WorldWideScience

Sample records for aluminum hlw glasses

  1. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  2. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  3. Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.; Gong, W.; Gan, H.; Matlack, K. S.; Bardakci, T.; Kot, W.

    2013-11-13

    The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter, conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases

  4. Defense HLW Glass Degradation Model

    Energy Technology Data Exchange (ETDEWEB)

    D. Strachan

    2004-10-20

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  5. HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Huckleberry, Adam R.; Rodriguez, Carmen P.; Lang, Jesse B.; Owen, Antionette T.; Kruger, Albert A.

    2012-04-02

    In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Matyáš et al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition.

  6. INCONEL 690 CORROSION IN WTP (WASTE TREATMENT PLANT) HLW (HIGH LEVEL WASTE) GLASS MELTS RICH IN ALUMINUM & BISMUTH & CHROMIUM OR ALUMINUM/SODIUM

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; FENG Z; GAN H; PEGG IL

    2009-11-05

    Metal corrosion tests were conducted with four high waste loading non-Fe-limited HLW glass compositions. The results at 1150 C (the WTP nominal melter operating temperature) show corrosion performance for all four glasses that is comparable to that of other typical borosilicate waste glasses, including HLW glass compositions that have been developed for iron-limited WTP streams. Of the four glasses tested, the Bi-limited composition shows the greatest extent of corrosion, which may be related to its higher phosphorus content. Tests at higher suggest that a moderate elevation of the melter operating temperature (up to 1200 C) should not result in any significant increase in Inconel corrosion. However, corrosion rates did increase significantly at yet higher temperatures (1230 C). Very little difference was observed with and without the presence of an electric current density of 6 A/inch{sup 2}, which is the typical upper design limit for Inconel electrodes. The data show a roughly linear relationship between the thickness of the oxide scale on the coupon and the Cr-depletion depth, which is consistent with the chromium depletion providing the material source for scale growth. Analysis of the time dependence of the Cr depletion profiles measured at 1200 C suggests that diffusion of Cr in the Ni-based Inconel alloy controls the depletion depth of Cr inside the alloy. The diffusion coefficient derived from the experimental data agrees within one order of magnitude with the published diffusion coefficient data for Cr in Ni matrices; the difference is likely due to the contribution from faster grain boundary diffusion in the tested Inconel alloy. A simple diffusion model based on these data predicts that Inconel 690 alloy will suffer Cr depletion damage to a depth of about 1 cm over a five year service life at 1200 C in these glasses.

  7. Database and Interim Glass Property Models for Hanford HLW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R; Piepel, Gregory F; Vienna, John D; Cooley, Scott K; Kim, Dong-Sang; Russell, Renee L

    2001-07-24

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region.

  8. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  9. The leaching behavior of simulated HLW glass under repository condition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    As the multibarrier system has been adopted to dispose HLW glass in geological formation in many countries, it was important to study the leaching behavior of vitrification under geological formation. This article describes the leaching behavior of simulated high level waste glass (90Nd/10), which can incorporate 16 wt.% simulated HLW in five kinds of geological media, such as granite, cement, bentonite, Fe3O4, etc. The durable experimental results show that the glass had less mass loss in granite and more mass loss in bentonite after a two-year leaching test. The SEM/XEDS analysis shows some element distributions on the leached specimen's surface, i.e., Na, Si and Mg elements were reduced on the specimen's surface, whereas Ba, Al, and Fe were enriched on the specimen's surface.

  10. Effect of composition on peraluminous glass properties: An application to HLW containment

    Science.gov (United States)

    Piovesan, V.; Bardez-Giboire, I.; Perret, D.; Montouillout, V.; Pellerin, N.

    2017-01-01

    Part of the Research and Development program concerning high level nuclear waste (HLW) glasses aims to assess new glass formulations able to incorporate a high waste content with enhanced properties in terms of thermal stability, chemical durability, and process ability. This study focuses on peraluminous glasses of the SiO2 - Al2O3 - B2O3 - Na2O - Li2O - CaO - La2O3 system, defined by an excess of aluminum ions Al3+ in comparison with modifier elements such as Na+, Li+ or Ca2+. To understand the effect of composition on physical properties of glasses (viscosity, density, Tg), a Design Of Experiments (DOE) approach was applied to investigate the peraluminous glass domain. The influence of each oxide was quantified to build predictive models for each property. Lanthanum and lithium oxides appear to be the most influential factors on peraluminous glass properties.

  11. EMPIRICAL MODEL FOR FORMULATION OF CRYSTAL-TOLERANT HLW GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATYAS J; HUCKLEBERRY AR; VIENNA JD; RODRIGUEZ CA

    2012-03-07

    Historically, high-level waste (HLW) glasses have been formulated with a low liquideus temperature (T{sub L}), or temperature at which the equilibrium fraction of spinel crystals in the melt is below 1 vol % (T{sub 0.01}), nominally below 1050 C. These constraints cannot prevent the accumulation of large spinel crystals in considerably cooler regions ({approx} 850 C) of the glass discharge riser during melter idling and significantly limit the waste loading, which is reflected in a high volume of waste glass, and would result in high capital, production, and disposal costs. A developed empirical model predicts crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass, and thereby provides guidance in formulating crystal-tolerant glasses that would allow high waste loadings by keeping the spinel crystals small and therefore suspended in the glass.

  12. Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.

    2013-01-16

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur

  13. Progress of Radioactive Waste Treatment Technology:Study on Alteration of Simulated HLW Glass under Simulated Geological Disposal Condition

    Institute of Scientific and Technical Information of China (English)

    HUA; Xiao-hui; WANG; Lei; YOU; Xin-feng; ZHENG; Wen-jun; YANG; Lin-yue; LI; Yu-song; ZHENG; Yu; LI; Teng; ZHANG; Zhen-tao

    2015-01-01

    1/200 scale simulated disposal experimental device was set up in 2013 and operated from 2014,in which ground water penetrated host rock,buffer materials,container materials and simulated HLW glass.The leaching velocity,alteration of HLW glass and corrosion of container materials were investigated.Moreover,temperature,host rock,

  14. Determination of alpha dose rate profile at the HLW nuclear glass/water interface

    Science.gov (United States)

    Mougnaud, S.; Tribet, M.; Rolland, S.; Renault, J.-P.; Jégou, C.

    2015-07-01

    Alpha irradiation and radiolysis can affect the alteration behavior of High Level Waste (HLW) nuclear glasses. In this study, the way the energy of alpha particles, emitted by a typical HLW glass, is deposited in water at the glass/water interface is investigated, with the aim of better characterizing the dose deposition at the glass/water interface during water-induced leaching mechanisms. A simplified chemical composition was considered for the nuclear glass under study, wherein the dose rate is about 140 Gy/h. The MCNPX calculation code was used to calculate alpha dose rate and alpha particle flux profiles at the glass/water interface in different systems: a single glass grain in water, a glass powder in water and a water-filled ideal crack in a glass package. Dose rate decreases within glass and in water as distance to the center of the grain increases. A general model has been proposed to fit a dose rate profile in water and in glass from values for dose rate in glass bulk, alpha range in water and linear energy transfer considerations. The glass powder simulation showed that there was systematic overlapping of radiation fields for neighboring glass grains, but the water dose rate always remained lower than the bulk value. Finally, for typical ideal cracks in a glass matrix, an overlapping of irradiation fields was observed while the crack aperture was lower than twice the alpha range in water. This led to significant values for the alpha dose rate within the crack volume, as long as the aperture remained lower than 60 μm.

  15. Alteration Development of the Simulated HLW Glass at High Temperature in Beishan Underground Water

    Directory of Open Access Journals (Sweden)

    Zhentao Zhang

    2012-01-01

    Full Text Available The simulated HLW glass was found to be altered in Beishan underground water at high temperature in two different stages starting with slow leaching of the immobilized elements for a period followed by a sharp degradation of the glass matrix. Immersed at 150°C in Beishan underground water with glass-surface-area-to-solution-volume ratio of 6000 m-1, the glass was alterated rapidly with the sharp release of B, Na, Li, Cs, and Mo from the cold HLW glass after a stable period of 180 days. The glass was degraded up to 73.6% for the immersion period of 730 days resulting in the release of Mo and Cs up to 73.6% and 2.7% from the glass, respectively. With the alteration underway, new minerals were identified to be zeolite P, mordenite, nontronite, dickite, okonite, quartz, saponite, and tincalconite. However, at low temperature of 90°C, the glass was very stable with limited leaching of Na, B, and Li.

  16. Determination of alpha dose rate profile at the HLW nuclear glass/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Mougnaud, S., E-mail: sarah.mougnaud@cea.fr [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Tribet, M.; Rolland, S. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Renault, J.-P. [CEA Saclay, NIMBE UMR 3685 CEA/CNRS, 91191 Gif-sur-Yvette cedex (France); Jégou, C. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2015-07-15

    Highlights: • The nuclear glass/water interface is studied. • The way the energy of alpha particles is deposited is modeled using MCNPX code. • A model giving dose rate profiles at the interface using intrinsic data is proposed. • Bulk dose rate is a majoring estimation in alteration layer and in surrounding water. • Dose rate is high in small cracks; in larger ones irradiated volume is negligible. - Abstract: Alpha irradiation and radiolysis can affect the alteration behavior of High Level Waste (HLW) nuclear glasses. In this study, the way the energy of alpha particles, emitted by a typical HLW glass, is deposited in water at the glass/water interface is investigated, with the aim of better characterizing the dose deposition at the glass/water interface during water-induced leaching mechanisms. A simplified chemical composition was considered for the nuclear glass under study, wherein the dose rate is about 140 Gy/h. The MCNPX calculation code was used to calculate alpha dose rate and alpha particle flux profiles at the glass/water interface in different systems: a single glass grain in water, a glass powder in water and a water-filled ideal crack in a glass package. Dose rate decreases within glass and in water as distance to the center of the grain increases. A general model has been proposed to fit a dose rate profile in water and in glass from values for dose rate in glass bulk, alpha range in water and linear energy transfer considerations. The glass powder simulation showed that there was systematic overlapping of radiation fields for neighboring glass grains, but the water dose rate always remained lower than the bulk value. Finally, for typical ideal cracks in a glass matrix, an overlapping of irradiation fields was observed while the crack aperture was lower than twice the alpha range in water. This led to significant values for the alpha dose rate within the crack volume, as long as the aperture remained lower than 60 μm.

  17. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  18. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    The purpose of the high-level waste (HLW) glass melt rate study is two-fold: (1) to gain a better understanding of the impact of feed chemistry on melt rate through bench-scale testing, and (2) to develop a predictive tool for melt rate in support of the on-going frit development efforts for the Defense Waste Processing Facility (DWPF). In particular, the focus is on predicting relative melt rates, not the absolute melt rates, of various HLW glass formulations solely based on feed chemistry, i.e., the chemistry of both waste and glass-forming frit for DWPF. Critical to the successful melt rate modeling is the accurate determination of the melting rates of various HLW glass formulations. The baseline procedure being used at the Savannah River National Laboratory (SRNL) is to; (1) heat a 4 inch-diameter stainless steel beaker containing a mixture of dried sludge and frit in a furnace for a preset period of time, (2) section the cooled beaker along its diameter, and (3) measure the average glass height across the sectioned face using a ruler. As illustrated in Figure 1-1, the glass height is measured for each of the 16 horizontal segments up to the red lines where relatively large-sized bubbles begin to appear. The linear melt rate (LMR) is determined as the average of all 16 glass height readings divided by the time during which the sample was kept in the furnace. This 'visual' method has proved useful in identifying melting accelerants such as alkalis and sulfate and further ranking the relative melt rates of candidate frits for a given sludge batch. However, one of the inherent technical difficulties of this method is to determine the glass height in the presence of numerous gas bubbles of varying sizes, which is prevalent especially for the higher-waste-loading glasses. That is, how the red lines are drawn in Figure 1-1 can be subjective and, therefore, may influence the resulting melt rates significantly. For example, if the red lines are drawn too low

  19. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    The purpose of the high-level waste (HLW) glass melt rate study is two-fold: (1) to gain a better understanding of the impact of feed chemistry on melt rate through bench-scale testing, and (2) to develop a predictive tool for melt rate in support of the on-going frit development efforts for the Defense Waste Processing Facility (DWPF). In particular, the focus is on predicting relative melt rates, not the absolute melt rates, of various HLW glass formulations solely based on feed chemistry, i.e., the chemistry of both waste and glass-forming frit for DWPF. Critical to the successful melt rate modeling is the accurate determination of the melting rates of various HLW glass formulations. The baseline procedure being used at the Savannah River National Laboratory (SRNL) is to; (1) heat a 4 inch-diameter stainless steel beaker containing a mixture of dried sludge and frit in a furnace for a preset period of time, (2) section the cooled beaker along its diameter, and (3) measure the average glass height across the sectioned face using a ruler. As illustrated in Figure 1-1, the glass height is measured for each of the 16 horizontal segments up to the red lines where relatively large-sized bubbles begin to appear. The linear melt rate (LMR) is determined as the average of all 16 glass height readings divided by the time during which the sample was kept in the furnace. This 'visual' method has proved useful in identifying melting accelerants such as alkalis and sulfate and further ranking the relative melt rates of candidate frits for a given sludge batch. However, one of the inherent technical difficulties of this method is to determine the glass height in the presence of numerous gas bubbles of varying sizes, which is prevalent especially for the higher-waste-loading glasses. That is, how the red lines are drawn in Figure 1-1 can be subjective and, therefore, may influence the resulting melt rates significantly. For example, if the red lines are drawn too low

  20. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M.

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been

  1. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  2. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  3. Final Report - Crystal Settling, Redox, and High Temperature Properties of ORP HLW and LAW Glasses, VSL-09R1510-1, Rev. 0, dated 6/18/09

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Wang, C.; Gan, H.; Pegg, I. L.; Chaudhuri, M.; Kot, W.; Feng, Z.; Viragh, C.; McKeown, D. A.; Joseph, I.; Muller, I. S.; Cecil, R.; Zhao, W.

    2013-11-13

    The radioactive tank waste treatment programs at the U. S. Department of Energy (DOE) have featured joule heated ceramic melter technology for the vitrification of high level waste (HLW). The Hanford Tank Waste Treatment and Immobilization Plant (WTP) employs this same basic technology not only for the vitrification of HLW streams but also for the vitrification of Low Activity Waste (LAW) streams. Because of the much greater throughput rates required of the WTP as compared to the vitrification facilities at the West Valley Demonstration Project (WVDP) or the Defense Waste Processing Facility (DWPF), the WTP employs advanced joule heated melters with forced mixing of the glass pool (bubblers) to improve heat and mass transport and increase melting rates. However, for both HLW and LAW treatment, the ability to increase waste loadings offers the potential to significantly reduce the amount of glass that must be produced and disposed and, therefore, the overall project costs. This report presents the results from a study to investigate several glass property issues related to WTP HLW and LAW vitrification: crystal formation and settling in selected HLW glasses; redox behavior of vanadium and chromium in selected LAW glasses; and key high temperature thermal properties of representative HLW and LAW glasses. The work was conducted according to Test Plans that were prepared for the HLW and LAW scope, respectively. One part of this work thus addresses some of the possible detrimental effects due to considerably higher crystal content in waste glass melts and, in particular, the impact of high crystal contents on the flow property of the glass melt and the settling rate of representative crystalline phases in an environment similar to that of an idling glass melter. Characterization of vanadium redox shifts in representative WTP LAW glasses is the second focal point of this work. The third part of this work focused on key high temperature thermal properties of

  4. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    Energy Technology Data Exchange (ETDEWEB)

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  5. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M.

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been

  6. Effect of composition and temperature on the properties of High-Level Waste (HLW) glasses melting above 1200{degrees}C (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Hrma, P.R.; Schweiger, M.J. [and others

    1996-02-01

    Increasing the melting temperature of HLW glass allows an increase of waste loading (thus reducing product volume) and the production of more durable glasses at a faster melting rate. However, HLW glasses that melt at high temperatures differ in composition from glasses formulated for low temperature ({approximately}1150{degree}C). Consequently, the composition of high-temperature glasses falls in a region previously not well tested or understood. This report represents a preliminary study of property/composition relationships of high-temperature Hanford HLW glasses using a one-component-at-a-time change approach. A test matrix has been designed to explore a composition region expected for high-temperature high-waste loading HLW glasses to be produced at Hanford. This matrix was designed by varying several key components (SiO{sub 2}, B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O, Fe{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, ZrO{sub 2}, Bi{sub 2}O{sub 3}, P{sub 2}O{sub 5}, UO{sub 2}, TiO{sub 2}, Cr{sub 2}O{sub 3}, and others) starting from a glass based on a Hanford HLW all-blend waste. Glasses were fabricated and tested for viscosity, glass transition temperature, electrical conductivity, crystallinity, liquidus temperature, and PCT release. The effect of individual components on glass properties was assessed using first- and second- order empirical models. The first-order component effects were compared with those from low-temperature HLW glasses.

  7. Development Of High Waste-Loading HLW Glasses For High Bismuth Phosphate Wastes, VSL-12R2550-1, Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

    2012-12-13

    This report presents results from tests with new glass formulations that have been developed for several high Bi-P HLW compositions that are expected to be processed at the WTP that have not been tested previously. WTP HLW feed compositions were reviewed to select waste batches that are high in Bi-P and that are reasonably distinct from the Bi-limited waste that has been tested previously. Three such high Bi-P HLW compositions were selected for this work. The focus of the present work was to determine whether the same type of issues as seen in previous work with high-Bi HLW will be seen in HLW with different concentrations of Bi, P and Cr and also whether similar glass formulation development approaches would be successful in mitigating these issues. New glass compositions were developed for each of the three representative Bi-P HLW wastes and characterized with respect to key processing and product quality properties and, in particular, those relating to crystallization and foaming tendency.

  8. Radionuclide behaviour and geochemistry upon geological disposal of HLW glass and spent fuel in Boom Clay: overview and critical assessment

    Science.gov (United States)

    Iseghem, P. V.; Maes, N.; Lemmens, K.; Canniere, P. D.; Wang, L.; Marivoet, J.

    2006-05-01

    Belgium is actually pursuing large R&D efforts to evaluate the acceptability of geological disposal of candidate high-level waste forms. Both the closed (reprocessing of spent fuel followed by vitrification of the HLW) and the open (direct disposal of the spent nuclear fuel) fuel cycle are considered. The total amount of spent UOX fuel is about 4800 tHM over the 40 years total lifetime of the power plants. A candidate Boom Clay formation is considered, and an underground research laboratory in that clay formation has been constructed below the SCK-CEN site at ~220 m depth below surface. Performance assessment (PA) studies are a key element to guide the R&D. All PA studies perfomed thus far on either HLW glass or spent fuel indicate that the highest doses at the biosphere are due to some long living, non retarded radionuclides (Se-79, I-129, Cl-36, Sn-126, Tc-99, etc). The actinides (U, Pu, Np, Am) do only contribute to a minor extent to the dose-to-man at the surface, as they are solubility limited and strongly retarded by the Boom Clay. The related R&D performed includes various activities: - the leaching behaviour of radionuclides (Se, Sn, Tc, Np, Pu, U, etc) from HLW glass or UO2 matrix into clay media - the solubility and related complexation behaviour of these radionuclides in interstitial clay water - the migration behaviour of these radionuclides in Boom Clay, to determine sorption and retardation parameters The result of these R&D studies is that a strong underlying understanding has been obtained in support of the PA calculations. Recent decisions by the Belgian waste management agency (NIRAS/ONDRAF) on the disposal concept, and new approaches followed in the new EC projects (NF-PRO and FUNMIG) however affect our strategy of the R&D on radionuclides. The presentation will review the issues raised above, and will have critical recommendations as to pursue R&D on radionuclides in relation to the geological disposal of HLW glass or spent fuel. We will also

  9. Final Report - Glass Formulation Development and Testing for DWPF High AI2O3 HLW Sludges, VSL-10R1670-1, Rev. 0, dated 12/20/10

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The principal objective of the work described in this Final Report is to develop and identify glass frit compositions for a specified DWPF high-aluminum based sludge waste stream that maximizes waste loading while maintaining high production rate for the waste composition provided by ORP/SRS. This was accomplished through a combination of crucible-scale, vertical gradient furnace, and confirmation tests on the DM100 melter system. The DM100-BL unit was selected for these tests. The DM100-BL was used for previous tests on HLW glass compositions that were used to support subsequent tests on the HLW Pilot Melter. It was also used to process compositions with waste loadings limited by aluminum, bismuth, and chromium, to investigate the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition, to process glass formulations at compositional and property extremes, and to investigate crystal settling on a composition that exhibited one percent crystals at 963{degrees}C (i.e., close to the WTP limit). The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. The tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Specific objectives for the melter tests are as follows: Determine maximum glass production rates without bubbling for a simulated SRS Sludge Batch 19 (SB19). Demonstrate a feed rate equivalent to 1125 kg/m{sup 2}/day glass production using melt pool bubbling. Process a high waste loading glass composition with the simulated SRS SB19 waste and measure the quality of the glass product. Determine the effect of argon as a bubbling gas on waste processing and the glass product including feed processing rate, glass redox, melter emissions, etc.. Determine differences in feed processing and glass characteristics for SRS SB19 waste simulated by the co-precipitated and direct

  10. DATA SUMMARY REPORT SMALL SCALE MELTER TESTING OF HLW ALGORITHM GLASSES MATRIX1 TESTS VSL-07S1220-1 REV 0 7/25/07

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; PEGG IL

    2011-12-29

    Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and T{sub 1%}, as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were +/-15% batching errors in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan that was prepared in response to the Test Specification for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed. The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and

  11. Enhanced Sulfate Management in HLW Glass Formulations VSL12R2540-1 REV 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States)

    2012-11-13

    The Low Activity Waste (LAW) tanks that are scheduled to provide the Hanford Tank Waste Treatment and Immobilization Plant (WTP) with waste feeds contain significant amounts of sulfate. The sulfate content in the LAW feeds is sufficiently high that a separate molten sulfate salt phase may form on top of the glass melt during the vitrification process unless suitable glass formulations are employed and sulfate levels are controlled. Since the formation of the salt phase is undesirable from many perspectives, mitigation approaches had to be developed. Considerable progress has been made and reported by the Vitreous State Laboratory (VSL) in enhancing sulfate incorporation into LAW glass melts and developing strategies to manage and mitigate the risks associated with high-sulfate feeds.

  12. TESTS WITH HIGH-BISMUTH HLW GLASSES FINAL REPORT VSL-10R1780-1 REV 0 12/13/10

    Energy Technology Data Exchange (ETDEWEB)

    MATLACK KS; KRUGER AA; JOSEPH I; GAN H; KOT WK; CHAUDHURI M; MOHR RK; MCKEOWN DA; BARDAKEI T; GONG W; BUECCHELE AC; PEGG IL

    2011-01-05

    This Final Report describes the testing of glass formulations developed for Hanford High Level Waste (HLW) containing high concentrations of bismuth. In previous work on high-bismuth HLW streams specified by the Office of River Protection (ORP), fully compliant, high waste loading compositions were developed and subjected to melter testing on the DM100 vitrification system. However, during heat treatment according to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW canister centerline cooling (CCC) curves, crucible melts of the high-bismuth glasses were observed to foam. Clearly, such an occurrence during cooling of actual HLW canisters would be highly undesirable. Accordingly, the present work involves larger-scale testing to determine whether this effect occurs under more prototypical conditions, as well as crucible-scale tests to determine the causes and potentially remediate the observed foaming behavior. The work included preparation and characterization of crucible melts designed to determine the underlying causes of the foaming behavior as well as to assess potential mitigation strategies. Testing was also conducted on the DM1200 HLW Pilot melter with a composition previously tested on the DM100 and shown to foam during crucible-scale CCC heat treatment. The DM1200 tests evaluated foaming of glasses over a range of bismuth concentrations poured into temperature-controlled, 55-gallon drums which have a diameter that is close to that of the full-scale WTP HLW canisters. In addition, the DM1200 tests provided the first large-scale melter test data on high-bismuth WTP HLW compositions, including information on processing rates, cold cap behavior and off-gas characteristics, and data from this waste composition on the prototypical DM1200 off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for ORP on the same waste composition. The scope of this study was outlined in a Test Plan that was

  13. Final Report - Sulfate Solubility in RPP-WTP HLW Glasses, VSL-06R6780-1, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Feng, A.; Gan, H.; Kot, W. K.

    2013-12-03

    This report describes the results of work and testing specified by Test Specifications 24590-HLW-TSP-RT-01-006 Rev 1, Test Plans VSL-02T7800-1 Rev 1 and Test Exceptions 24590-HLW-TEF-RT-05-00007. The work and any associated testing followed established quality assurance requirements and were conducted as authorized. The descriptions provided in this report are an accurate account of both the conduct of the work and the data collected. Results required by the Test Plans are reported. Also reported are any unusual or anomalous occurrences that are different from the starting hypotheses. The test results and this report have been reviewed and verified.

  14. INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

    2008-09-23

    The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted

  15. Final Report - Testing of Optimized Bubbler Configuration for HLW Melter VSL-13R2950-1, Rev. 0, dated 6/12/2013

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Callow, R. A.; Joseph, I.; Matlack, K. S.; Kot, W. K.

    2013-11-13

    The principal objective of this work was to determine the glass production rate increase and ancillary effects of adding more bubbler outlets to the current WTP HLW melter baseline. This was accomplished through testing on the HLW Pilot Melter (DM1200) at VSL. The DM1200 unit was selected for these tests since it was used previously with several HLW waste streams including the four tank wastes proposed for initial processing at Hanford. This melter system was also used for the development and optimization of the present baseline WTP HLW bubbler configuration for the WTP HLW melter, as well as for MACT testing for both HLW and LAW. Specific objectives of these tests were to: Conduct DM1200 melter testing with the baseline WTP bubbling configuration and as augmented with additional bubblers. Conduct DM1200 melter testing to differentiate the effects of total bubbler air flow and bubbler distribution on glass production rate and cold cap formation. Collect melter operating data including processing rate, temperatures at a variety of locations within the melter plenum space, melt pool temperature, glass melt density, and melter pressure with the baseline WTP bubbling configuration and as augmented with additional bubblers. Collect melter exhaust samples to compare particulate carryover for different bubbler configurations. Analyze all collected data to determine the effects of adding more bubblers to the WTP HLW melter to inform decisions regarding future lid re-designs. The work used a high aluminum HLW stream composition defined by ORP, for which an appropriate simulant and high waste loading glass formulation were developed and have been previously processed on the DM1200.

  16. Support for HLW Direct Feed - Phase 2, VSL-15R3440-1

    Energy Technology Data Exchange (ETDEWEB)

    Matlack, K. S. [The Catholic Univ. of America, Washington, DC (United States); Pegg, I. [The Catholic Univ. of America, Washington, DC (United States); Joseph, I. [EnergySolutions, Columbia, MD (United States); Kot, W. K. [The Catholic Univ. of America, Washington, DC (United States)

    2017-03-20

    This report describes work performed to develop and test new glass and feed formulations originating from a potential flow-sheet for the direct vitrification of High Level Waste (HLW) with minimal or no pretreatment. In the HLW direct feed option that is under consideration for early operations at the Hanford Tank Waste Treatment and Immobilization Plant (WTP), the pretreatment facility would be bypassed in order to support an earlier start-up of the vitrification facility. For HLW, this would mean that the ultrafiltration and caustic leaching operations that would otherwise have been performed in the pretreatment facility would either not be performed or would be replaced by an interim pretreatment function (in-tank leaching and settling, for example). These changes would likely affect glass formulations and waste loadings and have impacts on the downstream vitrification operations. Modification of the pretreatment process may result in: (i) Higher aluminum contents if caustic leaching is not performed; (ii) Higher chromium contents if oxidative leaching is not performed; (iii) A higher fraction of supernate in the HLW feed resulting from the lower efficiency of in-tank washing; and (iv) A higher water content due to the likely lower effectiveness of in-tank settling compared to ultrafiltration. The HLW direct feed option has also been proposed as a potential route for treating HLW streams that contain the highest concentrations of fast-settling plutoniumcontaining particles, thereby avoiding some of the potential issues associated with such particles in the WTP Pretreatment facility [1]. In response, the work presented herein focuses on the impacts of increased supernate and water content on wastes from one of the candidate source tanks for the direct feed option that is high in plutonium.

  17. HLW glass dissolution in the presence of magnesium carbonate: Diffusion cell experiment and coupled modeling of diffusion and geochemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Debure, Mathieu, E-mail: mathieu.debure@gmail.com [CEA Marcoule, DTCD/SECM/LCLT, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Geosciences Dept., Mines-ParisTech, 35 Rue St-Honoré, 77305 Fontainebleau (France); De Windt, Laurent [Geosciences Dept., Mines-ParisTech, 35 Rue St-Honoré, 77305 Fontainebleau (France); Frugier, Pierre; Gin, Stéphane [CEA Marcoule, DTCD/SECM/LCLT, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France)

    2013-11-15

    Highlights: •Diffusion of dissolved elements in pore water impacts nuclear glass alteration. •The glass/magnesium carbonate system has been studied in diffusion cells. •Glass alteration is enhanced by Mg–silicates precipitation but slowed down by diffusion. •Coupling between dissolution, diffusion and secondary phases controls the glass alteration. •The ability of reactive transport models to simulate the whole processes is investigated. -- Abstract: The influence of diffusion of reactive species in aqueous solutions on the alteration rate of borosilicate glass of nuclear interest in the presence of magnesium carbonate (hydromagnesite: 4MgCO{sub 3}·Mg(OH){sub 2}·4H{sub 2}O) is investigated together with the ability of coupled chemistry/transport models to simulate the processes involved. Diffusion cells in which the solids are separated by an inert stainless steel sintered filter were used to establish parameters for direct comparison with batch experiments in which solids are intimately mixed. The chemistry of the solution and solid phases was monitored over time by various analytical techniques including ICP-AES, XRD, and SEM. The primary mechanism controlling the geochemical evolution of the system remains the consumption of silicon from the glass by precipitation of magnesium silicates. The solution chemistry and the dissolution and precipitation of solid phases are correctly described by 2D modeling with the GRAAL model implemented in the HYTEC reactive transport code. The spatial symmetry of the boron concentrations in both compartments of the cells results from dissolution coupled with simple diffusion, whereas the spatial asymmetry of the silicon and magnesium concentrations is due to strong coupling between dissolution, diffusion, and precipitation of secondary phases. A sensitivity analysis on the modeling of glass alteration shows that the choice of these phases and their thermodynamic constants have only a moderate impact whereas the

  18. Review paper: Role of aluminum in glass-ionomer dental cements and its biological effects.

    Science.gov (United States)

    Nicholson, John W; Czarnecka, Beata

    2009-11-01

    The role of aluminum in glass-ionomers and resin-modified glass-ionomers for dentistry is reviewed. Aluminum is included in the glass component of these materials in the form of Al(2)O(3) to confer basicity on the glass and enable the glass to take part in the acid-base setting reactions. Results of studies of these reactions by FTIR and magic-angle spinning (MAS)-NMR spectroscopy are reported and the role of aluminum is discussed in detail. Aluminum has been shown to be present in the glasses in predominantly 4-coordination, as well as 5- and 6-coordination, and during setting a proportion of this is converted to 6-coordinate species within the matrix of the cement. Despite this, mature cements may contain detectable amounts of both 4- and 5-coordinate aluminum. Aluminum has been found to be leached from glass-ionomer cements, with greater amounts being released under acidic conditions. It may be associated with fluoride, with which it is known to complex strongly. Aluminum that enters the body via the gastro-intestinal tract is mainly excreted, and only about 1% ingested aluminum crosses the gut wall. Calculation shows that, if a glass-ionomer filling dissolved completely over 5 years, it would add only an extra 0.5% of the recommended maximum intake of aluminum to an adult patient. This leads to the conclusion that the release of aluminum from either type of glass-ionomer cement in the mouth poses a negligible health hazard.

  19. Effects of aluminum nanocrystals on the corrosion resistance of aluminum-based metallic glasses

    Science.gov (United States)

    Lucente, Ashley Marie

    Aluminum-based metallic glasses possess some remarkable attributes that make them appealing for corrosion prevention applications. For example, Al-based glasses are resistant to pitting corrosion and can function as a corrosion barrier film, a sacrificial anode, and provide active corrosion inhibition by releasing alloying elements as inhibiting ions. While the amorphous structure makes these functions possible by allowing a high alloying element content to be achieved in solid solution, it is also a potential weakness because the amorphous structure is metastable. Partial crystallization occurs over time as nanometer-scale, solute-depleted f.c.c. Al precipitates ("nanocrystals") nucleate and grow within a remaining amorphous matrix. There was once some concern that these nanocrystals may serve as pit initiation sites and degrade the good pitting resistance of an amorphous alloy. Contrary to early predictions, this work shows that several partially nanocrystalline Al-based alloys are as corrosion resistant as fully amorphous alloys of the same bulk composition. This thesis provides an in-depth investigation of several mechanisms that can explain the good corrosion resistance of partially nanocrystalline glasses. The corrosion resistance of the amorphous and partially nanocrystalline glasses was first characterized by examining chloride induced pitting. The results of these experiments guided diagnostic studies of chloride-induced metastable pitting and stable pit growth, alkaline dissolution and passivation behavior, and surface characterization using SEM, TEM, and AFM, all at a sensitivity level tailored to detect nm-scale corrosion processes. These techniques together served as diagnostics to help determine the mechanism by which the corrosion resistance of a partially nanocrystalline Al-based glass may be similar or superior to that of its fully amorphous precursor. The overall conclusion of this dissertation is that Al-based glassy alloys with solute

  20. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Ae [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Abo-Mosallam, Hany A. [Glass Research Department, National Research Centre, Dokki, Cairo (Egypt); Lee, Hye-Young [Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Kim, Gyu-Ri [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Kim, Hae-Won [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Hae-Hyoung, E-mail: haelee@dku.edu [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of)

    2014-09-01

    The effects of strontium substitution for magnesium in a novel aluminum-free multicomponent glass composition for glass ionomer cements (GICs) were investigated. A series of glass compositions were prepared based on SiO{sub 2}-P{sub 2}O{sub 5}-CaO-ZnO-MgO{sub (1-X)}-SrO{sub X}-CaF{sub 2} (X = 0, 0.25, 0.5 and 0.75). The mechanical properties of GICs prepared were characterized by compressive strength, flexural strength, flexural modules, and microhardness. Cell proliferation was evaluated indirectly by CCK-8 assay using various dilutions of the cement and rat mesenchyme stem cells. Incorporation of strontium instead of magnesium in the glasses has a significant influence on setting time of the cements and the properties. All mechanical properties of the GICs with SrO substitution at X = 0.25 were significantly increased, then gradually decreased with further increase of the amount of strontium substitution in the glass. The GIC at X = 0.25, also, showed an improved cell viability at low doses of the cement extracts in comparison with other groups or control without extracts. The results of this study demonstrate that the glass compositions with strontium substitution at low levels can be successfully used to prepare aluminum-free glass ionomer cements for repair and regeneration of hard tissues. - Highlights: • We developed multicomponent glass compositions for a novel aluminum-free glass ionomer cement (GIC). • The effects of MgO replacement with SrO in the glasses on the mechanical properties and cell proliferation were evaluated. • Substitution of MgO with SrO at low levels led to improvement of mechanical properties and cell viability of the cements. • Microstructural degradations in the cement matrix of the GICs with strontium at high levels were observed after aging.

  1. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-04-25

    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving

  2. Memo, "Incorporation of HLW Glass Shell V2.0 into the Flowsheets," to ED Lee, CCN: 184905, October 20, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Gimpel, Rodney F.; Kruger, Albert A.

    2013-12-18

    Efforts are being made to increase the efficiency and decrease the cost of vitrifying radioactive waste stored in tanks at the U.S. Department of Energy Hanford Site. The compositions of acceptable and processable high-level waste (HL W) glasses need to be optimized to minimize the waste-form volume and, hence, to reduce cost. A database of glass properties of waste glass and associated simulated waste glasses was collected and documented in PNNL 18501, Glass Property Data and Models for Estimating High-Level Waste Glass Volume and glass property models were curve-fitted to the glass compositions. A routine was developed that estimates HL W glass volumes using the following glass property models: II Nepheline, II One-Percent Crystal Temperature (T1%), II Viscosity (11) II Product Consistency Tests (PCT) for boron, sodium, and lithium, and II Liquidus Temperature (TL). The routine, commonly called the HL W Glass Shell, is presented in this document. In addition to the use of the glass property models, glass composition constraints and rules, as recommend in PNNL 18501 and in other documents (as referenced in this report) were incorporated. This new version of the HL W Glass Shell should generally estimate higher waste loading in the HL W glass than previous versions.

  3. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses.

    Science.gov (United States)

    Kim, Dong-Ae; Abo-Mosallam, Hany A; Lee, Hye-Young; Kim, Gyu-Ri; Kim, Hae-Won; Lee, Hae-Hyoung

    2014-09-01

    The effects of strontium substitution for magnesium in a novel aluminum-free multicomponent glass composition for glass ionomer cements (GICs) were investigated. A series of glass compositions were prepared based on SiO2-P2O5-CaO-ZnO-MgO(1-X)-SrOX-CaF2 (X=0, 0.25, 0.5 and 0.75). The mechanical properties of GICs prepared were characterized by compressive strength, flexural strength, flexural modules, and microhardness. Cell proliferation was evaluated indirectly by CCK-8 assay using various dilutions of the cement and rat mesenchyme stem cells. Incorporation of strontium instead of magnesium in the glasses has a significant influence on setting time of the cements and the properties. All mechanical properties of the GICs with SrO substitution at X=0.25 were significantly increased, then gradually decreased with further increase of the amount of strontium substitution in the glass. The GIC at X=0.25, also, showed an improved cell viability at low doses of the cement extracts in comparison with other groups or control without extracts. The results of this study demonstrate that the glass compositions with strontium substitution at low levels can be successfully used to prepare aluminum-free glass ionomer cements for repair and regeneration of hard tissues.

  4. Preparation and Characterization of Low-Dielectric Glass Composite with Aluminum Borate

    Science.gov (United States)

    Jean, Jau-Ho; Hwang, Shiang-Po

    1994-10-01

    The effect of aluminum borate ( Al18B4O33) on crystallization and thermal expansion of Pyrex borosilicate glass has been studied. X-ray diffraction (XRD) results show that with 40 vol% aluminum borate, the precipitation of cristobalite in the Pyrex borosilicate glass is completely inhibited. This result is further evidenced by the linear thermal expansion measurement in which, in contrast to the system without aluminum borate, the thermal expansion coefficient remains unchanged with sintering time and is close to that of silicon, 3×10-6 K-1. Moreover, the composite with 40 vol% aluminum borate has a dielectric constant of 5.2 and a dielectric loss of 0.8% at 1 MHz.

  5. COMSOL Multiphysics Model for HLW Canister Filling

    Energy Technology Data Exchange (ETDEWEB)

    Kesterson, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-11

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. Wastes containing high concentrations of Al2O3 and Na2O can contribute to nepheline (generally NaAlSiO4) crystallization, which can sharply reduce the chemical durability of high level waste (HLW) glass. Nepheline crystallization can occur during slow cooling of the glass within the stainless steel canister. The purpose of this work was to develop a model that can be used to predict temperatures of the glass in a WTP HLW canister during filling and cooling. The intent of the model is to support scoping work in the laboratory. It is not intended to provide precise predictions of temperature profiles, but rather to provide a simplified representation of glass cooling profiles within a full scale, WTP HLW canister under various glass pouring rates. These data will be used to support laboratory studies for an improved understanding of the mechanisms of nepheline crystallization. The model was created using COMSOL Multiphysics, a commercially available software. The model results were compared to available experimental data, TRR-PLT-080, and were found to yield sufficient results for the scoping nature of the study. The simulated temperatures were within 60 ºC for the centerline, 0.0762m (3 inch) from centerline, and 0.2286m (9 inch) from centerline thermocouples once the thermocouples were covered with glass. The temperature difference between the experimental and simulated values reduced to 40 ºC, 4 hours after the thermocouple was covered, and down to 20 ºC, 6 hours after the thermocouple was covered

  6. HLW Disposal System Development

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. W.; Choi, H. J.; Lee, J. Y. (and others)

    2007-06-15

    A KRS is suggested through design requirement analysis of the buffer and the canister which are the constituent of disposal system engineered barrier and HLW management plans are proposed. In the aspect of radionuclide retention capacity, the thickness of the buffer is determined 0.5m, the shape to be disc and ring and the dry density to be 1.6 g/cm{sup 3}. The maximum temperature of the buffer is below 100 .deg. which meets the design requirement. And bentonite blocks with 5 wt% of graphite showed more than 1.0 W/mK of thermal conductivity without the addition of sand. The result of the thermal analysis for proposed double-layered buffer shows that decrease of 7 .deg. C in maximum temperature of the buffer. For the disposal canister, the copper for the outer shell material and cast iron for the inner structure material is recommended considering the results analyzed in terms of performance of the canisters and manufacturability and the geochemical properties of deep groundwater sampled from the research area with granite, salt water intrusion, and the heavy weight of the canister. The results of safety analysis for the canister shows that the criticality for the normal case including uncertainty is the value of 0.816 which meets subcritical condition. Considering nation's 'Basic Plan for Electric Power Demand and Supply' and based on the scenario of disposing CANDU spent fuels in the first phase, the disposal system that the repository will be excavated in eight phases with the construction of the Underground Research Laboratory (URL) beginning in 2020 and commissioning in 2040 until the closure of the repository is proposed. Since there is close correlation between domestic HLW management plans and front-end/back-end fuel cycle plans causing such a great sensitivity of international environment factor, items related to assuring the non-proliferation and observing the international standard are showed to be the influential factor and acceptability

  7. Chemical composition analysis and product consistency tests supporting refinement of the Nepheline Model for the high aluminum Hanford glass composition region

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    In this report, Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated high level waste (HLW) glasses fabricated by Pacific Northwest National Laboratory (PNNL) as part of an ongoing nepheline crystallization study. The results of these analyses will be used to improve the ability to predict crystallization of nepheline as a function of composition and heat treatment for glasses formulated at high alumina concentrations.

  8. Chemical composition analysis and product consistency tests supporting refinement of the Nepheline model for the high aluminum Hanford Glass composition region

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States); Mcclane, D. L. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-17

    In this report, SRNL provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated HLW glasses fabricated by Pacific Northwest National Laboratory (PNNL) as part of an ongoing nepheline crystallization study. The results of these analyses will be used to improve the ability to predict crystallization of nepheline as a function of composition and heat treatment for glasses formulated at high alumina concentrations.

  9. Friction Stir Welding of Zr_(55)Al_(10)Ni_5Cu_(30) Bulk Metallic Glass to Crystalline Aluminum

    Institute of Scientific and Technical Information of China (English)

    Zuoxiang Qin; Cuihong Li; Haifeng Zhang; Zhongguang Wang; Zhuangqi Hu; Zhiqiang Liu

    2009-01-01

    The Zr_(55)Al_(10)Ni_5Cu_(30) bulk metallic glass plate were successfully welded to crystalline aluminum plates by using a friction stir welding (FSW) method. The welded zone was examined. No defects, cracks or pores were observed and no other crystalline phases except for aluminum were found in the welded joint. The strength of the joint is higher than that of aluminum. The glassy phase in the stir zone keeps the amorphous state, showing a successful welding. The storage modulus softens over the glass transition. And the weldability was discussed according to this phenomena.

  10. Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification

    Science.gov (United States)

    Yang, D. L.; Pun, E. Y. B.; Lin, H.

    2009-10-01

    K+-Na+ ion-exchanged channel waveguide amplifiers have been fabricated in Tm3+-doped acid-resistant aluminum germanate glasses. The optical and relative gains of a 3.15-cm-long waveguide channel were achieved to be 4.05 and 2.29 dB at 1.482 μm wavelength under 110 mW 793 nm laser excitation, respectively. After compensating the propagation loss, an internal gain of 1.50 dB and a remarkable gain coefficient of 0.48 dB/cm were obtained, which reveals a definite S-band signal amplification in the low phonon energy glass waveguide. As an expectation, UV-radiation-sensitive glass waveguide should promote the developments of gain-flatten S-band waveguide amplifiers, infrared UV-writing grating waveguide lasers, and compact multifunctional integrated optical devices.

  11. Alkaline aluminum phosphate glasses for thermal ion-exchanged optical waveguide

    Science.gov (United States)

    Wang, Fei; Chen, Baojie; Pun, Edwin Yue Bun; Lin, Hai

    2015-04-01

    Alkaline aluminum phosphate glasses (NMAP) with excellent chemical durability for thermal ion-exchanged optical waveguide have been designed and investigated. The transition temperature Tg (470 °C) is higher than the ion-exchange temperature (390 °C), which is favorable to sustain the stability of the glass structure for planar waveguide fabrication. The effective diffusion coefficient De of K+-Na+ ion exchange in NMAP glasses is 0.110 μm2/min, indicating that ion exchange can be achieved efficiently in the optical glasses. Single-mode channel waveguide has been fabricated on Er3+/Yb3+ doped NMAP glass substrate by standard micro-fabrication and K+-Na+ ion exchange. The mode field diameter is 9.6 μm in the horizontal direction and 6.0 μm in the vertical direction, respectively, indicating an excellent overlap with a standard single-mode fiber. Judd-Ofelt intensity parameter Ω2 is 5.47 × 10-20 cm2, implying a strong asymmetrical and covalent environment around Er3+ in the optical glasses. The full width at half maximum and maximum stimulated emission cross section of the 4I13/2 → 4I15/2 are 30 nm and 6.80 × 10-21 cm2, respectively, demonstrating that the phosphate glasses are potential glass candidates in developing compact optoelectronic devices. Pr3+, Tm3+ and Ho3+ doped NMAP glasses are promising candidates to fabricate waveguide amplifiers and lasers operating at special telecommunication windows.

  12. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    Science.gov (United States)

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.

  13. Craters in aluminum 1100 targets using glass projectiles at 1-7 km/s

    Science.gov (United States)

    Bernhard, R. P.; See, T. H.; Hoerz, F.; Cintala, M. J.

    1994-01-01

    We report on impact experiments using soda-lime glass spheres of 3.2 mm diameter and aluminum targets (1100 series). The purpose is to assist in the interpretation of LDEF instruments and in the development of future cosmic-dust collectors in low-Earth orbit. Because such instruments demand understanding of both the cratering and penetration process, we typically employ targets with thicknesses that range from massive, infinite half-space targets, to ultrathin films. This report addresses a subset of cratering experiments that were conducted to fine-tune our understanding of crater morphology as a function of impact velocity. Also, little empirical insight exists about the physical distribution and shock-metamorphism of the impactor residues as a function of encounter speed, despite their recognized significance in the analysis of space-exposed surfaces. Soda-lime glass spheres were chosen as a reasonable analog to extraterrestrial silicates, and aluminum 1100 was chosen for targets, which among the common Al-alloys, best represents the physical properties of high-purity aluminum. These materials complement existing impact studies that typically employed metallic impactors and less ductile Al-alloys. We have completed dimensional analyses of the resulting craters and are in the process of investigating the detailed distribution of the unmelted and melted impactor residues via SEM methods, as well as potential compositional modifications of the projectile melts via electron microprobe.

  14. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  15. Redox Control For Hanford HLW Feeds VSL-12R2530-1, REV 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States)

    2012-12-13

    The principal objectives of this work were to investigate the effects of processing simulated Hanford HLW at the estimated maximum concentrations of nitrates and oxalates and to identify strategies to mitigate any processing issues resulting from high concentrations of nitrates and oxalates. This report provides results for a series of tests that were performed on the DM10 melter system with simulated C-106/AY-102 HLW. The tests employed simulated HLW feeds containing variable amounts of nitrates and waste organic compounds corresponding to maximum concentrations proj ected for Hanford HLW streams in order to determine their effects on glass production rate, processing characteristics, glass redox conditions, melt pool foaming, and the tendency to form secondary phases. Such melter tests provide information on key process factors such as feed processing behavior, dynamic effects during processing, processing rates, off-gas amounts and compositions, foaming control, etc., that cannot be reliably obtained from crucible melts.

  16. Melter Throughput Enhancements for High-Iron HLW

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Gan, Hoa [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Chaudhuri, Malabika [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States)

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and the maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.

  17. HLW Tank Space Management, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.S.; Abell, G.; Garrett, R.; d' Entremont, P.; Fowler, J.R.; Mahoney, M.; Poe, L.

    1999-09-20

    The HLW Tank Space Management Team (SM Team) was chartered to select and recommend an HLW Tank Space Management Strategy (Strategy) for the HLW Management Division of Westinghouse Savannah River Co. (WSRC) until an alternative salt disposition process is operational. Because the alternative salt disposition process will not be available to remove soluble radionuclides in HLW until 2009, the selected Strategy must assure that it safely receives and stores HLW at least until 2009 while continuing to supply sludge slurry to the DWPF vitrification process.

  18. Penetration experiments in aluminum 1100 targets using soda-lime glass projectiles

    Science.gov (United States)

    Horz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William E.; Haynes, Gerald; See, Thomas H.; Winkler, Jerry L.

    1995-01-01

    The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.

  19. Low temperature sintering and performance of aluminum nitride/borosilicate glass

    Institute of Scientific and Technical Information of China (English)

    Hong-sheng ZHAO; Lei CHEN; Nian-zi GAO; Kai-hong ZHANG; Zi-qiang LI

    2009-01-01

    Aluminum nitride (AlN)/borosilicate glass composites were prepared by the tape casting process and hot-press sin-tered at 950 ℃ with AlN and SiO2-B2O3-ZnO-Al2O3-Li2O glass as starting materials. We characterized and analyzed the variation of the microstructure, bulk density, porosity, dielectric constant, thermal conductivity and thermal expansion coefficient (TEC) of the ceramic samples as a function of AlN content. Results show that AlN and SiO2-B2O3-ZnO-Al2O3-Li2O glass can be sintered at 950 ℃, and ZnAl2O4 and Zn2SiO4 phase precipitated to form glass-ceramic. The performance of the ceramic samples was de-termined by the composition and bulk density of the composites. Lower AlN content was found redounding to liquid phase sin-tering, and higher bulk density of composites can be accordingly obtained. With the increase of porosity, corresponding decreases were located in the dielectric constant, thermal conductivity and TEC of the ceramic samples. When the mass fraction of AlN was 40%, the ceramic samples possessed a low dielectric constant (4.5~5.0), high thermal conductivity (11.6 W/(m·K)) and a proper TEC (3.0×10K-1, which matched that of silicon). The excellent performance makes this kind of low temperature co-fired ce-ramic a promising candidate for application in the micro-electronics packaging industry.

  20. Barium boron aluminum silicate glass system for solid state optical gas sensors

    Science.gov (United States)

    Da Silva, M. J.; Karczewski, J.; Jasinski, P.; Chrzan, A.; Kalinowski, P.; Szymczewska, D.; Jasinski, G.

    2016-11-01

    Recent increasing demand for new eco-friendly materials and for low cost fabrication process for use in optical sensors field, raise concern about alternative materials for this application. We have designed two glass-ceramics compositions from the quaternary ROAl2O3- SiO2-B2O3(R=Ba) alkali-earth aluminum silicate system, labeled B72 and B69, with high refractive index (>1.6), large values of Abbe number (94.0 and 53.0, respectively), and free of lead and arsenic. We present an analysis and discussion of experimental optical properties, thermal and thermo-chemical stability along with important properties such as transition temperature (Tg), onset of crystallization (Tx) as well transport properties as ionic conductivity behavior in the quaternary glass-ceramic system containing boron for use as optical sensors. Complex Impedance Spectra (Bode Plot) and Potentiodynamic Polarization curves (Tafel plots) measurements were carried out in the temperature range of 600 to 850°C. The most probable conductivity mechanism is a thermally activated process of mobile ions overcoming a potential barrier (EA), according to the Arrhenius regime. Here we report that charge transfer is caused by the flux of electrons, in the region of elevated temperatures (>700°C), and is affected by immiscibility of crystals, nucleation and growth type, that causes phase separation. We found conductivity (σ) values from 10-9 to 10-5 S/cm at temperatures between 700 and 850°C. Our results highlight a need for research on ion mobility in the glassy network above the transition range, and the effect cause by metastable immiscibility in the alkaline-earth glasses are exposed. The two glass compositions B72 and B69 can be tailored by proper use as glassy optical sensor.

  1. Flexural Behavior of RC Members Using Externally Bonded Aluminum-Glass Fiber Composite Beams

    Directory of Open Access Journals (Sweden)

    Ki-Nam Hong

    2014-03-01

    Full Text Available This study concerns improvement of flexural stiffness/strength of concrete members reinforced with externally bonded, aluminum-glass fiber composite (AGC beams. An experimental program, consisting of seven reinforced concrete slabs and seven reinforced concrete beams strengthened in flexure with AGC beams, was initiated under four-point bending in order to evaluate three parameters: the cross-sectional shape of the AGC beam, the glass fiber fabric array, and the installation of fasteners. The load-deflection response, strain distribution along the longitudinal axis of the beam, and associated failure modes of the tested specimens were recorded. It was observed that the AGC beam led to an increase of the initial cracking load, yielding load of the tension steels and peak load. On the other hand, the ductility of some specimens strengthened was reduced by more than 50%. The A-type AGC beam was more efficient in slab specimens than in beam specimens and the B-type was more suitable for beam specimens than for slabs.

  2. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    Energy Technology Data Exchange (ETDEWEB)

    Paruka, Perowansa [Jalan Politeknik, Kota Kinabalu (Malaysia); Siswanto, Waluyo Adi [Universiti Tun Hussein Onn Malaysia, Parit Raja (Malaysia); Maleque, Md Abdul [Universiti Islam Antarabangsa Malaysia, Kuala Lumpur (Malaysia); Shah, Mohd Kamal Mohd [Universiti Malaysia Sabah, Kota Kinabalu (Malaysia)

    2015-05-15

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  3. The effect of electron irradiation on the structure and iron speciation in sodium aluminum (iron) phosphate glasses

    Science.gov (United States)

    Stefanovsky, S. V.; Presniakov, I. A.; Sobolev, A. V.; Glazkova, I. S.; Kadyko, M. I.; Stefanovsky, O. I.

    2016-08-01

    The effect of 8 MeV electron irradiation on the structure of glasses in the series 40 Na2O, (20-x) Al2O3, x Fe2O3, 40 P2O5 (mol.%) and on the iron speciation in these samples was studied by FTIR and Mössbauer spectroscopic techniques. Irradiation up to a dose of 1.0 MGy has no appreciable effects on the character of the bonds within anionic motif of the glass network. Electron irradiation increases the fraction of aluminum in octahedral coordination. Iron in both unirradiated and irradiated glasses is present mainly as Fe(III) (60-75% of the total amount) in the glasses and partly as Fe(II) and the ratio of two forms remains constant up to a dose of 1.0 MGy.

  4. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth doped germanate laser glass

    DEFF Research Database (Denmark)

    Wang, L.P.; Tan, L.L.; Yue, Yuanzheng

    2016-01-01

    on how to improve the luminescence efficiency. Here, we demonstrate that addition of aluminum can enhance the bismuth near-infrared luminescence by more than 10 000 times, which is right followed by the discussion on the mechanism on why this can happen. We believe this work can be helpful for designing...... bismuth-doped multiple component laser glasses with high efficiency. In addition, because of high susceptibility of bismuth to local field change, it can be used as probe ion to envision glass structures. Using bismuth as a luminescent structural probe, we can see the modifier ions of Bi...

  5. K+-Na+ ion-exchanged sodium magnesium aluminum germanate glass waveguide amplifier operating in the first telecommunications window

    Science.gov (United States)

    Yang, Dianlai; Zhang, Jie; Pun, Edwin Yue-Bun; Lin, Hai

    2010-12-01

    Potassium-sodium (K+-Na+) ion-exchanged multimode channel waveguide amplifiers have been fabricated based on Tm3+/Yb3+ codoped sodium magnesium aluminum germanate (NMAG) glass substrates. The normalized optical and relative gain coefficients of a 2.20 cm long device were identified to be 3.65 dB/cm and 1.58 dB/cm, respectively, at a signal wavelength of 810 nm under 457 mW 980 nm laser diode excitation. These are the highest values reported, and the results indicate that Tm3+/Yb3+ codoped NMAG glasses are an attractive material for optical amplification in the first telecommunications window.

  6. Aluminum-coated hollow glass fibers for ArF-excimer laser light fabricated by metallorganic chemical-vapor deposition.

    Science.gov (United States)

    Matsuura, Y; Miyagi, M

    1999-04-20

    A hollow fiber composed of a glass capillary tube and a metal thin film upon the inside of the tube is proposed for the delivery of ArF-excimer laser light. From theoretical analysis, aluminum is chosen as the metal layer. A thin aluminum film is deposited by metallorganic chemical-vapor deposition, with dimethylethylamine alane employed as the source material. Measured loss spectra in vacuum-ultraviolet and ultraviolet regions and losses for ArF-excimer laser light show the low-loss property of the aluminum-coated fiber at the 193-nm wavelength of ArF-excimer laser light. The straight loss of the 1-m long, 1-mm-bore fiber is 1.0 dB.

  7. Experimental Study on the Feasibility of Using Water Glass and Aluminum Sulfate to Treat Complications in High Liquid Limit Soil Subgrade

    OpenAIRE

    2015-01-01

    The feasibility of using water glass and aluminum sulfate to treat high liquid limit soil subgrade diseases is studied through laboratory experiments, and the following results were observed. After improving the high liquid limit clay with water glass and aluminum sulfate, the liquid limit decreases, the plastic limit increases, and the plasticity index decreases. Compared with untreated soil, the clay content of the improved soil decreases, while the silt and coarse contents increase. The ab...

  8. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  9. Detection of hazardous liquids concealed in glass, plastic, and aluminum containers

    Science.gov (United States)

    Ramirez, Michael L.; Ortiz, William; Ruiz, Orlando; Pacheco-Londoño, Leonardo; Hernández-Rivera, Samuel P.

    2007-04-01

    The use of liquid explosives by terrorists has raised the attention to the use of hazardous liquids as threats to people, buildings and transportation systems. Hazardous liquids such as explosive mixtures, flammables or even chemical warfare agents (CWA) can be concealed in common containers and pass security checks undetected. This work presents three non invasive, non destructive detection approaches that can be used to characterize the content of common liquid containers and detect if the liquid is the intended or a concealed hazardous liquid. Fiber optic coupled Raman spectroscopy and Stand off Raman spectroscopy were used to inspect the content of glass and plastic bottles and thermal conductivity was used to asses the liquid inside aluminum cans. Raman spectroscopy experiments were performed at 532 nm, 488 nm and 785 nm excitation wavelengths. The hazardous liquids under consideration included CWA simulant DMMP, hydrogen peroxide, acetone, cyclohexane, ethanol and nitric acid. These techniques have potential use as a detector for hazardous liquids at a check point or to inspect suspicious bottles from a distance.

  10. HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Callow, Richard A. [The Catholic University of America, Washington, DC (United States); Abramowitz, Howard [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Brandys, Marek [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

    2012-11-13

    Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of ~ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150°C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage.

  11. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  12. INTEGRATED DM 1200 MELTER TESTING OF HLW C-106/AY-102 COMPOSITION USING BUBBLERS VSL-03R3800-1 REV 0 9/15/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  13. HLW system plan - revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-14

    The projected ability of the Tank Farm to support DWPF startup and continued operation has diminished somewhat since revision 1 of this Plan. The 13 month delay in DWPF startup, which actually helps the Tank Farm condition in the near term, was more than offset by the 9 month delay in ITP startup, the delay in the Evaporator startups and the reduction to Waste Removal funding. This Plan does, however, describe a viable operating strategy for the success of the HLW System and Mission, albeit with less contingency and operating flexibility than in the past. HLWM has focused resources from within the division on five near term programs: The three evaporator restarts, DWPF melter heatup and completion of the ITP outage. The 1H Evaporator was restarted 12/28/93 after a 9 month shutdown for an extensive Conduct of Operations upgrade. The 2F and 2H Evaporators are scheduled to restart 3/94 and 4/94, respectively. The RHLWE startup remains 11/17/97.

  14. Korean Reference HLW Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, J. Y.; Kim, S. S. (and others)

    2008-03-15

    This report outlines the results related to the development of Korean Reference Disposal System for High-level radioactive wastes. The research has been supported around for 10 years through a long-term research plan by MOST. The reference disposal method was selected via the first stage of the research during which the technical guidelines for the geological disposal of HLW were determined too. At the second stage of the research, the conceptual design of the reference disposal system was made. For this purpose the characteristics of the reference spent fuels from PWR and CANDU reactors were specified, and the material and specifications of the canisters were determined in term of structural analysis and manufacturing capability in Korea. Also, the mechanical and chemical characteristics of the domestic Ca-bentonite were analyzed in order to supply the basic design parameters of the buffer. Based on these parameters the thermal and mechanical analysis of the near-field was carried out. Thermal-Hydraulic-Mechanical behavior of the disposal system was analyzed. The reference disposal system was proposed through the second year research. At the final third stage of the research, the Korean Reference disposal System including the engineered barrier, surface facilities, and underground facilities was proposed through the performance analysis of the disposal system.

  15. Comparison between different types of glass and aluminum as containers for irradiation samples by neutron activation analysis.

    Science.gov (United States)

    Sroor, A; El-Dine, N W; El-Shershaby, A; Abdel-Haleem, A S

    2000-01-01

    Three different types of glass and four different kinds of aluminum sheet have been analyzed using neutron activation analysis. The irradiation facilities of the first Egyptian research reactor (ET-RR-1) and a hyper-pure germanium (HPGe) detection system were used for the analysis. Among the 34 identified elements, the isotopes 60Co, 65Zn, 110mAg, 123mTe, 134Cs, 152Eu and 182Ta are of special significance because of their long half-lives, providing a background interference for analyzed samples. A comparison between the different types of containers was made to select the preferred one for sample irradiation.

  16. THE IMPACT OF KINETICS ON NEPHELINE FORMATION IN NUCLEAR WASTE GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.

    2011-03-07

    Sixteen glass compositions were selected to study the potential impacts of the kinetics of nepheline formation in high-level nuclear waste (HLW) glass. The chosen compositions encompassed a relatively large nepheline discriminator (ND) range, 0.40-0.66, and included a relatively broad range, and amount of, constituents including high aluminum and high boron concentrations. All glasses were fabricated in the laboratory and subsequently exposed to six different cooling treatments. The cooling treatments consisted of three 'stepped' profiles and their corresponding 'smooth' profiles. Included in the cooling treatment was the Defense Waste Processing Facility (DWPF) canister centerline cooling (CCC) profile in addition to a 'faster' and a 'slower' total cooling line. After quenching and heat treating, x-ray diffraction confirmed the type and amount of any resultant crystallization. The target compositions were shown to be consistent with the measured compositions. Two quenched glasses and several treated glasses exhibited minor amounts of spinel and spinel-like phases. Nepheline was not observed in any of the quenched glasses but was observed in many of the treated glasses. The amount of nepheline ranged from approximately 2wt% to 30wt% for samples cooled over shorter times and longer times respectively. Differences were observed in the amount of nepheline crystallization after smooth and stepped cooling and increased with total cooling time. In some glasses, nepheline crystallization appeared to be directly proportional to total cooling time while the total amount of nepheline crystallization varied, suggesting that the nepheline crystallization rate was independent of (or at least faster than) cooling rate but, varied depending on the glass composition. On the contrary, in another glass, nepheline crystallization appeared to be inversely proportional to cooling rate. The high alumina glasses, predicted to form nepheline

  17. In-Situ, Real-Time Measurement of Melt Constituents in the Aluminum, Glass, and Steel Industries

    Energy Technology Data Exchange (ETDEWEB)

    Robert De Saro

    2006-05-18

    commercial installations have been completed; one at Commonwealth and another at PPG. 2. The system is easy to operate and requires no operator training. Calibration is not required. It is certified as eye safe. 3. The system is crosscutting and ERCo is evaluating seven applications, as reported in this report, and other applications to be reported later. 4. A business plan is being completed for each of the near term markets. ERCo is committed to achieving continued commercial success with the LIBS System. 5. A world wide patent has been issued. 6. The energy savings is substantial. The annual energy savings, by 2010, for each industry is estimated as follows: o Secondary Aluminum – 1.44 trillion Btu’s o Glass – 17 to 45 trillion Btu’s o Steel – Up to 26 trillion Btu’s

  18. Aluminum-doped zinc oxide (ZnO:Al) thin films deposited on glass substrates by chemical spray starting from zinc pentanedionate and aluminum chloride

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, M. de la L, E-mail: molvera@cinvestav.mx [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional CINVESTAV-IPN, SEES, Apartado Postal 14740, Mexico, D.F. 07000 (Mexico); Maldonado, A.; Vega-Perez, J. [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional CINVESTAV-IPN, SEES, Apartado Postal 14740, Mexico, D.F. 07000 (Mexico); Solorza-Feria, O. [Departamento de Quimica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional CINVESTAV-IPN, SEES, Apartado Postal 14740, Mexico, D.F. 07000 (Mexico)

    2010-10-25

    Aluminum-doped zinc oxide thin films (ZnO:Al) were deposited on sodalime glass substrates by the chemical spray technique, starting from zinc pentanedionate and aluminum chloride. The effect of the substrate temperature on the structural, morphological, optical, and electrical properties was studied. A constant [Al]/[Zn] = 3 at.% ratio was used. As the substrate temperature increases, the electrical resistance decreases, reaching a minimum value, in the order of 3 x 10{sup -2} {Omega} cm, for as-grown films deposited at 475 deg. C. The Hall mobility and carrier concentration for these films were around 0.6 cm{sup 2}/(V s), and 3.42 x 10{sup 20} cm{sup -3}, respectively. Further decrease in the resistivity, in the order of 1.5 x 10{sup -2} {Omega} cm, was observed after a heat treatment in vacuum, during 1 h, at 400 deg. C. All the samples were polycrystalline, with a variation in the preferential growth. Samples deposited at 450 deg. C show a (0 0 2) preferential growth whereas films deposited at higher temperatures present a significant contribution of other planes. As the substrate temperature increases, the morphology shows slight changes, since the grain size increases. The transmittance in the visible region (400-700 nm) is high, typically of 85% at 550 nm, and band gap values oscillated around 3.3 eV. These results show that zinc pentanedionate can be a good candidate for the manufacturing of transparent conductive ZnO:Al thin films.

  19. Crystallization Kinetics of Lithium Aluminum Germanium Phosphate Glass by DSC Technique

    Institute of Scientific and Technical Information of China (English)

    HE Kun; WANG Yanhang; ZU Chengkui; LIU Yonghua; ZHAO Huifeng; HAN Bin; CHENG Jiang

    2012-01-01

    The crystallization kinetics of Li2O-Al2O3-GeO2-P2O5 (LAGP) glass fabricated via the conventional melt-quenching method was studied by differential scanning calorimetry (DSC) under nonisothermal condition at different heating rates.The activation energy of glass transition Eg is 634.4 kJ/mol,indicating that LAGP glass is easy to crystallize at an elevated temperature.The activation energy of crystallization Ec and Avrami index n obtained from Matusita's model are 442.01 kJ/mol and 1.7,respectively.The value of n reveals that bulk crystallization predominates slightly over surface crystallization during crystallization process.LAGP glass-ceramics after different heat treatments have the same crystalline phases determined as major phase LiGe2(PO4)3,with AlPO4 and GeO2 as their impurity phases.

  20. Failure Behavior of Glass and Aluminum Oxynitride (AlON) Tiles Under Spherical Indenters

    Science.gov (United States)

    2010-05-01

    properties considerably overmatch the specimen to be examined, e.g., steel or tungsten carbide balls for glass specimens and tungsten carbide or diamond...glass indented with 0.49- and 1.0-mm-diameter spherical tungsten carbide indenters and 1.0-mm-diameter spherical diamond indenters. On 4 loading...necessary after testing was complete. The indenter holder and other fixtures made from 17-4 steel were hardened and turned a dark bronze color from

  1. Synthesis of aluminum nitride nanoparticles by a facile urea glass route and influence of urea/metal molar ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhifang; Wan, Yizao [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Xiong, Guangyao [School of Mechanical and Electrical Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013 (China); Guo, Ruisong [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Luo, Honglin, E-mail: hlluo@tju.edu.cn [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2013-09-01

    Attention toward nanosized aluminum nitride (AlN) was rapidly increasing due to its physical and chemical characteristics. In this work, nanocrystalline AlN particles were prepared via a simple urea glass route. The effect of the urea/metal molar ratio on the crystal structure and morphology of nanocrystalline AlN particles was studied using X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results revealed that the morphology and the crystal structure of AlN nanoparticles could be controlled by adjusting the urea/metal ratio. Furthermore, a mixture of Al{sub 2}O{sub 3} and h-AlN was detected at the urea/metal molar ratio of 4 due to the inadequate urea content. With increasing the molar ratio, the pure h-AlN was obtained. In addition, the nucleation and growth mechanisms of AlN nanocrystalline were proposed.

  2. Comparison between different types of glass and aluminum as containers for irradiation samples by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sroor, A.; El-Dine, N. Walley; El-Shershaby, A.; Abdel-Haleem, A.S

    2000-01-01

    Three different types of glass and four different kinds of aluminum sheet have been analyzed using neutron activation analysis. The irradiation facilities of the first Egyptian research reactor (ET-RR-1) and a hyper-pure germanium (HPGe) detection system were used for the analysis. Among the 34 identified elements, the isotopes {sup 60}Co, {sup 65}Zn, {sup 110m}Ag, {sup 123m}Te, {sup 134}Cs, {sup 152}Eu and {sup 182}Ta are of special significance because of their long half-lives, providing a background interference for analyzed samples. A comparison between the different types of containers was made to select the preferred one for sample irradiation.

  3. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-01

    Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.

  4. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability.

    Science.gov (United States)

    Gomes, Filipa O; Pires, Ricardo A; Reis, Rui L

    2013-04-01

    Al-free glasses of general composition 0.340SiO2:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na2O:0.060P2O5 (a, b=0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25±5 MPa) and higher compressive elastic modulus (492±17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a=0.125 and b=0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment.

  5. Reactions of chromium-aluminum-zirconium refractory with a molten alkali-free borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Popov, O.N.; Frolova, V.P.

    1985-08-01

    The authors consider the scope for using KhTs-45 refractory containing in mass % 45.0 Cr2O3, 5.0 Al2O3, 32.5 ZrO2, 16.0 SiO2, and 1.5 Na2O for melting alkali-free borosilicate glass E, and they also present some experimental results on the corrosion of the refractory in contact with the molten glass and on the contact mineral formation. They conclude that during the attack on the refractory diffusion zoning is formed, which reflects the relative component migration activities.

  6. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Filipa O.; Pires, Ricardo A., E-mail: rpires@dep.uminho.pt; Reis, Rui L.

    2013-04-01

    Al-free glasses of general composition 0.340SiO{sub 2}:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na{sub 2}O:0.060P{sub 2}O{sub 5} (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn

  7. FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D' ANGELO NA; SCHATZ TR; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the

  8. Final Report - Effects of High Spinel and Chromium Oxide Crystal Contents on Simulated HLW Vitrification in DM100 Melter Tests, VSL-09R1520-1, Rev. 0, dated 6/22/09

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Matlack, K. S.; Kot, W.; Pegg, I. L.; Chaudhuri, M.; Lutze, W.

    2013-11-13

    The principal objective of the work was to evaluate the effects of spinel and chromium oxide particles on WTP HLW melter operations and potential impacts on melter life. This was accomplished through a combination of crucible-scale tests, settling and rheological tests, and tests on the DM100 melter system. Crucible testing was designed to develop and identify HLW glass compositions with high waste loadings that exhibit formation of crystalline spinel and/or chromium oxide phases up to relatively high crystal contents (i.e., > 1 vol%). Characterization of crystal settling and the effects on melt rheology was performed on the HLW glass formulations. Appropriate candidate HLW glass formulations were selected, based on characterization results, to support subsequent melter tests. In the present work, crucible melts were formulated that exhibit up to about 4.4 vol% crystallization.

  9. Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.; Feng, Z.; Gan, H; Joseph, I.; Matlack, K. S.

    2013-11-13

    The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without the formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.

  10. Experimental Study on the Feasibility of Using Water Glass and Aluminum Sulfate to Treat Complications in High Liquid Limit Soil Subgrade

    Directory of Open Access Journals (Sweden)

    Wen-hui Zhang

    2015-01-01

    Full Text Available The feasibility of using water glass and aluminum sulfate to treat high liquid limit soil subgrade diseases is studied through laboratory experiments, and the following results were observed. After improving the high liquid limit clay with water glass and aluminum sulfate, the liquid limit decreases, the plastic limit increases, and the plasticity index decreases. Compared with untreated soil, the clay content of the improved soil decreases, while the silt and coarse contents increase. The absolute and relative expansion rates of the improved soil are both lower than those of the untreated soil. With the same number of dry and wet cycles, the decreased degrees of cohesion and internal friction angle of the improved soil are, respectively, one-half and one-third of those of the untreated soil. After three dry and wet cycles, the California bearing ratio (CBR of the untreated soil does not meet the requirements of specifications. However, after being cured for seven days and being subjected to three dry and wet cycles, the CBR of the improved soil, with 4% water glass solution and 0.4% aluminum sulfate, meets the requirements of specifications.

  11. Replacement of glass in the Nakhla meteorite by berthierine: Implications for understanding the origins of aluminum-rich phyllosilicates on Mars

    Science.gov (United States)

    Lee, Martin R.; Chatzitheodoridis, Elias

    2016-09-01

    A scanning and transmission electron microscope study of aluminosilicate glasses within melt inclusions from the Martian meteorite Nakhla shows that they have been replaced by berthierine, an aluminum-iron serpentine mineral. This alteration reaction was mediated by liquid water that gained access to the glasses along fractures within enclosing augite and olivine grains. Water/rock ratios were low, and the aqueous solutions were circumneutral and reducing. They introduced magnesium and iron that were sourced from the dissolution of olivine, and exported alkalis. Berthierine was identified using X-ray microanalysis and electron diffraction. It is restricted in its occurrence to parts of the melt inclusions that were formerly glass, thus showing that under the ambient physico-chemical conditions, the mobility of aluminum and silicon were low. This discovery of serpentine adds to the suite of postmagmatic hydrous silicates in Nakhla that include saponite and opal-A. Such a variety of secondary silicates indicates that during aqueous alteration compositionally distinct microenvironments developed on sub-millimeter length scales. The scarcity of berthierine in Nakhla is consistent with results from orbital remote sensing of the Martian crust showing very low abundances of aluminum-rich phyllosilicates.

  12. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    Institute of Scientific and Technical Information of China (English)

    ZHUO Long-Chao; PANG Shu-Jie; WANG Hui; ZHANG Tao

    2009-01-01

    Based on a new approach for designing glassy alloy compositions,bulk Al-based alloys with good glass-forming ability (GFA) are synthesized.The cast Al86Si0.5Ni4.06Co2.94 Y6Sc0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod.The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 Gpa and maximum strength of 1.27 Gpa as well as an obvious plastic strain of about 2.4% during compressive deformation.This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability.

  13. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr)2O4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.

  14. FINAL REPORT DM1200 TESTS WITH AZ 101 HLW SIMULANTS VSL-03R3800-4 REV 0 2/17/04

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; BARDAKCI T; D' ANGELO NA; GONG W; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM 1200 HLW Pilot Melter during processing of simulated HLW AZ-101 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW AZ-101 feed; determine the effect of bubbling rate and feed solids content on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post-test inspections of system components. The test objectives (including test success criteria), along with how they were met, are outlined in a table.

  15. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  16. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  17. White upconversion luminescence in Tm3+/Ho3+/Yb3+ triply doped K+-Na+ ion-exchanged aluminum germanate glass channel waveguide

    Science.gov (United States)

    Liu, Xiao; Chen, Baojie; Pun, Edwin Yue Bun; Lin, Hai

    2013-01-01

    Rare-earth ions doped K+-Na+ ion-exchanged aluminum germanate (NMAG) glass channel waveguides have been designed and fabricated. Under 980 nm laser pumping, an intense upconversion white light transmission trace was observed in Tm3+/Ho3+/Yb3+ triply doped NMAG glass channel waveguide and a high-brightness light spot was achieved from the output end of the fiber connected to the waveguide channel. The fluorescent colors were diverse and located within or near the white region in CIE chromaticity diagram under various pumping powers. These admirable results indicate that Tm3+/Ho3+/Yb3+ triply doped NMAG channel waveguide is a promising light source for medical and high-precision processing illumination.

  18. MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P 2O 5 and TiO 2 nucleants

    Science.gov (United States)

    Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.

    2010-06-01

    Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li 2O-4.0Al 2O 3-68.6SiO 2-3.0K 2O-2.6B 2O 3-0.5P 2O 5-0.9TiO 2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li 2SiO 3) is the first phase to c form followed by cristobalite (SiO 2) and lithium disilicate (Li 2Si 2O 5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li 3PO 4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li 3PO 4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO 4 ( M=B, Al or Ti) complexes. The presence of BO 3 and BO 4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO 3) increases at the expense of tetrahedrally coordinated B (BO 4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.

  19. FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of

  20. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.

  1. Comparison of thermal inactivation kinetics of E. coli K12 in apple cider using conventional glass tubes, aluminum thermal-death-time disks, and a pilot-scale pasteurizer

    Science.gov (United States)

    To estimate thermal inactivation rates of microorganisms in food, heating apparatuses of bench-top scale such as glass tubes, capillary tubes, and aluminum disks have been developed and tested. However, little work has been done on comparing the thermal inactivation of microorganisms obtained by ben...

  2. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  3. HLW Canister and Can-In-Canister Drop Calculation

    Energy Technology Data Exchange (ETDEWEB)

    H. Marr

    1999-09-15

    The purpose of this calculation is to evaluate the structural response of the standard high-level waste (HLW) canister and the HLW canister containing the cans of immobilized plutonium (''can-in-canister'' throughout this document) to the drop event during the handling operation. The objective of the calculation is to provide the structure parameter information to support the canister design and the waste handling facility design. Finite element solution is performed using the commercially available ANSYS Version (V) 5.4 finite element code. Two-dimensional (2-D) axisymmetric and three-dimensional (3-D) finite element representations for the standard HLW canister and the can-in-canister are developed and analyzed using the dynamic solver.

  4. Influence of Waste Glass Grain on Mechanical Properties of Glass-aluminum Metal Matrix Composite%废玻璃颗粒对铝基复合材料力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    张雷; 张记市; 孙可伟

    2011-01-01

    采用搅拌铸造法制备玻璃颗粒增强铝基废物复合材料,利用SEM、XRD等手段观察和分析了玻璃颗粒在复合材料制备中的变化情况,研究了玻璃颗粒含量对复合材料抗拉强度和耐磨强度的影响.结果表明,玻璃颗粒较均匀地分布于基体中,界面结合良好;与基体相比,复合材料耐磨性能提高了4.62倍,抗拉强度提高并不明显;玻璃颗粒表面发生熔融,裂纹在铝液中能够自我修复,从而提高复合材料的力学性能.%The glass/aluminum metal matrix composite was prepared by stirring cast. The surface change of the grains was studied by SEM and XRD. The influnce of glass grain on the tensile strength and abrasive resistance of the composite was studied. The results show that glass grains could scatter and suspend well in melt; compared with matrix alloy, the abrasive resistanc of the composite is improved by 4.62 times, but the increase of tensile strength of the composite is not obvious; when glass grains scattering and suspending in alloy, the melting phenomenon occurs on grain surface, and the crack in aluminium liquid can self-heal, meanwhile, the mechanical property of the composite improves.

  5. High level radioactive waste (HLW) disposal a global challenge

    CERN Document Server

    PUSCH, R; NAKANO, M

    2011-01-01

    High Level Radioactive Waste (HLW) Disposal, A Global Challenge presents the most recent information on proposed methods of disposal for the most dangerous radioactive waste and for assessing their function from short- and long-term perspectives. It discusses new aspects of the disposal of such waste, especially HLW.The book is unique in the literature in making it clear that, due to tectonics and long-term changes in rock structure, rock can serve only as a ""mechanical support to the chemical apparatus"" and that effective containment of hazardous elements can only be managed by properly des

  6. Research on the compression Capability of Glass Micro-sphere/Glass Fiber Reinforced Polyurethane-aluminum Foam%玻璃纤维/玻璃微珠混杂增强聚氨酯泡沫铝压缩性能研究

    Institute of Scientific and Technical Information of China (English)

    王超; 安振涛; 甄建伟; 李国松; 胡志盛; 王晟

    2012-01-01

    通过实验制备了泡沫铝、聚氨酯泡沫铝(PUF泡沫铝)和增强PUF泡沫铝试件,并对它们的压缩性能进行了研究.结果表明,增强PUF泡沫铝尤其是混杂增强PUF泡沫铝的压缩性能优于纯泡沫铝和PUF泡沫铝,且当玻璃纤维含量为4.5%(质量分数)、玻璃微珠含量为1.5%(质量分数)时,混杂增强PUF泡沫铝复合材料的增强效果最好,可作为一种缓冲性能很好的防护材料.%Aluminum foam, polyurethane aluminum foam and the reinforced polyurethane-aluminum foam were prepared through experiment, and their compression performances were tested. The results show that compression capability of the reinforced polyurethane-aluminum foam especially the hybrid is stronger than the aluminum foam and polyurethane-aluminum foam. When the composite contained 4.5% glass fiber and 1.5% glass micro-sphere, it shows that the hybrid reinforced polyurethane-aluminum foam is the best, which would be a better cushion material for defense.

  7. FINAL REPORT START-UP AND COMMISSIONING TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-01R0100-2 REV 0 1/20/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; BRANDYS M; WILSON CN; SCHATZ TR; GONG W; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter{trademark} 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

  8. Optical properties of double layer thin films zinc oxide doping aluminum (ZnO/Al) were deposited on glass substrates by sol gel method spray coating technique

    Science.gov (United States)

    Permatasari, Anes; Sutanto, Heri; Marito Siagian, Sinta

    2017-01-01

    Thin films of double layer of ZnO/Al has succeeded in deposition on a glass substrate using sol-gel method and spray coating techniques. Variations of doping Al as much as 2%, 4%, 6% and 8%. ZnO precursor synthesized using zinc acetate dehydrate (Zn(COOCH3)2.2H2O), isopropanol ((CH3)2CHOH) and monoethanolamine (MEA) were stirred using a magnetic stirrer for 45 minutes. ZnO precursor get homogeneous and then added of aluminum nitrate nonahydrate predetermined doping concentration and stirred again for 15 minutes. Deposition solution is done by the spray on a glass substrate and then heated at a temperature of 450°C. A layer of ZnO/Al deposited over the ZnO to produce a thin layer of a double layer. Optical properties layer of ZnO/Al characterized using UV-Vis spectrophotometer. Based on data from UV-Vis absorbance was determined the value of the energy band gap. Pure and dopped layers has different energy due the Al dopping. For pure ZnO layer has energy band gap of 3.347 eV and decreased to 3.09 eV for ZnO layer with Al dopant.

  9. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  10. HLW Salt Disposition Alternatives Preconceptual Phase II Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Piccolo, S.F.

    1999-07-09

    The purpose of the report is to summarize the process used to identify the Short List alternatives that will be evaluated during Phase III and to document the results of the selection process. The Phase III evaluation will result in the determination of the preferred alternative(s) to be used for final disposition of the HLW salt to a permitted waste form.

  11. Experimental Plan for the Cold Demonstration (Scoping Tests) of Glass Removal Methods from a DWPF Melter

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E.

    2001-09-21

    SRS and WVDP currently do not have the capability to size reduce, decontaminate, classify, and dispose of large, failed, highly contaminated equipment. Tanks Focus Area Task 777 was developed to address this problem. The first activity for Task 777 is to develop and demonstrate techniques suitable for removing the solid HLW glass from HLW melters. This experimental plan describes the work that will be performed for this glass removal demonstration.

  12. Production of a High-Level Waste Glass from Hanford Waste Samples

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP).

  13. Thermal Effect on Structure of Silver in Ion-Exchanged Soda-Lime Glasses and Aluminum-Doped Zinc Oxide Films

    Directory of Open Access Journals (Sweden)

    Paul W. Wang

    2011-01-01

    Full Text Available Heat treatment is commonly used during device processing in order to achieve specific functionalities of the devices. How a series of heat treatment applies to accomplish this goal can be found in the literature. However, specific properties of the devices after the treatment are more emphasized than the details of the structural modifications in the industrial applications. In this paper, it is intended to illustrate the fundamental changes in the structure due to heat treatment which result in the desired physical properties of the devices. Two study cases, Ag ion-exchanged soda-lime glasses and aluminum doped ZnO (AZO films, were illustrated. The changes in chemical states, the structural modification during and after heat treatment are explored. By understanding how the metallic Ag formed and accumulated during annealing, an optimum heat treatment to grow the proper size and density of silver quantum dots in the films are possible. Post annealing effect on the AZO films shows that the crystallinity, the peak positions shifts, and grain sizes were changed after annealing. Both illustrated cases indicate thermally induced changes in chemical state, the stress release, and rearrangement of atoms in materials during and after annealing.

  14. Technetium Chemistry in HLW: Role of Organic Complexants

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Blanchard, David L., Jr.; Cho, Herman M.; Xia, Yuanxian; Campbell, James A.; Rai, Dhanpat; Conradson, Steven D.

    2004-06-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. Technetium is thought to have followed U in bismuth phosphate, REDOX and PUREX extraction campaigns and the Cs and Sr isotope recovery efforts. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry. The fate of Tc in the insoluble salts that constitute tank residuals is of paramount importance due to the long half-life and environmental mobility of Tc. Knowledge gaps include determination of the Tc oxidation state, the stability of reduced Tc solution species, and interactions with possible organic complexants in HLW. The objective of this renewal proposal is to continue to pursue fundamental understanding of Tc solution chemistry that provides the basis to make knowledgeable decisions and predictions of Tc behavior during retrieval operations and in tank residuals.

  15. TWRS HLW interim storage facility search and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, R.B., Westinghouse Hanford

    1996-05-16

    The purpose of this study was to identify and provide an evaluation of interim storage facilities and potential facility locations for the vitrified high-level waste (HLW) from the Phase I demonstration plant and Phase II production plant. In addition, interim storage facilities for solidified separated radionuclides (Cesium and Technetium) generated during pretreatment of Phase I Low-Level Waste Vitrification Plant feed was evaluated.

  16. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Vince [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

  17. Rheology of Savannah River site tank 42 HLW radioactive sludge

    Energy Technology Data Exchange (ETDEWEB)

    Ha, B.C.

    1997-11-05

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site, Tank 42 sludge represents on of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility. The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center using a modified Haake Rotovisco viscometer.

  18. GLASS SELECTION STRATEGY: DEVELOPMENT OF US AND KRI TEST MATRICIES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; Tommy Edwards, T; David Peeler, D

    2007-02-06

    High-level radioactive wastes are stored as liquids in underground storage tanks at the Department of Energy's (DOE) Savannah River Site (SRS) and Hanford Reservation. These wastes are to be prepared for permanent disposition in a geologic repository by vitrification with glass forming additives (e.g., frit), creating a waste form with long-term durability. Wastes at SRS are being vitrified in the Defense Waste Processing Facility (DWPF). Vitrification of the wastes stored at Hanford is planned for the Waste Treatment and Immobilization Plant (WTP) when completed. Some of the wastes at SRS, and particularly those at Hanford, contain high concentrations of aluminum, chromium and sulfate. These elements make it more difficult to produce a waste glass with a high waste loading (WL) without crystallization occurring in the glass (either within the melter or upon cooling of the glass), potentially exceeding the solubility limit of critical components, having negative impacts on durability, and/or resulting in the formation of a sulfate salt layer on the molten glass surface. Although the overall scope of the task is focused on all three critical, chemical components, the current work will primarily address the potential for crystallization (e.g., nepheline and/or spinel) in high level waste (HLW) glasses. Recent work at the Savannah River National Laboratory (SRNL) and by other groups has shown that nepheline (NaAlSiO{sub 4}), which is likely to crystallize in high-alumina glasses, has a detrimental effect on the durability of the glass. The objective of this task is to develop glass formulations for specific SRS and Hanford waste streams to avoid nepheline formation while meeting waste loading and waste throughput expectations, as well as satisfying critical process and product performance related constraints. Secondary objectives of this task are to assess the sulfate solubility limit for the DWPF composition and spinel settling for the WTP composition. SRNL has

  19. FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

    2011-12-29

    This report provides data, analysis, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic University of America (VSL) to determine the melter processing rates that are achievable with RPP-WTP HLW simulants. The principal findings were presented earlier in a summary report (VSL-00R2S90-l) but the present report provides additional details. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. As a consequence of the limited amount of relevant information, there exists, for good reasons, a significant disparity between design-base specific glass production rates for the RPP-WTP LAW and HLW conceptual designs (1.0 MT/m{sup 2}/d and 0.4 MT/m{sup 2}/d, respectively); furthermore, small-scale melter tests with HLW simulants that were conducted during Part A indicated typical processing rates with bubbling of around 2.0 MT/m{sup 2}/d. This range translates into more than a factor of five variation in the resultant surface area of the HLW melter, which is clearly not without significant consequence. It is clear that an undersized melter is undesirable in that it will not be able to support the required waste processing rates. It is less obvious that there are potential disadvantages associated with an oversized melter, over and above the increased capital costs. A melt surface that is consistently underutilized will have poor cold cap coverage, which will result in increased volatilization from the melt (which is generally undesirable) and

  20. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  1. Rhenium volatilization in waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai; Pierce, David A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hrma, Pavel, E-mail: pavel.hrma@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland, WA 99352 (United States)

    2015-09-15

    Highlights: • Re did not volatilize from a HLW feed until 1000 °C. • Re began to volatilize from LAW feeds at ∼600 °C. • The vigorous foaming and generation of gases from salts enhanced Re evaporation in LAW feeds. • The HLW glass with less foaming and salts is a promising medium for Tc immobilization. - Abstract: We investigated volatilization of rhenium (Re), sulfur, cesium, and iodine during the course of conversion of high-level waste melter feed to glass and compared the results for Re volatilization with those in low-activity waste borosilicate glasses. Whereas Re did not volatilize from high-level waste feed heated at 5 K min{sup −1} until 1000 °C, it began to volatilize from low-activity waste borosilicate glass feeds at ∼600 °C, a temperature ∼200 °C below the onset temperature of evaporation from pure KReO{sub 4}. Below 800 °C, perrhenate evaporation in low-activity waste melter feeds was enhanced by vigorous foaming and generation of gases from molten salts as they reacted with the glass-forming constituents. At high temperatures, when the glass-forming phase was consolidated, perrhenates were transported to the top surface of glass melt in bubbles, typically together with sulfates and halides. Based on the results of this study (to be considered preliminary at this stage), the high-level waste glass with less foaming and salts appears a promising medium for technetium immobilization.

  2. CLOSURE OF HLW TANKS FORMULATION FOR A COOLING COIL GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V; Erich Hansen, E

    2008-05-23

    The Tank Closure and Technology Development Groups are developing a strategy for closing the High Level Waste (HLW) tanks at the Savannah River Site (SRS). Two Type IV tanks, 17 and 20 in the F-Area Tank Farm, have been successfully filled with grout. Type IV tanks at SRS do not contain cooling coils; on the other hand, the majority of the tanks (Type I, II, III and IIIA) do contain cooling coils. The current concept for closing tanks equipped with cooling coils is to pump grout into the cooling coils to prevent pathways for infiltrating water after tank closure. This task addresses the use of grout to fill intact cooling coils present in most of the remaining HLW tanks on Site. The overall task was divided into two phases. Phase 1 focused on the development of a grout formulation (mix design) suitable for filling the HLW tank cooling coils. Phase 2 will be a large-scale demonstration of the filling of simulated cooling coils under field conditions using the cooling coil grout mix design recommended from Phase 1. This report summarizes the results of Phase 1, the development of the cooling coil grout formulation. A grout formulation is recommended for the full scale testing at Clemson Environmental Technology Laboratory (CETL) that is composed by mass of 90% Masterflow (MF) 816 (a commercially available cable grout) and 10% blast furnace slag, with a water to cementitious material (MF 816 + slag) ratio of 0.33. This formulation produces a grout that meets the fresh and cured grout requirements detailed in the Task Technical Plan (2). The grout showed excellent workability under continuous mixing with minimal change in rheology. An alternative formulation using 90% MF 1341 and 10% blast furnace slag with a water to cementitious material ratio of 0.29 is also acceptable and generates less heat per gram than the MF 816 plus slag mix. However this MF 1341 mix has a higher plastic viscosity than the MF 816 mix due to the presence of sand in the MF 1341 cable grout and a

  3. Public Perspectives in the Japanese HLW Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Inatsugu, Shigefumi; Takeuchi, Mitsuo; Kato, Toshiaki [Nuclear Waste Management Organization of Japan (NUNIO), Tokyo (Japan)

    2006-09-15

    Following legislation entitled the 'Specified Radioactive Waste Final Disposal Act', the Nuclear Waste Management Organization of Japan (NUMO) was established in October 2000 as the implementing organization for geological disposal of vitrified high-level waste (HLW). Implementation of NUMO's disposal project will be based on three principles: 1) respecting public initiative and opinion, 2) adopting a stepwise approach and 3) ensuring transparency in information disclosure. NUMO has decided to adopt an open solicitation approach to finding volunteer municipalities for Preliminary Investigation Areas (PIAs). The official announcement of the start of the open solicitation program was made in 2002. Although no official applications had been received from volunteer municipalities by the end of 2005, NUMO has been continuing to carry out various activities aimed specifically at public communication and encouraging dialogue about the deep geological disposal project This paper summarizes the results obtained and lessons learned so far and identifies the issues that NUMO must tackle immediately in the areas of communication and dialogue.

  4. Tc Chemistry in HLW: Role of Organic Complexants

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy S.; Conradsen, Steven D.

    2003-06-01

    Tc complexation with organic compounds in tank waste plays a significant role in the redox chemistry of Tc and the partitioning of Tc between the supernatant and sludge components in waste tanks. These processes need to be understood so that strategies to effectively remove Tc from high-level nuclear waste prior to waste immobilization can be developed and so that long-term consequences of Tc remaining in residual waste after sludge removal can be evaluated. Only limited data on the stability of Tc-organic complexes exists and even less thermodynamic data on which to develop predictive models of Tc chemical behavior is available. To meet these challenges we are conducting a research program to study to develop thermodynamic data on Tc-organic complexation over a wide range of chemical conditions. We will attempt to characterize Tc-speciation in actual tank waste using state-of-the-art analytical organic chemistry, separations, and speciation techniques to validate our model. On the basis of such studies we will develop credible model of Tc chemistry in HLW that will allow prediction of Tc speciation in tank waste and Tc behavior during waste pretreatment processing and in waste tank residuals.

  5. Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Kim, Dong-Sang; Skorski, Daniel C.; Matyas, Josef

    2013-07-31

    Recent glass formulation and melter testing data have suggested that significant increases in waste loading in HLW and LAW glasses are possible over current system planning estimates. The data (although limited in some cases) were evaluated to determine a set of constraints and models that could be used to estimate the maximum loading of specific waste compositions in glass. It is recommended that these models and constraints be used to estimate the likely HLW and LAW glass volumes that would result if the current glass formulation studies are successfully completed. It is recognized that some of the models are preliminary in nature and will change in the coming years. Plus the models do not currently address the prediction uncertainties that would be needed before they could be used in plant operations. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose. A fundamental tenet underlying the research reported in this document is to try to be less conservative than previous studies when developing constraints for estimating the glass to be produced by implementing current advanced glass formulation efforts. The less conservative approach documented herein should allow for the estimate of glass masses that may be realized if the current efforts in advanced glass formulations are completed over the coming years and are as successful as early indications suggest they may be. Because of this approach there is an unquantifiable uncertainty in the ultimate glass volume projections due to model prediction uncertainties that has to be considered along with other system uncertainties such as waste compositions and amounts to be immobilized, split factors between LAW and HLW, etc.

  6. Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Dong-Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skorski, Daniel C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-07-01

    Recent glass formulation and melter testing data have suggested that significant increases in waste loading in HLW and LAW glasses are possible over current system planning estimates. The data (although limited in some cases) were evaluated to determine a set of constraints and models that could be used to estimate the maximum loading of specific waste compositions in glass. It is recommended that these models and constraints be used to estimate the likely HLW and LAW glass volumes that would result if the current glass formulation studies are successfully completed. It is recognized that some of the models are preliminary in nature and will change in the coming years. Plus the models do not currently address the prediction uncertainties that would be needed before they could be used in plant operations. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose. A fundamental tenet underlying the research reported in this document is to try to be less conservative than previous studies when developing constraints for estimating the glass to be produced by implementing current advanced glass formulation efforts. The less conservative approach documented herein should allow for the estimate of glass masses that may be realized if the current efforts in advanced glass formulations are completed over the coming years and are as successful as early indications suggest they may be. Because of this approach there is an unquantifiable uncertainty in the ultimate glass volume projections due to model prediction uncertainties that has to be considered along with other system uncertainties such as waste compositions and amounts to be immobilized, split factors between LAW and HLW, etc.

  7. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.; Hrma, Pavel R.

    2016-10-01

    Technetium retention during Hanford waste vitrification can be increased by inhibiting technetium volatility from the waste glass melter. Incorporating technetium into a mineral phase, such as sodalite, is one way to achieve this. Rhenium-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glasses. After melting feeds of these two glasses, the retention of rhenium was measured and compared with the rhenium retention in glass prepared from a feed containing Re2O7 as a standard. The rhenium retention was 21% higher for HLW glass and 85% higher for LAW glass when added to samples in the form of sodalite as opposed to when it was added as Re2O7, demonstrating the efficacy of this type of an approach.

  8. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF REDOX EFFECTS USING HLW AZ-101 AND C-106/AY-102 SIMULANTS VSL-04R4800-1 REV 0 5/6/

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; LUTZE W; BIZOT PM; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and

  9. FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

    2011-12-29

    This report provides data, analysis, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic University of America (VSL) to determine the melter processing rates that are achievable with RPP-WTP HLW simulants. The principal findings were presented earlier in a summary report (VSL-00R2S90-l) but the present report provides additional details. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. As a consequence of the limited amount of relevant information, there exists, for good reasons, a significant disparity between design-base specific glass production rates for the RPP-WTP LAW and HLW conceptual designs (1.0 MT/m{sup 2}/d and 0.4 MT/m{sup 2}/d, respectively); furthermore, small-scale melter tests with HLW simulants that were conducted during Part A indicated typical processing rates with bubbling of around 2.0 MT/m{sup 2}/d. This range translates into more than a factor of five variation in the resultant surface area of the HLW melter, which is clearly not without significant consequence. It is clear that an undersized melter is undesirable in that it will not be able to support the required waste processing rates. It is less obvious that there are potential disadvantages associated with an oversized melter, over and above the increased capital costs. A melt surface that is consistently underutilized will have poor cold cap coverage, which will result in increased volatilization from the melt (which is generally undesirable) and

  10. Augmenting a Waste Glass Mixture Experiment Study with Additional Glass Components and Experimental Runs

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.(BATTELLE (PACIFIC NW LAB)); Cooley, Scott K.(BATTELLE (PACIFIC NW LAB)); Peeler, David K.(Savannah River Technology Center); Vienna, John D.(BATTELLE (PACIFIC NW LAB)); Edwards, Tommy B.(Savannah River Technology Center)

    2002-01-01

    A glass composition variation study (CVS) for high-level waste (HLW) stored in Idaho is being statistically designed and performed in phases over several years. The purpose of the CVS is to investigate and model how HLW-glass properties depend on glass composition. The resulting glass property-composition models will be used to develop desirable glass formulations and for other purposes. Phases 1 and 2 of the CVS have been completed and are briefly described. This paper focuses on the CVS Phase 3 experimental design, which was chosen to augment the Phase 1 and 2 data with additional data points, as well as to account for additional glass components not studied in Phases 1 and/or 2. In total, 16 glass components were varied in the Phase 3 experimental design. The paper describes how these Phase 3 experimental design augmentation challenges were addressed using the previous data, preliminary property-composition models, and statistical mixture experiment and optimal experimental design methods and software.

  11. DURABLE GLASS FOR THOUSANDS OF YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2009-12-04

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  12. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  13. Modelling spent fuel and HLW behaviour in repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, A. M.; Esteban, J. A.

    2003-07-01

    The aim of this report is to give the reader an overall insight of the different models, which are used to predict the long-term behaviour of the spent fuels and HLW disposed in a repository. The models must be established on basic data and robust kinetics describing the mechanisms controlling spent fuel alteration/dissolution in a repository. The UO2 matrix, or source term, contains embedded in it the , majority of radionuclides of the spent fuel (some are in the gap cladding). For this reason the SF radionuclides release models play a significant role in the performance assessment of radioactive waste disposal. The differences existing between models published in the literature are due to the conceptual understanding of the processes and the degree of the conservatism used with the parameter values, and the boundary conditions. They mainly differ in their level of simplification and their final objective. Sometimes are focused the show compliance with regulatory requirements, other to support decision making, to increase the level of confidence of public and scientific community, could be empirical, semi-empirical or analytical. The models take into account the experimental results from radionuclides releases and their extrapolation to the very long term. Its necessary a great statistics for have a representative dissolution rate, due at the number of experimental results is not very high and many of them show a great scatter, independently of theirs different compositions by axial and radial variations, due to linear power or local burnup. On the other hand, it is difficult to predict the spent fuel behaviour over the long term, based in short term experiments. In this report is given a little description of the radionuclides distribution in the spent fuel and also in the cladding/pellet gap, grain boundary, cracks and rim zones (the matrix rim zone can be considered with an especial characteristics very different to the rest of the spent fuel), and structural

  14. Glass Composition Constraint Recommendations for Use in Life-Cycle Mission Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S.; Vienna, John D.

    2010-05-03

    The component concentration limits that most influence the predicted Hanford life-cycle HLW glass volume by HTWOS were re-evaluated. It was assumed that additional research and development work in glass formulation and melter testing would be performed to improve the understanding of component effects on the processability and product quality of these HLW glasses. Recommendations were made to better estimate the potential component concentration limits that could be applied today while technology development is underway to best estimate the volume of HLW glass that will eventually be produced at Hanford. The limits for concentrations of P2O5, Bi2O3, and SO3 were evaluated along with the constraint used to avoid nepheline formation in glass. Recommended concentration limits were made based on the current HLW glass property models being used by HTWOS (Vienna et al. 2009). These revised limits are: 1) The current ND should be augmented by the OB limit of OB ≤ 0.575 so that either the normalized silica (NSi) is less that the 62% limit or the OB is below the 0.575 limit. 2) The mass fraction of P2O5 limit should be revised to allow for up to 4.5 wt%, depending on CaO concentrations. 3) A Bi2O3 concentration limit of 7 wt% should be used. 4) The salt accumulation limit of 0.5 wt% SO3 may be increased to 0.6 wt%. Again, these revised limits do not obviate the need for further testing, but make it possible to more accurately predict the impact of that testing on ultimate HLW glass volumes.

  15. Development of thermal analysis method for the near field of HLW repository using ABAQUS

    Energy Technology Data Exchange (ETDEWEB)

    Kuh, Jung Eui; Kang, Chul Hyung; Park, Jeong Hwa [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    An appropriate tool is needed to evaluate the thermo-mechanical stability of high level radioactive waste (HLW) repository. In this report a thermal analysis methodology for the near field of HLW repository is developed to use ABAQUS which is one of the multi purpose FEM code and has been used for many engineering area. The main contents of this methodology development are the structural and material modelling to simulate a repository, setup of side conditions, e.g., boundary and load conditions, and initial conditions, and the procedure to selection proper material parameters. In addition to these, the interface programs for effective production of input data and effective change of model size for sensitivity analysis for disposal concept development are developed. The results of this work will be apply to evaluate the thermal stability and to use as main input data for mechanical analysis of HLW repository. (author). 20 refs., 15 figs., 5 tabs.

  16. Glass-bead peen plating

    Science.gov (United States)

    Graves, J. R.

    1974-01-01

    Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil.

  17. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  18. 化学增强铝硅酸盐玻璃扩散性能研究%The Diffusion Performance of Potassium and Sodium in Ion Exchanged Aluminum Silicate Glass

    Institute of Scientific and Technical Information of China (English)

    程金树; 赵薇; 肖子凡

    2012-01-01

    了解碱金属离子在玻璃表面的扩散对生产高强度铝硅酸盐系统离子交换玻璃具有重要意义.通过外加Al,讨论不同Al/Na对碱离子扩散影响.采用EPMA测得玻璃断面K+、Na+分布曲线,根据Boltzmann- Matano计算方法得到K+、Na+的扩散系数,根据Arrhenius公式计算得到K+、Na+的扩散活化能.实验证明,随着Al/Na的增加,K+、Na+扩散深度逐渐增加,互扩散系数逐渐增加,K+、Na+平均活化能逐渐增加.讨论玻璃体内Al/Na比例是研究高强度离子交换玻璃的一个重要方向.%In the production of ion exchanged aluminum silicate system glass, the alkali ion diffusion on the glass surface is an important process which must be considered. In this paper, we discussed the impact of additional Al on the diffusion of alkali ions. The penetration depth profiles of alkali ions were obtained by EPMA methods. The diffusion coefficients of alkali ions were calculated by Boltzmann-Matano equation. And the active energy of alkali ions were gotten by Arrhenius equation. The results showed that the penetration depth, the interdiffusion coefficient and the average active energy increased with the increase of Al/Na ratios. It means the Al/Na ratios have a great effect on the diffusion of alkali i-ons.

  19. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn

  20. Liquidus Temperature Data for DWPF Glass

    Energy Technology Data Exchange (ETDEWEB)

    GF Piepel; JD Vienna; JV Crum; M Mika; P Hrma

    1999-05-21

    This report provides new liquidus temperature (TL) versus composition data that can be used to reduce uncertainty in TL calculation for DWPF glass. According to the test plan and test matrix design PNNL has measured TL for 53 glasses within and just outside of the current DWPF processing composition window. The TL database generated under this task will directly support developing and enhancing the current TL process-control model. Preliminary calculations have shown a high probability of increasing HLW loading in glass produced at the SRS and Hanford. This increase in waste loading will decrease the lifecycle tank cleanup costs by decreasing process time and the volume of waste glass produced.

  1. Current Understanding and Remaining Challenges in Modeling Long-Term Degradation of Borosilicate Nuclear Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Gin, Stephane [CEA Marcoule, DTCD SECM, Bagnols-sur-Ceze (France); Inagaki, Yaohiro [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoda (Japan)

    2013-12-01

    Chemical durability is not a single material property that can be uniquely measured. Instead it is the response to a host of coupled material and environmental processes whose rates are estimated by a combination of theory, experiment, and modeling. High-level nuclear waste (HLW) glass is perhaps the most studied of any material yet there remain significant technical gaps regarding their chemical durability. The phenomena affecting the long-term performance of HLW glasses in their disposal environment include surface reactions, transport properties to and from the reacting glass surface, and ion exchange between the solid glass and the surrounding solution and alteration products. The rates of these processes are strongly influenced and are coupled through the solution chemistry, which is in turn influenced by the reacting glass and also by reaction with the near-field materials and precipitation of alteration products. Therefore, those processes must be understood sufficiently well to estimate or bound the performance of HLW glass in its disposal environment over geologic time-scales. This article summarizes the current state of understanding of surface reactions, transport properties, and ion exchange along with the near-field materials and alteration products influences on solution chemistry and glass reaction rates. Also summarized are the remaining technical gaps along with recommended approaches to fill those technical gaps.

  2. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    Science.gov (United States)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.; Hrma, Pavel

    2016-10-01

    Technetium (Tc) retention during Hanford waste vitrification can be increased if the volatility can be controlled. Incorporating Tc into a thermally stable mineral phase, such as sodalite, is one way to achieve increased retention. Here, rhenium (Re)-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glass simulants. After melting HLW and LAW simulant feeds, the retention of Re in the glass was measured and compared with the Re retention in glass prepared from a feed containing Re2O7. Phase analysis of sodalite in both these glasses across a profile of temperatures describes the durability of Re-sodalite during the feed-to-glass transition. The use of Re sodalite improved the Re retention by 21% for HLW glass and 85% for LAW glass, demonstrating the potential improvement in Tc-retention if TcO4- were to be encapsulated in a Tc-sodalite prior to vitrification.

  3. Advanced High-Level Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced

  4. Hanford enhanced waste glass characterization. Influence of composition on chemical durability

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    This report provides a review of the complete high-level waste (HLW) and low-activity waste (LAW) data sets for the glasses recently fabricated at Pacific Northwest National Laboratory and characterized at Savannah River National Laboratory (SRNL). The review is from the perspective of relating the chemical durability performance to the compositions of these study glasses, since the characterization work at SRNL focused on chemical analysis and ASTM Product Consistency Test (PCT) performance.

  5. Survey of glass plutonium contents and poison selection

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, M.J.; Ramsey, W.G. [Westinghouse Savannah River Company, Aiken, SC (United States); Ellison, A.J.G.; Shaw, H. [Lawrence Livermore National Laboratory, CA (United States)

    1996-05-01

    If plutonium and other actinides are to be immobilized in glass, then achieving high concentrations in the glass is desirable. This will lead to reduced costs and more rapid immobilization. However, glasses with high actinide concentrations also bring with them undersirable characteristics, especially a greater concern about nuclear criticality, particularly in a geologic repository. The key to achieving a high concentration of actinide elements in a glass is to formulate the glass so that the solubility of actinides is high. At the same time, the glass must be formulated so that the glass also contains neutron poisons, which will prevent criticality during processing and in a geologic repository. In this paper, the solubility of actinides, particularly plutonium, in three types of glasses are discussed. Plutonium solubilities are in the 2-4 wt% range for borosilicate high-level waste (HLW) glasses of the type which will be produced in the US. This type of glass is generally melted at relatively low temperatures, ca. 1150{degrees}C. For this melting temperature, the glass can be reformulated to achieve plutonium solubilities of at least 7 wt%. This low melting temperature is desirable if one must retain volatile cesium-137 in the glass. If one is not concerned about cesium volatility, then glasses can be formulated which can contain much larger amounts of plutonium and other actinides. Plutonium concentrations of at least 15 wt% have been achieved. Thus, there is confidence that high ({ge}5 wt%) concentrations of actinides can be achieved under a variety of conditions.

  6. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  7. THM Coupled Modeling in Near Field of an Assumed HLW Deep Geological Disposal Repository

    Institute of Scientific and Technical Information of China (English)

    Shen Zhenyao; Li Guoding; Li Shushen

    2004-01-01

    One of the most suitable ways under study for the disposal of high-level radioactive waste (HLW) is isolation in deep geological repositories. It is very important to research the thermo-hydro-mechanical (THM) coupled processes associated with an HLW disposal repository. Non-linear coupled equations, which are used to describe the THM coupled process and are suited to saturated-unsaturated porous media, are presented in this paper. A numerical method to solve these equations is put forward, and a finite element code is developed. This code is suited to the plane strain or axis-symmetry problem. Then this code is used to simulate the THM coupled process in the near field of an ideal disposal repository. The temperature vs. time, hydraulic head vs. time and stress vs. time results show that, in this assumed condition, the impact of temperature is very long (over 10 000 a) and the impact of the water head is short (about 90 d). Since the stress is induced by temperature and hydraulic head in this condition, the impact time of stress is the same as that of temperature. The results show that THM coupled processes are very important in the safety analysis of an HLW deep geological disposal repository.

  8. Application of the Perovskite Ceramics to Conditioning of the Long-Lived Fraction of HLW

    Energy Technology Data Exchange (ETDEWEB)

    Cherniavskaya, N. E.; Chizhevskaya, S. V.; Ochkin, A. V.

    2002-02-25

    High level waste (HLW) partitioning concept includes separation of a long-lived fraction following by its immobilization in ceramics. Improved process flow sheet suggested for implementation at PA ''Mayak'' implies production of a long-lived HLW fraction with rare earth elements (REE) as major components, Am and Cm as minor constituents, and only traces of U, Pu, and corrosion products (iron group elements). Because most of the elements occurred are trivalent, one of the most promising host phase is supposed to be REE aluminate or ferrate with perovskite structure. Major advantages of the perovskite are incorporation of trivalent REEs and actinides, simultaneous incorporation of residual corrosion products, flexibility of perovskite structure allowing accommodation of traces of tetravalent actinides (U, Pu), high chemical durability, and high HLW volume reduction. High melting points of the perovskites makes problematic melting route, therefore, cold pressing and sintering method is more preferable. In order to reduce sintering temperature pre-treatment of ceramic batches with high mechanical energy has been studied.

  9. DOE-Managed HLW and SNF Research: FY15 EBS and Thermal Analysis Work Package Status.

    Energy Technology Data Exchange (ETDEWEB)

    Matteo, Edward N. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report examines the technical elements necessary to evaluate EBS concepts and perform thermal analysis of DOE-Managed SNF and HLW in the disposal settings of primary interest – argillite, crystalline, salt, and deep borehole. As the disposal design concept is composed of waste inventory, geologic setting, and engineered concept of operation, the engineered barrier system (EBS) falls into the last component of engineered concept of operation. The waste inventory for DOE-Managed HLW and SNF is closely examined, with specific attention to the number of waste packages, the size of waste packages, and the thermal output per package. As expected, the DOE-Managed HLW and SNF inventory has a much smaller volume, and hence smaller number of canister, as well a lower thermal output, relative to a waste inventory that would include commercial spent nuclear fuel (CSNF). A survey of available data and methods from previous studies of thermal analysis indicates that, in some cases, thermo-hydrologic modeling will be necessary to appropriately address the problem. This report also outlines scope for FY16 work -- a key challenges identified is developing a methodology to effectively and efficiently evaluate EBS performance in each disposal setting on the basis of thermal analyses results.

  10. Compositional threshold for nuclear waste glass durability

    Energy Technology Data Exchange (ETDEWEB)

    Farooqi, Rahmatullah; Hrma, Pavel [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2013-07-01

    The issue of major concern with the waste form, such as glass, is its chemical durability, I. e., the resistance to corrosion by aqueous media. A number of standard durability tests have been established for waste glasses, among which the product consistency test was selected as a criterion of HLW glass acceptability for the repository subsequently, a large PCT database has been collected containing over 1000 glasses. Such a database allows the development of models that relate PCT releases to glass is a strong function of composition, these models are used to formulate acceptable glasses in which the waste loading is maximized. Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, I. e. these which are sufficiently durable, from 'bad' glasses of a low durability. According to Populate al., transition region between durable and less durable glasses lies around 2a m{sup -2} as determined by the 7-day PCT normalized B release. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region. Our study is focused on the corrosion behavior of SiO{sub 2} - B{sub 2}O{sub 3} - Na{sub 2}O - Al{sub 2}O{sub 3} - Colleagues composition region. In particular, we try to identify the durability threshold separating durable from nondurable glasses in the composition space. So far we have explored the elemental releases of Na and B measured with the 7-day PCT.

  11. Minor component study for simulated high-level nuclear waste glasses (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation.

  12. 玻璃纤维铝合金板低速冲击损伤演化数值模拟%Numerical simulation of damage evolution on low-velocity impact of glass fiber reinforced aluminum laminates

    Institute of Scientific and Technical Information of China (English)

    万云; 章继峰; 周利民; 王振清

    2015-01-01

    编写了复合材料损伤的VUMAT子程序,并结合Johnson‐Cook金属损伤模型和表面内聚力行为层间分层方法建立了玻璃纤维增强铝合金层板(GLARE)受落锤低速冲击的数值模型。分析了能量吸收、形变情况及锤头接触力的变化,并通过与实验结果的比较验证了有限元方法的可靠性。利用有限元方法能够更全面分析材料损伤变化的优势,模拟了GLARE三维渐进失效、铝合金层的失效以及纤维层和铝合金层界面分层的破坏模式。通过综合分析该三种渐进失效与能量吸收、形变情况及锤头接触力的变化,揭示了玻璃纤维增强铝合金层板受落锤低速冲击下的破坏机理,验证了铝合金层板的加入对于玻璃纤维增强铝合金层板抗冲击性能增强规律。%A numerical methodology including user material subroutine VUMAT (vectorizd user mate‐rial routine) for composite material ,Johnson‐Cook flow stress model and surface‐based cohesive be‐havior for interface delamination analysis were carried out to simulate the history of absorbing energy , central deflection and contact force during low‐velocity impact of GLARE (glass reinforced aluminun laminates) plate .After the comparison between the experimental and simulative results ,the numeri‐cal methodology was proved right and feasible .Moreover ,numerical simulation had advantages in rounded analysis in the damage of material .T he damage progression of fiber reinforced layers ,alumi‐num alloy layers and delamination in GLARE were analyzed ,respectively .After comparing and analy‐zing three kinds of damage evolution and the curve of history of absorbing energy ,central deflection and contact force ,simulation results show that aluminum alloy layers play an important role in in‐creasing the performance of low‐velocity impact for composites material .

  13. Are We Serious in the US about the Disposal of HLW? - 13561

    Energy Technology Data Exchange (ETDEWEB)

    Neill, Robert H. [New Mexico Environmental Evaluation Group (EEG), 9409 Thornton Ave., N.E., Albuquerque, New Mexico 87109 (United States)

    2013-07-01

    Since all efforts to date to dispose of HLW in the US have been unsuccessful, the following specific actions need to be taken if we are serious about such disposal: - The requirement in the EPA environmental radiation protection standards to predict the behavior of these unwanted residuals for one million years is meaningless. The Standards must be revisited. - Characterize two sites. There are myriad ways a site can be found to be unacceptable. Additionally, the existing HLW inventory requires a second repository. - Congress should specify incentives to states under consideration for a site. Perhaps 5% of total cost would be appropriate. - An independent technical review group should be established in such states to evaluate a proposed repository similar to the New Mexico Environmental Evaluation Group (EEG) for the WIPP Project because the state's interests are not necessarily the same as DOE's. - Acceptance or rejection of a proposed site should be based on technical issues, not social ones. Professionals in this field should present papers identifying the merits of HLW disposal in their own state. The scarcity of such research suggests Not In My Back Yard (NIMBY) syndrome. - Medical diagnostic ionizing radiation exposure to the US public is now 8,000 times greater than radiation exposure from nuclear energy. People accept this believing the benefits outweigh any risks. A major effort needs to focus on both benefits as well as risks of radioactive waste disposal. - DOE needs to announce preferences of host rock formations, incentives for states, and potential consequences should we fail to act. (author)

  14. CLOSURE OF HLW TANKS PHASE 2 FULL SCALE COOLING COILS GROUT FILL DEMONSTATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E; Alex Cozzi, A

    2008-06-19

    This report documents the Savannah River National Laboratory (SRNL) support for the Tank Closure and Technology Development (TCTD) group's strategy for closing high level radioactive waste (HLW) tanks at the Savannah River Site (SRS). Specifically, this task addresses the ability to successfully fill intact cooling coils, presently within the HLW tanks, with grout that satisfies the fresh and cured grout requirements [1] under simulated field conditions. The overall task was divided into two phases. The first phase was the development of a grout formulation that satisfies the processing requirements for filling the HLW tank cooling coils [5]. The second phase of the task, which is documented in this report, was the filling of full scale cooling coils under simulated field conditions using the grout formulation developed in the first phase. SRS Type I tank cooling coil assembly design drawings and pressure drop calculations were provided by the Liquid Waste (LW) customer to be used as the basis for configuring the test assemblies. The current concept for closing tanks equipped with internal cooling coils is to pump grout into the coils to inhibit pathways for infiltrating water. Access to the cooling coil assemblies is through the existing supply/return manifold headers located on top of the Type I tanks. The objectives for the second phase of the testing, as stated in the Task Technical and Quality Assurance plan (TTQAP) [2], were to: (1) Perform a demonstration test to assess cooling coil grout performance in simulated field conditions, and (2) Measure relevant properties of samples prepared under simulated field conditions. SRNL led the actual work of designing, fabricating and filling two full-scale cooling coil assemblies which were performed at Clemson Engineering Technologies Laboratory (CETL) using the South Carolina University Research and Education Foundation (SCUREF) program. A statement of work (SOW) was issued to CETL [6] to perform this work.

  15. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-12-12

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  16. Synthesis of SrTiO3 for immobilization of simulated HLW by SHS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Strontium titanate synroc samples were synthesized by self-propagating high-temperature synthesis (SHS). Sr directly took part in the synthesis process. As a result, the loading content issue is basically resolved. The products were characterized by density, microhardness X-ray diffraction, and scanning electron microscopy (SEM/EDS). The leaching rate was measured by the method of PCT (product consistency test). The results indicate that the Sr2+-SrTiO3 compound is of high density, low leach rate and high stability and the synthesis process is feasible in technology and economy. It can be concluded that the strontium titanate synroc is a perfect material to immobilize HLW.

  17. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish for an integ...... be obtained by shining light from the backside of the workpiece. When there is no light from the backside, the front surface seems totally untouched. This was achieved by laser ablation with ultra-short pulses.......Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  18. DEVELOPING AN OPTIMIZED PROCESS STRATEGY FOR ACID CLEANING OF THE SAVANNAH RIVERSITE HLW TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E

    2006-12-04

    At the Savannah River Site (SRS), there remains approximately 35 million gallons of High Level Waste (HLW) that was mostly created from Purex and SRS H-Area Modified (HM) nuclear fuel cycles. The waste is contained in approximately forty-nine tanks fabricated from commercially available carbon steel. In order to minimize general corrosion, the waste is maintained as very-alkaline solution. The very-alkaline chemistry has caused hydrated metal oxides to precipitate and form a sludge heel. Over the years, the sludge waste has aged, with some forming a hardened crust. To aid in the removal of the sludge heels from select tanks for closure the use of oxalic acid to dissolve the sludge is being investigated. Developing an optimized process strategy based on laboratory analyses would be prohibitively costly. This research, therefore, demonstrates that a chemical equilibrium based software program can be used to develop an optimized process strategy for oxalic acid cleaning of the HLW tanks based on estimating resultant chemistries, minimizing resultant oxalates sent to the evaporator, and minimizing resultant solids sent to the Defense Waste Processing Facility (DWPF).

  19. Characterization of the Italian glasses and their interaction with clay

    Energy Technology Data Exchange (ETDEWEB)

    Cantale, C.; Castelli, S.; Donato, A.; Traverso, D.M.; Kaijun, L.

    1989-10-01

    The objective of this research is to select a borosilicate glass composition suitable for the solidification of the HLM stream coming from the treatment of all the high level wastes stored in Italy (MTR, CANDU and ELK RIVER) and to characterize it with reference to geological disposal. This research work is based on a pre-treatment of the waste, in order to concentrate the HLW fraction and to simplify the vitrification process by separating the greater part of the inert salts. After MCE waste pre-treatment, the resulting HLW streams are to be vitrified. Some glass compositions have been prepared and preliminary characterized. The glass named BAZ has been finally selected. The complete characterization of this glass is in progress. This paper presents the results of the physical-chemical and chemical characterizations with reference to the MCC-1 static leach test at 90 C and at a surface area to volume ratio of 10 m/sup minus 1/. Two leaching systems are being used: distilled water and synthetic interstitial claywater.

  20. Chemical Composition Measurements of LAWA44 Glass Samples

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-15

    The U.S. Department of Energy (DOE) Office of River Protection (ORP) has requested that the Savannah River National Laboratory (SRNL) provide expert evaluation and experimental work in support of the River Protection Project vitrification technology development. DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. The low-activity waste (LAW) fraction will be partitioned from the high-level waste (HLW). Both the LAW and HLW will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass while conforming to processing requirements and product quality regulations. DOE-ORP has requested that SRNL support the advancement of glass formulations and process control strategies in key technical areas, as defined in the Task Technical and Quality Assurance Plan (TTQAP). One of these areas is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, SRNL provides chemical analysis results for several samples of a simulated LAW glass, designated LAWA44, provided by Pacific Northwest National Laboratory (PNNL) as part of an ongoing development task. The objective of the PNNL task is to determine the durability of this glass using EPA Method 1313, which will include test participants at Vanderbilt University and the University of Sheffield. A report on the compositions of similar glasses (referred to as the EPA-series glasses) was issued in March 2016.

  1. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  2. Plutonium immobilization plant using glass in existing facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    DiSabatino, A., LLNL

    1998-06-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a glass immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors.

  3. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  4. High-level waste borosilicate glass a compendium of corrosion characteristics. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)

    1994-03-01

    Current plans call for the United States Department of Energy (DOE) to start up facilities for vitrification of high-level radioactive waste (HLW) stored in tanks at the Savannah River Site, Aiken, South Carolina, in 1995; West Valley Demonstration Project, West Valley, New York, in 1996; and at the Hanford Site, Richland, Washington, after the year 2000. The product from these facilities will be canistered HLW borosilicate glass, which will be stored, transported, and eventually disposed of in a geologic repository. The behavior of this glass waste product, under the range of likely service conditions, is the subject of considerable scientific and public interest. Over the past few decades, a large body of scientific information on borosilicate waste glass has been generated worldwide. The intent of this document is to consolidate information pertaining to our current understanding of waste glass corrosion behavior and radionuclide release. The objective, scope, and organization of the document are discussed in Section 1.1, and an overview of borosilicate glass corrosion is provided in Section 1.2. The history of glass as a waste form and the international experience with waste glass are summarized in Sections 1.3 and 1.4, respectively.

  5. Characterization of the Italian glasses and their interaction with clay Task 3 Characterization of radioactive waste forms a series of final reports (1985-89) No 23

    Energy Technology Data Exchange (ETDEWEB)

    Cantale, C.; Castelli, S.; Donato, A.; Traverso, D.M. [ENEA, Casaccia (IT)

    1991-12-31

    The objective of this research work was the selection of a borosilicate glass composition suitable for the solidification of the HLW stream coming from the treatment of all the high-level wastes stored in Italy (MTR, Candu and Elk River) and the characterization of this glass with reference to the geological disposal. This research work was part of an Italian research project named `Ulisse project`, whose goal was the development and the demonstration of an integrated treatment of all the HLW stored in Italy, after their mixing (resulting waste: MCE waste). The main concept is to carry out a pre-treatment of the wastes, in order to concentrate the HLW fraction and to simplify the vitrification process, separating the most part of the inert salts. The research work concerning the separation process and pilot plant demonstration of the pre-treatment process were carried out in the framework of the CEC R and D programme (Contract No Fl1W-0011-lS). The laboratory studies concerning the vitrification of the resulting HLW streams and the vitrification demonstration in the Italian full-scale, inactive IVET plant complete the `Ulisse project`. Some glass compositions were prepared and preliminarily characterized. The glass named BAZ was finally selected. A complete characterization of this glass was carried out in order to evaluate its mechanical, physical and physico-chemical properties. The chemical durability was evaluated by the MCC-1 static leach test at 90{sup 0}C, using three different leachants and two surface-area to leachant-volume ratios. The same characterization programme was applied to the BAZ glass produced in the IVET plant during the plant vitrification demonstration programme. A comparison between the two glasses and a critical evaluation of their performances with respect to other nuclear waste glasses` durability was performed. 25 refs.; 46 figs.; 20 tabs.

  6. The incorporation of P, S, Cr, F, Cl, I, Mn, Ti, U, and Bi into simulated nuclear waste glasses: Literature study

    Energy Technology Data Exchange (ETDEWEB)

    Langowski, M.H.

    1996-02-01

    Waste currently stored on the Hanford Reservation in underground tanks will be into High Level Waste (HLW) and Low Level Waste (LLW). The HLW melter will high-level and transuranic wastes to a vitrified form for disposal in a geological repository. The LLW melter will vitrify the low-level waste which is mainly a sodium solution. Characterization of the tank wastes is still in progress, and the pretreatment processes are still under development Apart from tank-to-tank variations, the feed delivered to the HLW melter will be subject to process control variability which consists of blending and pretreating the waste. The challenge is then to develop glass formulation models which can produce durable and processable glass compositions for all potential vitrification feed compositions and processing conditions. The work under HLW glass formulation is to study and model glass and melt pro functions of glass composition and temperature. The properties of interest include viscosity, electrical conductivity, liquidus temperature, crystallization, immiscibility durability. It is these properties that determine the glass processability and ac waste glass. Apart from composition, some properties, such as viscosity are affected by temperature. The processing temperature may vary from 1050{degrees}C to 1550{degrees}C dependent upon the melter type. The glass will also experience a temperature profile upon cooling. The purpose of this letter report is to assess the expected vitrification feed compositions for critical components with the greatest potential impact on waste loading for double shell tank (DST) and single shell tank (SST) wastes. The basis for critical component selection is identified along with the planned approach for evaluation. The proposed experimental work is a crucial part of model development and verification.

  7. Solid oxide fuel cell having a glass composite seal

    Science.gov (United States)

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  8. Retention of Halogens in Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  9. Characteristics of borosilicate waste glass form for high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Chun, Kwan Sik; Choi, Jong Won; Kang, Chul Hyung

    2001-03-01

    Basic data, required for the design and the performance assessment of a repository of HLW, suchas the chemical composition and the characteristics of the borosilicate waste glass have been identified according to the burn-ups of spent PWR fuels. The diemnsion of waste canister is 430mm in diameter and 1135mm in length, and the canister should hold less than 2kwatts of heat from their decay of radionuclides contained in the HLW. Based on the reprocessing of 5 years-cooled spent fuel, one canister could hold about 11.5wt.% and 10.8wt.% of oxidized HLW corresponding to their burn-ups of 45,000MWD/MTU and 55,000MWD/MTU, respectively. These waste forms have been recommanded as the reference waste forms of HLW. The characteristics of these wastes as a function of decay time been evaluated. However, after a specific waste form and a specific site for the disposal would be selected, the characteristics of the waste should be reevaluated under the consideration of solidification period, loaded waste, storage condition and duration, site circumstances for the repository system and its performance assessment.

  10. Development of Crystal-Tolerant High-Level Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Vienna, John D.; Schaible, Micah J.; Rodriguez, Carmen P.; Crum, Jarrod V.; Arrigoni, Alyssa L.; Tate, Rachel M.

    2010-12-17

    Twenty five glasses were formulated. They were batched from HLW AZ-101 simulant or raw chemicals and melted and tested with a series of tests to elucidate the effect of spinel-forming components (Ni, Fe, Cr, Mn, and Zn), Al, and noble metals (Rh2O3 and RuO2) on the accumulation rate of spinel crystals in the glass discharge riser of the high-level waste (HLW) melter. In addition, the processing properties of glasses, such as the viscosity and TL, were measured as a function of temperature and composition. Furthermore, the settling of spinel crystals in transparent low-viscosity fluids was studied at room temperature to access the shape factor and hindered settling coefficient of spinel crystals in the Stokes equation. The experimental results suggest that Ni is the most troublesome component of all the studied spinel-forming components producing settling layers of up to 10.5 mm in just 20 days in Ni-rich glasses if noble metals or a higher concentration of Fe was not introduced in the glass. The layer of this thickness can potentially plug the bottom of the riser, preventing glass from being discharged from the melter. The noble metals, Fe, and Al were the components that significantly slowed down or stopped the accumulation of spinel at the bottom. Particles of Rh2O3 and RuO2, hematite and nepheline, acted as nucleation sites significantly increasing the number of crystals and therefore decreasing the average crystal size. The settling rate of ≤10-μm crystal size around the settling velocity of crystals was too low to produce thick layers. The experimental data for the thickness of settled layers in the glasses prepared from AZ-101 simulant were used to build a linear empirical model that can predict crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass. The developed model predicts the thicknesses of accumulated layers quite well, R2 = 0.985, and can be become an efficient tool for the formulation

  11. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF BUBBLER CONFIGURATIONS USING HLW AZ-101 SIMULANTS VSL-04R4800-4 REV 0 10/5/04

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; LUTZE W; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on the results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was

  12. Database development of chemical thermodynamics of protactinium for performance assessment of HLW geological disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Shibutani, Tomoki; Shibutani, Sanae; Yui, Mikazu [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-03-01

    In the performance analysis of geological disposal system of high-level radioactive waste (HLW), solubilities of radioactive elements are estimated by thermodynamic calculation. The reliable thermodynamic database (TDB) is needed for solubility estimation. In this report, thermodynamic data for protactinium solid and aqueous species for performance assessment were selected. For the refinement of previous PNC in house thermodynamic database (PNC-TDB), existing literatures data were surveyed and reliable thermodynamic data were selected under consideration of the scientific defensibility and the consistency with the whole PNC-TDB. The estimated solubility using refined PNC-TDB was higher than measured value. We have confirmed the refined data-set of Pa to be conservative for solubility estimation of performance assessment. (author)

  13. Melter Glass Removal and Dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, BS

    2000-10-31

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  14. Drop Calculations of HLW Canister and Pu Can-in-Canister

    Energy Technology Data Exchange (ETDEWEB)

    Sreten Mastilovic

    2001-07-31

    The objective of this calculation is to determine the structural response of the standard high-level waste (HLW) canister and the canister containing the cans of immobilized plutonium (Pu) (''can-in-canister'' [CIC] throughout this document) subjected to drop DBEs (design basis events) during the handling operation. The evaluated DBE in the former case is 7-m (23-ft) vertical (flat-bottom) drop. In the latter case, two 2-ft (0.61-m) corner (oblique) drops are evaluated in addition to the 7-m vertical drop. These Pu CIC calculations are performed at three different temperatures: room temperature (RT) (20 C ), T = 200 F = 93.3 C , and T = 400 F = 204 C ; in addition to these the calculation characterized by the highest maximum stress intensity is performed at T = 750 F = 399 C as well. The scope of the HLW canister calculation is limited to reporting the calculation results in terms of: stress intensity and effective plastic strain in the canister, directional residual strains at the canister outer surface, and change of canister dimensions. The scope of Pu CIC calculation is limited to reporting the calculation results in terms of stress intensity, and effective plastic strain in the canister. The information provided by the sketches from Reference 26 (Attachments 5.3,5.5,5.8, and 5.9) is that of the potential CIC design considered in this calculation, and all obtained results are valid for this design only. This calculation is associated with the Plutonium Immobilization Project and is performed by the Waste Package Design Section in accordance with Reference 24. It should be noted that the 9-m vertical drop DBE, included in Reference 24, is not included in the objective of this calculation since it did not become a waste acceptance requirement. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document.

  15. Crystal Settling, Redox, and High Temperature Properties of ORP HLW and LAW Glasses, VSL-09R1510-1

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [The Catholic Univ. of America, Washington D. C., (United States); Gan, H. [The Catholic Univ. of America, Washington D. C., (United States); Viragh, C. [The Catholic Univ. of America, Washington D. C., (United States); Mckeown, D. A. [The Catholic Univ. of America, Washington D. C., (United States); Muller, I. S. [The Catholic Univ. of America, Washington D. C., (United States); Cecil, R. [The Catholic Univ. of America, Washington D. C., (United States); Kot, W. K. [The Catholic Univ. of America, Washington D. C., (United States); Joseph, I. [EnergySolutions, Laurel, MD (United States); Wang, C. [The Catholic Univ. of America, Washington D. C., (United States); Pegg, I. L. [The Catholic Univ. of America, Washington D. C., (United States); Chaudhuri, M. [The Catholic Univ. of America, Washington D. C., (United States); Zhao, W. [The Catholic Univ. of America, Washington D. C., (United States); Feng, Z. [The Catholic Univ. of America, Washington D. C., (United States)

    2015-06-08

    This report describes the results of testing specified by the Test Plans (VSL-08T1520-1 Rev 0 and VSL-08T1510-1 Rev 0). The work was performed in compliance with the quality assurance requirements specified in the Test Plans. Results required by the Test Plans are reported. The test results and this report have been reviewed for correctness, technical adequacy, completeness, and accuracy.

  16. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Cory L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, Carol M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-31

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of data representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.

  17. Glass microsphere lubrication

    Science.gov (United States)

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the

  18. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    Energy Technology Data Exchange (ETDEWEB)

    DE Smith; GF Piepel; GW Veazey; JD Vienna; ML Elliott; RK Nakaoka; RP Thimpke

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).

  19. Aluminum thin film enhanced IR nanosecond laser-induced frontside etching of transparent materials

    Science.gov (United States)

    Nieto, Daniel; Cambronero, Ferran; Flores-Arias, María Teresa; Farid, Nazar; O'Connor, Gerard M.

    2017-01-01

    Laser processing of glass is of significant commercial interest for microfabrication of precision optical engineering devices. In this work, a laser ablation enhancement mechanism for microstructuring of glass materials is presented. The method consists of depositing a thin film of aluminum on the front surface of the glass material to be etched. The laser beam modifies the glass material by being incident on this front-side. The influence of ablation fluence in the nanosecond regime, in combination with the deposition of the aluminum layer of various thicknesses, is investigated by determining the ablation threshold for different glass materials including soda-lime, borosilicate, fused silica and sapphire. Experiments are performed using single laser pulse per shot in an air environment. The best enhancement in terms of threshold fluence reduction is obtained for a 16 nm thick aluminum layer where a reduction of two orders of magnitude in the ablation threshold fluence is observed for all the glass samples investigated in this work.

  20. Report - Melter Testing of New High Bismuth HLW Formulations VSL-13R2770-1

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The primary objective of the work described was to test two glasses formulated for a high bismuth waste stream on the DM100 melter system. Testing was designed to determine processing characteristics and production rates, assess the tendency for foaming, and confirm glass properties. The glass compositions tested were previously developed to maintain high waste loadings and processing rates while suppressing the foaming observed in previous tests

  1. FINAL REPORT MELTER TESTS WITH AZ-101 HLW SIMULANT USING A DURAMELTER 100 VITRIFICATION SYSTEM VSL-01R10N0-1 REV 1 2/25/02

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL

    2011-12-29

    This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m{sup 2}/d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of

  2. FINAL REPORT MELTER TESTS WITH AZ-101 HLW SIMULANT USING A DURAMELTER 100 VITRIFICATION SYSTEM VSL-01R10N0-1 REV 1 2/25/02

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL

    2011-12-29

    This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m{sup 2}/d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of

  3. INORGANIC PHOSPHORS IN GLASS BASED ON LEAD SILICATE GLASSES

    Directory of Open Access Journals (Sweden)

    V. A. Aseev

    2014-09-01

    Full Text Available We created and synthesized luminescent composite of the "phosphor in glass" type, based on the lead-silicate matrix and fine-dispersed powder of cerium-activated yttrium-aluminum garnet crystal. Lead-silicate system (40SiO2- 20PbO-(40-x PbF2-xAlF3, x = 0-25 was chosen as the glassy matrix. Initial glass was reduced to powder (frit for "phosphor in glass" composite with a particle size about 50 µm. Glass frit and powder of commercial YAG:Ce3+ phosphor were mixed in a ratio of 30 to 70 (wt %. Then this composite was pressed in a tablet and sintered on a quartz substrate at 823 К for 30 minutes. Thus, the plane parallel sheet for composite of the "phosphor in glass" was obtained with a diameter equal to 10 mm. For the purpose to reduce the loss of light in the presence of dispersion at a glass-phosphor boundary, optimization of glass mixture was done by adjusting the refractive index. X-ray phase and spectral-luminescent analysis of the derived composite were done. The results of these studies showed that there was no degradation of YAG: Ce powder during sintering. Dependence of luminescence intensity from temperature in the range from room temperature to 473 К was studied. It was shown, that with the phosphor in glass usage thermal quenching of luminescence was reduced in comparison with the silicone. The model of white LED was created with the "phosphor in glass" composite based on lead-silicate glasses with low temperature of vitrifying. The derived LED emits white light with a color temperature of 4370 K, and the luminous efficiency is equal to 58 lm/W. The developed luminescent composite based on the lead-silicate matrix can be used for the production of high-power white light LED.

  4. HLW Feed Delivery AZ101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements [Initial Release at Rev 2

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, G.P.

    2000-02-28

    The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC.

  5. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  6. Design and validation of the THMC China-Mock-Up test on buffer material for HLW disposal

    Institute of Scientific and Technical Information of China (English)

    Yuemiao Liu; Like Ma; Dan Ke; Shengfei Cao; Jingli Xie; Xingguang Zhao; Liang Chen; Panpan Zhang

    2014-01-01

    According to the preliminary concept of the high-level radioactive waste (HLW) repository in China, a large-scale mock-up facility, named China-Mock-Up was constructed in the laboratory of Beijing Research Institute of Uranium Geology (BRIUG). A heater, which simulates a container of radioactive waste, is placed inside the compacted Gaomiaozi (GMZ)-Na-bentonite blocks and pellets. Water inflow through the barrier from its outer surface is used to simulate the intake of groundwater. The numbers of water injection pipes, injection pressure and the insulation layer were determined based on the nu-merical modeling simulations. The current experimental data of the facility are herein analyzed. The experiment is intended to evaluate the thermo-hydro-mechano-chemical (THMC) processes occurring in the compacted bentonite-buffer during the early stage of HLW disposal and to provide a reliable database for numerical modeling and further investigation of engineered barrier system (EBS), and the design of HLW repository.

  7. Development of geological disposal system; localization of element cost data and cost evaluation on the HLW repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Sik; Kim, Kil Jung; Yang, Young Jin; Kim, Sung Chun [KOPEC, Taejeon (Korea)

    2002-03-01

    To estimate Total Life Cycle Cost (TSLCC) for Korea HLW Repository through localization of element cost data, we review and re-organize each basic element cost data for reference repository system, localize various element cost and finally estimate TSLCC considering economic parameters. As results of the study, TSLCC is estimated as 17,167,689 million won, which includes costs for site preparation, surface facilities, underground facilities and management/integration. Since HLW repository Project is an early stage of pre-conceptual design at present, the information of design and project information are not enough to perform cost estimate and cost localization for the Project. However, project cost structure is re-organized based on the local condition and Total System Life Cycle Cost is estimated using the previous cost data gathered from construction experience of the local nuclear power plant. Project results can be used as basic reference data to assume total construction cost for the local HLW repository and should be revised to more reliable cost data with incorporating detail project design information into the cost estimate in a future. 20 refs. (Author)

  8. Design and validation of the THMC China-Mock-Up test on buffer material for HLW disposal

    Directory of Open Access Journals (Sweden)

    Yuemiao Liu

    2014-04-01

    Full Text Available According to the preliminary concept of the high-level radioactive waste (HLW repository in China, a large-scale mock-up facility, named China-Mock-Up was constructed in the laboratory of Beijing Research Institute of Uranium Geology (BRIUG. A heater, which simulates a container of radioactive waste, is placed inside the compacted Gaomiaozi (GMZ-Na-bentonite blocks and pellets. Water inflow through the barrier from its outer surface is used to simulate the intake of groundwater. The numbers of water injection pipes, injection pressure and the insulation layer were determined based on the numerical modeling simulations. The current experimental data of the facility are herein analyzed. The experiment is intended to evaluate the thermo-hydro-mechano-chemical (THMC processes occurring in the compacted bentonite-buffer during the early stage of HLW disposal and to provide a reliable database for numerical modeling and further investigation of engineered barrier system (EBS, and the design of HLW repository.

  9. Biosphere Modeling for the Dose Assessment of a HLW Repository: Development of ACBIO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung

    2006-01-15

    For the purpose of evaluating a dose rate to an individual due to a long-term release of nuclides from a HLW repository, a biosphere assessment model and an implemented code, ACBIO, based on the BIOMASS methodology have been developed by utilizing AMBER, a general compartment modeling tool. To demonstrate its practicability and usability as well as to observe the sensitivity of the compartment scheme, the concentration, the activity in the compartments as well as the annual flux between the compartments at their peak values, were calculated and investigated. For each case when changing the structure of the compartments and GBIs as well as varying selected input Kd values, all of which seem very important among the others, the dose rate per nuclide release rate is calculated separately and analyzed. From the maximum dose rates, the flux to dose conversion factors for each nuclide were derived, which are used for converting the nuclide release rate appearing from the geosphere through various GBIs to dose rates (Sv/y) for an individual in a critical group. It has also been observed that the compartment scheme, the identification of a possible exposure group and the GBIs could all be highly sensitive to the final consequences in a biosphere modeling.

  10. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  11. Chemical analysis of simulated high level waste glasses to support stage III sulfate solubility modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-17

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been a limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.

  12. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  13. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  14. IR Laser Plasma Interaction with Glass

    Directory of Open Access Journals (Sweden)

    Rabia Qindeel

    2007-01-01

    Full Text Available The interaction of laser plasma with respect to glass surface is reported in this paper. A Q-switched Nd:YAG laser was used as ablation source. Glass material is utilized as target specimen. Aluminum plate is used as a rotating substrate. The dynamic expansion of the plasma was visualized by using CCD video camera and permanently recorded via image processing system. The exposed glass material was examined under photomicroscope and scanning electron microscope (SEM. The optical radiation from the plasma was observed by using spectrum analyzer. The results obtained show that the plasma is expanded linearly with laser energy. At low level energy symmetrical damage was found. Elongated hole is formed at high level energy. The progressive exposure on glass results in drilling process. The hole diameter is expanded non-linearly while the depth is increased linearly. The glass clusters were uniformly deposited on the aluminum substrate. The size of the glass clusters are in the range of nano and micro meter. The glass-plasma emitted radiation with majority lines of 390 and 450 nm.

  15. Aspects of aluminum toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, C.D.; Savory, J.; Wills, M.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  16. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  17. Engineering for Operation of a Future Belgian Deep Geological Repository for ILW and HLW - 12379

    Energy Technology Data Exchange (ETDEWEB)

    Haverkamp, B.; Biurrun, E.; Nieder-Westermann, G.H. [DBE TECHNOLOGY GmbH, Peine (Germany); Van Humbeeck, H. [ONDRAF/NIRAS, Brussels (Belgium); Van Cotthem, Alain [Tractebel Engineering SA, Brussels (Belgium)

    2012-07-01

    In Belgium, an advanced conceptual design is being elaborated for deep geologic disposal of high level waste (HLW) and for low and intermediate level waste (LILW) not amenable for surface disposal. The concept is based on a shielded steel and concrete container for disposal of HLW, i.e., the Super-container. LILW will be disposed of in separately designed concrete caissons. The reference host rock is the Boom Clay, a poorly indurated clay formation in northeastern Belgium. Investigations into the potential host rock are conducted at the HADES underground research laboratory in Mol, Belgium. In 2009 the Belgian Agency for Management of Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) initiated a four year research project aimed at confirming the fundamental feasibility of building and operating a repository. The goal of the program is to demonstrate at a detailed conceptual level that the proposed geologic disposal system can be safely constructed, operated, and progressively closed. Part of the broader research efforts being conducted includes evaluations optimization of the waste transportation shaft, subsurface transportation system, ventilation system, and evaluation of backfilling and sealing concepts for the repository design. The potential for implementation of a waste retrieval strategy encompassing the first 100 years after emplacement is also considered. In the framework of a four year research program aimed at confirming the fundamental feasibility of building and operating a repository in poorly indurated clay design studies have been underway to optimize the waste transportation shaft, subsurface transportation system, and ventilation system. Additionally backfilling and sealing concepts proposed for the potential repository have been reviewed in conjunction with impacts related to the potential future inclusion of a retrievability requirement in governing regulations. The main engineering challenges in the Belgian repository concept are

  18. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  19. Is the Aluminum Hypothesis Dead?

    OpenAIRE

    Lidsky, Theodore I.

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  20. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  1. Is the Aluminum Hypothesis dead?

    Science.gov (United States)

    Lidsky, Theodore I

    2014-05-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust.

  2. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  3. Status of Progress Made Toward Safety Analysis and Technical Site Evaluations for DOE Managed HLW and SNF.

    Energy Technology Data Exchange (ETDEWEB)

    Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gross, Michael B [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frederick, Jennifer M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mariner, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories). This report describes specific activities in FY 2016 associated with the development of a Defense Waste Repository (DWR)a for the permanent disposal of a portion of the HLW and SNF derived from national defense and research and development (R&D) activities of the DOE.

  4. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  5. Thermo-Mechanical Behavior of Bentonite Buffer in a Deep Geological HLW Repository

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Cho, W. J.; Lee, J. O

    2008-08-15

    This work aims to investigate the influence of bentonite buffer and backfill, which will role as important engineered barriers, on the thermo-mechanical behaviors of a disposal system at a deep underground HLW repository. It will contribute to the disposal system development and performance assessment of the system. In this study, three-dimensional computer simulations were carried out with a consideration of the thermal and mechanical characteristics of the buffer and backfill for the investigation of the behavior of buffer and backfill under different disposal conditions. The understanding of the near field response to the variation of buffer and backfill properties will contribute to the development of an adequate buffer and backfill design in disposal conditions as well as the selection of a disposal site. The following conclusions could be drawn from the three-dimensional thermo-mechanical coupling analysis for investigating the possible influence of the bentonite buffer on the thermo-mechanical behavior around an underground repository, which is located at several hundred meters deep underground. o The bentonite swelling pressure can influence on the mechanical behavior of canister. Further detailed modeling is required in the future. o It is required to consider the water content and density of bentonite as important design parameters, because it was found that those influence the thermo-mechanical behavior of near field significantly. o A horizontal deposition hole and multi-level repository can results different maximum temperatures, stress concentration, and the required time for the maximum temperatures of canister, buffer, and rock compared to those of vertical deposition hole and single level repository. o Even though, the same laboratory results were used for driving the parameters for the plastic models used in the modeling, the mechanical behaviors were different. It is, therefore, required to use adequate plastic models for buffer and backfill

  6. Clinical biochemistry of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  7. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  8. Nuclear quadrupole resonance of boron in borate glasses

    Science.gov (United States)

    Gravina, Samuel J.; Bray, Phillip J.

    A continuous wave nuclear quadrupole resonance spectrometer that has a high sensitivity even at low frequencies has been built. Boron and aluminum NQR has been detected in the region 200 kHz to 1.4 MHz. For the first time, boron NQR has been detected in a glass. The NQR spectrum of pure B 20 3 glass is consistent with 85 ± 2% of the boron atoms belonging to boroxol rings. In sodium borate glasses, the number of borons in boroxol rings decreases with increasing sodium content, until when sodium oxide comprises 20 mol% of the glass less than 2% of the borons are in boroxol rings.

  9. Aluminum nitride for heatspreading in RF IC's

    Science.gov (United States)

    La Spina, L.; Iborra, E.; Schellevis, H.; Clement, M.; Olivares, J.; Nanver, L. K.

    2008-09-01

    To reduce the electrothermal instabilities in silicon-on-glass high-frequency bipolar devices, the integration of thin-film aluminum nitride as a heatspreader is studied. The AlN is deposited by reactive sputtering and this material is shown to fulfill all the requirements for actively draining heat from RF IC's, i.e., it has good process compatibility, sufficiently high thermal conductivity and good electrical isolation also at high frequencies. The residual stress and the piezoelectric character of the material, both of which can be detrimental for the present application, are minimized by a suitable choice of deposition conditions including variable biasing of the substrate in a multistep deposition cycle. Films of AlN as thick as 4 μm are successfully integrated in RF silicon-on-glass bipolar junction transistors that display a reduction of more than 70% in the value of the thermal resistance.

  10. Plutonium immobilization plant using glass in new facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    DiSabatino, A.

    1998-06-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a glass immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors.

  11. High-Level waste glass dissolution in simulated internal waste package environments

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V.; Pan, Y.M. [Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio (United States)

    2000-07-01

    The rate of radionuclide release as a result of leaching of high-level radioactive waste (HLW) glass is important to the performance of engineered barriers. The modified product consistency test (PCT), with regular leachant exchanges, was used to determine the leaching rate of simulated HLW glasses (West Valley Demonstration Project Reference 6 and Defense Waste Processing Facility Blend 1) in aqueous solutions of FeCl{sub 2} and FeCl{sub 3} at 90 EC. These conditions were selected to simulate an internal waste package (WP) environment containing steel corrosion products and oxidized by radiolysis. Substantially higher initial B and alkali release rates, approximately a factor of 50 to 70 times greater than those in deionized water, were measured in 0.25 M FeCl{sub 3} solutions. The initial leaching rate for B and alkali was found to be pH-dependent and decreased as the leachate pH was increased. While the leach rate for Si did not show any significant change in the pH range studied, the leach rate for Al showed a minimum. The minimum in the leach rate of Al occurred at different pH values. The study indicates that elements in the glass matrix are released incongruently. (authors)

  12. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  13. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  14. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  15. EVALUATION OF IMPURITY EXTREMES IN A PLUTONIUM-LOADED BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J; Kevin Fox, K; Charles Crawford, C; Ned Bibler, N; Elizabeth Hoffman, E; Tommy Edwards, T

    2007-11-12

    A vitrification technology utilizing a lanthanide borosilicate (LaBS) glass appears to be a viable option for the disposition of excess weapons-useable plutonium that is not suitable for processing into mixed oxide (MOX) fuel. A significant effort to develop a glass formulation and vitrification process to immobilize plutonium was completed in the mid-1990s. The LaBS glass formulation was found to be capable of immobilizing in excess of 10 wt % Pu and to be tolerant of a range of impurities. To confirm the results of previous testing with surrogate Pu feeds containing impurities, four glass compositions were selected for fabrication with actual plutonium oxide and impurities. The four compositions represented extremes in impurity type and concentration. The homogeneity and durability of these four compositions were measured. The homogeneity of the glasses was evaluated using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). The XRD results indicated that the glasses were amorphous with no evidence of crystalline species in the glass. The SEM/EDS analyses did show the presence of some undissolved PuO{sub 2} material. The EDS spectra indicated that some of the PuO{sub 2} crystals also contained hafnium oxide. The SEM/EDS analyses showed that there were no heterogeneities in the glass due to the feed impurities. The durability of the glasses was measured using the Product Consistency Test (PCT). The PCT results indicated that the durability of Pu impurity glasses was comparable with Pu glasses without impurities and significantly more durable than the Environmental Assessment (EA) glass used as the benchmark for repository disposition of high-level waste (HLW) glasses.

  16. Fluorescent lighting with aluminum nitride phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  17. Thermal expansion behaviour of a versatile monazite phase with simulated HLW: A high temperature x-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Asuvathraman, R.; Kutty, K.V. Govindan, E-mail: kvg@igcar.gov.in

    2014-04-01

    Highlights: • The XPS characterization of the versatile monazite phase, Ce{sub 0.8}Ca{sub 0.2}PO{sub 4} (Ce{sub 0.6}{sup 3+}Ce{sub 0.2}{sup 4+}Ca{sub 0.2}{sup 2+}PO{sub 4}) confirms the mixed valence state of Ce. • The monoclinic lattice parameters all increase to nearly the same extent with temperature displaying the isotropic behaviour for the monazite phase. • The thermal expansion along the three crystallographic axes vary in the order b < a < c. - Abstract: Synthetic analogues of monazite are considered as an alternate ceramic host for the immobilization of high level waste (HLW) generated in the nuclear fuel cycle. The Ca doped CePO{sub 4} (Ce{sub 0.8}Ca{sub 0.2}PO{sub 4}) is expected to be a versatile monazite phase for this purpose due to the mixed valence state of cerium in this compound which assists in accommodating cations of any valence by initiating the internal redox reaction, viz., Ce{sup 3+} ⇌ Ce{sup 4+} + e{sup −}, as required by the incoming cation for charge neutrality of the lattice. The thermal expansion of this versatile monazite phase with 20 wt.% simulated HLW was measured using high temperature x-ray diffractometer (HTXRD) in the temperature range of 298–973 K and are reported here. The thermal expansion behaviour is found to be similar for CePO{sub 4}, Ce{sub 0.8}Ca{sub 0.2}PO{sub 4} and Ce{sub 0.8}Ca{sub 0.2}PO{sub 4} with 20 wt.% simulated HLW with the average volume expansion coefficient of 27.4, 26.5 and 24.1 × 10{sup −6} K{sup −1} respectively in the temperature range of 298–973 K.

  18. Transmission Properties of a New Glass Ceramic and Doped with Co2+ as Saturable Absorber for 1.54 μm Er Glass Short Pulse Laser

    Institute of Scientific and Technical Information of China (English)

    YU Chunlei; CHEN Li; FENG Suya; HE Dongbing; WANG Meng; HU Lili

    2012-01-01

    The preparation and characteristics of a new transparent glass ceramic were described.Crystal phase particles with nanometer size were successfully precipitated in glass matrix,which was confirmed to be one of indium aluminum zinc oxide compounds (InxAlyZnzO).The presence of aluminum (Al) and indium (In) impurities in the zinc oxides (ZnO) crystal lattice leads to some changes of the carrier concentration in the material and then promote the sharply changes of transmission spectra in IR range wavelength.And subsequently,the IR cut-off edge blue shifted from 5.5 μm in base glass to 3 μm in transparent glass ceramic sample.Furthermore,passive Q switched 1.54 μm Er glass laser pulses with pulse energy of 10 mJ and pulse width of 800 ns were successfully obtained by using the cobalt doped transparent glass ceramic as a saturable absorber.

  19. Aluminum, parathyroid hormone, and osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  20. Thermal deformations of a glass spherical satellite

    Science.gov (United States)

    Vasiliev, V. P.; Nenadovich, V. D.; Murashkin, V. V.; Sokolov, A. L.

    2016-09-01

    The effect of the kind of the reflecting coating of a glass spherical satellite on thermal deformations caused by the solar irradiation is considered. Two types of coating deposited on one of the hemispheres are considered: aluminum with a protective layer of bakelite varnish and interference dielectric coating for two orientations of the satellite orbit. Structures of a multilayer dielectric coating and technologies of its deposition are described.

  1. Thermo-hydro-mechanical processes in the nearfield around a HLW repository in argillaceous formations. Vol. I. Laboratory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang; Czaikowski, Oliver; Rothfuchs, Tilmann; Wieczorek, Klaus

    2013-06-15

    All over the world, clay formations are being investigated as host medium for geologic disposal of radioactive waste because of their favourable properties, such as very low hydraulic conductivity against fluid transport, good sorption capacity for retardation of radionuclides, and high potential of self-sealing of fractures. The construction of a repository, the disposal of heat-emitting high-level radioactive waste (HLW), the backfilling and sealing of the remaining voids, however, will inevitably induce mechanical (M), hydraulic (H), thermal (T) and chemical (C) disturbances to the host formation and the engineered barrier system (EBS) over very long periods of time during the operation and post-closure phases of the repository. The responses and resulting property changes of the clay host rock and engineered barriers are to be well understood, characterized, and predicted for assessing the long-term performance and safety of the repository.

  2. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  3. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L.

    1997-10-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. It is important to understand the mechanism by which alteration phases affect glass corrosion behavior and the glass dissolution rate to reliably predict whether or not similar effects will occur in a disposal environment and the impact of phase formation on the long-term performance of waste glass. While solid state transformation of a glass to thermodynamically more stable phases in kinetically prohibitive, contact by water provides an energetically favorable pathway for this transformation to occur by a dissolution-reprecipitation mechanism. The kinetics of the transformation depends on the dissolution kinetics of the glass and the precipitation kinetics of the alteration phases. The rates of these two processes are linked primarily through the solution activity of orthosilicic acid (and perhaps also that of an aluminum-bearing species).

  4. Structure-Property Relationships and the Mixed Network Former Effect in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    compositions by substituting Al2O3 for SiO2. We also investigate the various roles of sodium in the glasses including charge compensation of tetrahedral aluminum and boron atoms and formation of non-bridging oxygen. We find that mechanical properties (density, elastic moduli, and hardness), glass transition...

  5. Filament theory based WORM memory devices using aluminum/poly(9-vinylcarbazole)/aluminum structures.

    Science.gov (United States)

    Suresh, Aswin; Krishnakumar, Govind; Namboothiry, Manoj A G

    2014-07-14

    Spin coated poly(N-vinylcarbazole) (PVK) sandwiched between thermally evaporated aluminum (Al) electrodes on a glass substrate showed unipolar Write Once Read Many times (WORM) characteristics. The pristine devices were in the low resistance ON state exhibiting ohmic behavior and at a voltage near -2 V, they switched abruptly to the high resistance OFF state showing space charge limited current (SCLC). We suggest that the rupturing of metallic filaments due to Joule heating may explain the effect. The WORM devices exhibited an ON/OFF ratio of 10(8), a retention of 1000 s and an endurance of ∼10(6) cycles in both ON and OFF states.

  6. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  7. China’s Aluminum Resources

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The aluminum industry makes one of the keyindustries in China’s industrial and agriculturalmodernization and features a high degree ofrelevance with all industries.Of all the 124existing industries in China,113 use aluminum,representing an industrial relevance rate of91%.The consumption of aluminum is also ofhigh relevance with China’s GDP.

  8. Aluminum for Plasmonics

    Science.gov (United States)

    2014-01-01

    in plasmon-enhanced light harvesting,14 photocatalysis ,511 surface- enhanced spectroscopies,1216 optics-based sensing,1722 nonlinear optics,2326...optical response of Al nanoparticles has appeared inconsistent relative to calculated spectra, even forwell-characterized geometries. Some studies have...model- ing their optical response. These results pro- vide a method for estimating the metallic purity of aluminum nanoparticles directly from their

  9. Extended Development Work to Validate a HLW Calcine Waste Form via INL's Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    James A. King; Vince Maio

    2011-09-01

    To accomplish calcine treatment objectives, the Idaho Clean-up Project contractor, CWI, has chosen to immobilize the calcine in a glass-ceramic via the use of a Hot-Isostatic-Press (HIP); a treatment selection formally documented in a 2010 Record of Decision (ROD). Even though the HIP process may prove suitable for the calcine as specified in the ROD and validated in a number of past value engineering sessions, DOE is evaluating back-up treatment methods for the calcine as a result of the technical, schedule, and cost risk associated with the HIPing process. Consequently DOE HQ has requested DOE ID to make INL's bench-scale cold-crucible induction melter (CCIM) available for investigating its viability as a process alternate to calcine treatment. The waste form is the key component of immobilization of radioactive waste. Providing a solid, stable, and durable material that can be easily be stored is the rationale for immobilization of radioactive waste material in glass, ceramic, or glass-ceramics. Ceramic waste forms offer an alternative to traditional borosilicate glass waste forms. Ceramics can usually accommodate higher waste loadings than borosilicate glass, leading to smaller intermediate and long-term storage facilities. Many ceramic phases are known to possess superior chemical durability as compared to borosilicate glass. However, ceramics are generally multiphase systems containing many minor phase that make characterization and prediction of performance within a repository challenging. Additionally, the technologies employed in ceramic manufacture are typically more complex and expensive. Thus, many have proposed using glass-ceramics as compromise between in the more inexpensive, easier to characterize glass waste forms and the more durable ceramic waste forms. Glass-ceramics have several advantages over traditional borosilicate glasses as a waste form. Borosilicate glasses can inadvertently devitrify, leading to a less durable product that could

  10. Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materials

    Science.gov (United States)

    1988-09-15

    the strength and fatigue characteristics of ZBLAN (zirconium barium-lanthanum-aluminum-sodium fluoride) optical glass fiber obtained from British...Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materlals 12. PERSONAL AUTHOR(S) Carlo G. Pantano 13a. TYPE OF...fluorozirconate glasses . °. DTICS ELEC T E DEC 09 I 20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21.-A% RACT SECURITY CLASSIFICATION [BUNCLASSIFIED/UNLIMITED

  11. Corrosion Property of Iron Phosphate Simulated HLW Melts%铁磷模拟HLW熔体的腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    陈福义; Eelb.,ED

    2000-01-01

    The dynamic corrosion rate of six commercial refractories was measured in the iron phosphate melts containing simulated HLW and a borosilicate melt (DWPF) at temperatures from 1000 to 1300 C. A dense alumina and a chrome refractory had the lowest melt-line corrosion rate in the iron phosphate melts, whereas the corrosion rate for silica, zircon, and alumina-zirconia-silica(AZS) refractories was somewhat high. In general, the corrosion rate for the alumina and chrome refractory in the iron phosphate melts was no higher than their corrosion rate in the DWPF melt now used at the Savannah River Site. For the chrome refractory, the corrosion rate in three iron phosphate melts containing simulated HLW waste was under 0.1mm/day at the melt line. It is concluded that commercially manufactured, dense alumina or chrome refractories can be acceptable for melting many iron phosphate composition, even in wastes containing up to 16 weight percent soda%在铁磷模拟HLW熔体和硼硅酸盐熔体DWPF内测量了六种耐火材料的动态腐蚀速度,测量在1000~1300°C之间进行.在铁磷熔体中,致密氧化铝和氧化铬耐火材料有最低的熔线腐蚀速度,二氧化硅、锆英石和AZS耐火材料的腐蚀速度比较高.同时,氧化铝和氧化铬耐火材料在铁磷熔体中的腐蚀速度小于它们在硼硅酸盐熔体DWPF中的腐蚀速度.对氧化铬耐火材料来说,其在三种含有模拟HLW废料的铁磷熔体中的熔线腐蚀速度<0.1mm/day.可以认为商品制造的致密氧化铝和氧化铬耐火材料是可以用来熔化很多铁磷HLW废料的,甚至可以熔化含有16wt%氧化钠的HLW废料.

  12. Glass Fibers: Quo Vadis?

    Directory of Open Access Journals (Sweden)

    Edith Mäder

    2017-02-01

    Full Text Available Since the early 1930s, the process of melting glass and subsequently forming fibers, in particular discontinuous fiber glass or continuous glass filaments, evolved into commercial-scale manufacturing.[...

  13. A Study on the Thermal-Hydro-Mechanical Behaviors in the Engineered Barrier System of a HLW Repository: Engineering-scale Validation Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Owan; Kwon, S. K.; Park, J. H.; Cho, W. J.; Lee, Jae-Owan

    2007-06-15

    The T-H-M processes in the engineered barrier system are one of the major issues in the performance assessment of a HLW repository. In this study, it was conducted to design and construct the engineering-scale test facility which was a third-scale of the reference disposal system, and to investigate THM behavior of the engineered barrier system using the test facility. The computer modeling and interpreting methodology for THM behavior were also developed.

  14. Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles

    Science.gov (United States)

    Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.

    2010-01-01

    This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…

  15. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  16. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices.

  17. Engineering-scale test on the thermal-hydro-mechanical behaviors in the clay barrier of a HLW repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Owan [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of)], E-mail: jolee@kaeri.re.kr; Park, Jeong Hwa; Cho, Won Jin [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of)

    2008-08-15

    The thermo-hydro-mechanical (T-H-M) behaviors of a clay barrier are of importance from a performance and safety viewpoint of the engineered barrier system (EBS) for a high-level waste (HLW) repository. An engineering-scale test was carried out to investigate the T-H-M behaviors in the buffer of the Korean reference disposal system (KRS). The test started on May 31, 2005 and is still in operation. The experimental data obtained allowed a preliminary and qualitative interpretation of the T-H-M behavior in bentonite blocks. The temperature was higher as it became closer to the heater, while it became lower as it was farther away from the heater. The water content had a higher value in the part close to the hydration surface than that in the heater part. The relative humidity data suggested that a hydration of the bentonite blocks might occur by different drying-wetting processes, depending on their position. The total pressure was continuously increased by the evolution of the saturation front in the bentonite blocks and thereby the swelling pressure. There was also a contribution of the thermal expansion of the bentonite blocks near the heater and the capillary force in the dry bentonite blocks which the water did not reach from the hydration surface.

  18. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  19. Aluminum Carbothermic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry

  20. Laser assisted foaming of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kathuria, Y.P. [Laser X Co. Ltd., Aichi (Japan)

    2001-09-01

    Recently aluminum foams have evoked considerable interest as an alternative material owing to their wide range of applications ranging from microelectronics, through automobiles to aerospace industries. The manufacturing techniques and characterization methods for aluminum foams require further development to achieve effective and economical use of this material. In this communication the authors demonstrate the feasibility of unidirectional and localized expansion of the aluminum foam using the Nd-YAG/CO{sub 2} laser and powder metallurgy. (orig.)

  1. Neurofibrillary pathology and aluminum in Alzheimer's disease

    OpenAIRE

    Shin, R. W.; Lee, V.M.Y.; Trojanowski, J.Q.

    1995-01-01

    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  2. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  3. Ballistic Evaluation of 2060 Aluminum

    Science.gov (United States)

    2016-05-24

    experiments in Experimental Facilities (EFs) 108 and 106, as well as John Hogan of ARL/AMB, Hugh Walter of Bowhead Science and Technology, and David Handshoe...new aluminum (Al)-based monocoque armored-vehicle hulls such as those of the M2 Bradley Infantry Fighting Vehicles. Also in 2012 the Aluminum

  4. Optical properties and laser parameters of Nd 3+-doped flouride glasses

    Science.gov (United States)

    Tesar, A.; Campbell, J.; Weber, M.; Weinzapfel, C.; Lin, Y.; Meissner, H.; Toratani, H.

    1992-09-01

    Optical properties and laser parameters for 27 Nd 3+-doped flouride glasses are reported. Included are glasses based on zirconium flouride, hafnium flouride, and aluminum flouride and other glasses formed from mixtures of several heavy metal flourides. Measurements were made of the 4F 3/2→ 4I 11/2 flourescence spectra and the concentration-dependent flourescence decays. Judd-Ofelt intensity parameters were derived from absorption spectra and used to calculate the 4F 3/2→ 4I 11/2 stimulated emission cross section and the 4F 3/2 radiative lifetime. Cross sections showed only a small variation with glass composition, ranging from 2.2 to 3.4 pm 2; the radiative lifetimes ranged from 470 to 650 μs. Results for these flouride glasses are compared with values for BeF 2-based glasses and for oxide and oxyflouride laser glasses.

  5. Wettability of Aluminum on Alumina

    Science.gov (United States)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  6. Structure and Optical Properties of thin Porous Anodic Alumina Films Synthesized on a Glass Surface

    Science.gov (United States)

    Valeev, R. G.; Petukhov, D. I.; Kriventsov, V. V.

    The structure and luminescent properties of thin nanoporous aluminum oxide films obtained by anodization of aluminum films thermally deposited on glass have been investigated. The pore size and the interpore distance depend on the anodization voltage. For all studied samples the highest emission intensity obtained at the excitation wavelength equal to 330 nm. This behavior of luminescence curves caused by defect F+ luminescent centers (O- oxygen vacancies). The presence of porous alumina films on the glass surface increases the optical absorption in the visible light region. The oscillations on the spectra are caused by Fabry-Perot interference on the anodic alumina oxide film/glass interface. The suggested technique can be used for obtaining porous aluminum oxide films on other substrates, including Indium-Tin-Oxide, and can be applied in the technology of light-emitting devices and infrared-visible-ultraviolet detectors.

  7. Chemical Composiiton Analysis of INEEL Phase 3 Glasses: Task Technical and QA Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.

    2000-08-11

    For about four decades radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive waste from decontamination, laboratory activities and fuels storage activities have also been collected and stored as liquid. These liquid high-activity wastes (HAW) are collectively called Sodium Bearing Wastes (SBW). Currently about 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as a treatment option for SBW. The resulting glass can be sent to either the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as remote handled transuranic waste (RH-TRU) or to the federal geologic repository for final disposal. In addition to the SBW, roughly 4,000 m3 of calcined high-level wastes (HLW) are currently being stored at INEEL in stainless steel bin sets. These calcined HLW may also be vitrified, either with or without a dissolution and separation process, and sent to the federal geologic repository for final disposal.

  8. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  9. Experimental Test of Stainless Steel Wire Mesh and Aluminium Alloy With Glass Fiber Reinforcement Hybrid Composite

    OpenAIRE

    2015-01-01

    At present, composite materials are mostly used in aircraft structural components, because of their excellent properties like lightweight, high strength to weight ratio, high stiffness, and corrosion resistance and less expensive. In this experimental work, the mechanical properties of laminate, this is reinforced with stainless steel wire mesh, aluminum sheet metal, perforated aluminum sheet metal and glass fibers to be laminate and investigated. The stainless steel wire mesh and...

  10. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  11. Hualu Aluminum Will Construct Large Coal-Power-Aluminum Aluminum Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The reporter learned from relevant departments of Baiyin City that in order to further push forward industrial upgrading,fulfill expansion and consolidation of the enterprise,Gansu Hualu Aluminum Co.,Ltd(Hualu Aluminum)will implement Out-Of-City-Into-Park project,

  12. Baseline milestone HWVP-87-V110202F: Preliminary evaluation of noble metal behavior in the Hanford waste vitrification plant reference glass HW-39

    Energy Technology Data Exchange (ETDEWEB)

    Geldart, R.W.; Bates, S.O.; Jette, S.J.

    1996-03-01

    The precipitation and aggregation of ruthenium (Ru), rhodium (RLh) and palladium (Pd) in the Hanford Waste Vitrification Plant (HWVP) low chromium reference glass HLW-39 were investigated to determine if there is a potential for formation of a noble metal sludge in the HWVP ceramic melter. Significant noble metal accumulations on the floor of the melter will result in the electrical shorting of the electrodes and premature failure of the melter. The purpose of this study was to obtain preliminary information on the characteristics of noble metals in a simulated HWVP glass. Following a preliminary literature view to obtain information concerning the noble metals behavior, a number of variability studies were initiated. The effects of glass redox conditions, melt temperature, melting time and noble metal concentration on the phase characteristics of these noble metals were examined.

  13. Engineering Glass Passivation Layers -Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  14. Leaching of Si From Glass Immersed in Beishan Groundwater and De-ion Water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The leaching quantities of the elements from the high-level radioactive wastes (HLW) are very important parameters for the safety assessments of the repository of HLW. It is necessary to study the

  15. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  16. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  17. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    Science.gov (United States)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  18. Effect of Zn- and Ca-oxides on the structure and chemical durability of simulant alkali borosilicate glasses for immobilisation of UK high level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hua, E-mail: nzhangh@aliyun.com [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); China Institute of Atomic Energy, P.O. Box 275-93, 102413 Beijing (China); Corkhill, Claire L.; Heath, Paul G.; Hand, Russell J.; Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2015-07-15

    Highlights: • Spinel crystallization incorporates ZnO from base glass, displacing Mg and Ni. • Raman spectroscopy demonstrates significant impact on glass structure by addition of ZnO to base glass. • Addition of ZnO reduces glass dissolution rate at early time periods (up to 28 days). - Abstract: Compositional modification of United Kingdom high level nuclear waste (HLW) glasses was investigated with the aim of understanding the impact of adopting a ZnO/CaO modified base glass on the vitrified product phase assemblage, glass structure, processing characteristics and dissolution kinetics. Crystalline spinel phases were identified in the vitrified products derived from the Na{sub 2}O/Li{sub 2}O and the ZnO/CaO modified base glass compositions; the volume fraction of the spinel crystallites increased with increasing waste loading from 15 to 20 wt%. The spinel composition was influenced by the base glass components; in the vitrified product obtained with the ZnO/CaO modified base glass, the spinel phase contained a greater proportion of Zn, with a nominal composition of (Zn{sub 0.60}Ni{sub 0.20}Mg{sub 0.20})(Cr{sub 1.37}Fe{sub 0.63})O{sub 4}. The addition of ZnO and CaO to the base glass was also found to significantly alter the glass structure, with changes identified in both borate and silicate glass networks using Raman spectroscopy. In particular, these glasses were characterised by a significantly higher Q{sup 3} species, which we attribute to Si–O–Zn linkages; addition of ZnO and CaO to the glass composition therefore enhanced glass network polymerisation. The increase in network polymerisation, and the presence of spinel crystallites, were found to increase the glass viscosity of the ZnO/CaO modified base glass; however, the viscosities were within the accepted range for nuclear waste glass processing. The ZnO/CaO modified glass compositions were observed to be significantly more durable than the Na{sub 2}O/Li{sub 2}O base glass up to 28 days, due to

  19. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  20. Aluminum induced crystallization of strongly (111) oriented polycrystalline silicon thin film and nucleation analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and α-Si layers were deposited by magnetron sputtering respectively and annealed at 480°C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between γ-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of γ-Al2O3, which was formed at the early stage of annealing.

  1. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  2. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  3. Technical Status Report on the Effect of Phosphate and Aluminum on the Development of Amorphous Phase Separation in Sodium

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.D.

    1998-11-03

    The objective of the Tank Focus Area ''Optimize Waste Loading'' task is to enhance the definition of the acceptable processing window for high-level waste vitrification plants. One possible manner in which the acceptable processing window may be enhanced is by reducing the uncertainty of various compositional/property models through a specifically defined experimental plan. A reduction in model uncertainty can reduce limitations on current acceptance constraints and may allow for a larger processing or operational window. Enhanced composition/property model predictions coupled with an increased waste loading may decrease the processing time and waste glass disposal costs (i.e., overall lifecycle costs). One of the compositional/property models currently being evaluated by the Tanks Focus Area is related to the development of amorphous phase separation in multi-component borosilicate glasses.Described in this report is the current status for evaluating the effect of phosphorus and alumina on both simple sodium borosilicate and high-level waste glasses on the formation of amorphous phase separation. The goal of this subtask is to increase the understanding of the formation of phase separation by adding significant amounts (3-5 wt. percent) of phosphorus and alumina to well-characterized glasses. Additional scope includes evaluating the effects of thermal history on the formation of amorphous phase separation and durability of select glasses.The development of data, understanding, and quantitative description for composition and kinetic effects on the development of amorphous phase separation will continue in FY99. This effort will provide insight into the compositional and thermal effects on phase stability and will lead to a better understanding of the methods used to predict the development of amorphous phase separation in HLW glasses.

  4. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  5. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  6. CHEMICAL COMPOSITION AND PCT DATA FOR THE INITIAL SET OF HANFORD ENHANCED WASTE LOADING GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2014-06-02

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test results for 20 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation ranges of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. Two components of the study glasses, fluorine and silver, were not measured since each of these species would have required the use of an additional preparation method and their measured values were likely to be near or below analytical detection limits. Some of the glasses were difficult to prepare for chemical analysis. A sodium peroxide fusion dissolution method was successful in completely dissolving the glasses. Components present in the glasses in minor concentrations can be difficult to measure using this dissolution method due to dilution requirements. The use of a lithium metaborate preparation method for the minor components (planned for use since it is typically successful in digesting Defense Waste Processing Facility HLW glasses) resulted in an unacceptable amount of undissolved solids remaining in the sample solutions. An acid dissolution method was used instead, which provided more thorough dissolution of the glasses, although a small amount of undissolved material remained for some of the study glasses. The undissolved material was analyzed to determine those components of the glasses that did not fully dissolve. These components (e.g., calcium and chromium) were present in sufficient quantities to be reported from the measurements resulting from the sodium peroxide fusion preparation method, which did not leave undissolved material. Overall, the analyses resulted in sums of

  7. Formation of silica iron oxide glasses

    Science.gov (United States)

    Al-Bawab, Abeer F.

    The microemulsion-gel method was developed as an alternative process in the production of room temperature glasses. This method is based on the formation of a microemulsion, to which is added a metal alkoxide that undergoes hydrolysis and condensation to form an oxide network, which is dried into glass. The goal of this work is to understand the sol-gel process upon addition of hydrate metal salts. The thermal transitions of the silica containing ferric nitrate hydrate were examined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Using infrared (IR) spectroscopy and X-ray diffraction (XRD). The glasses with a less than 30 mol % iron nitrate were amorphous, while those higher concentration were crystalline. Based on XRD the thermal transitions did not alter the crystallinity. The IR spectra indicated the existence of Si-O-Fe bonds. Thermal analysis indicated similar transitions as exhibited by pure iron nitrate with minor modifications due to interactions with the silica. The reaction between tetraethoxysilane and chloral hydrate in ethanol was followed by NMR of the sp{29}Si nucleus at two different pHs. The sp{29}Si NMR spectra were similar to those reported for the reactions in alcohol between tetraethoxysilane and water of low pH, and for the reactions in the presence of inorganic hydrate. At pH 4, monomene silicon species were detected where at pH 2 the reaction was sufficiently rapid that multi hydroxy monomers were not detected as expected from the catalysts. The reaction proceeded without adding water. The reaction between aluminum chloride and methoxydimethyloctylsilane was investigated at room temperature using NMR and IR spectroscopy in addition to a molecular weight determination from the freezing point reduction in benzene. The structure as deduced from the experimental results was found to be a dimer containing two silicon atoms and two aluminum atoms of which the latter were tetrahedrally coordinated.

  8. Laser shocking of 2024 and 7075 aluminum alloys

    Science.gov (United States)

    Clauer, A. H.; Fairand, B. P.; Slater, J. E.

    1977-01-01

    The effect of laser generated stress waves on the microstructure, hardness, strength and stress corrosion resistance of 2024 and 7075 aluminum alloys was investigated. Pulsed CO2 and neodymium-glass lasers were used to determine the effect of wavelength and pulse duration on pressure generation and material property changes. No changes in material properties were observed with CO2 laser. The strength and hardness of 2024-T351 and the strength of 7075-T73 aluminum alloys were substantially improved by the stress wave environments generated with the neodymium-glass laser. The mechanical properties of 2024-T851 and 7075-T651 were unchanged by the laser treatment. The correlation of the laser shock data with published results of flyer plate experiments demonstrated that a threshold pressure needed to be exceeded before strengthening and hardening could occur. Peak pressures generated by the pulsed laser source were less than 7.0 GPa which was below the threshold pressure required to change the mechanical properties of 2024-T851 and 7075-T651. Corrosion studies indicated that laser shocking increased the resistance to local attack in 2024-T351 and 7075-T651.

  9. Development of new radiopaque glass fiber posts.

    Science.gov (United States)

    Furtos, Gabriel; Baldea, Bogdan; Silaghi-Dumitrescu, Laura

    2016-02-01

    The aim of this study was to analyze the radiopacity and filler content of three experimental glass fiber posts (EGFP) in comparison with other glass/carbon fibers and metal posts from the dental market. Three EGFP were obtained by pultrusion of glass fibers in a polymer matrix based on 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) monomers. Using intraoral sensor disks 27 posts, as well as mesiodistal sections of human molar and aluminum step wedges were radiographed for evaluation of radiopacity. The percentage compositions of fillers by weight and volume were investigated by combustion analysis. Two EGFP showed radiopacity higher than enamel. The commercial endodontic posts showed radiopacity as follows: higher than enamel, between enamel and dentin, and lower than dentin. The results showed statistically significant differences (p b 0.05)when evaluatedwith one-way ANOVA statistical analysis. According to combustion analyses, the filler content of the tested posts ranges between 58.84wt.% and 86.02wt.%. The filler content of the tested EGFP ranged between 68.91 wt.% and 79.04 wt.%. EGFP could be an alternative to commercial glass fiber posts. Futureglass fiber posts are recommended to present higher radiopacity than dentin and perhaps ideally similar to or higher than that of enamel, for improved clinical detection. The posts with a lower radiopacity than dentin should be considered insufficiently radiopaque. The radiopacity of some glass fiber posts is not greatly influenced by the amount of filler.

  10. Liquid Glass: A Facile Soft Replication Method for Structuring Glass.

    Science.gov (United States)

    Kotz, Frederik; Plewa, Klaus; Bauer, Werner; Schneider, Norbert; Keller, Nico; Nargang, Tobias; Helmer, Dorothea; Sachsenheimer, Kai; Schäfer, Michael; Worgull, Matthias; Greiner, Christian; Richter, Christiane; Rapp, Bastian E

    2016-06-01

    Liquid glass is a photocurable amorphous silica nanocomposite that can be structured using soft replication molds and turned into glass via thermal debinding and sintering. Simple polymer bonding techniques allow the fabrication of complex microsystems in glass like microfluidic chips. Liquid glass is a step toward prototyping of glass microstructures at low cost without requiring cleanroom facilities or hazardous chemicals.

  11. Advances on aluminum first-surface solar reflectors

    Science.gov (United States)

    Almanza, Rafael; Chen, Jiefeng; Mazari, Marcos

    1992-11-01

    Aluminum first surface mirrors have some advantages over second surface mirrors as has been discussed. At this stage of development some advantages are obtained: the first advantage was using two electron guns, one for aluminum evaporation permitting us to eliminate or to minimize the pinholes and the other to allow the evaporation of SiO without any mirror contamination as it was before due to the air when the chamber was opened to introduce the SiO, despite having only one e-gun in the laboratory. The second advantage was a better adherence between the aluminum film and the Si2O3, this last substance obtained with an oxidation of SiO with some oxygen inside the evaporation chamber (10-4 Torr). This improvement was due to the use of two e-guns that permit us not to open the chamber. These mirrors are actually under test in the environmental chamber for accelerated weather evaluations. One important aspect is the cleaning of the glass substrate. The chromic mixture cleaning is one of the most effective.

  12. Radiation effects in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ehrt, D.; Vogel, W. (Otto-Schott-Inst., Chemische Fakultaet, Friedrich-Schiller-Univ., Jena (Germany))

    1992-03-01

    Glass was produced by man about 4000 years ago. The scientific exploration of glass is very young and closely connected with Jena. Fraunhofer, Goethe, Dobereiner, Abbe, Zeiss and Schott are famous names on this field. Both crystals and glasses are solids. However, there are fundamental differences in their properties and behavior. Glass is a thermodynamically unstable state and has a defect structure compared to the crystal. Glass and its properties are subject to a variety of changes under the influence of high energy radiation. In general, effects extend from the reduction of specific ions to the collapse of the entire network. Ultraviolet and X-ray radiation effects on UV-transmitting glasses will be discussed. (orig.).

  13. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf;

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  14. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  15. An investigation of waste glass-based geopolymers supplemented with alumina

    Science.gov (United States)

    Christiansen, Mary U.

    An increased consideration of sustainability throughout society has resulted in a surge of research investigating sustainable alternatives to existing construction materials. A new binder system, called a geopolymer, is being investigated to supplement ordinary portland cement (OPC) concrete, which has come under scrutiny because of the CO2 emissions inherent in its production. Geopolymers are produced from the alkali activation of a powdered aluminosilicate source by an alkaline solution, which results in a dense three-dimensional matrix of tetrahedrally linked aluminosilicates. Geopolymers have shown great potential as a building construction material, offering similar mechanical and durability properties to OPC. Additionally, geopolymers have the added value of a considerably smaller carbon footprint than OPC. This research considered the compressive strength, microstructure and composition of geopolymers made from two types of waste glass with varying aluminum contents. Waste glass shows great potential for mainstream use in geopolymers due to its chemical and physical homogeneity as well as its high content of amorphous silica, which could eliminate the need for sodium silicate. However, the lack of aluminum is thought to negatively affect the mechanical performance and alkali stability of the geopolymer system. 39 Mortars were designed using various combinations of glass and metakaolin or fly ash to supplement the aluminum in the system. Mortar made from the high-Al glass (12% Al2O3) reached over 10,000 psi at six months. Mortar made from the low-Al glass (geopolymers. A moderate metakaolin replacement (25-38% by mass) was found to positively affect the compressive strength of mortars made with either type of glass. Though the microstructure of the mortar was quite indicative of mechanical performance, composition was also found to be important. The initial stoichiometry of the bulk mixture was maintained fairly closely, especially in mixtures made with fine

  16. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  17. Raman Spectra of Glasses

    Science.gov (United States)

    1986-11-30

    17), Raman spectra, plus a , . theoretical treatment of the data, f complex fluorozirconate 14 I anions in ZBLAN glasses and melts (16), and...based ZBLAN glasses ) 17. ICORS (International Conference on Raman Spectroscopy) Proceedings, London, England. Conferencf 5-9 Sep 88. (Molten silica...RESEARCH FINAL REPORT DTIC CONTRACT N00014-81-K-0501 &JELECTE 1 MAY 81 -- 30 NOV 86 EJJAN041989 V "RAMAN SPECTRA OF GLASSES " 0 During the five years of the

  18. Metal Halide Optical Glasses.

    Science.gov (United States)

    1988-01-01

    while some of the multi- component "modified" glasses (e.g., ZBLAN ) could easily be cast into pieces several mm thick. 23 The difference between the...energy. 7-1 0 Typical plots pf 24 of log Iqi versus ]/Tf for ZB-I, ZBL, ZBLA, ZBLAN and ZBLALi glasses are presented in Fig. 3. These plots are linear... ZBLAN glasses are more resistant to devitrification than the corresponding ZBLLi or ZBLN glasses , although this does not appear to be manifested in

  19. Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass

    Science.gov (United States)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.

  20. TIME-TEMPERATURE-TRANSFORMATION DIAGRAMS FOR THE SLUDGE BATCH 3 - FRIT 418 GLASS SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Billings, A; Tommy Edwards, T

    2009-03-03

    As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the phase stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (Tg) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The Tg of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP). These measurements were performed before DWPF start-up and the results were incorporated in Volume 7 of the Waste Form Qualification Report (WQR). Additional information exists for other projected compositions, but overall these compositions did not consider some of the processing scenarios now envisioned for DWPF to accelerate throughput. Changes in DWPF processing strategy have required this WAPS specification to be revisited to ensure that the resulting phases have been bounded. Frit 418 was primarily used to process HLW Sludge Batch 3 (SB3) at 38% waste loading (WL) through the DWPF. The Savannah River National Laboratory (SRNL) fabricated a cache of glass from reagent grade oxides to simulate the SB3-Frit 418 system at a 38 wt % WL for glass

  1. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated.

  2. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义

    2004-01-01

    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  3. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely... additive, expressed as niacin, shall appear on the label of the food additive container or on that of...

  4. Environmental Control over the Primary Aluminum Industry

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> To strengthen environmental control over theprimary aluminum industry,the State Environ-mental Protection Administration of China hasrecently issued a notice addressing the follow-ing points:Strengthening environmental control over theexisting primary aluminum companies

  5. OPTIMIZING AN ALUMINUM EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Mohammed Ali Hajeeh

    2013-01-01

    Full Text Available Minimizing the amount of scrap generated in an aluminum extrusion process. An optimizing model is constructed in order to select the best cutting patterns of aluminum logs and billets of various sizes and shapes. The model applied to real data obtained from an existing extrusion factory in Kuwait. Results from using the suggested model provided substantial reductions in the amount of scrap generated. Using sound mathematical approaches contribute significantly in reducing waste and savings when compared to the existing non scientific techniques.

  6. Summary of International Waste Management Programs (LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW)

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Harris R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blink, James A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Halsey, William G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sutton, Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-08-11

    The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. This Lessons Learned task is part of a multi-laboratory effort, with this LLNL report providing input to a Level 3 SNL milestone (System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW). The work package number is: FTLL11UF0328; the work package title is: Technical Bases / Lessons Learned; the milestone number is: M41UF032802; and the milestone title is: “LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW”. The system-wide integration effort will integrate all aspects of waste management and disposal, integrating the waste generators, interim storage, transportation, and ultimate disposal at a repository site. The review of international experience in these areas is required to support future studies that address all of these components in an integrated manner. Note that this report is a snapshot of nuclear power infrastructure and international waste management programs that is current as of August 2011, with one notable exception. No attempt has been made to discuss the currently evolving world-wide response to the tragic consequences of the earthquake and tsunami that devastated Japan on March 11, 2011, leaving more than 15,000 people dead and more than 8,000 people missing, and severely damaging the Fukushima Daiichi nuclear power complex. Continuing efforts in FY 2012 will update the data, and summarize it in an Excel spreadsheet for easy comparison and assist in the knowledge management of the study cases.

  7. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  8. Electrochemical Behavior of Aluminum in Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hui; ZHU; Li-yang; LIN; Ru-shan; TAN; Hong-bin; HE; Hui

    2013-01-01

    Aluminum is one of cladding materials for nuclear fuel,it is important to investigate the electrolytic dissolution of aluminum in nitric acid.The electrochemical impedance spectroscopy,polarization curve and cyclic voltammetry cure of anodic aluminum electrode in nitric acid under various conditions were collected(Fig.1).It turns out,under steady state,the thickness of the passivated film of aluminum

  9. Lanthanoides in Glass and Glass Ceramics

    Science.gov (United States)

    Meinhardt, Jürgen; Kilo, Martin; Somorowsky, Ferdinand; Hopp, Werner

    2017-03-01

    Many types of glass contain lanthanoides; among them, special glass for optical applications is the one with the highest content of lanthanoides. The precise determination of the lanthanoides' concentration is performed by inductively coupled plasma-optical emission spectrometry (ICP-OES). However, up to now, there are no established standard processes guaranteeing a uniform approach to the lanthanoide analysis. The knowledge of the lanthanoides' concentrations is necessary on the microscale in some cases, especially if a suitable separation and recycling procedure is to be applied. Here, the analysis is performed by energy-dispersive X-ray (EDX) or wavelength-dispersive X-ray (WDX) analytics in the scanning electron microscope.

  10. lead glass brick

    CERN Multimedia

    As well as accelerators to boost particles up to high energy, physicists need detectors to see what happens when those particles collide. This lead glass block is part of a CERN detector called OPAL. OPAL uses some 12 000 blocks of glass like this to measure particle energies.

  11. Getting Started with Glass

    Science.gov (United States)

    White, Heather

    2007-01-01

    The metamorphosis of glass when heated is a magical process to students, yet teachers are often reluctant to try it in class. The biggest challenge in working with glass in the classroom is to simplify procedures just enough to ensure student success while maintaining strict safety practices so no students are injured. Project concepts and safety…

  12. Glass Sword of Damocles

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A string of accidents draws attention to the safety of the gleaming glass-walled skyscrapers, now common in China’s major cities On July 8, as 19-year-old Zhu Yiyi was walking past a 23-story building in Hangzhou, east China’s Zhejiang Province, shards of glass falling

  13. Glasses for photonic applications

    NARCIS (Netherlands)

    Richardson, K.; Krol, D.M.; Hirao, K.

    2010-01-01

    Recent advances in the application of glassy materials in planar and fiber-based photonic structures have led to novel devices and components that go beyond the original thinking of the use of glass in the 1960s, when glass fibers were developed for low-loss, optical communication applications. Expl

  14. Electric glass capturing markets

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, K.; Wikstroem, T.

    1996-11-01

    Electric glass has found its place on the construction market. In public buildings, electrically heatable windows are becoming the leading option for large glass walls. Studies on detached houses, both new and renovated, show that floor heating combined with electrically heatable windowpanes is the best choice with respect to resident`s comfort. (orig.)

  15. 76 FR 23490 - Aluminum tris (O

    Science.gov (United States)

    2011-04-27

    ... AGENCY 40 CFR Part 180 Aluminum tris (O-ethylphosphonate), Butylate, Chlorethoxyfos, Clethodim, et al..., fosthiazate, propetamphos, and tebufenozide; the fungicide aluminum tris (O-ethylphosphonate); the herbicides.... Also, EPA is revoking the tolerances for aluminum tris (O-ethylphosphonate) on pineapple fodder...

  16. Guangxi Aluminum Giant Made Investment in Changfeng

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>A aluminum processing and supporting project (450,000 tons) of Hefei Guangyin Aluminum Company kicked off in Xiatang Town of Changfeng County recently. It is a project jointly invested by Guangxi Investment Group and Guangxi Baise Guangyin Aluminum in Xiatang Town of Changfeng County.

  17. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  18. Aluminum break-point contacts

    NARCIS (Netherlands)

    Heinemann, Martina; Groot, R.A. de

    1997-01-01

    Ab initio molecular dynamics is used to study the contribution of a single Al atom to an aluminum breakpoint contact during the final stages of breaking and the initial stages of the formation of such a contact. A hysteresis effect is found in excellent agreement with experiment and the form of the

  19. The dual effect of Mg on the long-term alteration rate of AVM nuclear waste glasses

    Science.gov (United States)

    Thien, Bruno M. J.; Godon, Nicole; Ballestero, Anthony; Gin, Stéphane; Ayral, André

    2012-08-01

    Inactive Mg-containing nuclear waste glasses simulating actual HLW glasses produced at the AVM facility since 1995 (Marcoule, France), were leached in aqueous solution in order to assess their long term behaviour. The focus was on the effect of Mg. Our findings show that the distribution of Mg between the gel and the secondary crystalline phases strongly influences the glass dissolution rate. The glasses were leached in initially pure water (T = 50 °C, surface/volume ratio (S/V) = 55 cm-1) with and without addition of Mg2+ in the solution. "Mg-free" AVM glasses were also leached in initially pure water (50 °C, 200 cm-1) with and without addition of Mg2+ in the solution. Accurate identification of Mg-smectite secondary phases and gel composition calculations enable us to explain the different observed behaviours. Glass AVM 10 was the less altered glass in pure water. Its gel is more protective than the other probably because it is mainly balanced by Mg2+. The addition of Mg2+ in the solution triggers the precipitation of smectite (not observed in pure water experiments), which consumes silicon from the gel, leading finally to a significant increase of the glass alteration. We also focused on the AVM 6 glass which was the most altered glass in pure water of available AVM glasses. Contrary to AVM 10, the gel of AVM 6 is mainly balanced by Na+. The addition of Mg2+ in the solution allows the replacement of Na by Mg within the gel. This reaction clearly improves the gel properties and allows the rate to decrease more rapidly, in spite of the precipitation of smectite (also observed in pure water experiments). Finally, the two glasses were altered in synthetic groundwater (SGW) with a high Mg-Ca content. As expected from the previous observations, AVM 10 was insensitive to the presence of alkaline earths in the leaching solution whereas AVM 6 glass exhibited a lower rate than in pure water thanks to the incorporation of Mg and Ca within the gel.

  20. MECHANISMS OF PHASE FORMATION IN THE VITRIFICATION OF HIGH-FERROUS SAVANNAH RIVER SITE SB2 HLW SLUDGE SURROGATE - 9300

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2008-08-27

    Phase formation mechanisms associated with the vitrification of high-ferrous Savannah River Site (SRS) Sludge Batch 2 (SB2) high level waste surrogate were studied by infrared spectroscopy (IRS) and X-ray diffraction (XRD). Two mixtures at 50 wt% waste loading with commercially available Frit 320 (Li{sub 2}O - 8 wt %, B{sub 2}O{sub 3} - 8 wt %, Na{sub 2}O - 12 wt %, SiO{sub 2} - 72 wt %) and batch chemicals (LiOH {center_dot} H{sub 2}O, H{sub 3}BO{sub 3}, NaNO{sub 3}, SiO{sub 2}) to represent the frit formulation were prepared as slurries with a water content of {approx}50 wt%. The mixtures were air-dried at a temperature of 115 C and heat-treated at 500, 700, 900, 1000, 1100, 1200, and 1300 C for 1 hr at each temperature. Infrared spectra and XRD patterns of the products produced at each temperature were recorded. In both mixtures prepared using frit and batch chemicals to represent the frit, phase formation reactions were completed within the temperature range between 900 and 1000 C. However, residual quartz was still present in glass produced from the mixture with batch chemicals even at 1100 C. Although, the phase composition and structure of the glassy products obtained from both mixtures at temperatures over 1000 C were similar, the products obtained from the mixture using actual frit were more homogeneous than those from the mixture with batch chemicals. Thus, the use of frit rather than batch chemicals reduced the temperature range of phase formation and provided for production of higher quality glass.

  1. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    with different gas compositions. The foam glasses were characterised concerning densities, open/closed porosity and crystallinity. We find out, through analytical calculations and experiments, how the thermal conductivity of foam glass depends on density, glass composition and gas composition. Certain glass......Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...

  2. Multilayer Clad Plate of Stainless Steel/Aluminum/Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    YUAN Jiawei; PANG Yuhua; LI Ting

    2011-01-01

    The 3, 5, 20 layer clad plate from austenitic stainless steel, pure aluminum and aluminum alloy sheets were fabricated in different ways. The stretch and interface properties were measured. The result shows that 20 layer clad plate is better than the others. Well-bonded clad plate was successfully obtained in the following procedure: Basic clad sheet from 18 layer A11060/A13003sheets was firstly obtained with an initial rolling reduction of 44% at 450 ℃, followed by annealing at 300 ℃, and then with reduction of 50% at 550 ℃ from STS304 on each side. The best 20 layer clad plate was of 129 MPa bonding strength and 225 MPa stretch strength.

  3. Electrodeposition of aluminum on aluminum surface from molten salt

    Institute of Scientific and Technical Information of China (English)

    Wenmao HUANG; Xiangyu XIA; Bin LIU; Yu LIU; Haowei WANG; Naiheng MA

    2011-01-01

    The surface morphology,microstructure and composition of the aluminum coating of the electrodeposition plates in AlC13-NaC1-KC1 molten salt with a mass ratio of 8:1:1 were investigated by SEM and EDS.The binding force was measured by splat-cooling method and bending method.The results indicate that the coatings with average thicknesses of 12 and 9 μm for both plates treated by simple grinding and phosphating are compacted,continuous and well adhered respectively. Tetramethylammonium chloride (TMAC) can effectively prevent the growth of dendritic crystal,and the anode activation may improve the adhesion of the coating. Binding force analysis shows that both aluminum coatings are strongly adhered to the substrates.

  4. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Peeler, D.; Herman, C.

    2014-05-15

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass

  5. Glasses for immobilization of low- and intermediate-level radioactive waste

    Science.gov (United States)

    Laverov, N. P.; Omel'yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.; Nikonov, B. S.

    2013-03-01

    Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ˜300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4-6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant

  6. Modeling dissolution in aluminum alloys

    Science.gov (United States)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  7. 玻璃和聚酰亚胺衬底上磁控溅射沉积的ZnO∶Al透明导电膜的结构、电学和光学性能%Structural, Electrical and Optical Properties of Aluminum-Doped Zinc Oxide Deposited on Glass and Polyimide by RF Magnetron Sputtering Method

    Institute of Scientific and Technical Information of China (English)

    王小锦; 曾祥斌; 黄迪秋; 张笑; 李青

    2012-01-01

    利用射频磁控溅射方法在玻璃和聚酰亚胺膜(PI)衬底上沉积了氧化铝质量分数为2%的掺铝氧化锌透明导电薄膜(ZnO∶ Al).系统地研究了不同衬底材料对薄膜的结构、电学以及光学性能的影响.分析表明,衬底材料对薄膜的结晶性和电学性能有较大的影响,对可见光透射率却影响不大.X射线衍射(XRD)分析得出所有的ZnO∶A1具有良好的c轴择优取向性,在可见光区(400~800 nm)两种衬底上的薄膜都达到了85%的透射率.玻璃衬底上的薄膜呈现出更强的(002)衍射峰及相对更小的半峰全宽(FWHM),薄膜电阻率达到了2.352×10-4 Ω·cm.电镜分析表明,相对于PI上的ZnO∶ Al膜,玻璃上ZnO∶ Al膜表面有更致密的微观结构及更大的晶粒尺寸.PI衬底上的ZnO∶ Al膜也有相对较好的电、光学性能,其中电阻率达到了6.336×10-4Ω·cm,而且由于PI衬底柔性可弯曲,使得它适于在柔性太阳电池和柔性液晶显示中做窗口层材料及透明导电电极.玻璃上的ZnO∶ Al膜则可应用在平板显示和太阳电池技术中.%The 2% (mass fraction of Al2O3) Al-doped ZnO (ZnO∶Al) thin films were sputtered on glass and polyimide (PI) substrates by radio-frequency (RF) magnetron sputtering technology.The effects of substrate materials on the structural,electrical and optical properties of ZnO∶ Al thin films deposited on different substrates are studied.It is found that substrate materials have significant influence on film crystallization and resistivity but little on optical transmittance.Highly c-axis oriented ZnO∶Al films in (002) direction are observed on both glass and PI.Besides,it is manifested that the average optical transmittance in the visible-light range (400 ~ 800 nm) is around 85 % for both films.Films on glass presents stronger (002) diffraction peaks and lower full-width at half maximum (FWHM).The lower resistivity of 2.352 × 10-4 Ω · cm is obtained in samples

  8. Glass Stronger than Steel

    Science.gov (United States)

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  9. Shattering the Glass Ceiling

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ "Shattering the Glass Ceiling: the Myths, Opportunities and Chal lenges of Women in Corporate China" was the theme of CEIBS'first Women in Management Forum held on December l 1 on the school's main campus in Shanghai.

  10. Phosphate-bonded glass cements for geothermal wells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rockett, T.J.

    1979-09-01

    Calcium aluminosilicate glasses were found to react with phosphoric acid in three ways depending upon silica content. Above 55% SiO/sub 2/ they are insoluble while below 50% they dissolve readily. The transition compositions release calcium and aluminum ions and a silica gel phase replaces the glass. Activation energies in the order of 10 kcal/mole are associated with the dissolution. Equilibrium studies in the systems CaO-P/sub 2/O/sub 5/-H/sub 2/O, Al/sub 2/O/sub 3/-P/sub 2/O/sub 5/-H/sub 2/O, and CaO-Al/sub 2/O/sub 3/-P/sub 2/O/sub 5/-H/sub 2/O were made to determine the phases which are stable at 200/sup 0/C in excess water. The CaO system shows hydroxylapatite, monetite and monocalcium orthophosphate are the stable phases. The Al/sub 2/O/sub 3/ system contains augelite, berlinite, and a high phosphate aluminum hydrate. The quaternary system shows the above phase plus a lime alumina hydrogarnet and crandallite. Cement made from a glass frit of the composition 45% SiO/sub 2/: 24% CaO: 24% Al/sub 2/O/sub 3/ has a compressive strength of 500 psi after several days in steam at 200/sup 0/C and 800 psi after months in steam. Bonding of cements to mild steel are discussed.

  11. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... the mechanical behavior of the beam is explained. Finally, some design criterions for reinforced glass beams are discussed....

  12. Baseline LAW Glass Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  13. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte

    Directory of Open Access Journals (Sweden)

    Morsi M. Mahmoud

    2016-06-01

    Full Text Available Lithium aluminum germanium phosphate (LAGP glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW processing. Thirty GHz microwave (MW processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM. Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.

  14. Diffusion-bonded beryllium aluminum optical structures

    Science.gov (United States)

    Grapes, Thomas F.

    2003-12-01

    Beryllium aluminum material can present significant advantages for optical support structures. A likely advantage of beryllium aluminum compared to aluminum or titanium for such structures is its higher specific stiffness. However, beryllium aluminum material is significantly more expensive than most competing materials. The cost problem with beryllium aluminum is exacerbated if fabrication methods that result in near net shape parts are not used. Near net shape methods result in the least amount of material "thrown away" in the fabrication process. Casting is a primary example of near net shape manufacturing that is appropriate for some optical support structures. Casting aluminum, and other materials as well, is common. Casting of beryllium aluminum is very difficult, however, and has not had significant success. Diffusion bonding - a different approach for achieving near net shape beryllium aluminum optical support structures, was pursued and accomplished. Diffusion bonding is a term used to describe the joining of solid metal pieces under high temperature and pressure, but without melting. Three different optical support structures were designed and built of beryllium aluminum using diffusion bonding. Relatively small solid beryllium aluminum pieces were arranged together and then joined under hot isostatic pressure conditions. The resulting relatively large pressure bonded part was then machined to achieve the final product. Significant cost savings as compared to machining the part from a solid block were realized. Difficulties achieving diffusion bonds in complex joints were experienced and addressed.

  15. Aluminum/air electrochemical cells

    OpenAIRE

    Wang, Lei; 王雷

    2014-01-01

    Aluminum (Al) is a very promising energy carrier given its high capacity and energy density, low cost, earth abundance and environmental benignity. The Al/air battery as a kind of metal/air electrochemical cell attracts tremendous attention. Traditional Al/air batteries suffer from the self-corrosion and related safety problems. In this work, three new approaches were investigated to tackle these challenges and to develop high-performance Al/air cells: (1) incorporate an additional hydrogen/a...

  16. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  17. Radiation hardening in sol-gel derived Er{sup 3+}-doped silica glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hari Babu, B., E-mail: hariphy2012@gmail.com, E-mail: matthieu.lancry@u-psud.fr; León Pichel, Mónica [Laboratoire des Solides Irradiés, UMR CEA-CNRS 7642, Ecole Polytechnique, Université Paris Saclay, 91128 Palaiseau (France); Institut de Chimie Moléculaire et des Matériaux d' Orsay, UMR CNRS-UPSud 8182, Université Paris Sud, 91405 Orsay (France); Ollier, Nadège [Laboratoire des Solides Irradiés, UMR CEA-CNRS 7642, Ecole Polytechnique, Université Paris Saclay, 91128 Palaiseau (France); El Hamzaoui, Hicham; Bigot, Laurent; Savelii, Inna; Bouazaoui, Mohamed [Laboratoire PhLAM (UMR CNRS 8523), IRCICA (USR CNRS 3380), CERLA - FR CNRS 2416, Université Lille 1, Villeneuve d' Ascq Cedex F-59655 (France); Poumellec, Bertrand; Lancry, Matthieu, E-mail: hariphy2012@gmail.com, E-mail: matthieu.lancry@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d' Orsay, UMR CNRS-UPSud 8182, Université Paris Sud, 91405 Orsay (France); Ibarra, Angel [National Fusion Laboratory, CIEMAT, Avda Complutense 40, 28040 Madrid (Spain)

    2015-09-28

    The aim of the present paper is to report the effect of radiation on the Er{sup 3+}-doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er{sup 3+}-doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′{sub δ} point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er{sup 3+} to Er{sup 2+} ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects.

  18. Purification technology of molten aluminum

    Institute of Scientific and Technical Information of China (English)

    孙宝德; 丁文江; 疏达; 周尧和

    2004-01-01

    Various purification methods were explored to eliminate the dissolved hydrogen and nonmetallic inclusions from molten aluminum alloys. A novel rotating impeller head with self-oscillation nozzles or an electromagnetic valve in the gas circuit was used to produce pulse gas currents for the rotary impeller degassing method. Water simulation results show that the size of gas bubbles can be decreased by 10%-20% as compared with the constant gas current mode. By coating ceramic filters or particles with active flux or enamels, composite filters were used to filter the scrap A356 alloy and pure aluminum. Experimental results demonstrate that better filtration efficiency and operation performance can be obtained. Based on numerical calculations, the separation efficiency of inclusions by high frequency magnetic field can be significantly improved by using a hollow cylinder-like separator or utilizing the effects of secondary flow of the melt in a square separator. A multi-stage and multi-media purification platform based on these methods was designed and applied in on-line processing of molten aluminum alloys. Mechanical properties of the processed scrap A356 alloy are greatly improved by the composite purification.

  19. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  20. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  1. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  2. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  3. COMPARATIVE ANALYSIS OF STEEL AND ALUMINUM STRUCTURES

    Directory of Open Access Journals (Sweden)

    Josip Peko

    2016-12-01

    Full Text Available This study examined steel and aluminum variants of modern exhibition structures in which the main design requirements include low weight (increased span/depth ratio, transportation, and construction and durability (resistance to corrosion. This included a design situation in which the structural application of aluminum alloys provided an extremely convenient and practical solution. Viability of an aluminum structure depends on several factors and requires a detailed analysis. The overall conclusion of the study indicated that aluminum can be used as a structural material and as a viable alternative to steel for Croatian snow and wind load values and evidently in cases in which positive properties of aluminum are required for structural design. Furthermore, a structural fire analysis was conducted for an aluminum variant structure by using a zone model for realistic fire analysis. The results suggested that passive fire protection for the main structural members was not required in the event of areal fire with duration of 60 min.

  4. [Link between aluminum neurotoxicity and neurodegenerative disorders].

    Science.gov (United States)

    Kawahara, Masahiro

    2016-07-01

    Aluminum is an old element that has been known for a long time, but some of its properties are only now being discovered. Although environmentally abundant, aluminum is not essential for life; in fact, because of its specific chemical properties, aluminum inhibits more than 200 biologically important functions and exerts various adverse effects in plants, animals, and humans. Aluminum is a widely recognized neurotoxin. It has been suggested that there is a relationship between exposure to aluminum and neurodegenerative diseases, including dialysis encephalopathy, amyotrophic lateral sclerosis and parkinsonism dementia in the Kii Peninsula and Guam, as well as Alzheimer' s disease: however, this claim remains to be verified. In this chapter, we review the detailed characteristics of aluminum neurotoxicity and the link between Alzheimer' s disease and other neurodegenerative diseases, based on recent findings on metal-metal interactions and the functions of metalloproteins in synapses.

  5. Optical Transmittance of Anodically Oxidized Aluminum Alloy

    Science.gov (United States)

    Saito, Mitsunori; Shiga, Yasunori; Miyagi, Mitsunobu; Wada, Kenji; Ono, Sachiko

    1995-06-01

    Optical transmittance and anisotropy of anodic oxide films that were made from pure aluminum and an aluminum alloy (A5052) were studied. The alloy oxide film exhibits an enhanced polarization function, particularly when anodization is carried out at a large current density. It was revealed by chemical analysis that the alloy oxide film contains a larger amount of unoxidized aluminum than the pure-aluminum oxide film. The polarization function can be elucidated by considering unoxidized aluminum particles that are arranged in the columnar structure of the alumina film. Electron microscope observation showed that many holes exist in the alloy oxide film, around which columnar cells are arranged irregularly. Such holes and irregular cell arrangement cause the increase in the amount of unoxidized aluminum, and consequently induces scattering loss.

  6. Leaching of Main Elements of Glass Immersed in Beishan Groundwater

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The leaching quantities of the elements from the HLW are very important parameters for the safety assessments of the repository of high level radioactive wastes. It is necessary to study the leaching

  7. Structure of Liquid Aluminum and Hydrogen Absorption

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; DAI Yongbing; WANG Jun; SHU Da; SUN Baode

    2011-01-01

    The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, atomic coordination number and viscosity of aluminum melts were calculated and they changed abnormally in the same temperature range. The mechanism of hydrogen absorption has been discussed. From molecular dynamics calculations, the interdependence between melt structural properties and hydrogen absorption were obtained.

  8. Liquidus Temperature of High-Level Waste Borosilicate Glasses with Spinel Primary Phase

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.(BATTELLE (PACIFIC NW LAB)); Vienna, John D.(BATTELLE (PACIFIC NW LAB)); Crum, Jarrod V.(BATTELLE (PACIFIC NW LAB)); Piepel, Gregory F.(BATTELLE (PACIFIC NW LAB)); Mika, Martin (ASSOC WESTERN UNIVERSITY); Robert W. Smith; David W. Shoesmith

    2000-01-01

    Liquidus temperatures (TL) were measured for high-level waste (HLW) borosilicate glasses covering a Savannah River composition region. The primary crystallization phase for most glasses was spinel, a solid solution of trevorite (NiFe2O4) with other oxides (FeO, MnO, and Cr2O3). The TL values ranged from 859 to 1310?C. Component additions increased the TL (per mass%) as Cr2O3 261?C, NiO 85?C, TiO2 42?C, MgO 33?C, Al2O3 18?C, and Fe2O3 18?C and decreased the TL (per mass%) as Na2O -29?C, Li2O -28?C, K2O -20?C, and B2O3 -8?C. Other oxides (CaO, MnO, SiO2, and U3O8) had little effect. The effect of RuO2 is not clear.

  9. Properties and solubility of chrome in iron alumina phosphate glasses containing high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W. [School of Materials Science and Engineering, Tongji Univ., Shanghai, SH (China); Day, D.E.; Ray, C.S.; Kim, C.W.; Reis, S.T.D. [Univ. of Missouri-Rolla (United States). Graduate Center for Materials Research

    2004-10-01

    Chemical durability, glass formation tendency, and other properties of iron alumina phosphate glasses containing 70 wt% of a simulated high level nuclear waste (HLW), doped with different amounts of Cr{sub 2}O{sub 3}, have been investigated. All of the iron alumina phosphate glasses had an outstanding chemical durability as measured by their small dissolution rate (1 . 10{sup -9} g/(cm{sup 2} . min)) in deionized water at 90 C for 128 d, their low normalized mass release as determined by the product consistency test (PCT) and a barely measurable corrosion rate of <0.1 g/(m{sup 2} . d) after 7 d at 200 C by the vapor hydration test (VHT). The solubility limit for Cr{sub 2}O{sub 3} in the iron phosphate melts was estimated at 4.1 wt%, but all of the as-annealed melts contained a few percent of crystalline Cr{sub 2}O{sub 3} that had no apparent effect on the chemical durability. The chemical durability was unchanged after deliberate crystallization, 48 h at 650 C. These iron phosphate waste forms, with a waste loading of at least 70 wt%, can be readily melted in commercial refractory crucibles at 1250 C for 2 to 4 h, are resistant to crystallization, meet all current US Department of Energy requirements for chemical durability, and have a solubility limit for Cr{sub 2}O{sub 3} which is at least three times larger than that for borosilicate glasses. (orig.)

  10. Influence of Y, Gd and Sm on the glass forming ability and thermal crystallization of aluminum based alloy; Efeito das terras raras Y, Gd e Sm na tendencia a formacao de amorfo e na cristalizacao termica em ligas a base de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L.C.R.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J., E-mail: aliaga@ufscar.b [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Danez, G.P. [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    Al-based amorphous alloys represent an important family of metals and a great scientific activity has been devoted to determine the main features of both glass forming ability (GFA) and crystallization behavior in order to have a comprehensive framework aimed at potential technological applications. Nowadays, it is well known that the best Al-based amorphous alloys are formed in ternary systems such as Al- RE-TM, where RE is a rare earth and TM a transition metal. This paper presents results of research in Al{sub 85}Ni{sub 10}RE{sub 5} alloys (RE = Y, Gd and Sm). Amorphous ribbons were processed by melt-spinning under the same conditions and subsequently characterized by x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results show appreciable micro structural differences as function of the rare earth, thus crystal is obtained for Y, nano-glassy for Gd and, fully amorphous structure for Sm. (author)

  11. Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Theelen, M.; Boumans, T.; Stegeman, F.; Colberts, F.; Illiberi, A.; Berkum, J. van; Barreau, N.; Vroon, Z.; Zeman, M.

    2014-01-01

    Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before

  12. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  13. DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

    2009-01-14

    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  14. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  15. Silicon reduces aluminum accumulation in rats: relevance to the aluminum hypothesis of Alzheimer disease.

    Science.gov (United States)

    Bellés, M; Sánchez, D J; Gómez, M; Corbella, J; Domingo, J L

    1998-06-01

    In recent years, a possible relation between the aluminum and silicon levels in drinking water and the risk of Alzheimer disease (AD) has been established. It has been suggested that silicon may have a protective effect in limiting oral aluminum absorption. The present study was undertaken to examine the influence of supplementing silicon in the diet to prevent tissue aluminum retention in rats exposed to oral aluminum. Three groups of adult male rats were given by gavage 450 mg/kg/day of aluminum nitrate nonahydrate 5 days a week for 5 weeks. Concurrently, animals received silicon in the drinking water at 0 (positive control), 59, and 118 mg Si/L. A fourth group (-Al, - Si) was designated as a negative control group. At the end of the period of aluminum and silicon administration, urines were collected for 4 consecutive days, and the urinary aluminum levels were determined. The aluminum concentrations in the brain (various regions), liver, bone, spleen, and kidney were also measured. For all tissues, aluminum levels were significantly lower in the groups exposed to 59 and 118 mg Si/L than in the positive control group; significant reductions in the urinary aluminum levels of the same groups were also found. The current results corroborate that silicon effectively prevents gastrointestinal aluminum absorption, which may be of concern in protecting against the neurotoxic effects of aluminum.

  16. The Aluminum Deep Processing Project of North United Aluminum Landed in Qijiang

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum’s aluminum deep processing project in Qijiang.

  17. Bio-Glasses An Introduction

    CERN Document Server

    Jones, Julian

    2012-01-01

    This new work is dedicated to glasses and their variants which can be used as biomaterials to repair diseased and damaged tissues. Bio-glasses are superior to other biomaterials in many applications, such as healing bone by signaling stem cells to become bone cells.   Key features:  First book on biomaterials to focus on bio-glassesEdited by a leading authority on bio-glasses trained by one of its inventors, Dr Larry HenchSupported by the International Commission on Glass (ICG)Authored by members of the ICG Biomedical Glass Committee, with the goal of creating a seamless textb

  18. Glass strengthening and patterning methods

    Science.gov (United States)

    Harper, David C; Wereszczak, Andrew A; Duty, Chad E

    2015-01-27

    High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.

  19. Glass formation - A contemporary view

    Science.gov (United States)

    Uhlmann, D. R.

    1983-01-01

    The process of glass formation is discussed from several perspectives. Particular attention is directed to kinetic treatments of glass formation and to the question of how fast a given liquid must be cooled in order to form a glass. Specific consideration is paid to the calculation of critical cooling rates for glass formation, to the effects of nucleating heterogeneities and transients in nucleation on the critical cooling rates, to crystallization on reheating a glass, to the experimental determination of nucleation rates and barriers to crystal nucleation, and to the characteristics of materials which are most conducive to glass formation.

  20. Heavy Metal Fluoride Glasses.

    Science.gov (United States)

    1987-04-01

    i 2N E ihhhhh1112h MEmhhhhEEEohhhhE I.’....momo 111111111’-20 LA ’Ll2. AFWL-TR-86-37 AFWL-TR- 86-37 oT C ,l C ’-’ N HEAVY METAL FLUORIDE GLASSES 0nI...Secwrit CkasmfcationJ HEAVY METAL FLUORIDE GLASSES 12. PERSONAL AUTHOR(S) Reisfield, Renata; and Eyal, Mrek 13. TYPE OF REPORT 113b. TIME COVERED 114...glasses containing about 50 mole% of ZrF4 [which can be replaced by HfF 4 or TIF 4 (Refs. 1-3) or heavy metal fluorides based on PbF2 and on 3d-group

  1. Perspectives on spin glasses

    CERN Document Server

    Contucci, Pierluigi

    2013-01-01

    Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.

  2. Morphology and transmittance of porous alumina on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo Peitao, E-mail: guopeitao@hotmail.com [Wuhan University of Technology. Wuhan (China); Xia Zhilin [Wuhan University of Technology. Wuhan (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Xiangtan (China); Xue Yiyu [Wuhan University of Technology. Wuhan (China); Huang Caihua [China Three Gorges University, Yichang (China); Zhao Lixin [Wuhan University of Technology. Wuhan (China)

    2011-02-01

    The porous optical film has higher threshold of laser-induced damage than densified films, for the study of mechanism of laser-induced damage of porous optical film with ordered pore structure. Porous anodic alumina (PAA) film with high transmittance on glass substrate has been prepared. Aluminum film was deposited on glass substrate by means of resistance and electron beam heat (EBH) evaporation. Porous alumina was prepared in oxalic acid solution under different anodizing conditions. At normal incidence, the optical transmittance spectrum over 300-1000 nm spectra region was obtained by spectrophotometer. SEM was introduced to analysis the morphology of the porous alumina film. The pore aperture increased with the increase of anodizing voltage, which resulted in a rapid decrease of the pore concentration and the optical thickness of porous alumina film. Damage morphology of porous alumina film is found to be typically defects initiated, and the defect is the pore presented on the film.

  3. A Two-Stage Layered Mixture Experiment Design for a Nuclear Waste Glass Application-Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Scott K.; Piepel, Gregory F.; Gan, Hao; Kot, Wing; Pegg, Ian L.

    2003-12-01

    A layered experimental design involving mixture variables was generated to support developing property-composition models for high-level waste (HLW) glasses. The design was generated in two stages, each having unique characteristics. Each stage used a layered design having an outer layer, an inner layer, a center point, and some replicates. The layers were defined by single- and multi-variable constraints. The first stage involved 15 glass components treated as mixture variables. For each layer, vertices were generated and optimal design software was used to select alternative subsets of vertices and calculate design optimality measures. Two partial quadratic mixture models, containing 25 terms for the outer layer and 30 terms for the inner layer, were the basis for the optimal design calculations. Distributions of predicted glass property values were plotted and evaluated for the alternative subsets of vertices. Based on the optimality measures and the predicted property distributions, a ''best'' subset of vertices was selected for each layer to form a layered design for the first stage. The design for the second stage was selected to augment the first-stage design. The discussion of the second-stage design begins in this Part 1 and is continued in Part 2 (Cooley and Piepel, 2003b).

  4. FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

    2008-08-28

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent Sludge Batch 5 (SB5) as processed at the Defense Waste Processing Facility (DWPF). The data was used to provide recommendations to the Liquid Waste Organization (LWO) regarding blending and washing strategies in preparing SB5 based on acceptability of the glass compositions. These data were also used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of frits. Three composition projections for SB5 were developed using a model-based approach at Savannah River National Laboratory (SRNL). These compositions, referred to as SB5 Cases B, C and D, projected removal of 25, 50 and 75% (respectively) of the aluminum in Tank 51 through the low temperature aluminum dissolution process. The frits for this study (Frits 530 through 537) were selected based on their predicted operating windows (i.e., ranges of waste loadings over which the predicted properties of the glasses were acceptable) and their potential (based on historical trends) to provide acceptable melt rates for SB5. Six additional glasses were designed to evaluate alternatives for uranium in DWPF-type glasses used for variability studies and some scoping studies. Since special measures are necessary when working with uranium-containing glasses in the laboratory, it is desirable as a cost and time saving measure to find an alternative for uranium to support frit optimization efforts. Hafnium and neodymium were investigated as potential surrogates for uranium, and other glasses were made by simply excluding the radioactive components and renormalizing the glass composition. The study glasses were fabricated and characterized at SRNL. Chemical composition analyses suggested only minor difficulties in meeting the targeted compositions

  5. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  6. Sanmenxia strives to create aluminum industrial base

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Contradiction between rich alumina resource and relatively weak electrolytic aluminum production capacity is the "bottleneck" inhibiting development of aluminum industry in San-menxia. During the period of "11th Five-Year Development", Sanmenxia will relay on its

  7. Wilson's disease; increased aluminum in liver.

    Science.gov (United States)

    Yasui, M; Yoshimasu, F; Yase, Y; Uebayashi, Y

    1979-01-01

    Interaction of trace metal metabolism was studied in a patient with Wilson's dease. Atomic absorption analysis showed markedly increased urinary excretion of copper and aluminum and an increased aluminum content was found in the biopsied liver by neutron activation analysis. These findings suggest a complicated pathogenetic mechanism involving other metals besides copper in the Wilson's disease.

  8. Recrystallization in Commercially Pure Aluminum

    DEFF Research Database (Denmark)

    Bay, Bent; Hansen, Niels

    1984-01-01

    Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree of defor......Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree...... (FeAl3), which start to become operative when the degree of deformation is raised from 15 to 30 pct. The temperature of nucleation and of recrystallization decreases when the degree of deformation is increased and the initial grain size is decreased. The recrystallized grain size follows the same...... trend and it is observed that the refinement of the recrystallized grain size caused by an increasing degree of deformation and decreasing initial grain size is enhanced by the FeAl3 particles (when the degree of deformation is raised from 15 to 30 pct). Finally, the structural and kinetic observations...

  9. Aluminum honeycomb impact limiter study

    Energy Technology Data Exchange (ETDEWEB)

    Yaksh, M.C.; Thompson, T.C. (Nuclear Assurance Corp., Norcross, GA (United States)); Nickell, R.E. (Applied Science and Technology, Inc., Poway, CA (United States))

    1991-07-01

    Design requirements for a cask transporting radioactive materials must include the condition of the 30-foot free fall of the cask onto an unyielding surface. To reduce the deceleration loads to a tolerable level for all the components of the cask, a component (impact limiter) is designed to absorb the kinetic energy. The material, shape, and method of attachment of the impact limiter to the cask body comprises the design of the impact limiter. The impact limiter material of interest is honeycomb aluminum, and the particular design examined was for the NAC Legal Weight Truck cask (NAC-LWT) for spent fuel from light water reactors. The NAC-LWT has a design weight of 52,000 pounds, and it has a nominal length of 200 inches. The report describes the numerical calculations embodied in the FADE program to determine the accelerations and crush strain resulting from an arbitrary height and angle of orientation. Since the program serves as a design tool, static tests are performed to assess the effect of the shell containing the honeycomb aluminum. The static tests and their results are contained in the study. The static tests are used to demonstrate for licensing purposes the level of accelerations imposed on the cask during a 30-foot drop. 3 refs., 41 figs., 15 tabs.

  10. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  11. Glass as matter

    DEFF Research Database (Denmark)

    Beim, Anne

    2000-01-01

    Refraiming the Moderns - Substitute Windows and Glass. In general terms, the seminar has contributed to the growing interest in the problems concerning the restoration of Modern Movement architecture. More particularly, it has of course drawn our attention to modern windows, which are increasingly...

  12. Stained-Glass Pastels

    Science.gov (United States)

    Laird, Shirley

    2009-01-01

    The author has always liked the look of stained-glass windows. Usually the designs are simplified and the shapes are easier for younger students to draw. This technique seemed to be the perfect place for her fifth-graders to try their hand at color mixing. The smaller spaces and simple shapes were just what she needed for this group. Her students…

  13. Microchips on glass

    NARCIS (Netherlands)

    Keulemans, M.

    2007-01-01

    Microchips on glass. What about a mobile phone that uses a single microchip to receive all the available frequency bands, plus extras such as television, gps, and Internet access? Or, in due time, see-though implants that will monitor your state of health, and equipment that will let you see through

  14. "Stained Glass" Landscape Windows

    Science.gov (United States)

    Vannata, Janine

    2008-01-01

    Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…

  15. Supercooled Liquids and Glasses

    OpenAIRE

    1999-01-01

    In these lectures, which were presented at "Soft and Fragile Matter, Nonequilibrium Dynamics, Metastability and Flow" University of St. Andrews, 8 July - 22 July, 1999, I give an introduction to the physics of supercooled liquids and glasses and discuss some computer simulations done to investigate these systems.

  16. Shattering women's glass ceiling

    OpenAIRE

    Camilleri Podesta, Marie Therese; Duca, Edward

    2013-01-01

    The role of women in academia has always greatly interested me. Several years ago, when I was asked to become Gender Issues Committee chairperson at the University of Malta, I readily accepted. http://www.um.edu.mt/think/shattering-womens-glass-ceiling/

  17. Stained Glass and Flu

    Centers for Disease Control (CDC) Podcasts

    2017-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2017.

  18. Stained Glass and Flu

    Centers for Disease Control (CDC) Podcasts

    2016-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2016.

  19. Experimental Investigation of Effect of Aluminum Filler Material on Thermal Properties of Palmyra Fiber Reinforced Composite

    Directory of Open Access Journals (Sweden)

    J. Pavanu Sai

    2014-12-01

    Full Text Available Natural fiber composites are renewable, cheap, completely or partially recyclable, carbon neutral and biodegradable. Their easy availability, lower density, higher specific properties, lower cost, satisfactory mechanical and thermal properties, non-corrosive nature, lesser abrasion to processing equipment, makes them an attractive ecological alternative to glass, carbon or other man-made synthetic fibers. Natural fiber composites are generally very good thermal insulators and thus cannot be used where thermal conduction is desirable. Increase in thermal conduction may be done by adding metal filler powders to the matrix. In this work, the effect of aluminum filler material on thermal properties of chemically treated palmyra fiber reinforced composites is investigated. Thermal properties studied include thermal conductivity, specific heat capacity, thermal diffusivity, thermal degradation and stability. Five different samples with 0%, 25%, 50%, 75%, 100% aluminum powder are considered. With the addition of aluminum filler powder, thermal conductivity increases, specific heat capacity decreases, thermal diffusivity increases and thermal stability improves with maximum at 50% aluminum powder.

  20. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    Science.gov (United States)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  1. JOINING MECHANISM OF FIELD-ASSISTED BONDING OF ELECTROLYTE GLASS TO METALS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Investigations of technological characteristics and bonding mechanism of field-assisted bonding are done, which are for bonding of electrolytes (Pyrex glass) to monocrystal silicon and aluminum. The features of microstructure and the distribution of the diffused elements in the bonding interface area are studied by means of SEM, EDX and XRD, and the influence of the technological factors on the bonding process is also studied. The model of"metal-oxides-glass"of bonding structure and ions diffusion and bonding in the condition of electrical field-assisted are indicated.

  2. Thin-film solar cells on perlite glass-ceramic substrates

    Science.gov (United States)

    Petrosyan, Stepan G.; Babayan, Virab H.; Musayelyan, Ashot S.; Harutyunyan, Levon A.; Zalesski, Valery B.; Kravchenko, Vladimir M.; Leonova, Tatyana R.; Polikanin, Alexander M.; Khodin, Alexander A.

    2013-06-01

    For the first time, thin-film CIGS solar cells have been fabricated by co-evaporation on specially developed non-conducting perlite (an aluminum potassium sodium silicate natural mineral of volcanic origin) glass-ceramic substrates to develop a fully integrated photovoltaic and building element. Such glass-ceramic material can meet the physical requirements to solar cells substrates as well as the cost goals. The preliminary data presented show that CIGS solar cells deposited on ceramic substrates can exhibit efficiency higher than 10%.

  3. Gating of Permanent Molds for ALuminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  4. Gelling nature of aluminum soaps in oils.

    Science.gov (United States)

    Wang, Xiaorong; Rackaitis, Mindaugas

    2009-03-15

    Aluminum soaps are notable for their ability to form soap-hydrocarbon gels of high viscosity. For more than half a century, it has been believed that the gelling mechanism is due to a formation of polymeric chains of aluminum molecules with the aluminum atoms linking along the axis and with the fatty acid chain extended sideways. Here we report results from an investigation using high-resolution electron microscopy and rheology measurements that clearly resolve the ambiguity. Our results reveal that the gelling mechanism stems from the formation of spherical nano-sized micelles from aluminum soap molecules, and those colloidal micelle particles then aggregate into networks of highly fractal and jammed structures. The earlier proposed polymer chain-like structure is definitely incorrect. The discovery of aluminum soap particles could expand application of these materials to new technologies.

  5. Aluminum-based metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  6. Proposal of recycling system for waste aluminum

    Directory of Open Access Journals (Sweden)

    Š. Valenčík

    2008-04-01

    Full Text Available Introduced work is focused on waste aluminum recycling process with objective to propose complex production system for recovering of aluminum and some aluminum alloys. Solution is supported by extended analysis concerning purpose, basis and system sequences for recyclation. Based on that, sources, possibilities and conditions for recycling are formed. This has been used in proposal of manufacturing system. The principle is the structural proposal of manufacturing system, which does not only differentiate the stage of aluminum melting process, but also related stages as gross separation, sizing, containerisation and batching, palletisation, stacking and some related operations. Production system respects technological specifications, requirements for rationalisation of manufacturing systems, technical and economical feasibility conditions and is considered in lower automation level. However production system solves complex problem of recycling of some types of aluminum, it improves flexibility, production, quality (melting by high enforcements and in protective atmosphere and extention of production (final products production.

  7. Trends in the global aluminum fabrication industry

    Science.gov (United States)

    Das, Subodh; Yin, Weimin

    2007-02-01

    The aluminum fabrication industry has become more vital to the global economy as international aluminum consumption has grown steadily in the past decades. Using innovation, value, and sustainability, the aluminum industry is strengthening its position not only in traditional packaging and construction applications but also in the automotive and aerospace markets to become more competitive and to face challenges from other industries and higher industrial standards. The aluminum fabrication industry has experienced a significant geographical shift caused by rapid growth in emerging markets in countries such as Brazil, Russia, India, and China. Market growth and distribution will vary with different patterns of geography and social development; the aluminum industry must be part of the transformation and keep pace with market developments to benefit.

  8. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  9. Yesterday's Trash Makes Tomorrow's "Glass"

    Science.gov (United States)

    Wayne, Dale

    2010-01-01

    In this article, the author describes a glass art project inspired by Dale Chihuly. This project uses two-liter plastic soda bottles which are cut apart and trimmed. Applying heat using a hair dryer, the plastic curls and takes an uneven blown-glass quality. The "glass" is then painted using acrylic paint. (Contains 2 resources and 1 online…

  10. Molecular Mobility in Sugar Glasses

    NARCIS (Netherlands)

    Dries, van den I.J.

    2000-01-01

    Glasses are liquids that exhibit solid state behavior as a result of their extremely high viscosity. Regarding their application to foods, glasses play a role in the preservation of foods, due to their high viscosity and the concomitant low molecular mobility. This thesis focuses on sugar glasses. S

  11. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    . Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  12. Glass for Solid State Devices

    Science.gov (United States)

    Bailey, R. F.

    1982-01-01

    Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.

  13. Characterization of aluminum surfaces: Sorption and etching

    Science.gov (United States)

    Polkinghorne, Jeannette Clera

    Aluminum, due to its low density and low cost, is a key material for future lightweight applications. However, like other structural materials, aluminum is subject to various forms of corrosion damage that annually costs the United States approximately 5% of its GNP [1]. The main goal is to investigate the effects of various solution anions on aluminum surfaces, and specifically probe pit initiation and inhibition. Using surface analysis techniques including X-ray photoelectron spectroscopy, Auger electron spectroscopy, and scanning electron microscopy, results have been correlated with those obtained from electrochemical methods and a radiolabeling technique developed in the Wieckowski laboratory. Analysis of data has indicated that important variables include type of anion, solution pH, and applied electrode potential. While aggressive anions such as chloride are usually studied to elucidate corrosion processes to work ultimately toward inhibition, its corrosive properties can be successfully utilized in the drive for higher energy and smaller-scale storage devices. Fundamental information gained regarding anion interaction with the aluminum surface can be applied to tailor etch processes. Standard electrochemical techniques and SEM are respectively used to etch and analyze the aluminum substrate. Aluminum electrolytic capacitors are comprised of aluminum anode foil covered by an anodically grown aluminum oxide dielectric film, electrolytic paper impregnated with electrolyte, and aluminum cathode foil. Two main processes are involved in the fabrication of aluminum electrolytic capacitors, namely etching and anodic oxide formation. Etching of the anode foil results in a higher surface area (up to 20 times area enlargement compared to unetched foil) that translates into a higher capacitance gain, permitting more compact and lighter capacitor manufacture. Anodic oxide formation on the anode, creates the required dielectric to withstand high voltage operation. A

  14. Measurement of stress-induced birefringence in glasses based on reflective laser feedback effect

    Science.gov (United States)

    Haisha, Niu; YanXiong, Niu; Jiyang, Li

    2017-02-01

    A glass birefringence measurement system utilizing the reflective laser feedback (RLF) effect is presented. The measurement principle is analyzed based on the equivalent cavity of a Fabry-Perot interferometer, and the experiments are conducted with a piece of quartz glass with applied extrusion force. In the feedback system, aluminum film used as a feedback mirror is affixed to the back of the sample. When the light is reflected back into the cavity, as the reinjected light is imprinted with the birefringence information in the sample, the gain and polarization states of the laser are modulated. The variation of optical power and polarization states hopping is monitored to obtain the magnitude of the stress. The system has advantages such as simplicity and low-cost with a precision of 1.9 nm. Moreover, by adjusting the position of the aluminum, large-area samples can be measured anywhere at any place.

  15. Formation of superhydrophobic boehmite film on glass substrate by Sol-Gel method

    Institute of Scientific and Technical Information of China (English)

    Xinhui FANG; Zhijia YU; Xiangyu SUN; Xinbua LIU; Futao QIN

    2009-01-01

    Superhydrophobic boehmite film has been successfully prepared on a glass substrate by a sol-gel method. A chelated Aluminum-sec-butoxide (Al(OBus)3)solution, instead of aluminum hydroxide collosol, was used for the film coating. By immersing the film in boiling water, boehmite crystal was formed on a glass substrate.Subsequently, the rough surface was modified with fluoroalkylsilane (FAS). The result shows that the water droplet contact angle on the surface is 168.3°. The super-water-repellency is caused by the micro-nano structure and the low surface energy of the fluorinated surface. The reaction mechanism is proposed with the help of SEM,XRD and FT-IR analysis.

  16. Low Temperature Curing of Hydrogen Silsesquioxane Surface Coatings for Corrosion Protection of Aluminum

    DEFF Research Database (Denmark)

    Lampert, Felix; Jensen, Annemette Hindhede; Møller, Per

    2016-01-01

    Hydrogen Silsesquioxane (HSQ) has shown to be a promising precursor for corrosion protective glass coatings for metallic substrates due to the excellent barrier properties of the films, especially in the application of protective coatings for aluminum in the automotive industry where high chemical...... stability in alkaline environments is required. The coatings have been successfully applied to stainless steel substrates. However the traditional thermal curing of HSQ involves heating to elevated temperatures, which are beyond those applicable for most industrial applications of aluminum. In this study...... low temperature processes are tested and evaluated as possible alternatives to the traditional high temperature cure. Thin HSQ films are deposited onsilicon wafers to model the degree of curing induced by the low temperature methods in comparison to thermal curing.Furthermore, the coatings are applied...

  17. Delivery of F2-excimer laser light by aluminum hollow fibers.

    Science.gov (United States)

    Matsuura, Y; Yamamoto, T; Miyagi, M

    2000-06-19

    A hollow fiber composed of a glass-tube substrate and an aluminum thin film coated upon the inside of the tube delivers F2-excimer laser light. A smooth, aluminum thin film was deposited by using metal-organic chemical vapor deposition using dimethylethylamine:alane (DMEAA) as the precursor. It was shown that the transmission loss of the fiber with a 1.0-mm inner diameter was as low as 0.5 dB/m for the fiber with 1.0-mm diameter when the bore of the fiber is pressurized with an inert gas to remove the absorption of air. When the fiber is bent at the radius of 30 cm, the additional loss was 1.6 dB.

  18. Abrasive Wear Performance of Aluminium Modified Epoxy-Glass Fiber Composites

    Science.gov (United States)

    Kamble, Vikram G.; Mishra, Punyapriya; Al Dabbas, Hassan A.; Panda, H. S.; Fernandez, Johnathan Bruce

    2015-07-01

    For a long time, Aluminum filled epoxies molds have been used in rapid tooling process. These molds are very economical when applied in manufacturing of low volume of plastic parts. To improve the thermal conductivity of the material, the metallic filler material is added to it and the glass fiber improves the wear resistance of the material. These two important parameters establish the life of composites. The present work reports on abrasive wear behavior of Aluminum modified epoxy and glass fiber composite with 5 wt.% and 10 wt.% of aluminum particles. Through pin on disc wear testing machine, we studied the wear behaviors of composites, and all these samples were fabricated by using hand layup process. Epoxy resin was used as matrix material which was reinforced with Glass fiber and Aluminum as filler. The composite with 5 wt.% and 10 wt.% of Al was cast with dimensions 100 × 100 × 6 mm. The specimens were machined to a size of 6 × 6 × 4 mm for abrasive testing. Abrasive tests were carried out for different grit paper sizes, i.e., 150, 320, 600 at different sliding distance, i.e., 20, 40, 60 m at different loads of 5, 10 and 15 N and at constant speed. The weight loss due to wear was calculated along with coefficient of friction. Hardness was found using Rockwell hardness machine. The SEM morphology of the worn out surface wear was analyzed to understand the wear mechanism. Results showed that the addition of Aluminum particles was beneficial for low abrasive conditions.

  19. Microcraters formed in glass by projectiles of various densities

    Science.gov (United States)

    Vedder, J. F.; Mandeville, J.-C.

    1974-01-01

    An experiment was conducted investigating the effect of projectile density on the structure and size of craters in soda lime glass and fused quartz. The projectiles were spheres of polystyrene-divinylbenzene (PS-DVB), aluminum, and iron with velocities between 0.5 and 15 km/sec and diameters between 0.4 and 5 microns. The projectile densities spanned the range expected for primary and secondary particles of micrometer size at the lunar surface, and the velocities spanned the lower range of micrometeoroid velocities and the upper range of secondary projectile velocities. There are changes in crater morphology as the impact velocity increases, and the transitions occur at lower velocities for the projectiles of higher density. The sequence of morphological features of the craters found for PS-DVB impacting soda lime glass for increasing impact velocity, described in a previous work (Mandeville and Vedder, 1971), also occurs in fused quartz and in both targets with the more dense aluminum and iron projectiles. Each transition in morphology occurs at impact velocities generating a certain pressure in the target. High density projectiles require a lower velocity than low-density projectiles to generate a given shock pressure.

  20. Local atomic structures of single-component metallic glasses

    Science.gov (United States)

    Trady, Salma; Hasnaoui, Abdellatif; Mazroui, M.'hammed; Saadouni, Khalid

    2016-10-01

    In this study we examine the structural properties of single-component metallic glasses of aluminum. We use a molecular dynamics simulation based on semi-empirical many-body potential, derived from the embedded atom method (EAM). The radial distribution function (RDF), common neighbors analysis method (CNA), coordination number analysis (CN) and Voronoi tessellation are used to characterize the metal's local structure during the heating and cooling (quenching). The simulation results reveal that the melting temperature depends on the heating rate. In addition, atomic visualization shows that the structure of aluminum after fast quenching is in a glassy state, confirmed quantitatively by the splitting of the second peak of the radial distribution function, and by the appearance of icosahedral clusters observed via CNA technique. On the other hand, the Wendt-Abraham parameters are calculated to determine the glass transition temperature (Tg), which depends strongly on the cooling rate; it increases while the cooling rate increases. On the basis of CN analysis and Voronoi tessellation, we demonstrate that the transition from the Al liquid to glassy state is mainly due to the formation of distorted and perfect icosahedral clusters.

  1. Heliostat glass survey and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Lind, M. A.; Russin, J. M.

    1978-01-01

    The glass characterization and specification task included a comprehensive survey of both foreign and domestic sources of low distortion, low iron, .125 nominal flat glass for use in heliostat applications. PNL attempted to determine the availability of production lines, estimate industry interest, lead times, and costs for producing glass for second surface heliostat mirrors for the Barstow pilot plant and future commercial plants. Glass samples representative of the industry production capability were collected and characterized. The results of the survey and analysis were used to generate a specification for the Barstow Pilot Plant glass procurement.

  2. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  3. Development of Alcoa aluminum foam products

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.D.; Crowley, M.D.; Wang, W.; Wilhelmy, D.M.; Hunter, D.E. [Alcoa Technical Center, Alcoa Center, PA (United States)

    2007-07-01

    A new lightweight aluminum foam product was described. The foam was made through the controlled decomposition of carbonate powders within molten aluminum and was able to resist both coalescence and drainage. The fine-celled aluminum foam derived its physical and mechanical properties from the properties of the aluminum alloy matrix from which they were produced. The rheology of the molten aluminum was modified to provide a superior mesostructure. Stabilization was achieved by creating a solid-gas-liquid suspension initiated by the addition of carbonates into an aluminum alloy melt. A cascade of chemical reactions then occurred within the melt to create a foamable suspension. Carbon monoxide (CO) was generated to initiate an additional sequence of chemical reactions which resulted in the formation of solid particles within the liquid metal. CO reacted with liquid Al to form graphite. The graphite then reacted with Al to form aluminum carbide (Al{sub 4}C{sub 3}). The microstructural, mesostructural, and mechanical character of the foams produced under different processing conditions were examined. Details of experimental test procedures were also described. It was concluded that the specific crush energy absorption was as high as 20 kJ/kg. The foam exhibited a bending stiffness that was approximately 20 to 30 times higher than balsa and polymer foams. 14 refs., 2 tabs., 7 figs.

  4. Characterization of monazite glass-ceramics as wasteform for simulated {alpha}-HLLW

    Energy Technology Data Exchange (ETDEWEB)

    He Yong [Materials Science and Chemical Engineering College, China University of Geosciences, Wuhan 430074 (China)], E-mail: heyongyu@263.net; Lue Yanjie; Zhang Qian [Materials Science and Chemical Engineering College, China University of Geosciences, Wuhan 430074 (China)

    2008-05-31

    Two monazite glass-ceramic wasteforms were sintered by mixing the lanthanum metaphosphate glass powder with the oxide powder of the components in simulated {alpha}-HLWs. The co-existence of components Al and Mo in an iron phosphate melt separated the melt into two immiscible glass melts, namely aluminum iron phosphate glass (Gb) and molybdenum iron phosphate glass (Gg). 24 wt% of ZrO{sub 2}, together with P{sub 2}O{sub 5} and proper amounts of Fe and Mo formed a zirconium pyrophosphate glass (Gg1), which was immiscible with the phase Gg. The iron ions in the wasteforms were all in Fe{sup 3+}, 1/3 of which was in 4-fold coordination. The O/P and O/(P + 1/3Fe{sup 3+}) ratios for the glass phases were Gg1 3.70, Gb 3.89-3.98, Gg 4.23-4.25, and Gg1 3.58, Gb 3.47-3.42, Gg 3.74-3.69, respectively. The dissolution rates of two wasteforms were 0.3008 and 0.2598 g/m{sup 2}d, respectively.

  5. Production of glass or glass-ceramic to metal seals with the application of pressure

    Science.gov (United States)

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  6. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: pgottesfeld@okinternational.org [Occupational Knowledge International, San Francisco, CA (United States)

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  7. Breaking the glass ceiling.

    Science.gov (United States)

    Lazarus, A

    1997-03-01

    The glass ceiling is a form of organizational bias and discrimination that prevents qualified professionals from achieving positions of top governance and leadership. This article examines glass ceiling barriers that keep physicians from the upper reaches of management. While these factors apply mainly to women and minority physicians in academia, and are attributable to sexual harassment and discrimination, physicians as a class are frequently denied executive management positions. Such denial results from inadequate preparation for a career in health care administration. Important issues in the professional development of physician executives include mentoring, training and education, administrative experience, and cultural and personality factors. All of those must be considered when making the transition from medicine to management.

  8. Glasses for Mali

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, Bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  9. Supersymmetric Spin Glass

    CERN Document Server

    Gukov, S G

    1997-01-01

    The evidently supersymmetric four-dimensional Wess-Zumino model with quenched disorder is considered at the one-loop level. The infrared fixed points of a beta-function form the moduli space $M = RP^2$ where two types of phases were found: with and without replica symmetry. While the former phase possesses only a trivial fixed point, this point become unstable in the latter phase which may be interpreted as a spin glass phase.

  10. IMPROVEMENT OF THE CRYSTALLINITY AND OPTICAL PARAMETERS OF ZnO FILM WITH ALUMINUM DOPING

    OpenAIRE

    Ilican, Saliha

    2016-01-01

    In this study, the undoped and Aluminum (Al) doped (1% and 3%) zinc oxide (ZnO) films were prepared by sol gel method via spin coating onto glass substrates. To investigate the structural and optical properties of the films, it was used to X-ray diffractometer and UV-vis spectrophotometer, respectively. The prepared ZnO films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the (002) plane. The crystalline quality of ZnO film was improved by...

  11. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  12. Nanshan Aluminum Reached Strategic Cooperation with CSR Corporation Limited

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As a key supplier of aluminum profiles and aluminum plate,sheet and trip products for CSR Corporation Limited,Nanshan Aluminum will join hands with CSR Corporation Limited to reach strategic cooperation.On January 5,Nanshan Aluminum signed strategic cooperation agreement with CSR Sifang Locomotive&Rolling; Stock Co.,Ltd,both

  13. Changes in porosity of foamed aluminum during solidification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  14. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  15. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  16. Fabrication of novel fiber reinforced aluminum composites by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Arab, Seyyed Mohammad; Karimi, Saeed; Jahromi, Seyyed Ahmad Jenabali, E-mail: jahromi@shirazu.ac.ir; Javadpour, Sirus; Zebarjad, Seyyed Mojtaba

    2015-04-24

    In this study, chopped and attrition milled high strength carbon, E-glass, and S-glass fibers have been used as the reinforcing agents in an aluminum alloy (Al1100) considered as the matrix. The Surface Metal Matrix Composites (SMMCs) then are produced by Friction Stir Processing (FSP). Tensile and micro-hardness examinations represent a magnificent improvement in the hardness, strength, ductility and toughness for all of the processed samples. Scanning Electron Micrographs reveal a proper distribution of the reinforcements in the matrix and a change in the fracture behavior of the FSPed specimens. The synergetic effects of reinforcing by fibers and Severe Plastic Deformation (SPD) lead to an extra ordinary improvement in the mechanical properties.

  17. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  18. Analytical Plan for Roman Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  19. South West Aluminum: Next year The Capacity of Auto-use Aluminum Sheet will Reach 5000 Tonnes

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Following supplying supporting aluminum products for"Shenzhou"spacecraft,"Long March"rocket,Boeing and Airbus,South West Aluminum again tapped new economic growth points,i.e.automobile-use aluminum products.According to what the reporter has learned from South West Aluminum Group recently,this group has finished early stage

  20. Aluminum recovery as a product with high added value using aluminum hazardous waste.

    Science.gov (United States)

    David, E; Kopac, J

    2013-10-15

    The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al(3+) soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%).

  1. Preliminary Study on Aluminum Content of Foods and Aluminum Intake of Residents in Tianjin

    Institute of Scientific and Technical Information of China (English)

    XUGe-Sheng; JINRng-Pei; 等

    1993-01-01

    Aluminum contents of 64 kinds of foods in Tianjin were detrmined.The results showed that the aluminum levels in diffeent kinds of foods varied greatly,and most foodstuffs from natural sources(including contamination from food processing)contained less than 10mg/kg,Aluminum contents were higher in foodstuffs of plant origin,especiallydry beans containing large amounts of aluminum naturally.Lower concentration of aluminum seemed to be present in foodstuffs of animal origin.It was estimated that the potential daily intake of aluminum per person from natural dietary sources in Tianjin was about 3.79 mg.This estimated figure of dietary aluminum intake was very close to the measured data from 24 daily diets of college students.which was 4.86±1.72mg.Considering all the potential sources of natural aluminum in foods.water and the individual habitual food,it would apear that most residents in Tianjin would consume 3-10mg aluminum daily from natural dietary sources.

  2. Southwest Aluminum Increase Two Production Lines and May Become the Largest Aluminum Fabricator In the World

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Recently,Wu Bing,Director of Chongqing Economic Committee,announced at the"Industrial Economy Meeting"that the city will"facilitate the technical upgrade and capacity expansion of the existing production lines at Southwest Aluminum with great efforts on the construction of one additional hot continuous rolling line and one cold continuous rolling line so as to have a comprehensive production ca- pacity of 1.2 million tons on aluminum processing profiles for the achievement of building Southwest Aluminum into the world largest aluminum processing enterprise".

  3. Over-heated Investment in Aluminum Hub Industry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Aluminum hub is one of typical products with the comparative advantages.China’s aluminum hub industry is very competitive.In recent years,the value of export for the aluminum hub soared,increasing from USD130 millions in 1999 up to nearly USD1 billion in 2004.The main exporter are Wanfeng Auto Holding Group,Shanghai Fervent Alloy Wheel MFG Co.,Ltd.,Nanhai Zhongnan Aluminum Co., Ltd.,Taian Huatai Aluminum Hub Co.,Ltd.

  4. Aluminum-CNF Lightweight Radiator Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal relates to a new materials concept for an aluminum-carbon nanofiber composite, high thermal conductivity ultra lightweight material that will form the...

  5. Profit of Aluminum Industry Dropped Sharply

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>On August 2nd,the Ministry of Industry and Information Technology published the performance of nonferrous metal industry in the first half of 2011.Relevant data showed that due to cost increase,aluminum smelting enter

  6. Inhibition of aluminum corrosion using Opuntia extract

    Energy Technology Data Exchange (ETDEWEB)

    El-Etre, A.Y

    2003-11-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions.

  7. Aluminum plasmonic multicolor meta-hologram.

    Science.gov (United States)

    Huang, Yao-Wei; Chen, Wei Ting; Tsai, Wei-Yi; Wu, Pin Chieh; Wang, Chih-Ming; Sun, Greg; Tsai, Din Ping

    2015-05-13

    We report a phase-modulated multicolor meta-hologram (MCMH) that is polarization-dependent and capable of producing images in three primary colors. The MCMH structure is made of aluminum nanorods that are arranged in a two-dimensional array of pixels with surface plasmon resonances in red, green, and blue. The aluminum nanorod array is patterned on a 30 nm thick SiO2 spacer layer sputtered on top of a 130 nm thick aluminum mirror. With proper design of the structure, we obtain resonances of narrow bandwidths to allow for implementation of the multicolor scheme. Taking into account of the wavelength dependence of the diffraction angle, we can project images to specific locations with predetermined size and order. With tuning of aluminum nanorod size, we demonstrate that the image color can be continuously varied across the visible spectrum.

  8. Masking of aluminum surface against anodizing

    Science.gov (United States)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  9. Shock wave compression behavior of aluminum foam

    Institute of Scientific and Technical Information of China (English)

    程和法; 黄笑梅; 薛国宪; 韩福生

    2003-01-01

    The shock wave compression behavior of the open cell aluminum foam with relative density of 0. 396 was studied through planar impact experiments. Using polyvinylidene fluoride(PVDF) piezoelectric gauge technique, the stress histories and propagation velocities of shock wave in the aluminum foam were measured and analyzed. The results show that the amplitude of shock wave attenuates rapidly with increasing the propagation distance in the aluminum foam, and an exponential equation of the normalized peak stress vs propagation distance of shock wave is established, the attenuation factor in the equation is 0. 286. Furthermore, the Hugoniot relation, νs = 516.85+ 1.27νp,for the aluminum foam is determined by empirical fit to the experimental Hugoniot data.

  10. China Aluminum Processing Industry Development Report 2011

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>In 2011,China’s aluminum processing industry maintained a high growth rate,with the aluminum output reaching 23,456,000tons,up 20.6% y-o-y.Overshadowed by complicated situation both at home and abroad,China’seconomy slowed down and declined by2.2% y-o-y.In 2011,China’s aluminum processing industry showed a downward tendency,that is,it grew at a high speed before the3rd quarter,but suffered from a shortage of orders in the remaining time of the year and the growth rate fell increasingly.Between January and August,China’s aluminum output rose by 26% y-o-y;

  11. Experimental investigation of the effects of aqueous species on the dissolution kinetics of R7T7 glass; Etude experimentale de l`influence d`especes aqueuses sur la cinetique de dissolution du verre nucleaire R7T7

    Energy Technology Data Exchange (ETDEWEB)

    Gin, S.

    1994-10-01

    This contribution to the study of aqueous corrosion of the French ``R7T7`` reference nuclear containment glass includes a bibliographic survey of prior investigations, highlighting the problems encountered in interpreting the interactions in systems containing clay materials in contact with the glass. An experimental methodology is proposed to investigate the effects of inorganic aqueous species separately from those of a few organic acids on the dissolution mechanisms and kinetics of R7T7 glass at 90 deg. C. The experimental results discussed support the idea that several glass network forming elements may have a kinetically limiting role. The most likely hypothesis to account for the absence of saturation conditions with respect to the glass in certain clay media involves the formation of complexes with kinetically limiting metallic elements such as aluminum released by glass corrosion. This work contributes to a better understanding of the basic mechanisms of nuclear glass dissolution in a geological repository environment. It facilitates the interpretation of glass alteration studies in realistic or actual solutions and may contribute to specifying near field chemical barriers in the form of additives (amorphous silica, aluminum hydroxides or phosphates) around the glass disposal package to enhance the stability of the glass matrix. (author). 148 refs., 40 figs., 32 tabs., 1 append.

  12. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  13. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  14. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  15. Transfer and transport of aluminum in filtration unit

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aluminum salt coagulants were used prevalently in various water works. In this article, the effects of filtration on residual aluminum concentration and species distribution were researched by determining the concentration of different Aluminum species before and after single layer filter, double layer filter, and membrane filtration units. In the research, size exclusion chromatography (SEC) was used to separate colloidal and soluble aluminum, ion exchange chromatography (IEC) was used to separate organic and inorganic aluminum, and inductivity coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine the aluminum concentration. The results showed that the rapid filtration process had the ability of removing residual aluminum from coagulant effluent water, and that double layer filtration was more effective in residual aluminum removal than single layer filtration, while Nano filtration was more effective than micro filtration. It was found that when the residual aluminum concentration was below 1mg/L in sediment effluent, the residual aluminum concentration in treated water was above 0.2 mg/L. The direct rapid filtration process mainly removed the suspended aluminum. The removal of soluble and colloidal aluminum was always less than 10% and the natural small particles that adsorbed the amount of soluble or small particles aluminum on their surface were difficult to be removed in this process. Micro filtration and nano filtration were good technologies for removing aluminum; the residual aluminum concentration in the effluent was less than 0.05 mg/L.

  16. Characterization of Supernate Samples from HLW Tanks 13H, 30H, 37H, 39H, 45F, 46F, and 49H

    Energy Technology Data Exchange (ETDEWEB)

    STALLINGS, MARY

    2004-07-02

    This document presents work conducted in support of technical needs expressed, in part, by the Engineering, Procurement, and Construction Contractor for the Salt Waste Processing Facility (SWPF). The Department of Energy (DOE) requested that Savannah River National Laboratory (SRNL) analyze and characterize supernate waste from seven selected High Level Waste (HLW) tanks to allow classification of feed to be sent to the SWPF, verification that SWPF processes will be able to meet Saltstone Waste Acceptance Criteria (WAC), and updating of the Waste Characterization System (WCS) database. This document provides characterization data of samples obtained from Tanks 13H, 30H, 37H, 39H, 45F, 46F, and 49H and discusses results.Characterization of the waste tank samples involved several treatments and analysis at various stages of sample processing. These analytical stages included as-received liquid, post-dilution to 6.44 M sodium (target), post-acid digestion, post-filtration (at 3 filtration pore sizes), and after cesium removal using ammonium molybdophosphate (AMP). Results and observations obtained from testing include the following. All tanks will require cesium removal as well as treatment with Monosodium Titanate (MST) for 90Sr (Strontium) decontamination. A small filtration effect for 90Sr was observed for five of the seven tank wastes. No filtration effects were observed for Pu (Plutonium), Np (Neptunium), U (Uranium), or Tc (Technetium). 137Cs (Cesium) concentration is approximately E+09 pCi/mL for all the tank wastes. Tank 37H is significantly higher in 90Sr than the other six tanks. 237Np in the F-Area tanks(45F and 46F) are at least 1 order of magnitude less than the H-Area tank wastes. The data indicate a constant ratio of 99Tc to Cs in the seven tank wastes. This indicates the Tc remains largely soluble in Savannah River Site (SRS) waste and partition similarly with Cs. 241Am (Americium) concentration was low in the seven tank wastes. The majority of data

  17. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  18. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  19. Advances in Glass Ionomer Cements

    OpenAIRE

    KAYA, Dt. Tuğba; TİRALİ, Yard. Doç. Dr. Resmiye Ebru

    2013-01-01

    In recent years there have been a number of innovations and developments with respect to glass ionomer cements and their applications in clinical dentistry. This article considers some of the recent outstanding studies regarding the field of glass ionomer cement applications, adhesion and setting mechanisms, types, advantage and disadvantages among themselves and also to enhance the physical and antibacterial properties under the title of 'Advances in Glass Ionomer Cements'. As their biologic...

  20. Structural color from colloidal glasses

    Science.gov (United States)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  1. A Two-Stage Layered Mixture Experiment Design for a Nuclear Waste Glass Application-Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Scott K.; Piepel, Gregory F.; Gan, Hao; Kot, Wing; Pegg, Ian L.

    2003-12-01

    Part 1 (Cooley and Piepel, 2003a) describes the first stage of a two-stage experimental design to support property-composition modeling for high-level waste (HLW) glass to be produced at the Hanford Site in Washington state. Each stage used a layered design having an outer layer, an inner layer, a center point, and some replicates. However, the design variables and constraints defining the layers of the experimental glass composition region (EGCR) were defined differently for the second stage than for the first. The first-stage initial design involved 15 components, all treated as mixture variables. The second-stage augmentation design involved 19 components, with 14 treated as mixture variables and 5 treated as non-mixture variables. For each second-stage layer, vertices were generated and optimal design software was used to select alternative subsets of vertices for the design and calculate design optimality measures. A model containing 29 partial quadratic mixture terms plus 5 linear terms for the non-mixture variables was the basis for the optimal design calculations. Predicted property values were plotted for the alternative subsets of second-stage vertices and the first-stage design points. Based on the optimality measures and the predicted property distributions, a ''best'' subset of vertices was selected for each layer of the second-stage to augment the first-stage design.

  2. Effect of aluminum and tellurium tetrachloride addition on the loss of arsenic selenide optical fiber

    Science.gov (United States)

    Nguyen, Vinh Q.; Drake, Gryphon; Villalobos, Guillermo; Gibson, Daniel; Bayya, Shyam; Kim, Woohong; Baker, Colin; Chin, Geoff; Kung, Frederic H.; Kotov, Mikhail I.; Busse, Lynda; Sanghera, Jasbinder S.

    2017-02-01

    Arsenic selenide glass optical fibers typically possess extrinsic absorption bands in the infrared wavelength regions associated with residual hydrogen and oxygen related impurities, despite using 6N purified elemental precursors. Consequently, special additives and refined processing steps are utilized in an attempt to reduce these and other impurities. We investigate the formation of particulate impurities during a purification process based on the addition of 0.1 wt% elemental aluminum (Al) and 0.2 wt% tellurium tetrachloride (TeCl4) during glass synthesis. It was found that during purification and melting steps, Al reacts with TeCl4 to form AlCl3, which in turn reacts with oxygen and hydrogen impurities and the fused quartz (SiO2) ampoule to produce HCl and stable submicron Al2SiO5 compounds in the As-Se glass and fibers. The intensity of the H-Se absorption band centered at 4.57 μm has been significantly reduced from 18 dB/m to 0.8 dB/m. Using thermodynamic data, we have identified stable Al2SiO5 submicron inclusions in the glass and fibers. A two-step gettering process is proposed as a solution to eliminating these inclusions.

  3. Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications.

    Science.gov (United States)

    Hong, Chitsung; Tang, Tsung-Ta; Hung, Chi-Yu; Pan, Ru-Pin; Fang, Weileun

    2010-07-16

    This paper reports the implementation and integration of a self-assembled nanoporous anodic aluminum oxide (np-AAO) film and liquid crystal (LC) on an ITO-glass substrate for liquid crystal display (LCD) panel applications. An np-AAO layer with a nanopore array acts as the vertical alignment layer to easily and uniformly align the LC molecules. Moreover, the np-AAO nanoalignment layer provides outstanding material properties, such as being inorganic with good transmittance, and colorless on ITO-glass substrates. In this application, an LCD panel, with the LC on the np-AAO nanoalignment layer, is successfully implemented on an ITO-glass substrate, and its performance is demonstrated. The measurements show that the LCD panel, consisting of an ITO-glass substrate and an np-AAO layer, has a transmittance of 60-80%. In addition, the LCD panel switches from a black state to a bright state at 3 V(rms), with a response time of 62.5 ms. In summary, this paper demonstrates the alignment of LC on an np-AAO layer for LCD applications.

  4. Toughness of Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Shantanu V. Madge

    2015-07-01

    Full Text Available Bulk metallic glasses (BMGs have desirable properties like high strength and low modulus, but their toughness can show much variation, depending on the kind of test as well as alloy chemistry. This article reviews the type of toughness tests commonly performed and the factors influencing the data obtained. It appears that even the less-tough metallic glasses are tougher than oxide glasses. The current theories describing the links between toughness and material parameters, including elastic constants and alloy chemistry (ordering in the glass, are discussed. Based on the current literature, a few important issues for further work are identified.

  5. Nanostructures Using Anodic Aluminum Oxide

    Science.gov (United States)

    Valmianski, Ilya; Monton, Carlos M.; Pereiro, Juan; Basaran, Ali C.; Schuller, Ivan K.

    2013-03-01

    We present two fabrication methods for asymmetric mesoscopic dot arrays over macroscopic areas using anodic aluminum oxide templates. In the first approach, metal is deposited at 45o to the template axis to partially close the pores and produce an elliptical shadow-mask. In the second approach, now underway, nanoimprint lithography on a polymer intermediary layer is followed by reactive ion etching to generate asymmetric pore seeds. Both these techniques are quantified by an analysis of the lateral morphology and lattice of the pores or dots using scanning electron microscopy and a newly developed MATLAB based code (available for free download at http://ischuller.ucsd.edu). The code automatically provides a segmentation of the measured area and the statistics of morphological properties such as area, diameter, and eccentricity, as well as the lattice properties such as number of nearest neighbors, and unbiased angular and radial two point correlation functions. Furthermore, novel user defined statistics can be easily obtained. We will additionally present several applications of these methods to superconducting, ferromagnetic, and organic nanostructures. This work is supported by AFOSR FA9550-10-1-0409

  6. Industrial high-rate (~14 nm/s) deposition of low resistive and transparent ZnOx:Al films on glass

    NARCIS (Netherlands)

    Illiberi, A.; Kniknie, B.; Deelen, J. van; Steijvers, H.L.A.H.; Habets, D.; Simons, P.J.P.M.; Janssen, A.C.; Beckers, E.H.A.

    2011-01-01

    Aluminum doped ZnOx (ZnOx:Al) films have been deposited on glass in an in-line industrial-type reactor by a metalorganic chemical vapor deposition process at atmospheric pressure. Tertiary-butanol has been used as oxidant for diethylzinc and trimethylaluminium as dopant gas. ZnOx:Al films can be gro

  7. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement

    Directory of Open Access Journals (Sweden)

    Mariana Etcheverry

    2012-06-01

    Full Text Available Glass fibers (GF are the reinforcement agent most used in polypropylene (PP based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers.

  8. Calibration of a laboratory spectrophotometer for specular light by means of stacked glass plates.

    Science.gov (United States)

    Allen, W. A.; Richardson, A. J.

    1971-01-01

    Stacked glass plates have been used to calibrate a laboratory spectrophotometer, over the spectral range 0.5-2.5 microns, for specular light. The uncalibrated instrument was characterized by systematic errors when used to measure the reflectance and transmittance of stacked glass plates. Calibration included first, a determination of the reflectance of a standard composed of barium sulfate paint deposited on an aluminum plate; second, the approximation of the reflectance and transmittance residuals between observed and computed values by means of cubic equations; and, finally, the removal of the systematic errors by a computer. The instrument, after calibration, was accurate to 1% when used to measure the reflectance and transmittance of stacked glass plates.

  9. Proposals of geological sites for L/ILW and HLW repositories. Geological background. Text volume; Vorschlag geologischer Standortgebiete fuer das SMA- und das HAA-Lager. Geologische Grundlagen. Textband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    On April 2008, the Swiss Federal Council approved the conceptual part of the Sectoral Plan for Deep Geological Repositories. The Plan sets out the details of the site selection procedure for geological repositories for low- and intermediate-level waste (L/ILW) and high-level waste (HLW). It specifies that selection of geological siting regions and sites for repositories in Switzerland will be conducted in three stages, the first one (the subject of this report) being the definition of geological siting regions within which the repository projects will be elaborated in more detail in the later stages of the Sectoral Plan. The geoscientific background is based on the one hand on an evaluation of the geological investigations previously carried out by Nagra on deep geological disposal of HLW and L/ILW in Switzerland (investigation programmes in the crystalline basement and Opalinus Clay in Northern Switzerland, investigations of L/ILW sites in the Alps, research in rock laboratories in crystalline rock and clay); on the other hand, new geoscientific studies have also been carried out in connection with the site selection process. Formulation of the siting proposals is conducted in five steps: A) In a first step, the waste inventory is allocated to the L/ILW and HLW repositories; B) The second step involves defining the barrier and safety concepts for the two repositories. With a view to evaluating the geological siting possibilities, quantitative and qualitative guidelines and requirements on the geology are derived on the basis of these concepts. These relate to the time period to be considered, the space requirements for the repository, the properties of the host rock (depth, thickness, lateral extent, hydraulic conductivity), long-term stability, reliability of geological findings and engineering suitability; C) In the third step, the large-scale geological-tectonic situation is assessed and large-scale areas that remain under consideration are defined. For the L

  10. Joints in Tempered Glass Using Glass Dowel Discs

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Poulsen, Peter Noe

    transparency of the glass. This is achieved by using a dowel disc made entirely of tempered glass. The concept of the joint is proved by pilot tests and numerical models. From the work it is seen that the load-carrying capacity of such a connection is similar to what is found for traditionally in-plane loaded...

  11. Comparison of Leaching Rates of Glass-Ceramic and Glass

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>With the increase of the burn-up of the nuclear fuel, the amounts of the long-lived radionuclides increase. The solubility of actinides such as plutonium in glass is very limited. Glass-ceramic as the new

  12. POROUS WALL, HOLLOW GLASS MICROSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to &apos

  13. Quasicrystalline Approach to Prediting the Spinel-Nepheline Liquidus: Application to Nuclear Waste Glass Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol

    2005-10-10

    The crystal-melt equilibria in complex fifteen component melts are modeled based on quasicrystalline concepts. A pseudobinary phase diagram between acmite (which melts incongruently to a transition metal ferrite spinel) and nepheline is defined. The pseudobinary lies within the Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-Na{sub 2}O-SiO{sub 2} quaternary system that defines the crystallization of basalt glass melts. The pseudobinary provides the partitioning of species between the melt and the primary liquidus phases. The medium range order of the melt and the melt-crystal exchange equilibria are defined based on a constrained mathematical treatment that considers the crystallochemical coordination of the elemental species in acmite and nepheline. The liquidus phases that form are shown to be governed by the melt polymerization and the octahedral site preference energies. This quasicrystalline liquidus model has been used to prevent unwanted crystallization in the world's largest high level waste (HLW) melter for the past three years while allowing >10 wt% higher waste loadings to be processed.

  14. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    Science.gov (United States)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  15. Deposition of aluminum-magnesium alloys from electrolytes containing organo-aluminum complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, H.; Mehler, K.; Bongard, H.; Tesche, B. [Max-Planck-Inst. fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Reinhold, B. [Audi AG Technische Entwicklung, Ingolstadt (Germany)

    2001-06-01

    Organo-aluminum compounds have been used for many years as electrolytes in the coating industry. In this communication the development of a galvanic process for generating aluminum-magnesium coatings from organometallic electrolyte systems is reported as well as results on physical properties like adhesion, ductility and corrosion resistance. (orig.)

  16. Influence of the Substrate on the Formation of Metallic Glass Coatings by Cold Gas Spraying

    Science.gov (United States)

    Henao, John; Concustell, Amadeu; Dosta, Sergi; Cinca, Núria; Cano, Irene G.; Guilemany, Josep M.

    2016-06-01

    Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 108 to 109 s-1, involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology.

  17. The Preparation and Characterization of INTEC HAW Phase I Composition Variation Study Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Musick, C. A.; Peeler, D. K.; Piepel, G. F.; Scholes, B. A.; Staples, B. A.; Vienna, J. D.

    1999-03-01

    A glass composition variation study (CVS) is in progress to define formulations for the vitrification of high activity waste (HAW) proposed to be separated from dissolved calcine stored at the Idaho National Engineering and Environmental Laboratory (INEEL). Estimates of calcine and HAW compositions prepared in FY97 were used to define test matrix glasses. The HAW composition is of particular interest because high aluminum, zirconium, phosphorous and potassium, and low iron and sodium content places it outside the realm of vitrification experience in the Department of Energy (DOE) complex. Through application of statistical techniques, a test matrix was defined for Phase 1 of the CVS. From this matrix, formulations were systematically selected for preparation and characterization with respect to homogeneity, viscosity, liquidus temperature (TL), and leaching response when subjected to the Product Consistency Test (PCT). Based on the properties determined, certain formulations appear suitable for further development including use in planning Phase 2 of the study. It is recommended that glasses to be investigated in Phase 2 be limited to 3-5 wt % phosphate. The results of characterizing the Phase 1 glasses are presented in this document. A full analysis of the composition-property relationships of glasses being developed for immobilizing HAWs will be performing at the completion of CVS phases. This analysis will be needed for the optimization of the glass formulations of vitrifying HAW. Contributions were made to this document by personnel working at the INEEL, Pacific Northwest National Laboratories (PNNL), and the Savannah River Technology Center (SRTC).

  18. Polarization properties of real aluminum mirrors; I. Influence of the aluminum oxide layer

    CERN Document Server

    van Harten, G; Keller, C U

    2009-01-01

    In polarimetry it is important to characterize the polarization properties of the instrument itself to disentangle real astrophysical signals from instrumental effects. This article deals with the accurate measurement and modeling of the polarization properties of real aluminum mirrors, as used in astronomical telescopes. Main goals are the characterization of the aluminum oxide layer thickness at different times after evaporation and its influence on the polarization properties of the mirror. The full polarization properties of an aluminum mirror are measured with Mueller matrix ellipsometry at different incidence angles and wavelengths. The best fit of theoretical Mueller matrices to all measurements simultaneously is obtained by taking into account a model of bulk aluminum with a thin aluminum oxide film on top of it. Full Mueller matrix measurements of a mirror are obtained with an absolute accuracy of ~1% after calibration. The determined layer thicknesses indicate logarithmic growth in the first few hou...

  19. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    Science.gov (United States)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2016-10-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  20. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  1. Oxidation kinetics of aluminum diboride

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Michael L., E-mail: michaelwhittaker2016@u.northwestern.edu [Department of Materials Science and Engineering, University of Utah, 122S. Central Campus Drive, Salt Lake City, UT 84112 (United States); Sohn, H.Y. [Department of Metallurgical Engineering, University of Utah, 135S 1460 E, Rm 00412, Salt Lake City, UT 84112 (United States); Cutler, Raymond A. [Ceramatec, Inc., 2425S. 900W., Salt Lake City, UT 84119 (United States)

    2013-11-15

    The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time

  2. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation.

    Science.gov (United States)

    Cao, Bingdi; Zhang, Weijun; Wang, Qiandi; Huang, Yangrui; Meng, Chenrui; Wang, Dongsheng

    2016-11-15

    Chemical conditioning is one of the most important processes for improve the performance of sludge dewatering device. Aluminum salt coagulant has been widely used in wastewater and sludge treatment. It is generally accepted that pre-formed speciation of aluminum salt coagulants (ASC) has an important influence on coagulation/flocculation performance. In this study, the interaction mechanisms between sludge particles and aluminum salt coagulants with different speciation of hydroxy aluminum were investigated by characterizing the changes in morphological and EPS properties. It was found that middle polymer state aluminum (Alb) and high polymer state aluminum (Alc) performed better than monomer aluminum and oligomeric state aluminum (Ala) in reduction of specific resistance to filtration (SRF) and compressibility of wastewater sludge due to their higher charge neutralization and formed more compact flocs. Sludge was significantly acidified after addition Ala, while pH was much more stable under Alb and Alc conditioning due to their hydrolysis stability. The size of sludge flocs conditioned with Alb and Alc was small but flocs structure was denser and more compact, and floc strength is higher, while that formed from Ala is relatively large, but floc structure was loose, floc strength is relatively lower. Scanning environmental microscope analysis revealed that sludge flocs conditioned by Alb and Alc (especially PAC2.5 and Al13) exhibited obvious botryoidal structure, this is because sludge flocs formed by Alb and Alc were more compact and floc strength is high, it was easy generated plentiful tiny channels for water release. In addition, polymeric aluminum salt coagulant (Alb, Alc) had better performance in compressing extracellular polymeric substances (EPS) structure and removing sticky protein-like substances from soluble EPS fraction, contributing to improvement of sludge filtration performance. Therefore, this study provides a novel solution for improving sludge

  3. Kinetics of aluminum lithium alloys

    Science.gov (United States)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  4. Glasses in the D'Orbigny Angrite

    Science.gov (United States)

    Varela, M. E.; Kurat, G.; Brandstätter, F.; Bonnin-Mosbah, M.; Metrich, N.

    2001-03-01

    The D'Orbigny angrite contains abundant glasses, a phase which has not been previously reported from any other angrite. Glasses fill in part open druses and intersticial spaces between major silicates, or occur as glass inclusions in olivine.

  5. Holder for rotating glass body

    Science.gov (United States)

    Kolleck, Floyd W.

    1978-04-04

    A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint.

  6. OPAL Various Lead Glass Blocks

    CERN Multimedia

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  7. International Congress on Glass XII

    Energy Technology Data Exchange (ETDEWEB)

    Doremus, R H; LaCourse, W C; Mackenzie, J D; Varner, J R; Wolf, W W [eds.

    1980-01-01

    A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)

  8. Fullerene-doped porous glasses

    Science.gov (United States)

    Joshi, M. P.; Kukreja, L. M.; Rustagi, K. C.

    We report the doping of C60 in porous glass by diffusion in solution phase at room temperature. The presence of C60 in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials.

  9. Fullerene-doped porous glasses

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M.P. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group; Kukreja, L.M. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group; Rustagi, K.C. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group

    1997-07-01

    We report the doping of C{sub 60} in porous glass by diffusion in solution phase at room temperature. The presence of C{sub 60} in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials. (orig.)

  10. Formation and properties of stabilized aluminum nanoparticles.

    Science.gov (United States)

    Meziani, Mohammed J; Bunker, Christopher E; Lu, Fushen; Li, Heting; Wang, Wei; Guliants, Elena A; Quinn, Robert A; Sun, Ya-Ping

    2009-03-01

    The wet-chemical synthesis of aluminum nanoparticles was investigated systematically by using dimethylethylamine alane and 1-methylpyrrolidine alane as precursors and molecules with one or a pair of carboxylic acid groups as surface passivation agents. Dimethylethylamine alane was more reactive, capable of yielding well-defined and dispersed aluminum nanoparticles. 1-Methylpyrrolidine alane was less reactive and more complex in the catalytic decomposition reaction, for which various experimental parameters and conditions were used and evaluated. The results suggested that the passivation agent played dual roles of trapping aluminum particles to keep them nanoscale during the alane decomposition and protecting the aluminum nanoparticles postproduction from surface oxidation and that an appropriate balance between the rate of alane decomposition (depending more sensitively on the reaction temperature) and the timing in the introduction of the passivation agent into the reaction mixture was critical to the desired product mixes and/or morphologies. Some fundamental and technical issues on the alane decomposition and the protection of the resulting aluminum nanoparticles are discussed.

  11. Evaluation of Aluminum in Iranian Consumed Tea

    Directory of Open Access Journals (Sweden)

    Alireza Asgari

    2008-01-01

    Full Text Available Introduction: Black tea leaf is one of the most important sources of Aluminum in dietary. Therefore this research was conducted to assess the amount of Aluminum in Iranian tea infusion. Methods: To assess Aluminum in Iranian consumed tea, 27 tea samples were analyzed for Al concentration for 10 and 60 min infusion, aluminum concentration was measured with atomic absorption and the results were analyzed by SPSS.13 version. Results: The results showed that minimum and maximum concentration of Al in tea infusion for 10 min infusion was 1.59 and 18.60 mg.L-1 respectively in this regard Baroti and Bamdad tea show the highest and lowest concentration respectively in term of Al, Also Statistical analysis with pair T-test showed that infusion time doesn,t significantly effects on aluminum leaching into infusion (P>0.05. Calculation of percentage "available" Al to the human system showed that 1 L of tea can provide 17.68 % of the daily dietary intake of Al, the percentage "available" for absorption in the intestine is only 8.49 % for overall mean Al concentration. Conclusion: Therefore based on our results, tea consumption in medium values cannot cause toxic effects on human. Although it is necessary to note that tea consumption might be toxic because of effects on people with absorption or secretion problems

  12. Energetics of glass fragmentation: Experiments on synthetic and natural glasses

    Science.gov (United States)

    Kolzenburg, S.; Russell, J. K.; Kennedy, L. A.

    2013-11-01

    Natural silicate glasses are an essential component of many volcanic rock types including coherent and pyroclastic rocks; they span a wide range of compositions, occur in diverse environments, and form under a variety of pressure-temperature conditions. In subsurface volcanic environments (e.g., conduits and feeders), melts intersect the thermodynamically defined glass transition temperature to form glasses at elevated confining pressures and under differential stresses. We present a series of room temperature experiments designed to explore the fundamental mechanical and fragmentation behavior of natural (obsidian) and synthetic glasses (Pyrex™) under confining pressures of 0.1-100 MPa. In each experiment, glass cores are driven to brittle failure under compressive triaxial stress. Analysis of the load-displacement response curves is used to quantify the storage of energy in samples prior to failure, the (brittle) release of elastic energy at failure, and the residual energy stored in the post-failure material. We then establish a relationship between the energy density within the sample at failure and the grain-size distributions (D-values) of the experimental products. The relationship between D-values and energy density for compressive fragmentation is significantly different from relationships established by previous workers for decompressive fragmentation. Compressive fragmentation is found to have lower fragmentation efficiency than fragmentation through decompression (i.e., a smaller change in D-value with increasing energy density). We further show that the stress storage capacity of natural glasses can be enhanced (approaching synthetic glasses) through heat treatment.

  13. Mechanical and Electrical Properties of Aluminum/Epoxy Nanocomposites

    Science.gov (United States)

    Dong, Lina; Zhou, Wenying; Sui, Xuezhen; Wang, Zijun; Cai, Huiwu; Wu, Peng; Zhang, Yating; Zhou, Anning

    2016-11-01

    Surface-modified self-passivated aluminum (Al) nanoparticles were used for reinforcing epoxy (EP) resin, and the curing behavior, mechanical and electrical properties of the Al/EP nanocomposites were investigated. The incorporation of Al nanoparticles into EP significantly decreases the cure reaction enthalpy of the nancomposites, and the apparent activation energy of Al/EP systems is 64.96 kJ/mol. The coefficient of thermal expansion of the nanocomposites decreases with increasing the Al loading due to the strong interaction between the Al and the EP matrix. The storage modulus of the nanocomposites increases continuously with Al content, whereas, the glass transition temperature declines slightly. With increasing the Al content, the tensile modulus, flexural modulus and compressive modulus of the nanocomposites increase continuously compared with the neat one. The mechanical properties are improved by Al nanoparticles at low Al contents. The best overall dielectric and electrical performance are achieved about at 1 wt.% of Al concentration. The enhanced dielectric breakdown strength is mainly related to the insulating alumina shell on the surface of core Al and the strong interfacial interactions.

  14. UV fluorescence lifetime modification by aluminum and magnesium nanoapertures

    Science.gov (United States)

    Wang, Yunshan; Jiao, Xiaojin; Peterson, Eric M.; Harris, Joel M.; Appusamy, Kanagasundar; Guruswamy, Sivaraman; Blair, Steve

    2016-09-01

    Ultra-violet (UV) fluorescence lifetime modification by aluminum (Al) and magnesium (Mg) nanoapertures are reported in this manuscript. Nanoapertures with diameter ranging from 30nm to 90nm are fabricated using focused ion beam (FIB). Largest lifetime reduction are observed for apertures with smallest diameters and undercuts into glass substrate. For Al nanoapertures, largest lifetime reduction is 5.30×, larger than perviously reported 3.50×.1 For Mg nanoapertures, largest lifetime reduction is 6.90×, which is the largest lifetime reduction of UV fluorescence dye reported so far in literature. The dependence of count rate per molecule (CRM) on aperture size and undercut is also investigated, revealing that CRM increases with increasing undercut, however, the CRM is small (less than 2) for the entire range of aperture size and undercut we investigated. FDTD simulation were conducted and in order to favorably compare experimental results with simulated results, it is critical to take into account the exact shape and material properties of the nano aperture. Simulation results revealed the fundamental difference between Al and Mg nano aperture under 266nm illumination-Mg nano aperture presents a waveguide mode in which the maximum field enhancement and Purcell factor is within the nano aperture instead of on the surface which is the case for Al nano aperture.

  15. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  16. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The operational requirements for the River Protection Project - Waste Treatment Plant (RPP-WTP) Low Activity Waste (LAW) and High Level Waste (HLW) melter systems, together with the feed constituents, impose a number of challenges to the off-gas treatment system. The system must be robust from the standpoints of operational reliability and minimization of maintenance. The system must effectively control and remove a wide range of solid particulate matter, acid mists and gases, and organic constituents (including those arising from products of incomplete combustion of sugar and organics in the feed) to concentration levels below those imposed by regulatory requirements. The baseline design for the RPP-WTP LAW primary off-gas system includes a submerged bed scrubber (SBS), a wet electrostatic precipitator (WESP), and a high efficiency particulate air (HEPA) filter. The secondary off-gas system includes a sulfur-impregnated activated carbon bed (AC-S), a thermal catalytic oxidizer (TCO), a single-stage selective catalytic reduction NOx treatment system (SCR), and a packed-bed caustic scrubber (PBS). The baseline design for the RPP-WTP HLW primary off-gas system includes an SBS, a WESP, a high efficiency mist eliminator (HEME), and a HEPA filter. The HLW secondary off-gas system includes a sulfur-impregnated activated carbon bed, a silver mordenite bed, a TCO, and a single-stage SCR. The one-third scale HLW DM1200 Pilot Melter installed at the Vitreous State Laboratory (VSL) was equipped with a prototypical off-gas train to meet the needs for testing and confirmation of the performance of the baseline off-gas system design. Various modifications have been made to the DM1200 system as the details of the WTP design have evolved, including the installation of a silver mordenite column and an AC-S column for testing on a slipstream of the off-gas flow; the installation of a full-flow AC-S bed for the present tests was completed prior to initiation of testing. The DM1200

  17. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The operational requirements for the River Protection Project - Waste Treatment Plant (RPP-WTP) Low Activity Waste (LAW) and High Level Waste (HLW) melter systems, together with the feed constituents, impose a number of challenges to the off-gas treatment system. The system must be robust from the standpoints of operational reliability and minimization of maintenance. The system must effectively control and remove a wide range of solid particulate matter, acid mists and gases, and organic constituents (including those arising from products of incomplete combustion of sugar and organics in the feed) to concentration levels below those imposed by regulatory requirements. The baseline design for the RPP-WTP LAW primary off-gas system includes a submerged bed scrubber (SBS), a wet electrostatic precipitator (WESP), and a high efficiency particulate air (HEPA) filter. The secondary off-gas system includes a sulfur-impregnated activated carbon bed (AC-S), a thermal catalytic oxidizer (TCO), a single-stage selective catalytic reduction NOx treatment system (SCR), and a packed-bed caustic scrubber (PBS). The baseline design for the RPP-WTP HLW primary off-gas system includes an SBS, a WESP, a high efficiency mist eliminator (HEME), and a HEPA filter. The HLW secondary off-gas system includes a sulfur-impregnated activated carbon bed, a silver mordenite bed, a TCO, and a single-stage SCR. The one-third scale HLW DM1200 Pilot Melter installed at the Vitreous State Laboratory (VSL) was equipped with a prototypical off-gas train to meet the needs for testing and confirmation of the performance of the baseline off-gas system design. Various modifications have been made to the DM1200 system as the details of the WTP design have evolved, including the installation of a silver mordenite column and an AC-S column for testing on a slipstream of the off-gas flow; the installation of a full-flow AC-S bed for the present tests was completed prior to initiation of testing. The DM1200

  18. Aluminum phosphate ceramics for waste storage

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  19. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  20. Dynamic recrystallization behavior of commercial pure aluminum

    Institute of Scientific and Technical Information of China (English)

    LI Hui-zhong; ZHANG Xin-ming; CHEN Ming-an; LIU Zi-juan

    2006-01-01

    The flow stress feature and microstructure evolvement of a commercial pure aluminum were investigated by compression on Gleeble-1500 dynamic materials test machine. Optical microscopy (OM) and transmission electron microscopy (TEM) were applied to analyze the deformation microstructure of the commercial pure aluminum.The results show that the flow stress tends to be constant after a peak value and the dynamic recovery occurs when the deformation temperatures is 220 ℃ with the strain rate of 0.01 s-1; while the dynamic recrystallization occurs when the deformation temperature is higher than 380 ℃, and the flow stress exhibits a single peak at 460 ℃ with different strain rates from 0.001 s-1 to 1 s-1, and continuous dynamic recrystallization and geometric dynamic recrystallization occur during the hot compression of the commercial pure aluminum.

  1. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  2. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  3. The Effect of Anodic Oxide Films on the Nickel-Aluminum Reaction in Aluminum Braze Sheet

    Science.gov (United States)

    Tadgell, Colin A.; Wells, Mary A.; Corbin, Stephen F.; Colley, Leo; Cheadle, Brian; Winkler, Sooky

    2017-03-01

    The influence of an anodic oxide surface film on the nickel-aluminum reaction at the surface of aluminum brazing sheet has been investigated. Samples were anodized in a barrier-type solution and subsequently sputtered with nickel. Differential scanning calorimetry (DSC) and metallography were used as the main investigative techniques. The thickness of the anodic film was found to control the reaction between the aluminum substrate and nickel coating. Solid-state formation of nickel-aluminum intermetallic phases occurred readily when a relatively thin oxide film (13 to 25 nm) was present, whereas intermetallic formation was suppressed in the presence of thicker oxides ( 60 nm). At an intermediate oxide film thickness of 35 nm, the Al3Ni phase formed shortly after the initiation of melting in the aluminum substrate. Analysis of DSC traces showed that formation of nickel-aluminum intermetallic phases changed the melting characteristics of the aluminum substrate, and that the extent of this change can be used as an indirect measure of the amount of nickel incorporated into the intermetallic phases.

  4. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation.

    Science.gov (United States)

    Myers, Timothy J

    2008-11-15

    Metal powders or dusts can represent significant dust explosion hazards in industry, due to their relatively low ignition energy and high explosivity. The hazard is well known in industries that produce or use aluminum powders, but is sometimes not recognized by facilities that produce aluminum dust as a byproduct of bulk aluminum processing. As demonstrated by the 2003 dust explosion at aluminum wheel manufacturer Hayes Lemmerz, facilities that process bulk metals are at risk due to dust generated during machining and finishing operations [U.S. Chemical Safety and Hazard Investigation Board, Investigation Report, Aluminum Dust Explosion Hayes Lemmerz International, Inc., Huntington, Indiana, Report No. 2004-01-I-IN, September 2005]. Previous studies have shown that aluminum dust explosions are more difficult to suppress with flame retardants or inerting agents than dust explosions fueled by other materials such as coal [A.G. Dastidar, P.R. Amyotte, J. Going, K. Chatrathi, Flammability limits of dust-minimum inerting concentrations, Proc. Saf. Progr., 18-1 (1999) 56-63]. In this paper, an inerting method is discussed to reduce the dust explosion hazard of residue created in an aluminum buffing operation as the residue is generated. This technique reduces the dust explosion hazard throughout the buffing process and within the dust collector systems making the process inherently safer. Dust explosion testing results are presented for process dusts produced during trials with varying amounts of flame retardant additives.

  5. Application of Cu-polyimide flex circuit and Al-on-glass pitch adapter for the ATLAS SCT barrel hybrid

    CERN Document Server

    Unno, Y; Ikegami, Y; Iwata, Y; Kohriki, T; Kondo, T; Nakano, I; Ohsugi, T; Takashima, R; Tanaka, R; Terada, S; Ujiie, N

    2005-01-01

    We applied the surface build-up Cu-polyimide flex-circuit technology with laser vias to the ATLAS SCT barrel hybrid to be made in one piece from the connector to the electronics sections including cables. The hybrids, reinforced with carbon-carbon substrates, provide mechanical strength, thermal conductivity, low-radiation length, and stability in application-specific integrated circuit (ASIC) operation. By following the design rules, we experienced little trouble in breaking the traces. The pitch adapter between the sensor and the ASICs was made of aluminum traces on glass substrate. We identified that the generation of whiskers around the wire-bonding feet was correlated with the hardness of metallized aluminum. The appropriate hardness has been achieved by keeping the temperature of the glasses as low as room temperature during the metallization. The argon plasma cleaning procedure cleaned the contamination on the gold pads of the hybrids for successful wire bonding, although it was unsuccessful in the alu...

  6. Interaction of catechins with aluminum in vitro

    Institute of Scientific and Technical Information of China (English)

    唐德松; 沈生荣; 陈勋; 张玉艳; 许重阳

    2004-01-01

    Tea is one of the most popular beverages, consumed by over two thirds of the world's population; but the aluminum accumulation property of tea plant is becoming the focus of many researches because of aluminum's known adverse effect on human health. Investigation of the interactions of catechins with A13+ showed that during the interaction of catechins with A13+, the UV-vis spectrum of catechins was changed. Absorption of EGCG at 274 nm decreased and increased at 322 nm; EC and C's at 278 nm changed little. The ratio of A13+ to EGCG was 1:1 in pH 5.0 buffer solution; in pH 6.2 buffer solution, the ratio in the A1-EGCG complex was 1:1. Interestingly, while the ratio reached to over 2, after the complex of A1-EGCG started polymerization, the ratio in the polymer was 2:1. In pH 6.2 buffer solution, the complex behavior of C with A13+ was the same as that of EGCG, with a little difference for EC. When the ratio of A13+ to EC was1. It was found that the ratio of A13+ to EC in the polymer was 1:1. Polymerization of A1-catechin complexes might reduce aluminum absorption in the intestine. Kow value was also employed to study the properties of aluminum species in tea infusion (at gastric and intestine pH condition) and the effect of catechins and tea polyphenols on Kow in buffer solution. Results showed that Kow value rose much higher at the intestine pH than at the gastric pH. Tea polyphenols and catechins could greatly reduce aluminum Kow value in acetic buffer,indicating that these compounds may reduce aluminum absorption during tea intake.

  7. Interaction of catechins with aluminum in vitro

    Institute of Scientific and Technical Information of China (English)

    唐德松; 沈生荣; 陈勋; 张玉艳; 许重阳

    2004-01-01

    Tea is one of the most popular beverages, consumed by over two thirds of the world's population; but the aluminum accumulation property of tea plant is becoming the focus of many researches because of aluminum's known adverse effect on human health. Investigation of the interactions of catechins with Al3+ showed that during the interaction of catechins with Al3+, the UV-vis spectrum of catechins was changed. Absorption of EGCG at 274 nm decreased and increased at 322 nm; EC and C's at 278 nm changed little. The ratio of Al3+ to EGCG was 1:1 in pH 5.0 buffer solution; in pH 6.2 buffer solution, the ratio in the Al-EGCG complex was 1:1. Interestingly, while the ratio reached to over 2, after the complex of Al-EGCG started polymerization, the ratio in the polymer was 2:1. In pH 6.2 buffer solution, the complex behavior of C with Al3+ was the same as that of EGCG, with a little difference for EC. When the ratio of Al3+ to EC was 1. It was found that the ratio of Al3+ to EC in the polymer was 1:1. Polymerization of Al-catechin complexes might reduce aluminum absorption in the intestine. Kow value was also employed to study the properties of aluminum species in tea infusion (at gastric and intestine pH condition) and the effect of catechins and tea polyphenols on Kow in buffer solution. Results showed that Kow value rose much higher at the intestine pH than at the gastric pH. Tea polyphenols and catechins could greatly reduce aluminum Kow value in acetic buffer, indicating that these compounds may reduce aluminum absorption during tea intake.

  8. Effect of Electrolyte on the Dissolution of Aluminum from Acid Sois and the Distribution of Aluminum Forms in Soil Solution

    Institute of Scientific and Technical Information of China (English)

    XURENKOU; JIGUOLIANG

    1997-01-01

    KCl,CaCl2,NH4Cl,NaCl,K2SO4 and KF solutions were used for studying the effects of cations and anions on the dissolution of aluminum and the distribution of aluminum forms respectively.Power of exchanging and releasing aluminum of four kinds of cations was in the decreasing order Ca2+>K+>NH4+>Na+,The dissolution of aluminum increased with the cation concentration.The adsorption affinity of various soils fro aluminum was different.The aluminum in the soil with a stronger adsorption affinity was diffcult to be exchanged and released by cations.The Al-F complexes were main species of inorganic aluminum at a low concentration of cations,while Al3+ became major species of inorganic aluminum at a hiht concentration of cations .The results on the effct of anions indicated that the concentrations of total aluminum,three kinds of inorganc aluminum(Al3+,Al-F and Al-OH complexes) and organic aluminum complexes(Al-OM) when SO42- was added into soil suspension were lower than those when Cl- was added.The dissolution of aluminum from soils and the distribution of aluminum forms in solution were affected by the adsorption of F- on the soil.For soils with strong affinity for F-,the concentrations of the three inorganic aluminum species in soil solution after addition of F- were lower than those after addition of Cl-;but for soils with weak affinity for F-,the concentrations of Al3+ and Al-OM were lower and the concentrations of Al-F complexes and total inorganic aluminum after addition of F- were higher than those after addition of Cl- .The increase of F- concentration in soil solution accelerated the dissolution of aluminum from soils.

  9. Composite purification technology and mechanism of recycled aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    房文斌; 耿耀宏; 安阁英; 叶荣茂

    2002-01-01

    Iron-rich inclusions in aluminum alloys can be effectively removed by composite purification of sedimentation and filtration technology.The results show that the purposed method has no negative effects on aluminum alloys and obviously improve their mechanical properties.

  10. Understanding Aspects of Aluminum Exposure in Alzheimer's Disease Development.

    Science.gov (United States)

    Kandimalla, Ramesh; Vallamkondu, Jayalakshmi; Corgiat, Edwin B; Gill, Kiran Dip

    2016-03-01

    Aluminum is a ubiquitously abundant nonessential element. Aluminum has been associated with neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis, and dialysis encephalopathy. Many continue to regard aluminum as controversial although increasing evidence supports the implications of aluminum in the pathogenesis of AD. Aluminum causes the accumulation of tau protein and Aβ protein in the brain of experimental animals. Aluminum induces neuronal apoptosis in vivo and in vitro, either by endoplasmic stress from the unfolded protein response, by mitochondrial dysfunction, or a combination of them. Some, people who are exposed chronically to aluminum, either from through water and/or food, have not shown any AD pathology, apparently because their gastrointestinal barrier is more effective. This article is written keeping in mind mechanisms of action of aluminum neurotoxicity with respect to AD.

  11. [Aluminum induces chromosome aberrations in wheat root meristem cells].

    Science.gov (United States)

    Bulanova, N V; Synzynys, B I; Koz'min, G V

    2001-12-01

    The yield and pattern of chromosome structure aberrations in wheat seedlings treated with aluminum nitrate and aluminum sulfate at various concentrations have been determined by the anaphase method. Aluminum has a genotoxic effect causing genome, chromatid, and chromosome aberrations in apical root meristem cells. The relationship between the total yield of structural mutations and the aluminum concentration follows a bell-shaped curve. The mutagenic activity of aluminum nitrate peaks at 10(-3) mg/ml, which is twice as high as the permissible concentration limit (PCL) of aluminum in potable water. The maximum of the mutagenic activity of aluminum sulfate is observed at 5 x 10(-4) mg/ml, i.e., one PCL. Tap water boiled for 2 h in an aluminum vessel has virtually no genotoxic effect on wheat cells.

  12. Method of winning aluminum metal from aluminous ore

    Science.gov (United States)

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  13. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  14. Low Mass, Aluminum NOFBX Combustion Chamber Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our team proposes to define a diffusion bonding process for aluminum as an enabling step to ultimately develop an innovative, lightweight, long life, aluminum...

  15. Refined Aluminum Industry Suffers From Deficit and Western Investment Accelerates

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>Under the backdrop of loss of the entire refined aluminum industry,the investment in electrolytic aluminum accelerates.The reporter learnt from a recent survey that,many companies including Shandong Xinfa Group,East Hope

  16. Iron and aluminum in Alzheimer's disease.

    Science.gov (United States)

    Di Lorenzo, Francesco; Di Lorenzo, Berardino

    2013-01-01

    In this case presentation, a woman with high serum levels of aluminum was treated with chelation therapy with deferoxamine and ascorbic acid. This patient was initially bedridden and the clinical situation was complicated by epileptic seizures. After the chelation therapy, the clinical condition was ameliorated and the therapy continued without the correlation to aluminum serum levels. The role of metals in neurodegenerative disorders and the correlation between iron metabolism and amyloid beta peptide are described. This case suggests chelation therapy could represent a promising therapeutic option for this dramatic disease.

  17. Sound absorption property of openpore aluminum foams

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2007-02-01

    Full Text Available This paper presents a study on sound absorption property of aluminum foam by evaluating its sound absorption coefficients using standing wave tube method. Experimental results showed that the average values of sound absorption coefficients (over the test frequency range are all above 0.4, which indicate very good sound absorption property of the aluminum foams. The sound absorption coefficient is affected by frequency and pore structure, and reaches its maximum value at around 1 000 Hz. With the increase of porosity and decrease of cell diameter, the sound absorption coefficient values increase.

  18. Aluminum plasmonic metamaterials for structural color printing.

    Science.gov (United States)

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-06-01

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  19. Development of deep drawn aluminum piston tanks

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.C.; Bronder, R.L.; Kilgard, L.W.; Evans, M.C.; Ormsby, A.E.; Spears, H.R.; Wilson, J.D.

    1990-06-08

    An aluminum piston tank has been developed for applications requiring lightweight, low cost, low pressure, positive-expulsion liquid storage. The 3 liter (183 in{sup 3}) vessel is made primarily from aluminum sheet, using production forming and joining operations. The development process relied mainly on pressurizing prototype parts and assemblies to failure, as the primary source of decision making information for driving the tank design toward its optimum minimum-mass configuration. Critical issues addressed by development testing included piston operation, strength of thin-walled formed shells, alloy choice, and joining the end cap to the seamless deep drawn can. 9 refs., 8 figs.

  20. [Respiratory function in glass blowers].

    Science.gov (United States)

    Zuskin, E; Butković, D; Mustajbegović, J

    1992-01-01

    The prevalence of chronic and acute respiratory symptoms and diseases and changes in lung function in a group of 80 glass blowers have been investigated. In addition a group of 80 not exposed workers was used as a control group for respiratory symptoms and diseases. In glass blowers, there was significant increase in prevalence of chronic bronchitis, nasal catarrh, and sinusitis than in the controls. Glass blowers exposed for more and less than 10 years had similar prevalences of respiratory symptoms. A large number of glass blowers complained of acute across-shift symptoms. Significant increase in FVC, FEF50 and FEF25 was documented at the end of the work shift. Comparison with predicted normal values showed that glass blowers had FVC and FEF25 significantly lower than predicted. RV and RV/TLC were significantly increased compared with the predicted normal values. DLCO was within the normal values in most glass blowers. It is concluded that work in the glass blower industry is likely to lead the development of chronic respiratory disorders.

  1. Water leaching of borosilicate glasses: experiments, modeling and Monte Carlo simulations; Alteration par l'eau des verres borosilicates: experiences, modelisation et simulations Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Ledieu, A

    2004-10-15

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  2. Aqueous corrosion of borosilicate glasses: experiments, modeling and Monte-Carlo simulations; Alteration par l'eau des verres borosilicates: experiences, modelisation et simulations Monte-Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Ledieu, A

    2004-10-01

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  3. Rootlike Morphology of ZnO:Al Thin Film Deposited on Amorphous Glass Substrate by Sol-Gel Method

    OpenAIRE

    Heri Sutanto; Sufwan Durri; Singgih Wibowo; Hady Hadiyanto; Eko Hidayanto

    2016-01-01

    Zinc oxide (ZnO) and aluminum doped zinc oxide (ZnO:Al) thin films have been deposited onto a glass substrate by sol-gel spray coating method at atmospheric pressure. X-ray diffractometer (XRD), scanning electron microscopy (SEM), and UV-Vis spectrophotometer have been used to characterize the films. XRD spectra indicated that all prepared thin films presented the wurtzite hexagonal structure. SEM images exhibited rootlike morphology on the surface of thin films and the shortest root diameter...

  4. Modern trends and challenges of development of global aluminum industry

    Directory of Open Access Journals (Sweden)

    M. N. Dudin

    2017-12-01

    Full Text Available This article overviews complex study into modern trends and challenges of development of global aluminum industry. Dynamics, structure, and segmentation of global aluminum market are discussed in terms of systematic analysis. On this basis strategic map of the industry has been plotted and five forces of competition on global aluminum market have been determined which will influence directly on functioning and development of aluminum producing companies.

  5. Sunshine Group Builds High-End Aluminum Product Industrial Base

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In order to propel development of the aluminum industry to move toward featured,specialized,and ecological directions,Sunlight Sanyuan Aluminum Company plans to expropriate 300 mu of land in Hanjiang District of Putian City,Fujian province,where it plans to construct high-end aluminum product industrial park,introduce the world’s most advanced fully automatic production equipment and technologies for aluminum profile and

  6. OPAL 96 Blocks Lead Glass

    CERN Multimedia

    This array of 96 lead glass bricks formed part of the OPAL electromagnetic calorimeter. One half of the complete calorimeter is shown in the picture above. There were 9440 lead glass counters in the OPAL electromagnetic calorimeter. These are made of Schott type SF57 glass and each block weighs about 25 kg and consists of 76% PbO by weight. Each block has a Hamamatsu R2238 photomultiplier glued on to it. The complete detector was in the form of a cylinder 7m long and 6m in diameter. It was used to measure the energy of electrons and photons produced in LEP interactions.

  7. The Electrical Properties at Low Field of Aluminum - Hydroxyl-Terminated Polybutadiene Composites.

    Science.gov (United States)

    Yeh, Wenhuei

    DC and AC electrical conduction properties of composites of hydroxyl-terminated polybutadiene (HTPB), a solid rocket propellant binder, filled with different contents of 13 μm aluminum particles have been investigated in the temperature range of -60^circC to +70 ^circC and relative humidity of 25%. An automated system was developed for dc and ac measurements in a controlled temperature and relative humidity environment. DC studies have centered on I-V-T characteristics and current relaxation for composites having aluminum weight fraction of 0.025, 0.05, 0.10 and 0.20. Resistivities measured in a range of electric fields below 2 times 10^4 V/cm showed conduction is essentially ohmic over the whole temperature range. Current -time measurements have been performed as a function of temperature in a field level of 8.8 times 10^3 V/cm. Using a fast fourier transform technique, a frequency dependent loss factor was calculated from the resorption current in a temperature range of -30^ circC to 0^circC. A thermally-activated relaxation peak, observed at very low frequencies, was interpreted as the interfacial polarization at the crystalline-amorphous interfaces. The degree of crystallinity of HTPB increased with decreasing temperature and content of aluminum filler. Moreover, the volume conductivity ratio of amorphous and crystalline phases, ranging from 4.0 to 75.0 times, increased with decreasing temperature and increasing content of aluminum filler. This crystallization phenomenon of HTPB at low temperatures was confirmed by the x-ray diffraction patterns. In ac conduction, one relaxation, attributed to the glass transition of trans -units of HTPB, was observed at a temperature of about -40^circC and frequency of 10^5 Hz. The dependence of dissipation factor, tan(delta), on temperature and frequency were similar in all samples, regardless of the content of the aluminum. However, the dielectric constant, epsilon^' , depended upon the aluminum content.

  8. Shattered glass seeking the densest matter: the color glass condensate

    CERN Multimedia

    Appell, D

    2004-01-01

    "Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)

  9. Experimental Study on Thermal Insulation of Aluminum Rolling Shutter Window%铝合金卷帘窗隔热性能实验研究

    Institute of Scientific and Technical Information of China (English)

    宋海罡; 陈福霞

    2013-01-01

    In order to study thermal insulation of the aluminum rolling shutter window, the solar heat gain coefficient of 3mm clear glass, the shading coefficient of aluminum rolling shutter window and inner-outside surface temperature of the 3mm clear glass under different con-ditions are tested and analyzed by the shading coefficient test platform that is based on solar-simulated light source. The results show that the aluminum rolling shutter window holds about 90% of heat from the solar radiation, and the analytical results feature for guiding-significance for thermal insulation evaluation of the aluminum rolling shutter window.%  为研究铝合金卷帘窗的隔热性能,通过模拟太阳光源的遮阳系数测试平台,对3 mm透明玻璃的得热系数、铝合金卷帘窗的遮阳系数和不同状态下3 mm透明玻璃内外表面温度进行了测试与分析。分析结果表明:铝合金卷帘窗能阻挡约90%的太阳辐射热量,分析结果对铝合金卷帘窗的实际隔热效果评价具有指导意义。

  10. Shanxi Zhaofeng Aluminum Industry is Planning Oversea Listing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Shanxi Yangquan Coal Industry(Group)Co., Ltd.intends to promote its subsidiary company Shanxi Zhaofeng Aluminum Metallurgy Co Ltd (hereinafter referred to as Zhaofeng Aluminum Metallurgy)to seek oversea listing.If its effort succeeds,Zhaofeng Aluminum Metallurgy will become the third public listed company under Yangquan Group.

  11. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  12. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  13. [Science and Technology and Recycling: Instructional Materials on Aluminum.

    Science.gov (United States)

    Aluminum Association, New York, NY.

    Educational materials on the manufacture and use of aluminum are assembled in this multi-media unit for use by junior high and secondary school students. Student booklets and brochures include: "The Story of Aluminum,""Uses of Aluminum,""Independent Study Guide for School Research Projects,""Questions and Answers About Litter, Solid Waste, and…

  14. 2009 China’s Aluminum Fabrication Industrial Development Report

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>1 Overview of Aluminum Fabrication Industry Despite the impact of 2008’s financial crisis on China’s aluminum fabrication industry, China’s output of aluminum products remained the world’s largest in 2009, against overall steady

  15. New Tax Rebate Policy Favorable to Aluminum Processing Industry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>China has made the decision to increase export tax rebate rate for part of the non-ferrous products from April 1, 2009, among which the export tax rebate for aluminum alloy hollow profiles and other aluminum alloy profiles goes up to 13%. The new policy is a piece of good news for aluminum processing

  16. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  17. Shanxi Will Build Aluminum Deep Processing Industrial Park

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As a province with high coal output,Shanx boasts rich electrolytic aluminum resources.On January 7,the reporter learned from the Provincial Commission of Economy and Information Technology that in order to continually expand the size of aluminum industry,extend aluminum industrial chain,so

  18. Status Quo of China’s Aluminum Sheet & Strip Industry

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Aluminum sheet & strip products are one of the major product varieties in the aluminum processing industry, they also provide indis-pensable basic materials for the development of national economy. In recent years, driven by rapid economic growth, China’s investment in aluminum sheet & strip industry continued to

  19. Potential and challenges of interdisciplinary research on historical window glass, stained glass and reverse glass paintings

    Science.gov (United States)

    Trümpler, Stefan; Wolf, Sophie; Kessler, Cordula; Goll, Jürg

    The interdisciplinary study of ancient materials has become an increasingly common strategy, mainly because it has proved to be a highly rewarding approach to studying the age, provenance and production of archaeological objects. The results of such an approach sometimes also provide answers to questions relating not only to socio-cultural, economic or technological developments in a particular region or period (trade, innovation, production etc.), but also the conservation of the materials or artefacts in question. A number of analytical methods, ranging from microscopic to elementary analyses, have been successfully applied to determine the nature of materials and technologies used in the production, as well as to identify the provenance of ancient glass. As far as window glass and stained glass is concerned, the study of architectural context and art history - as well as the technological characteristics of materials - has proved to be most helpful in determining history, production and artistic importance of the objects under study. This paper discusses some of the multidisciplinary studies that the Vitrocentre Romont has conducted on early medieval window glass, stained glass and reverse glass paintings and illustrates the potential of a holistic approach in solving questions about materials, techniques, window design and conservation. It also addresses the limitations of the approach, which are often related to finding appropriate (i.e. non-destructive and possibly portable) methods for the analysis of sometimes extremely fragile stained glass windows.

  20. Loften Aluminum Aluminum Foil Output to Reach 120,000 Tons in 2012

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Loften Aluminum Co., Ltd. was founded in 2000 Boxing County, Shandong Province. On 31 March 2010, Loften became an A-share listed company, creating favorable conditions for raising funds to expand its operations.