation of immersion test sample's cross-section shows that Fe3O4 film will protect die substrate from molten aluminum erosion. The identification of the intermetallic phases reveals that they consist of 2parts, which is named as the composite layer and the compact layer. Further investigations are made in order to know the phase constituents of the 2 layers, they are Al8Fe2Si (outer composite layer), (AlCuMg) and Al5Fe2 (compact layer),respectively. The experimental results show that on the same specimen, a convex surface with bigger radius of curvature is more likely to be molten and the melting loss speed is also faster than a flat and smooth surface. The thickness of compact layer on a smooth surface is much bigger than that of the convex surface. Therefore, the author supposes the compact layer is favorable in stabilizing the die surface material from further melting loss, as their formation on the die surface, the melting loss speed will decrease.

  9. Analysis of time phase of characteristic rad iation in plasma induced by laser ablating aluminum

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With time- and space-resolved technique, we have recorde d time-resolved spectra of irradiation of the plasma induced by Nd: YAG laser a blating metal Aluminum in Ar, in which, laser pulse-energy was set up to 145 mJ /pulse and the buffer pressure 100 kpa. The continuum radiation and special emis sion of Aluminum plasma were studied based on the records. According to time dis tribution of Al Ⅰ396.15 nm emission, we analyzed the time differences between c haracteristic and continuum radiation evolving. We tried to explain the time pha ses of characteristic radiation evolving with traditional theoretical model of a tomic transition. As the result, we found that it was difficult to explain our e xperimental results with the model. In order to explain our experimental results , we need new model or to improve the traditional theoretical model of atomic tr ansition.

  10. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    OpenAIRE

    Behzad Binesh; Mehrdad Aghaie-Khafri

    2016-01-01

    Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA) process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). During the isothermal heating, intermetallic p...

  11. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  12. RESEARCH OF INFLUENCE OF THE IRON CONTENT ON FORMATION OF IRON-BEARING PHASES IN FOUNDRY ALUMINUM ALLOYS

    Directory of Open Access Journals (Sweden)

    V. I. Gorbachiova

    2013-01-01

    Full Text Available  The microstructure and microhardness of aluminum and silumin аК12 with iron content of 0 to 12 mas.% produced by sand casting and mol casting have been investigated. For the Al–Si–Fe and Al–Si–Fe–Mn systems the portions of the liquidus surfaces, which correspond to commercial silumin compositions, have been calculated using the updated thermodynamic model of the Al– Si–Fe system and COST–507 database. The area of primary crystallization of the iron-containing a and b phases is assessed for the commercial silumin. It has been proved that manganese promotes the formation of the iron-containing a-phase in the commercial silumin.

  13. Energy Efficient Aluminum Production - Pilot-Scale Cell Tests - Final Report for Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Christini

    1999-12-30

    A cermet anode that produces oxygen and a cathode material that is wetted by aluminum can provide a dimensionally stable inter-electrode distance in the Hall-Heroult cell. This can be used to greatly improve the energy and/or productivity efficiencies. The concept, which was developed and tested, uses a system of vertically interleaved anodes and cathodes. The major advantage of this concept is the significant increase in electrochemical surface area compared to a horizontal orientation of anode and cathode that is presently used in the Hall-Heroult process. This creates an additional advantage for energy reduction of 1.3 kWh/lb or a 20% productivity improvement. The voltages obtained in an optimized cell test met the energy objectives of the project for at least two weeks. An acceptable current efficiency was never proven, however, during either pilot scale or bench scale tests with the vertical plate configuration. This must be done before a vertical cell can be considered viab le. Anode corrosion rate must be reduced by at least a factor of three in order to produce commercial purity aluminum. It is recommended that extensive theoretical and bench scale investigations be done to improve anode materials and to demonstrate acceptable current efficiencies in a vertical plate cell before pilot scale work is continued.

  14. Calcium-aluminum-silicate-hydrate "cement" phases and rare Ca-zeolite association at Colle Fabbri, Central Italy

    Science.gov (United States)

    Stoppa, F.; Scordari, F.; Mesto, E.; Sharygin, V.; Bortolozzi, G.

    2010-06-01

    Very high temperature, Ca-rich alkaline magma intruded an argillite formation at Colle Fabbri, Central Italy, producing cordierite-tridymite metamorphism in the country rocks. An intense Ba-rich sulphate-carbonate-alkaline hydrothermal plume produced a zone of mineralization several meters thick around the igneous body. Reaction of hydrothermal fluids with country rocks formed calcium-silicate-hydrate (CSH), i.e., tobermorite-afwillite-jennite; calcium-aluminum-silicate-hydrate (CASH) — "cement" phases - i.e., thaumasite, strätlingite and an ettringite-like phase and several different species of zeolites: chabazite-Ca, willhendersonite, gismon-dine, three phases bearing Ca with the same or perhaps lower symmetry of phillipsite-Ca, levyne-Ca and the Ca-rich analogue of merlinoite. In addition, apophyllite-(KF) and/or apophyllite-(KOH), Ca-Ba-carbonates, portlandite and sulphates were present. A new polymorph from the pyrrhotite group, containing three layers of sphalerite-type structure in the unit cell, is reported for the first time. Such a complex association is unique. Most of these minerals are specifically related to hydration processes of: (1) pyrometamorphic metacarbonate/metapelitic rocks (natural analogues of cement clinkers); (2) mineralization between intrusive stocks and slates; and (3) high-calcium, alkaline igneous rocks such as melilitites and foidites as well as carbonatites. The Colle Fabbri outcrop offers an opportunity to study in situ complex crystalline overgrowth and specific crystal chemistry in mineral phases formed in igneous to hydrothermal conditions.

  15. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  16. Multidimensional simulations of hydrides during fuel rod lifecycle

    Science.gov (United States)

    Stafford, D. S.

    2015-11-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim.

  17. Phase composition and structure of aluminum Al-Cu-Si-Sn-Pb alloys

    Science.gov (United States)

    Belov, N. A.; Stolyarova, O. O.; Murav'eva, T. I.; Zagorskii, D. L.

    2016-06-01

    The structure and phase composition of cast and heat treated Al-Cu-Si-Sn-Pb alloys containing 6 wt % Sn, 2 wt % Pb, 0-4 wt % Cu, 0-10 wt % Si have been studied using calculations and experimental methods. Polythermal and isothermal sections are reported, which indicate the existence of two liquid phases. It was found that the low-melting phase is inhomogeneous and consists of individual leadand tin-based particles.

  18. Metal hydride air conditioner

    Institute of Scientific and Technical Information of China (English)

    YANG; Ke; DU; Ping; LU; Man-qi

    2005-01-01

    The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi4.4 Mn0.26 Al0.34 / La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1, LaNi4.61Mn0. 26 Al0.13/La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1 and LaNi4.61 Mn0.26 Al0.13/La0.6 Y0.4 Ni4.8 Mn0. 2, were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small conditioning system was established by using LaNi4.61 Mn0.26 Al0. 13/La0.6 Y0.4 Ni4.8 Mn0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and Wnet =0.09 kW/kg.

  19. Modeling of gamma/gamma-prime phase equilibrium in the nickel-aluminum system

    Science.gov (United States)

    Sanchez, J. M.; Barefoot, J. R.; Jarrett, R. N.; Tien, J. K.

    1984-01-01

    A theoretical model is proposed for the determination of phase equilibrium in alloys, taking into consideration dissimilar lattice parameters. Volume-dependent pair interactions are introduced by means of phenomenological Lennard-Jones potentials and the configurational entropy of the system is treated in the tetrahedron approximation of the cluster variation method. The model is applied to the superalloy-relevant, nickel-rich, gamma/gamma-prime phase region of the Ni-Al phase diagram. The model predicts reasonable values for the lattice parameters and the enthalpy of formation as a function of composition, and the calculated phase diagram closely approximates the experimental diagram.

  20. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: Ab initio simulations supporting center nucleation

    Energy Technology Data Exchange (ETDEWEB)

    André, Yamina, E-mail: yamina.andre@univ-bpclermont.fr; Lekhal, Kaddour; Hoggan, Philip; Avit, Geoffrey; Réda Ramdani, M.; Monier, Guillaume; Colas, David; Ajib, Rabih; Castelluci, Dominique; Gil, Evelyne [Clermont Université, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR6602, Institut Pascal, F-63171 Aubière (France); Cadiz, Fabian; Rowe, Alistair; Paget, Daniel [Physique de la matière condensée, Ecole Polytechnique CNRS, Palaiseau (France); Petit, Elodie [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubière (France); Leroux, Christine [Université de Toulon, IM2NP, Bât. R, B.P. 20132, 83957 La Garde Cedex (France); CNRS, UMR 7334, 83957 La Garde Cedex (France); Trassoudaine, Agnès [Clermont Université, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR6602, Institut Pascal, F-63171 Aubière (France); Clermont Université, Université d’Auvergne, BP 10448, F-63000 Clermont-Ferrand (France)

    2014-05-21

    High aspect ratio, rod-like and single crystal phase GaAs nanowires (NWs) were grown by gold catalyst-assisted hydride vapor phase epitaxy (HVPE). High resolution transmission electron microscopy and micro-Raman spectroscopy revealed polytypism-free zinc blende (ZB) NWs over lengths of several tens of micrometers for a mean diameter of 50 nm. Micro-photoluminescence studies of individual NWs showed linewidths smaller than those reported elsewhere which is consistent with the crystalline quality of the NWs. HVPE makes use of chloride growth precursors GaCl of which high decomposition frequency after adsorption onto the liquid droplet catalysts, favors a direct and rapid introduction of the Ga atoms from the vapor phase into the droplets. High influxes of Ga and As species then yield high axial growth rate of more than 100 μm/h. The diffusion of the Ga atoms in the liquid droplet towards the interface between the liquid and the solid nanowire was investigated by using density functional theory calculations. The diffusion coefficient of Ga atoms was estimated to be 3 × 10{sup −9} m{sup 2}/s. The fast diffusion of Ga in the droplet favors nucleation at the liquid-solid line interface at the center of the NW. This is further evidence, provided by an alternative epitaxial method with respect to metal-organic vapor phase epitaxy and molecular beam epitaxy, of the current assumption which states that this type of nucleation should always lead to the formation of the ZB cubic phase.

  1. Aluminum-centered tetrahedron-octahedron transition in advancing Al-Sb-Te phase change properties.

    Science.gov (United States)

    Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang

    2015-02-24

    Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology.

  2. A twist on facial selectivity of hydride reductions of cyclic ketones: twist-boat conformers in cyclohexanone, piperidone, and tropinone reactions.

    Science.gov (United States)

    Neufeldt, Sharon R; Jiménez-Osés, Gonzalo; Comins, Daniel L; Houk, K N

    2014-12-01

    The role of twist-boat conformers of cyclohexanones in hydride reductions was explored. The hydride reductions of a cis-2,6-disubstituted N-acylpiperidone, an N-acyltropinone, and tert-butylcyclohexanone by lithium aluminum hydride and by a bulky borohydride reagent were investigated computationally and compared to experiment. Our results indicate that in certain cases, factors such as substrate conformation, nucleophile bulkiness, and remote steric features can affect stereoselectivity in ways that are difficult to predict by the general Felkin-Anh model. In particular, we have calculated that a twist-boat conformation is relevant to the reactivity and facial selectivity of hydride reduction of cis-2,6-disubstituted N-acylpiperidones with a small hydride reagent (LiAlH4) but not with a bulky hydride (lithium triisopropylborohydride).

  3. Geoneutrino and Hydridic Earth model

    CERN Document Server

    Bezrukov, Leonid

    2013-01-01

    Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic Earth model. Terrestrial heat producton from U, Th and K40 decays was calculated also. We must admit the existance of Earth expansion process to understand the obtained large value of terrestrial heat producton. The geoneutrino detector with volume more than 5 kT (LENA type) must be constructed to definitely separate between Bulk Silicat Earth model and Hydridic Earth model.

  4. Development of a Two-Phase Model for the Hot Deformation of Highly-Alloyed Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Beaudoin; J. A. Dantzig; I. M. Robertson; B. E. Gore; S. F. Harnish; H. A. Padilla

    2005-10-31

    Conventional processing methods for highly alloyed aluminum consist of ingot casting, followed by hot rolling and thermal treatments. Defects result in lost productivity and wasted energy through the need to remelt and reprocess the material. This research centers on developing a fundamental understanding for deformation of wrought 705X series alloys, a key alloy system used in structural airframe applications. The development of damage at grain boundaries is characterized through a novel test that provides initiation of failure while preserving a controlled deformation response. Data from these mechanical tests are linked to computer simulations of the hot rolling process through a critical measure of damage. Transmission electron microscopy provides fundamental insight into deformation at these high working temperatures, and--in a novel link between microscale and macroscale response--the evolution of microstructure (crystallographic orientation) provides feedback for tuning of friction in the hot rolling process. The key product of this research is a modeling framework for the analysis of industrial hot rolling.

  5. Shock-induced structural phase transition, plasticity, and brittle cracks in aluminum nitride ceramic.

    Science.gov (United States)

    Branicio, Paulo S; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2006-02-17

    Atomistic mechanisms of fracture accompanying structural phase transformation (SPT) in AlN ceramic under hypervelocity impact are investigated using a 209 x 10(6) atom molecular-dynamics simulation. The shock wave generated by the impact splits into an elastic wave and a slower SPT wave that transforms the wurtzite structure into the rocksalt phase. The interaction between the reflected elastic wave and the SPT wave front generates nanovoids and dislocations into the wurtzite phase. Nanovoids coalesce into mode I cracks while dislocations give rise to kink bands and mode II cracking. PMID:16606007

  6. Thermal and mechanical properties of zirconium hydrides with various hafnium contents

    International Nuclear Information System (INIS)

    Zirconium (Zr) hydride is currently expected as a neutron shield material for fast reactors. In order to evaluate safety and economic efficiency of the nuclear reactor, the thermal and mechanical properties of the hydride should be understood. In addition, since chemical properties of Zr and hafnium (Hf) are quite similar, Zr contains a few percent Hf generally. Therefore, it is very important to evaluate the effect of Hf content on the properties of Zr hydride. In the present study, fine bulk samples of δ-phase Zr hydrides with various Hf contents were prepared and their thermal and mechanical properties were investigated. We examined the phase states and the microstructure of the hydrides by means of X-ray diffraction and SEM/EDX analyses. In the temperature range from room temperature to 673 K, the heat capacity and the thermal diffusivity of the hydrides were measured and the thermal conductivity was evaluated. The Vickers hardness and the sound velocity of the hydrides were measured at room temperature, and the elastic modulus was calculated from the measured sound velocity. The effects of temperature and Hf content on the properties of Zr hydrides were studied. (author)

  7. Spin Forming of an Aluminum 2219-T6 Aft Bulkhead for the Orion Multi-Purpose Crew Vehicle: Phase II Supplemental Report

    Science.gov (United States)

    Piascik, Robert S.; Squire, Michael D.; Domack, Marcia S.; Hoffman, Eric K.

    2015-01-01

    The principal focus of this project was to assist the Orion Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the aft bulkhead of the pressure vessel. The spin forming process will enable a single piece aluminum (Al) 2219 aft bulkhead which will eliminate the current multiple piece welded construction, simplify fabrication, and lead to an enhanced design that will reduce vehicle weight by eliminating welds. Phase I of this assessment explored spin forming the single-piece forward pressure vessel bulkhead from aluminum-lithium 2195.

  8. Physics of hydride fueled PWR

    Science.gov (United States)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  9. Novel phases of lithium-aluminum binaries from first-principles structural search

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento-Pérez, Rafael; Cerqueira, Tiago F. T.; Botti, Silvana; Marques, Miguel A. L., E-mail: marques@tddft.org [Institut Lumière Matière (UMR5306) and ETSF, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Valencia-Jaime, Irais [Institut Lumière Matière (UMR5306) and ETSF, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Centro de Investigación y Estudios Avanzados del IPN, MX-76230 Querétaro (Mexico); Amsler, Maximilian; Goedecker, Stefan [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Romero, Aldo H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-01-14

    Intermetallic Li–Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li–Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li{sub 3}Al{sub 2}, Li{sub 9}Al{sub 4}, LiAl{sub 3}, and Li{sub 2}Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li–Al stable compounds as a function of their stoichiometry.

  10. Determination of As(III) and As(V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry.

    Science.gov (United States)

    Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Mendil, Durali; Soylak, Mustafa

    2010-05-01

    The speciation of arsenic(III) and arsenic(V) by using Streptococcus pyogenes immobilized on Sepabeads SP 70 resin has been investigated with solid-phase extraction method. The arsenic levels were determined hydride generation atomic absorption spectrometry (HGAAS) in sample solutions. The procedure presented based on quantitative recoveries of As(III) as >95%. Also the As(V) recoveries were obtained as method. After reduction of As(V) by using KI and ascorbic acid and waiting 1h later, the system was applied to determination of total arsenic. As(V) was found as the difference between the total As and As(III) content. Various experimental parameters such as pH, amount of microorganism, sample volume, etc. were investigated. The capacity of biosorbent for arsenic(III) was calculated as 7.3 mg/g. The preconcentration factor was found as 36. The relative standard deviation was calculated below 8%. Limit of detection was calculated as 13 ng/L. The validation of the presented procedure was tested by analysis of standard reference materials (NIST SRM 1568a Rice floor and GBW 07605 Tea) and obtained fairly compatible results. The procedure was also successfully applied to arsenic speciation and determination of some natural water and food samples.

  11. MC-3125 Phase I development. [Aluminum Linear Shaped Charge; HNSII explosive; Uralite 3121S

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, G.T.

    1977-10-01

    The scope of work outlined as Phase I product development is reported. Specific interest areas are (1) choice of adhesives, (2) compatibility of materials, (3) prototype tooling designs, (4) processes and procedures, and (5) testing. Technical data generated in laboratory studies have been reduced to tabular form and/or charts.

  12. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  13. FORMATION REGULARITIES OF PHASE COMPOSITION, STRUCTURE AND PROPERTIES DURING MECHANICAL ALLOYING OF BINARY ALUMINUM COMPOSITES

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2015-01-01

    Full Text Available The paper presents investigation results pertaining to  ascertainment of formation regularities of phase composition and structure during mechanical alloying of binary aluminium composites/substances. The invetigations have been executed while applying a wide range of methods, devices and equipment used in modern material science. The obtained data complement each other. It has been established that presence of oxide and hydro-oxide films on aluminium powder  and introduction of surface-active substance in the composite have significant effect on mechanically and thermally activated phase transformations and properties of semi-finished products.  Higher fatty acids have been used as a surface active substance.The mechanism of mechanically activated solid solution formation has been identified. Its essence is  a formation of  specific quasi-solutions at the initial stage of processing. Mechanical and chemical interaction between components during formation of other phases has taken place along with dissolution  in aluminium while processing powder composites. Granule basis is formed according to the dynamic recrystallization mechanism and possess submicrocrystal structural type with the granule dimension basis less than 100 nm and the grains are divided in block size of not more than 20 nm with oxide inclusions of 10–20 nm size.All the compounds  with the addition of  surface-active substances including aluminium powder without alloying elements obtained by processing in mechanic reactor are disperse hardened. In some cases disperse hardening is accompanied by dispersive and solid solution hardnening process. Complex hardening predetermines a high temperature of recrystallization in mechanically alloyed compounds,  its value exceeds 400 °C.

  14. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  15. Kinetics of Liquid-Phase Hydrogenation of Benzene in a Metal Hydride Slurry System Formed by M1Ni5 and Benzene

    Institute of Scientific and Technical Information of China (English)

    代世耀; 徐国华; 安越; 陈长聘; 陈立新; 王启东

    2003-01-01

    The kinetics of liquid-phase hydrogenation of benzene in misch metal nickel-five (M1Ni5) and benzene slurry system was studied by investigating the influences of the reaction temperature, pressure, alloy concentration and stirring speed on the mass transfer-reaction processes inside the slurry. The results show that the whole process is controlled by the reaction at the surface of the catalyst. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particles are negligible. The apparent reaction rate is zero order for benzene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model obtained fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of M1Ni5-C6H6 slurry system is 42.16 kJ·mo1-1.

  16. The microstructure and hydriding characteristics of high temperature aged U-13 at.%Nb alloy

    Science.gov (United States)

    Ji, Hefei; Shi, Peng; Li, Ruiwen; Jiang, Chunli; Yang, Jiangrong; Hu, Guichao

    2015-09-01

    Niobium as alloying element significantly improves physical and chemical properties of metallic uranium, exhibiting great application potential in uranium alloy materials. The corrosion resistance performance as well as the internal alloy phase structure of uranium-niobium alloy is closely related to aging processes. Microstructure and hydriding characteristics of the 400 °C/9 h + 500 °C/2 h aged uranium-13 at.% niobium alloys (U-13 at.%Nb) were investigated from the point of view of relationship between the microstructure and growth of the hydriding areas. The microstructure, morphology and composition of the alloy phases before and after the hydriding were well characterized by the laser scanning confocal microscopy (LSCM), scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Experimental results indicated that the hydrogen preferentially reacted with the Nb-depleted phase α-like-U to form monolithic β-UH3Nbx, and the alloy microstructure played an important role in hydride growth.

  17. Aluminum nitride electro-optic phase shifter for backend integration on silicon.

    Science.gov (United States)

    Zhu, Shiyang; Lo, Guo-Qiang

    2016-06-13

    An AlN electro-optic phase shifter with a parallel plate capacitor structure is fabricated on Si using the back-end complementary metal-oxide-semiconductor technology, which is feasible for multilayer photonics integration. The modulation efficiency (Vπ⋅Lπ product) measured from the fabricated waveguide-ring resonators and Mach-Zehnder Interferometer (MZI) modulators near the 1550-nm wavelength is ∼240 V⋅cm for the transverse electric (TE) mode and ∼320 V⋅cm for the transverse magnetic (TM) mode, from which the Pockels coefficient of the deposited AlN is deduced to be ∼1.0 pm/V for both TE and TM modes. The methods for further modulation efficiency improvement are addressed.

  18. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    correlating the finite element stress-state results with the spatial distribution of hydride microstructures observed within the optical micrographs for each sample. Experiments showed that the hydride reorientation was enhanced as the stress biaxiality increased. The threshold stress decreased from 150 MPa to 80 MPa when stress biaxiality ratio increased from uniaxial tension to near-equibiaxial tension. This behavior was also predicted by classical nucleation theory based on the Gibbs free energy of transformation being assisted by the far-field stress. An analysis of in situ X-ray diffraction data obtained during a thermo-mechanical cycle typical of vacuum drying showed a complex lattice-spacing behavior of the hydride phase during the dissolution and precipitation. The in-plane hydrides showed bilinear lattice expansion during heating with the intrinsic thermal expansion rate of the hydrides being observed only at elevated temperatures as they dissolve. For radial hydrides that precipitate during cooling under stress, the spacing of the close-packed {111} planes oriented normal to the maximum applied stress was permanently higher than the corresponding {111} plane spacing in the other directions. This behavior is believed to be a result of a complex stress state within the precipitating plate-like hydrides that induces a strain component within the hydrides normal to its "plate" face (i.e., the applied stress direction) that exceeds the lattice spacing strains in the other directions. During heat-up, the lattice spacing of these same "plate" planes actually contract due to the reversion of the stress state within the plate-like hydrides as they dissolve. The presence of radial hydrides and their connectivity with in-plane hydrides was shown to increase the ductile-to-brittle transition temperature during tensile testing. This behavior can be understood in terms of the role of radial hydrides in promoting the initiation of a long crack that subsequently propagates under

  19. Bond and electron beam welding quality control of the aluminum stabilized and reinforced CMS conductor by means of ultrasonic phased-array technology

    CERN Document Server

    Neuenschwander, J; Horváth, I L; Luthi, T; Marti, H

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. The coils for CNIS are wound of aluminum-stabilized Rutherford type superconductors reinforced with high-strength aluminum alloy. For optimum performance of the conductor a void-free metallic bonding between the high-purity aluminum and the Rutherford type cable as well as between the electron beam welded reinforcement and the high-purity aluminum must be guaranteed. It is the main task of this development work to assess continuously the bond quality over the whole width and the total length of the conductors during manufacture. To achieve this goal we use the ultrasonic phased-array technology. The application of multi- element transducers allows an electronic scanning perpendicular to the direction of production. Such a testing is sufficiently fast in order to allow a continuous a...

  20. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  1. Optimization of o-phtaldialdehyde/2-mercaptoethanol postcolumn reaction for the hydrophilic interaction liquid chromatography determination of memantine utilizing a silica hydride stationary phase.

    Science.gov (United States)

    Douša, Michal; Pivoňková, Veronika; Sýkora, David

    2016-08-01

    A rapid procedure for the determination of memantine based on hydrophilic interaction chromatography with fluorescence detection was developed. Fluorescence detection after postcolumn derivatization with o-phtaldialdehyde/2-mercaptoethanol was performed at excitation and emission wavelengths of 345 and 450 nm, respectively. The postcolumn reaction conditions such as reaction temperature, derivatization reagent flow rate, and reagents concentration were studied due to steric hindrance of amino group of memantine. The derivatization reaction was applied for the hydrophilic interaction liquid chromatography method which was based on Cogent Silica-C stationary phase with a mobile phase consisting of a mixture of 10 mmol/L citric acid and 10 mmol/L o-phosphoric acid (pH 6.0) with acetonitrile using an isocratic composition of 2:8 v/v. The benefit of the reported approach consists in a simple sample pretreatment and a quick and sensitive hydrophilic interaction chromatography method. The developed method was validated in terms of linearity, accuracy, precision, and selectivity according to the International Conference on Harmonisation guidelines. The developed method was successfully applied for the analysis of commercial memantine tablets.

  2. Formation and physical properties of uranium hydride under conditions relevant to metallic fuel and nuclear waste storage

    Science.gov (United States)

    Orr, Robin; Godfrey, Hugh; Broan, Chris; Goddard, Dave; Woodhouse, Guy; Durham, Peter; Diggle, Andrew; Bradshaw, John

    2016-08-01

    The formation of uranium hydride is recognised as a hazard during the storage of uranium metal owing to its potentially pyrophoric properties. This study has assessed the influence of water vapour on the potential for uranium hydride to form at low temperatures and shows that it increases the duration of the induction period but does not necessarily prevent uranium hydride formation and also does not significantly change the reaction rate with hydrogen. It is further shown that the α-UH3 fraction in the uranium hydride gradually increases at decreasing temperatures and is likely to be the dominant phase formed under typical storage conditions. Particle morphology and specific surface area of uranium hydride prepared between 30 °C and 200 °C have also been characterised but show only modest variation compared with the phase composition.

  3. Direct hydride derivatization of methyl- and ethylmercury chlorides in aqueous solution with KBH4

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A convenient hydride derivatization procedure of methyl-and ethylmercury chlorides to volatile hydrides was reported. In sealed vials methylmercury and ethylmercury compounds in acidic aqueous solutions were converted into their volatile forms by the reaction with potassium tetrahydroborate(KBH4) and elvolved to the headspace of the vials. The gaseous analytes in the headspace were extracted and concentrated by solid phase microextraction(SPME) and injected into gas chromatography (GC) for separation and identified by mass selective detector(MS).

  4. The thermodynamics of hydride precipitation: the importance of entropy, enthalpy and disorder

    OpenAIRE

    Lumley, S. C.; Grimes, R. W.; Murphy, S. T.; Burr, P. A.; Chroneos, A.; Chard-Tucke, P. R.; Wenman, M. R.

    2014-01-01

    The thermodynamics of H/{\\alpha}-Zr solid solution and zirconium hydride phases were studied using density functional theory. Disorder in {\\zeta}, {\\gamma} and {\\delta} hydrides and solid solutions were modelled using a statistically significant number of randomly generated structures in combination with special quasi-random structures and solid solutions with a range of concentrations. This is used in conjunction with a calculation of thermodynamic parameters of the system, including the tem...

  5. Sensitive determination of As (III) and As (V) by magnetic solid phase extraction with Fe@polyethyleneimine in combination with hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Zhou, Qingxiang; Zheng, Zhenwen; Xiao, Junping; Fan, Huili

    2016-08-15

    The magnetic nanomaterial Fe@polyethyleneimine (Fe@PEI) was successfully synthesized and used as an effective adsorbent material for magnetic solid phase extraction(MSPE) of As(III) and As(V) from water samples. Fe@SiO2 nanoparticles were prepared by one pot synthetic method using a borohydride reduction method, then modified with (3-chloropropyl)trimethoxysilane to obtain Fe@SiO2-Cl by chloropropylation, which was reacted with PEI to achieve Fe@polyethyleneimine (Fe@PEI). The microstructure and morphology of Fe@PEI were characterized by transmission electron microscoscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The experimental results showed that Fe@PEI demonstrated excellent adsorption for As(III) and As(V). Based on this fact, the determination method for these two arsenic species earned good limits of detection (LODs) of 0.002μgL(-1) and wide calibration curves in the concentration range from 0.008 to 0.2μgL(-1). The precisions of As (III) and As (V)were 1.95% and 2.55% (RSD, n=6), respectively. The proposed method was validated with real samples and the spiked recoveries were in the range of 82.7-98.3% and the accuracies were in the range of 2-13.3%. The results demonstrated that the developed MSPE method had good advantages such as simplicity, rapid separation, low cost, easy to reuse and high-quality analytical performances, which made it attractive for rapid and efficient extraction of inorganic arsenic species in the environmental water samples. PMID:27260453

  6. Effect of lattice defects and temperature transition rates on the deuteride (hydride) particle morphology and phase transformation thermal hysteresis in niobium

    International Nuclear Information System (INIS)

    Small-angle neutron scattering (SANS) measurements have been performed to investigate deuteride particle morphology and the phase transformation temperature hysteresis in low-concentration Nb-D alloys. Deformation either by cold rolling and or by previous deuteride cycling induced a coarse deuteride particle distribution. This observation is attributed to a more heterogeneous precipitation process facilitated by the dislocation defects and/or dislocation substructure. Deuteride precipitation in the deformed samples was observed immediately upon crossing the incoherent solvus during temperature reduction, again consistent with dislocation-aided nucleation. Deuteride dissolution was observed at the very onset of heating for the cold-rolled material, an observation unique among the samples characterized here. This is attributed to the availability of elastic accommodation energy for deuteride particles embedded in the severely work-hardened host matrix. In other words, the elastic energy assists dissolution, consistent with a theoretical model developed by Puls (1984 Acta Metall. 32 1259-69). The effect of temperature reduction transition rates was also investigated. Rapid, direct cooling (at 2-3 K min-1) resulted in a much finer deuteride particle distribution - a factor of 200 increase in the particle number density and a factor of ten reduction in characteristic particle size compared to well annealed single crystal Nb. The thermal hysteresis was also affected by the temperature transition rates, with a significant reduction of the hysteresis for the slowest cooling rates. This implies that at least part of the recorded hysteresis in the well annealed material is dependent on the temperature transition rate. (author)

  7. On the chemistry of hydrides of N atoms and O$^+$ ions

    CERN Document Server

    Awad, Zainab; Williams, David A

    2016-01-01

    Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low density lines of sight towards G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H$_2$ formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O$^+$ ions detected by Herschel/HIFI present along many sight lines in the Galaxy. The O$^+$ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic ray fluxes or in somewhat denser diffuse clouds with high cosmic ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

  8. Control Preparation of Nano γ Phase Aluminum Oxide by Explosive Temperature%爆温控制合成γ型纳米氧化铝

    Institute of Scientific and Technical Information of China (English)

    李瑞勇; 李晓杰; 闫鸿浩

    2011-01-01

    本文旨在通过改变混合炸药的爆温来控制爆轰合成的纳米氧化铝的晶型.根据研究方案,采用600 g硝酸铝粉末和400 g炸药黑索金粉末为原材料,通过搅拌把两者均匀混合配制出混合炸药.经过计算该粉状混合炸药的理论爆温约为945℃,该温度接近于低温稳定的7型氧化铝生成和存在的温度区间,所以该混合炸药发生爆轰反应时应该产生γ型纳米氧化铝.为了验证理论分析,将该混合炸药放在直径为3 m的专用爆炸罐里面进行了爆轰反应实验.利用X射线衍射仪(XRD)和透射电子显微镜(TEM)对收集到的爆轰产物进行了检测.检测结果表明爆轰产物确实是y型纳米氧化铝,氧化铝颗粒为标准的球形,颗粒尺寸约为20 nm.因此,可以通过理论计算改变混合炸药的爆温来控制纳米氧化铝的晶型.%The phase of nano aluminum oxide prepared by detonation synthesis was controlled by changing the explosive temperature of the mixed explosion. According to the research scheme, the mixed explosion was made through uniformly mixing 600 g aluminum nitrate powder with 400 g explosive hexogen.The theoretical explosive temperature of the mixed explosion was 945 ℃ by theoretical calculation, which was close to the temperature interval of formation and existence of γ phase aluminum oxide. Therefore,nano γphase aluminum oxide should be prepared through detonation of the mixed explosion. In order to prove the theoretical presumption, detonation experiment was conducted in a special spherical tank with 3 m diameter and the explosion product was characterized by transmission electron microscope (TEM) and X-ray diffraction (XRD). The results indicate that the product is nano γ phase aluminum oxide actually and the granule of aluminum oxide is spherical, with the particle dimension of about 20 nm. It is thus verified that the phase of aluminum oxide can be controlled by changing the explosive temperature of the mixed

  9. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly followed...... by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated...

  10. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  11. Inhibited solid propellant composition containing beryllium hydride

    Science.gov (United States)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  12. Crystal structure of gold hydride

    International Nuclear Information System (INIS)

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions

  13. Crystal structure of gold hydride

    Energy Technology Data Exchange (ETDEWEB)

    Degtyareva, Valentina F., E-mail: degtyar@issp.ac.ru

    2015-10-05

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions.

  14. Hydrogen storage materials and metal hydride-Ni batteries

    International Nuclear Information System (INIS)

    The hydrogen storage alloy is the key active material in metal hydride-Ni (MH-Ni) batteries. A brief review of hydrogen storage negative electrode materials including misch-nickel-based alloys, Laves phase alloys, magnesium-based alloys, vanadium-based solid solutions and nanotubes is presented. Current problems that need to be solved are mentioned. In addition, recent developments of MH/Ni-batteries with high power and energy are introduced

  15. Surface treatments toward obtaining clean GaN(0 0 0 1) from commercial hydride vapor phase epitaxy and metal-organic chemical vapor deposition substrates in ultrahigh vacuum

    International Nuclear Information System (INIS)

    We studied processes of cleaning GaN(0 0 0 1) surfaces on four different types of wafers: two types were hydride vapor phase epitaxy (HVPE) free-standing substrates and two types were metal-organic chemical vapor deposition (MOCVD) films grown on these HVPE substrates and prepared by annealing and/or Ar ion sputtering in ultra high vacuum. We observed the surfaces through treatments using in situ low-energy electron diffraction (LEED), reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), and Auger electron spectroscopy, and also using ex situ temperature programmed desorption, X-ray photoelectron spectroscopy, X-ray diffraction, and secondary ion mass spectrometry. For HVPE samples, we obtained relatively clean surfaces under optimized three-step annealing conditions (200 deg. C for 12 h + 400 deg. C for 1 h + 500 deg. C for 5 min) without sputtering, after which the surface contamination of oxide and carbide was reduced to ∼20% of that before annealing. Clear GaN(0 0 0 1)1x1 patterns were obtained by LEED and RHEED. STM images showed flat terraces of ∼10 nm size and steps of ∼0.5 nm height. Upon annealing the HVPE-GaN samples at a much higher temperature (>550 deg. C), three-dimensional (3D) islands with facets were formed and the surface stoichiometry was broken down with the desorption of nitrogen in the form of ammonia, since the samples include hydrogen as an impurity. Ar+ sputtering was effective for removing surface contamination, however, postannealing could not recover the surface roughness but promoted the formation of 3D islands on the surface. For MOCVD/HVPE homoepitaxial samples, the surfaces are terminated by hydrogen and the as-introduced samples showed a clear 1x1 structure. Upon annealing at 500-600 deg. C, the surface hydrogen was removed and a 3x3 reconstruction structure partially appeared, although a 1x1 structure was dominant. We summarize the structure differences among the samples under the same

  16. Study on Non-interlayer Liquid Phase Diffusion Bonding for SiCp/ZL101 Aluminum Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    Wei GUO; Jitai NIU; Jinfan ZHAI; Changli WANG; Jie YU; Guangtao ZHOU

    2003-01-01

    Through the vacuum diffusion bonding for SiCp/ZLl01 aluminum matrix composite, the influence of bonding parameters on the joint properties was reported, with the aim to obtain optimal bonding parameters. The microstructureof joints was analyzed by means o

  17. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  18. The progress of nanocrystalline hydride electrode materials

    International Nuclear Information System (INIS)

    This paper reviews research at the Institute of Materials Science and Engineering, Poznan University of Technology, on the synthesis of nanocrystalline hydride electrode materials. Nanocrystalline materials have been synthesized by mechanical alloying (MA) followed by annealing. Examples of the materials include TiFe-, ZrV2-, LaNi5 and Mg2Ni-type phases. Details on the process used and the enhancement of properties due to the nanoscale structures are presented. The synthesized alloys were used as negative electrode materials for Ni-MH battery. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. For example, it was found that the respective replacement of Fe in TiFe by Ni and/or by Cr, Co, Mo improved not only the discharge capacity but also the cycle life of these electrodes. The hydrogen storage properties of nanocrystalline ZrV2- and LaNi5-type powders prepared by mechanical alloying and annealing show no big difference with those of melt casting (polycrystalline) alloys. On the other hand, a partial substitution of Mg by Mn or Al in Mg2Ni alloy leads to an increase in discharge capacity, at room temperature. Furthermore, the effect of the nickel and graphite coating on the structure of some nanocrystalline alloys and the electrodes characteristics were investigated. In the case of Mg2Ni-type alloy mechanical coating with graphite effectively reduced the degradation rate of the studied electrode materials. The combination of a nanocrystalline TiFe-, ZrV2- and LaNi5-type hydride electrodes and a nickel positive electrode to form a Ni-MH battery, has been successful. (authors)

  19. Behaviour of aluminum foam under fire conditions

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2008-07-01

    Full Text Available Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1. Figure 1 presents the relationship graphically. Boundary values of the vs content resulting from the above relationship is too low, taking into account the data obtained from the technology of suspension composites [4]. Therefore, based on the structure assumed for the suspension shown in Figure 2 these authors proposed another way of determining the contents, the value of which is determined by the relationship (3 [5].For purposes of the experimental study presented in the paper two foams have been molten: a commercially available one, made by aluminum foaming with titanium hydride, and a foam manufactured in the Marine Materials Plant of the Maritime University of Szczecin by blowing the AlSi7 +20% SiC composite with argon. Macrophotographs of foam cross-sections are shown in Figure 3. The foams have been molten in the atmosphere of air at a temperature of 750ºC. The products of melting are presented in Figure 4. It appears that molten aluminum foam may have no liquid consistency, being unable to flow, which is a desired property from the point of view of fire-protection. The above feature of the molten foam results from the fact that it may be a discontinuous suspension of solid particles in a liquid metal. The suspended particles may be solid particles of the composite that served for making the foam or oxide membranes formed on extended metal surface of the bubbles included in the foam. The desired foam ability to form a discontinuous suspension after melting may be

  20. Predicting formation enthalpies of metal hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.

    2004-01-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formedby chemical reaction between hydrogen and ...

  1. Fracture mechanism of TiAl intermetallics caused by hydride and atomic hydrogen

    Institute of Scientific and Technical Information of China (English)

    高克玮; 王燕斌; 林志; 乔利杰; 褚武扬

    1999-01-01

    Hydrogen embrittlement (HE) of TiAl intermetallics was studied at room temperature. The results showed that there were two forms of HE in TiAl intermetallics, i.e. hydride HE and atomic HE. Most of hydrogen in TiAl intermetallics was transformed into hydrides at room temperature. The hydride exists as (TiAl)Hx for a low hydrogen concentration while it exists in several forms for a higher hydrogen concentration. Stress intensity factor KIC decreased with increase in hydride concentration. KIC decreased further when TiAl intermetallics were charged cathodically with hydrogen in 1 mol/L H2SO4 solution. Stress intensity factor during hydrogen charging KIH was about 50% KIC. 20% of the decrease was caused by hydrides while 30% was caused by atomic hydrogen. Mechanism of HE caused hydrides was the same as any other second phase in nature. Delayed fracture caused by atomic hydrogen resulted from hydrogen induced local plastic deformation.

  2. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S.; Niemann, Michael U.; Goswami, D. Yogi; Stefanakos, Elias K.

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  3. Gas-Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum-Vanadium-Molybdenum.

    Science.gov (United States)

    Lotfi, Samira; Boffito, Daria C; Patience, Gregory S

    2015-10-26

    Lignin is a complex polymer that is a potential feedstock for aromatic compounds and carboxylic acids by cleaving the β-O-4 and 5-5' linkages. In this work, a syringe pump atomizes an alkaline solution of lignin into a catalytic fluidized bed operating above 600 K. The vanadium heterogeneous catalysts convert all the lignin into carboxylic acids (up to 25 % selectivity), coke, carbon oxides, and hydrogen. Aluminum-vanadium-molybdenum mostly produced lactic acid (together with formic acid, acrylic acid, and maleic anhydride), whereas the vanadium pyrophosphate catalyst produced more maleic anhydride. PMID:26361086

  4. Experimental reproducibility analysis in DU hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Daeseo; Park, Jongcheol; Chung, Hongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A storage and delivery system (SDS) is used for storing hydrogen isotopes as a metal hydride form. The rapid hydriding of tritium is very important not only for safety reasons but also for the economic design and operation of the SDS. For the storage, supply, and recovery of hydrogen isotopes, depleted uranium (DU) has been extensively proposed. To develop nuclear fusion technology, it will be necessary to store and supply hydrogen isotopes needed for Tokamak operation. The experimental reproducibility of bed temperature on DU hydriding was also analyzed. The experimental reproducibility of apparatus was acceptable for all the experiments. The experimental reproducibility of tank pressure on DU hydriding was analyzed. As the hydriding performs, the tank pressure showed decreasing trend. The experimental reproducibility of bed temperature on DU hydriding was also analyzed. As the hydriding performs, the bed temperatures increased up to maximum temperature with exothermic reaction and then they showed decreasing trend. The experimental reproducibility of apparatus was acceptable for all the experiments.

  5. Synthesis and Characterization of Metal Hydride/Carbon Aerogel Composites for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin

    2012-01-01

    Full Text Available Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4, a complex metal hydride, and carbon aerogels (CAs, a light porous material connected by several spherical nanoparticles. The objectives of the present work have been to investigate the synthesis, characterization, and hydrogenation behavior of Pd-, Ti- or Fe-doped CAs, NaAlH4, and MgH2 nanocomposites. The diameters of Pd nanoparticles onto CA’s surface and BET surface area of CAs were 3–10 nm and 700–900 m2g−1, respectively. The H2 storage capacity of metal hydrides has been studied using high-pressure TGA microbalance and they were 4.0, 2.7, 2.1, and 1.2 wt% for MgH2-FeTi-CAs, MgH2-FeTi, CAs-Pd, and 8 mol% Ti-doped NaAlH4, respectively, at room temperature. Carbon aerogels with higher surface area and mesoporous structures facilitated hydrogen diffusion and adsorption, which accounted for its extraordinary hydrogen storage phenomenon. The hydrogen adsorption abilities of CAs notably increased after inclusion of metal hydrides by the “hydrogen spillover” mechanisms.

  6. Effects of Hf on thermal and mechanical properties of Zr hydrides

    International Nuclear Information System (INIS)

    The polycrystalline fine bulk samples of δ-phase Zr hydrides with various Hf contents were prepared and their thermal and mechanical properties were investigated. In the temperature range from room temperature to 973 K, the phase states were examined by high-temperature X-ray diffraction and thermogravimetry/differential thermal analyses. In the temperature range from room temperature to 673 K, the coefficient of linear thermal expansion, specific heat capacity, and thermal conductivity were evaluated. The Vickers hardness and sound velocity were measured at room temperature, and the elastic modulus was evaluated. The effects of Hf on the thermal and mechanical properties of Zr hydrides were studied. (author)

  7. Pressure-driven formation and stabilization of superconductive chromium hydrides

    Science.gov (United States)

    Yu, Shuyin; Jia, Xiaojing; Frapper, Gilles; Li, Duan; Oganov, Artem R.; Zeng, Qingfeng; Zhang, Litong

    2015-01-01

    Chromium hydride is a prototype stoichiometric transition metal hydride. The phase diagram of Cr-H system at high pressures remains largely unexplored due to the challenges in dealing with the high activation barriers and complications in handing hydrogen under pressure. We have performed an extensive structural study on Cr-H system at pressure range 0 ∼ 300 GPa using an unbiased structure prediction method based on evolutionary algorithm. Upon compression, a number of hydrides are predicted to become stable in the excess hydrogen environment and these have compositions of Cr2Hn (n = 2–4, 6, 8, 16). Cr2H3, CrH2 and Cr2H5 structures are versions of the perfect anti-NiAs-type CrH with ordered tetrahedral interstitial sites filled by H atoms. CrH3 and CrH4 exhibit host-guest structural characteristics. In CrH8, H2 units are also identified. Our study unravels that CrH is a superconductor at atmospheric pressure with an estimated transition temperature (T c) of 10.6 K, and superconductivity in CrH3 is enhanced by the metallic hydrogen sublattice with T c of 37.1 K at 81 GPa, very similar to the extensively studied MgB2. PMID:26626579

  8. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver;

    2010-01-01

    strongly to Pd hydride than to Pd. The activation barrier for desorption at a H coverage of one mono layer is slightly lower on Pd hydride, whereas the activation energy for adsorption is similar on Pd and Pd hydride. It is concluded that the higher sticking probability on Pd hydride is most likely caused...... by a slightly lower equilibrium coverage of H, which is a consequence of the lower heat of adsorption for H on Pd hydride....

  9. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  10. Aluminum Hydroxide

    Science.gov (United States)

    ... penicillamine (Cuprimine, Depen), prednisone (Deltasone, Orasone), products containing iron, tetracycline (Sumycin, Tetracap, and others), ticlopidine (Ticlid), and vitamins.be aware that aluminum hydroxide may interfere with other medicines, making them less ...

  11. Geoneutrino and Hydridic Earth model. Version 2

    OpenAIRE

    Bezrukov, Leonid

    2013-01-01

    Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic Earth model. Terrestrial heat producton from U, Th and K40 decays was calculated also. We must admit the existance of Earth expansion process to understand the obtained large value of terrestrial heat producton. The geoneutrino detector with volume more than 5 kT (LENA type) must be constructed to definitely separate between Bulk Silicat Earth model and Hydridic Earth model. In second version of...

  12. Atomistic Potentials for Palladium-Silver Hydrides

    OpenAIRE

    Hale, L. M.; Wong, B. M.; Zimmerman, J. A.; Zhou, X.

    2013-01-01

    New EAM potentials for the ternary palladium-silver-hydrogen system are developed by extending a previously developed palladium-hydrogen potential. The ternary potentials accurately capture the heat of mixing and structural properties associated with solid solution alloys of palladium-silver. Stable hydrides are produced with properties that smoothly transition across the compositions. Additions of silver to palladium are predicted to alter the properties of the hydrides by decreasing the mis...

  13. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused...

  14. Formation and Compression Behavior of Two-Phase Bulk Metallic Glasses with a Minor Addition of Aluminum

    Institute of Scientific and Technical Information of China (English)

    ZONG Hai-Tao; MA Ming-Zhen; ZHANG Xin-Yu; QI Li; LI Gong; JING Qin; LIU Ri-Ping

    2011-01-01

    A remarkable enhancement in room-temperature compressive deformability is realized by the minor-addition of 1.5 at. % Al in ZrTi-based bulk metallic glass.Two amorphous phases are observed by transmission electron microscopy in the Al-containing alloys and this explains the improvement of compression deformability. The studies suggest that phase separation might occur in glass forming alloys with a negative enthalpy of mixing.

  15. Metastable phases in the aluminum-germanium alloy system: Synthesis by mechanical alloying and pressure induced transformations

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, P.

    1994-01-01

    Al and Ge form a simple equilibrium eutectic with limited mutual solubility and no intermetallic intermediate phases. We used a regular solution approach to model effects of pressure on Al-Ge. Effects of pressure are to extend solubility of Ge in Al, to displace the eutectic composition towards the Ge rich side, and to slightly decrease the eutectic temperature. We designed thermobaric treatments to induce crystal-to-glass transformations in fine grain mixtures of Al and Ge. We used Merrill-Bassett diamond anvil cells to perform experiments at high pressures. We built an x-ray apparatus to determine the structure of alloys at pressure and from cryogenic temperatures to 400C. Two-phase Al-Ge samples with fine microstructures were prepared by splat-quenching and mechanical alloying. We observed a crystal-to-glass transformation at about 80 kbar. The amorphous phase formed was metastable at ambient temperature after pressure release. This was confirmed by TEM. The amorphous phase obtained by pressurization was found to have a liquid-like structure and was metallic. In the TEM samples we also observed the presence of a second amorphous phase formed upon release of the pressure. This second phase had a tetrahedrally-bonded continuous random network structure, similar to that of semi-conducting amorphous germanium.

  16. Fourier-Domain Analysis of Hydriding Kinetics Using Pneumato-Chemical Impedance Spectroscopy

    OpenAIRE

    Millet, P.; C. Decaux; R. Ngameni; Guymont, M.

    2007-01-01

    Analysis of phase transformation processes observed in hydrogen absorbing materials (pure metals, alloys, or compounds) is still a matter of active research. Using pneumato-chemical impedance spectroscopy (PIS), it is now possible to analyze the mechanism of hydriding reactions induced by the gas phase. Experimental impedance diagrams, measured on activated LaNi5 in single- and two-phase domains, are reported in this paper. It is shown that their shape is mostly affected by the slope of the i...

  17. Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape.

    Science.gov (United States)

    Syrenova, Svetlana; Wadell, Carl; Nugroho, Ferry A A; Gschneidtner, Tina A; Diaz Fernandez, Yuri A; Nalin, Giammarco; Świtlik, Dominika; Westerlund, Fredrik; Antosiewicz, Tomasz J; Zhdanov, Vladimir P; Moth-Poulsen, Kasper; Langhammer, Christoph

    2015-12-01

    Physicochemical properties of nanoparticles may depend on their size and shape and are traditionally assessed in ensemble-level experiments, which accordingly may be plagued by averaging effects. These effects can be eliminated in single-nanoparticle experiments. Using plasmonic nanospectroscopy, we present a comprehensive study of hydride formation thermodynamics in individual Pd nanocrystals of different size and shape, and find corresponding enthalpies and entropies to be nearly size- and shape-independent. The hysteresis observed is significantly wider than in bulk, with details depending on the specifics of individual nanoparticles. Generally, the absorption branch of the hysteresis loop is size-dependent in the sub-30 nm regime, whereas desorption is size- and shape-independent. The former is consistent with a coherent phase transition during hydride formation, influenced kinetically by the specifics of nucleation, whereas the latter implies that hydride decomposition either occurs incoherently or via different kinetic pathways.

  18. Properties of hydrogen permeation barrier on the surface of zirconium hydride

    Institute of Scientific and Technical Information of China (English)

    CHEN Weidong; WANG Lijun; HAN Lin; CHEN Song

    2008-01-01

    A hydrogen permeation barrier was manufactured by the in situ reaction of zirconium hydride with oxygen.A reduction in the hydrogen permeation of the oxide films was detected by measuring the mass difference of the zirconium hydride samples after the dehydrogenation experiment.The reaction of zirconium hydride with oxygen occurs only under the condition that the temperature is higher than 673 K in the oxygen partial pressure of 0.1 MPa.The oxide film is composed of two layers,a permeable oxide layer and a dense oxide layer,and the main phase of the oxide film is ZrO2 with baddeleyite structure.The XPS analysis shows that O-H bonds exist in the oxide film,which are helpful for resisting hydrogen diffusion through the oxide film.

  19. Technical Status Report on the Effect of Phosphate and Aluminum on the Development of Amorphous Phase Separation in Sodium

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.D.

    1998-11-03

    The objective of the Tank Focus Area ''Optimize Waste Loading'' task is to enhance the definition of the acceptable processing window for high-level waste vitrification plants. One possible manner in which the acceptable processing window may be enhanced is by reducing the uncertainty of various compositional/property models through a specifically defined experimental plan. A reduction in model uncertainty can reduce limitations on current acceptance constraints and may allow for a larger processing or operational window. Enhanced composition/property model predictions coupled with an increased waste loading may decrease the processing time and waste glass disposal costs (i.e., overall lifecycle costs). One of the compositional/property models currently being evaluated by the Tanks Focus Area is related to the development of amorphous phase separation in multi-component borosilicate glasses.Described in this report is the current status for evaluating the effect of phosphorus and alumina on both simple sodium borosilicate and high-level waste glasses on the formation of amorphous phase separation. The goal of this subtask is to increase the understanding of the formation of phase separation by adding significant amounts (3-5 wt. percent) of phosphorus and alumina to well-characterized glasses. Additional scope includes evaluating the effects of thermal history on the formation of amorphous phase separation and durability of select glasses.The development of data, understanding, and quantitative description for composition and kinetic effects on the development of amorphous phase separation will continue in FY99. This effort will provide insight into the compositional and thermal effects on phase stability and will lead to a better understanding of the methods used to predict the development of amorphous phase separation in HLW glasses.

  20. In situ generation of hydrogen from water by aluminum corrosion in solutions of sodium aluminate

    OpenAIRE

    Soler Turu, Lluis; Candela Soto, Angélica Maria; Macanás de Benito, Jorge; Muñoz Tapia, Maria; Casado Giménez, Juan

    2009-01-01

    A new process to obtain hydrogen from water using aluminum in sodium aluminate solutions is described and compared with results obtained in aqueous sodium hydroxide. This process consumes only water and aluminum, which are raw materials much cheaper than other compounds used for in situ hydrogen generation, such as hydrocarbons and chemical hydrides, respectively. As a consequence, our process could be an economically feasible alternative for hydrogen to supply fuel cells. Results showed an i...

  1. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don; Harmon, Laurel

    2011-02-14

    UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 LiAlH4Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the

  2. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don; Harmon, Laurel

    2011-02-14

    UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 LiAlH4Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the

  3. 物相定量分析在铝工业中的应用%Application of Phase Quantitative Analysis in Aluminum Industry

    Institute of Scientific and Technical Information of China (English)

    李波; 郭永恒

    2011-01-01

    总结介绍了到目前为止在铝工业中应用的物相定量分析方法,分析了各种方法的应用范围以及优缺点,包括化学物相定量法、外标法、化学物相计算法、X射线衍射增量法、K值法、绝热法、Rietveld全谱拟合定量法、K值法和化学物相计算法结合以及Zevin无标定量法等.结果表明:每种物相定量分析方法都有各自的优点和缺点,需要根据样品的实际情况,选择最适当的分析方法,才能得到准确的结果.%Phase quantitative analysis methods which had been used in aluminum industry by now were summarized and introduced, and application range, merits and demerits of each method were analyzed respectively,including chemical in quantitative method, external standard method, chemical quantitative calculating method,X-ray diffraction incremental method, K value method, adiabatic method, Rietveld full pattern fitting quantitative method, combining K value method and chemical phase calculation method, Zevin no standard quantitative method,and so on. The results show that each method has its advantages and disadvantages. In order to obtain accurate results, it should according to actual situation of the sample to select the most appropriate phase quantitative analysis method.

  4. Hydrogen in aluminum during alkaline corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Saikat; Ai, Jiahe [Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Hebert, Kurt R., E-mail: krhebert@iastate.ed [Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Ho, K.M.; Wang, C.Z. [US DOE, Ames Laboratory, Ames, IA 50011 (United States)] [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

    2010-07-30

    The thermodynamic state of hydrogen in aluminum during alkaline corrosion was investigated, using a two-compartment hydrogen permeation cell with an Al/Pd bilayer membrane. The open-circuit potential of the Pd layer in a pH 7.0 buffer solution was monitored to sense the hydrogen chemical potential, {mu}{sub H}. At pH 12.5-13.5, the measurements established a minimum {mu}{sub H} of 0.55 eV relative to the ideal gas reference, equivalent to a H{sub 2} gas pressure of 5.7 GPa. Statistical mechanics calculations show that vacancy-hydrogen defects are stable in Al at this condition. A dissolution mechanism was proposed in which H at very high {mu}{sub H} is produced by oxidation of interfacial aluminum hydride. The mechanism explains the observed rapid accumulation of H in the metal by extensive formation of vacancy-hydrogen defects.

  5. Nanoscale studies of the early stages of phase separation in model nickel-aluminum-chromium-X superalloys

    Science.gov (United States)

    Booth-Morrison, Christopher

    The phase separation of model Ni-Al-Cr-X alloys is studied at the nanoscale employing atom-probe tomography (APT), electron microscopy and first-principles calculations. A comparison of the kinetic pathways resulting from the formation of coherent gamma'-precipitates in two Ni-Al-Cr alloys, Ni-7.5 Al-8.5 Cr and Ni-5.2 Al-14.2 Cr at.%, with similar gamma'-precipitate volume fractions at 873 K, is performed. The morphologies of the gamma'-precipitates of the alloys are similar, though the degrees of gamma'-precipitate coagulation and coalescence differ. Quantification within the framework of classical nucleation theory reveals that differences in the chemical driving forces for phase decomposition result in differences in the nucleation behavior of the two alloys. The temporal evolution of the gamma'-precipitate average radii and the gamma-matrix supersaturations follow the predictions of classical coarsening models. The compositional trajectories of the gamma-matrix phases of the alloys are found to follow approximately the equilibrium tie-lines, while the trajectories of the gamma'-precipitates do not, resulting in significant differences in the partitioning ratios of the solute elements. Phase separation in a Ni-6.5 Al-9.5 Cr at.% alloy aged at 873 K occurs in four distinct regimes: (i) quasi-stationary-state gamma' (L12)-precipitate nucleation; (ii) concomitant precipitate nucleation, growth, and coagulation and coalescence; (iii) concurrent growth and coarsening, wherein coarsening occurs via both gamma'-precipitate coagulation and coalescence and by the classical evaporation-condensation mechanism; and (iv) quasi-stationary-state coarsening of gamma'-precipitates, once the equilibrium volume fraction of precipitates is achieved. The predictions of classical nucleation and growth models are not validated experimentally, likely due to the complexity of the atomistic kinetic pathways involved in precipitation. During coarsening, the temporal evolution of the gamma

  6. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, B K [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  7. Porous carbon derived from aluminum-based metal organic framework as a fiber coating for the solid-phase microextraction of polycyclic aromatic hydrocarbons from water and soil

    International Nuclear Information System (INIS)

    A nanoporous carbon derived from an aluminum-based metal-organic framework was deposited on stainless steel wires in a sol–gel matrix. The resulting fibers were applied to the solid-phase microextraction of the polycyclic aromatic hydrocarbons (PAHs) naphthalene, acenaphthene, fluorene, phenanthrene and anthracene from water and soil samples. The fiber was then directly inserted into the GC injector and the PAHs were quantified by GC-MS. The effects of salt addition, extraction temperature, extraction time, sample volume and desorption conditions on the extraction efficiency were optimized. A linear response to the analytes was observed in the 0.1 to 12 μg∙L−1 range for water samples, and in the 0.6 to 30 μg∙kg−1 for soil samples, with the correlation coefficients ranging from 0.9934 to 0.9985. The limits of detection ranged from 5.0 to 20 ng∙L−1 for water samples, and from 30 to 90 ng∙kg−1 for soil samples. The recoveries of spiked samples were between 72.4 and 108.0 %, and the precision, expressed as the relative standard deviations, is <12.8 %. (author)

  8. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    International Nuclear Information System (INIS)

    Highlights: • Friction bit joining (FBJ) and weld-bonding (adhesive + FBJ) processes. • FBJ to spot weld high-strength Al alloy to high-strength steel. • Lap shear strength of ∼10 kN for high-strength Al alloy to high-strength steel. • Effective corrosion mitigation by combining FBJ with adhesive. - Abstract: In this work, we have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. The FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly prepared joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints

  9. Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors

    Science.gov (United States)

    Tong, Linyue; Skorenko, Kenneth H.; Faucett, Austin C.; Boyer, Steven M.; Liu, Jian; Mativetsky, Jeffrey M.; Bernier, William E.; Jones, Wayne E.

    2015-11-01

    Laminar composite electrodes are prepared for application in supercapacitors using a catalyzed vapor-phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on the surface of commercial carbon coated aluminum foil. These highly electrically conducting polymer films provide for rapid and stable power storage per gram at room temperature. The chemical composition, surface morphology and electrical properties are characterized by Raman spectroscopy, scanning electron microscopy (SEM), and conducting atomic force microscopy (C-AFM). A series of electrical measurements including cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy are also used to evaluate electrical performance. The processing temperature of VPP shows a significant effect on PEDOT morphology, the degree of orientation and its electrical properties. The relatively high temperature leads to high specific area and large conductive domains of PEDOT layer which benefits the capacitive behavior greatly according to the data presented. Since the substrate is already highly conductive, the PEDOT based composite can be used as electrode materials directly without adding current collector. By this simple and efficient process, PEDOT based composites exhibit specific capacitance up to 134 F g-1 with the polymerization temperature of 110 °C.

  10. Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena; Weck, Philippe F.; Schultz, Peter Andrew; Clark, Blythe; Glazoff, Michael V.; Homer, Eric R.

    2014-07-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

  11. The Mg{sub 2}Si phase evolution during thermomechanical processing of in-situ aluminum matrix macro-composite

    Energy Technology Data Exchange (ETDEWEB)

    Shafieizad, A.H. [The Complex Laboratory of Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Zarei-Hanzaki, A., E-mail: Zareih@ut.ac.ir [The Complex Laboratory of Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Abedi, H.R. [The Complex Laboratory of Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Al-Fadhalah, K.J. [Department of Mechanical Engineering, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)

    2015-09-17

    The microstructure and flow stress behavior of thermomechanically processed Al–Cu/Mg{sub 2}Si in-situ composite was studied emphasizing the evolution of primary and secondary reinforcement phases. Toward this end, the hot compression tests were conducted over the wide range of temperature (300–500 °C) and strain rate (0.001–0.1 s{sup −1}). Both the temperature and strain rate are found to possess a significant effect on the microstructural characteristics where a considerable softening is identified specially at low temperature regime. Besides the occurrence of restoration processes (mainly particle stimulated nucleation) the dynamic evolution of the reinforcements is introduced as the main factors affecting the reported softening. In this regard, the mechanical fragmentation, thermal disintegration, micro-buckling, coalescence and spheroidization of the primary and secondary particles are quantitatively and qualitatively addressed through a comprehensive scanning electron microscopy studies.

  12. Pressure-induced transformations of molecular boron hydride

    CERN Document Server

    Nakano, S; Gregoryanz, E A; Goncharov, A F; Mao Ho Kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV.

  13. A Study on the Radial Hydride Assisted Delayed Hydride Cracking of Zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin-Ho; Lee, Ji-Min; Kim, Yong-Soo [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    Extensive studies have been done on understanding of DHC(Delayed hydride cracking) phenomenon since several zirconium alloy pressure tubes failed in nuclear reactor in the 1970s. Recently, long-term dry storage strategy has been considered seriously in order to manage spent nuclear fuel in Korea and other countries around the world. Consequentially, many researches have been investigated the degradation mechanisms which will threaten the spent fuel integrity during dry storage and showed that hydrogen related phenomenon such as hydride reorientation and DHC are the critical factors. Especially, DHC is the direct cracking mechanism which can cause not only a through-wall defect but also a radiation leak to the environment. In addition, DHC can be enhanced by radial hydride as reported by Kim who demonstrate that radial hydrides clearly act as crack linkage path. This phenomenon is known as the radial hydride assisted DHC (RHA-DHC). Therefore, study on DHC is essential to ensure the safety of spent fuel. Finite element analysis will be carried out for the stress gradient evaluation around notch tip. A variation in thermal cycle which leads to change in hydrogen solid solution trajectory may be required. If the radial hydride precipitates at notch tip, we will investigate what conditions should be met. Ultimately, we will suggest the regulation criteria for long-term dry storage of spent nuclear fuel.

  14. Computational study of metal hydride cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Satheesh, A.; Muthukumar, P.; Dewan, Anupam [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati, Guwahati 781039 (India)

    2009-04-15

    A computational study of a metal hydride cooling system working with MmNi{sub 4.6}Al{sub 0.4}/MmNi{sub 4.6}Fe{sub 0.4} hydride pair is presented. The unsteady, two-dimensional mathematical model in an annular cylindrical configuration is solved numerically for predicting the time dependent conjugate heat and mass transfer characteristics between coupled reactors. The system of equations is solved by the fully implicit finite volume method (FVM). The effects of constant and variable wall temperature boundary conditions on the reaction bed temperature distribution, hydrogen concentration, and equilibrium pressures of the reactors are investigated. A dynamic correlation of the pressure-concentration-temperature plot is presented. At the given operating temperatures of 363/298/278 K (T{sub H}/T{sub M}/T{sub C}), the cycle time for the constant and variable wall temperature boundary conditions of a single-stage and single-effect metal hydride system are found to be 1470.0 s and 1765.6 s, respectively. The computational results are compared with the experimental data reported in the literature for LaNi{sub 4.61}Mn{sub 0.26}Al{sub 0.13}/La{sub 0.6}Y{sub 0.4}Ni{sub 4.8}Mn{sub 0.2} hydride pair and a good agreement between the two was observed. (author)

  15. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf;

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC equ...

  16. Separation of covalent hydrides by gas-solid chromatography

    International Nuclear Information System (INIS)

    A fully automated method was developed for separating the hydrides of elements of the IVth to VIIIth main subgroup of the periodic system and of Kr and Xe on the basis of their volatility using gas chromatography. The automated instrument allowing to carry out reduction, separation of the gaseous phase, the loading of a PORAPAK-packed column, the chromatographic separation and sampling was controlled by a HP 2116B computer. The elution time, peak area and the number of theoretical column plates were computed from chromatograms. The capture probably proceeded by a type of nonpolar nonspecific sorption (ΔH/Tsub(b) = 19.2 cal/mol.deg). The height of the theoretical plate was 0.05 to 0.1 cm. The technique may be used as a routine radiochemical method for group separations and for the separation of radioactive hydrides contained in the solution of targets irradiated with neutrons or charged particles in the preparation of radioactive sources of short-lived radionuclides, or in destructive activation analysis. (M.K.)

  17. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  18. Hydride Formation in Neutron Irradiated Material Under In Reactor Conditions

    International Nuclear Information System (INIS)

    The present is a brief summary of the three reports completed within the framework of the SPAR III project. The following is a resume of our aims, techniques used to achieve the objectives and conclusions attained under the guiding thread of the hydride formation in neutron irradiated zirconium alloys and other reactor in operating conditions. As is it known, under reactor operating conditions zirconium components go through transformations which affect their original microstructural and thermodynamical properties. Both concerns are starting points of many research lines for the zirconium alloys used in the nuclear power reactors. Regarding microstructural transformations, one of the most important topics is the phase stability of these alloys. To cite a well-known case, second phase particles of zircaloy-4 shown to be unstable under neutron radiation. Since such phases play a role in the corrosion rate control, this instability became a problem for high burnup fuel claddings design. Similar observations can be made about the β−Zr phase in the Zr-2.5Nb CANDU pressure tubes alloy. On the other hand, there are issues directly involved with thermodynamics, e.g., hydrogen behaviour and its role in the degradation processes of fuel assemblies and other zirconium alloys components, which showed to be affected by neutron radiation. Finally, applied stresses and thermal cycling are part of these operating conditions, which can be simulated performing experiments in situ which allows testing hydrogen solubility behaviour and hydride reorientation. In the context described above, the research topics proposed to SPAR III were aimed to improve the knowledge of these degradation processes. In this scheme, zircaloy-4 which remained more than ten years at full power operation and virgin unirradiated zirconium alloys were suited by the more improved micro analytical techniques to characterize microstructural transformations cited above

  19. CATALYST ACTIVITY MAINTENANCE FOR THE LIQUID PHASE SYNTHESIS GAS-TO-DIMETHYL ETHER PROCESS PART II: DEVELOPMENT OF ALUMINUM PHOSPHATE AS THE DEHYDRATION CATALYST FOR THE SINGLE-STEP LIQUID PHASE SYNGAS-TO-DME PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Xiang-Dong Peng

    2002-05-01

    At the heart of the single-step liquid phase syngas-to-DME process (LPDME{trademark}) is a catalyst system that can be active as well as stable. In the Alternative Fuels I program, a dual-catalyst system containing a Cu-based commercial methanol synthesis catalyst (BASF S3-86) and a commercial dehydration material ({gamma}-alumina) was demonstrated. It provided the productivity and selectivity expected from the LPDME process. However, the catalyst system deactivated too rapidly to warrant a viable commercial process [1]. The mechanistic investigation in the early part of the DOE's Alternative Fuels II program revealed that the accelerated catalyst deactivation under LPDME conditions is due to detrimental interaction between the methanol synthesis catalyst and methanol dehydration catalyst [2,3]. The interaction was attributed to migration of Cu- and/or Zn-containing species from the synthesis catalyst to the dehydration catalyst. Identification of a dehydration catalyst that did not lead to this detrimental interaction while retaining adequate dehydration activity was elusive. Twenty-nine different dehydration materials were tested, but none showed the desired performance [2]. The search came to a turning point when aluminum phosphate was tested. This amorphous material is prepared by precipitating a solution containing Al(NO{sub 3}){sub 3} and H{sub 3}PO{sub 4} with NH{sub 4}OH, followed by washing, drying and calcination. The aluminum phosphate catalyst has adequate dehydration activity and good stability. It can co-exist with the Cu-based methanol synthesis catalyst without negatively affecting the latter catalyst's stability. This report documents the details of the development of this catalyst. These include initial leads, efforts in improving activity and stability, investigation and development of the best preparation parameters and procedures, mechanistic understanding and resulting preparation guidelines, and the accomplishments of this work.

  20. Performances of Aluminum-cobalt Co-substituted α-Ni(OH)2 Electrodes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Heng-bin; LIU Han-san; CAO Xue-jing; SUN Chia-chung

    2004-01-01

    Aluminum-cobalt co-substituted α-Ni(OH)2 was prepared by means of the titration method in a buffer solution, the structure was characterized by XRD analysis. With above mentioned α-Ni(OH)2 as the positive electrode of a nickel-metal hydride cell, the discharge performances were examined by constant-current charge-discharge experiments. In comparison with the electrodes made of aluminum substituted or cobalt substituted Ni(OH)2 materials, the aluminum-cobalt co-substituted composite electrodes possess an excellent electrochemical performance and are of practical significance.

  1. Structural and hydrogen storage capacity evolution of Mg2FeH6 hydride synthesized by reactive mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    LI Song-lin(李松林); R.A.Varin

    2004-01-01

    Mg-based metal hydrides are promising as hydrogen storage materials for fuel cell application. In this work, Mg2 FeH6 complex hydride phase was synthesized by controlled reactive ball milling of 2Mg-Fe (atomic ratio)powder mixture in H2. Mg2 FeH6 is confirmed to be formed via the following three stages: formation of MgH2 via the reaction of Mg with H2, incubation stage and formation of Mg2 FeH6 by reaction of fully refined MgH2 and Fe.The incubation stage is characterized by no traces of Mg or hydride crystalline phase by XRD. On the other hand,Mg is observed uniformly distributed in the milled powder by SEM-EDS. Also, almost the same amount of H2 as the first stage is detected stored in the powders of the second stage by DSC and TGA.

  2. Coupled phase field, heat conduction, and elastodynamic simulations of kinetic superheating and nanoscale melting of aluminum nanolayer irradiated by picosecond laser.

    Science.gov (United States)

    Hwang, Yong Seok; Levitas, Valery I

    2015-12-21

    An advanced continuum model for nanoscale melting and kinetic superheating of an aluminum nanolayer irradiated by a picosecond laser is formulated. Barrierless nucleation of surface premelting and melting occurs, followed by a propagation of two solid-melt interfaces toward each other and their collision. For a slow heating rate of Q = 0.015 K ps(-1) melting occurs at the equilibrium melting temperature under uniaxial strain conditions T = 898.1 K (i.e., below equilibrium melting temperature Teq = 933.67 K) and corresponding biaxial stresses, which relax during melting. For a high heating rate of Q = 0.99-84 K ps(-1), melting occurs significantly above Teq. Surprisingly, an increase in heating rate leads to temperature reduction at the 3 nm wide moving interfaces due to fast absorption of the heat of fusion. A significant, rapid temperature drop (100-500 K, even below melting temperature) at the very end of melting is revealed, which is caused by the collision of two finite-width interfaces and accelerated melting in about the 5 nm zone. For Q = 25-84 K ps(-1), standing elastic stress waves are observed in a solid with nodal points at the moving solid-melt interfaces, which, however, do not have a profound effect on melting time or temperatures. When surface melting is suppressed, barrierless bulk melting occurs in the entire sample, and elastodynamic effects are more important. Good correspondence with published, experimentally-determined melting time is found for a broad range of heating rates. Similar approaches can be applied to study various phase transformations in different materials and nanostructures under high heating rates.

  3. Evaluated the adverse effects of cadmium and aluminum via drinking water to kidney disease patients: Application of a novel solid phase microextraction method.

    Science.gov (United States)

    Panhwar, Abdul Haleem; Kazi, Tasneem Gul; Naeemullah; Afridi, Hassan Imran; Shah, Faheem; Arain, Mohammad Balal; Arain, Salma Aslam

    2016-04-01

    In present study aluminum (Al) and cadmium (Cd) were determined in ground water samples and assesses human health risks associated with elevated concentrations of toxic metals in dissolved form, using a novel solid phase microextraction (SPμE). Ground water sample (n=200) and biological sample (blood) of patients having chronic kidney disorders (CKD) along with healthy control subjects of same area (southern part of Pakistan) were collected. A simple system, including the micropipette tip packed with modified ionic liquid-activated carbon cloth (IL-ACC) coated with 8-hydroxyqunilone (8-HQ) attached to syringe. The analytes in water and acid digested blood samples were manually drawn for 2-10 cycles (drawing/discharging) at different pH range. The analytes sorbed on coated ACC were then desorbed with 2.0molL(-1) HNO3 in ethanol by drawing/discharging cycles for 1-5 times. The concentration of extracted analytes was determined by electrothermal atomic absorption spectrometer. The influence of different variables on the extraction efficiency of Cd and Al, were optimized. The Al and Cd concentrations in groundwater were found to be elevated than recommended limits by the World Health Organization. The urinary N-acetyl-h-glucosaminidase values were significantly higher in CKD patients as compared to refrent subjects (p<0.001). The significant variation in levels of Cd and Al were observed in blood samples of CKD patients than referents subjects (p<0.01). The strong positive correlation among Al and Cd levels in groundwater versus blood samples of CKD patients (r=0.82-0.85) p<0.01) was observed than those values calculated for referent subjects (r=0.425-0.536). PMID:27037653

  4. Evaluated the adverse effects of cadmium and aluminum via drinking water to kidney disease patients: Application of a novel solid phase microextraction method.

    Science.gov (United States)

    Panhwar, Abdul Haleem; Kazi, Tasneem Gul; Naeemullah; Afridi, Hassan Imran; Shah, Faheem; Arain, Mohammad Balal; Arain, Salma Aslam

    2016-04-01

    In present study aluminum (Al) and cadmium (Cd) were determined in ground water samples and assesses human health risks associated with elevated concentrations of toxic metals in dissolved form, using a novel solid phase microextraction (SPμE). Ground water sample (n=200) and biological sample (blood) of patients having chronic kidney disorders (CKD) along with healthy control subjects of same area (southern part of Pakistan) were collected. A simple system, including the micropipette tip packed with modified ionic liquid-activated carbon cloth (IL-ACC) coated with 8-hydroxyqunilone (8-HQ) attached to syringe. The analytes in water and acid digested blood samples were manually drawn for 2-10 cycles (drawing/discharging) at different pH range. The analytes sorbed on coated ACC were then desorbed with 2.0molL(-1) HNO3 in ethanol by drawing/discharging cycles for 1-5 times. The concentration of extracted analytes was determined by electrothermal atomic absorption spectrometer. The influence of different variables on the extraction efficiency of Cd and Al, were optimized. The Al and Cd concentrations in groundwater were found to be elevated than recommended limits by the World Health Organization. The urinary N-acetyl-h-glucosaminidase values were significantly higher in CKD patients as compared to refrent subjects (p<0.001). The significant variation in levels of Cd and Al were observed in blood samples of CKD patients than referents subjects (p<0.01). The strong positive correlation among Al and Cd levels in groundwater versus blood samples of CKD patients (r=0.82-0.85) p<0.01) was observed than those values calculated for referent subjects (r=0.425-0.536).

  5. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  6. Catalyzed light hydride nanomaterials embedded in a micro-channels hydrogen storage container.

    Science.gov (United States)

    Dehouche, Zahir; Peretti, Hernán A; Yoo, Yeong; Belkacemi, Khaled; Goyette, Jacques

    2009-01-01

    Activated alloys synthesized by arc-melting were examined as catalysts for improving the hydrogen sorption characteristics of nanostructured magnesium hydride, proposed as a reversible hydrogen storage material. The MgH(2)-catalyst absorbing materials were prepared by ball milling of pure MgH(2) with hydrided Zr(47)Ni(53), Zr(9)Ni(11), and other alloys investigated. The nanostructured MgH(2)-intermetallic systems were tested at 250 degrees C and catalyst addition of eutectoid Zr(47)Ni(53) resulted in the fastest desorption time and highest initial desorption rate. The catalyzed Mg-hydride with activated Zr(9)Ni(11) and Zr(7)Ni(10) phases showed fast desorption kinetics. Moreover, the results demonstrated that the composition of dispersed Zr(x)Ni(y)catalysts has a strong influence on the amount of accumulated hydrogen and desorption rate of Mg-nanocomposite. Part two covers advanced micro-channels hydrogen storage module design based on the results of semi-empirical computer simulations of heat and mass transfers in the container. The micro-channels reservoir concept offers many advantages over the conventional metal hydride hydrogen storage system. It is a micro-structured system that can pack a lot of power into a small space and dissipate effectively the heat of the sorption reactions. This review summarizes recent patents related to CNTS.

  7. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Börries, S., E-mail: stefan.boerries@hzg.de [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Metz, O.; Pranzas, P.K. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Bücherl, T. [ZTWB Radiochemie München (RCM), Technische Universität München (TUM), Walther-Meissner-Str. 3, D-85748 Garching (Germany); Söllradl, S. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII), Technische Universität München (TUM), Lichtenbergstr. 1, D-85748 Garching (Germany); Dornheim, M.; Klassen, T.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

    2015-10-11

    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  8. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    International Nuclear Information System (INIS)

    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail

  9. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bücherl, T.; Söllradl, S.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2015-10-01

    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  10. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples.

    Science.gov (United States)

    Lirio, Stephen; Liu, Wan-Ling; Lin, Chen-Lan; Lin, Chia-Her; Huang, Hsi-Ya

    2016-01-01

    In this study, aluminum based metal-organic framework (Al-MOF)-organic polymer monoliths were prepared via microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA) with different weight percentages of Al-MOF (MIL-53; 37.5-62.5%) and subsequently utilized as sorbent in solid-phase microextraction (SPME) of penicillins (penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, nafcillin). The Al-MOF-polymer was characterized using Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and SEM-energy-dispersive X-ray spectroscopy (SEM-EDS) to clarify the retained crystalline structure well as the homogeneous dispersion of Al-MOF (MIL-53) in polymer monolith. The developed Al-MOF-polymer (MIL-53) monolithic column was evaluated according to its extraction recovery of penicillins. Several parameters affecting the extraction recoveries of penicillins using fabricated Al-MOF-polymer (MIL-53) monolithic column including different MIL-53 weight percentages, column length, pH, desorption solvent, and mobile phase flow rate were investigated. For comparison, different Al-based MOFs (MIL-68, CYCU-4 and DUT-5) were fabricated using the optimized condition for MIL-53-polymer (sample matrix at pH 3, 200μL desorption volume using methanol, 37.5% of MOF, 4-cm column length at 0.100mLmin(-1) flow rate). Among all the Al-MOF-polymers, MIL-53(Al)-polymer still afforded the best extraction recovery for penicillins ranging from 90.5 to 95.7% for intra-day with less than 3.5% relative standard deviations (RSDs) and inter-day precision were in the range of 90.7-97.6% with less than 4.2% RSDs. Meanwhile, the recoveries for column-to-column were in the range of 89.5-93.5% (<3.4% RSDs) while 88.5-90.5% (<5.8% RSDs) for batch-to-batch (n=3). Under the optimal conditions, the limit of detections were in the range of 0.06-0.26μgL(-1) and limit of quantifications between 0.20 and 0.87

  11. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples.

    Science.gov (United States)

    Lirio, Stephen; Liu, Wan-Ling; Lin, Chen-Lan; Lin, Chia-Her; Huang, Hsi-Ya

    2016-01-01

    In this study, aluminum based metal-organic framework (Al-MOF)-organic polymer monoliths were prepared via microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA) with different weight percentages of Al-MOF (MIL-53; 37.5-62.5%) and subsequently utilized as sorbent in solid-phase microextraction (SPME) of penicillins (penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, nafcillin). The Al-MOF-polymer was characterized using Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and SEM-energy-dispersive X-ray spectroscopy (SEM-EDS) to clarify the retained crystalline structure well as the homogeneous dispersion of Al-MOF (MIL-53) in polymer monolith. The developed Al-MOF-polymer (MIL-53) monolithic column was evaluated according to its extraction recovery of penicillins. Several parameters affecting the extraction recoveries of penicillins using fabricated Al-MOF-polymer (MIL-53) monolithic column including different MIL-53 weight percentages, column length, pH, desorption solvent, and mobile phase flow rate were investigated. For comparison, different Al-based MOFs (MIL-68, CYCU-4 and DUT-5) were fabricated using the optimized condition for MIL-53-polymer (sample matrix at pH 3, 200μL desorption volume using methanol, 37.5% of MOF, 4-cm column length at 0.100mLmin(-1) flow rate). Among all the Al-MOF-polymers, MIL-53(Al)-polymer still afforded the best extraction recovery for penicillins ranging from 90.5 to 95.7% for intra-day with less than 3.5% relative standard deviations (RSDs) and inter-day precision were in the range of 90.7-97.6% with less than 4.2% RSDs. Meanwhile, the recoveries for column-to-column were in the range of 89.5-93.5% (polymer was applied for the extraction of penicillin in river water and milk by spiking trace-level penicillin for as low as 50μgL(-1) and 100μgL(-1) with recoveries ranging from 80.8% to 90.9% (<6.7% RSDs) in

  12. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  13. Niche applications of metal hydrides and related thermal management issues

    Energy Technology Data Exchange (ETDEWEB)

    Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Satya Sekhar, B. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Muthukumar, P. [Mechanical Department, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Linkov, V.; Pollet, B.G. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-10-05

    Highlights: • MH H{sub 2} storage, compression & heat management: developments/thermal management. • Thermodynamic criteria for proper selection of MH for different gas phase applications. • Factors influencing on H{sub 2} charge/discharge dynamic performance and energy efficiency. • The improvement of MH heat transfer characteristics is crucial. • Ways of improvement of heat transfer in the MH systems. - Abstract: This short review highlights and discusses the recent developments and thermal management issues related to metal hydride (MH) systems for hydrogen storage, hydrogen compression and heat management (refrigeration, pump and upgrade, etc.). Special attention is paid to aligning the system features with the requirements of the specific application. The considered system features include the MH material, the MH bed on the basis of its corresponding MH container, as well as the layout of the integrated system.

  14. Niche applications of metal hydrides and related thermal management issues

    International Nuclear Information System (INIS)

    Highlights: • MH H2 storage, compression & heat management: developments/thermal management. • Thermodynamic criteria for proper selection of MH for different gas phase applications. • Factors influencing on H2 charge/discharge dynamic performance and energy efficiency. • The improvement of MH heat transfer characteristics is crucial. • Ways of improvement of heat transfer in the MH systems. - Abstract: This short review highlights and discusses the recent developments and thermal management issues related to metal hydride (MH) systems for hydrogen storage, hydrogen compression and heat management (refrigeration, pump and upgrade, etc.). Special attention is paid to aligning the system features with the requirements of the specific application. The considered system features include the MH material, the MH bed on the basis of its corresponding MH container, as well as the layout of the integrated system

  15. Thermal and mechanical properties of hydrides of Zr–Hf alloys

    International Nuclear Information System (INIS)

    Polycrystalline bulk samples of δ-phase Hf hydrides with various Zr contents were prepared and their high-temperature stability and thermal and mechanical properties were investigated. The phase structure was examined between room temperature and 973 K using high-temperature X-ray diffraction and thermogravimetric–differential thermal analysis. From room temperature to 673 K, the coefficient of linear thermal expansion, specific heat capacity, and thermal conductivity were evaluated. The Vickers hardness and sound velocity were measured at room temperature, and the elastic modulus was evaluated. The effect of the Zr content on the high-temperature stability and the thermal and mechanical properties of Hf hydrides was studied. (author)

  16. SANS Measurement of Hydrides in Uranium

    International Nuclear Information System (INIS)

    SANS scattering is shown to be an effective method for detecting the presence of hydrogen precipitates in uranium. High purity polycrystalline samples of depleted uranium were given several hydriding treatments which included extended exposures to hydrogen gas at two different pressures at 630 C as well as a furnace anneal at 850 C followed by slow cooling in the near absence hydrogen gas. All samples exhibited neutron scattering that was in proportion to the expected levels of hydrogen content. While the scattering signal was strong, the shape of the scattering curve indicated that the scattering objects were large sized objects. Only by use of a very high angular resolution SANS technique was it possible to make estimates of the major diameter of the scattering objects. This analysis permits an estimate of the volume fraction and means size of the hydride precipitates in uranium

  17. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV0.62Mn1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  18. Preparation and Properties of Zirconium Hydride on the Surface of MCM-41 Mesoporous Molecular Sieves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Zirconium monohydride bonded to the framework oxygen of MCM-41 surface was prepared by the reaction of tetraneopentyl zirconium with MCM-41 surface hydroxyl groups, followed by the hydrogenolysis of the resulted product. The surface hydride was characterized by using infrared spectroscopy, solid-state NMR, elemental analysis, gas-phase chromatography and chemical probing reaction. It was shown that this surface species is stable below 150 ℃ and can catalytically crack alkanes into methane and ethane at 100 ℃.

  19. METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS

    Science.gov (United States)

    Wellborn, W.; Armstrong, J.R.

    1959-03-10

    A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

  20. Microstructural studies and crystallographic orientation of different zones and δ-hydrides in resistance welded Zircaloy-4 sheets

    Science.gov (United States)

    Kiran Kumar, N. A. P.; Szpunar, Jerzy. A.; He, Zhang

    2011-07-01

    The cold worked stress relieved (CWSR) Zircaloy-4 sheet used as endplate in nuclear fuel bundle is resistance welded with an endcap in argon environment. Later the welded sample is hydrided in a gaseous atmosphere at 400 °C. Optical microscopy (OM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) were used to examine the morphology and crystal orientation of the hydrides. The microstructural changes in different areas of the weld zone, heat affected zone (HAZ) and the as-received zone were analyzed using EBSD technique. Optical examination showed complete random morphological orientation of hydrides and predominantly basket-weave structure in the weld zone, with very few colonies of parallel plate structures. Variant selection for α-phase formation inside prior β-grains was identified at the weld centre. As we move from the weld centre to the as-received zone, the variant selection is found to be less probable. The δ-hydride platelets at the weld zone were always found to be growing perpendicular to the α-colonies having angular difference of 60-63° and follow (0 0 0 1) α-Zr//{1 1 1}δ-ZrH 1.5 orientation relationship with the zirconium matrix. Proposed description of complex distribution of hydrides and alloy microstructure at the weld and heat affected zone will contribute to a better understanding of mechanisms of failure of fuel cladding in various types of nuclear reactors.

  1. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  2. Topotactic Solid-State Metal Hydride Reductions of Sr2MnO4.

    Science.gov (United States)

    Hernden, Bradley C; Lussier, Joey A; Bieringer, Mario

    2015-05-01

    We report novel details regarding the reactivity and mechanism of the solid-state topotactic reduction of Sr2MnO4 using a series of solid-state metal hydrides. Comprehensive details describing the active reducing species are reported and comments on the reductive mechanism are provided, where it is shown that more than one electron is being donated by H(-). Commonly used solid-state hydrides LiH, NaH, and CaH2, were characterized in terms of reducing power. In addition the unexplored solid-state hydrides MgH2, SrH2, and BaH2 are evaluated as potential solid-state reductants and characterized in terms of their reductive reactivities. These 6 group I and II metal hydrides show the following trend in terms of reactivity: MgH2 < SrH2 < LiH ≈ CaH2 ≈ BaH2 < NaH. The order of the reductants are discussed in terms of metal electronegativity and bond strengths. NaH and the novel use of SrH2 allowed for targeted synthesis of reduced Sr2MnO(4-x) (0 ≤ x ≤ 0.37) phases. The enhanced control during synthesis demonstrated by this soft chemistry approach has allowed for a more comprehensive and systematic evaluation of Sr2MnO(4-x) phases than previously reported phases prepared by high temperature methods. Sr2MnO3.63(1) has for the first time been shown to be monoclinic by powder X-ray diffraction and the oxidative monoclinic to tetragonal transition occurs at 450 °C. PMID:25894860

  3. Effects of Hydride Precipitation on the Stress Developed in ZrO2 Thin Film

    International Nuclear Information System (INIS)

    It has been reported that the effect of thermal redistribution of hydrides across the metal-oxide interface, coupled with thermal feedback on the metal-oxide interface, is a dominating factor in the accelerated oxidation in zirconium alloys cladding PWR fuel. Especially the precipitated and redistributed hydrides are known to relieve the stress imposed onto the metal/oxide interface during the waterside corrosion of zirconium alloys. Without the hydrides the stress exceeds the critical value of 3 GPa which induce the tetragonal ZrO2 phase formation. Therefore, in this study enhanced oxidation due to the precipitated hydrides are experimentally confirmed and stress on the interface is measured with steam beam apparatus in order to support hypothesis hydrides precipitates relieve the stress. In steam beam apparatus, Oxidation reaction occurs only the surface exposed to the steam beam. In order to avoid the oxidation of the other side of specimen, whole chamber is evacuated down to ultra-high vacuum (down to 10-5 Torr). The oxide thickness is measured with weight gain measurement and the curvature of the single side oxidized specimen is measured with spherometer. Specimen is thin film zirconium foil whose thickness is 40μm and diameter is 20mm. Only single surface of specimen exposed to the steam beam oxidizes at 400 .deg. C which is attained by halogen lamp. Basically the measurement technique used in this study is based on the curvature build-up during the single side oxidation process. The stress build-up can be directly evaluated according to the Stoney's formula. Measured stress from the curvature estimation are plotted as a function of thin oxide film thickness. And atmospheric oxidation was also carried out in the electric furnace using the specimen holder, which is designed to protect the other side oxidation of specimen. The stress in the oxide increases as the thickness decreases and the highest stress measured in this study is 5.2 GPa which is higher than

  4. Rapid Microwave Synthesis, Characterization and Reactivity of Lithium Nitride Hydride, Li4NH

    Directory of Open Access Journals (Sweden)

    Nuria Tapia-Ruiz

    2013-11-01

    Full Text Available Lithium nitride hydride, Li4NH, was synthesised from lithium nitride and lithium hydride over minute timescales, using microwave synthesis methods in the solid state for the first time. The structure of the microwave-synthesised powders was confirmed by powder X-ray diffraction [tetragonal space group I41/a; a = 4.8864(1 Å, c = 9.9183(2 Å] and the nitride hydride reacts with moist air under ambient conditions to produce lithium hydroxide and subsequently lithium carbonate. Li4NH undergoes no dehydrogenation or decomposition [under Ar(g] below 773 K. A tetragonal–cubic phase transition, however, occurs for the compound at ca. 770 K. The new high temperature (HT phase adopts an anti-fluorite structure (space group Fm 3̅ m; a = 4.9462(3 Å with N3− and H− ions disordered on the 4a sites. Thermal treatment of Li4NH under nitrogen yields a stoichiometric mixture of lithium nitride and lithium imide (Li3N and Li2NH respectively.

  5. High energy density battery based on complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  6. Ultra-sonic observation in niobium hydride precipitation

    International Nuclear Information System (INIS)

    The hidrogen embrittlement of exothermic ocluders, had been considered as due to applied stress induced hydride precipitates leading to brittle fracture. The results of simultaneous measurements of macroscopic deformation and elastic change due to hydride precipitation, using the ultrasonic pulse-echo technique are showed. THen it was tested the possibility of kinectis precipitation parameters evoluation. (Author)

  7. Size Controlled Synthesis of Germanium Nanocrystals: Effect of Ge Precursor and Hydride Reducing Agent

    Directory of Open Access Journals (Sweden)

    Darragh Carolan

    2015-01-01

    Full Text Available Germanium nanocrystals (Ge NCs have attracted increasing attention as a promising alternative to II–VI and IV–VI semiconductor materials as they are cheap, “green,” electrochemically stable, and compatible with existing CMOS processing methods. Germanium is a particularly attractive material for optoelectronic applications as it combines a narrow band gap with high carrier mobilities and a large exciton Bohr radius. Solution-phase synthesis and characterisation of size monodisperse alkyl-terminated Ge NCs are demonstrated. Ge NCs were synthesised under inert atmospheric conditions via the reduction of Ge halide salts (GeX4 by hydride reducing agents within inverse micelles. Regulation of NC size is achieved by variation of germanium precursor and the strength of hydride reducing agents used. UV-Visible absorbance and photoluminescence spectroscopy showed strong significant quantum confinement effects, with moderate absorption in the UV spectral range, and strong emission in the violet with a marked dependence on excitation wavelength.

  8. The Microstructure and Properties of Diffusion Layer of Spray Aluminum

    Institute of Scientific and Technical Information of China (English)

    YE Hong; YAN Zhonglin; SUN Zhifu

    2005-01-01

    After diffusion processing of thermal spraying, aluminum on 20 # steel is discussed in this article. Variations of microstructure, composition as well as microhardness and corrosion resistance of diffusion layer of spray aluminum were explored by means of X- ray diffraction, scanning electron microscopy (SEM) and electron probe microanalysis ( EPMA ). The result shows that the diffusion layer of spray aluminum consists of η phase ( Fe2 Al5 ), ζ phase ( FeAl2 ), β1 phase ( Fe3Al ), β1 phase ( Fe3 Al ) and α phase from surface to substrate. There are balanced transitions between phases. The layer has extra high hardncss and corrosion resistance.

  9. Modular hydride beds for mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, M.E.; Stewart, K.D.

    1997-08-01

    Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

  10. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0)h plane of the face centered cubic (FCC) GdH2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1)h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0)h plane of the cubic GdH2 takes place, whereas for the GCs, a change to the (1 1 1)h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1)m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1)m||(1 1 1)h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to the

  11. Low-frequency excitations in zirconium hydrides

    International Nuclear Information System (INIS)

    The slow inelastic neutron scattering (INS) on ZrHx systems (x = 0.38, 0.52) revealed new excitations located within the energy range 2-10 MeV. Besides the acoustic vibrations specific to α-HCP Zr and γ-FCO Zr hydride the fine structure of these excitations is clearly observed. The origin of the new observed peaks is not very clear but a proton tunneling or a resonance effect in α-Zr lattice could be taken into account

  12. Tritium immobilization and packaging using metal hydrides

    International Nuclear Information System (INIS)

    Tritium recovered from CANDU heavy water reactors will have to be packaged and stored in a safe manner. Tritium will be recovered in the elemental form, T2. Metal tritides are effective compounds in which to immobilize the tritium as a stable non-reactive solid with a high tritium capacity. The technology necessary to prepare hydrides of suitable metals, such as titanium and zirconium, have been developed and the properties of the prepared materials evaluated. Conceptual designs of packages for containing metal tritides suitable for transportation and long-term storage have been made and initial testing started. (author)

  13. Metal hydrides for concentrating solar thermal power energy storage

    Science.gov (United States)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  14. Recent advances in metal hydrides for clean energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ronnebro, Ewa; Majzoub, Eric H.

    2013-06-01

    Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

  15. Helium trapping at erbium oxide precipitates in erbium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

  16. Bonding in Zintl phase hydrides: density functional calculations for SrAlSiH, SrAl2H2, SrGa2H2 and BaGa2H2

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Alaska P [ORNL; Singh, David J [ORNL

    2008-01-01

    We investigate the bonding characteristics of SrAlSiH, SrAl{sub 2}H{sub 2}, SrGa{sub 2}H{sub 2}, and BaGa{sub 2}H{sub 2} using density functional calculations. The mixed bonding characteristic of other families of Zintl phases is found, with the formation of covalent sp{sup 2} bonds in the Al/Ga/Al-Si planes of the various compounds. On the other hand the Sr and Ba atoms occur as divalent cations, while the H is anionic. The results indicate that insulating SrSiAlH may be a switchable ferroelectric.

  17. Noble-gas hydrides: new chemistry at low temperatures.

    Science.gov (United States)

    Khriachtchev, Leonid; Räsänen, Markku; Gerber, R Benny

    2009-01-20

    Noble-gas chemistry has been undergoing a renaissance in recent years, due in large part to noble-gas hydrides, HNgY, where Ng = noble-gas atom and Y = electronegative fragment. These molecules are exceptional because of their relatively weak bonding and large dipole moments, which lead to strongly enhanced effects of the environment, complexation, and reactions. In this Account, we discuss the matrix-isolation synthesis of noble-gas hydrides, their spectroscopic and structural properties, and their stabilities.This family of species was discovered in 1995 and now has 23 members that are prepared in noble-gas matrices (HXeBr, HKrCl, HXeH, HXeOH, HXeO, etc.). The preparations of the first neutral argon molecule, HArF, and halogen-free organic noble-gas molecules (HXeCCH, HXeCC, HKrCCH, etc.) are important highlights of the field. These molecules are formed by the neutral H + Ng + Y channel. The first addition reaction involving HNgY molecules was HXeCC + Xe + H --> HXeCCXeH, and this led to the first hydride with two noble-gas atoms (recently extended by HXeOXeH). The experimental synthesis of HNgY molecules starts with production of H and Y fragments in solid noble gas via the UV photolysis of suitable precursors. The HNgY molecules mainly form upon thermal mobilization of the fragments.One of the unusual properties of these molecules is the hindered rotation of some HNgY molecules in solid matrices; this has been theoretically modeled. HNgY molecules also have unusual solvation effects, and the H-Xe stretching mode shifts to higher frequencies (up to about 150 cm-1) upon interaction with other species.The noble hydrides have a new bonding motif: HNgY molecules can be represented in the form (H-Ng)+Y-, where (H-Ng)+ is mainly covalent, whereas the interaction between (HNg)+ and Y- is predominantly ionic. The HNgY molecules are highly metastable species representing high-energy materials. The decomposition process HNgY --> Ng + HY is always strongly exoergic

  18. A model to describe the mechanical behavior and the ductile failure of hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C

    Science.gov (United States)

    Le Saux, M.; Besson, J.; Carassou, S.

    2015-11-01

    A model is proposed to describe the mechanical behavior and the ductile failure at 25, 350 and 480 °C of Zircaloy-4 cladding tubes, as-received and hydrided up to 1200 wt. ppm (circumferential hydrides). The model is based on the Gurson-Tvergaard-Needleman model extended to account for plastic anisotropy and viscoplasticity. The model considers damage nucleation by both hydride cracking and debonding of the interface between the Laves phase precipitates and the matrix. The damage nucleation rate due to hydride cracking is directly deduced from quantitative microstructural observations. The other model parameters are identified from several experimental tests. Finite element simulations of axial tension, hoop tension, expansion due to compression and hoop plane strain tension experiments are performed to assess the model prediction capability. The calibrated model satisfactorily reproduces the effects of hydrogen and temperature on both the viscoplastic and the failure properties of the material. The results suggest that damage is anisotropic and influenced by the stress state for the non-hydrided or moderately hydrided material and becomes more isotropic for high hydrogen contents.

  19. Development of hydride absorber for fast reactor. Application of hafnium hydride to control rod of large fast reactor

    International Nuclear Information System (INIS)

    The application of hafnium hydride (Hf-hydride) to a control rod for a large fast reactor where the B4C control rod is originally employed is studied. Three types of Hf-hydride control rods are designed. The control rod worth and its change during the burnup are evaluated for different hydrogen-to-hafnium ratios and are compared with those of the original B4C control rod. The result indicates that the worths of the Hf-hydride and the 10B-enriched B4C control rods are approximately the same, and the lifetime of the Hf-hydride control rod is almost four times longer than that of the 10B-enriched B4C control rod. The core performances of the shutdown margin, sodium void reactivity, Doppler reactivity coefficient, and breeding ratio are analyzed. It is indicated that those for the Hf-hydride control rod are almost the same as those for the original B4C control rod. The behavior of neutrons moderated by the Hf-hydride control rod is analyzed. It is confirmed that the Hf-hydride control rod does not cause any thermal spike problems in the fast reactor core. (author)

  20. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  1. Rheology of suspensions with aluminum nano-particles

    Directory of Open Access Journals (Sweden)

    Ulrich Teipel

    2009-01-01

    Full Text Available Nano-scale aluminum particles are innovative materials increasingly used in energetic formulations. In this contribution, the rheological behavior of suspensions with either paraffin oil or HTPB as the matrix fluid and nano-scale aluminum (ALEX as the dispersed phase is described and discussed. The paraffin oil/aluminum suspensions exhibit non-Newtonian flow behavior over a wide range of concentrations, whereas the HTPB/aluminum suspensions exhibitNewtonian behavior (i.e. the viscosity is independent of shear stress up to a concentration of 50 vol.% aluminum. Both systems have unusual viscoelastic properties in that their elastic moduli are independent of the solids concentration.

  2. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  3. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  4. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  5. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  6. The role of chemical free energy and elastic strain in the nucleation of zirconium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, A.T.W. [Nuclear Materials Group, Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario K7L 3N6 (Canada); Toffolon-Masclet, C. [CEA-Saclay, Nuclear Materials Department, SRMA/LA2M, F-91191 Gif-Sur-Yvette (France); Almer, J. [Argonne National Laboratory, Argonne, IL 60439 (United States); Daymond, M.R., E-mail: daymond@me.queensu.ca [Nuclear Materials Group, Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario K7L 3N6 (Canada)

    2013-10-15

    In this work a combination of synchrotron X-ray diffraction and thermodynamic modelling has been used to study the dissolution and precipitation of zirconium hydride in α-Zr establishing the role of elastic misfit strain and chemical free energy in the α → α + δ phase transformation. The nucleation of zirconium hydride is dominated by the chemical free energy where the chemical driving force for hydride precipitation is proportional to the terminal-solid solubility for precipitation and can be predicted by a function that is analogous to the universal nucleation parameter for the bainite transformation in ferrous alloys. The terminal-solid solubility for precipitation was found to be kinetically limited ⩾287 °C at a cooling rate of 5 °C min{sup −1} or greater. The terminal solubilities were established using an offset method applied to the lattice strain data where a resolution of ∼10 wppm H can be achieved in the 〈c〉-direction. This is aided by the introduction of intra-granular strains in the 〈c〉-direction during cooling as a result of the thermal expansion anisotropy which increases the anisotropy associated with the misfitting H atoms within the α-Zr lattice.

  7. Equation of state of palladium hydride and deuteride to 100 GPa

    Science.gov (United States)

    Brownsberger, Keenan; Ahart, Muhtar; Somayazulu, Maddury; Gramsch, Stephen; Hemley, Russell

    To study the behavior of palladium hydrides under pressure, we loaded palladium foils in hydrogen or deuterium environments in two separate diamond anvil cells. We subsequently measured x-ray diffraction up to 100 GPa at room temperature. No structural phase transition was observed for either PdDx or PdHx between 0 GPa and 100 GPa. The pressure-volume data were fitted with the third-order Birch-Murnaghan equation of state, which gave an initial volume of 10.8 cm3/mol, a bulk modulus of 153 GPa, and its derivative of 4.3 for palladium hydride. An initial volume of 10.6 cm3/mol, a bulk modulus of 162 GPa, and its pressure derivative of 4.6 were determined for palladium deuteride. From initial volumes, we conclude that x =1 for both PdDx and PdHx. This work is supported by the Carnegie-DOE Alliance Center. EOS of palladium hydride and deuteride to 100 GPa.

  8. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  9. Develop improved metal hydride technology for the storage of hydrogen. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.

    1998-12-04

    The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

  10. PIE techniques for hydride reorientation test at NDC

    International Nuclear Information System (INIS)

    Dry storage of spent fuels in the interim storage facility is being planned in Japan. However, the gradual deterioration of the mechanical property of fuel cladding due to internal pressure and temperature during the storage term is known. Therefore, the integrity of stored fuel rods should be confirmed before the start of dry storage. For the last several years, NDC had a lot of experiences on the hydride reorientation test. The specimen preparation techniques on the hydride reorientation test and the mechanical testing techniques after the hydride reorientation are shown in this paper. (author)

  11. Development of delayed hydride cracking resistant-pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Kim, S. S.; Yim, K. S

    2000-10-01

    For the first time, we demonstrate that the pattern of nucleation and growth of a DHC crack is governed by the precipitation of hydrides so that the DHC velocity and K{sub IH} are determined by an angle of the cracking plane and the hydride habit plane 10.7. Since texture controls the distribution of the 10.7 habit plane in Zr-2.5Nb pressure tube, we draw a conclusion that a textural change in Zr-2.5Nb tube from a strong tangential texture to the radial texture shall increase the threshold stress intensity factor, K{sub IH}, and decrease the delayed hydride cracking velocity. This conclusion is also verified by a complimentary experiment showing a linear dependence of DHCV and K{sub IH} with an increase in the basal component in the cracking plane. On the basis of the study on the DHC mechanism and the effect of manufacturing processes on the properties of Zr-2.5Nb tube, we have established a manufacturing procedure to make pressure tubes with improved DHC resistance. The main features of the established manufacturing process consist in the two step-cold pilgering process and the intermediate heat treatment in the {alpha} + {beta} phase for Zr-2.5Nb alloy and in the {alpha} phase for Zr-1Nb-1.2Sn-0.4Fe alloy. The manufacturing of DHC resistant-pressure tubes of Zr-2.5Nb and Zr-1N-1.2Sn-0.4Fe was made in the ChMP zirconium plant in Russia under a joint research with Drs. Nikulina and Markelov in VNIINM (Russia). Zr-2.5Nb pressure tube made with the established manufacturing process has met all the specification requirements put by KAERI. Chracterization tests have been jointly conducted by VNIINM and KAERI. As expected, the Zr-2.5Nb tube made with the established procedure has improved DHC resistance compared to that of CANDU Zr-2.5Nb pressure tube used currently. The measured DHC velocity of the Zr-2.5Nb tube meets the target value (DHCV <5x10{sup -8} m/s) and its other properties also were equivalent to those of the CANDU Zr-2.5Nb tube used currently. The Zr-1Nb-1

  12. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  13. Graphene-aluminum nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bartolucci, Stephen F., E-mail: stephen.bartolucci@us.army.mil [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Paras, Joseph [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Rafiee, Mohammad A. [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Rafiee, Javad [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina; Kapoor, Deepak [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Koratkar, Nikhil, E-mail: koratn@rpi.edu [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-10-15

    Highlights: {yields} We investigated the mechanical properties of aluminum and aluminum nanocomposites. {yields} Graphene composite had lower strength and hardness compared to nanotube reinforcement. {yields} Processing causes aluminum carbide formation at graphene defects. {yields} The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  14. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    Science.gov (United States)

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes. PMID:27491848

  15. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    Science.gov (United States)

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

  16. Polytypic transformations of aluminum hydroxide: A mechanistic investigation

    Institute of Scientific and Technical Information of China (English)

    Thimmasandra Narayan Ramesh

    2012-01-01

    The diffusion of ammonia vapors into a solution of aluminum nitrate or ferric nitrate results in the precipitation of their respective hydroxides and oxyhydroxides.Polymorphic phase formation of aluminum hydroxide is controlled by the rate of crystallization.The PXRD patterns of products obtained via vapor phase diffusion revealed that poorly ordered aluminum hydroxide is formed during the initial stages of crystallization.After 8 days,the formation of the bayerite phase of aluminum hydroxide was observed.Upon prolonged exposure to ammonia vapors,bayerite was transformed into gibbsite.The infrared spectrum of the product confirmed the presence of different polytypic phases of aluminum hydroxide.The results demonstrated that the crystal structure of metal hydroxides is controlled by the rate of crystallization,nature of the metal ion,site selectivity and specificity and preparative conditions.

  17. Artificial exomuscle investigations for applications-metal hydride

    International Nuclear Information System (INIS)

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  18. Out-of-pile accelerated hydriding of Zircaloy fasteners

    International Nuclear Information System (INIS)

    Mechanical joints between Zircaloy and nickel-bearing alloys, mainly the Zircaloy-4/Inconel-600 combination, were exposed to water at 4500F and 5200F to study hydriding of Zircaloy in contact with a dissimilar metal. Accelerated hydriding of the Zircaloy occurred at both temperatures. At 4500F the dissolved hydrogen level of the water was over ten times that at 5200F. At 5200F the initially high hydrogen ingress rate decreased rapidly as exposure time increased and was effectively shut off in about 25 days. Severely hydrided Zircaloy components successfully withstood thermal cycling and mechanical testing. Chromium plating of the nickel-bearing parts was found to be an effective and practical barrier in preventing nickel-alloy smearing and accelerated hydriding of Zircaloy

  19. Artificial exomuscle investigations for applications-metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane [Victhom Human Bionics Inc., Saint-Augustin-de-Desmaures, QC (Canada)

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  20. Electronic structure and optical properties of lightweight metal hydrides

    NARCIS (Netherlands)

    Setten, van M.J.; Popa, V.A.; Wijs, de G.A.; Brocks, G.

    2007-01-01

    We study the dielectric functions of the series of simple hydrides LiH, NaH, MgH2, and AlH3, and of the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4, and Mg(AlH4)2, using first-principles density-functional theory and GW calculations. All compounds are large gap insulators with GW single-partic

  1. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  2. Thin-film metal hydrides for solar energy applications

    OpenAIRE

    2012-01-01

    Thin-film metal hydrides may become important solar energy materials in the future. This thesis demonstrates interesting material properties of metal hydride films, relevant for applications as semiconducting materials for photovoltaic (PV) solar cells and for regulation of light using smart window technology. List of papers. Papers II-VI are removed from the thesis due to copyright restrictions. Paper I C. Platzer-Björkman, T. Mongstad, S. Zh. Karazhanov, J. P. Mæhlen, E. S. Marst...

  3. Method of selective reduction of polyhalosilanes with alkyltin hydrides

    Science.gov (United States)

    Sharp, Kenneth G.; D'Errico, John J.

    1989-01-01

    The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.

  4. Method of selective reduction of halodisilanes with alkyltin hydrides

    Science.gov (United States)

    D'Errico, John J.; Sharp, Kenneth G.

    1989-01-01

    The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.

  5. Method of Preventing Shrinkage of Aluminum Foam Using Carbonates

    Directory of Open Access Journals (Sweden)

    Takashi Nakamura

    2011-12-01

    Full Text Available Metallic foams are commonly produced using titanium hydride as a foaming agent. Carbonates produce aluminum foam with a fine and homogenous cell structure. However, foams produced using carbonates show marked shrinkage, which is clearly different from those produced using titanium hydride. It is essential for practical applications to clarify foam shrinkage and establish a method of preventing it. In this research, cell structures were observed to study the shrinkage of aluminum foam produced using carbonates. The cells of foam produced using dolomite as a foaming agent connected to each other with maximum expansion. It was estimated that foaming gas was released through connected cells to the outside. It was assumed that cell formation at different sites is effective in preventing shrinkage induced by cell connection. The multiple additions of dolomite and magnesium carbonate, which have different decomposition temperatures, were applied. The foam in the case with multiple additions maintained a density of 0.66 up to 973 K, at which the foam produced using dolomite shrank. It was verified that the multiple additions of carbonates are effective in preventing shrinkage.

  6. 金属铝固液气完全物态方程研究%A solid-liquid-gas three-phase complete equation of state of aluminum

    Institute of Scientific and Technical Information of China (English)

    于继东; 李平; 王文强; 吴强

    2014-01-01

    Based on the GRAY equation of state (EOS), we establish a solid-liquid-gas three-phase complete EOS, and compare it with the experimental isothermal compression data, Hugoniot data, melting data and thermodynamic functions under ambient pressure. It is indicated that the EOS in this paper can describe reasonably the thermodynamic state of aluminum in a wide region.%基于GRAY模型建立了金属铝的固液气三相完全物态方程,并与等温压缩线、Hugoniot线、熔化线以及零压热力学函数的实验结果进行对比,表明本物态方程可合理描述金属铝在宽广热力学空间的热力学状态。

  7. Novel fuel cell stack with coupled metal hydride containers

    Science.gov (United States)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng

    2016-10-01

    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  8. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  9. Effect of niobium additions on initial hydriding kinetics of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruiwen, E-mail: ruiwenli@163.com; Wang, Xiaolin

    2014-06-01

    To study the behavior of hydrogen corrosion at the surface of U, U–2.5 wt%Nb alloy and U–5.7 wt%Nb, a gas–solid reaction system with an in situ microscope was designed. The nucleation and growth of the hydride of the alloy were continuously observed and recorded by a computer. The different characteristics of the hydrides on U metal and U–2.5 wt%Nb showed that the later alloy is more susceptible to hydrogen corrosion than the former. The growth rate of hydride of U–2.5 wt%Nb, calculated by measuring the perimeter of the hydride spots recorded by the in situ microscope, exhibited a reaction temperature dependency in the range of 40–160 °C, for pressure of 0.8 × 10{sup 5} Pa. An Arrhenius plot for growth rate versus temperature yielded activation energy of 24.34 kJ/mol for the hydriding of U–2.5 wt%Nb alloy. The maximum hydriding rate was obtained at 125 °C, whose thermodynamics reason was discussed.

  10. Microbial corrosion of aluminum alloy.

    Science.gov (United States)

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors. PMID:10592801

  11. Aluminum plasmonic multicolor meta-hologram.

    Science.gov (United States)

    Huang, Yao-Wei; Chen, Wei Ting; Tsai, Wei-Yi; Wu, Pin Chieh; Wang, Chih-Ming; Sun, Greg; Tsai, Din Ping

    2015-05-13

    We report a phase-modulated multicolor meta-hologram (MCMH) that is polarization-dependent and capable of producing images in three primary colors. The MCMH structure is made of aluminum nanorods that are arranged in a two-dimensional array of pixels with surface plasmon resonances in red, green, and blue. The aluminum nanorod array is patterned on a 30 nm thick SiO2 spacer layer sputtered on top of a 130 nm thick aluminum mirror. With proper design of the structure, we obtain resonances of narrow bandwidths to allow for implementation of the multicolor scheme. Taking into account of the wavelength dependence of the diffraction angle, we can project images to specific locations with predetermined size and order. With tuning of aluminum nanorod size, we demonstrate that the image color can be continuously varied across the visible spectrum.

  12. INFLUENCE OF TEMPERATURE AND PRESSURE ON THE KINETICS OF Mg-6mol%LaNi PREPARED BY HYDRIDING COMBUSTION SYNTHESIS

    Institute of Scientific and Technical Information of China (English)

    Q. Li; K.C. Chou; K.D. Xu; L.J. Jiang; J.Y. Zhang; X.G. Lu

    2006-01-01

    A new model to study the hydriding/dehydriding (H/D) kinetic mechanism has been applied in the two-phase (α-β) region of the Mg-6mol%LaNi composite at temperature and pressure ranging from 523 to 623K and 0.256 to 0.992MPa H2, respectively. The coincidence of the theoretical calculation with the experimental data indicates that the rate-limiting step is hydrogen diffusion in the β phase for hydriding process and the diffusion of hydrogen in the α solid solution for hydrogen desorption with activation energies 89500 and 87900J/mol H2 for H/D processes, respectively, which were much smaller than those of MgH2 and can be attributed to the La and Ni additions.

  13. Nitrogen hydrides in the cold envelope of IRAS16293-2422

    OpenAIRE

    Hily-Blant, Pierre; Maret, Sébastien; Bacmann, A.; Bottinelli, Sandrine; Parise, Bérengère; Caux, Emmanuel; Faure, Alexandre

    2010-01-01

    Nitrogen is the fifth most abundant element in the Universe, yet the gas-phase chemistry of N-bearing species remains poorly understood. Nitrogen hydrides are key molecules of nitrogen chemistry. Their abundance ratios place strong constraints on the production pathways and reaction rates of nitrogen-bearing molecules. We observed the class 0 protostar IRAS16293-2422 with the heterodyne instrument HIFI, covering most of the frequency range from 0.48 to 1.78~THz at high spectral resolution. Th...

  14. Aspects of aluminum toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, C.D.; Savory, J.; Wills, M.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  15. A study on the antiferromagnetic behavior of the hydride CeRuGeH adopting the ZrCuSiAs-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, B; Gaudin, E [CNRS, Universite de Bordeaux, ICMCB, 87 Avenue du Docteur Albert Schweitzer, 33608 Pessac Cedex (France); Geibel, C; Canales, N C [Max Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, 01187 Dresden (Germany); Hermes, W; Poettgen, R, E-mail: chevalie@icmcb-bordeaux.cnrs.f [Institut fuer Anorganische und Analytische Chemie, Corrensstrasse 30, Westfaelische Wilhelms Universitaet Muenster, 48149 Muenster (Germany)

    2010-02-03

    The non-magnetic heavy fermion behavior of CeRuGe is destroyed by hydrogen insertion. The resulting hydride CeRuGeH, investigated by magnetization, thermoelectric, electrical resistivity and specific heat measurements, exhibits an antiferromagnetic ordering below T{sub N} = 4.0(2) K weakly influenced by the Kondo effect. Below T{sub N}, a metamagnetic double transition induced by an applied magnetic field was evidenced for CeRuGeH. This hydride presents a simple field-temperature phase diagram in comparison to that determined for the equivalent compound CeRuSiH.

  16. Effect of lanthanum hydride on microstructures and hydrogen storage performances of 2LiNH2-MgH2 system

    Institute of Scientific and Technical Information of China (English)

    朱惜林; 韩树民; 赵鑫; 李媛; 刘宝忠

    2014-01-01

    Hydrogen storage properties of 2LiNH2-MgH2 system were improved by adding lanthanum hydride (LaH3), and the role of LaH3 in hydrogen sorption process of Li-Mg-N-H system was investigated. Temperature programmed sorption results showed that the addition of lanthanum hydride reduced the dehydriding/hydriding onset temperature of 2LiNH2-MgH2 system by at least 15 K. Moreover, A 0.053 wt.%/min average rate was determined for the hydrogen desorption of 2LiNH2-MgH2-0.05LaH3 composite, while it was only 0.035 wt.%/min for 2LiNH2-MgH2 system. Hydrogen absorption capacity increased from 1.62 wt.% to 2.12 wt.% within 200 min by adding LaH3 into 2LiNH2-MgH2 system at 383 K. In the dehydrogenation of 2LiNH2-MgH2-0.05LaH3 composite, LaH2 transferred to LaN phase, which reversed to LaH2 in the following hydrogen adsorption process. The reversible reaction of LaH2 ef-fectively promoted the hydrogen sorption of Li-Mg-N-H system. Moreover, the homogenous distribution of fine La hydride was fa-vorable to improving effect of lanthanum hydride.

  17. Synthesis and properties of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride

    Energy Technology Data Exchange (ETDEWEB)

    Verbovytskyy, Yu. [Physico-Mechanical Institute, NAS of Ukraine, 5 Naukova str., 79601 Lviv (Ukraine); Zhang, J.; Cuevas, F.; Paul-Boncour, V. [Institut de Chimie et des Materiaux de Paris Est, CMTR, UMR 7182, CNRS-UPEC, 2-8 rue H. Dunant, 94320 Thiais (France); Zavaliy, I., E-mail: zavaliy@ipm.lviv.ua [Physico-Mechanical Institute, NAS of Ukraine, 5 Naukova str., 79601 Lviv (Ukraine)

    2015-10-05

    Graphical abstract: Crystal structure of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride. - Highlights: • Preparation of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride by reactive ball milling. • Crystal structure determination by X-ray powder diffraction. • Electrochemical studies of the ball milled MH/Ni electrodes. - Abstract: The Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} hydride with a grain size of 16 nm was prepared by reactive ball milling. Its crystal structure was studied by X-ray powder diffraction. A tetragonal Mg{sub 2}CoH{sub 5} structure type was suggested for the obtained hydride. The decomposition temperature of the Mg{sub 2}Ni{sub 0.5}Co{sub 0.5}H{sub 4.4} phase was observed at 213 °C. Electrochemical measurements as negative electrode of Ni–MH battery were also performed. Significant improvements can be made by ball-milling the hydride with nickel powder.

  18. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  19. Study on Kinetics of Hydrogen Absorption by Metal Hydride Slurries Ⅰ. Absorption of Hydrogen by Hydrogen Storage Alloy MlNi5 Suspended in Benzene

    Institute of Scientific and Technical Information of China (English)

    安越; 陈长聘; 徐国华; 蔡官明; 王启东

    2002-01-01

    The absorption of hydrogen was studied in metal hydride slurry, which is formed by benzene and hydrogen storage alloy powder. The influence of temperature on the rate of absorption was discussed using three-phase mass transfer model. It is also concluded that the suitable absorption temperature is 313 K.

  20. Simultaneous Heat and Mass Transfer in DU Hydriding

    International Nuclear Information System (INIS)

    The sources of nuclear fusion reaction are deuterium (D) and tritium (T). Generally, D is fused into T, which generates helium atoms and neutrons. At this time, a tremendous amount of energy is generated. D + T → 4He + n (E = 17.6 MeV) Hydrogen is a gas, and cannot be stored in large amounts. In addition, it can be explosive. Therefore, one of the storing methods for hydrogen is metal hydride. In this research, several kinds of metal hydrides including U, Zr, ZrCo, ZrNi, and LaNi5 have been simulated through modeling work of hydrogen absorption, desorption, and pressure effect in a bed using DU. For the exact modeling of the hydriding process, it is necessary to calculate simultaneous heat and mass transfer because, in the hydriding process, not only is hydrogen gas transported by mass transport and chemisorption but heat transfer also occurs through absorption. Therefore, in this paper, we tried to calculate the simultaneous heat and mass transfer using numerical analysis methods. Simultaneous heat and mass transfer in DU hydriding is well fitted compared to the experimental data, and is more reasonable considering only one variable. The hydriding process changes the temperature and atomic ratio simultaneously, and thus it is necessary to consider in company with two transport phenomena. The numerical analysis method applied Euler's method; however, the Runge-Kutta method is a more widely used numerical solution of a differential equation. Therefore, when analyzing the hydriding process, Runge-Kutta or another method will henceforth be applied

  1. The aluminum chemistry and corrosion in alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinsuo [International Nuclear System Engineering, MS-K 575, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: jszhang@lanl.gov; Klasky, Marc; Letellier, Bruce C. [International Nuclear System Engineering, MS-K 575, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2009-02-15

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted.

  2. Joining of parts via magnetic heating of metal aluminum powders

    Science.gov (United States)

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  3. Aluminum-stabilized Nb/sub 3/Sn superconductor

    Science.gov (United States)

    Scanlan, R.M.

    1984-02-10

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  4. Aluminum-stabilized Nb[sub 3]Sn superconductor

    Science.gov (United States)

    Scanlan, R.M.

    1988-05-10

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  5. Reactions of NO with nitrogen hydrides x

    Science.gov (United States)

    Mebel, A. M.; Lin, M. C.

    In this review, we consider the reactions of NO ( x 1,2) with the nitrogen x hydrides NH, NH and NH . The reactions are relevant to the post-combustion, non-catalytic reduction of NO with NH in the thermal de-NO process and with x x HNCO in the rapid reduction of NO as well as to the thermal decomposition of x some high-energy materials, including ammonium dinitramide. The practical importance has motivated considerable theoretical interest in these reactions. We review numerous ab - initio molecular orbital studies of potential energy surfaces for NO NH and theoretical calculations of their kinetic parameters, such as x y thermal rate constants and branching ratios of various products. The most advanced theoretical calculations are carried out using the Gaussian-2 family of methods which provides the chemical accuracy (within 2 kcal mol ) for the energetics and molecular parameters of the reactants, products, intermediates and transition states. We present a detailed comparison of the theoretical results with available experimental data. We show that the reactions of NO with NH and NH x are very fast because they occur without a barrier and lead to the formation of multiple products which include radicals and stable molecules. The reactions of NO with NH , taking place by the H abstraction to form NH and HNO , are slow x x but still relevant to the NH de-NO system, because of their fast reverse processes x which have not yet been measured experimentally.

  6. Is the Aluminum Hypothesis Dead?

    OpenAIRE

    Lidsky, Theodore I.

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  7. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  8. Effect of metallic phase species on the corrosion resistance of M/(10NiO-NiFe2O4) cermet inert anode of aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    NiFe2O4-based cermet inert anodes with metallic phase compositions of Cu, Ni and 85Cu15Ni were prepared by cold pressing-sintering. Their corrosion resistance was also investigated in Na3 AlF6-Al2 O3 melts. The results show that the metallic phase species in cermets have no effect on the concentration of impurities in bath during electrolysis, the total steady-state concentration of impurities is almost the same, I.e. Between 4.12 × 10-4- 4.80 × 10-4. There exists metal preferential corrosion for the cermet inert anode with metal Ni as metallic phase. For NiFe2 O4-based cermets, the cermet with metal Cu as metallic phase exhibits better corrosion resistance than the others.

  9. Effect of metallic phase content on mechanical properties of (85Cu- 15Ni)/(10NiO-NiFe2O4) cermet inert anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    (85Cu-15Ni)/(10NiO-NiFe2O4) cermets were prepared with Cu-Ni mixed powders as toughening metallic phase and 10NiO-NiFe2O4 as ceramic matrix. The phase composition, microstructure of composite and the effect of metallic phase content on bending strength, hardness, fracture toughness and thermal shock resistance were studied. X-ray diffraction analysis indicates the coexistence of (Cu-Ni), NiO and NiFe2O4 phases in the cermets. Within the content range of metallic phase from 0% to 20% (mass fraction), the maximal bending strength (176.4 MPa) and the minimal porosity (3.9%) of composite appear at the metallic phase content of 5%. The fracture toughness increases and Vickers' hardness decreases with increasing metal content. When the thermal shock temperature difference (△t) is below 200 ℃, the loss rate of residual strength for 10NiO-NiFe2O4 ceramic is only 8%, but about 40% for (85Cu-15Ni)/(10NiO-NiFe2O4) cermets. As △t is above 200 ℃, the residual strength sharply decreases for sample CN0 and falls slowly for samples CN5-CN20.

  10. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  11. Numerical simulation and performance test of metal hydride hydrogen storage system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Bin-Hao Chen, Bao-Dong Chen

    2011-05-01

    Full Text Available Metal hydride reactors are widely used in many industrial applications, such as hydrogen storage, thermal compression, heat pump, etc. According to the research requirement of metal hydride hydrogen storage, the thermal analyses have been implemented in the paper. The metal hydride reaction beds are considered as coupled cylindrical tube modules which combine the chemical absorption and desorption in metal hydride. The model is then used metal hydride LaNi5 as an example to predict the performance of metal hydride hydrogen storage devices, such as the position of hydration front and the thermal flux. Under the different boundary condition the characteristics of heat transfer and mass transfer in metal hydride have influence on the hydrogen absorption and desorption. The researches revealed that the scroll design can improve the temperature distribution in the reactor and the porous tube for directing hydrogen can increase the penetration depth of hydride reaction to decrease the hydrogen absorption time.

  12. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  13. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  14. Two-Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties.

    Science.gov (United States)

    Jiao, Yalong; Ma, Fengxian; Bell, John; Bilic, Ante; Du, Aijun

    2016-08-22

    Two-dimensional (2D) boron sheets have been successfully synthesized in recent experiments, however, some important issues remain, including the dynamical instability, high energy, and the active surface of the sheets. In an attempt to stabilize 2D boron layers, we have used density functional theory and global minimum search with the particle-swarm optimization method to predict four stable 2D boron hydride layers, namely the C2/m, Pbcm, Cmmm, and Pmmn sheets. The vibrational normal mode calculations reveal all these structures are dynamically stable, indicating potential for successful experimental synthesis. The calculated Young's modulus indicates a high mechanical strength for the C2/m and Pbcm phases. Most importantly, the C2/m, Pbcm, and Pmmn structures exhibit Dirac cones with massless Dirac fermions and the Fermi velocities for the Pbcm and Cmmm structures are even higher than that of graphene. The Cmmm phase is reported as the first discovery of Dirac ring material among boron-based 2D structures. The unique electronic structure of the 2D boron hydride sheets makes them ideal for nanoelectronics applications. PMID:27460282

  15. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Yale University

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  16. Iron Hydride Detection and Intramolecular Hydride Transfer in a Synthetic Model of Mono-Iron Hydrogenase with a CNS Chelate.

    Science.gov (United States)

    Durgaprasad, Gummadi; Xie, Zhu-Lin; Rose, Michael J

    2016-01-19

    We report the identification and reactivity of an iron hydride species in a synthetic model complex of monoiron hydrogenase. The hydride complex is derived from a phosphine-free CNS chelate that includes a Fe-C(NH)(═O) bond (carbamoyl) as a mimic of the active site iron acyl. The reaction of [((O═)C(HN)N(py)S(Me))Fe(CO)2(Br)] (1) with NaHBEt3 generates the iron hydride intermediate [((O═)C(HN)N(py)S(Me))Fe(H)(CO)2] (2; δFe-H = -5.08 ppm). Above -40 °C, the hydride species extrudes CH3S(-) via intramolecular hydride transfer, which is stoichiometrically trapped in the structurally characterized dimer μ2-(CH3S)2-[((O═)C(HN)N(Ph))Fe(CO)2]2 (3). Alternately, when activated by base ((t)BuOK), 1 undergoes desulfurization to form a cyclometalated species, [((O═)C(NH)NC(Ph))Fe(CO)2] (5); derivatization of 5 with PPh3 affords the structurally characterized species [((O═)C(NH)NC)Fe(CO)(PPh3)2] (6), indicating complex 6 as the common intermediate along each pathway of desulfurization.

  17. A new heat storage system using metal hydrides

    Science.gov (United States)

    Ono, S.; Kawamura, M.; Ishido, Y.; Akiba, E.; Higano, S.

    The development of a prototype chemical heat storage system, designed for the accumulation of fairly high temperature (300 - 400 C) waste heat, and called the Hydriding Heat Storage system is presented. Mg2Ni hydride is used as the high temperature heat storing medium, and LaNi5H6 is used as a reservoir for the hydrogen released from the heat storing medium. The system has been in development since 1976, and a 2000 kcal heat capacity prototype system is to be completed by 1982. Basic investigations, i.e., reaction kinetics of absorption and desorption, and heat transfer characteristics of the hydride and/or the metal powder packed bed, are described.

  18. Kinetic and structural aspects of tantalum hydride formation

    Directory of Open Access Journals (Sweden)

    R. DIMITRIJEVIC

    2003-09-01

    Full Text Available Tantalum hydrides of various composition were synthesized by equilibrating tantalum with hydrogen at six different temperatures from 573 to 823 K, under a constant hydrogen pressure of 1 bar. Both the exact Ta/H mole ratios and the kinetic parameters of hydriding were determined on the basis of the dependence of the H/Ta mole ratio on time. The influence of stoichiometry on the appearance of X-ray powder diffractograms at room temperature was studied. As a consequence of hydriding, for ratios H/Ta > 0.2, the original bcc Ta-lattice undergoes distortion, manifesting itself as both a shift and a splitting of the X-ray patterns in the X-ray diffractograms. For samples with H/Ta < 0.2, the appearance of some superstructure reflections at low Bragg angles was noted, which suggests a long range ordering of hydrogen with orthorhombic symmetry.

  19. Theoretical Estimate of Hydride Affinities of Aromatic Carbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    AI Teng; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Aromatic carbonyl compounds are one type of the most important organic compounds, and the reductions ofthem by hydride agents such as LiAlH4 or NaBH4 are widely used in organic synthesis. The reactivity of carbonyl compounds generally increases in the following order: ketone < aldehyde, and amide < acid < ester < acid halide, which could be related to their hydride affinities (HA). In the previous paper, Robert[1] calculated the absolute HAof a series of small non-aromatic carbonyl compounds. In this paper, we use DFT method at B3LYP/6-311 + + G (2d, 2p)∥B3LYP/6-31 + G* level to estimate hydride affinities of five groups of aromatic carbonyl compounds. The detailed results are listed in Table 1.

  20. Higher Strength, Lighter Weight Aluminum Spacecraft Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I program proposes to develop a bulk processing technology for producing ultra fine grain (UFG) aluminum alloy structures. The goal is to...

  1. Clinical biochemistry of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  2. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  3. Thermodynamic integration based on classical atomistic simulations to determine the Gibbs energy of condensed phases: Calculation of the aluminum-zirconium system

    Science.gov (United States)

    Harvey, J.-P.; Gheribi, A. E.; Chartrand, P.

    2012-12-01

    In this work, an in silico procedure to generate a fully coherent set of thermodynamic properties obtained from classical molecular dynamics (MD) and Monte Carlo (MC) simulations is proposed. The procedure is applied to the Al-Zr system because of its importance in the development of high strength Al-Li alloys and of bulk metallic glasses. Cohesive energies of the studied condensed phases of the Al-Zr system (the liquid phase, the fcc solid solution, and various orthorhombic stoichiometric compounds) are calculated using the modified embedded atom model (MEAM) in the second-nearest-neighbor formalism (2NN). The Al-Zr MEAM-2NN potential is parameterized in this work using ab initio and experimental data found in the literature for the AlZr3-L12 structure, while its predictive ability is confirmed for several other solid structures and for the liquid phase. The thermodynamic integration (TI) method is implemented in a general MC algorithm in order to evaluate the absolute Gibbs energy of the liquid and the fcc solutions. The entropy of mixing calculated from the TI method, combined to the enthalpy of mixing and the heat capacity data generated from MD/MC simulations performed in the isobaric-isothermal/canonical (NPT/NVT) ensembles are used to parameterize the Gibbs energy function of all the condensed phases in the Al-rich side of the Al-Zr system in a CALculation of PHAse Diagrams (CALPHAD) approach. The modified quasichemical model in the pair approximation (MQMPA) and the cluster variation method (CVM) in the tetrahedron approximation are used to define the Gibbs energy of the liquid and the fcc solid solution respectively for their entire range of composition. Thermodynamic and structural data generated from our MD/MC simulations are used as input data to parameterize these thermodynamic models. A detailed analysis of the validity and transferability of the Al-Zr MEAM-2NN potential is presented throughout our work by comparing the predicted properties obtained

  4. Ab-initio study of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  5. Mn in misch-metal based superlattice metal hydride alloy - Part 1 structural, hydrogen storage and electrochemical properties

    Science.gov (United States)

    Young, K.; Wong, D. F.; Wang, L.; Nei, J.; Ouchi, T.; Yasuoka, S.

    2015-03-01

    The structural, gaseous phase hydrogen storage, and electrochemical properties of a series of Mn-modified misch-metal based superlattice metal hydride alloys were investigated in part one of this two-part series of papers. X-ray diffraction analysis showed that these alloys are all multi-phased compositions with different abundances of AB2, AB3, A2B7, AB4, and AB5 phases. Substitution of Ni in the B-site by Mn promotes AB5 phase formation and decreases both gaseous phase and electrochemical capacities due to the reduction in the abundance of main hexagonal A2B7 phase. AC impedance and magnetic susceptibility measurement were employed to characterize the surface of Mn-free and Mn-modified alloys and show deterioration in surface catalytic ability as the Mn-content increases. Mn-modification adversely affected misch-metal based superlattice metal hydride alloy properties such as phase homogeneity, capacity, cycle stability, high-rate performance, and surface reaction.

  6. Burning characteristics of individual aluminum/aluminum oxide particles

    OpenAIRE

    Ruttenberg, Eric C.

    1996-01-01

    Approved for public release; distribution is unlimited An experimental investigation was conducted in which the burning characteristics of individual aluminum/aluminum oxide particles were measured using a windowed combustion bomb at atmospheric pressure and under gravity-fall conditions. A scanning electron microscope (SEM) was used to measure the size distribution of the initial aluminum particles and the aluminum oxide residue. Analysis of the residue indicated that the mass of aluminum...

  7. Purifying Aluminum by Vacuum Distillation

    Science.gov (United States)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  8. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  9. First-Principles Study of the γAngle Deformation Path in the Wurtzite-to-Rocksalt Phase Transition in Aluminum Nitride

    Institute of Scientific and Technical Information of China (English)

    CAI Ying-Xiang; XU Rui

    2010-01-01

    @@ A new transition path(γangle deformation path)is put forward and used to characterize the wurtzite-rocksalt transition in AlN.The enthalpy surface and the contour plot of enthalpy difference at equilibrium pressure are obtained by first-principles pseudopotential method within the generalized gradient approximation.The phase transition is needed to overcome two barriers and a metaphase arises between them.The total barrier height is0.26eV.

  10. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  11. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  12. Investigation of increased hydriding of guide tubes in Ringhals 2 during cycle startup

    International Nuclear Information System (INIS)

    There are two main sources for hydrogen uptake into Zr alloy components. Beside the uptake of hydrogen from the corrosion reaction, direct uptake of hydrogen from the PWR primary water is the second source and can occur under certain conditions. In Ringhals 2, two guide tubes broke during insertion of control rods in the pool during the outage in 1990 resulting from high hydrogen contents which were found in the Zry-4 guide tubes. The hydrogen content showed large variations between different guide tubes from the same assembly at the same axial elevation. In extreme cases, rims of massive hydrides were seen at the inner surface. In the most affected guide tubes, the oxide thickness at the ID was about 20 μm whereas normal oxide was only about 5 μm. Hot cell examination revealed that the hydrogen content was up to 3000 ppm (average in wall thickness) which means that the hydrogen pickup fraction was well above 100 %. This was a clear indication that a significant amount of hydrogen was stemming from a different source than corrosion. The inner surfaces of these particular guide tubes were grit-blasted with a stainless steel lance. The root-cause analysis revealed by SEM and GDOS that the grit-blasting with such a lance resulted in embedding small stainless steel particles at the guide tube inner surface which in-pile acted as 'hydrogen windows'. When Ni deposited on the surface during the start-up procedure, hydrogen was picked up catalytically after it was added to the coolant at about 150 deg. C. Autoclave tests simulating the start up of a PWR were used to demonstrate the increased hydrogen pickup. The tests showed that this type of accelerated hydriding can be reproduced in the laboratory with guide tube samples grit-blasted on the inside. A necessary condition was that Ni in the coolant was high during the start-up phase and hydrogen was added to the water before the formation of a protective oxide layer can prevent the hydrogen uptake. The tests revealed a

  13. Experimental design and simulation of a metal hydride hydrogen storage system

    Science.gov (United States)

    Gadre, Sarang Ajit

    Metal hydrides, as a hydrogen storage medium, have been under consideration for many years because they have the ability to store hydrogen reversibly in the solid state at relatively low pressures and ambient temperatures. The utility of metal hydrides as a hydrogen storage medium was demonstrated recently by the Savannah River Technology Center (SRTC) in an on-board hydrogen storage system for a hybrid electric bus project. The complex geometry and the intricate design of the SRTC bed presents quite a challenge to the development of a mathematical model that can be used for design and optimization. In a new approach introduced here, the reversible reaction kinetics and the empirical Van't Hoff relationship used in a typical reactor model are replaced by a solid phase diffusion equation and one of the two semi-empirical equilibrium P-C-T relationships based on modified virial and composite Langmuir isotherm expressions. Starting with the simplest mathematical formulation, which resulted in an analytical expression, various models were developed and successively improved by relaxing certain assumptions, eventually resulting in the most rigorous model yet developed for this system. All of these models were calibrated using experimental pressure and temperature histories obtained from a bench scale hydrogen storage test facility. The heat and mass transfer coefficients or the thermal conductivity were the only adjustable parameters in these models. A design of experiments approach was also used for studying the effect of various factors on the performance of this bench scale hydrogen storage unit. Overall, the results of this study demonstrated that even a fairly simple numerical model could do a reasonable job in predicting the discharge behavior of a fairly complicated, metal hydride hydrogen storage bed over a wide range of operating conditions. The more rigorous 2-D model gave considerable insight into the dynamics of the hydrogen discharge process from an

  14. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  15. Different failure modes for V-containing and V-free AB2 metal hydride alloys

    Science.gov (United States)

    Young, K.; Wong, D. F.; Yasuoka, S.; Ishida, J.; Nei, J.; Koch, J.

    2014-04-01

    Failure modes of a V-containing and a V-free AB2 Laves phase-based metal hydride alloy were studied by the combination of X-ray diffractometer, scanning electron microscope, X-ray energy dispersive spectroscopy, inductively coupled plasma, Soxhlet extraction, and magnetic susceptibility measurement. Cells with the V-containing alloy exhibited less capacity degradation up until venting occurred in the cells, after which the capacity rapidly degraded. Cells with the V-free alloy remained linear in capacity degradation throughout the cycle life test. The failure mechanism for the V-containing alloy is related to the formation of an oxide layer that penetrates deeper into the alloy particles due to high V leaching and impedes gas recombination, while the failure mechanism for the V-free alloy is related to the continuous pulverization of the main AB2 phase.

  16. Effect of loaded organic phase containing mixtures of silicon and aluminum,single iron on extraction of lanthanum in saponification P507-HCl system

    Institute of Scientific and Technical Information of China (English)

    WU Wenyuan; ZHANG Fengyun; BIAN Xue; XUE Shoufeng; YIN Shaohua; ZHENG Qiang

    2013-01-01

    Emulsification troubled normal extraction process of rare earths due to the existence of non-rare earth impurities,especially Si,Al and Fe.Against this background,the effect of emulsification caused by Si,Al and Fe on the La extraction with saponification P507 (2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester) in chloride medium was systematically investigated.A series of experiments were carried out to study the relationship of the extraction capacity of La and the concentration of impurities.ZPM-203 polarizing microscope was applied to investigate the morphology of emulsification,and the cation exchange extraction mechanism of Fe and Al as well as La was clarified by IR spectra.The results showed that a low concentration of Si in organic phase would aggravate the emulsification with A1,and the formation of ME (micro emulsion) and club-shaped polymer would result in emulsification in the extraction of mixtures of Si and A1,single Fe,respectively.Furthermore,the accumulation of impurity such as Si,Al and Fe in the organic phase would severely reduce the extraction capacity of La simultaneously.

  17. Comparison of irradiation hardening and microstructure evolution in ion-irradiated delta and epsilon hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Oono, Naoko, E-mail: n-oono@eng.hokudai.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Higuchi, Toru; Sakamoto, Kan; Nakatsuka, Masafumi [Nippon Nuclear Fuel Development Co., Ltd., 2163 Naritacho Oarai, Higashi-Ibaraki, Ibaraki 311-1313 (Japan); Hasegawa, Akiko; Kondo, Sosuke; Iwata, Noriyuki Y.; Matsui, Hideki; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2013-11-15

    A δ-Zr-hydride was irradiated with 6.4 MeV Fe{sup 3+} ions to clarify the relationship between hardening and microstructural changes of bulk Zr-hydrides under neutron irradiation. Irradiation hardening was measured by nanoindentation tests. Transmission electron microscope cross-sectional observations showed that the deformation mechanism of the δ-Zr-hydride was both slip and twinning. Dislocation loops were observed in the irradiated hydride matrix. These irradiation-induced defects make slip deformation difficult and consequently promote the twin deformation of δ-Zr-hydride. This work is a continuation of the previous our work (J. Nucl. Mater. 419 (2011) 366–370) focused upon ε-Zr-hydride and we discuss a comparison between the two Zr-hydrides.

  18. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk;

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium...

  19. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  20. Structural deformation of metallic uranium surrounding hydride growth sites

    International Nuclear Information System (INIS)

    Highlights: • UH3 formation on uranium surfaces by a controlled uptake of hydrogen at 240 °C. • Large hydride growths (35–125 μm in diameter) form at the surface. • Confined hydride expansion during growth generates stress in the subsurface. • EBSD scans found micro-cracking and twins as forms of stress relief in the metal. - Abstract: Electron backscatter diffraction (EBSD) was utilised to probe the microstructure of uranium metal in the vicinity of surface corrosion pits, resulting from hydrogen exposure (5 × 104 Pa, at 240 °C). Microstructural analysis of the surface revealed a subtle increase of grain orientation variation for grains at the border of the hydride growths. Cross sectional analysis, at pit sites, revealed significant microstructure deformation in the form of crystal twinning and micro-cracking beneath the surface. These observations provide qualitative evidence that local stress intensities generated as a consequence of hydride growth and confinement, were sufficient to cause deformation within the parent metal

  1. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author)

  2. Diffusion model of delayed hydride cracking in zirconium alloys

    NARCIS (Netherlands)

    Shmakov, AA; Kalin, BA; Matvienko, YG; Singh, RN; De, PK

    2004-01-01

    We develop a method for the evaluation of the rate of delayed hydride cracking in zirconium alloys. The model is based on the stationary solution of the phenomenological diffusion equation and the detailed analysis of the distribution of hydrostatic stresses in the plane of a sharp tensile crack. Th

  3. Electrochromism of Mg-Ni hydride switchable mirrors

    Science.gov (United States)

    Isidorsson, Jan; Giebels, I. A. M. E.; Di Vece, M.; Griessen, Ronald

    2001-11-01

    Switchable mirrors have so far been made of rare-earth and rare-earth-magnesium based metal-hydrides. In this investigation we study Mg-Ni-hydrides, which have been shown by Richardson et al. to exhibit switchable properties similar to those of the rare-earth hydrides. Cyclic voltammetry on MgzNiHx samples with 0.8 less than z less than 3.7 shows that addition of one Mg atom per Mg2Ni gives the best ab/desorption kinetics for hydrogen. X- ray diffraction reveals a structural change as hydrogen is absorbed. The metal-insulator transition is confirmed with simultaneous resistivity measurements. A pressure- composition isotherm of Mg2NiHx is also determined electrochemically. Optical spectrometry during gas loading gives an optical band gap of 1.6 eV for Mg2NiH4. This gap increases with increasing Mg content in a way similar to that of the Mg-doped rare-earth hydrides.

  4. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen stora

  5. DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides

    International Nuclear Information System (INIS)

    This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen: (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magneto-volume and chemical interactions (metal-H) effects within the following hydrided systems: binary Laves (e.g. ScFe2) and Haucke (e.g. LaNi5) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U2Ni2Sn) alloys on the other hand. (author)

  6. A Novel Zr-1Nb Alloy and a New Look at Hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Mariani; James I. Cole; Assel Aitkaliyeva

    2013-09-01

    A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys.

  7. Separation of trace antimony and arsenic prior to hydride generation atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    A separation method utilizing a synthetic zeolite (mordenite) was developed in order to eliminate the gas phase interference of Sb(III) on As(III) during quartz furnace hydride generation atomic absorption spectrometric (HGAAS) determination. The efficiency of the proposed separation method in the reduction of suppression effects of transition metal ions on As(III) signal was also investigated. Among the volatile hydride-forming elements and their different oxidation states tested (Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), and Te(VI)), only Sb(III) was found to have a signal depression effect even at low (μg l-1) concentrations under the experimental conditions employed. It has been shown that mordenite adsorbs Sb(III) quantitatively, even at a concentration of 1000 μg l-1, at pHs greater than two, and also, it reduces the initial concentrations of the transition metal ions to lower levels which can be tolerated in many studies. The adsorption of Sb(III) on mordenite follows the Freundlich isotherm and is endothermic in nature

  8. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si- xTi Foils as Active Interlayer

    Science.gov (United States)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-06-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si- xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  9. Effect of high heating rate on thermal decomposition behaviour of titanium hydride (TiH2) powder in air

    Indian Academy of Sciences (India)

    A Rasooli; M A Boutorabi; M Divandari; A Azarniya

    2013-04-01

    DTA and TGA curves of titanium hydride powder were determined in air at different heating rates. Also the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into consideration. A great breakthrough of the practical interest in the research was the depiction of the H2-time curves of TiH2 powder at various temperatures in air. In accordance with the results, an increase in heating rate to higher degrees does not change the process of releasing hydrogen from titanium hydride powder, while switching it from internal diffusion to chemical reaction. At temperatures lower than 600 °C, following the diffusion of hydrogen and oxygen atoms in titanium lattice, thin layers TiH phase and oxides form on the powder surface, controlling the process. On the contrary, from 700 °C later on, the process is controlled by oxidation of titanium hydride powder. In fact, the powder oxidation starts around 650 °C and may escalate following an increase in the heating rate too.

  10. Hydrogenation of AB{sub 5} and AB{sub 2} metal hydride alloys studied by in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202 (United States); BASF – Battery Materials Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Young, K., E-mail: kwo.young@basf.com [BASF – Battery Materials Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Nei, J.; Pawlik, D. [BASF – Battery Materials Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Ng, K.Y.S. [Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202 (United States)

    2014-12-15

    Highlights: • Hydrogenation process of an AB{sub 5} alloy and two AB{sub 2} alloys were studied by quasi in-situ XRD. • In both AB{sub 5} and AB{sub 2} metal alloy, hydrogen occupation sites on the half-plane were taken first. • In the C14/C15 mixed alloy, C14 phase is the main hydrogen storage phase with a lower equilibrium pressure. • In the C14/C15 mixed alloy, C15 phase is the catalyst hydrogen storage phase with a higher equilibrium pressure. • Small amount of C15 was hydrided first but not completed until C14 phase was fully hydrided. - Abstract: The evolution of lattice constants and abundances of metal (α) and metal hydride (β) phases during the hydrogenation process of an AB{sub 5} alloy with a CaCu{sub 5} crystal structure, an AB{sub 2} alloy with a predominating C14 structure, and a C14/C15-mixed AB{sub 2} alloy were reported. The preferred hydrogen insertion sites at different states of charge in both the α and β phases were studied based on the lattice parameter changes during hydrogenation. During the hydrogenation of the AB{sub 5} alloy, the ratio between lattice parameters a and c (a/c ratio) in the α phase decreases, stabilizes, and then decreases again while that in the β phase decreases and then stabilizes. The trends in unit cell volume changes are increasing, plateauing, and increasing again in the α phase and increasing followed by plateauing in the β phase as the hydrogenation level increases. In the C14-predominant AB{sub 2} alloy, the a/c ratio in the α phase increases at the beginning and then stabilizes while that in the β phase remains about the same and then increases during the addition of hydrogen. Moreover, the unit cell volume in the α phase increases slightly during hydrogenation, comparing to the increasing, decreasing, and then increasing trend in the β phase. In the C14/C15 mixed AB{sub 2} alloy, hydrogenation of the C15 phase starts at the beginning and promotes the hydrogenation of the C14 phase. The C14

  11. In Situ Investigation of Hydride Precipitation and Growth in Zircaloy-4 by Transmission Electron Microscopy%Zr-4合金中氢化物析出长大的透射电镜原位研究

    Institute of Scientific and Technical Information of China (English)

    彭剑超; 李强; 刘仁多; 姚美意; 周邦新

    2011-01-01

    用透射电子显微镜拉伸试样台原位研究了应力、电子束辐照以及第二相对Zr-4合金中氢化物析出和长大的影响.结果表明,在拉应力作用下,裂纹易于沿氢化物扩展,并在裂尖垂直于拉应力方向析出新的氢化物.氢化物在拉应力诱发下的析出、开裂、再析出……过程,导致了氢致延迟开裂.在较强的会聚电子束辐照下,Zr-4合金中的氢化物会分解,新的氢化物会围绕着附近的Zr(Fe,Cr)2第二相粒子析出,新析出的氢化物为面心立方结构的δ相.%The effects of stress, electron beam irradiation and second phase particles on zirconium hydride precipitation and growth in Zircaloy-4 were investigated using in-situ transmission electron microscope observation. Results show that with the tensile stress the cracks are likely to propagate along hydrides and new hydrides are formed at the crack tip along the vertical direction of the applied stress. A process of precipitation, cracking, re-precipitation and so on, induced by tensile stress, causes delayed hydride cracking (DHC). Under the high irradiation of converged electron beam, the hydrides decompose in the Zircaloy-4, and new hydrides prefer to precipitate around the unoxidized Zr(Fe, Cr>2 particles, and the re-precipitated hydrides are fcc-structure 8 phase.

  12. Synthesis of hydrides by interaction of intermetallic compounds with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Boris P., E-mail: tarasov@icp.ac.ru [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Fokin, Valentin N.; Fokina, Evelina E. [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Yartys, Volodymyr A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim NO 7491 (Norway)

    2015-10-05

    Highlights: • Interaction of the intermetallics A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} with NH{sub 3} was studied. • The mechanism of interaction of the alloys with ammonia is temperature-dependent. • Hydrides, hydridonitrides, disproportionation products or metal–N–H compounds are formed. • NH{sub 4}Cl was used as an activator of the reaction between ammonia and intermetallics. • Interaction with ammonia results in the synthesis of the nanopowders. - Abstract: Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransition elements, Al and B). In presence of NH{sub 4}Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P–T conditions, at temperatures 100–200 °C and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal–nitrogen–hydrogen compounds like magnesium amide Mg(NH{sub 2}){sub 2}. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m{sup 2}/g.

  13. Chronic aluminum intake causes Alzheimer's disease: applying Sir Austin Bradford Hill's causality criteria.

    Science.gov (United States)

    Walton, J R

    2014-01-01

    Industrialized societies produce many convenience foods with aluminum additives that enhance various food properties and use alum (aluminum sulfate or aluminum potassium sulfate) in water treatment to enable delivery of large volumes of drinking water to millions of urban consumers. The present causality analysis evaluates the extent to which the routine, life-long intake, and metabolism of aluminum compounds can account for Alzheimer's disease (AD), using Austin Bradford Hill's nine epidemiological and experimental causality criteria, including strength of the relationship, consistency, specificity, temporality, dose-dependent response, biological rationale, coherence with existing knowledge, experimental evidence, and analogy. Mechanisms that underlie the risk of low concentrations of aluminum relate to (1) aluminum's absorption rates, allowing the impression that aluminum is safe to ingest and as an additive in food and drinking water treatment, (2) aluminum's slow progressive uptake into the brain over a long prodromal phase, and (3) aluminum's similarity to iron, in terms of ionic size, allows aluminum to use iron-evolved mechanisms to enter the highly-active, iron-dependent cells responsible for memory processing. Aluminum particularly accumulates in these iron-dependent cells to toxic levels, dysregulating iron homeostasis and causing microtubule depletion, eventually producing changes that result in disconnection of neuronal afferents and efferents, loss of function and regional atrophy consistent with MRI findings in AD brains. AD is a human form of chronic aluminum neurotoxicity. The causality analysis demonstrates that chronic aluminum intake causes AD.

  14. Aluminum, parathyroid hormone, and osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  15. The crystallization processes in the aluminum particles production technology

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The physical and mathematical model of the crystallization process of liquid aluminum particles in the spray-jet of the ejection-type atomizer was proposed. The results of mathematical modeling of two-phase flow in the spray-jet and the crystallization process of fluid particles are given. The influence of the particle size, of the flow rate and the stagnation temperature gas in the ranges of industrial technology implemented for the production of powders aluminum of brands ASD, on the crystallization characteristics were investigated. The approximations of the characteristics of the crystallization process depending on the size of the aluminum particles on the basis of two approaches to the mathematical description of the process of crystallization of aluminum particles were obtained. The results allow to optimize the process parameters of ejection-type atomizer to produce aluminum particles with given morphology.

  16. Synthesis and enhanced hydrogen desorption kinetics of magnesium hydride using hydriding chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Ho [Icheon Branch, Korea Institute of Ceramic Engineering and Technology (KICET), Icheon-si, Gyeonggi-do (Korea, Republic of); Kim, Byung-Goan [Korea Energy Materials Co.Ltd., 409, Daegu Technopark, 1-11, Hosan-Dong, Dalse-Gu 704-230 (Korea, Republic of); Kang, Yong-Mook, E-mail: dake@kaist.ac.kr [Department of Chemistry, Dongguk University-Seoul, 100715 Seoul (Korea, Republic of)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We synthesized pure MgH{sub 2} by a hydriding chemical vapor synthesis process in a hydrogen atmosphere. Black-Right-Pointing-Pointer The particle size HCVS-MgH{sub 2} was drastically reduced to the sub-micron or micrometer-scale. Black-Right-Pointing-Pointer HCVS-MgH{sub 2} showed different shapes (needle-like nanofibers and angulated plate) depending on the deposited position. Black-Right-Pointing-Pointer HCVS-MgH{sub 2} desorbed hydrogen up to about 7.2 wt% and 7.1 wt%. - Abstract: This paper describes the hydriding chemical vapor synthesis (HCVS) of the hydrogen storage alloy MgH{sub 2} in a hydrogen atmosphere and the product's hydrogenation properties. Mg powder was used as a starting material to produce submicron MgH{sub 2} and uniformly heated to a temperature of 600 Degree-Sign C for Mg vaporization. The effects of deposited positions in HCVS reactor on the morphology and the composition of the obtained products were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) analyses. It is clearly seen that after the HCVS process, the particle size of synthesized MgH{sub 2} was drastically reduced to the sub-micron or micrometer-scale and these showed different shapes (needle-like nanofibers and angulated plate) depending on the deposited position. The hydrogen desorption temperatures of HCVS-MgH{sub 2} were measured using a differential scanning calorimeter (DSC). It was found that after the HCVS process, the desorption temperature of HCVS-MgH{sub 2} decreased from 430 to 385 Degree-Sign C and, simultaneously, the smallest particle size and the highest specific surface area were obtained. These observations indicate that the minimum hydrogen desorption temperature of HCVS-MgH{sub 2} powder with needle-like form can be obtained, and that this temperature is dependent on the particle size and the specific surface area of the products. The thermogravimetric

  17. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  18. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  19. The Nondestructive Determination of the Aluminum Content in Pressed Skulls of Aluminum Dross

    Science.gov (United States)

    Kevorkijan, Varuzan; Škapin, Srečo Davor; Kovačec, Uroš

    2013-02-01

    During production of primary and secondary aluminum, various amounts (in some cases up to 200 kg) of aluminum dross, a mixture consisting of molten aluminum metal and different oxide compounds (the nonmetallic phase), are skimmed per tonne of molten metal. To preserve the maximum aluminum content in hot dross for further extraction, it is necessary to cool the dross immediately after skimming. One way to do this is to press the skimmed hot dross in a press. In this process, the skimmed dross is transformed into so-called pressed skulls, with characteristic geometry convenient for storage, transport, or further in-house processing. Because of its high aluminum content—usually between 30% and 70%—pressed skulls represent a valuable source of aluminum and hence are in great demand in the aluminum recycling industry. Because pressed skulls are generally valued on a free-metal recovery basis, which is influenced by the yield of recovery, or in other words, by the quality of the recycling process, it was recognized as important and useful to develop a method of fast and cost-effective nondestructive measurement of the free aluminum content in pressed skulls, independent of the technology of pressed skulls recycling. In the model developed in this work, the aluminum content in pressed skulls was expressed as a function of the pressed skulls density, the density of the nonmetallic phase, and the volume fraction of closed pores. In addition, the model demonstrated that under precisely defined conditions (i.e., skulls from the dross of the same aluminum alloy and skimmed, transported, cooled, and pressed in the same way and under the same processing conditions), when other parameters except the pressed skulls density remain constant, the aluminum content in pressed skulls can be expressed as a linear function of the pressed skulls density. Following the theoretical considerations presented in this work, a practical industrial methodology was developed for nondestructive

  20. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  1. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  2. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  3. Characterization of salt cake from secondary aluminum production.

    Science.gov (United States)

    Huang, Xiao-Lan; Badawy, Amro El; Arambewela, Mahendranath; Ford, Robert; Barlaz, Morton; Tolaymat, Thabet

    2014-05-30

    Salt cake is a major waste component generated from the recycling of secondary aluminum processing (SAP) waste. Worldwide, the aluminum industry produces nearly 5 million tons of waste annually and the end-of-life management of these wastes is becoming a challenge in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 39 SAP waste salt cake samples collected from 10 different facilities across the U.S. were determined. The results showed that aluminum (Al), aluminum oxide, aluminum nitride and its oxides, spinel and elpasolite are the dominant aluminum mineral phases in salt cake. The average total Al content was 14% (w/w). The overall percentage of the total leachable Al in salt cake was 0.6% with approximately 80% of the samples leaching at a level less than 1% of the total aluminum content. The extracted trace metal concentrations in deionized water were relatively low (μgL(-1) level). The toxicity characteristic leaching procedure (TCLP) was employed to further evaluate leachability and the results indicated that the leached concentrations of toxic metals from salt cake were much lower than the EPA toxicity limit set by USEPA.

  4. China’s Aluminum Resources

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The aluminum industry makes one of the keyindustries in China’s industrial and agriculturalmodernization and features a high degree ofrelevance with all industries.Of all the 124existing industries in China,113 use aluminum,representing an industrial relevance rate of91%.The consumption of aluminum is also ofhigh relevance with China’s GDP.

  5. Effects of metastability on hydrogen sorption in fluorine substituted hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Pinatel, E.R.; Corno, M.; Ugliengo, P.; Baricco, M., E-mail: marcello.baricco@unito.it

    2014-12-05

    Highlights: • Fluorine substitution in simple metal hydrides has been modelled. • The stability of the MH{sub (1−x)}F{sub x} solid solutions has been discussed. • Conditions for reversibility of sorption reactions have been suggested. - Abstract: In this work ab initio calculations and Calphad modelling have been coupled to describe the effect of fluorine substitution on the thermodynamics of hydrogenation–dehydrogenation in simple hydrides (NaH, AlH{sub 3} and CaH{sub 2}). These example systems have been used to discuss the conditions required for the formation of a stable hydride–fluoride solid solution necessary to obtain a reversible hydrogenation reaction.

  6. X-ray photoemission spectroscopy study of zirconium hydride

    International Nuclear Information System (INIS)

    X-ray photoemission spectroscopy (XPS) measurements are reported for ZrH/sub 1.65/ and Zr metal. The valence-band measurements are compared with available band-theory density-of-states calculations for the metal and hydride. The hydride spectrum differs significantly from the metal spectrum. Most important, a strong peak associated with hydrogen s electrons appears approximately 7 eV below the Fermi level. XPS measurements of Zr 4p core levels show a binding-energy shift of 1 eV between Zr metal and ZrH/sub 1.65/. It is argued that this shift results from charge readjustment in the vicinity of the Zr site. With the addition of hydrogen, net charge must be transferred from the Zr site to the hydrogen site. A charge-density analysis based on simplified cluster calculations is presented

  7. Carbon-Fiber/Epoxy Tube Lined With Aluminum Foil

    Science.gov (United States)

    Gernet, Nelson J.; Kerr, Gregory K.

    1995-01-01

    Carbon-fiber/epoxy composite tube lined with welded aluminum foil useful as part of lightweight heat pipe in which working fluid ammonia. Aluminum liner provides impermeability for vacuum seal, to contain ammonia in heat pipe, and to prevent flow of noncondensable gases into heat pipe. Similar composite-material tubes lined with foils also incorporated into radiators, single- and two-phase thermal buses, tanks for storage of cryogenic materials, and other plumbing required to be lightweight.

  8. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  9. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  10. Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction

    Science.gov (United States)

    Colas, Kimberly B.; Motta, Arthur T.; Daymond, Mark R.; Almer, Jonathan D.

    2013-09-01

    The circumferential hydrides normally present in nuclear reactor fuel cladding after reactor exposure may dissolve during drying for dry storage and re-precipitate when cooled under load into a more radial orientation, which could embrittle the fuel cladding. It is necessary to study the rates and conditions under which hydride reorientation may happen in order to assess fuel integrity in dry storage. The objective of this work is to study the effect of applied stress and thermal cycling on the hydride morphology in cold-worked stress-relieved Zircaloy-4 by combining conventional metallography and in situ X-ray diffraction techniques. Metallography is used to study the evolution of hydride morphology after several thermo-mechanical cycles. In situ X-ray diffraction performed at the Advanced Photon Source synchrotron provides real-time information on the process of hydride dissolution and precipitation under stress during several thermal cycles. The detailed study of diffracted intensity, peak position and full-width at half-maximum provides information on precipitation kinetics, elastic strains and other characteristics of the hydride precipitation process. The results show that thermo-mechanical cycling significantly increases the radial hydride fraction as well as the hydride length and connectivity. The radial hydrides are observed to precipitate at a lower temperature than circumferential hydrides. Variations in the magnitude and range of hydride strains due to reorientation and cycling have also been observed. These results are discussed in light of existing models and experiments on hydride reorientation. The study of hydride elastic strains during precipitation shows marked differences between circumferential and radial hydrides, which can be used to investigate the reorientation process. Cycling under stress above the threshold stress for reorientation drastically increases both the reoriented hydride fraction and the hydride size. The reoriented hydride

  11. Inelastic neutron scattering from amorphous hydride of Zr2Pd

    International Nuclear Information System (INIS)

    Time-of-flight inelastic neutron scattering data was obtained on hydrided Zr2Pd metallic glass using the Crystal Analyzer Spectrometer at the Los Alamos pulsed spallation neutron source. Energy transfers from about 40 MeV to several hundred MeV were obtained with sufficiently good statistics and signal to noise ratio to show the second harmonic as well as the fundamental hydrogen optic mode

  12. Proximity breakdown of hydrides in superconducting niobium cavities

    OpenAIRE

    Romanenko, A.; Barkov, F.; Cooley, L. D.; Grassellino, A.

    2012-01-01

    Many modern and proposed future particle accelerators rely on superconducting radio frequency cavities made of bulk niobium as primary particle accelerating structures. Such cavities suffer from the anomalous field dependence of their quality factors Q0. High field degradation - so-called high field Q-slope - is yet unexplained even though an empirical cure is known. Here we propose a mechanism based on the presence of proximity-coupled niobium hydrides, which can explain this effect. Further...

  13. METHOD OF MAKING DELTA ZIRCONIUM HYDRIDE MONOLITHIC MODERATOR PIECES

    Science.gov (United States)

    Vetrano, J.B.

    1962-01-23

    A method is given for preparing large, sound bodies of delta zirconium hydride. The method includes the steps of heating a zirconium body to a temperature of not less than l000 deg C, providing a hydrogen atmosphere for the zirconium body at a pressure not greater than one atmosphere, reducing the temperature slowly to 800 deg C at such a rate that cracks do not form while maintaining the hydrogen pressure substantially constant, and cooling in an atmosphere of hydrogen. (AEC)

  14. Pingguo Aluminum Faces Dilemma

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Chinalco Guangxi Pinggjuo Branch is an exemplary company of Chinalco. Many of its indicators including technology, management standard, and profit rank in leading position in the industry, but such a pace-setter company is also facing the dilemma of overstock of Alumina products, and loss in electrolytic aluminum business.

  15. Applied Electrochemistry of Aluminum

    DEFF Research Database (Denmark)

    Li, Qingfeng; Qiu, Zhuxian

    Electrochemistry of aluminum is of special importance from both theoretical and technological point of view. It covers a wide range of electrolyte systems from molten fluoride melts at around 1000oC to room temperature molten salts, from aqueous to various organic media and from liquid to solid...

  16. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  17. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling

    OpenAIRE

    Dzierlenga, Michael W.; Antoniou, Dimitri; Schwartz, Steven D.

    2015-01-01

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for obser...

  18. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    Directory of Open Access Journals (Sweden)

    Borislav Bogdanović

    2009-01-01

    Full Text Available For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  19. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    OpenAIRE

    Borislav Bogdanović; Michael Felderhoff

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  20. Superconductivity of novel tin hydrides (SnnHm) under pressure

    Science.gov (United States)

    Mahdi Davari Esfahani, M.; Wang, Zhenhai; Oganov, Artem R.; Dong, Huafeng; Zhu, Qiang; Wang, Shengnan; Rakitin, Maksim S.; Zhou, Xiang-Feng

    2016-01-01

    With the motivation of discovering high-temperature superconductors, evolutionary algorithm USPEX is employed to search for all stable compounds in the Sn-H system. In addition to the traditional SnH4, new hydrides SnH8, SnH12 and SnH14 are found to be thermodynamically stable at high pressure. Dynamical stability and superconductivity of tin hydrides are systematically investigated. Im2-SnH8, C2/m-SnH12 and C2/m-SnH14 exhibit higher superconducting transition temperatures of 81, 93 and 97 K compared to the traditional compound SnH4 with Tc of 52 K at 200 GPa. An interesting bent H3–group in Im2-SnH8 and novel linear H in C2/m-SnH12 are observed. All the new tin hydrides remain metallic over their predicted range of stability. The intermediate-frequency wagging and bending vibrations have more contribution to electron-phonon coupling parameter than high-frequency stretching vibrations of H2 and H3. PMID:26964636

  1. Multidimensional Chemical Modeling. III. Abundance and excitation of diatomic hydrides

    CERN Document Server

    Bruderer, Simon; Stäuber, P; Doty, Steven D

    2010-01-01

    The Herschel Space Observatory opens the sky for observations in the far infrared at high spectral and spatial resolution. A particular class of molecules will be directly observable; light diatomic hydrides and their ions (CH, OH, SH, NH, CH+, OH+, SH+, NH+). These simple constituents are important both for the chemical evolution of the region and as tracers of high-energy radiation. If outflows of a forming star erode cavities in the envelope, protostellar far UV (FUV; 6 100 K) for water ice to evaporate. If the cavity shape allows FUV radiation to penetrate this hot-core region, the abundance of FUV destroyed species (e.g. water) is decreased. In particular, diatomic hydrides and their ions CH$+, OH+ and NH+ are enhanced by many orders of magnitude in the outflow walls due to the combination of high gas temperatures and rapid photodissociation of more saturated species. The enhancement of these diatomic hydrides is sufficient for a detection using the HIFI and PACS instruments onboard Herschel. The effect...

  2. Performance study of a hydrogen powered metal hydride actuator

    Science.gov (United States)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  3. Effect of the hydrogen content and cooling velocity in the hydrides precipitation in α-zirconium

    International Nuclear Information System (INIS)

    Zirconium specimens containing 50-300 ppm hydrogen have been cooled from the hydrogen solution treatment temperature at different rates by furnace cooling, air cooling and oil quenching. Optical and electron microscopical investigations have revealed grain boundary Δ - hydrides in slowly cooled specimens. At higher cooling rates γ and Δ hydrides have been found precipitated both intergranularly and intragranularly. Grain boundary Δ hydrides have been also observed in oil quenched specimens with 300 ppm hydrogen. Quenched specimens have revealed Widmanstatten and parallel plate type hydride morphologies. (Author)

  4. Development of new reactor fuel materials: hydrogenation properties of UThZr alloys and neutron irradiation effects on their hydrides

    Science.gov (United States)

    Yamamoto, Takuya; Suwamo, Hadi; Kayano, Hideo; Yamawaki, Michio

    1997-08-01

    Hydrogen absorption properties of four UThZr alloys with compositions of 2:1:6, 1:1:4, 1:2:6 and 1:4:10 in U:Th:Zr ratio were examined for developing a new UTh mixed hydride fuel. It was revealed by hydrogen absorption measurement that for all the specimens hydrogen capacities normalized by the sum of Th and Zr contents were similar to or higher than that of the UZrH 2 - x alloy, TRIGA fuel, at temperatures from 773 to 1073 K and under hydrogen pressures from 10 2 to 10 5 Pa. Regarding the microstructure, the alloy hydrides consisted of three phases; α-U, ZrH 2 - x and ThZr 2H 7 - x , which are finely and homogeneously mixed with each other probably because they were formed from one solid solution phase stable at high temperatures. In the case of Th-rich alloys the α-U was about 1 μm in diameter and dispersed in the bulk of ThZr 2 H 7 - x and ZrH 2 - x. Such microstructure is quite similar to that of UZrH 2 - x fuel. The hydrides irradiated to 7.4 × 10 23 n/m 2 in the reactor showed a high phase stability.

  5. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  6. Reactivity patterns of transition metal hydrides and alkyls

    International Nuclear Information System (INIS)

    The complex PPN+ CpV(CO)3H- (Cp=eta5-C5H5 and PPN = (Ph3P)2) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN+ CpV(CO)3H- reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN+[CpV(C)3X]- and in some cases the binuclear bridging hydride PPN+ [CpV(CO)3]2H-. The borohydride salt PPN+[CpV(CO)3BH4]- has also been prepared. The reaction between CpV(CO)3H- and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)3H-. Sodium amalgam reduction of CpRh(CO)2 or a mixture of CpRh(CO)2 and CpCo(CO)2 affords two new anions, PPN+ [Cp2Rh3(CO)4]- and PPN+[Cp2RhCo(CO)2]-. CpMo(CO)3H reacts with CpMo(CO)3R (R=CH3,C2H5, CH2C6H5) at 25 to 500C to produce aldehyde RCHO and the dimers [CpMo(CO)3]2 and [CpMo(CO)2]2. In general, CpV(CO)3H- appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)3H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)3H- generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)3H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species

  7. Characterization of aluminum nanopowders after long-term storage

    International Nuclear Information System (INIS)

    Highlights: • The aluminum nanopowders produced by electrical explosion of wires after long-term storage (27 and 10 years) under natural conditions are characterized. • The phase composition and thermal stability of aluminum nanopowders after long-term storage are determined. • The surface chemical changes in the aged aluminum nanopowders are examined. • The high reactivity of aluminum nanopowder is due to the presence of the protective oxide–hydroxide layer on the particles surface. - Abstract: The characteristics of aluminum nanopowders obtained by electrical explosion of wires, passivated by air and stored for a long time under natural conditions are analyzed. The aluminum nanopowder produced in hydrogen had been stored for 27 years; the nanopowders produced in argon and nitrogen had been stored for 10 years. The powders were studied using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG) and Fourier transform infrared spectrometry (FTIR). The influence of the obtaining conditions and storage period of nanopowders on their thermal stability under heating in air is shown. The aluminum nanopowders after long-term storage in air under ambient conditions are found to be extremely active

  8. Determination of fracture strength of δ-zirconium hydrides embedded in zirconium matrix at high temperatures

    Science.gov (United States)

    Kubo, T.; Kobayashi, Y.; Uchikoshi, H.

    2013-04-01

    The fracture strength of δ-zirconium hydrides embedded in a zirconium matrix was determined at temperatures between 25 °C and 250 °C by ring tensile tests using Zircaloy-2 tubes. Essentially all of the present hydrides in the tubes were re-oriented in the radial direction by a temperature cycling treatment and then tensile stress was applied perpendicular to the hydrides to ensure that brittle fracture would occur at the hydrides. The hydrides failed in a brittle manner below 100 °C where-as the zirconium matrix itself underwent ductile fracture without hydride cracking at temperatures above 200 °C under plane stress condition. Brittle fracture of the hydrides continued to occur at temperatures up to 250 °C under plane strain condition, suggesting that the upper limit temperature for hydride fracture, Tupper, was raised by the triaxial stress state under the plane strain condition. The apparent fracture strength of the hydrides, σhydridef, was determined at temperatures below Tupper from the measured fracture strength of the tubes, making a correction for the compressive transformation stress in the hydrides. σhydridef was about 710 MPa at temperatures between 25 °C and 250 °C at both plane stress and plane strain conditions. The temperature dependency was very small in this temperature range. Tupper was almost equivalent to the cross-over temperature between σhydridef and the ultimate tensile strength (UTS), which suggests that, at temperatures above Tupper, the zirconium matrix would undergo ductile fracture before the stress in the hydride is raised above σhydridef, since UTS is smaller than σhydridef.

  9. In situ generation of hydrogen from water by aluminum corrosion in solutions of sodium aluminate

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Lluis; Candela, Angelica Maria; Munoz, Maria; Casado, Juan [Centre Grup de Tecniques de Separacio en Quimica (GTS), Unitat de Quimica Analitica, Departament de Quimica, Universitat Autonoma de Barcelona, Campus UAB s/n, 08193 Bellaterra, Barcelona, Catalonia (Spain); Macanas, Jorge [Laboratoire de Genie Chimique, UMR 5503 CNRS-INPT-UPS, Universite de Toulouse, Toulouse (France)

    2009-07-01

    A new process to obtain hydrogen from water using aluminum in sodium aluminate solutions is described and compared with results obtained in aqueous sodium hydroxide. This process consumes only water and aluminum, which are raw materials much cheaper than other compounds used for in situ hydrogen generation, such as hydrocarbons and chemical hydrides, respectively. As a consequence, our process could be an economically feasible alternative for hydrogen to supply fuel cells. Results showed an improvement of the maximum rates and yields of hydrogen production when NaAlO{sub 2} was used instead of NaOH in aqueous solutions. Yields of 100% have been reached using NaAlO{sub 2} concentrations higher than 0.65 M and first order kinetics at concentrations below 0.75 M has been confirmed. Two different heterogeneous kinetic models are verified for NaAlO{sub 2} aqueous solutions. The activation energy (E{sub a}) of the process with NaAlO{sub 2} is 71 kJ mol{sup -1}, confirming a control by a chemical step. A mechanism unifying the behavior of Al corrosion in NaOH and NaAlO{sub 2} solutions is presented. The application of this process could reduce costs in power sources based on fuel cells that nowadays use hydrides as raw material for hydrogen production. (author)

  10. Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation.

    Science.gov (United States)

    Anastasopol, Anca; Pfeiffer, Tobias V; Middelkoop, Joost; Lafont, Ugo; Canales-Perez, Roger J; Schmidt-Ott, Andreas; Mulder, Fokko M; Eijt, Stephan W H

    2013-05-29

    Spark discharge generation was used to synthesize Mg-Ti nanocomposites consisting primarily of a metastable body-centered-cubic (bcc) alloy of Mg and Ti. The bcc Mg-Ti alloy transformed upon hydrogenation into the face-centered-cubic fluorite Mg1-yTiyHx phase with favorable hydrogen storage properties. Both metal and metal hydride nanocomposites showed a fractal-like porous morphology, with a primary particle size of 10-20 nm. The metal content of 70 atom % (at %) Mg and 30 at % Ti, consistently determined by XRD, TEM-EDS, and ICP-OES, was distributed uniformly across the as-prepared sample. Pressure-composition isotherms for the Mg-Ti-H nanocomposites revealed large differences in the thermodynamics relative to bulk MgH2, with a much less negative enthalpy of formation of the hydride as small as -45 ± 3 kJ/molH2 as deduced from van't Hoff plots. The plateau pressures of hydrogenation were substantially higher than those for bulk MgH2 in the low temperature range from 150 to 250 °C. The reaction entropy was simultaneously reduced to values down to 84 ± 5 J/K mol H2, following a linear relationship between the enthalpy and entropy. Plausible mechanisms for the modified thermodynamics are discussed, including the effect of lattice strains, the presence of interfaces and hydrogen vacancies, and the formation of excess free volume due to local deformations. These mechanisms all rely on the finely interdispersed nanocomposite character of the samples which is maintained by grain refinement.

  11. [Electronic structure of helium and hydride complexes

    International Nuclear Information System (INIS)

    Research on the electronic structure of weakly bound helium and hydrogen species is described. The work grew from interest in a remarkable experimental observation at Los Alamos which shows that the helium generated from radioactive decay of liquid tritium remains in solution at concentrations which exceed the known solubility by much more than a factor of 100. The understanding of this supersolubility phenomenon is a challenging problem with significant implications for other condensed phase systems. In the hope of discovering the mechanism of the supersolubility, electronic structure calculations were carried out employing several methods to evaluate the binding energies of complexes of the form He(H+) (H2)/sub n/, with n = 2, 3, 4. For comparison, similar calculations were made for the complexes H2(H+) (H2)/sub n/. Also, the binding of the negative counter-ion species of the form (H-) (H2)/sub n/ was calculated. Although the calculations show that such complexes have sufficient binding energy to account for the enhanced solubility at the low temperature (20 K) of interest, major questions remain to be clarified. These include the mechanism for formation of the complexes, which may well involve excited, Rydberg-like states in solution. Another quite crucial question is how such weak complexes could persist in solution for months without displacement of the He by solvent molecules. Theoretical calculations focus on three topics: (1) Rydberg states; (2) condensed phase interactions; and (3) estimates of ionic conductivity in tritium solutions, as an aid to the interpretation of experiments now underway at Los Alamos

  12. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    Science.gov (United States)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges

  13. Low activation R-tokamak with aluminum alloy

    International Nuclear Information System (INIS)

    An aluminum alloy system is considered as an alternative of the first phase design of the R-tokamak. The 1-D calculation showed that the radiation level outside the vacuum vessel could be reduced by a factor of 30 about half a month after a D-T shot, when the aluminum alloy system is adopted instead of a stainless steel system. The aluminum system has weak mechanical strength, is highly conductive, and shows overaging effect at a certain low temperature. Accordingly, it is necessary to overcome these points. The highly conductive aluminum case leads to considerable increase in power consumption. Various problems on the toroidal coils, the vacuum system, and the limiter were studied. The optimization of the device parameters was investigated. (Kato, T.)

  14. New CeMgCo4 and Ce2MgCo9 compounds: Hydrogenation properties and crystal structure of hydrides

    Science.gov (United States)

    Denys, R. V.; Riabov, A. B.; Černý, R.; Koval'chuk, I. V.; Zavaliy, I. Yu.

    2012-03-01

    Two new ternary intermetallic compounds, CeMgCo4 (C15b pseudo-Laves phase, MgCu4Sn type) and Ce2MgCo9 (substitution derivative of PuNi3 type) were synthesized by mechanical alloying method. The structural and hydrogenation properties of these compounds were studied by X-ray diffraction and Pressure-Composition-Temperature measurements. Both compounds absorb hydrogen at room temperature and pressures below 10 MPa forming hydrides with maximum compositions CeMgCo4H6 and Ce2MgCo9H12. Single plateau behavior was observed in P-C isotherm during hydrogen absorption/desorption by Ce2MgCo9 alloy. The CeMgCo4-H2 system is characterized by the presence of two absorption/desorption plateaus corresponding to formation of β-CeMgCo4H4 and γ-CeMgCo4H6 hydride phases. The structure of β-hydride CeMgCo4H(D)4 was determined from X-ray and neutron powder diffraction data. In this structure initial cubic symmetry of CeMgCo4 is preserved and hydrogen atoms fill only one type of interstitial sites, triangular MgCo2 faces. These positions are occupied by 70% and form octahedron around Mg atom with Mg-D bond distances 1.84 Å.

  15. Experiments on hadronic-atom x-ray intensities of hydrides and deuterides

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, C.E.; Lum, G.K.; Godfrey, G.L.

    1977-04-01

    Kaonic-atom x-ray intensities of elements Z = 3, 6, 8, 11, and 20 were significantly reduced when the elements were in hydride form. The ratios I (ZH/sub m/)/I (Z) have a noticeable Z dependence. Deuterides of C and O showed slightly less x-ray emission than their hydride counterparts.

  16. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    Directory of Open Access Journals (Sweden)

    Haileyesus Tsige-Tamirat

    2015-01-01

    Full Text Available Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron spectrum and slightly more uniform axial power distribution. It achieves a cycle length of 18 months with sufficient excess reactivity. At Beginning of Cycle the fuel temperature coefficient of the hydride assembly is higher whereas the moderator and void coefficients are lower. The thermal hydraulic results show that the achievable fuel temperature in the hydride assembly is well below the design limits. The potential benefits of the use of hydride fuel in the current design of the HPLWR with the achieved improvements in the core neutronics characteristics are not sufficient to justify the replacement of the oxide fuel. Therefore for a final evaluation of the use of hydride fuels in HPLWR concepts additional studies which include modification of subassembly and core layout designs are required.

  17. Hydride precipitation and its influence on mechanical properties of notched and unnotched Zircaloy-4 plates

    International Nuclear Information System (INIS)

    The hydride formation and its influence on the mechanical performance of hydrided Zircaloy-4 plates containing different hydrogen contents were studied at room temperature. For the unnotched plate samples with the hydrogen contents ranging from 25 to 850 wt. ppm, the hydrides exerted an insignificant effect on the tensile strength, while the ductility was severely degraded with increasing hydrogen content. The fracture mode and degree of embrittlement were strongly related to the hydrogen content. When the hydrogen content reached a level of 850 wt. ppm, the plate exhibited negligible ductility, resulting in almost completely brittle behavior. For the hydrided notched plate, the tensile stress concentration associated with the notch tip facilitated the hydride accumulation at the region near the notch tip and the premature crack propagation through the hydride fracture during hydriding. The final brittle through-thickness failure for this notched sample was mainly attributed to the formation of a continuous hydride network on the thickness section and the obtained very high hydrogen concentration (estimated to be 1965 wt. ppm)

  18. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  19. Uranium-zirconium hydride TRIGA-LEU fuel

    International Nuclear Information System (INIS)

    The development and testing of TRIGA-LEU fuel with up to 45 wt-% U is described. Topics that are discussed include properties of hydride fuels, the prompt negative temperature coefficient, pulse heating tests, fission product retention, and the limiting design basis parameter and values. General specifications for Er-U-ZrH TRIGA-LEU fuel with 8.5 to 45 wt-% U and an outline of the inspections during manufacture of the fuel are also included. (author). 8 figs, 1 tab

  20. Hydride Ions, HCO+ and Ionizing Irradiation in Star Forming Region

    Science.gov (United States)

    Benz, Arnold O.; Bruderer, Simon; van Dishoeck, Ewine

    2016-06-01

    Hydrides are fundamental precursor molecules in cosmic chemistry and many hydride ions have become observable in high quality for the first time thanks to the Herschel Space Observatory. Ionized hydrides, such as CH+ and OH+ and also HCO+ affect the chemistry of molecules such as water. They also provide complementary information on irradiation by far UV (FUV) or X-rays and gas temperature.We explore hydrides of the most abundant heavier elements in an observational survey covering star forming regions with different mass and evolutionary state. Twelve YSOs were observed with HIFI on Herschel in 6 spectral settings providing fully velocity-resolved line profiles. The YSOs include objects of low (Class 0 and I), intermediate, and high mass, with luminosities ranging from 4 Ls to 2 105 Ls.The targeted lines of CH+, OH+, H2O+, and C+ are detected mostly in blue-shifted absorption. H3O+ and SH+ are detected in emission and only toward some high-mass objects. For the low-mass YSOs the column density ratios of CH+/OH+ can be reproduced by simple chemical models implying an FUV flux of 2 – 400 times the ISRF at the location of the molecules. In two high-mass objects, the UV flux is 20 – 200 times the ISRF derived from absorption lines, and 300 – 600 ISRF using emission lines. Upper limits for the X-ray luminosity can be derived from H3O+ observations for some low-mass objects.If the FUV flux required for low-mass objects originates at the central protostar, a substantial FUV luminosity, up to 1.5 Ls, is required. For high-mass regions, the FUV flux required to produce the observed molecular ratios is smaller than the unattenuated flux expected from the central object(s) at the Herschel beam radius. This is consistent with an FUV flux reduced by circumstellar extinction or by bloating of the protostar.The ion molecules are proposed to form in FUV irradiated cavity walls that are shocked by the disk wind. The shock region is turbulent, broadening the lines to some 1

  1. Research in Nickel/Metal Hydride Batteries 2016

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-10-01

    Full Text Available Nineteen papers focusing on recent research investigations in the field of nickel/metal hydride (Ni/MH batteries have been selected for this Special Issue of Batteries. These papers summarize the joint efforts in Ni/MH battery research from BASF, Wayne State University, the National Institute of Standards and Technology, Michigan State University, and FDK during 2015–2016 through reviews of basic operational concepts, previous academic publications, issued US Patent and filed Japan Patent Applications, descriptions of current research results in advanced components and cell constructions, and projections of future works.

  2. The calculated rovibronic spectrum of scandium hydride, ScH

    CERN Document Server

    Lodi, Lorenzo; Tennyson\\, Jonathan

    2015-01-01

    The electronic structure of six low-lying electronic states of scandium hydride, $X\\,{}^{1}\\Sigma^+$, $a\\,{}^{3}\\Delta$, $b\\,{}^{3}\\Pi$, $A\\,{}^{1}\\Delta$ $c\\,{}^{3}\\Sigma^+$, and $B\\,{}^{1}\\Pi$, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular ro-vibronic transitions for $^{45}$ScH.

  3. Alkyl and Hydride-Olefin Complexes of Niobocene

    NARCIS (Netherlands)

    Klazinga, A.H.; Teuben, J.H.

    1980-01-01

    Reactions of Cp2NbCl2 with RMgCl (R = n-C3H7, i-C3H7, n-C4H9, s-C4H9 and n-C5H11) give niobocene hydride olefin complexes Cp2Nb(H)L (L = C3H6, C4H8 and C5H10). The last step of the reaction probably proceeds via a stereospecific β-H elimination from the monoalkyl species Cp2NbR. Decomposition of n-a

  4. Equilibrium composition for the reaction of plutonium hydride with air

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There are six independent constituents with 4 chemical elements, i.e. PuH2.7(s), PuN(s), Pu2O3(s), N2, O2 and H2, therefore , the system described involves of 2 independent reactions ,both those of the experimental, which indicates that the chemical equilibrium is nearly completely approached. Therefore, it is believed that the reaction rate of plutonium hydride with air is extremely rapid. The present paper has briefly discussed the simultaneous reactions and its thermodynamic coupling effect.

  5. Comparison between different reactions of group IV hydride with H

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Shaolong; ZHANG; Xuqiang; ZHANG; Qinggang; ZHANG; Yici

    2006-01-01

    The four-dimensional time-dependent quantum dynamics calculations for reactions of group IV hydride with H are carried out by employing the semirigid vibrating rotor target model and the time-dependent wave packet method. The reaction possibility, cross section and rate constants for reactions (H+SiH4 and H+GeH4) in different initial vibrational and rotational states are obtained. The common feature for such kind of reaction process is summarized. The theoretical result is consistent with available measurement, which indicates the credibility of this theory and the potential energy surface.

  6. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    Science.gov (United States)

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-01

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  7. Hydrogenation reaction characteristics and properties of its hydrides for magnetic regenerative material HoCu2

    Institute of Scientific and Technical Information of China (English)

    金滔; 吴梦茜; 黄迦乐; 汤珂; 陈立新

    2016-01-01

    The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu2 (CeCu2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu2 were a mixture of Cu, unknown hydride I, and unknown hydride II. Based on the PCT (pressure−concentration−temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy changeΔH and entropy changeΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.

  8. Mobility and chemical bond of hydrogen in titanium and palladium hydrides

    International Nuclear Information System (INIS)

    The probabilities for π- meson capture by hydrogen are measured at 25, 155 and 200 deg C in TiHsub(1.65) hydride and at 25, -120 and -196 deg C in PdHsub(0.67) hydride. An analysis of the results obtained shows that within the accuracy of the measurements (approximately 10%) a sharp (up to 1012) change in the mobility of hydrogen in the hydrides induced by temperature changes within the ranges indicated does not noticeably affect the probabilities for π- meson capture by bound hydrogen, i.e. does not lead to appreciable changes in the Me-H bond. A comparison of the capture probabilities for palladium hydride and hydrides of neighboring transition metals shows that there are no pronounced anomalies in the Pd-H bond

  9. Gas atomization processing of tin and silicon modified LaNi{sub 5} for nickel-metal hydride battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Ting, J.

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB{sub 5} alloys for battery applications. These studies involved LaNi{sub 5} substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 {micro}m) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB{sub 5} alloy powder for further processing advantage. Gas atomization processing of the AB{sub 5} alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB{sub 5} alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB{sub 5} alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB{sub 5} production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle applications in the foreseeable

  10. Formation of alloys in Ti-V system in hydride cycle and synthesis of their hydrides in self-propagating high-temperature synthesis regime

    Energy Technology Data Exchange (ETDEWEB)

    Aleksanyan, A.G., E-mail: a.g.aleks_yan@mail.ru [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia); Dolukhanyan, S.K. [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia); Shekhtman, V.Sh. [Institute of Solid State Physics, RAS, Chernogolovka, Moscow District 142432 (Russian Federation); Huot, J., E-mail: jacques_huot@uqtr.ca [Institut de recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres (Canada); Ter-Galstyan, O.P.; Mnatsakanyan, N.L. [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia)

    2011-09-15

    Research highlights: > We synthesize Ti-V alloys by new 'hydride cycle' method. Structural characteristics of formed alloys we investigate by X-ray diffraction. > We show that the alloys contain mainly BCC crystal structure. > We investigate the interaction of the synthesized alloys with hydrogen in combustion regime. > We study the properties of hydrides by X-ray, DTA and DSC analyses. - Abstract: In the present work, the possibility of formation of titanium and vanadium based alloys of BCC structure using hydride cycle was investigated. The mechanism of formation of alloys in Ti-V system from the powders of hydrides TiH{sub 2} and VH{sub 0.9} (or of V) by compaction followed by dehydrogenation was studied. Then, the interaction of the synthesized alloys with hydrogen in combustion regime (self-propagating high-temperature synthesis, SHS) resulting in hydrides of these alloys was investigated. DTA and DSC analyses of some alloys and their hydrides were performed and their thermal characteristics were measured.

  11. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys

    International Nuclear Information System (INIS)

    Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys was characterized by transmission electron microscopy. In the weld nugget zone and the thermo-mechanically affected zone some metastable precipitates overaged to equilibrium phase while others solutionized into the aluminum solid solution. In the heat-affected zone the precipitates coarsened.

  12. Electrochemical and metallurgical characterization of ZrCr{sub 1-x}NiMo{sub x} AB{sub 2} metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Erika, Teliz [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); Ricardo, Faccio [Universidad de la República, Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Centro NanoMat, Polo Tecnológico de Pando, Espacio Interdisciplinario, Facultad de Química, Montevideo (Uruguay); Fabricio, Ruiz [Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Av. Rivadavia 1917, C1033AAJ Ciudad de Buenos Aires (Argentina); Centro Atómico Bariloche , Comisión Nacional de Energía Atómica (CAB-CNEA), Av. Bustillo 9500, CP 8400 S.C. de Bariloche, RN (Argentina); Fernando, Zinola [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); and others

    2015-11-15

    The effects of partial replacement of chromium by molybdenum was studied on the structure and electrochemical kinetic properties of ZrCr{sub 1-x}NiMo{sub x}(x = 0.0, 0.3 and 0.6) metal hydride alloys. The arc-melting prepared alloys were metallurgically characterized by X-ray diffraction and energy dispersive spectroscopy microanalysis, which showed AB{sub 2} (with hexagonal C14 structure) and Zr{sub x}Ni{sub y} (Zr{sub 7}Ni{sub 10}, Zr{sub 9}Ni{sub 11}) phases. After a partial substitution of chromium by molybdenum, secondary phases monotonically increase with the C14 unit cell volume indicating that most of molybdenum atoms locate in the B-site. The alloys were electrochemically characterized using charge/discharge cycling, electrochemical impedance spectroscopy and rate capability experiments that allowed the determination of hydriding reaction kinetic parameters. The presence of molybdenum produces a positive effect for hydrogen diffusion in the alloy lattice, and ZrCr{sub 0.7}NiMo{sub 0.3} alloy depicts the better kinetics associated with a fast activation, lower charge transfer resistance and the best high rate discharge behavior. This fact would be related to a lower diffusion time constant and a bigger value of the product between exchange density current and surface active area. There is a trade-off in the amounts of secondary phase and Laves phases in order to improve the kinetic performance. - Highlights: • Metallurgical characterization evidences the presence of Zr{sub x}Ni{sub y} and C14 phases. • The partial replacement of Cr by Mo promotes the segregation of Zr{sub x}Ni{sub y} phase. • The incorporation of molybdenum improves the kinetics for the hydriding process. • Mo produces a decrease in the diffusion time constant.

  13. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  14. Interfacial characterization of resistance spot welded joint of steel and aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Zhang Weihua; Sun Daqian; Yin Shiqiang; Han Lijun; Qiu Xiaoming; Chen Qinglei

    2010-01-01

    The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/aluminum interface. The welded joint presented a tensile shear load of 3.3 kN with an aluminum alloy nugget diameter of 5.7 ram. The interfucial failure mode was observed for the tensile shear specimen and fracture occurred at reaction layer and aluminum alloy fusion zone beside the interface. The reaction layer with compounds was the main reason for reduction of the welded joint mechanical property.

  15. Reactions of ruthenium hydrides with ethyl-vinyl sulfide.

    Science.gov (United States)

    Dahcheh, Fatme; Stephan, Douglas W

    2014-03-01

    The Ru-hydride precursors (Im(OMe)2)(PPh3)2RuHCl () and (Me2Im(OMe)2)(PPh3)2RuHCl () reacted with ethyl-vinyl-sulfide to give ((MeOCH2CH2)C3H2N2(CH2CH(OMe))RuCl(PPh3)2 () and ((MeOCH2CH2)C3Me2N2(CH2CH(OMe))RuCl(PPh3)2 (), respectively. Dissolution of () in C6D6 prompts formation of ((MeOCH2CH2)C5H6N2(CHCH)RuCl(PPh3)2 (). The analogous reactions of the bis-carbene Ru-hydride precursors (Im(OMe)2)(IMes)(PPh3)RuHCl (), (Im(OMe)2)(SIMes)(PPh3)RuHCl () and (Im(OMe)2)(IMes-Cl2)(PPh3)RuHCl () gave ((MeOCH2CH2)C3H2N2(CHCH)RuCl(PPh3)(NHC) (NHC = IMes (), SIMes (), IMes-Cl2 (), respectively. The formation of compounds () and () is thought to go through an initial insertion of the vinyl-fragment into the Ru-H prompting subsequent C-H activation and loss of diethyl sulfide. This yields () and (), while subsequent loss of methanol yields () and (-). PMID:24441082

  16. Thermodynamic Calculation on the Formation of Titanium Hydride

    Institute of Scientific and Technical Information of China (English)

    Jing-wei Zhao; Hua Ding; Xue-feng Tian; Wen-juan Zhao; Hong-liang Hou

    2008-01-01

    A modified Miedema model, using interrelationship among the basic properties of elements Ti and H, is employed to calculate the standard enthalpy of formation of titanium hydride TiHx (1≤x≤2). Based on Debye theories of solid thermal capacity, the vibrational entropy, as well as electronic entropy, is acquired by quantum mechanics and statistic thermodynamics methods, and a new approach is presented to calculate the standard entropy of formation of Till2. The values of standard enthalpy of formation of TiHx decrease linearly with increase of x. The calculated results of standard enthalpy, entropy, and free energy of forma- tion of Till2 at 298.16 K are -142.39 kJ/mol, -143.0 J/(mol-K) and -99.75 k J/tool, respectively, which is consistent with the previously-reported data obtained by either experimental or theoretical calculation methods. The results show that the thermodynamic model for titanium hydride is reasonable.

  17. Measurement of nuclear fuel pin hydriding utilizing epithermal neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.H. [Univ. of Missouri, Columbia, MO (United States); Farkas, D.M.; Lutz, D.R. [General Electric Co., Pleasanton, CA (United States)

    1996-12-31

    The measurement of hydrogen or zirconium hydriding in fuel cladding has long been of interest to the nuclear power industry. The detection of this hydrogen currently requires either destructive analysis (with sensitivities down to 1 {mu}g/g) or nondestructive thermal neutron radiography (with sensitivities on the order of a few weight percent). The detection of hydrogen in metals can also be determined by measuring the slowing down of neutrons as they collide and rapidly lose energy via scattering with hydrogen. This phenomenon is the basis for the {open_quotes}notched neutron spectrum{close_quotes} technique, also referred to as the Hysen method. This technique has been improved with the {open_quotes}modified{close_quotes} notched neutron spectrum technique that has demonstrated detection of hydrogen below 1 {mu}g/g in steel. The technique is nondestructive and can be used on radioactive materials. It is proposed that this technique be applied to the measurement of hydriding in zirconium fuel pins. This paper summarizes a method for such measurements.

  18. Method of generating hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S; Niemann, Michael U; Goswami, D. Yogi; Stefanakos, Elias K

    2013-05-14

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  19. Superconductive "sodalite"-like clathrate calcium hydride at high pressures

    CERN Document Server

    Wang, Hui; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-01-01

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH6 a body-centred cubic structure with hydrogen that forms unusual "sodalite" cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H2 of electrons donated by Ca forming a "H4" unit as the building block in the construction of the 3-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone centre. The resultant dynamic Jahn-Teller effect helps to enhance electron-phonon coupling and leads to superconductivity of CaH6. A superconducting critical temperature (Tc) of 220-235 K at 150 GPa obtained...

  20. Neurofibrillary pathology and aluminum in Alzheimer's disease

    OpenAIRE

    Shin, R. W.; Lee, V. M. Y; Trojanowski, J Q

    1995-01-01

    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  1. Infiltration of molten aluminum in aluminum-nickel powder preform

    International Nuclear Information System (INIS)

    It has been shown by the present author that when molten aluminum comes in contact with nickel, an exothermic reaction is initiated and both stiochiometric and non-stiochiometric phases form at the interface. For nickel powders, such reaction is expected to be much faster due to high surface area to volume ratio of the fine particles. Infiltration of molten metals in ceramics powder preforms has long been used to fabricate near or net-shaped Metal Matrix Composite components. For metallic preforms however, it is important to see if the exothermic reaction compromises the infiltration of the molten metal constituent, i.e. defective components. The current project studied the fabrication of near net-shaped Intermetallic Matrix Composites, (IMC) via molten metal infiltration and subsequent reaction with the metal powder preform. X-ray diffraction (XRD), Optical and SEM microscopes were used to characterize the infiltration, reaction and the resulted microstructure. It is expected that the molten metal temperature, holding time within the molten metal, the infiltration pressure, i.e. metallostatic pressure and the preform compaction pressure are all important parameters to be considered carefully to achieve sound components. The current report examined the feasibility of such fabrication technique and the resultant microstructure. (author)

  2. The Development of an Innovative Vertical Floatation Melter and Scrap Dryer for Use in the Aluminum Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    Robert De Saro

    2004-08-24

    The project aimed at the development of a Vertical Floatation melter, for application to the aluminum industry. This is intended to improve both the energy efficiency and environmental performance of aluminum melting furnaces. Phase I of this project dealt primarily with the initial research effort. Phase II, dealt with pilot-scale testing.

  3. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  4. Effect of Rare Earth Element Ce on Microstructure and Properties of Aluminum Rod for Electrical Purpose

    Institute of Scientific and Technical Information of China (English)

    Li Pengfei; Wang Yunli; Gao Xizhu; Wang Zaiyun

    2004-01-01

    The effect of rare earth element Ce on microstructure, electrical conductivity and mechanical properties was studied.Using optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffractometer, the microstructure and phase composition of aluminum rod for electrical purpose were measured and analyzed.The results indicate that rare earth element Ce can considerably refine grain size of aluminum rod for electrical purpose,improve the regular distribution pattern of the impurity, such as silicon and iron which present in the aluminum matrix,form stable metal compound with pernicious impurity.This metal compound precipitates on the crystal boundary.As a result, the solid solubility of impurity in aluminum reduce, and the electrical conductivity of aluminum rod for electrical purpose is improved.It is found that the mechanical properties of aluminum rod for electrical purpose are improved by rare earth element in certain range of RE addition.

  5. Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite

    Science.gov (United States)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2015-06-01

    An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).

  6. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes.

    Science.gov (United States)

    Maity, Ayan; Teets, Thomas S

    2016-08-10

    This Review highlights stoichiometric reactions and elementary steps of catalytic reactions involving cooperative participation of transition-metal hydrides and main group Lewis acids. Included are reactions where the transition-metal hydride acts as a reactant as well as transformations that form the metal hydride as a product. This Review is divided by reaction type, illustrating the diverse roles that Lewis acids can play in mediating transformations involving transition-metal hydrides as either reactants or products. We begin with a discussion of reactions where metal hydrides form direct adducts with Lewis acids, elaborating the structure and dynamics of the products of these reactions. The bulk of this Review focuses on reactions where the transition metal and Lewis acid act in cooperation, and includes sections on carbonyl reduction, H2 activation, and hydride elimination reactions, all of which can be promoted by Lewis acids. Also included is a section on Lewis acid-base secondary coordination sphere interactions, which can influence the reactivity of hydrides. Work from the past 50 years is included, but the majority of this Review focuses on research from the past decade, with the intent of showcasing the rapid emergence of this field and the potential for further development into the future. PMID:27164024

  7. Hualu Aluminum Will Construct Large Coal-Power-Aluminum Aluminum Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The reporter learned from relevant departments of Baiyin City that in order to further push forward industrial upgrading,fulfill expansion and consolidation of the enterprise,Gansu Hualu Aluminum Co.,Ltd(Hualu Aluminum)will implement Out-Of-City-Into-Park project,

  8. Aluminum Zintl anion moieties within sodium aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  9. Generalized computational model for high-pressure metal hydrides with variable thermal properties

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2015-01-01

    This study considers a detailed 1D fueling model applied to a metal hydride system, with Ti1.1CrMn as the absorbing alloy, to predict the weight fraction of the absorbed hydrogen and the solid bed temperature. Dependencies of thermal conductivity and specific heat capacity upon pressure...... and hydrogen content, respectively, are accounted for by interpolating experimental data. The effect of variable parameters on the critical metal hydride thickness is investigated and compared to results obtained from a constant-parameter analysis. Finally, the discrepancy in the metal hydride thickness value...

  10. Rapid Microwave Synthesis, Characterization and Reactivity of Lithium Nitride Hydride, Li4NH

    OpenAIRE

    Nuria Tapia-Ruiz; Natalie Sorbie; Nicolas Vaché; Hoang, Tuan K. A.; Gregory, Duncan H.

    2013-01-01

    Lithium nitride hydride, Li4NH, was synthesised from lithium nitride and lithium hydride over minute timescales, using microwave synthesis methods in the solid state for the first time. The structure of the microwave-synthesised powders was confirmed by powder X-ray diffraction [tetragonal space group I41/a; a = 4.8864(1) Å, c = 9.9183(2) Å] and the nitride hydride reacts with moist air under ambient conditions to produce lithium hydroxide and subsequently lithium carbonate. Li4NH undergoes n...

  11. Solid hydrides as hydrogen storage reservoirs; Hidruros solidos como acumuladores de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Sanchez, C.; Friedrichs, O.; Ares, J. R.; Leardini, F.; Bodega, J.; Fernandez, J. F.

    2010-07-01

    Metal hydrides as hydrogen storage materials are briefly reviewed in this paper. Fundamental properties of metal-hydrogen (gas) system such as Pressure-Composition-Temperature (P-C-T) characteristics are discussed on the light of the metal-hydride thermodynamics. Attention is specially paid to light metal hydrides which might have application in the car and transport sector. The pros and cons of MgH{sub 2} as a light material are outlined. Researches in course oriented to improve the behaviour of MgH{sub 2} are presented. Finally, other very promising alternative materials such as Al compounds (alanates) or borohydrides as light hydrogen accumulators are also considered. (Author)

  12. Thermal decomposition kinetics of titanium hydride and Al alloy melt foaming process

    Institute of Scientific and Technical Information of China (English)

    YANG; Donghui; HE; Deping; YANG; Shangrun

    2004-01-01

    A temperature programmed decomposition (TPD) apparatus with metal tube structure, in which Ar is used as the carrier gas, is established and the TPD spectrum of titanium hydride is acquired. Using consulting table method (CTM), spectrum superposition method (SSM) and differential spectrum technique, TPD spectrum of titanium hydride is separated and a set of thermal decomposition kinetics equations are acquired. According to these equations, the relationship between decomposition quantity and time for titanium hydride at the temperature of 940 K is obtained and the result well coincides with the Al alloy melt foaming process.

  13. Proton beam production by a laser ion source with hydride target

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M., E-mail: okamura@bnl.gov [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Stifler, C. [Engineering Physics Systems Department, Providence College, Providence, Rhode Island 02918 (United States); Palm, K. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Steski, D.; Kanesue, T. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo (Japan)

    2016-02-15

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam.

  14. Analytical control of production of As, P, Si, B hydrides and the mixtures on their basis

    International Nuclear Information System (INIS)

    Highly sensitive and selective detectors which are in the basis of some analytical devices, such as chromatograph Tzvet 500G attachment POU-80, gigrometer Enisej gas analyzer Platon that permit to control the production of As, P, Si, B hydrides, are tested. The techniques of tetermination of constant gases, general carbon, moisture in the mixtures based on As, P, Si, B hydrides with diluting gases (H2, He, Ar) as well as hydrides in them and in the air of working premises, are suggested

  15. Interfacial study of semi-solid aluminum alloy and stainless steel sheathed extrusion

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-wei; GUO Cheng; LIU Xu-feng; SHAO Guang-jie

    2006-01-01

    Using sheathed extrusion technique, the bonding and forming of semi solid aluminum alloy with stainless steel sheath are successfully realized. The relationship between the interfacial shear strength and the solid fraction of semi solid aluminum alloy at different extrusion ratios is analyzed; the interfacial and fracture structure of the sheath material are studied by optical microscopy(OM) and scanning electric microscopy(SEM). The result shows that interfacial shear strength increases with the increase of extrusion ratio, the maximum value of the interfacial shear strength is obtained when solid fraction of aluminum alloy is 30%,solid phase and liquid phase of the semi solid aluminum alloy are bonded with stainless steel by turns along the interface, and the aluminum alloy can not be peeled from the stainless steel completely, which means nicer bonding occurs at the interface.

  16. Article having an improved platinum-aluminum-hafnium protective coating

    Science.gov (United States)

    Nagaraj, Bangalore Aswatha (Inventor); Williams, Jeffrey Lawrence (Inventor)

    2005-01-01

    An article protected by a protective coating has a substrate and a protective coating having an outer layer deposited upon the substrate surface and a diffusion zone formed by interdiffusion of the outer layer and the substrate. The protective coating includes platinum, aluminum, no more than about 2 weight percent hafnium, and substantially no silicon. The outer layer is substantially a single phase.

  17. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  18. Low Cost P/M Aluminum Syntactic Foam for Blade Containment in Turbine Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I SBIR proposes a low density (0.75-1.2g/cc)syntactic aluminum foam energy absorber co-manufactured inside a composite fan case for turbine...

  19. Ultrahigh vacuum system with aluminum

    International Nuclear Information System (INIS)

    A bakeable vacuum chamber (1500C continuous) consists of aluminum alloy beam pipe (6063-T6) and bellows (5052-F) with an aluminum alloy flange (2219-T87) and a metal seal [Helicoflex-HN: pure aluminum (1050) O-ring with an elastic core (Ni base super alloy Inconel 750) which supplies the sealing force] has been constructed. The beam pipe and the flange (6063-T6/2219-T87), and the bellows and the flange (5052-F/2219-T87) were welded by an alternate current (50 Hz) TIG process using an aluminum alloy filler wire (4043). The mechanical properties of the aluminum alloy (2219-T87) is suitable for using the Helicoflex O-ring but the groove surface for the gasket is weak for scratching. Cromium-nitride coating by ion plating method was carried out on the aluminum surface of the gasket groove [thickness: 16 μm, micro Vickers hardness: 1800]. Ordinary stainless steel vacuum system can be replaced by the aluminum vacuum system in an accelerator. (author)

  20. Metal hydride hydrogen compression: recent advances and future prospects

    Science.gov (United States)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  1. Final report for the DOE Metal Hydride Center of Excellence.

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jay O.; Klebanoff, Leonard E.

    2012-01-01

    This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

  2. Modelling zirconium hydrides using the special quasirandom structure approach

    KAUST Repository

    Wang, Hao

    2013-01-01

    The study of the structure and properties of zirconium hydrides is important for understanding the embrittlement of zirconium alloys used as cladding in light water nuclear reactors. Simulation of the defect processes is complicated due to the random distribution of the hydrogen atoms. We propose the use of the special quasirandom structure approach as a computationally efficient way to describe this random distribution. We have generated six special quasirandom structure cells based on face centered cubic and face centered tetragonal unit cells to describe ZrH2-x (x = 0.25-0.5). Using density functional theory calculations we investigate the mechanical properties, stability, and electronic structure of the alloys. © the Owner Societies 2013.

  3. Delayed hydride cracking: theoretical model testing to predict cracking velocity

    International Nuclear Information System (INIS)

    Pressure tubes from Candu nuclear reactors as any other component manufactured with Zr alloys are prone to delayed hydride cracking. That is why it is important to be able to predict the cracking velocity during the component lifetime from parameters easy to be measured, such as: hydrogen concentration, mechanical and microstructural properties. Two of the theoretical models reported in literature to calculate the DHC velocity were chosen and combined, and using the appropriate variables allowed a comparison with experimental results of samples from Zr-2.5 Nb tubes with different mechanical and structural properties. In addition, velocities measured by other authors in irradiated materials could be reproduced using the model described above. (author)

  4. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  5. Research on the methods to determine metallic aluminum content in aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang [State Key Lab of Materials Forming Simulation and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Material Structure Department, Changjiang River Scientific Research Institute, Wuhan 430010 (China); Song Wulin, E-mail: wulins@126.com [State Key Lab of Materials Forming Simulation and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China) and Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Lv Jie [State Key Lab of Materials Forming Simulation and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen Xia [Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie Changsheng [State Key Lab of Materials Forming Simulation and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-04-15

    The high reactivity of aluminum nanoparticles (ANPs) made the determination of their metallic aluminum (Al) content difficult. Volumetric, thermogravimetry and permanganatometric methods were utilized to determine Al content. The reacted solution after volumetric measurement was further studied by transmission electron microscopy (TEM) and select area electron diffraction (SAED), which revealed that there were unreacted Al particles. Peaks indexed to metallic Al were found in the X-ray diffraction (XRD) pattern of the powders after thermogravimetry analysis (TGA). The side reactions between ANPs and water made the result of permanganatometric measurement underestimated as by the former methods. A modified titration method, using anhydrous alcohol as solvent, was performed to reduce the influence of water. The Al content of the ANPs produced by electro-exploded wire using this method was consistent with the quantitative phase analysis by Rietveld refinement.

  6. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger

    Science.gov (United States)

    Oi, Tsutomu; Maki, Kohei; Sakaki, Yoshinori

    Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger were investigated. Metal hydride beds were filled with AB 2 type hydrogen-storage alloy's particles, Ti 0.42Zr 0.58Cr 0.78Fe 0.57Ni 0.2Mn 0.39Cu 0.03, with a storage capacity of 0.92 wt.%. Heat transfer model in the metal hydride bed based on the heat transfer mechanism for packed bed proposed by Kunii and co-workers is presented. The time-dependent hydrogen absorption/desorption rate and pressure in the metal hydride vessel calculated by the model were compared with the experimental results. During the hydriding, calculated hydrogen absorption rates agreed with measured ones. Calculated thermal equilibrium hydrogen pressures were slightly lower than the measured hydrogen pressures at the inlet of metal hydride vessel. Taking account of the pressure gradient between the inlet of metal hydride vessel and the metal hydride bed, it is considered that this discrepancy is reasonable. During the dehydriding, there were big differences between the calculated hydrogen desorption rates and measured ones. As calculated hydrogen desorption rates were lower than measured ones, there were big differences between the calculated thermal equilibrium hydrogen pressures and the measured hydrogen pressures at the inlet of metal hydride vessel. It is considered that those differences are due to the differences of the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity between the assumed and actual ones. It is important to obtain the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity both during the hydriding and dehydriding to design a metal hydride vessel.

  7. Catalytic Radical Reduction in Aqueous Solution by a Ruthenium Hydride Intermediate.

    Science.gov (United States)

    Htet, Yamin; Tennyson, Andrew G

    2016-07-18

    Some manganese complexes can catalyze both antioxidant and pro-oxidant reactions, whereby the disparate reactivity modes are determined by the catalyst environment and afford distinct therapeutic effects. We recently reported the reduction of radicals in buffered aqueous solution catalyzed by a ruthenium complex with biologically relevant non-tertiary alcohols as terminal reductants. Mechanistic evidence is presented, indicating that this catalytic radical reduction is achieved by a Ru-hydride intermediate formed by β-hydride elimination from a Ru-alkoxide species. A similar mechanism and Ru-hydride intermediate was previously reported to kill cancer cells with catalytic pro-oxidant effects. Therefore, our demonstration of catalytic antioxidant effects by the same type of intermediate reveals new potential therapeutic strategies and applications for catalytic systems that form Ru-hydride intermediates. PMID:27254303

  8. In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy

    CERN Document Server

    Kessels, W M M; Sanden, M C M; Aydil, E S

    2002-01-01

    An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the h...

  9. Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction

    Science.gov (United States)

    Courty, Olivier F.; Motta, Arthur T.; Piotrowski, Christopher J.; Almer, Jonathan D.

    2015-06-01

    As a result of in-reactor corrosion during operation in nuclear reactors, hydrogen can enter the zirconium fuel cladding and precipitate as brittle hydride particles, which may reduce cladding ductility. Dissolved hydrogen responds to temperature gradients, resulting in transport and precipitation into cold spots so that the distribution of hydrides in the cladding is inhomogeneous. The hydrogen precipitation kinetics plays a strong role in the spatial distribution of the hydrides in the cladding. The precipitation rate is normally described as proportional to the supersaturation of hydrogen in solid solution. The proportionality constant, α2, for hydride precipitation in Zircaloy-4 is measured directly using in situ synchrotron X-Ray diffraction, at different temperatures and with three different initial hydrogen concentrations. The results validate the linear approximation of the phenomenological model and a near constant value of α2 = 4.5 × 10-4 s-1 was determined for the temperature range studied.

  10. The two steps thermal decomposition of titanium hydride and two steps foaming of Al alloy

    Institute of Scientific and Technical Information of China (English)

    SHANG Jintang; HE Deping

    2005-01-01

    Two steps foaming (TSF) technique was proposed to prepare shaped Al alloy foam. Based on the thermal decomposition kinetics equation of titanium hydride, the relationship between two steps thermal decomposition kinetics of titanium hydride and two steps foaming Al alloy melt was studied. Two steps thermal decomposition curve of titanium hydride under increasing and constant temperature was calculated respectively. The hydrogen mass needed in the second foaming step was also calculated. Results showed that the hydrogen mass of the second thermal decomposition of titanium hydride is enough for the second foaming step in the condition of as-received Al melt foaming. Experimental and theoretical results indicate that two steps foaming technique can be used to prepare Al alloy foam with high porosity, shaped components and sandwich with Al alloy foam core.

  11. Lateral epitaxial overgrowth of aluminum nitride and near ultraviolet LEDs for white lighting applications

    Science.gov (United States)

    Newman, Scott A.

    In recent years, substantial efforts have been made to develop deep ultraviolet AlGaN-based LEDs (200-280 nm) for specialized applications such as bio-detection and non-line-of-sight (NLOS) communications. One of several factors limiting the performance of these devices is the high threading dislocation (TD) density of ˜5x109 cm-2 that results from growing the required AlN base layer on either a SiC or sapphire substrate. Lateral epitaxial overgrowth (LEO) of AlN, the first topic of this dissertation, is a promising technology for growing low TD density AlN templates. Conventional LEO methods relying on selective area growth (SAG) have not been effective for AlxGa1-xN with x > 0.2, because of the high aluminum sticking coefficient for the mask materials and/or contamination of the film by the mask. Therefore, maskless AlN LEO was investigated using metal organic chemical vapor deposition (MOCVD) and hydride vapor phase epitaxy (HVPE). Cracked AlN films with TD densities of color temperatures (CCTs) of ˜5,500 K and poor color rendering indices (CRIs) of ˜75. The alternative approach of combining a NUV LED with suitable NUV-excitation phosphors (e.g., red, green, and blue phosphors) can theoretically allow for high CRI white lighting with relatively good efficacy and a variety of CCTs. When this project began in late 2007, the lack of suitable blue-excitation phosphors suggested that this was the only viable approach to attaining very high CRI white lighting. NUV LEDs with AlN buffers on 6H-SiC substrates and AlGaN/InGaN active regions were first developed to target white phosphors with excitation peaks near 365 nm. Later, NUV LEDs with GaN buffers on sapphire substrates and GaN/InGaN active regions were developed to diagnose problems with the AlGaN/InGaN LEDs and to target white phosphors with excitation peaks near 400 nm. The best device produced in this study was a 410 nm GaN/InGaN LED which emitted 7.4 mW at 20 mA, with a maximum external quantum efficiency

  12. The formation and characteristics of hydride blisters in c.w. Zircaloy-2 pressure tubes

    International Nuclear Information System (INIS)

    Under the auspices of the IAEA, a consultants' meeting was arranged in Vienna, 1994 July 25-29, at which a Canadian delegation, consisting of AECL and Ontario Hydro Technologies personnel, presented information on their knowledge of the behaviour of hydride blisters in Zircaloy-2 pressure tubes. This document contains the 10 papers presented by the Canadian delegation to the meeting. It is believed that they represent a good reference document on hydride blister phenomena

  13. Dehydrogenation in lithium borohydride/conventional metal hydride composite based on a mutual catalysis

    DEFF Research Database (Denmark)

    Yu, X.B.; Shi, Qing; Vegge, Tejs;

    2009-01-01

    The dehydrogenation of LiBH4 ball-milled with hydrogenated 40Ti–15Mn–15Cr–30V alloy was investigated. It was found that there is a mutual catalysis between the two hydrides, lowering the temperature of hydrogen release from both hydrides. In the case of 1h milled LiBH4/40Ti–15Mn–15Cr–30V with a...

  14. Atomic-Scale Chemical, Physical and Electronic Properties of the Subsurface Hydride of Palladium

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Paul

    2014-01-20

    We employed low-temperature, extreme-high vacuum scanning tunneling microscopy (STM) to investigate the roles of subsurface hydride (H) and deuteride (D) in the surface reconstruction and surface reactivity of Pd{110}. Specifically, we gained the ability to tailor the surface structure of Pd{110} both by preparation method and by deposition of deuterium from the gas phase. We observed thiophene at low coverage on Pd{110} to determine its adsorption orientation and electronic structure through scanning tunneling spectroscopy (STS) – namely, conductance spectroscopy and differential conductance imaging. We developed the methods necessary to coadsorb D adatoms with thiophene molecules, and to induce the reaction of individual molecules with predefined subsurface H or D features. In the case of Pd{110}, we found a much more pronounced effect from subsurface D, as it is influenced by the surface directionality. These experiments facilitate an understanding of the role of surface and subsurface H and D in heterogeneous catalytic processes, specifically in the hydrodesulfuization (HDS) of thiophene, an important and ubiquitous component found to be detrimental to petroleum refining.

  15. Chrome - Free Aluminum Coating System

    Science.gov (United States)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  16. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  17. Influence of lanthanon hydride catalysts on hydrogen storage properties of sodium alanates

    Institute of Scientific and Technical Information of China (English)

    WU Zhe; CHEN Lixin; XIAO Xuezhang; FAN Xiulin; LI Shouquan; WANG Qidong

    2013-01-01

    NaAlH4 complex hydrides doped with lanthanon hydrides were prepared by hydrogenation of the ball-milled NaH/Al+xmol.% RE-H composites (RE=La,Ce; x=2,4,6) using NaHl and A1 powder as raw materials.The influence of lanthanon hydride catalysts on the hydriding and dehydriding behaviors of the as-synthesized composites were investigated.It was found that the composite doped with 2 mol.% La.H3.01 displayed the highest hydrogen absorption capacity of 4.78 wt.% and desorption capacity of 4.66wt.%,respectively.Moreover,the composite doped with 6 mol% CeH2.51 showed the best hydriding/dehydriding reaction kinetics.The proposed catalytic mechanism for reversible hydrogen storage properties of the composite was attributed to the presence of active LaH3.01 and CeH2.51 particles,which were scattering on the surface of NaH and A1 particles,acting as the catalytic active sites for hydrogen diffusion and playing an important catalytic role in the improved hydriding/dehydriding reaction.

  18. A Virtual Aluminum Reduction Cell

    Science.gov (United States)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  19. Selenium adsorption to aluminum-based water treatment residuals

    Energy Technology Data Exchange (ETDEWEB)

    Ippolito, James A.; Scheckel, Kirk G.; Barbarick, Ken A.; (US-Agriculture); (EPA); (CSU)

    2009-09-02

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR in an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.

  20. Recovery of rare earths from acid leach solutions of spent nickel-metal hydride batteries using solvent extraction

    Institute of Scientific and Technical Information of China (English)

    夏允; 肖连生; 田吉英; 李兆洋; 曾理

    2015-01-01

    The extraction of rare earths from acid leach solutions of spent nickel-metal hydride batteries using a primary amine ex-tractant of N1923 was studied. The effects of feed pH, temperature, agitation rate and time on the extraction of rare earths, as well as stripping agent composition and concentration, phase ratio on the stripping were investigated. In addition, the extraction isotherm was determined. The pilot plant test results showed that the extraction of rare earths reached 99.98% after a five-stage counter current ex-traction. The mixed rare earths oxalates with the 99.77% purity of rare earth elements and impurity content less than 0.05% were ob-tained by the addition of oxalic acids in loaded strip liquors. The extractant exhibited good selectivity of rare earths over base metals of iron, nickel, copper and manganese.

  1. Small-angle neutron scattering measurements of deuteride (hydride) formation and decomposition in single-crystal Pd

    International Nuclear Information System (INIS)

    The deuteride (hydride) precipitation and decomposition microstructure in single-crystal Pd has been investigated in a series of in situ small-angle neutron scattering (SANS) measurements. The particle morphology along the absorption and desorption branches of the 353-K pressure-composition isotherm are consistent with a loss of particle coherency, leading to the formation of large, micron-thick plates. The loss of coherency coincides with the system entering the miscibility gap, an observation that suggests irreversible dislocation formation in part drives the hysteretic behavior of the Pd-D (-H) system. SANS analysis further indicates that the decomposition process is characterized by a much higher particle dispersion, with a factor of 40 greater surface-to-volume ratio of the precipitating phase. This we attribute to a more heterogeneous transformation process, presumably at dislocations formed during initial deuteride formation

  2. The oxidation and hydriding of zircaloy fuel cladding in high temperature aqueous solutions

    Science.gov (United States)

    Chen, Yingzi

    Nearly 90% of today's fission reactors use Zr based fuel cladding materials. The Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs) are the two most common water-cooled nuclear reactors. Corrosion is the principal threat to the failure of the fuel in these reactors, resulting in the release of fission products to the coolant and hence to the establishment of radiation fields in out-of-core regions of the coolant circuit (e.g., steam generators in PWRs and turbines in BWRs). As is well known, corrosion is an electrochemical phenomenon; however, electrochemical effects are often neglected in corrosion studies on zirconium and its alloys, because of the difficulty in performing well-defined experiments under the appropriate conditions (high temperatures and pressures). In-situ studies have been carried out to examine the electrochemistry of passive zirconium under simulated BWR and PWR coolant conditions by using a controlled hydrodynamic, high temperature/high pressure test cell. The oxidation/hydriding mechanisms are elucidated by measuring the current, impedance, and capacitance of passive zirconium as a function of formation potential. The data are interpreted in terms of a modified point defect model (PDM) that recognize the existence of a passive film comprising a thick oxide outer layer over a thin barrier layer. From the composition of the zirconium passive film and thermodynamic analysis, it is postulated that a hydride barrier layer forms under PWR coolant conditions whereas an oxide barrier layer forms under BWR primary coolant conditions. Transients in current density and the thickness of the passive film formed on zirconium, when stepping the potential in either the positive or negative directions, have confirmed that the rate law afforded by the PDM adequately describes the growth and thinning of the passive film at high temperatures. The experimental results demonstrate that the kinetics of either oxygen or hydrogen vacancy generation

  3. Hydriding/dehydriding behavior of Mg{sub 2}CoH{sub 5} produced by reactive mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, I. Gonzalez [Instituto Balseiro, U.N. Cuyo (Argentina); Meyer, G.O. [Instituto Balseiro, U.N. Cuyo (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET (Argentina); Centro Atomico Bariloche (CNEA), R8402AGP, S.C. de Bariloche (Argentina); Gennari, F.C. [Instituto Balseiro, U.N. Cuyo (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET (Argentina); Centro Atomico Bariloche (CNEA), R8402AGP, S.C. de Bariloche (Argentina)], E-mail: gennari@cab.cnea.gov.ar

    2008-09-22

    Complex Mg{sub 2}CoH{sub 5} hydride was obtained by a combined procedure that included a milling stage of a 2Mg-Co mixture under argon followed by reactive mechanical alloying (RMA) under hydrogen, both at room temperature. During RMA, MgH{sub 2} is produced at short milling times (10 h) and Mg{sub 2}CoH{sub 5} (50 wt%) after 90 h. Improvement in the yield and the formation times could be associated with both refinement of microstructure and enhancement of intermixing of Mg-Co during pre-milling stage. DSC studies of Mg{sub 2}CoH{sub 5} phase produced by RMA show that the starting decomposition temperature is about 205 deg. C. Absorption and desorption PCIs were determined under static (300 deg. C) and dynamic (230-330 deg. C) conditions. An important hysteresis and two plateaus were observed and correlated with formation/decomposition of Mg{sub 2}CoH{sub 5} (high-pressure plateau) and Mg{sub 6}Co{sub 2}H{sub 11} (low-pressure plateau) hydrides. For comparing hydrogen sorption kinetics, Mg{sub 2}CoH{sub 5} (65 wt%) was also obtained by a sintering method at 410 deg. C and 6.0 MPa of hydrogen pressure. Absorption was very fast in the temperature range of 150-350 deg. C, independently of synthesis procedure. However, desorption curves showed a better behavior for RMA powders. MgCo was observed after decomposition of Mg{sub 2}CoH{sub 5} under particular thermal treatments, while MgCo{sub 2} phase was not detected. The results of this study reinforce the idea that kinetics factors related with atomic mobility play a key role in the formation of Mg-Co intermetallics.

  4. Stacking structures and electrode performances of rare earth-Mg-Ni-based alloys for advanced nickel-metal hydride battery

    International Nuclear Information System (INIS)

    Rare earth-Mg-Ni-based alloys with stacking structures consisting of AB5 unit (CaCu5-type structure) and A2B4 unit (Laves structure) have received attention as negative electrode materials for advanced nickel-metal hydride (Ni-MH) battery. These alloy materials are very attractive because of high hydrogen storage capacity, low cobalt content and moderate plateau pressure, but have some difficulty to control the phase abundance and electrode performances. In this paper, relationship among composition, phase abundance, and electrochemical properties was investigated. Structural analysis was done using synchrotron X-ray diffraction patterns. In alloys such as La0.8Mg0.2Ni3.4-x-yCo0.3(MnAl)x (0 ≤ x ≤ 0.4), phase abundance was drastically changed with increasing amount of Mn and Al. In the range of 0.1 5Co19-type (5:19H) or rhombohedral 1:4R phases were dominant. The Rietveld analysis suggested that Mg occupies La sites in A2B4 unit, and Al has tendency to occupy Ni sites between A2B4 unit and AB5 unit or between AB5 units in these types of phases. The developed alloys showed higher discharge capacity by 20% than the conventional one at a 0.2 C discharge rate

  5. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  6. A High-Fe Aluminum Matrix Welding Filler Metal for Hardfacing Aluminum-Silicon Alloys

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A high-Fe containing aluminum matrix filler metal for hardfacing aluminum-silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as-cast and as-welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al-Si-Fe-Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al-Si-Mg-Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper-eutectic aluminum-silicon alloy with 27% Si and 1% Ni.

  7. Alkaline corrosion properties of laser-clad aluminum/titanium coatings

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Herbreteau, Alexis; Rombouts, Marleen;

    2015-01-01

    with supersaturated titanium ( (1 weight per cent), Al3Ti intermetallics and large partially undissolved Ti6Al4V particles. Heat treatment lowered the titanium concentration in the aluminum matrix, changed the shape of the Al3Ti precipitates and increased the degree of dissolution of the Ti6Al4V particles. Corrosion...... testing showed significant localized dissolution of the aluminum matrix. Research limitations/implications – Increased titanium concentration and heat treatment gave improved alkaline corrosion properties. At pH 13.5, the Al3Ti phases were protected, while the aluminum matrix corroded. Practical...... implications – For alkaline corrosion-protection of aluminum in the automobile industry, titanium might be useful at pH values below 13.5 or by using other coating techniques. Originality/value – This is the first study testing the use of titanium as a protective element of aluminum in stringent alkaline...

  8. 用于高效液相色谱和开管毛细管电色谱的氢化硅胶分离材料%Hydride-Based Separation Materials for High Performance Liquid Chromatography and Open Tubular Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)

    PESEK Joseph J; MATYSKA Maria T

    2005-01-01

    Silica hydride is a recent development in chromatographic support materials for high performance liquid chromatography (HPLC) where hydride groups replace 95% of the silanols on the surface. This conversion changes many of the fundamental properties of the material as well as the bonded stationary phases that are the result of further chemical modification of the hydride surface. Some unique chromatographic properties of hydride-based phases are described as well as some general application areas where these bonded materials may be used in preference to or have advantages not available from typical stationary phases. The fabrication, properties and applications of etched chemically modified capillaries for electrophoretic analysis are also reviewed. It is shown that the etching process creates a surface that is fundamentally different than a bare fused silica capillary. The new surface matrix produces unique electroosmotic flow properties and is more compatible with basic and biological compounds. After chemical modification of the surface, the bonded organic moiety (stationary phase) contributes to the control of migration of solutes in the capillary. Both electrophoretic and chromatographic processes take place in the etched chemically modified capillaries leading to a variety of experimental variables that can be used to optimize separations. A number of examples of separations on these capillaries are described.

  9. Geochemistry of Aluminum in High Temperature Brines

    Energy Technology Data Exchange (ETDEWEB)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

    1999-05-18

    The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

  10. Hydrides of CeNi5, MmNi5, Ca02(Ce065Mm035)08Ni5, Ca02Ce08Ni5, Ca02Mm08Ni5, and mixed CeNi5/MmNi5

    International Nuclear Information System (INIS)

    Six intermetallic alloys [CeNi5, MmNi5, Ca02(Ce065Mm035)08Ni5, Ca02Ce08Ni5, Ca02Mm08Ni5, and a mixed alloy, CeNi5/MmNi5] were investigated with respect to their suitability to provide high hydrogen capacity and their potential for use in providing substantial hydrogen pressure at both low and high temperatures. A second phase of our investigation dealt with ball-milling and hydriding and dehydriding cycles to produce fine particles for use in hydride powder transfer studies. A summary of several Van't Hoff plots is also included for hydride-forming alloys

  11. Temperature Controlled Laser Joining of Aluminum to Galvanized Steel

    Science.gov (United States)

    Weller, Daniel; Simon, Jörg; Stritt, Peter; Weber, Rudolf; Graf, Thomas; Bezençon, Cyrille; Bassi, Corrado

    Reliable joining of 6000 series aluminum alloy to galvanized steel is a challenge for current manufacturing technologies. To control and limit the formation of brittle intermetallic phases, mixing of both metals in liquid state has to be avoided. It has been shown that laser weld-brazing is a possible process. Thereby the aluminum and zinc layer of the galvanized steel are molten and the steel remains solid during the process. In addition, to avoid zinc degassing, the aluminum melt bath temperature has to be below zinc boiling temperature of 907°C. To meet these requirements a temperature controlled laser process was developed, allowing to join the two materials without flux and filler material. The thickness of the intermetallic layer shows a dependency on the set temperature used to control the process. At optimum set temperature the thickness of intermetallic phases can be limited to about 5 μm. Tensile strengths of the joints of up to 75% of the aluminum base material were achieved.

  12. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  13. Zintl and intermetallic phases grown from calcium/lithium flux

    Science.gov (United States)

    Blankenship, Trevor

    , (Im-3, a = 9.6055(8)A) which contains C 34- units. A very similar phase, Ba12InC 18H4 (Im-3,a = 11.1415(8) A), was grown from the reaction of indium, carbon, and LiH in Ba/Li flux. This compound also includes C34- units. Preliminary Ca/Li flux reactions of aluminum with other main group elements have produced several new phases: a hydride clathrate Ca31Al2H25 in cubic Fd-3m (a=18.0835(15) A), Ca24Al2(C 1-xHx)N2H16 in tetragonal P42/nmc (a=15.9069(12) A, c=13.7323(10) A, and Ca 4Al2N5 in orthorhombic Pna21 (a = 11.2331(1) A, b=9.0768(8) A, c=6.0093(5) A.

  14. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    International Nuclear Information System (INIS)

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of ∼7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low (∼20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the

  15. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S; Michael Hay, M; Kristine Zeigler, K; Michael Stone, M

    2009-03-25

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40

  16. Tank 12 Sludge Characterization and Aluminum Dissolution Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.; Hay, M.; Zeigler, K; Stone, M.

    2010-05-05

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40

  17. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4; Influence de l'orientation des hydrures sur les modes de deformation, d'endommagement et de rupture du zircaloy-4 hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Racine, A

    2005-09-15

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  18. Improved Electrochemical Performance of Surface-Modified Metal Hydride Electrodes

    Institute of Scientific and Technical Information of China (English)

    YANG Kai; WU Feng; CHEN Shi; ZHANG Cun-zhong

    2005-01-01

    A novel plating process was applied to the surface modification of the metal hydride (MH) electrode of the MH/Ni batteries. The electrode was plated with a thin nickel film about 0.1 μm thick by using multi-arc ion plating technique. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to analyze the electrodes. Influence of the surface modification on the performance of the MH/Ni batteries was studied. It is shown that the surface modification could enhance the electrode conductivity and decrease the batteries ohimic resistance by 28.2 %. After surface modification, the discharge capacity of modification also improves the cyclic durability of the batteries. The inner pressure of the batteries with modified electrode during overcharging is much lower than that with unmodified electrode. The experimental results demonstrate that this process is an effective way for the surface modification of the electrode of MH/Ni batteries.

  19. Superhalogens as Building Blocks of Complex Hydrides for Hydrogen Storage

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    Superhalogens are species whose electron affinity (EA) or vertical detachment energy (VDE) exceed to those of halogen. These species typically consist of a central electropositive atom with electronegative ligands. The EA or VDE of species can be further increased by using superhalogen as ligands, which are termed as hyperhalogen. Having established BH4- as a superhalogen, we have studied BH4-x(BH4)x- (x = 1 to 4) hyperhalogen anions and their Li-complexes, LiBH4-x(BH4)x using density functional theory. The VDE of these anions is larger than that of BH4-, which increases with the increase in the number of peripheral BH4 moieties (x). The hydrogen storage capacity of LiBH4-x(BH4)x complexes is higher but binding energy is smaller than that of LiBH4, a typical complex hydride. The linear correlation between dehydrogenation energy of LiBH4-x(BH4)x complexes and VDE of BH4-x(BH4)x- anions is established. These complexes are found to be thermodynamically stable against dissociation into LiBH4 and borane. This stud...

  20. Unloading Effect on Delayed Hydride Cracking in Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Sung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    It is well-known that a tensile overload retards not only the crack growth rate (CGR) in zirconium alloys during the delayed hydride cracking (DHC) tests but also the fatigue crack growth rate in metals, the cause of which is unclear to date. A considerable decrease in the fatigue crack growth rate due to overload is suggested to occur due either to the crack closure or to compressive stresses or strains arising from unloading of the overload. However, the role of the crack closure or the compressive stress in the crack growth rate remains yet to be understood because of incomplete understanding of crack growth kinetics. The aim of this study is to resolve the effect of unloading on the CGR of zirconium alloys, which comes in last among the unresolved issues as listed above. To this end, the CGRs of the Zr-2.5Nb tubes were determined at a constant temperature under the cyclic load with the load ratio, R changing from 0.13 to 0.66 where the extent of unloading became higher at the lower R. More direct evidence for the effect of unloading after an overload is provided using Simpson's experiment investigating the effect on the CGR of a Zr-2.5Nb tube of the stress states of the prefatigue crack tip by unloading or annealing after the formation of a pre-fatigue crack

  1. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Osami [Muroran it., Hokkaido (Japan)

    2008-06-15

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl{sub 3}. The FeAl{sub 3} particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl{sub 3} particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl{sub 3} free surface was an electrochemical treatment such as cathodic current density of -2 kAm{sup -2} in a 20-30 mass% HNO{sub 3} solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl{sub 3} free particles are examined in a 0.1 kmol/m{sup 3} NaCl solution. It is found that aluminum with free FeAl{sub 3} particles shows higher corrosion resistance than aluminum with FeAl{sub 3} particles.

  2. Rechargeable Aluminum-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans [ORNL; Liu, Hansan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  3. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely... additive, expressed as niacin, shall appear on the label of the food additive container or on that of...

  4. Baise to Build Ecological Aluminum Industry Base

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>The government of Baise announced the construction of an ecological aluminum industry base over the next few years,pledging to turn the city into a major aluminum industry base in China and the rest of Asia.

  5. Environmental Control over the Primary Aluminum Industry

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> To strengthen environmental control over theprimary aluminum industry,the State Environ-mental Protection Administration of China hasrecently issued a notice addressing the follow-ing points:Strengthening environmental control over theexisting primary aluminum companies

  6. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义

    2004-01-01

    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  7. OPTIMIZING AN ALUMINUM EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Mohammed Ali Hajeeh

    2013-01-01

    Full Text Available Minimizing the amount of scrap generated in an aluminum extrusion process. An optimizing model is constructed in order to select the best cutting patterns of aluminum logs and billets of various sizes and shapes. The model applied to real data obtained from an existing extrusion factory in Kuwait. Results from using the suggested model provided substantial reductions in the amount of scrap generated. Using sound mathematical approaches contribute significantly in reducing waste and savings when compared to the existing non scientific techniques.

  8. Another Look at the Mechanisms of Hydride Transfer Enzymes from Quantum and Classical Transition Path Sampling

    Science.gov (United States)

    Dzierlenga, Michael; Antoniou, Dimitri; Schwartz, Steven

    2015-03-01

    The mechanisms involved in enzymatic hydride transfer have been studies for years but questions remain, due to the difficulty in determining the participation of protein dynamics and quantum effects, especially hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and lactate dehydrogenase (LDH). Calculation of the work applied to the hydride during the reaction allows for observation of the change in barrier height due to inclusion of quantum effects. Additionally, the same calculations were performed using deuterium as the transferring particle to validate our methods with experimentally measured kinetic isotope effects. The change in barrier height in YADH upon inclusion of quantum effects is indicative of a zero-point energy contribution, and is evidence that the protein mediates a near-barrierless transfer of the rate-limiting hydride. Calculation of kinetic isotope effects using the average difference in barrier between hydride and deuteride agreed well with experimental results. The authors acknowledge the support of the National Institutes of Health Grants GM068036 and GM102226.

  9. Hydrogen transmission/storage with a metal hydride/organic slurry

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J.; McClaine, A. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  10. Cool-down induced hydride reorientation of hydrogen-charged Zirconium alloy cladding tubes

    International Nuclear Information System (INIS)

    250 and 500ppm hydrogen-charged Zirconium alloy tubes were employed to investigate hydride reorientation behaviors when they were cool down from 400 to 300, 200degC and room temperature with various cooling rates of 0.3, 2.0, 4.0, 7.0 and 15.0degC/min under a tensile hoop stress of 150MPa. These cool-down tests indicate that the slower cooling rate and the lower terminal cool-down temperature produced the more hydrides precipitated along with the larger fraction and the longer length of radial hydrides. These phenomena may be explained by terminal solid solubility of hydrogen for dissolution and precipitation and cooling rate-dependent hydride nucleation and growth rates. On the other hand, a dramatic decrease of ultimate tensile strength and plastic strain of the cool-down tested specimens may be explained by the amount of the radial hydrides precipitated during the cool-down process. (author)

  11. Hydrides blister formation and induced embrittlement on zircaloy-4 cladding tubes in reactivity initiated conditions

    International Nuclear Information System (INIS)

    Our aim is to study the cladding fracture with mechanical tests more representative of RIA conditions, taking into account the hydrides blisters, representative strain rates and stress states. To obtain hydride blisters, we developed a thermodiffusion setup that reproduces blister growth in reactor conditions. By metallography, nano-hardness, XRD and ERDA, we showed that they are constituted by 80% to 100% of δ hydrides in a Zircaloy-4 matrix, and that the zirconium beneath has some radially oriented hydrides. We modeled the blister growth kinetics taking into account the hysteresis of the hydrogen solubility limit and defined the thermal gradient threshold for blister growth. The modeling of the dilatometric behavior of hydrided zirconium indicates the important role of the material crystallographic texture, which could explain differences in the blister shape. Mechanical tests monitored with an infrared camera showed that significant local heating occurred at strain rates higher than 0.1/s. In parallel, the Expansion Due to Compression test was optimized to increase the bi-axiality level from uniaxial stress to plane strain (HB-EDC and VHB-EDC tests). This increase in loading bi-axiality lowers greatly the fracture strain at 25 C and 350 C only in homogeneous material without blister. Eventually, the ductility decrease of unirradiated Zircaloy-4 cladding tube in function of the blister depth was quantified. (author)

  12. Nuclear quadrupole interaction studies of C15 RMn2 hydrides ( R=Y ,Gd,Tb,Dy)

    Science.gov (United States)

    Forker, M.; Bedi, S. C.; Euler, H.

    2008-09-01

    The nuclear electric quadrupole interaction (QI) of the probe nucleus I111n/C111d in the paramagnetic phase of the C15 rare earth (R) manganese hydrides (deuterides) RMn2H(D)x , with R=Y , Gd, Tb, and Dy, has been investigated by perturbed angular-correlation spectroscopy. The QI between the C111d quadrupole moment and the electric-field gradient (EFG) at the probe nucleus on the Mn site has been measured as a function of temperature in TbMn2H(D)x in the concentration range 0≤x≤4.3 and in RMn2H(D)x , R=Y ,Gd,Dy at the highest H content of xtilde 4.3 . The relative temperature dependence of the EFG in the parent compounds RMn2 is twice as strong as in isostructural RAl2 which can be related to differences in the Debye temperatures resulting from different radius ratios rR/rMn and rR/rAl [Joseph-Gschneidner postulate, Scr. Metall.2, 631 (1968)]. Hydrogenation of RMn2 increases the magnitude of the EFG by a factor of 2 between x=0 and x=4.3 but leaves the relative temperature dependence almost unchanged. Only at concentrations x>3.6 the temperature coefficient of the QI is significantly larger than in uncharged RMn2 . These results are compared with the much stronger concentration dependence and the anomalous temperature dependence of the QI of C111d in the C15 hydrides HfV2Hx . Evidence for an exceptionally high H mobility in TbMn2Hx is presented. The measurements provide information on structural changes and magnetic ordering temperatures at different H concentrations.

  13. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... in the Federal Register on November 17, 2009 (74 FR 59254). At the request of the State agency and a... Employment and Training Administration Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood... Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division, including on- site...

  14. Investigation of Corrosion Behavior Of 6013 Aluminum Alloys For Artificial Aged Microwave Furnace

    Directory of Open Access Journals (Sweden)

    Muzaffer Erdoğan

    2014-01-01

    Full Text Available Low density and high strength aluminum alloys can be achieved today is a type of an alloy. These alloys are more resistant, particularly the aging process is the precipitate formed. In this study, increased strength 6013 aluminum alloy in a microwave furnace yaşlandırarak artificial. Volume samples in a microwave oven aging method and aging has provided a homogeneous way.6013 aluminum alloys, pure argon gas atmosphere in a microwave furnace hardness after being subjected to artificial aging process analysis, the internal structure (optical microscope, SEM, characterization of the studied. Aging of the phases, the presence server in the XRD of the samples was determined by curves. Corrosion of artificial aged samples has been analyzed by the internal structure of the phases present. Depending on the time of artificial aging of aluminum alloy 6013 samples in a microwave furnace in the mechanical properties of the sediment affected the corrosion resistance values.

  15. Optical frequency comb generation from aluminum nitride micro-ring resonator

    CERN Document Server

    Jung, Hojoong; Fong, King Y; Zhang, Xufeng; Tang, Hong X

    2013-01-01

    Aluminum nitride is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high quality factor aluminum nitride micro-ring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single wavelength continuous-wave pump laser. The Kerr coefficient (n2) of aluminum nitride is further extracted from our experimental results.

  16. Preparation and characterization of morph-genetic aluminum nitride/carbon composites from filter paper

    International Nuclear Information System (INIS)

    Morph-genetic aluminum nitride/carbon composites with cablelike structure were prepared from filter paper template through the surface sol-gel process and carbothermal nitridation reaction. The resulting materials have a hierarchical structure originating from the morphology of cellulose paper. The aluminum nitride/carbon composites have the core-shell microstructure, the core is graphitic carbon, and the shell is aluminum nitride nanocoating formed by carbothermal nitridation reduction of alumina with the interfacial carbon in nitrogen atmosphere. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscope were employed to characterize the structural morphology and phase compositions of the final products

  17. Evaluation of Aluminum in Iranian Consumed Tea

    OpenAIRE

    Alireza Asgari; Mahdi Ahmadi Moghaddam; Amirhossein Mahvi; Masoud Yonesian

    2008-01-01

    Introduction: Black tea leaf is one of the most important sources of Aluminum in dietary. Therefore this research was conducted to assess the amount of Aluminum in Iranian tea infusion. Methods: To assess Aluminum in Iranian consumed tea, 27 tea samples were analyzed for Al concentration for 10 and 60 min infusion, aluminum concentration was measured with atomic absorption and the results were analyzed by SPSS.13 version. Results: The results showed that minimum and maximum concentration of A...

  18. Mineral resource of the month: aluminum

    Science.gov (United States)

    Bray, E. Lee

    2012-01-01

    The article offers information on aluminum, a mineral resource which is described as the third-most abundant element in Earth's crust. According to the article, aluminum is the second-most used metal. Hans Christian Oersted, a Danish chemist, was the first to isolate aluminum in the laboratory. Aluminum is described as lightweight, corrosion-resistant and an excellent conductor of electricity and heat.

  19. Electrochemical Behavior of Aluminum in Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hui; ZHU; Li-yang; LIN; Ru-shan; TAN; Hong-bin; HE; Hui

    2013-01-01

    Aluminum is one of cladding materials for nuclear fuel,it is important to investigate the electrolytic dissolution of aluminum in nitric acid.The electrochemical impedance spectroscopy,polarization curve and cyclic voltammetry cure of anodic aluminum electrode in nitric acid under various conditions were collected(Fig.1).It turns out,under steady state,the thickness of the passivated film of aluminum

  20. Dehydrogenation kinetics for pure and nickel-doped magnesium hydride investigated by in-situ, time-resolved powder diffraction (poster)

    DEFF Research Database (Denmark)

    Jensen, T.R.; Andreasen, A.; Vegge, T.;

    2004-01-01

    The dehydrogenation kinetics of pure and nickel-doped magnesium hydride was investigated by in-situ, time-resolved X-ray powder diffraction. A special reaction cell allowed the study of gas/solid reactions and analysis of the exhaust gas by massspectroscopy. X-ray data (0 <2è <120°) was collected...... under isothermal conditions with a time resolution of 45 s. Three phases were identified, Mg,MgH2 and MgO, and the phase fractions were extracted for each phase. Dehydrogenation curves wereconstructed and analyzed by the Johnson-Mehl-Avrami formalism in order to derive rateconstants at different....... Furthermore, the difference in apparent activation energy of ca. 50 kJ/mol compares totheoretical calculations for the atomisation of H2 molecules, which might be the rate-determining step in the dehydrogenation process....