WorldWideScience

Sample records for aluminum high pressure

  1. High-Pressure Optical Studies of Doped Yttrium Aluminum Garnet

    Science.gov (United States)

    Wamsley, Paula

    This thesis demonstrates the application of high pressure spectroscopy to the study of doped insulator laser materials. We investigated transition metal ion and rare -earth ion doped yttrium aluminum garnet (YAG) crystals. Our goal was to explore the relationship between the local bonding environment of the dopant ion and the bulk optical properties of the crystals. Pressure is a useful probe for this type of investigation because pressure changes the local bonding environment of the dopant ion. We conducted laser induced fluorescence experiments and time-resolved laser induced fluorescence experiments on samples in modified Merrill-Basset style diamond anvil cells. We measured the effect of pressure on the laser induced emission of Cr^{3+} and Tm^{3+} in Cr ^{3+}:YAG and Tm^ {3+}:YAG. These experiments provided information about the energy level structure of Cr ^{3+} and Tm^{3+ } as a function of the crystal field strength. In Cr^{3+}:YAG we were able to correlate changes in the emission spectrum to pressure induced changes in the local site-symmetry of the Cr ^{3+} ions. In Tm^ {3+}:YAG we determined that several emission features were incorrectly assigned and observed previously unreported Tm^{3+} emission features. We also measured the time-resolved laser induced emission of Cr^{3+} in Cr^{3+}:YAG and Cr ^{3+}:Tm^{3+ }:YAG. With these measurements we were able to determine the effect of thermal and spin-orbit coupling on the fluorescence properties of Cr^{3+ }. In addition we determined that the fluorescence properties of Cr^{3+} strongly influence the rate of energy transfer and the efficiency of energy transfer from Cr^{3+ } to Tm^{3+} in Cr^{3+}:Tm ^{3+}:YAG.

  2. Dry and clean age hardening of aluminum alloys by high-pressure gas quenching

    Science.gov (United States)

    Irretier, A.; Kessler, O.; Hoffmann, F.; Mayr, P.

    2004-10-01

    When precipitation-hardenable aluminum parts are water quenched, distortion occurs due to thermal stresses. Thereby, a costly reworking is necessary, and for this reason polymer quenchants are often used to reduce distortion, with the disadvantage that the quenched parts have to be cleaned after quenching. In opposition to liquid quenchants, gas quenching may decrease distortion due to the better temperature uniformity during quenching. Furthermore, cleaning of the quenched parts can be avoided because it is a dry process. For this purpose, a heat-treating process was evaluated that included a high-pressure gasquenching step. Gas quenching was applied to different aluminum alloys (i.e., 2024, 6013, 7075, and A357.0), and tensile tests have been carried out to determine the mechanical properties after solution annealing, gas quenching, and aging. Besides high-pressure gas quenching, alloy 2024 was quenched at ambient pressure in a gas nozzle field. The high velocity at the gas outlet leads to an accelerated cooling of the aluminum alloy in this case. Aluminum castings and forgings can be classified as an interesting field of application of these quenching methods due to their near-net shape before the heat treatment. Cost savings would be possible due to the reduced distortion, and therefore, less reworking after the precipitation hardening.

  3. Characterization of pores in high pressure die cast aluminum using active thermography and computed tomography

    Science.gov (United States)

    Maierhofer, Christiane; Myrach, Philipp; Röllig, Mathias; Jonietz, Florian; Illerhaus, Bernhard; Meinel, Dietmar; Richter, Uwe; Miksche, Ronald

    2016-02-01

    Larger high pressure die castings (HPDC) and decreasing wall thicknesses are raising the issue of casting defects like pores in aluminum structures. Properties of components are often strongly influenced by inner porosity. As these products are being established more and more in lightweight construction (e.g. automotive and other transport areas), non-destructive testing methods, which can be applied fast and on-site, are required for quality assurance. In this contribution, the application of active thermography for the direct detection of larger pores is demonstrated. The analysis of limits and accuracy of the method are completed by numerical simulation and the method is validated using computed tomography.

  4. High-pressure effects on the superconducting transition temperature of aluminum

    International Nuclear Information System (INIS)

    The superconducting transition temperature T/subc/ of aluminum has been measured as a function of pressure to 62 kbar, at which point T/subc/ was reduced to 0.075 K from its zero pressure value of 1.18 K. These data cover ranges of temperature and pressure which allow differentiation between theoretical and empirical predictions. The data clearly obey the empirical relation of Smith and Chu and suggest a new volume dependence for the electron-phonon interaction

  5. Mechanical Properties of Carbon Fiber-Reinforced Aluminum Manufactured by High-Pressure Die Casting

    Science.gov (United States)

    Kachold, Franziska; Singer, Robert

    2016-03-01

    Carbon fiber reinforced aluminum was produced by a specially adapted high-pressure die casting process. The MMC has a fiber volume fraction of 27%. Complete infiltration was achieved by preheating the bidirectional, PAN-based carbon fiber body with IR-emitters to temperatures of around 750 °C. The degradation of the fibers, due to attack of atmospheric oxygen at temperatures above 600 °C, was limited by heating them in argon-rich atmosphere. Additionally, the optimization of heating time and temperature prevented fiber degradation. Only the strength of the outer fibers is reduced by 40% at the most. The fibers in core of fiber body are nearly undamaged. In spite of successful manufacturing, the tensile strength of the MMC is below strength of the matrix material. Also unidirectional MMCs with a fiber volume fraction of 8% produced under the same conditions, lack of the reinforcing effect. Two main reasons for the unsatisfactory mechanical properties were identified: First, the fiber-free matrix, which covers the reinforced core, prevents effective load transfer from the matrix to the fibers. And second, the residual stresses in the fiber-free zones are as high as 100 MPa. This causes premature failure in the matrix. From this, it follows that the local reinforcement of an actual part is limited. The stress distribution caused by residual stresses and by loading needs to be known. In this way, the reinforcing phase can be placed and aligned accordingly. Otherwise delamination and premature failure might occur.

  6. Modeling of high temperature- and diffusion-controlled die soldering in aluminum high pressure die casting

    DEFF Research Database (Denmark)

    Domkin, Konstantin; Hattel, Jesper Henri; Thorborg, Jesper

    2009-01-01

    Soldering of cast alloys to the dies has been a continuing source of die surface damage in the aluminum die-casting industry. To reduce the repair and maintenance costs, an approach to modeling the damage and predicting the die lifetime is required. The aim of the present study is the estimation...

  7. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  8. Production of aluminum-matrix carbon nanotube composite using high pressure torsion

    International Nuclear Information System (INIS)

    In this study, an Al-based composite containing carbon nanotubes (CNTs) was fabricated using a process of severe plastic deformation through high pressure torsion (HPT). Neither heating nor sintering was required with the HPT process so that an in situ consolidation was successfully achieved at ambient temperature with 98% of the theoretical density. A significant increase in hardness was recorded through straining by the HPT process. When the composite was pulled in tension, the tensile strength of more than 200 MPa was attained with reasonable ductility. Transmission electron microscopy showed that the grain size was reduced to ∼100 nm and this was much smaller than the grain size without CNTs and the grain size reported on a bulk sample. High resolution electron microscopy revealed that CNTs were present at grain boundaries. It was considered that the significant reduction in grain size is attributed to the presence of CNTs hindering the dislocation absorption and annihilation at grain boundaries

  9. Plunger Kinematic Parameters Affecting Quality of High-Pressure Die-Cast Aluminum Alloys

    Science.gov (United States)

    Fiorese, Elena; Bonollo, Franco

    2016-07-01

    The selection of the optimal process parameters in high-pressure die casting has been long recognized as a complex problem due to the involvement of a large number of interconnected variables. Among these variables, the effect of the plunger motion has been proved to play a prominent role, even if a thorough and exhaustive study is still missing in the literature. To overcome this gap, this work aims at identifying the most relevant plunger kinematic parameters and estimates their correlation with the casting quality, by means of a statistically significant sample manufactured with different plunger motion profiles. In particular, slow and fast shot velocities and switching position between two stages have been varied randomly in accordance with design of experiment methodology. The quality has been assessed through the static mechanical properties and porosity percentage. As a further proof, the percentage of oxides has been estimated on the fracture surfaces. These measurements have been correlated to novel parameters, representing the mechanical energy and the inertial force related to the plunger motion, that have been extracted from the time-history of the displacement curves. The application of statistical methods demonstrates that these novel parameters accurately explain and predict the overall quality of castings.

  10. PRESSURE-IMPULSE DIAGRAM OF MULTI-LAYERED ALUMINUM FOAM PANELS UNDER BLAST PRESSURE

    Directory of Open Access Journals (Sweden)

    CHANG-SU SHIM

    2013-06-01

    Full Text Available Anti-terror engineering has increasing demand in construction industry, but basis of design (BOD is normally not clear for designers. Hardening of structures has limitations when design loads are not defined. Sacrificial foam claddings are one of the most efficient methods to protect blast pressure. Aluminum foam can have designed yield strength according to relative density and mitigate the blast pressure below a target transmitted pressure. In this paper, multi-layered aluminum foam panels were proposed to enhance the pressure mitigation by increasing effective range of blast pressure. Through explicit finite element analyses, the performance of blast pressure mitigation by the multi-layered foams was evaluated. Pressure-impulse diagrams for the foam panels were developed from extensive analyses. Combination of low and high strength foams showed better applicability in wider range of blast pressure.

  11. Atomistic simulation of the premelting of iron and aluminum : Implications for high-pressure melting-curve measurements

    NARCIS (Netherlands)

    Starikov, Sergey V.; Stegailov, Vladimir V.

    2009-01-01

    Using atomistic simulations we show the importance of the surface premelting phenomenon for the melting-curve measurements at high pressures. The model under consideration mimics the experimental conditions deployed for melting studies with diamond-anvil cells. The iron is considered in this work be

  12. Atmospheric pressure plasma treatment of flat aluminum surface

    International Nuclear Information System (INIS)

    Highlights: • DCSBD plasma is applicable for activation and cleaning of flat aluminum surfaces. • Decrease in the value of the contact angle after 1 s plasma treatment was 93%. • EDX measurements confirmed removal of oil contamination by 50% decreasing of carbon. • XPS analyze shown decrease of carbon content and increase of aluminum hydroxide and oxyhydroxide. - Abstract: The atmospheric pressure ambient air and oxygen plasma treatment of flat aluminum sheets using the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD) were investigated. The main objective of this study is to show the possibility of using DCSBD plasma source to activate and clean aluminum surface. Surface free energy measurements, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM/EDX) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used for the characterization of the aluminum surface chemistry and changes induced by plasma treatment. Short plasma exposure times (several seconds) led to a significant increase in the surface free energy due to changes of its polar components. Various ageing effects, depending on the storage conditions were observed and discussed. Effects of air and oxygen plasmas on the removal of varying degrees of artificial hydrocarbon contamination of aluminum surfaces were investigated by the means of EDX, ATR-FTIR and XPS methods. A significant decrease in the carbon surface content after the plasma treatment indicates a strong plasma cleaning effect, which together with high energy efficiency of the DCSBD plasma source points to potential benefits of DCSBD application in processing of the flat aluminum surfaces

  13. Compressive formability of 7075 aluminum alloy rings under hydrostatic pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Gang; WANG Li-liang; YUAN Shi-jian; WANG Zhong-ren

    2006-01-01

    In order to investigate the influence of hydrostatic pressure on compression limit of the ring, numerical simulation and experimental research were carried out. The effect of hydrostatic pressure on the deformation of aluminum alloy 7075 ring was obtained by numerical simulation. The die set for compressing ring under high hydrostatic pressure was designed and manufactured. Experimental results show that the compression limit increases linearly as the hydrostatic pressure increases in a certain range. At 100 MPa the maximum compressive strain is increased by 32.42%. At strain limit, the cracks initiate from the corner of the outer wall to the middle of the inner wall along the direction of the maximum shear stress.

  14. High-pressure optical spectroscopy and X-ray diffraction studies on synthetic cobalt aluminum silicate garnet

    DEFF Research Database (Denmark)

    N. Taran, Michail; Nestola, Fabrizio; Ohashi, Haruo;

    2007-01-01

    The pressure-induced behavior of spin-allowed dd-bands of VIIICo2+ in the absorption spectra of synthetic Co3Al2Si3O12 garnet was studied from 10-4 to 13 GPa. The plots of the peak energy vs. pressure for the three sharpest well resolved bands at ca. 5160, 17 680, and 18 740 cm-1 display small bu...

  15. RECEIVING OF COMPOSITION OF THE RELEASE COATINGS BASED ON HIGH-MOLECULAR COMPOUNDS FOR MOLDING OF ALUMINUM ALLOYS UNDER PRESSURE

    Directory of Open Access Journals (Sweden)

    A. A. Pivovarchik

    2014-01-01

    Full Text Available The results of researches on determination of optimal technological parameters of the emulsions preparation, enabling to receive composition of separating covering with high sediment stability, are given.

  16. Effect of blank holder pressure on viscous pressure forming aluminum alloy ladder parts

    Institute of Scientific and Technical Information of China (English)

    王忠金; 王新云; 王仲仁

    2002-01-01

    Viscous pressure forming (VPF), is suitable for forming difficult-to-form sheet metal parts. An investigation in the effect of blank holder pressure (BHP) on VPF aluminum alloy ladder parts was conducted. Based on experimental and numerical simulation results of the effect of BHP on dimensional accuracy, wall-thickness reduction, forming pressure, material flow and defects (such as wrinkling and fracture) of specimens, the effect patterns of BHP load path on VPF ladder parts were explained. The limits of BHP corresponding to specimens with no defect and with wrinkling or fracture defect were determined. In the limits of formable BHP, the variable load path of BHP was beneficial to drawing blank into the die and decreasing wall-thickness reduction of specimens. The experimental results show that the ladder parts of good surface fineness and high dimensional accuracy can be obtained by variable load paths of BHP.

  17. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... your doctor prescribes it, medicine. What Is Blood Pressure? Blood pressure is the force of blood flow inside ... Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you won't ...

  18. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  19. High blood pressure - infants

    Science.gov (United States)

    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics . ...

  20. High Blood Pressure Facts

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir ... facts about high blood pressure [PDF-255K] . High Blood Pressure in the United States About 70 million ...

  1. High Blood Pressure

    Science.gov (United States)

    ... pressure and should be taken seriously. Over time, consistently high blood pressure weakens and damages ... of landmark NIH blood pressure study confirm that lower blood pressure target can reduce ...

  2. Cell Structure Evolution of Aluminum Foams Under Reduced Pressure Foaming

    Science.gov (United States)

    Cao, Zhuokun; Yu, Yang; Li, Min; Luo, Hongjie

    2016-09-01

    Ti-H particles are used to increase the gas content in aluminum melts for reduced pressure foaming. This paper reports on the RPF process of AlCa alloy by adding TiH2, but in smaller amounts compared to traditional process. TiH2 is completely decomposed by stirring the melt, following which reduced pressure is applied. TiH2 is not added as the blowing agent; instead, it is added for increasing the H2 concentration in the liquid AlCa melt. It is shown that pressure change induces further release of hydrogen from Ti phase. It is also found that foam collapse is caused by the fast bubble coalescing during pressure reducing procedure, and the instability of liquid film is related to the significant increase in critical thickness of film rupture. A combination of lower amounts of TiH2, coupled with reduced pressure, is another way of increasing hydrogen content in the liquid aluminum. A key benefit of this process is that it provides time to transfer the molten metal to a mold and then apply the reduced pressure to produce net shape foam parts.

  3. Experimental EOS determination of aluminum at Mbar pressure

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianping; LI Ruxin; ZENG Zhinan; WANG Xingtao; XU Zhizhan

    2004-01-01

    A shock wave is driven by a laser pulse of 1.2 ps duration (FWHM), with the intensity of ~1014 W/cm2 at 785 nm, irradiating a 500 nm thick aluminum foil. A chirped laser pulse split from the main pulse is used to detect the shock breakout process at the rear surface of the target based on frequency domain interferometry. The mean shock velocity determination benefits from the precise synchronization (<100fs resolution) of the shock pump and probe laser pulses, which is calculated from the time the shock takes to travel the 500 nm thick aluminum. The released particle velocity determination benefits from the chirped pulse frequency domain interferometry. The average shock velocity is 15.15 km/s and the shock release particle velocity is 15.24 km/s, and the corresponding pressure after shock is 3.12 Mbar under our experimental condition.

  4. Effects of carbon nanotube content and annealing temperature on the hardness of CNT reinforced aluminum nanocomposites processed by the high pressure torsion technique

    Energy Technology Data Exchange (ETDEWEB)

    Phuong, Doan Dinh, E-mail: phuongdd@ims.vast.ac.vn [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi (Viet Nam); Trinh, Pham Van; An, Nguyen Van; Luan, Nguyen Van; Minh, Phan Ngoc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi (Viet Nam); Khisamov, Rinat Kh.; Nazarov, Konstantin S.; Zubairov, Linar R.; Mulyukov, Radik R.; Nazarov, Ayrat A. [Institute for Metals Superplasticity Problems, Russian Academy of Sciences 39, Stepan Khalturin Str., Ufa 450001 (Russian Federation)

    2014-11-15

    Highlights: • CNT/Al nanocomposites were consolidated by HIP and subsequently processed by the high pressure torsion technique. • High pressure torsion processing was unable to break apart or disperse the CNT agglomerates persisted in powder preparation. • HPT-processed CNT/Al nanocomposites exhibited secondary hardening during annealing at temperatures below 150 °C. - Abstract: In this paper, the microstructure and hardness of CNT reinforced aluminium (CNT/Al) nanocomposites prepared by the advanced powder metallurgy method and subsequently processed by the high pressure torsion (HPT) technique are studied. The effects of CNT content and annealing temperature on the hardness of the nanocomposites are investigated. The results show that annealing materials at temperatures below 150 °C leads to secondary hardening, while annealing at higher temperatures soften the nanocomposites. HPT-processed CNT/Al nanocomposites with 1.5 wt.% of CNTs are shown to have the highest hardness in comparison with other composites containing CNTs from 0 up to 2 wt.%. Microstructures, CNT distribution and the phase composition of CNT/Al nanocomposites are investigated by transmission and scanning electron microscopy and X-ray diffraction techniques.

  5. High Energy Density aluminum/oxygen cell

    Science.gov (United States)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  6. Density and solidiifcation feeding model of vacuum counter-pressure cast aluminum alloy under grade-pressuring conditions

    Institute of Scientific and Technical Information of China (English)

    Qing-song Yan; Huan Yu; Gang Lu; Bo-wen Xiong; Suai Xu

    2016-01-01

    The density of vacuum counter-pressure cast aluminum alloy samples under grade-pressuring condition was studied. The effect of grade pressure difference and time on the density of aluminum aloys was discussed, and the solidiifcation feeding model under grade-pressuring condition was established. The results indicate the grade-pressured solidiifcation feeding ability of vacuum counter-pressure casting mainly depends on grade pressure difference and time. With the increase of grade pressure difference, the density of al the aluminum aloy samples increases, and the trend of change in density from the pouring gate to the top location is first decreasing gradually and then increasing. In addition, in obtaining the maximum density, the optimal grade-pressuring time is different for samples with different wal thicknesses, and the solidiifcation time when the solid volume fraction of aluminum aloy reaches about 0.65 appears to be the optimal beginning time for grade-pressuring.

  7. PARTING COATINGS FOR ALUMINUM-ALLOY PRESSURE-DIE CASTING MOULDS

    Directory of Open Access Journals (Sweden)

    A. M. Michalzov

    2011-01-01

    Full Text Available The paper reveals how to obtain a parting coating with high sedimentation resistance. The parting coating is used for  oiling aluminum-alloy pressure-die casting moulds and obtained on the basis of high-molecular silicon polymers (polymethylsilicone fluid PMS300 with  addition of light vegetable oil soap stocks as an emulsion the weighing material and the stabilizing agent of an emulsion filling an stabilizing agent. 

  8. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  9. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    Science.gov (United States)

    Hereil, Pierre-Louis; Plassard, Fabien; Mespoulet, Jérôme

    2015-09-01

    Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics) overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  10. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hereil Pierre-Louis

    2015-01-01

    Full Text Available Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  11. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  12. Atmospheric pressure atomic layer deposition of Al₂O₃ using trimethyl aluminum and ozone.

    Science.gov (United States)

    Mousa, Moataz Bellah M; Oldham, Christopher J; Parsons, Gregory N

    2014-04-01

    High throughput spatial atomic layer deposition (ALD) often uses higher reactor pressure than typical batch processes, but the specific effects of pressure on species transport and reaction rates are not fully understood. For aluminum oxide (Al2O3) ALD, water or ozone can be used as oxygen sources, but how reaction pressure influences deposition using ozone has not previously been reported. This work describes the effect of deposition pressure, between ∼2 and 760 Torr, on ALD Al2O3 using TMA and ozone. Similar to reports for pressure dependence during TMA/water ALD, surface reaction saturation studies show self-limiting growth at low and high pressure across a reasonable temperature range. Higher pressure tends to increase the growth per cycle, especially at lower gas velocities and temperatures. However, growth saturation at high pressure requires longer O3 dose times per cycle. Results are consistent with a model of ozone decomposition kinetics versus pressure and temperature. Quartz crystal microbalance (QCM) results confirm the trends in growth rate and indicate that the surface reaction mechanisms for Al2O3 growth using ozone are similar under low and high total pressure, including expected trends in the reaction mechanism at different temperatures.

  13. Numerical simulation of low pressure die-casting aluminum wheel

    Directory of Open Access Journals (Sweden)

    Mi Guofa

    2009-02-01

    Full Text Available The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC of an aluminum wheel. By analyzing the mold-fi lling and solidifi cation stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.

  14. Numerical simulation of low pressure die-casting aluminum wheel

    Institute of Scientific and Technical Information of China (English)

    Mi Guofa; Liu Xiangyu; Wang Kuangfei; Fu Hengzhi

    2009-01-01

    The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC) of an aluminum wheel. By analyzing the mold-filling and solidification stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.

  15. Sunshine Group Builds High-End Aluminum Product Industrial Base

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In order to propel development of the aluminum industry to move toward featured,specialized,and ecological directions,Sunlight Sanyuan Aluminum Company plans to expropriate 300 mu of land in Hanjiang District of Putian City,Fujian province,where it plans to construct high-end aluminum product industrial park,introduce the world’s most advanced fully automatic production equipment and technologies for aluminum profile and

  16. High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO·Al2O3·CaCO3·11H2O

    KAUST Repository

    Moon, Juhyuk

    2012-01-01

    Synchrotron X-ray diffraction data was collected from a sample of monocarboaluminate 3CaO•Al2O3•CaCO 3•11H2O from ambient pressure to 4.3 GPa. The refined crystal structure at ambient pressure is triclinic with parameters a = 5.77(2) Å, b = 8.47(5) Å, c = 9.93(4) Å, α = 64.6(2)°, β = 82.8(3)°, γ = 81.4(4)°, and space group of P1 or P1̄. It showed some degree of perfectly reversible pressure-induced dehydration with a non-hygroscopic pressure-transmitting medium. However the dehydration effect does not critically affect a bulk modulus due to its strong framework. The isothermal bulk modulus of monocarboaluminate was found to be 53(5) GPa and 54(4) GPa with 3rd order and 2nd order Birch-Murnaghan Equation of state, respectively. That value is higher than for any other reported AFm or AFt phase. The pressure-volume behavior of the monocarboaluminate was compared with that of previous studied hemicarboaluminate. © 2011 Elsevier Ltd. All rights reserved.

  17. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  18. Geochemistry of Aluminum in High Temperature Brines

    Energy Technology Data Exchange (ETDEWEB)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

    1999-05-18

    The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

  19. High Blood Pressure Fact Sheet

    Science.gov (United States)

    ... much alcohol. Signs and Symptoms of High Blood Pressure High blood pressure usually has no warning signs or symptoms , ... they are at high risk for high blood pressure . Blood Pressure Levels Normal systolic: less than 120 mmHg ...

  20. What Is High Blood Pressure?

    Science.gov (United States)

    ... also known as blood vessels and capillaries. The pressure --- blood pressure --- is the result of two forces. The ... was last reviewed on 08/04/2014. High Blood Pressure • Home • About High Blood Pressure (HBP) Introduction What ...

  1. Solid-liquid state pressure bonding of Si3N4 ceramics with aluminum based alloys and its mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Solid-liquid state pressure bonding of Si3N4 ceramics with aluminum based alloys, which contain a small amount of intermetallic compounds Al3Ti or Al3Zr, was investigated. With this new method, the heat resistant properties of the bonding zone metal are improved, and the joints' strengths at high temperature is increased. The joints' shear strength at room temperature and at 600  ℃ reach 126~133  MPa and 32~34  MPa, respectively, with suitable bonding pressure. The reaction between aluminum and Si3N4 ceramics, which produces Al-Si-N-O type compounds is the dominant interfacial reaction, while the reactions between the second active element Ti or Zr in the aluminum based alloys and Si3N4 ceramics also occur to some extend.

  2. Deuterium High Pressure Target

    CERN Document Server

    Perevozchikov, V; Vinogradov, Yu I; Vikharev, M D; Ganchuk, N S; Golubkov, A N; Grishenchkin, S K; Demin, A M; Demin, D L; Zinov, V G; Kononenko, A A; Lobanov, V N; Malkov, I L; Yukhimchuk, S A

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm^3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system.

  3. Deuterium high pressure target

    International Nuclear Information System (INIS)

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  4. Prevention of High Blood Pressure

    Science.gov (United States)

    ... from the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  5. Electrochemical study of aluminum corrosion in boiling high purity water

    Science.gov (United States)

    Draley, J. E.; Legault, R. A.

    1969-01-01

    Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

  6. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... right away. continue How Do Doctors Measure Blood Pressure? Blood pressure readings are fast and painless. Blood pressure ... same age, height, and gender have lower blood pressure. Blood pressure between 90% and 95% of the normal ...

  7. Pressure slip casting and cold isostatic pressing of aluminum titanate green ceramics: A comparative evaluation

    Directory of Open Access Journals (Sweden)

    Ramanathan Papitha

    2013-12-01

    Full Text Available Aluminum titanate (Al2TiO5 green bodies were prepared from mixture of titania and alumina powders with different particle sizes by conventional slip casting (CSC, pressure slip casting (PSC and cold isostatic pressing (CIP. Precursor-powder mixtures were evaluated with respect to the powder properties, flow behaviours and shaping parameters. Green densities were measured and correlated with the fractographs. A substantial increase in green densities up to 60 %TD (theoretical density of 4.02 g/cm3, calculated based on rule of mixtures is observed with the application of 2–3 MPa pressure with PSC. While particle size distribution and solid loading are the most influential parameters in the case of CSC, with PSC pressure also plays a key role in achieving the higher green densities. Being a dry process, high pressure of > 100 MPa for CIP is essential to achieve densities in the range of 60–65 %TD. Slip pressurization under PSC conditions facilitate the rearrangement of particles through rolling, twisting and interlocking unlike CIP processing where pressure is needed to overcome the inter-particle friction.

  8. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However, similar approach for

  9. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  10. High pressure furnace

    Science.gov (United States)

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  11. High pressure oxygen furnace

    Science.gov (United States)

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  12. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... of High Blood Pressure For most patients, health care providers diagnose high blood pressure when blood pressure ... painless and can be done in a health care provider’s office or clinic. To prepare for the ...

  13. What Causes High Blood Pressure?

    Science.gov (United States)

    ... whether imbalances in this system cause high blood pressure. Blood Vessel Structure and Function Changes in the structure ... can affect blood pressure. Genetic Causes of High Blood Pressure Much of the understanding of the body systems ...

  14. Thermocurrent dosimetry with high purity aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al/sub 2/O/sub 3/) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces.

  15. High Blood Pressure and Women

    Science.gov (United States)

    ... High Blood Pressure Tools & Resources Stroke More High Blood Pressure and Women Updated:Aug 13,2014 Many people ... was last reviewed on 08/04/14. High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  16. Flexible gastrointestinal motility pressure sensors based on aluminum thin-film strain-gauge arrays

    International Nuclear Information System (INIS)

    This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively changing their electrical resistance. The sensor, with an area of 3.4 mm2, is fabricated using photolithography and standard microfabrication techniques (wet etching). It features a linear response (R2 = 0.9987) and an overall sensitivity of 2.6 mV mmHg−1. Additionally, its topology allows a high integration capability. The strain gauges’ responses to pressure were studied and the fabrication process optimized to achieve high sensitivity, linearity, and reproducibility. The sequential acquisition of the different signals is carried out by a microcontroller, with a 10-bit ADC and a sample rate of 250 Hz. The pressure signals are then presented in a user-friendly interface, developed using the Integrated Development Environment software, QtCreator IDE, for better visualization by physicians. (paper)

  17. Stroke and High Blood Pressure

    Science.gov (United States)

    ... Pressure Tools & Resources Stroke More Stroke and High Blood Pressure Updated:Jan 6,2015 Stroke is a leading ... heart disease and stroke. Start exploring today ! High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  18. Potassium and High Blood Pressure

    Science.gov (United States)

    ... Pressure Tools & Resources Stroke More Potassium and High Blood Pressure Updated:Mar 1,2016 A diet that includes ... was last reviewed on 08/04/2014. High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  19. Myths about High Blood Pressure

    Science.gov (United States)

    ... Pressure Tools & Resources Stroke More Myths About High Blood Pressure Updated:Aug 12,2014 You CAN manage your ... was last reviewed on 08/04/2014. High Blood Pressure • Home • About High Blood Pressure (HBP) Introduction What ...

  20. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... providers diagnose high blood pressure when blood pressure readings are consistently 140/90 mmHg or above. Confirming ... minutes before the test. To track blood pressure readings over a period of time, the health care ...

  1. P-V-T relation in aluminium as pressure and temperature scale under very high pressure

    OpenAIRE

    FUJISHIRO, Ikuya; SENOO, Masafumi; NOMURA, Yoshihiko

    1984-01-01

    A pressure-volume-temperature relation in aluminum was calculated by pseudopotential method and Mie-Grüneisen relation. The thermal dilatation data of aluminum showed good agreement with this calculated value. The calculated results under very high pressure and high temperature environment were compared with NaCl scale by a newly designed X-ray diffraction system with a LiF monochrometer at the receiving slit. Both scales just fitted within an error range. It can be concluded that the propose...

  2. Study on quality of resistance spot welded aluminum alloys under various electrode pressures

    Institute of Scientific and Technical Information of China (English)

    San-san AO; Zhen LUO; Xin-xin TANG; Lin-shu ZHOU; Shu-xian YUAN; Rui WANG; Kai-lei SONG; Xing-zheng BU; Xiao-yi LI; Zhi-qing XUE

    2009-01-01

    The electrode force is One of the main parameters in resistance spot welding (RSW). It is very important to guarantee the quality of aluminum alloys and determine whether the electrode pressure is stable or adjustable in the welding process. With the drive set of a servo-motor, we conduct the RSW tests and tensile shear tests on the 5052 aluminum alloy sheets. Results of these tests show that all variable pressure curves are suitable for spot welding, and all have their own rules in affecting the tensile strength of the spot welded joints.

  3. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... blood pressure with the development of a practical method to measure it. Physicians began to note associations between hypertension and risk of heart failure, stroke, and kidney failure. Although scientists had yet to prove that lowering blood pressure ...

  4. High blood pressure

    Science.gov (United States)

    ... you are at risk for: Bleeding from the aorta, the large blood vessel that supplies blood to ... tests Blood pressure check Blood pressure References American Diabetes Association. Standards of medical care in diabetes-2015 ...

  5. High blood pressure and diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  6. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Clinical Trials What Are Clinical Trials? Children & Clinical Studies NHLBI ... providers diagnose high blood pressure when blood pressure readings are consistently 140/90 mmHg or above. Confirming High Blood ...

  7. Diagnosis of High Blood Pressure

    Science.gov (United States)

    ... Clinical Trials What Are Clinical Trials? Children & Clinical Studies NHLBI ... providers diagnose high blood pressure when blood pressure readings are consistently 140/90 mmHg or above. Confirming High Blood ...

  8. A thin-film aluminum strain gauges array in a flexible gastrointestinal catheter for pressure measurements

    Science.gov (United States)

    Sousa, P. J.; Silva, L. R.; Pinto, V. C.; Goncalves, L. M.; Minas, G.

    2016-08-01

    This paper presents an innovative approach to measure the pressure patterns associated with the motility and peristaltic movements in the upper gastrointestinal tract. This approach is based on inexpensive and easy to fabricate thin-film aluminum strain gauge pressure sensors using a flexible polyimide film (Kapton) as substrate and SU-8 structural support. These sensors are fabricated using well-established and standard photolithographic and wet etching techniques. Each sensor has a 3.4 mm2 area, allowing a fabrication process with a high level of sensors integration (four sensors in 1.7 cm), which is suitable for placing them in a single catheter. These strain gauges bend when pressure is applied and, consequently, their electrical resistance is changed. The fabricated sensors feature an almost linear response (R 2  =  0.9945) and an overall sensitivity of 6.4 mV mmHg-1. Their readout and control electronics were developed in a flexible Kapton ribbon cable and, together with the sensors, bonded and wrapped around a catheter-like structure. The sequential acquisition of the different signals is carried by a microcontroller with a 10 bit ADC at a sample rate of 250 Hz per-1 sensor. The signals are presented in a user friendly interface developed using the integrated development environment software, QtCreator IDE, for better visualization by physicians.

  9. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... page from the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... are consistently 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  10. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... pressure. Using the results of your blood pressure test, your health care provider will diagnose prehypertension or high blood pressure ... same age, gender, and height . Once your health care provider ... he or she can order additional tests to determine if your blood pressure is due ...

  11. Flexible gastrointestinal motility pressure sensors based on aluminum thin-film strain-gauge arrays

    OpenAIRE

    Silva, Luís Rebelo; Sousa, Paulo J.; L.M. Gonçalves; Minas, Graça

    2015-01-01

    This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively cha...

  12. A High-Fe Aluminum Matrix Welding Filler Metal for Hardfacing Aluminum-Silicon Alloys

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A high-Fe containing aluminum matrix filler metal for hardfacing aluminum-silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as-cast and as-welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al-Si-Fe-Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al-Si-Mg-Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper-eutectic aluminum-silicon alloy with 27% Si and 1% Ni.

  13. High pressure gas metering project

    International Nuclear Information System (INIS)

    The initial research and development of a system that uses high pressure helium gas to pressurize vessels over a wide range of pressurization rates, vessel volumes, and maximum test pressures are described. A method of controlling the mass flow rate in a test vessel was developed by using the pressure difference across a capillary tube. The mass flow rate is related to the pressurization rate through a real gas equation of state. The resulting mass flow equation is then used in a control algorithm. Plots of two typical pressurization tests run on a manually operated system are included

  14. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Diagnosis of High Blood Pressure For most patients, health care providers diagnose high blood pressure when blood pressure ... and painless and can be done in a health care provider’s office or clinic. To prepare for the ...

  15. Living with High Blood Pressure

    Science.gov (United States)

    ... from the NHLBI on Twitter. Living With High Blood Pressure If you have high blood pressure, the best thing to do is to talk ... care provider and take steps to control your blood pressure by making healthy lifestyle changes and taking medications, ...

  16. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... above. Confirming High Blood Pressure A blood pressure test is easy and painless and can be done ... provider’s office or clinic. To prepare for the test: Don’t drink coffee or smoke cigarettes for ...

  17. High pressure diffraction at ISIS

    International Nuclear Information System (INIS)

    The development of the high pressure diffraction programme at ISIS is reviewed. Along with general accounts of the technique and the pressure cells used, examples of science carried out in this field are given. (author)

  18. High Blood Pressure in Pregnancy

    Science.gov (United States)

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  19. First-Principle Calculations of Elastic Properties of Wurtzite-Type Aluminum Nitride Under Pressure

    Institute of Scientific and Technical Information of China (English)

    REN Ji-Rong; WANG Yong-Liang; WEI Shao-Wen; CUI Hong-Ling; XU Dong-Hui; YU Bai-Ru; DUAN Yi-Shi; CHEN Xiang-Rong

    2008-01-01

    The elastic properties of the wurtzite-type aluminum nitride (w-AIN) are investigated by ab initio plane-wave pseudopotential density functional theory method. The pressure dependences of the normalized primitive cell volume V/V0, the elastic constants cij, the aggregate elastic modulus (B, G, E), the Poisson's ratio (v), and the Debye temperature θD are successfully obtained. From the elastic constants of the w-A1N under pressure, we find that the w-AIN should be unstable at higher pressure than 61.33 GPa.

  20. High pressure engineering and technology

    International Nuclear Information System (INIS)

    This book contains 10 papers. Some of the titles are: Control of vibration in high pressure piping systems; Hazards and safeguards of high pressure hydraulic fatigue testing; Load, stress and fatigue analysis of threaded end closures; Application of fatigue crack growth to an isostatic press; and Time dependent failure in high strength steels for autoclave service

  1. Questions and Answers about High Blood Pressure

    Science.gov (United States)

    ... Blood Pressure Page Content What is high blood pressure? Blood pressure is the force of blood against the ... do I know if I have high blood pressure? High blood pressure is often called "the silent killer" because ...

  2. High pressure storage vessel

    Science.gov (United States)

    Liu, Qiang

    2013-08-27

    Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

  3. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  4. Recrystallization behavior of high purity aluminum at 300 ℃

    Institute of Scientific and Technical Information of China (English)

    DU Yu-xuan; ZHANG Xin-ming; YE Ling-ying; LUO Zhi-hui

    2006-01-01

    The recrystallization behavior of 98.5% cold rolled high purity aluminum foils annealed at 300 ℃ was investigated, and the evolution of the microstructures was followed by electron back scattered diffraction(EBSD). The results show that the recrystallization process of the high purity aluminum foils at 300 ℃ is a mixture of discontinuous- and continuous-recrystallization.The orientations of the recrystallization nuclei include not only the cube orientation, but also other orientations such as some near deformation texture components which are the results of strong recovery process. However, such continuously recrystallized grains are usually associated with relatively high free energy, so they would be consumed by the discontinuously-recrystallized grains (cube-oriented grains) in subsequent annealing. On the other hand, the pattern quality index of recrystallized grains shows dependence on the crystal orientation which might introduce some errors into evaluating volume fraction of recrystallization by integrating pattern quality index of EBSD.

  5. Mixed domain models for the distribution of aluminum in high silica zeolite SSZ-13.

    Science.gov (United States)

    Prasad, Subramanian; Petrov, Maria

    2013-01-01

    High silica zeolite SSZ-13 with Si/Al ratios varying from 11 to 17 was characterized by aluminum-27 and silicon-29 NMR spectroscopy. Aluminum-27 MAS and MQMAS NMR data indicated that in addition to tetrahedral aluminum sites, a fraction of aluminum sites are present in distorted tetrahedral environments. Although in samples of SSZ-13 having high Si/Al ratios all aluminum atoms are expected to be isolated, silicon-29 NMR spectra revealed that in addition to isolated aluminum atoms (Si(1Al)), non-isolated aluminum atoms (Si(2Al)) exist in the crystals. To model these contributions of the various aluminum atoms, a mixed-domain distribution was developed, using double-six membered rings (D6R) as the basic building units of SSZ-13. A combination of different ideal domains, one containing isolated and the other with non-isolated aluminum sites, has been found to describe the experimental silicon-29 NMR data. PMID:23830719

  6. Aluminum nanocantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nanocantilevers using a simple, one mask contact UV lithography technique with lateral and vertical dimensions under 500 and 100 nm, respectively. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Furthermore, it is shown ...

  7. Neutron scattering at high pressure

    OpenAIRE

    Mcwhan, D.B.

    1984-01-01

    The techniques to do elastic and inelastic neutron scattering at steady-state and pulsed sources are reviewed. The pressure cells available at most neutron scattering centres are capable of reaching pressures of the order of 5 GPa (50 kbar), and attempts to reach 10 GPa have been made. For elastic scattering, a comparison is made between neutron scattering and X-ray scattering at high pressure using rotating anode or synchrotron sources.

  8. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  9. System for ultra high vacuum made of aluminum alloys

    International Nuclear Information System (INIS)

    We have developed the system for ultra high vacuum made of aluminum alloys for proton and electron synchrotron. This is the first system for ultra high vacuum in which bakable metal seal flange and small diametral bellows of aluminum alloys have been put to practical use. The system consists of the flange protected by a CrN thin film and made of 2219-T87 alloy, the chamber made of 6063-T6 alloy, the aluminum metal gasket of Helico Flex and the bellows made of 5052 alloy. As a result of experiments at the National Laboratory for High Energy Physics (KEK), it had been confirmed that this system shows the special qualities of ultra high vacuum operation, resistance to hard radiation and baking and cooling operations. Up to now, this system has been widely used for the beam lines of the booster synchrotron utilization facility, K1, K2, linac, PI 1 and EP2-B extension of the KEK proton synchrotron. We investigate that this system is applicable to nuclear energy utilization facility and general vacuum apparatus. (author)

  10. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... does not, you should ask for your readings. Blood Pressure Severity and Type Your health care provider usually takes 2–3 ... any other location. Health care providers diagnose this type of high blood pressure by reviewing readings in the office and ...

  11. High strain rate superplasticity of SiC whisker reinforced pure aluminum composites

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Aβ-SiC whisker reinforced pure aluminum composites expected to exhibit high strain rate super plasticity has been successfully fabricated by a new processing route consisting of pressure infiltration, extrusion with a low extrusion ratio and rolling. The composites exhibite a total elongation of 220 % ~ 380 % in the initial strain rates within 1.0 × 10-2 ~ 1.0 × 10-1 s- 1 and at 893 ~903 K. According to differential thermal analysis(DTA) and microstructure observation, it is concluded that an appropriately small amount of liquid phase is necessary to cause a good high strain rate superplasticity in aluminum matrix composites in addition to fine and uniform microstructure.

  12. Steam Oxidation at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL; Carney, Casey [URS

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  13. 无助剂AlN陶瓷的高压烧结制备及热导率%PREPARATION AND THERMAL CONDUCTIVITY OF ALUMINUM NITRIDE CERAMICS WITHOUT ADDITIVES SINTERED UNDER HIGH PRESSURE

    Institute of Scientific and Technical Information of China (English)

    李小雷; 马红安; 郑友进; 刘万强; 左桂鸿; 李吉刚; 李尚升; 贾晓鹏

    2008-01-01

    以碳热还原法生产的AlN粉体为原料,用国产六面顶压机,在5.0GPa,1 300~1 800℃,在无烧结助剂的情况下,高压烧结制备了AlN陶瓷.用X射线衍射、扫描电镜对高压烧结AlN陶瓷微观结构进行了表征.结果表明:经1 300℃烧结50 min制备的AlN陶瓷的相对密度达94.8%.经1 400℃烧结50min制备的AlN陶瓷的断裂模式为穿晶断裂.经1 800℃烧结50min制备的AlN陶瓷由单相多晶等轴晶粒组成,该样品的热导率达115.0W/(m·K).高压烧结制备的AlN陶瓷的晶格常数比AlN粉体的略有减小.高压烧结温度的提高和烧结时间的延长有助于提高AlN陶瓷的热导率.%AlN ceramics without sintering additives were prepared by high-pressure sintering at 5.0 GPa and 1 300-1 800 ℃ in a Chinese cubic anvil ultra high-pressure and high-temperature device, using AlN powder produced by carbothermal reduction method as starting material. The sintered samples were characterized by X-ray diffraction and scanning electron microscopy. The relative density of AlN ceramics sintered at 1 300 ℃ and 5.0GPa for 50min was 94.8%. The fracture mode of the sample prepared at 1 400 ℃ for 50 min under 5.0 GPa was intragranular. The microstructure of the AlN ceramic sintered sample prepared at 1 800 ℃ for 50 min unThe lattice parameters of AlN ceramics prepared by high-pressure sintering are a little smaller than those of the AlN starting powder.The increase of high-pressure sintering temperature and time is favorable for the enhancement of the thermal conductivity of AlN ceramics.

  14. Optimization of Anodized-Aluminum Pressure-Sensitive Paint by Controlling Luminophore Concentration

    Directory of Open Access Journals (Sweden)

    Hirotaka Sakaue

    2010-07-01

    Full Text Available Anodized-aluminum pressure-sensitive paint (AA-PSP has been used as a global pressure sensor for unsteady flow measurements. We use a dipping deposition method to apply a luminophore on a porous anodized-aluminum surface, controlling the luminophore concentration of the dipping method to optimize AA-PSP characteristics. The concentration is varied from 0.001 to 10 mM. Characterizations include the pressure sensitivity, the temperature dependency, and the signal level. The pressure sensitivity shows around 60 % at a lower concentration up to 0.1 mM. Above this concentration, the sensitivity reduces to a half. The temperature dependency becomes more than a half by setting the luminophore concentration from 0.001 to 10 mM. There is 3.6-fold change in the signal level by varying the concentration. To discuss an optimum concentration, a weight coefficient is introduced. We can arbitrarily change the coefficients to create an optimized AA-PSP for our sensing purposes.

  15. A Dipping Duration Study for Optimization of Anodized-Aluminum Pressure-Sensitive Paint

    Directory of Open Access Journals (Sweden)

    Keiko Ishii

    2010-11-01

    Full Text Available Anodized-aluminum pressure-sensitive paint (AA-PSP uses the dipping deposition method to apply a luminophore on a porous anodized-aluminum surface. We study the dipping duration, one of the parameters of the dipping deposition related to the characterization of AA-PSP. The dipping duration was varied from 1 to 100,000 s. The properties characterized are the pressure sensitivity, temperature dependency, and signal level. The maximum pressure sensitivity of 65% is obtained at the dipping duration of 100 s, the minimum temperature dependency is obtained at the duration of 1 s, and the maximum signal level is obtained at the duration of 1,000 s, respectively. Among the characteristics, the dipping duration most influences the signal level. The change in the signal level is a factor of 8.4. By introducing a weight coefficient, an optimum dipping duration can be determined. Among all the dipping parameters, such as the dipping duration, dipping solvent, and luminophore concentration, the pressure sensitivity and signal level are most influenced by the dipping solvent.

  16. Risk Factors for High Blood Pressure

    Science.gov (United States)

    ... the NHLBI on Twitter. Risk Factors for High Blood Pressure Anyone can develop high blood pressure; however, age, ... can increase your risk for developing high blood pressure. Age Blood pressure tends to rise with age. About 65 ...

  17. High Blood Pressure and Kidney Disease

    Science.gov (United States)

    ... to Remember Clinical Trials What is high blood pressure? Blood pressure is the force of blood pushing against ... filtering units called nephrons. [ Top ] How does high blood pressure affect the kidneys? High blood pressure can damage ...

  18. High pressure ceramic joint

    Science.gov (United States)

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  19. High Power Selective Laser Melting (HP SLM) of Aluminum Parts

    Science.gov (United States)

    Buchbinder, D.; Schleifenbaum, H.; Heidrich, S.; Meiners, W.; Bültmann, J.

    Selective Laser Melting (SLM) is one of the Additive Manufacturing (AM) technologies that enables the production of light weight structured components with series identical mechanical properties without the need for part specific tooling or downstream sintering processes, etc. Especially aluminum is suited for such eco-designed components due to its low weight and superior mechanical and chemical properties. However, SLM's state-of-the-art process and cost efficiency is not yet suited for series-production. In order to improve this efficiency it is indispensable to increase the build rate significantly. Thus, aluminum is qualified for high build rate applications using a new prototype machine tool including a 1 kW laser and a multi-beam system.

  20. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Budget, Planning, & Legislative Advisory Committees Contact Us FAQs Home » Health Information for the Public » Health Topics » High ... also may ask you to check readings at home or at other locations that have blood pressure ...

  1. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living With Clinical Trials Links Related Topics Atherosclerosis DASH Eating Plan Overweight and Obesity Smoking and Your Heart ...

  2. High pressure rinsing parameters measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, E. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Fusetti, M. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Michelato, P. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Pagani, C. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy)]. E-mail: carlo.pagani@mi.infn.it; Pierini, P. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Paulon, R. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Sertore, D. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy)

    2006-07-15

    High pressure rinsing with ultra pure water jet is an essential step in the high field superconducting cavity production process. In this paper, we illustrate the experimental characterization of a HPR system, in terms of specific power and energy deposition on the cavity surfaces and on the damage threshold for niobium. These measurements are used to tentatively derive general rules for the optimization of the free process parameters (nozzle geometry, speeds and water pressure)

  3. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  4. Failure assessment of aluminum liner based filament-wound hybrid riser subjected to internal hydrostatic pressure

    Science.gov (United States)

    Dikshit, Vishwesh; Seng, Ong Lin; Maheshwari, Muneesh; Asundi, A.

    2015-03-01

    The present study describes the burst behavior of aluminum liner based prototype filament-wound hybrid riser under internal hydrostatic pressure. The main objective of present study is to developed an internal pressure test rig set-up for filament-wound hybrid riser and investigate the failure modes of filament-wound hybrid riser under internal hydrostatic burst pressure loading. The prototype filament-wound hybrid riser used for burst test consists of an internal aluminum liner and outer composite layer. The carbon-epoxy composites as part of the filament-wound hybrid risers were manufactured with [±55o] lay-up pattern with total composite layer thickness of 1.6 mm using a CNC filament-winding machine. The burst test was monitored by video camera which helps to analyze the failure mechanism of the fractured filament-wound hybrid riser. The Fiber Bragg Grating (FBG) sensor was used to monitor and record the strain changes during burst test of prototype filament-wound hybrid riser. This study shows good improvements in burst strength of filament-wound hybrid riser compared to the monolithic metallic riser. Since, strain measurement using FBG sensors has been testified as a reliable method, we aim to further understand in detail using this technique.

  5. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... is your pressure when your heart relaxes ( diastolic pressure ). High Blood Pressure Medicines Use this guide to help you ...

  6. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... lead an active, normal life. What Is Blood Pressure? Blood pressure is the force that blood puts on ... and medications. continue Long-Term Effects of High Blood Pressure When someone has high blood pressure, the heart ...

  7. High Pressure Treatment in Foods

    OpenAIRE

    Edwin Fabian Torres Bello; Gerardo González Martínez; Bernadette F. Klotz Ceberio; Dolores Rodrigo; Antonio Martínez López

    2014-01-01

    High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal f...

  8. High Pressure Treatment in Foods

    OpenAIRE

    Torres Bello, Edwin Fabian; González Martínez, Gerardo; Bernadette F. Klotz Ceberio; Rodrigo Aliaga, Mª Dolores; Martínez López, Antonio

    2014-01-01

    Abstract: High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non...

  9. LLL dynamic high pressure experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.

    1979-01-01

    The Lawrence Livermore Laboratory has several experimental facilities to measure material properties at dynamic high pressures. These include an isobaric expansion experiment, a two-stage light-gas gun, and a high-power laser facility (Janus). Each of these are briefly described.

  10. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Entire Site Health Topics News & Resources Intramural Research Public Health Topics Education & Awareness Resources Contact The Health Information ... Contact Us FAQs Home » Health Information for the Public » Health Topics » High Blood Pressure » Diagnosis of High Blood ...

  11. Overheating temperature of 7B04 high strength aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    GAO Feng-hua; LI Nian-kui; TIAN Ni; SUN Qiang; LIU Xian-dong; ZHAO Gang

    2008-01-01

    The microstructure and overheating characteristics of the direct chill semicontinuous casting ingot of 7B04 high strength aluminum alloy, and those after industrial homogenization treatment and multi-stage homogenization treatments, were studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDX). The results show that the microstructure of direct chill semicontinuous casting ingot of the 7B04 alloy contains a large number of constituents in the form of dendritic networks that consist of nonequilibrium eutectic and Fe-containing phases. The nonequilibrium eutectic contains Al, Zn, Mg and Cu, and the Fe-containing phases include two kinds of phases, one containing Al, Fe, Mn and Cu, and the other having Al, Fe, Mn, Cr, Si and Cu. The melting point of the nonequilibrium eutectic is 478 ℃ for the casting ingot of the 7B04 alloy which is usually considered as its overheating temperature. During industrial homogenization treatment processing at 470 ℃, the nonequilibrium eutectic dissolves into the matrix of this alloy partly, and the remainder transforms into Al2CuMg phase that cannot be dissolved into the matrix at that temperature completely. The melting point of the Al2CuMg phase which can dissolve into the matrix completely by slow heating is about 490 ℃. The overheating temperature of this high strength aluminum alloy can rise to 500-520 ℃. By means of special multi-stage homogenization, the temperature of the homogenization treatment of the ingot of the 7B04 high strength aluminum alloy can reach 500 ℃ without overheating.

  12. High pressure neon arc lamp

    Science.gov (United States)

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  13. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink

    2016-01-01

    . High-pressure crystallography is the perfect method for studying intermolecular interactions, by forcing the molecules closer together. In all three studied hydroquinone clathrates, new pressure induced phase transitions have been discovered using a mixture of pentane and isopentane as the pressure...... transformation is therefore most likely kinetically hindered when surrounded by solidified silicone oil. The calculated intermolecular energies in all three hydroquinone clathrates show the anticipated strong interactions in the host framework and the weaker host-guest interactions. As the pressure is raised...... illustrates how important it is to quantify all intermolecular interactions in structures. This enables researchers to see a more complete picture and not focus only on a few interactions deemed particularly important....

  14. Combustion synthesis of hexagonal aluminum nitride powders under low nitrogen pressure

    International Nuclear Information System (INIS)

    The synthesis of aluminum nitride (AlN) powders was carried out by combustion of aluminum (Al) powder under low nitrogen pressure (less than or (double) equal 0.5 MPa) with carbon black (CB) as the dispersion agent to prevent the coalescence of the aluminum. The combustion was successful when the weight ratio between CB and Al, CB/Al, ranged from 0.02 to 1.5, while the combustion failed at CB/Al=0 (pure Al) or 1.75. As CB/Al varied, different combustion behaviors were observed: steady, unsteady and spin combustion. The combustion temperature and velocity reached the respective maximum at an intermediate CB/Al value (0.2). The measured combustion temperature quantitatively agrees with the adiabatic temperature calculated from a thermodynamic analysis for various CB/Al. The as-synthesized AlN product had various morphologies: aggregated fine particles, flakes, aggregated faceted particles, honeycomb-like microstructure, as well as hexagonal crystals. It was found that the hexagonal crystal structure was favored when CB/Al=0.2 and 0.5. The combustion temperature at these ratios was larger than those synthesized at different CB/Al ratios. The reaction yield monotonically increased with the increasing CB/Al up to a ratio of 1.25. The maximum reaction yield at CB/Al=1.25 did not correspond to the largest combustion temperature. An increase of nitrogen pressure greatly increased both the combustion temperature and velocity, and the reaction yield was moderately enhanced. The experimental reaction yield agreed well with the theoretical reaction yield based on a diffusion-limited core-shell model

  15. High Methane Storage Capacity in Aluminum Metal–Organic Frameworks

    OpenAIRE

    Gándara, Felipe; Furukawa, Hiroyasu; Lee, Seungkyu; Yaghi, Omar M.

    2014-01-01

    The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal–organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm3 cm–3 at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 ...

  16. Competitive growth of high purity aluminum grains in directional solidification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiao; SHU Da; WANG De-lin; SUN Bao-de; CHEN Gang

    2006-01-01

    A self-made directional solidification setup was used to prepare high purity aluminum ingots of 100mm in diameter. The morphology of the growth interface was detected by SEM and AFM, and the grain lattice orientation was detected by XRD. The results indicate that the grains suffer competitive growth under any conditions in experiments. The lattice orientation of the preferred grains is determined by the flow field above the solid-liquid interface. The horizontal lattice position does not change during the growth process. However, the lattice orientation in the growth direction varies with the growth velocity and approaches to [100]gradually during the growth process.

  17. The Effect of Uniaxial Static Pressure on the Behaviour of the Aluminum Acceptor Impurity in Silicon

    CERN Document Server

    Mamedov, T N; Andrianov, D G; Herlach, D; Gorelkin, V N; Gritsaj, K I; Zhukov, V A; Stoikov, A V; Zimmermann, U

    2004-01-01

    The results on the effect of uniaxial static pressure on the behaviour of aluminum shallow acceptors in silicon are presented. Impurity atoms of _{\\mu}A1 in silicon crystals with phosphorus impurity (1.6\\cdot 10^{13} cm^{-3} for the first sample and 1.9\\cdot 10^{13} cm^{-3} for the second sample) were created by implantation of negative muons. The polarization of muons was studied in a magnetic field of 2.5 kGs transverse to the direction of the muon spin in the temperature range 10-300 K. Orientations of the chosen crystal axis ([111] for the first sample, [100] for the second one), magnetic field, and the muon polarization were reciprocally perpendicular. It was found that uniaxial pressure applied along the chosen crystal axes changes both the absolute value and the temperature dependence of the acceptor center magnetic moment relaxation rate.

  18. Questions and Answers about High Blood Pressure

    Science.gov (United States)

    ... Research Training & Career Development Grant programs for students, postdocs, and faculty Research at NIDDK Labs, faculty, and ... you have high blood pressure. How can I control or prevent high blood pressure? High blood pressure ...

  19. How Is High Blood Pressure Treated?

    Science.gov (United States)

    ... from the NHLBI on Twitter. How Is High Blood Pressure Treated? Based on your diagnosis, health care providers ... the medicine suspected of causing your high blood pressure. If high blood pressure persists or is first diagnosed as primary ...

  20. Avoid the Consequences of High Blood Pressure

    Science.gov (United States)

    ... Resources Stroke More Avoid the Consequences of High Blood Pressure Infographic Updated:Jun 19,2014 View a downloadable version of this infographic High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  1. High-speed deformation of aluminum by cold rolling

    International Nuclear Information System (INIS)

    High-speed deformation of aluminum was carried out by use of a high-speed rolling machine, and the results were compared with those of impact compression. The rolled specimens were electro-polished and observed under an electron microscope. As compared with the microstructures observed in the impact compression specimens, the microstructures observed in the rolled specimens showed almost the same tendency as impact compression for vacancy loop formation, but a different tendency for dislocation cell formations. The difference in the results is explained by the variation in strain rate during deformation in rolling. The results indicate that in high-speed rolling, vacancies and dislocations are produced independently during different periods. Specifically, in the high-strain period, during which dislocations are not generated, deformation proceeds without dislocations

  2. Vital Signs - High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-10-02

    In the U.S., nearly one third of the adult population have high blood pressure, the leading risk factor for heart disease and stroke - two of the nation's leading causes of death.  Created: 10/2/2012 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 10/17/2012.

  3. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Health Topics Education & Awareness Resources Contact The Health Information Center Health Professionals Systematic Evidence Reviews & Clinical Practice ... Legislative Advisory Committees Contact Us FAQs Home » Health Information for the Public » Health Topics » High Blood Pressure » ...

  4. Aluminum recovery from coal fly ash by high temperature chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Wijatno, H.

    1977-10-01

    A study of aluminum recovery from power plant fly ash by high temperature chlorination was undertaken to demonstrate that fly ash could be a potential source of aluminum, iron and possibly silicon. Magnetic separation of the iron oxide served as a first step to alleviate the iron contamination problem. However, the agglomeration of some iron oxide with alumina and silica made it difficult to completely separate the iron from the fly ash. Further iron separation was achieved by chlorinating the nonmagnetic ash fraction at 550/sup 0/C for 30 minutes. This reduced the iron oxide content to less than 4 percent by weight. Chlorine flow rates affected the reaction rate much more drastically than temperatures. This suggested that diffusion was the major rate-controlling step. Besides Fe/sub 2/O/sub 3/, Al/sub 2/O/sub 3/ and SiO/sub 2/, other oxides such as CaO, K/sub 2/O, Na/sub 2/O and MgO might have complicated the alumina recovery by forming individual chlorides or complexes. Investigating methods for separating more Fe/sub 2/O/sub 3/, and possibly CaO, K/sub 2/O, Na/sub 2/O and MgO from the nonmagnetic ash fraction before chlorinating it is highly recommended.

  5. High Pressure Treatment in Foods

    Directory of Open Access Journals (Sweden)

    Edwin Fabian Torres Bello

    2014-08-01

    Full Text Available High hydrostatic pressure (HHP, a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional. Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  6. High pressure rinsing system comparison

    Energy Technology Data Exchange (ETDEWEB)

    D. Sertore; M. Fusetti; P. Michelato; Carlo Pagani; Toshiyasu Higo; Jin-Seok Hong; K. Saito; G. Ciovati; T. Rothgeb

    2007-06-01

    High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process

  7. Evolution of recrystallization textures in high voltage aluminum capacitor foils

    Institute of Scientific and Technical Information of China (English)

    刘楚明; 张新明; 周鸿章; 陈志永; 邓运来; 周卓平

    2001-01-01

    The evolution of recrystallization textures in high voltage aluminum capacitor foils which are produced with a high level of cold reduction was tracked by analysis of microstructure and crystallographic texture. The results show that the deformation textures are mainly composed of S-orientation, Cu-orientation and a little Bs-orientation. During the low temperature stages of final annealing, the iron precipitates first along the sub-grain boundaries, and the Fe concentration in the matrix becomes low. Then, the cube grains nucleate preferably into the sub-grains. At high temperature stages, the cube nuclei can grow preferably because of their 40°〈111〉 orientation relationship to the S orientation, the main component of the rolling texture. Finally, the cube texture is sharply strong and the R orientation is very weak in the foils.

  8. High-Strain-Rate Forming of Aluminum and Steel Sheets for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, Aashish; Stephens, Elizabeth V; Soulami, Ayoub; Davies, Richard W; Smith, Mark T

    2010-06-01

    The formability of aluminum alloy AA5182-O and DP600 steel sheets at high-strain-rates was investigated using an electrohydraulic forming (EHF) setup. Test sheets, ~150 mm diameter x 1 mm thick, were clamped around their circumference and subjected to a pressure-pulse (several 100's duration) generated by a high-energy (up to ~34 kJ) under-water electrical discharge. The real-time strain and strain-rate of the deforming sheets were quantified by the digital image correlation (DIC) technique using a pair of high-speed cameras (~15's per frame). Strain-rate amplification was observed when the sheets were deformed into a conical die, with the maximum in-plane strain-rate and strain for aluminum measured as ~1200 /s and ~0.2, respectively. The deformation behavior of the sheets was modeled using ABAQUS/finite element explicit code and better correlation, between the predicted and the experimental sheet deformation behavior, was observed when an alternate pressure-profile was used instead of the one available from the literature.

  9. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    Science.gov (United States)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Chris; Rodriquez, Karen; Miller, Joshua; Bohl, William

    2011-01-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  10. High pressure processing of meat

    DEFF Research Database (Denmark)

    Grossi, Alberto; Christensen, Mette; Ertbjerg, Per;

    Abstract Background: The research of high pressure (HP) processing of meat based foods needs to address how pressure affects protein interactions, aggregation and/or gelation. The understanding of the gel forming properties of myofibrillar components is fundamental for the development of muscle......–PAGE gels of myofibrillar protein extract from HP treated meat showed that myofibrillar proteins form high molecular weight aggregates after HP treatment. Myofibrillar protein aggregates were stable in a reducing environment, suggesting that disulfide bonds are not the main molecular interactions...... the rheological properties of pork meat batters by inducing formation of protein gels. HP induced protein gels are suggested to be formed by high molecular weight myofibrillar protein aggregates and by peptides formed by lysosomal enzyme-induced cleavage of myofibrillar proteins. Perspectives: The data presented...

  11. High cycle fatigue characteristics of 2124-T851 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xue; YIN Zhimin; NIE Bo; ZHONG Li; PAN Qinglin; JIANG Feng

    2007-01-01

    The fatigue crack growth rate, fracture toughness and fatigue S-N curve of 2124-T851 aluminum alloy at high cycle fatigue condition were measured and fatigue fracture process and fractography were studied using optical microscopy (OM), X-ray diffraction (XRD) technique, trans-mission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that at room tempera-ture and R = 0.1 conditions, the characteristics of fatigue fracture could be observed. Under those conditions, the fatigue strength and the fracture toughness of a 2124-T851 thick plate is 243 MPa and 29.64 MPa·m1/2,respectively.At high cycle fatigue condition, the higher the stress amplitude,the wider the space between fatigue striations, the faster the rate of fatigue crack developing and going into the intermittent fracture area, and the greater the ratio between the intermittent fracture area and the whole fracture area.

  12. Controlling your high blood pressure

    Science.gov (United States)

    ... that is healthy for you. Checking Your Blood Pressure Your blood pressure can be measured at many places, including: ... Alternative Names Controlling hypertension Images Taking your blood pressure at home Blood pressure check Low sodium diet References American Diabetes ...

  13. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  14. Microstructure and thermal conductivity of heat-treated aluminum nitride ceramics sintered at high pressure%热处理高压烧结AlN陶瓷的显微组织和热导率

    Institute of Scientific and Technical Information of China (English)

    李小雷; 李尚升; 王利英; 宿太超; 马红安; 贾晓鹏

    2011-01-01

    在流动N2保护下,对高压烧结制备的AlN(Y2O3)陶瓷进行了热处理,研究了热处理对AlN陶瓷显微组织及导热性能的影响.结果表明:在970℃热处理2 h后的AlN陶瓷材料与未热处理的试样相比,晶粒尺寸显著增大,晶粒形状越发规整,析出相均位于晶界处或者三角晶界区域,热导率从77.3 W/(m·K)提高到了156.7 W/(m·K).但是,将热处理时间延长到4 h,AlN陶瓷的气孔增大,出现了反致密化现象,热导率也降低到92.6 W/(m·K).%AlN ceramics prepared at high pressure with Y2O3 as a sintering aids were heat treated in a nitrogen flow atmosphere. The effects of heat treatment on microstructure and thermal conductivity of AlN ceramics were studied. The results show that the grain size of the AlN ceramics heat-treated at 970 ℃ for 2h is significantly increased, and the actual crystal is more perfect and the second phases are almost present at the grain boundaries and triple junctions compared with the samples without heat treatment, and its thermal conductivity increases to 156.7 W/(m·K) from 77.3 W/(m·K) of the un-treated ceramics. However, the pore size of A1N ceramics is increased and the phenomenon of anti-densification is observed while the heat treatment time is extended to 4 h. The thermal conductivity of AlN ceramics heat-treated at 970 ℃ for 4 h is reduced to 92.6 W/(m·K).

  15. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure t

  16. A novel photo-initiated approach for preparing aluminum diethylphosphinate under atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    Li Yang; Xin Yu Han; Xue Jiao Tang; Chang Xiu Han; Yi Xiao Zhou; Bao Gui Zhang

    2011-01-01

    A novel preparation of aluminum diethylphosphinate (AlPi) was carried out with free-radical addition reaction by means of UV-irradiation under atmospheric pressure. A solution of sodium hypophosphite was treated with ethylene and irradiated with ultraviolet light in the presence of an amount of photoinitiator effective to initiate the free-radical reaction between the hypophosphite anion and the double bond of the ethylene molecule. The ethylene was micro-bubbled into the reaction mixture with the addition of the photoinitiator, and the gas-liquid contact surface and the photoinitiator concentration in the gas-liquid interface were increased largely. The yield of the final product could be improved to about 96%. The contents of P, Al in samples were detected by ICP, and the molecular structure of the samples was confirmed by 31P NMR, 1H NMR and FTIR spectroscopic analysis. Thermal stability of the final products was investigated in detail by TG-DTA.

  17. Dynamic property evaluation of aluminum alloy 2519A by split Hopkinson pressure bar

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-ming; LI Hui-jie; LI Hui-zhong; GAO Hui; GAO Zhi-guo; LIU Ying; LIU Bo

    2008-01-01

    Impact behavior of aluminum alloy 2519A was investigated at strain rates of 600-7 000 s-1 and temperatures of 20-450 ℃ by a split Hopkinson pressure bar. The results show that the flow stress is dominated by temperature, and it increases with strain rate and decreases with deformation temperature. The serrated flow curves show the dynamic recrystallization occurs. The strain rate sensitivity exponents m determined are 0.066, 0.059 4, 0.059 0 and 0.057 3 at 20, 150, 300 and 450 ℃, respectively. Cowper- Symonds constitutive equation expressing the plastic flow behavior was calculated by analysis and regression of the experimental results. The fracture characteristics under the experimental conditions were observed by optical microscopy(OM) and scanning electron microscopy(SEM). It is determined that the tested material fails as a result of adiabatic shearing.

  18. Effect of back pressure on material flow and texture in ECAP of aluminum

    Science.gov (United States)

    Panigrahi, A.; Scheerbaum, N.; Chekhonin, P.; Scharnweber, J.; Beausir, B.; Hockauf, M.; Sankaran, S.; Skrotzki, W.

    2014-08-01

    Large billets (5 x 5 x 30) cm3 of technically pure aluminum (AA 1050) taken from thick rolled sheets were deformed at room temperature by single pass equal-channel angular pressing (ECAP). ECAP was done at different back pressures (0 - 60 MPa) using a square die with channels intersecting at 90° in sharp corners. The normal direction of rolling was taken parallel to the transverse direction of ECAP. The flow pattern was visualized by marker lines on split billets. The initial texture of the coarse-grained rolled sheet was measured by neutron diffraction. After ECAP, X-ray diffraction was used to measure the texture gradient from top to bottom of the billets. The results show, that with increasing back pressure the corner gap is closed and the flow line pattern becomes more symmetric. The flow line exponent increases strongly from top to bottom of the billets. Moreover, the inhomogeneous deformed zone at the bottom of the billets becomes smaller. The texture changes from a typical rolling texture to a typical shear texture with the intensity of the different shear texture components changing with back pressure. For the ACcomponent splitting is observed. The texture changes are discussed considering Toth's flow line model and grain refinement.

  19. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide

    International Nuclear Information System (INIS)

    Zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films were deposited via atmospheric pressure plasma enhanced chemical vapor deposition. A second-generation precursor, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N′-diethylethylenediamine) zinc, exhibited significant vapor pressure and good stability at one atmosphere where a vaporization temperature of 110 °C gave flux ∼ 7 μmol/min. Auger electron spectroscopy confirmed that addition of H2O to the carrier gas stream mitigated F contamination giving nearly 1:1 metal:oxide stoichiometries for both ZnO and AZO with little precursor-derived C contamination. ZnO and AZO thin film resistivities ranged from 14 to 28 Ω·cm for the former and 1.1 to 2.7 Ω·cm for the latter. - Highlights: • A second generation precursor was utilized for atmospheric pressure film growth. • Addition of water vapor to the carrier gas stream led to a marked reduction of ZnF2. • Carbonaceous contamination from the precursor was minimal

  20. Medications for High Blood Pressure

    Science.gov (United States)

    ... dangerous as elevations of both systolic and diastolic pressure. Blood pressure is elevated for two main reasons: too ... and Angiotensin II receptor blockers (ARBs), reduce blood pressure by relaxing blood vessels Beta blockers, which also cause the heart ...

  1. A Rare Earth High-iron Aluminum Alloy Cable Company to Settle in Chongqing

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On September 14,the reporter learnt from the Seminar on Application of New Rare Earth High-iron Aluminum Alloy Cable Technologies for Energy Conservation and Environmental Protection held by Chongqing Electric Industry Association that a rare earth high-iron aluminum alloy cable company with

  2. Experiment research on mechanical behavior of the aluminum laminate in the low-high temperature

    Institute of Scientific and Technical Information of China (English)

    LIN Guo-chang; XIE Zhi-min; WAN Zhi-min; DU Xing-wen

    2007-01-01

    Aluminum laminate is one kind of the rigidizable composite materials and plays an important role in construction of the inflatable space structure ( ISS), which has potential application in space in the future. But the study of the predecessors mainly focuses on the research of the mechanical behavior in the room temperature,for this reason, mechanical properties of the aluminum laminate in low-high temperature have been studied in this paper. The failure mechanism of the aluminum laminate is also analyzed in the microscopic view by JCXA - T33electron probe. The results show that the temperature has significant influence on the strength and Young's modulus of the aluminum laminate. With the increase of temperature, both the strength and Young's modulus of the aluminum laminate decrease. A model between Young's modulus of the aluminum laminate and temperatures is obtained by using Arrhenius equation. The predicted values by the model agree well with the experiment values.

  3. Pressure Drop in Cyclone Separator at High Pressure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    For the design of pressurized circulating fluidized beds, experiments were conducted in a small cyclone with 120 mm in diameter and 300 mm in height at high pressures and at atmospheric temperatures. Influence of air leakage from the stand pipe into the cyclone was specially focused. A semi-empirical model was developed for the predic tion of the pressure drop of the cyclone separator at different operate pressures with the effect of air leakage and inlet solid loading. The operate pressure, air leakage and inlet solid loading act as significant roles in cyclone pressure drop. The pressure drop increases with the increasing of pressure and decreases with the increasing of the flow rate of air leakage from the standpipe and with the increasing of the inlet solid loading.

  4. Beris Engineering Launching Its High Quality Aluminum Plate & Strip Project In Qinghai

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Pingan high quality aluminum plate and strip project has its cold rolling part fully launched, with the entire design from Beris Engineering and Research Corp.The contract for hot roll- ing and high rack warehouse has been signed. The 200,000-ton/year high quality aluminum plate and strip project is a standard hot con- tinuous rolling unit in Pingan High Quality Aluminum Ltd.in Qinghai Province.The whole project consists of 4 parts of hot rolling, cold rolling,finishing and high rack warehouse.

  5. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... track blood pressure readings over a period of time, the health care provider may ask you to ... the office on different days and at different times to take your blood pressure. The health care ...

  6. Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy

    DEFF Research Database (Denmark)

    Fardi Ilkhchy, A.; Jabbari, Masoud; Davami, P.

    2012-01-01

    The aim of this paper is to correlate interfacial heat transfer coefficient (IHTC) to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of casting under different pressures were obtained using the inverse heat...... conduction problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula...... was presented for correlation between external pressure and heat transfer coefficient. Acceptable agreement with data in literature shows the accuracy of the proposed formula....

  7. Preeclampsia and High Blood Pressure During Pregnancy

    Science.gov (United States)

    ... AQ FREQUENTLY ASKED QUESTIONS FAQ034 PREGNANCY Preeclampsia and High Blood Pressure During Pregnancy • What is high blood pressure? • What is chronic hypertension? • What is gestational hypertension? • ...

  8. DASH diet to lower high blood pressure

    Science.gov (United States)

    ... patientinstructions/000770.htm DASH diet to lower high blood pressure To use the sharing features on this page, ... Hypertension. The DASH diet can help lower high blood pressure and cholesterol and other fats in your blood. ...

  9. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... care and improve or maintain quality of life. Blood Pressure Targets are Different for Very Old Adults High ...

  10. High blood pressure and eye disease

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features ... are sent to the brain. Causes High blood pressure can damage blood vessels in the retina. The higher the blood ...

  11. Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion

    Science.gov (United States)

    Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Lashkov, V. A.; Valiev, R. Z.; Bondarenko, A. S.

    2016-07-01

    This study is the first attempt to investigate the influence of severe plastic deformation (SPD) treatment on material surface behavior under intensive erosive conditions. Samples of aluminum alloy 1235 (99.3 Al) before and after high-pressure torsion (HPT) were subjected to intensive erosion by corundum particles accelerated via air flow in a small-scale wind tunnel. Velocity of particles varied from 40 to 200 m/s, while particle average diameter was around 100 μm. Surface roughness measurements provided possibility to compare surface properties of both materials after erosion tests. Moreover, SPD processing appeared to increase noticeably the threshold velocity of the surface damaging process. Additionally, structural analysis of the fracture surfaces of the tested samples was carried out.

  12. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    Science.gov (United States)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163 (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The Orion MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a single-piece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment were the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  13. High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays.

    Science.gov (United States)

    Olson, Jana; Manjavacas, Alejandro; Basu, Tiyash; Huang, Da; Schlather, Andrea E; Zheng, Bob; Halas, Naomi J; Nordlander, Peter; Link, Stephan

    2016-01-26

    Chromatic devices such as flat panel displays could, in principle, be substantially improved by incorporating aluminum plasmonic nanostructures instead of conventional chromophores that are susceptible to photobleaching. In nanostructure form, aluminum is capable of producing colors that span the visible region of the spectrum while contributing exceptional robustness, low cost, and streamlined manufacturability compatible with semiconductor manufacturing technology. However, individual aluminum nanostructures alone lack the vivid chromaticity of currently available chromophores because of the strong damping of the aluminum plasmon resonance in the visible region of the spectrum. In recent work, we showed that pixels formed by periodic arrays of Al nanostructures yield far more vivid coloration than the individual nanostructures. This progress was achieved by exploiting far-field diffractive coupling, which significantly suppresses the scattering response on the long-wavelength side of plasmonic pixel resonances. In the present work, we show that by utilizing another collective coupling effect, Fano interference, it is possible to substantially narrow the short-wavelength side of the pixel spectral response. Together, these two complementary effects provide unprecedented control of plasmonic pixel spectral line shape, resulting in aluminum pixels with far more vivid, monochromatic coloration across the entire RGB color gamut than previously attainable. We further demonstrate that pixels designed in this manner can be used directly as switchable elements in liquid crystal displays and determine the minimum and optimal numbers of nanorods required in an array to achieve good color quality and intensity. PMID:26639191

  14. Evaluation of forming limit in viscous pressure forming of automotive aluminum alloy 6k21-T4 sheet

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A ductile fracture criterion is introduced into numerical simulation to predict viscous pressure forming limit of the automotive body aluminum alloy 6k21-T4. The material constant in the ductile fracture criterion is determined by the combination of the viscous pressure bulging (VPB) test with numerical simulation. VPB tests of the aluminum alloy sheet are carried out by using various elliptical dies with different ratios of major axis to minor axis(β), and the bugling processes are simulated by the aid of the finite element method software LS-DYNA3D. On the basis of the stress and strain calculated from numerical simulations, the forming limits of bulging specimens obtained are predicted by the ductile fracture criterion, and compared with experimental results.The fracture initiation site and the minimal thickness predicted by the ductile fracture criterion are in good agreement with the experimental results.

  15. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  16. Effects of Loading Paths on Hydrodynamic Deep Drawing with Independent Radial Hydraulic Pressure of Aluminum Alloy Based on Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    Xiaojing LIU; Yongchao XU; Shijian YUAN

    2008-01-01

    In order to meet the forming demands for low plasticity materials and large height-diameter ratio parts, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure is proposed. To investigate the effects of loading paths on the HDD with independent radial hydraulic pressure, the forming process of 5A06 aluminum alloy cylindrical cup with a hemispherical bottom was studied by numerical simula- tion. By employing the dynamic explicit analytical software ETA/Dynaform based on LS-DYNA3D, the effects of loading paths on the sheet-thickness distribution and surface quality were analyzed. The corresponding relations of the radial hydraulic pressure loading paths and the part's strain status on the forming limit diagram (FLD) were also discussed. The results indicated that a sound match between liquid chamber pressure and independent radial hydraulic pressure could restrain the serious thinning at the hemisphere bottom and that through adjusting radial hydraulic pressure could reduce the radial tensile strain and change the strain paths. Therefore, the drawing limit of the aluminum cylindrical cup with a hemispherical bottom could be increased significantly.

  17. Influence of recrystallization annealing on the cube texture in high-purity aluminum foils

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.M.; Tang, J.G.; Du, Y.X.; Zhou, Z.P.; Chen, Z.Y.; Liu, C.M. [Dept. of Materials Science and Engineering, Central South Univ., HN (China)

    2001-07-01

    The cube texture in high-purity aluminum foils under different annealing conditions was investigated by means of orientation distribution function (ODF) and microscopy. It was shown that low recrystallization temperature was favorable to the nucleation of cube orientation and to the growth of the cube nuclei, and that stronger cube texture was obtained by multistage annealing than by single one. The strongest cube texture in high purity aluminum foils annealed in two-stage in the vacuum was obtained. It demonstrated that the recrystallization behavior was controlled by the existing state of Fe in aluminum. A model of multistage annealing was proposed for development of strong cube texture with temperature. (orig.)

  18. High Blood Pressure: Keep the Beat Recipes

    Science.gov (United States)

    ... this page please turn Javascript on. Feature: High Blood Pressure Keep the Beat Recipes Past Issues / Fall 2011 ... National Heart, Lung, and Blood Institute To Improve Blood Pressure, Try the DASH Diet If you're one ...

  19. Hydrogen absorption in solid aluminum during high-temperature steam oxidation

    Science.gov (United States)

    Andreev, L. A.; Gelman, B. G.; Zhukhovitskiy, A. A.

    1979-01-01

    Hydrogen is emitted by aluminum heated in a vacuum after high-temperature steam treatment. Wire samples are tested for this effect, showing dependence on surface area. Two different mechanisms of absorption are inferred, and reactions deduced.

  20. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  1. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Document Server

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  2. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Document Server

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  3. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... are consistently higher than 120/80 mmHg. Your child’s blood pressure numbers are outside average numbers for children of the same age, gender, and height . Once your health care provider ...

  4. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films

    Science.gov (United States)

    Akiyama, Morito; Morofuji, Yukari; Kamohara, Toshihiro; Nishikubo, Keiko; Tsubai, Masayoshi; Fukuda, Osamu; Ueno, Naohiro

    2006-12-01

    We have investigated the high sensitive piezoelectric response of c-axis oriented aluminum nitride (AlN) thin films prepared on polyethylene terephthalate (PET) films. The AlN films were deposited using a radio frequency magnetron sputtering method at temperatures close to room temperature. The c axes of the AlN films were perpendicularly oriented to the PET film surfaces. The sensor consisting of the AlN and PET films is flexible like PET films and the electrical charge is linearly proportional to the stress within a wide range from 0to8.5MPa. The sensor can respond to the frequencies from 0.3 to over 100Hz and measures a clear human pulse wave form by holding the sensor between thumb and middle finger. The resolution of the pulse wave form is comparable to a sphygmomanometer at stress levels of 10kPa. We think that the origin of the high performance of the sensor is the deflection effect, the thin thickness and high elastic modulus of the AlN layer, and the thin thickness and low elastic modulus of the PET film.

  5. High-pressure study on some superconductors

    CERN Document Server

    Li, K Q; Yao, Y S; Che, G C; Zhao, Z X

    2002-01-01

    High-pressure study has played an important role in the investigation of conventional superconductors. Since the discovery of cuprate superconductors, high-pressure study has become even more important, especially as regards high-pressure synthesis and the effect of pressure. In this report, the new materials Ca-doped Pr-123, (Fe, Cu)-1212, and MgB sub 2 - a very new and interesting system synthesized under high pressure with good quality - will be discussed. Chemical inner pressure has been thought to explain the high T sub c of Ca-doped Pr-123. As another possibility, the replacement of the physical pressure effect by a chemical effect will be discussed.

  6. High-pressure and high-temperature studies on oxide garnets

    International Nuclear Information System (INIS)

    We report high-pressure and high-temperature studies on a series of oxide garnets of chemical composition A3B2C3O12. The members of this family investigated are gadolinium scandium gallium garnet (GSGG), gadolinium gallium garnet (GGG), and yttrium aluminum garnet (YAG). The GSGG and GGG are doped with both neodymium and chromium while the YAG is doped only with neodymium. Photoluminescence, synchrotron x-ray-diffraction, and laser heating studies were carried out in a diamond-anvil cell. Variety of optical sensors (ruby, Sm-doped YAG) and x-ray pressure marker (copper) were employed for pressure measurement. Pressure-induced amorphization was observed in GSGG at 58±3 GPa and GGG at 84±4 GPa by x-ray-diffraction studies. The photoluminescence studies show only gradual broadening of emission bands through the amorphization transition. On increasing pressure beyond amorphization, very broad and featureless emission bands were observed in the fluorescence spectra at 77±2 GPa for GSGG and at 88±2 GPa for GGG. Laser heating of the pressure-induced amorphous phase in GSGG caused recrystallization to the stable cubic phase. High-pressure x-ray study on YAG shows that it retains cubic phase up to 101±4 GPa. A pressure-volume relation for each member of the oxide garnet at ambient temperatures is presented, structural transformation mechanisms, and application of oxide garnets as pressure sensors are also discussed. copyright 1996 The American Physical Society

  7. High-pressure and high-temperature studies on oxide garnets

    Science.gov (United States)

    Hua, Hong; Mirov, Sergey; Vohra, Yogesh K.

    1996-09-01

    We report high-pressure and high-temperature studies on a series of oxide garnets of chemical composition A3B2C3O12. The members of this family investigated are gadolinium scandium gallium garnet (GSGG), gadolinium gallium garnet (GGG), and yttrium aluminum garnet (YAG). The GSGG and GGG are doped with both neodymium and chromium while the YAG is doped only with neodymium. Photoluminescence, synchrotron x-ray-diffraction, and laser heating studies were carried out in a diamond-anvil cell. Variety of optical sensors (ruby, Sm-doped YAG) and x-ray pressure marker (copper) were employed for pressure measurement. Pressure-induced amorphization was observed in GSGG at 58+/-3 GPa and GGG at 84+/-4 GPa by x-ray-diffraction studies. The photoluminescence studies show only gradual broadening of emission bands through the amorphization transition. On increasing pressure beyond amorphization, very broad and featureless emission bands were observed in the fluorescence spectra at 77+/-2 GPa for GSGG and at 88+/-2 GPa for GGG. Laser heating of the pressure-induced amorphous phase in GSGG caused recrystallization to the stable cubic phase. High-pressure x-ray study on YAG shows that it retains cubic phase up to 101+/-4 GPa. A pressure-volume relation for each member of the oxide garnet at ambient temperatures is presented, structural transformation mechanisms, and application of oxide garnets as pressure sensors are also discussed.

  8. Use of high-thermal conductive aluminum nitride based ceramics in vacuum UHF electronic devices

    Directory of Open Access Journals (Sweden)

    Chasnyk V. I.

    2013-06-01

    Full Text Available Analysis of properties and characteristics of the alumina, beryllium oxide and aluminum nitride based ceramic materials used in UHF electronic devices has been made. It was shown that the complex of parameters including structural and functional characteristics of the high-thermal conductive aluminum nitride ceramics prevail over all types of alumina ceramics and is not lower than the same characteristics of the beryllium oxide ceramics especially at the temperatures higher than 450 °C. The examples of the prevailing use of the aluminum nitride ceramics inside vacuum UHF-region devices: TWT’s and klystrons.

  9. Fast rate fracture of aluminum using high intensity lasers

    Science.gov (United States)

    Dalton, Douglas Allen

    Laser induced shock experiments were performed to study the dynamics of various solid state material processes, including shock-induced melt, fast rate fracture, and elastic to plastic response. Fast rate fracture and dynamic yielding are greatly influenced by microstructural features such as grain boundaries, impurity particles and alloying atoms. Fast fracture experiments using lasers are aimed at studying how material microstructure affects the tensile fracture characteristics at strain rates above 106 s-1. We used the Z-Beamlet Laser at Sandia National Laboratories to drive shocks via ablation and we measured the maximum tensile stress of aluminum targets with various microstructures. Using a velocity interferometer and sample recovery, we are able to measure the maximum tensile stress and determine the source of fracture initiation in these targets. We have explored the role that grain size, impurity particles and alloying in aluminum play in dynamic yielding and spall fracture at tensile strain rates of ˜3x106 s-1. Preliminary results and analysis indicated that material grain size plays a vital role in the fracture morphology and spall strength results. In a study with single crystal aluminum specimens, velocity measurements and fracture analysis revealed that a smaller amplitude tensile stress was initiated by impurity particles; however, these particles served no purpose in dynamic yielding. An aluminum-magnesium alloy with various grain sizes presented the lowest spall strength, but the greatest dynamic yield strength. Fracture mode in this alloy was initiated by both grain boundaries and impurity particles. With respect to dynamic yielding, alloying elements such as magnesium serve to decrease the onset of plastic response. The fracture stress and yield stress showed no evidence of grain size dependence. Hydrodynamic simulations with material strength models are used to compare with our experiments. In order to study the strain rate dependence of spall

  10. High Precision Pressure Measurement with a Funnel

    Science.gov (United States)

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  11. Anodic Oxidation in Aluminum Electrode by Using Hydrated Amorphous Aluminum Oxide Film as Solid Electrolyte under High Electric Field.

    Science.gov (United States)

    Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi

    2016-05-01

    Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures.

  12. Effect of Trace Sn on Pitting Behaviors of High Voltage Anode Aluminum Foil

    Institute of Scientific and Technical Information of China (English)

    Jingbo SONG; Weimin MAO; Hong YANG; Huiping FENG

    2008-01-01

    The effect of trace Sn on the pitting morphology of high voltage anode aluminum foils was investigated. The distributions of microelement Sn, Fe, Si, Cu and Mg in the surface layer of aluminum foils with different Sn content were determined by using a secondary ion mass spectrometer. It was found that the micro-alloyed Sn is enriched at the external surface. The mechanism of pitting behavior of trace Sn on aluminum surface is similar with that of lead. Enrichment of Sn in the surface layer provides large numbers of sites for initiation of pitting corrosion, while pitting sites appeared relatively inhomogenously in the foils without Sn. Sn, as an eco-friendly microelement, can be applied to replace Pb in improving the homogenous pitting behaviors of high voltage aluminum foils, in which the volume fraction of cube texture is not reduced.

  13. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Related Topics Atherosclerosis DASH Eating Plan Overweight and Obesity Smoking and Your Heart Stroke Send a link ... are consistently higher than 120/80 mmHg. Your child’s blood pressure numbers are outside average numbers for ...

  14. Upgrading of High-Aluminum Hematite-Limonite Ore by High Temperature Reduction-Wet Magnetic Separation Process

    OpenAIRE

    Xianlin Zhou; Deqing Zhu; Jian Pan; Yanhong Luo; Xinqi Liu

    2016-01-01

    The huge consumption of iron ores in China has attracted much attention to utilizing low grade complex iron resources, such as high-aluminum hematite-limonite ore, which is a refractory resource and difficult to upgrade by traditional physical concentration processes due to the superfine size and close dissemination of iron minerals with gangue minerals. An innovative technology for a high temperature reduction-magnetic separation process was studied to upgrade a high-aluminum iron ore assayi...

  15. High pressure processing for food safety.

    Science.gov (United States)

    Fonberg-Broczek, Monika; Windyga, B; Szczawiński, J; Szczawińska, M; Pietrzak, D; Prestamo, G

    2005-01-01

    Food preservation using high pressure is a promising technique in food industry as it offers numerous opportunities for developing new foods with extended shelf-life, high nutritional value and excellent organoleptic characteristics. High pressure is an alternative to thermal processing. The resistance of microorganisms to pressure varies considerably depending on the pressure range applied, temperature and treatment duration, and type of microorganism. Generally, Gram-positive bacteria are more resistant to pressure than Gram-negative bacteria, moulds and yeasts; the most resistant are bacterial spores. The nature of the food is also important, as it may contain substances which protect the microorganism from high pressure. This article presents results of our studies involving the effect of high pressure on survival of some pathogenic bacteria -- Listeria monocytogenes, Aeromonas hydrophila and Enterococcus hirae -- in artificially contaminated cooked ham, ripening hard cheese and fruit juices. The results indicate that in samples of investigated foods the number of these microorganisms decreased proportionally to the pressure used and the duration of treatment, and the effect of these two factors was statistically significant (level of probability, P high pressure treatment than L. monocytogenes and A. hydrophila. Mathematical methods were applied, for accurate prediction of the effects of high pressure on microorganisms. The usefulness of high pressure treatment for inactivation of microorganisms and shelf-life extention of meat products was also evaluated. The results obtained show that high pressure treatment extends the shelf-life of cooked pork ham and raw smoked pork loin up to 8 weeks, ensuring good micro-biological and sensory quality of the products.

  16. High pressure Hugoniot of sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.

    1993-07-01

    The Hugoniot of sapphire was measured from 80 GPa to 340 GPa in shock-wave experiments using projectiles accelerated by a two stage gas gun. Transit times of the shock waves were measured either optically with a streak camera or through electrical pin contacts. The Hugoniot in this pressure range fits U{sub s}=8.74+0.96 U{sub p}in km/s.

  17. Manufacturing of high-strength aluminum/alumina composite by accumulative roll bonding

    International Nuclear Information System (INIS)

    The ARB process used as a technique in this study provides an effective alternative method for manufacturing high-strength aluminum/alumina composites. The microstructural evolution and mechanical properties of the aluminum/15 vol.% alumina composite are reported. The composite shows an excellent alumina particle distribution in the matrix. It is found that by increasing the number of ARB cycles, not only does elongation increase in the composites produced but also the tensile strength of the Al/15 vol.% Al2O3 composite improves by 4 times compared to that of the annealed aluminum used as the original raw material. Fracture surfaces after tensile tests are observed by scanning electron microscopy (SEM) to investigate the failure mode. Observations reveal that the failure mode in both ARB-processed composites and monolithic aluminum is of the shear ductile rupture type.

  18. Cagelike diamondoid nitrogen at high pressures.

    Science.gov (United States)

    Wang, Xiaoli; Wang, Yanchao; Miao, Maosheng; Zhong, Xin; Lv, Jian; Cui, Tian; Li, Jianfu; Chen, Li; Pickard, Chris J; Ma, Yanming

    2012-10-26

    Under high pressure, triply bonded molecular nitrogen dissociates into singly bonded polymeric nitrogen, a potential high-energy-density material. The discovery of stable high-pressure forms of polymeric nitrogen is of great interest. We report the striking stabilization of cagelike diamondoid nitrogen at high pressures predicted by first-principles structural searches. The diamondoid structure of polymeric nitrogen has not been seen in any other elements, and it adopts a highly symmetric body-centered cubic structure with lattice sites occupied by diamondoids, each of which consists of ten nitrogen atoms, forming a N(10) tetracyclic cage. Diamondoid nitrogen possesses a wide energy gap and is energetically most stable among all known polymeric structures above 263 GPa, a pressure that is accessible to a high-pressure experiment. Our findings represent a significant step toward the understanding of the behavior of solid nitrogen at extreme conditions. PMID:23215200

  19. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  20. Late stages of high rate tension of aluminum melt: Molecular dynamic simulation

    Science.gov (United States)

    Mayer, Polina N.; Mayer, Alexander E.

    2016-08-01

    With the help of molecular dynamic simulation, we investigate late stages of aluminum melt tension up to the deformation degree of about 10, including a stage of bubble liquid, a foamed melt, and a fragmentation with formation of droplets. Complete fracture of melt is a complex process, which includes nucleation of pores, growth and coalescence of neighboring pores, thinning and breaking of walls between them with the formation of a system of jets, and, finally, breaking of jets into droplets. The transition from the foamed melt to the system of jets and the subsequent fragmentation into droplets occur at the volume fraction of condensed matter considerably smaller than 0.1. The number of pores at the volume fraction of condensed matter about 0.5 and the number of droplets at the final stage of fragmentation are not directly connected with each other. At the same time, both numbers are increased together with the increase in the strain rate and have the same order of magnitude. At the stage of melt with pores, the growth and coalescence of pores are controlled by surface tension, which allows us to construct an analytical estimation for time dependence of the pore average radius. Also, we propose analytical estimations for the mean pressure of melt with pores, which remain negative, and for the work of tension. A few times larger work is spent on the tension of melt with pores if compared with the initial stage of tension near the dynamic strength threshold. The last fact is favorable for the production of the foamed aluminum by means of the high-rate tension of its melt.

  1. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  2. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  3. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity.

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  4. Kinetics of leaching of the aluminum hydroxide in bauxites by alkaline solutions at atmospheric pressure

    Science.gov (United States)

    Burtsev, A. V.; Lainer, Yu. A.; Gorichev, I. G.; Kipriyanov, N. A.; Izotov, A. D.

    2011-11-01

    The kinetics of leaching of the aluminum hydroxide from the gibbsite bauxites of Guinea (Kindia deposit) is studied under atmospheric conditions. The activation energy of the process is found to be 34.75 kJ/mol, which indicates that the process proceeds in a kinetic mode. The leaching of the aluminum hydroxide from bauxite in an alkaline solution is simulated using acid-base equilibria (ion exchange) and the electrochemical theory of the structure of a double electrical layer (Gram-Parsons theory).

  5. Infrared Spectra of High Pressure Carbon Monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Evans, W J; Lipp, M J; Lorenzana, H E

    2001-09-21

    We report infrared (IR) spectroscopic measurements of carbon monoxide (CO) at high pressures. Although CO is one of the simplest heteronuclear diatomic molecules, it displays surprisingly complex behavior at high pressures and has been the subject of several studies [1-5]. IR spectroscopic studies of high pressures phases of CO provide data complementing results from previous studies and elucidating the nature of these phases. Though a well-known and widely utilized diagnostic of molecular systems, IR spectroscopy presents several experimental challenges to high pressure diamond anvil cell research. We present measurements of the IR absorption bands of CO at high pressures and experimentally illustrate the crucial importance of accurate normalization of IR spectra specially within regions of strong absorptions in diamond.

  6. Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas

    Science.gov (United States)

    Dawood, Mahmoud S.; Hamdan, Ahmad; Margot, Joëlle

    2015-10-01

    In this article, we present a comprehensive study of the plume dynamics of plasmas generated by laser ablation of an aluminum target. The effect of both ambient gas composition (helium, nitrogen or argon) and pressure (from ˜5 × 10-7 Torr up to atmosphere) is studied. The time- and space- resolved observation of the plasma plume are performed from spectrally integrated images using an intensified Charge Coupled Device (iCCD) camera. The iCCD images show that the ambient gas does not significantly influence the plume as long as the gas pressure is lower than 20 Torr and the time delay below 300 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important, the shortest plasma plume length being observed when the gas mass species is highest. On the other hand, space- and time- resolved emission spectroscopy of aluminum ions at λ = 281.6 nm are used to determine the Time-Of-Flight (TOF) profiles. The effect of the ambient gas on the TOF profiles and therefore on the propagation velocity of Al ions is discussed. A correlation between the plasma plume expansion velocity deduced from the iCCD images and that estimated from the TOF profiles is presented. The observed differences are attributed mainly to the different physical mechanisms governing the two diagnostic techniques.

  7. Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-10-01

    Full Text Available In this article, we present a comprehensive study of the plume dynamics of plasmas generated by laser ablation of an aluminum target. The effect of both ambient gas composition (helium, nitrogen or argon and pressure (from ∼5 × 10−7 Torr up to atmosphere is studied. The time- and space- resolved observation of the plasma plume are performed from spectrally integrated images using an intensified Charge Coupled Device (iCCD camera. The iCCD images show that the ambient gas does not significantly influence the plume as long as the gas pressure is lower than 20 Torr and the time delay below 300 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important, the shortest plasma plume length being observed when the gas mass species is highest. On the other hand, space- and time- resolved emission spectroscopy of aluminum ions at λ = 281.6 nm are used to determine the Time-Of-Flight (TOF profiles. The effect of the ambient gas on the TOF profiles and therefore on the propagation velocity of Al ions is discussed. A correlation between the plasma plume expansion velocity deduced from the iCCD images and that estimated from the TOF profiles is presented. The observed differences are attributed mainly to the different physical mechanisms governing the two diagnostic techniques.

  8. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  9. Manufacture of high-nitrogen corrosion-resistant steel by an aluminothermic method in a high-pressure nitrogen atmosphere

    Science.gov (United States)

    Dorofeev, G. A.; Karev, V. A.; Kuzminykh, E. V.; Lad'yanov, V. I.; Lubnin, A. N.; Vaulin, A. S.; Mokrushina, M. I.

    2013-01-01

    The conditions of aluminothermic synthesis of high-nitrogen Cr-N and Cr-Mn-N steels in a high-pressure nitrogen atmosphere are studied by thermodynamic simulation and metallurgical experiments. Thermodynamic analysis shows that the aluminothermic reduction reactions are incomplete. The most important synthesis parameter is the ratio of the aluminum to the oxygen content in a charge, and its optimum value ensures a compromise between the degree of oxide reduction, the aluminum and oxygen contents in steel (degree of deoxidation), and steel contamination by aluminum nitride. An analysis of experimental heats demonstrates good agreement between the experimental results and the data calculated by a thermodynamic model. As-cast ingots have the structure of nitrogen pearlite, and quenched ingots have an austenitic structure.

  10. TiN coated aluminum electrodes for DC high voltage electron guns

    International Nuclear Information System (INIS)

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes

  11. TiN coated aluminum electrodes for DC high voltage electron guns

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A., E-mail: aelmusta@odu.edu [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529 and The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Taus, Rhys [Department of Physics, Loyola Marymount University, Los Angeles, California 90045 (United States); Forman, Eric; Poelker, Matthew [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2015-05-15

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  12. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  13. Enhancement of superplastic formability in a high strength aluminum alloy

    Science.gov (United States)

    Agrawal, S. P.; Turk, G. R.; Vastava, R.

    1988-01-01

    A 7475 aluminum alloy was developed for superplastic forming (SPF). By lowering the Fe and Si contents in this alloy significantly below their normal levels and optimizing the thermomechanical processing to produce sheet, over 2000 percent thickness strain to failure was obtained. The microstructure, elevated-temperature uniaxial and biaxial tension, and cavitation behavior of the alloy were determined. In addition, a constitutive model was used to form a generic structural shape from which mechanical test specimens were removed and post-SPF characteristics were evaluated. The constitutive model included both material strain hardening and strain rate hardening effects, and was verified by accurately predicting forming cycles which resulted in successful component forming. Stress-life fatigue, stress rupture, and room and elevated temperature tensile tests were conducted on the formed material.

  14. Effect of trace Sn on corrosion behaviors of high voltage anode aluminum foil

    Institute of Scientific and Technical Information of China (English)

    SONG Jing-bo; MAO Wei-min; YANG Hong; FENG Hui-ping

    2008-01-01

    The cube texture and the surface corrosion structure of aluminum anode foil for high voltage electrolytic capacitor containing trace Sn were investigated based on quantitative texture analysis and microstructure observation under SEM. High volume fraction of cube texture over 95% and obviously higher specific capacity are obtained in the foils with less than 0.002% Sn. It is indicated that the corrosion behavior of trace Sn on aluminum surface is similar with that of Pb. Higher content of Sn over 0.002% reduces the cube texture component and therefore the specific capacity. Sn, as an eco-friendly microelement, can be applied to replace Pb in improving the homogenous pitting behaviors of high voltage aluminum foils.

  15. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  16. Highly crystallized poly (lactic acid) under high pressure

    OpenAIRE

    Jin Zhang; Ding-Xiang Yan; Jia-Zhuang Xu; Hua-Dong Huang; Jun Lei; Zhong-Ming Li

    2012-01-01

    Biodegradable poly (lactic acid) (PLA) usually has a crystallinity less than 10% due to its poor crystallization ability. In this work, we found high pressure could significantly facilitate formation of crystallites of PLA, resulting in a crystallinity high up to 66.3% at pressure and temperature of 300 MPa and 185 ºC. High-pressure induced crystalline reorganization and lamellar thickening led to two melting temperatures in the highly crystallized PLA but without cold crystallization compare...

  17. 钢与铝异种金属的压焊技术研究%Research status of pressure welding between steel and aluminum

    Institute of Scientific and Technical Information of China (English)

    崇玉良; 孔谅; 王敏; 宋正

    2011-01-01

    With the development of the automobile industry,the demands on the energy saving,environmental protection and safety are becoming more critical,and light-weight technology is an important way of its realization.As the main materials,the steel-aluminum integration body composed of high-strength steel and aluminum alloy becomes a lightweight technical route.It has been surveyed that the research statuses of the resistance spot welding between aluminum alloy and steel in automotive industry .The paper introduced the process methods of resistance spot welding with an insert sheet and with another metal covered.The effects on the welding joining characteristic of the reaction layer between aluminum alloy and steel, which is a main factor to affect the properties of the joint, have been analyzed by the process methods with a cover plate.Other main pressure welding methods between aluminum alloy and steel have been introduced briefly.Based on these analyses,the paper pointed out the main advantages and disadvantage of the present welding method,the resistance spot welding between aluminum alloy and steel should be the top choice as steel-aluminum integration body structure and the trends of the resistance spot welding between aluminum alloy and steel.%随着汽车工业的发展,对汽车节能、环保、安全的要求越来越高,轻量化技术是实现其目标的重要途径.作为汽车轻量化材料中最主要的两类材料,高强度钢板和铝合金组成的钢-铝一体化车身成为轻量化的发展技术路线.综述了钢-铝异种材料在汽车工业中电阻点焊技术的研究现状,重点介绍复合板过渡层法和金属涂层法的工艺方法,利用垫片法探讨了钢-铝金属间化合物对焊接接头性能的影响.简要阐述了钢与铝合金的其他主要压焊方法,指出了现行焊接方法的优缺点,提出钢-铝异种金属的电阻点焊应作为钢-铝一体化车身结构的首选焊接方法和今后钢-铝电阻点焊的研究方向.

  18. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  19. Rotary bending fatigue behavior of A356 –T6 aluminum alloys by vacuum pressurizing casting

    Directory of Open Access Journals (Sweden)

    Yong-qin Liu

    2015-09-01

    Full Text Available Vacuum pressurizing casting technique, providing better mould filling and inter-dendritic feeding, can reduce the porosity greatly in cast aluminum alloys, and improve the fatigue properties. The rotary bending fatigue properties of A356-T6 alloys prepared by vacuum pressurizing casting were investigated. The S-N curve and limit strength 90 MPa under fatigue life of 107 cycles were obtained. The analyses on the fatigue fractography and microstructure of specimens showed that the fatigue fracture mainly occurs at the positions with casting defects in the subsurface, especially at porosities regions, which attributed to the crack propagation during the fatigue fracture process. Using the empirical crack propagation law of Pairs-Erdogon, the quantitative relationship among the initial crack size, fatigue life and applied stress was established. The fatigue life decreases with an increase in initial crack size. Two constants in the Pairs-Erdogon equation of aluminum alloy A356-T6 were calculated using the experimental data.

  20. Finite element analysis and experiment research on aluminum alloy ladder bowl with viscous pressure forming(VPF)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The process parameters of aluminum alloy ladder bowl with viscous pressure forming and solid metal punch forming were numerically simulated by commercial finite element software DEFORM.The influence of blank holder pressure(BHP)on the formability of sheet metal was investigated.It was found that lower BHP does benefit to the distribution of thickness both with VPF and with solid punch forming.The forming force needed in VPF is bigger than that of with solid punch forming at the same stroke.The distribution of thickness with VPF is more uniform than that of with solid punch forming.Compared with solid punch forming,the damage values of workpiece at the top convex comer are lower by VPF.It was also shown that fracture tendency could be reduced with VPF,so that means the formability is improved.At the same time,aluminum alloy ladder bowl was manufactured with VPF.The results show that the simulation results are in agreement with the experimental data very well.

  1. 铝合金砂型低压铸造浇注系统的选择与设计%Choice and Design of Gating System of Sand Mold Low-pressure Casting for Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    佘瑞平; 赵拴勃; 千斌; 段昭; 曲媛

    2013-01-01

    低压铸造是目前获得优质铝合金铸件的有力手段之一.本文立足于低压铸造生产实践经验,结合低压铸造原理,对不同结构、材质(糊状凝固或顺序凝固模式)类型的铝合金铸件砂型低压铸造浇注系统的选择与设计进行了系统的归纳和总结.实践证明,所归纳总结的结果对铝合金低压铸造工艺设计具有一定参考作用.%The low-pressure foundry is one of the emollient means for acquiring a high-quality aluminum alloy castings currently. Based on fulfillment experience of casting production at die low pressure and combining low pressure casting principle. The choice and design of the aluminum alloy castings with different structures, and different material (paste form solidify or in proper order solidify mode) structure and sand type for the low-pressure foundry system were summaried. The research results have singificant effects on the design of aluminum alloy low-pressure casting process

  2. Quantitative analysis of aluminum samples in He ambient gas at different pressures in a thick LIBS plasma

    Science.gov (United States)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2015-09-01

    In this paper, the influences of He ambient gas on aluminum emissions are investigated by experimental analysis of LIBS spectrum. Plasma is produced by focusing of a Nd:YAG laser pulse at a wavelength of 1064 nm on Al standard samples. In this work, the effects of helium atmosphere at different pressures on the amount of spectral self-absorption are studied. The results are discussed by utilizing two approaches: the curve of growth and calibration curve. It is seen that by increasing the gas pressure, the self-absorption enhances. Also, a new method of applying one standard sample instead of other traditional techniques is introduced for concentration prediction. The presented method would be helpful for the situation in which supplying standard samples is not very easy. Then, the accuracy of this new method can be checked by comparison of concentration prediction of the standard samples with their real concentrations.

  3. Finite element analysis of stiffness and static dent resistance of aluminum alloy double-curved panel in viscous pressure forming

    Institute of Scientific and Technical Information of China (English)

    LI Yi; WANG Zhong-Jin

    2009-01-01

    The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF) was studied by finite element analysis, which mainly considers the forming process conditions. The whole simulation consisting of three stages, i.e., forming, spring-back and static dent resistance, was carried out continuously using the finite element code ANSYS. The influence of blank holder pressure (BHP) and the drawbead on the stiffness and the static dent resistance of the panels formed using VPF was analyzed. The results show that the adequate setting of the drawbead can increase the plastic deformation of the double-curved panel, which is beneficial to the initial stiffness and the static dent resistance. There is an optimum BHP range for the stiffness and the static dent resistance.

  4. Let's Talk about High Blood Pressure and Stroke

    Science.gov (United States)

    ... Tools & Resources Stroke More Let's Talk About High Blood Pressure and Stroke Updated:Dec 9,2015 What is ... Blood Pressure? How Can I Reduce High Blood Pressure? High Blood Pressure and Stroke What Is Diabetes and How ...

  5. Multichip on Aluminum Metal Plate Technology for High Power LED Packaging

    Institute of Scientific and Technical Information of China (English)

    Choong-mo NAM; Mi-hee JI

    2010-01-01

    Multichip on Aluminum Metal Plate(MOAMP) technology with simple structure and low thermal resistance is developed for effective heat removal of Light Emitting Diode(LED) p-n junction and LED lighting module to have high reliability. The thermal resistance of LED modules was numerical and experimental. Thermal resistance from the junction to aluminum metal plate, considering input power of LED module using MOAMP technology, is 3.02 K/W, 3.23 K/W for the measured and calculated, respectively. We expect that the reported MOAMP technology with low thermal resistance will be a promising solution for high power LED lighting modules.

  6. High-pressure phases of alumina

    Science.gov (United States)

    Lyle, Matthew; Pickard, Chris; Needs, Richard

    2014-03-01

    Alumina (Al2O3) has been widely used as a pressure standard in static diamond anvil cell experiments and is a major chemical component of the Earth. So a detailed knowledge of its high-pressure stability is of great importance in both materials science and deep Earth science. A phase transition is known to occur at roughly 80-100 GPa between corundum and the Rh2O3 (II) structure. A second phase transition to the CaIrO3 structure occurs at even higher pressures. Here we present a computational structure search to reveal three additional structures which are competitive at these pressures but hitherto unknown to be stable in high-pressure alumina.

  7. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  8. Revised calibration of the Sm:SrB4O7 pressure sensor using the Sm-doped yttrium-aluminum garnet primary pressure scale

    International Nuclear Information System (INIS)

    The pressure-induced shift of Sm:SrB4O7 fluorescence was calibrated in a quasi-hydrostatic helium medium up to 60 GPa using the recent Sm-doped yttrium-aluminum garnet primary pressure scale as a reference. The resulting calibration can be written as P = −2836/14.3 [(1 + Δλ/685.51)−14.3 − 1]. Previous calibrations based on the internally inconsistent primary scales are revised, and, after appropriate correction, found to agree with the proposed one. The calibration extended to 120 GPa was also performed using corrected previous data and can be written as P = 4.20 Δλ (1 + 0.020 Δλ)/(1 + 0.036 Δλ)

  9. High Blood Pressure May Hike Dementia Risk

    Science.gov (United States)

    ... fullstory_161398.html High Blood Pressure May Hike Dementia Risk New statement from American Heart Association warns ... in middle age, might open the door to dementia, the American Heart Association warns in a new ...

  10. Booze, High Blood Pressure a Dangerous Mix

    Science.gov (United States)

    ... in New York City. Until published in a peer-reviewed medical journal, the results should be considered preliminary. One-third of U.S. adults have high blood pressure, also called hypertension. It contributes to more than ...

  11. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in

  12. Microscopic Experimental Approaches to High Pressure Chemistry

    OpenAIRE

    Russell, T.; ALLEN, T.; Rice, J.; Gupta, Y.

    1995-01-01

    The experimental study of the chemistry related to the deflagration/detonation of energetic materials is extremely challenging due to the high pressure, high temperature, and time domain under which the chemical reactions occur. In addition, non equilibrium pressure and temperature conditions temporally effect the reaction pathways and rates during the reaction process. The multiple phases of material present (i.e. the heterogeneous nature of the problem), the multiple reaction pathways (both...

  13. Energy efficiency of high pressure pneumatic systems

    OpenAIRE

    Trujillo, José A.

    2015-01-01

    The energy efficiency assessment of high-pressure pneumatic circuits is the aim of this dissertation. From a historical perspective the past and cur- rent activities with regards to the energy saving conservation in pneumatic technology were examined, and it could be concluded that high pressure pneumatic circuits have been repeatedly used for years in several industrial applications but to date no studies on that specific field are known. After a systematic review of studies concerning e...

  14. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and inter......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...

  15. High pressure ceramic heat exchanger

    Science.gov (United States)

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  16. High pressure optical combustion probe

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  17. Structures of Liquid Aluminium under High Pressure

    Institute of Scientific and Technical Information of China (English)

    LI Hui; WANG Guang-Hou; BIAN Xiu-Fang; ZHANG Lin

    2001-01-01

    Molecular dynamics simulation has been carried out for melt A1 under constant temperature and constant pressure. The interaction between atoms is described by tight-binding many-body potentials based on the second moment approximation to the electronic density of states. The pair correlation function and the pair analysis technique are used to reveal the structural features of liquid Al under normal and high pressure. High pressure is favourable to the existence of bcc clusters 1661 and 1441, but has no effect on the fcc cluster 1421. The bond pair 1551 and 1541 with fivefold symmetry exists at high pressure. The microstructure of liquid is more similar to the non-crystalline structure than to the crystalline structure. The simulation results are supported by thex-ray experimental results.

  18. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  19. Fabrication of a Zinc Aluminum Oxide Nanowire Array Photoelectrode for a Solar Cell Using a High Vacuum Die Casting Technique

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2014-01-01

    Full Text Available Zinc aluminum alloy nanowire was fabricated by the vacuum die casting. Zinc aluminum alloy was melted, injected into nanomold under a hydraulic pressure, and solidified as nanowire shape. Nanomold was prepared by etching aluminum sheet with a purity of 99.7 wt.% in oxalic acid solution. A nanochannel within nanomold had a pore diameter of 80 nm and a thickness of 40 μm. Microstructure and characteristic analysis of the alumina nanomold and zinc-aluminum nanowire were performed by scanning electron microscope, X-ray diffraction analysis, and energy dispersive X-ray spectroscopy. Zinc aluminum oxide nanowire array was produced using the thermal oxidation method and designed for the photoelectrode application.

  20. High precision pressure measurement with a funnel

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arias, T; Gratton, L M; Oss, S [Physics Department, University of Trento, 38100 Povo, Trento (Italy)], E-mail: teresa@science.unitn.it, E-mail: gratton@science.unitn.it, E-mail: stefano.oss@unitn.it

    2008-11-12

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is placed, upside down, in a container filled with distilled water, placed on a scale. Our method provides a theoretical precision for the pressure measurement of the order of 0.01 Pa. Beyond this, the advantage of this method relies on the simplicity of the materials used and on the opportunity to discuss, at an undergraduate level, basic concepts regarding all those phenomena in which low or very low differential pressures are relevant.

  1. High-pressure and high-temperature studies on oxide garnets

    Energy Technology Data Exchange (ETDEWEB)

    Hua, H.; Mirov, S.; Vohra, Y.K. [Department of Physics, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35294-1170 (United States)

    1996-09-01

    We report high-pressure and high-temperature studies on a series of oxide garnets of chemical composition {ital A}{sub 3}{ital B}{sub 2}{ital C}{sub 3}O{sub 12}. The members of this family investigated are gadolinium scandium gallium garnet (GSGG), gadolinium gallium garnet (GGG), and yttrium aluminum garnet (YAG). The GSGG and GGG are doped with both neodymium and chromium while the YAG is doped only with neodymium. Photoluminescence, synchrotron x-ray-diffraction, and laser heating studies were carried out in a diamond-anvil cell. Variety of optical sensors (ruby, Sm-doped YAG) and x-ray pressure marker (copper) were employed for pressure measurement. Pressure-induced amorphization was observed in GSGG at 58{plus_minus}3 GPa and GGG at 84{plus_minus}4 GPa by x-ray-diffraction studies. The photoluminescence studies show only gradual broadening of emission bands through the amorphization transition. On increasing pressure beyond amorphization, very broad and featureless emission bands were observed in the fluorescence spectra at 77{plus_minus}2 GPa for GSGG and at 88{plus_minus}2 GPa for GGG. Laser heating of the pressure-induced amorphous phase in GSGG caused recrystallization to the stable cubic phase. High-pressure x-ray study on YAG shows that it retains cubic phase up to 101{plus_minus}4 GPa. A pressure-volume relation for each member of the oxide garnet at ambient temperatures is presented, structural transformation mechanisms, and application of oxide garnets as pressure sensors are also discussed. {copyright} {ital 1996 The American Physical Society.}

  2. High-Speed Friction-Stir Welding To Enable Aluminum Tailor-Welded Blanks

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current joining technologies for automotive aluminum alloys are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding has been traditionally applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum welded components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability utilizing a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  3. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    Science.gov (United States)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  4. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  5. Development of high strength aluminum-stabilized superconductor for the SDC detector

    International Nuclear Information System (INIS)

    Development of high strength aluminum-stabilized superconductor for the SDC superconductor which has appropriate RRR has been carried out. Required properties for aluminum matrix (yield strength at 77K >6.5kgf/mm2 and RRR -500) have been obtained by using Al-Zn alloy and cold-working. In the production of 1/3-sized superconductor by way of experiment, the reduction ratio of cold-working has been restricted below 15%. Based on investigations of Al alloys and 1/3-sized experiment, full-sized superconductor for the SDC detector has been designed and produced by way of experiment. The properties of aluminum matrix obtained satisfy the specification after final curing heat treatment

  6. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.

    Science.gov (United States)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Fang, Youxing; Bridges, Craig A; Paranthaman, M Parans; Dai, Sheng; Brown, Gilbert M

    2016-01-28

    A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance. PMID:26666453

  7. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    Science.gov (United States)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  8. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    Science.gov (United States)

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  9. Thixoforming A356 Aluminum Bipolar Plates at High Solid Fractions

    Science.gov (United States)

    Bolouri, Amir; Jang, Chang Hyun; Kang, Chung Gil

    2014-04-01

    Thixoforming investigations have been developed primarily for the manufacturing of bulk components, and the current knowledge is very limited with respect to the fabrication of thin cross sections of alloys. We studied the effectiveness of thixoforming process for the fabrication of A356 aluminum alloy bipolar plates with microchannels on both sides. Feedstock semisolid slurries, with different solid contents of ~55, 50, and 45 pct, were prepared at 858 K, 863 K, and 868 K (585 °C, 590 °C, and 595 °C), respectively, and were used to thixoform 1.20-mm-thick bipolar thin plates. The microstructures of the thixoformed thin plates consisted of (i) large primary α-Al globular grains, (ii) a quenched liquid phase, and (iii) fine secondary α-Al particles. The fraction and size of the primary α-Al globular grains decreased, and the primary α-Al globular grains became more spherical with the increasing thixoforming temperature. It seemed that these changes in the microstructural features led to the reduction in the agglomeration and interaction among the primary α-Al globular grains surrounded by the liquid matrix during thixoforming. This enabled the semisolid slurry to effectively flow and fill in the sharp corners (such as the microchannels) of the die cavity at higher thixoforming temperatures. The thin plates thixoformed at 868 K (595 °C), consequently, exhibited the highest dimensional stability and the fewest internal defects. The liquid matrix surrounding the primary α-Al grains solidified inside the die cavity after thixoforming. Either the liquid phase was instantly quenched or fine secondary α-Al particles were formed inside the die cavity. The fraction and size of the latter increased with increasing thixoforming temperature. The surface hardness of the thixoformed plates was measured, and the hardness values were correlated with the microstructural features of the thixoformed plates.

  10. High pressure studies of potassium perchlorate

    Science.gov (United States)

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; Reiser, Sharissa; White, Melanie

    2016-09-01

    Two experiments are reported on KClO4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO4 → hν KCl + 2O2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O2 was monitored. The decomposition rate slowed at higher pressures. We present the first direct evidence for O2 crystallization at higher pressures, demonstrating that O2 molecules aggregate at high pressure.

  11. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  12. Cradle-to-Gate Impact Assessment of a High-Pressure Die-Casting Safety-Relevant Automotive Component

    Science.gov (United States)

    Cecchel, Silvia; Cornacchia, Giovanna; Panvini, Andrea

    2016-09-01

    The mass of automotive components has a direct influence on several aspects of vehicle performance, including both fuel consumption and tailpipe emissions, but the real environmental benefit has to be evaluated considering the entire life of the products with a proper life cycle assessment. In this context, the present paper analyzes the environmental burden connected to the production of a safety-relevant aluminum high-pressure die-casting component for commercial vehicles (a suspension cross-beam) considering all the phases connected to its manufacture. The focus on aluminum high-pressure die casting reflects the current trend of the industry and its high energy consumption. This work shows a new method that deeply analyzes every single step of the component's production through the implementation of a wide database of primary data collected thanks to collaborations of some automotive supplier companies. This energy analysis shows significant environmental benefits of aluminum recycling.

  13. Cradle-to-Gate Impact Assessment of a High-Pressure Die-Casting Safety-Relevant Automotive Component

    Science.gov (United States)

    Cecchel, Silvia; Cornacchia, Giovanna; Panvini, Andrea

    2016-08-01

    The mass of automotive components has a direct influence on several aspects of vehicle performance, including both fuel consumption and tailpipe emissions, but the real environmental benefit has to be evaluated considering the entire life of the products with a proper life cycle assessment. In this context, the present paper analyzes the environmental burden connected to the production of a safety-relevant aluminum high-pressure die-casting component for commercial vehicles (a suspension cross-beam) considering all the phases connected to its manufacture. The focus on aluminum high-pressure die casting reflects the current trend of the industry and its high energy consumption. This work shows a new method that deeply analyzes every single step of the component's production through the implementation of a wide database of primary data collected thanks to collaborations of some automotive supplier companies. This energy analysis shows significant environmental benefits of aluminum recycling.

  14. A high-temperature wideband pressure transducer

    Science.gov (United States)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  15. Gating system optimization of low pressure casting A356 aluminum alloy intake manifold based on numerical simulation

    Directory of Open Access Journals (Sweden)

    Jiang Wenming

    2014-03-01

    Full Text Available To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on filling and solidification processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the filling of the molten metal is not stable; and the casting does not follow the sequence solidification, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the filling time is prolonged from 4.0 s to 4.5 s, the filling of molten metal becomes stable, but this casting does not follow the sequence solidification either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.

  16. High pressure synthesis of bismuth disulfide

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure contains Bi atoms in distorted square-based pyramidal coordination to five surrounding...

  17. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  18. RECOVERY AND ENERGY SAVINGS OF ALUMINUM CAN BEVERAGE CONSUMED IN GENERAL AND VOCATIONAL TECHNICAL HIGH SCHOOLS

    Directory of Open Access Journals (Sweden)

    Mert ZORAĞA

    2012-01-01

    Full Text Available In commitments of Kyoto protocol principles, 100% recyclable features aluminum is one of most current metal. In this protocol, Turkey is not contractor to develop policies to prevent climate change to apply, to take measures to increase energy efficiency and savings, to limit greenhouse gas emissions. Aluminum production from used aluminum requires 95% less energy than production from raw material and recycled aluminum put in the production reduces flue gases pollutant emissions at rate of 99%. Between 2004-2005 and 2009-2010 academic year education is estimated that every one of 5 and 10 students were consumed average 1 aluminum can beverage each day to take into account habits of general and vocational high school students. In case of recovery of 50% this cans will save approximately 4.7 and 13.1 million kWh electrical energy, in the case of 75% recovery will save between 7.2 and 19.9 million kWh electrical energy, in the case of 100% will save the 9.4 and 25 million kWh electrical energy than the same amount of aluminum in the primary method (from ore in our country. In the same conditions is estimated that realization of an efficient recycling project will provide between 5.2 and 20 million kWh of electrical energy savings in the 2010 -2011 academic year education. In this study, anymore it turned into a habit of recovery of packaging waste application in most countries as the name “Blue Angels Project” to place in our country has been trying to bring clarity to issues.

  19. Proof test criteria for thin-walled 2219 aluminum pressure vessels. Volume 1: Program summary and data analysis

    Science.gov (United States)

    Finger, R. W.

    1976-01-01

    This experimental program was undertaken to investigate the crack growth behavior of deep surface flaws in 2219 aluminum. The program included tests of uniaxially loaded surface flaw and center crack panels at temperatures ranging from 20K (-423 F) to ambient. The tests were conducted on both the base metal and as-welded weld metal material. The program was designed to provide data on the mechanisms of failure by ligament penetration, and the residual cyclic life, after proof-testing, of a vessel which has been subjected to incipient penetration by the proof test. The results were compared and analyzed with previously developed data to develop guidelines for the proof testing of thin walled 2219 pressure vessels.

  20. Curved and conformal high-pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    2016-10-25

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.

  1. BEHAVIOR OF FLOW STRESS OF ALUMINUM SHEETS USED FOR PRESSURE CAN DURING COMPRESSION AT ELEVATED TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    G.S. Fu; W.Z. Chen; K.W. Qian

    2005-01-01

    The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression testusing Gleeble1500 dynamic hot-simulation testing machine. The results show that the A1 sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the Al pieces prepared by no or conventional melt-treatment, hot deformation activation energy of Al sheets prepared by high-efficient melt-treatment is the smallest (Q = 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.

  2. High pressure effects on allergen food proteins.

    Science.gov (United States)

    Somkuti, Judit; Smeller, László

    2013-12-15

    There are several proteins, which can cause allergic reaction if they are inhaled or ingested. Our everyday food can also contain such proteins. Food allergy is an IgE-mediated immune disorder, a growing health problem of great public concern. High pressure is known to affect the structure of proteins; typically few hundred MPa pressure can lead to denaturation. That is why several trials have been performed to alter the structure of the allergen proteins by high pressure, in order to reduce its allergenicity. Studies have been performed both on simple protein solutions and on complex food systems. Here we review those allergens which have been investigated under or after high pressure treatment by methods capable of detecting changes in the secondary and tertiary structure of the proteins. We focus on those allergenic proteins, whose structural changes were investigated by spectroscopic methods under pressure in correlation with the observed allergenicity (IgE binding) changes. According to this criterion we selected the following allergen proteins: Mal d 1 and Mal d 3 (apple), Bos d 5 (milk), Dau c 1 (carrot), Gal d 2 (egg), Ara h 2 and Ara h 6 (peanut), and Gad m 1 (cod).

  3. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  4. Method of making highly porous, stable aluminum oxides doped with silicon

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi-Mardkhe, Maryam; Woodfield, Brian F.; Bartholomew, Calvin H.; Huang, Baiyu

    2016-03-22

    The present invention relates to a method for making high surface area and large pore volume thermally stable silica-doped alumina (aluminum oxide) catalyst support and ceramic materials. The ability of the silica-alumina to withstand high temperatures in presence or absence of water and prevent sintering allows it to maintain good activity over a long period of time in catalytic reactions. The method of preparing such materials includes adding organic silicon reagents to an organic aluminum salt such as an alkoxide in a controlled quantity as a doping agent in a solid state, solvent deficient reaction followed by calcination. Alternatively, the organic silicon compound may be added after calcination of the alumina, followed by another calcination step. This method is inexpensive and simple. The alumina catalyst support material prepared by the subject method maintains high pore volumes, pore diameters and surface areas at very high temperatures and in the presence of steam.

  5. Effect of extrusion temperature on the physical properties of high-silicon aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Fuliang; GAN Weiping; CHEN Zhaoke

    2007-01-01

    Light-weight high-silicon aluminum alloys are used for electronic packaging in the aviation and space- flight industry. Al-30Si and Al-40Si are fabricated with air- atomization and vacuum-canning hot-extrusion process. The density, thermal conductivity, hermeticity and thermal expan- sion coefficients of the material are measured, and the relationship between extrusion temperature and properties is obtained. Experimental results show that the density of high- silicon aluminum alloys prepared with this method is as high as 99.64% of the theory density, and increases with elevating extrusion temperature. At the same time, thermal conductiv- ity varies between 104-140W/(m.K); with the extrusion temperature, thermal expansion coefficient also increases but within 13 × 10-6 (at 100℃) and hermeticity of the material is high to 10-9 order of magnitude.

  6. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  7. What about African Americans and High Blood Pressure?

    Science.gov (United States)

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? The prevalence of high blood pressure in African Americans is among the highest in ...

  8. RESEARCH OF GAS-FORMING ABILITY OF THE MATERIALS USED AT DEVELOPMENT OF DIVIDING COVERINGS FOR THE MOLDS OF CASTING OF ALUMINUM ALLOYS UNDER PRESSURE

    Directory of Open Access Journals (Sweden)

    A. M. Mihaltsov

    2012-01-01

    Full Text Available The methods of carrying out of experiments by determination of gas creating ability of different materials which are of interest from the point of view of molding of aluminum alloys under pressure are given and described, and the results of research are presented as well.

  9. High Velocity Forming of Aluminum Cylindrical Cups-Experiments and Numerical Simulations

    Institute of Scientific and Technical Information of China (English)

    Mustafa YASAR; Ibrahim KADI

    2007-01-01

    A new two stage detonation forming machine was developed and cylindrical aluminum cups were formed by using gas detonation forming technology. The forming process was analyzed with the explicit finite element method with various parameters and ANSYS/LS-DYNA software. Defects of wrinkling and rupture were predicted for some forming conditions. The strain and the thickness distribution results were in good agreement with the experimental results. It was seen that thinning and forming mainly take place during the one fourth of the time. The effects of detonation pressure and blank holding force on the deformation of the work pieces were discussed. The numerical results were compared with those obtained in the experiments.

  10. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  11. Upgrading of High-Aluminum Hematite-Limonite Ore by High Temperature Reduction-Wet Magnetic Separation Process

    Directory of Open Access Journals (Sweden)

    Xianlin Zhou

    2016-03-01

    Full Text Available The huge consumption of iron ores in China has attracted much attention to utilizing low grade complex iron resources, such as high-aluminum hematite-limonite ore, which is a refractory resource and difficult to upgrade by traditional physical concentration processes due to the superfine size and close dissemination of iron minerals with gangue minerals. An innovative technology for a high temperature reduction-magnetic separation process was studied to upgrade a high-aluminum iron ore assaying 41.92% Fetotal, 13.74% Al2O3 and 13.96% SiO2. The optimized results show that the final metal iron powder, assaying 90.46% Fetotal, was manufactured at an overall iron recovery of 90.25% under conditions as follows: balling the high aluminum iron ore with 15% coal blended and at 0.3 basicity, reducing the dried pellets at 1350 °C for 25 min with a total C/Fe mass ratio of 1.0, grinding the reduced pellets up to 95%, passing at 0.074 mm and magnetically separating the ground product in a Davis Tube at a 0.10-T magnetic field intensity. The metal iron powder can be used as the burden for an electric arc furnace (EAF. Meanwhile, the nonmagnetic tailing is suitable to produce ceramic, which mainly consists of anorthite and corundum. An efficient way has been found to utilize high-aluminum iron resources.

  12. An evaluation of direct pressure sensors for monitoring the aluminum die casting process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.

    1997-12-31

    This study was conducted as part of the US Department of Energy (DOE) sponsored project Die Cavity Instrumentation. One objective of that project was to evaluate thermal, pressure, and gas flow process monitoring sensors in or near the die cavity as a means of securing improved process monitoring and control and better resultant part quality. The objectives of this thesis are to (1) evaluate a direct cavity pressure sensor in a controlled production campaign at the GM Casting Advanced Development Center (CADC) at Bedford, Indiana; and (2) develop correlations between sensor responses and product quality in terms of the casting weight, volume, and density. A direct quartz-based pressure sensor developed and marked by Kistler Instrument Corp. was acquired for evaluating as an in-cavity liquid metal pressure sensor. This pressure sensor is designed for use up to 700 C and 2,000 bars (29,000 psi). It has a pressure overload capacity up to 2,500 bars (36,250 psi).

  13. Annealing of GaN under high pressure of nitrogen

    CERN Document Server

    Porowski, S; Kolesnikov, D; Lojkowski, W; Jager, V; Jäger, W; Bogdanov, V; Suski, T; Krukowski, S

    2002-01-01

    Gallium nitride, aluminum nitride and indium nitride are basic materials for blue optoelectronic devices. The essential part of the technology of these devices is annealing at high temperatures. Thermodynamic properties of the Ga-N system and their consequences to application of high nitrogen pressure for the annealing of GaN based materials are summarized. The diffusion of Zn, Mg and Au in high dislocation density heteroepitaxial GaN/Al sub 2 O sub 3 layers will be compared with the diffusion in dislocation-free GaN single crystals and homoepitaxial layers. It will be shown that high dislocation density can drastically change the diffusion rates, which strongly affects the performance of nitride devices. Inter-diffusion of Al, Ga and In in AlGaN/GaN and InGaN/GaN quantum well (QW) structures will be also considered. It will be shown that in contrast to stability of metal contacts, which is strongly influenced by dislocations, the inter-diffusion of group III atoms in QW structures is not affected strongly by...

  14. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  15. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  16. High precision sodium pressure sensor study

    International Nuclear Information System (INIS)

    A high precision sodium pressure sensor with a dynamometric ring has been studied. The sensor constitution, the dynamometric ring calculation, the gauges setting, the measuring circuit and the gauging device are presented. The correction method of in-line temperature effect is given. The calibration error is analyzed

  17. High temperature pressure coupled ultrasonic waveguide

    International Nuclear Information System (INIS)

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil

  18. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  19. Teaming Up Against High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    This podcast is based on the September 2012 CDC Vital Signs report. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  20. Characteristics of high-energy reflected neutrons from aluminum

    International Nuclear Information System (INIS)

    With a set of high-threshold-energy detectors, the activation reaction rates with and without the pure Al reflector are measured. High-energy neutrons' reflection coefficients of pure Al are attained. The coefficients are intervened from 1 to 1.14 and their distributing tendencies are all consistent. It shows that reflected high-energy neutron field is stronger at a large-angle point and poor at a small-angle point. Moreover, with rising of threshold energy, the reflection coefficient falls down. Synthetic errors of high-energy reflected neutrons coefficients are ±3.4%-±4.2%. Calculated results of reflection coefficients are more agreed with the experimental results within the range of errors at the majority of measurement points. (authors)

  1. Effect of anneal pre-treatment of polycrystalline aluminum sheets on synthesis of highly-ordered anodic aluminum oxide membranes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Anodic aluminum oxide (AAO) membranes with large ordered pore domains were successfully prepared by adopting the anneal pre-treatment of polycrystalline alu- minum sheets. A statistical method with Gaussian distribution was introduced to quantitatively study the size of the domain with ordered pores. The largest average area of ordered pore domains was 2.6 μm2±0.11 μm2. The corresponding AAO membrane was synthesized by aluminum sheets annealed at 893 K for 24 h.

  2. Purifying Aluminum by Vacuum Distillation

    Science.gov (United States)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  3. Aluminum nano-cantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nano-cantilevers using a very simple one mask contact UV lithography technique with lateral dimensions under 500 nm and vertical dimensions of approximately 100 nm. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Further......We have fabricated Al nano-cantilevers using a very simple one mask contact UV lithography technique with lateral dimensions under 500 nm and vertical dimensions of approximately 100 nm. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties....... Furthermore, it is shown that Al has a potential higher sensitivity than Si based dynamic sensors. Initial testing of these devices has been conducted using a novel scanning electron microscope setup were the devices were tested under high vacuum conditions. The Q-factor was measured to approximately 200...

  4. Study of the Tensile Damage of High-Strength Aluminum Alloy by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Chang Sun

    2015-11-01

    Full Text Available The key material of high-speed train gearbox shells is high-strength aluminum alloy. Material damage is inevitable in the process of servicing. It is of great importance to study material damage for in-service gearboxes of high-speed train. Structural health monitoring methods have been widely used to study material damage in recent years. This study focuses on the application of an acoustic emission (AE method to quantify tensile damage evolution of high-strength aluminum alloy. First, a characteristic parameter was developed to connect AE signals with tensile damage. Second, a tensile damage quantification model was presented based on the relationship between AE counts and tensile behavior to study elastic deformation of tensile damage. Then tensile tests with AE monitoring were employed to collect AE signals and tensile damage data of nine samples. The experimental data were used to quantify tensile damage of high-strength aluminum alloy A356 to demonstrate the effectiveness of the proposed method.

  5. (Ultra high pressure homogenization for continuous high pressure sterilization of pumpable foods - a review

    Directory of Open Access Journals (Sweden)

    Erika eGeorget

    2014-08-01

    Full Text Available Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for food industry which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to reduction of the organoleptic and nutritional properties of food and alternative are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra-high pressure homogenization (UHPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet and valve temperatures. This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.

  6. 纳米铝粉在高能固体推进剂中的应用%Application of Nano-aluminum Powder in High Energy Solid Propellant

    Institute of Scientific and Technical Information of China (English)

    李伟; 包玺; 唐根; 吴芳; 徐海元; 刘丽兵; 郭翔; 庞爱民

    2011-01-01

    用纳米铝粉替代3%(质量分数)的微米级铝粉,获得均匀一致的高能固体推进剂药块.研究了纳米铝粉对药块的安全、力学、燃烧和能量性能的影响.结果表明,含纳米铝粉的药块内部结合更紧密,密度与原高能推进剂配方的相同,安全性能和力学性能相差不大.在PET黏合剂体系中加入纳米铝粉能有效提高体系的动、静态燃速,降低燃速压强指数,但未改变其能量性能.%The substitution of nano-aluminum powder for 3% (mass fraction) conventional sized aluminum powder can obtain a uniform high energy solid propellant. The effect of nano-aluminum powder on the property of security, mechanics,combustion and energy of the propellant was investigated. The results indicated that the propellant containing nano-aluminum has a much closer inner,a similar density,secure property and mechanical performance in comparison with the propellant containing conventional sized aluminum powder. The additive of nano-aluminum in PET binder system can increase the static and dynamic burning rate and decrease the pressure exponent of the propellant. However,it can not improve the energy performance.

  7. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup was build...... against conventional technologies for hydrogen production, such as natural gas reforming, the production and investment costs have to be reduced. A reduction of the investment costs may be achieved by increasing the operational pressure and temperature of the electrolyzer, as this will result in: 1......) production of pressurized hydrogen and oxygen, 2) improved electrical efficiencies and 3) increased current density, i.e. increased hydrogen production rate for a given electrolyser cell area. This thesis describes an exploratory technical study mainly in order to examine the possibility to produce hydrogen...

  8. Polyurethane interpenetrating networks synthesized under high pressure

    International Nuclear Information System (INIS)

    Using time resolved and real time small angle x-ray scattering on Beamline I-IV at SSRL, the phase separation behavior in a series of linear mixtures, semi-interpenetrating (SIPN) and interpenetrating polymer networks (IPN) was investigated as a function of temperature and composition. Polystyrene (PS) and polyurethane (PU) are polymers that at room temperature and pressure are incompatible over the entire composition range. Preparation of the mixed polymers under high pressure forces the two to be miscible. Crosslinking either one or both of the components can prohibit phase separation of the two components when the pressure is released and the ''mixture'' is heated to temperatures in access of the glass transition temperatures of the two polymers

  9. The Effect of Applied Pressure During Feeding of Critical Cast Aluminum Alloy Components With Particular Reference to Fatigue Resistance

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Berry; R. Luck; B. Zhang; R.P. Taylor

    2003-06-30

    the medium to long freezing range alloys of aluminum such as A356, A357, A206, 319 for example are known to exhibit dispersed porosity, which is recognized as a factor affecting ductility, fracture toughness, and fatigue resistance of light alloy castings. The local thermal environment, for example, temperature gradient and freezing from velocity, affect the mode of solidification which, along with alloy composition, heat treatment, oxide film occlusion, hydrogen content, and the extent to which the alloy contracts on solidification, combine to exert strong effects on the porosity formation in such alloys. In addition to such factors, the availability of liquid metal and its ability to flow through the partially solidified casting, which will be affect by the pressure in the liquid metal, must also be considered. The supply of molten metal will thus be controlled by the volume of the riser available for feeding the particular casting location, its solidification time, and its location together with any external pressure that might be applied at the riser.

  10. Low Temperature and High Pressure Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.; Martinez-Frias, J.; Garcia-Villazana, O.

    2000-06-25

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures.

  11. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander;

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly......–456 bar) and flame speeds (1–10 bar) from literature. The model yielded satisfactory predictions for the onset temperature as well as for most major species upon ignition in the flow reactor, but the concentration of particularly CH3OH was severely underpredicted, indicating that further work is desirable...... on reactions of CH3O and CH3OO. Measured ignition delay times from the RCM tests were reproduced well by the model for high pressures, but underpredicted at 15 bar. For the shock tube and flame conditions, predictions were mostly within the experimental uncertainty. Prompt dissociation of HCO increased...

  12. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    Alkaline electrolyzers have proven to operate reliable for decades on a large scale, but in order to become commercially attractive and compete against conventional technologies for hydrogen production, the production and investment costs have to be reduced. This may occur by increasing the...... operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... SrTiO3 was used for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen...

  13. Electromechanical Breakdown of Barrier-Type Anodized Aluminum Oxide Thin Films Under High Electric Field Conditions

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Yao, Xi

    2016-02-01

    Barrier-type anodized aluminum oxide (AAO) thin films were formed on a polished aluminum substrate via electrochemical anodization in 0.1 mol/L aqueous solution of ammonium pentaborate. Electromechanical breakdown occurred under high electric field conditions as a result of the accumulation of mechanical stress in the film-substrate system by subjecting it to rapid thermal treatment. Before the breakdown event, the electricity of the films was transported in a highly nonlinear way. Immediately after the breakdown event, dramatic cracking of the films occurred, and the cracks expanded quickly to form a mesh-like dendrite network. The breakdown strength was significantly reduced because of the electromechanical coupling effect, and was only 34% of the self-healing breakdown strength of the AAO film.

  14. Simulation of Stress-Strain behavior for one-dimensional aluminum samples subjected to high temperature

    DEFF Research Database (Denmark)

    Bellini, Anna; Thorborg, Jesper; Hattel, Jesper

    2004-01-01

    the analysis of the next phases, such as heat treatment and life prediction of the cast parts. Because of the lack of numerical program tools capable of predicting the stress-strain behavior of aluminum parts subjected to high temperature, it is indeed normally assumed that at the end of the thermal treatment......In order to satisfy the growing need in high quality aluminum cast parts of the automobile industries, in the last decades the foundries have been showing an increasing interest in the implementation of numerical simulations as part of their process design. As a consequence, it is possible to find...... in literature several programs capable of simulating the entire casting process, i.e. filling, solidification, as well as developed thermomechanical stresses. However, it is common practice in the foundry industry that the results obtained by the simulation of the cast process are "forgotten" during...

  15. Effect of trace yttrium on cube texture of high-purity aluminum foils

    Institute of Scientific and Technical Information of China (English)

    刘楚明; 张新明; 陈志永; 蒋红辉; 周卓平

    2001-01-01

    The effect of trace yttrium on cube texture of high-purity aluminum foils has been investigated by means of orientation distribution functions (ODFs). The results show that a small addition of yttrium to high-purity aluminum brings about a considerable increment of the cube texture, and it reduces the content of R texture. The rare earth yttrium may combine with the other impurities to form the metallic compounds, such as FeYAl8, Fe6YAl6, Fe4YAl8 and Si2YAl2. When the precipitation of these particles in the matrix is nearly completed and the Fe concentration in the matrix becomes low, the cube texture can develop well and the R texture can be suppressed.

  16. Textures in high purity aluminum foils and AA3004 sheets

    Institute of Scientific and Technical Information of China (English)

    肖亚庆; 张新明; 唐建国; 邓运来; 陈志永

    2003-01-01

    The simulation of rolling texture with "minimum shear principle" and the strengthening of cube recrystallization texture by inhomogeneous rolling, low strain deformation and multistage annealing, of the formation and evolution of texture in high purity Al were presented. The plastic anisotropy of crystalline materials were also summarized, including determination of the co-yield surfaces and condition of slipping as well as mechanical twinning, prediction of plastic anisotropy of deep drawing with modified Tuckers method, evolution of earing behavior of Al alloy sheets for deep drawing with CMTP approach, and construction of texture balance design and some technologies to suppress plastic anisotropy in practical production.

  17. The Aluminum Based Composite Produced by Self Propagating High Temperature Synthesis

    Directory of Open Access Journals (Sweden)

    Agus PRAMONO

    2016-05-01

    Full Text Available Self-propagating high-temperature synthesis method can be used for producing aluminum and boron carbide based composites. The experimental composites were fabricated using cobalt and carbon as catalysts. The microstructure of the material was studied using Scanning Electron Microscopy and the mechanical properties were determined using micro-hardness testing. Al/B4C based composites with improved properties were obtained and the role of Co/C catalysts was studied.

  18. High optical transmittance of aluminum ultrathin film with hexagonal nanohole arrays as transparent electrode

    KAUST Repository

    Du, Qing Guo

    2016-02-24

    We fabricate samples of aluminum ultrathin films with hexagonal nanohole arrays and characterize the transmission performance. High optical transmittance larger than 60% over a broad wavelength range from 430 nm to 750 nm is attained experimentally. The Fano-type resonance of the excited surface plasmon plaritons and the directly transmitted light attribute to both of the broadband transmission enhancement and the transmission suppression dips. © 2016 Optical Society of America.

  19. EBSD characterization of deformation in high strain rate application aluminum alloys

    OpenAIRE

    Kozmel, Thomas; Vural, Murat; Tin, Sammy

    2014-01-01

    Advances in materials characterization tools and techniques are contributing to an improved physics based understanding pertaining to the characteristic behavior of engineering alloys. Aluminum alloys, such as 2139, 2519, 5083, and 7039 are commonly used for lightweight armor applications where resistance to high strain rate deformation is paramount. Failure of these materials is often attributed to the onset of shear band formation. This study was aimed at complimenting the constituent predi...

  20. Sputtering of sub-micrometer aluminum layers as compact, high-performance, light-weight current collector for supercapacitors

    Science.gov (United States)

    Busom, J.; Schreiber, A.; Tolosa, A.; Jäckel, N.; Grobelsek, I.; Peter, N. J.; Presser, V.

    2016-10-01

    Supercapacitors are devices for rapid and efficient electrochemical energy storage and commonly employ carbon coated aluminum foil as the current collector. However, the thickness of the metallic foil and the corresponding added mass lower the specific and volumetric performance on a device level. A promising approach to drastically reduce the mass and volume of the current collector is to directly sputter aluminum on the freestanding electrode instead of adding a metal foil. Our work explores the limitations and performance perspectives of direct sputter coating of aluminum onto carbon film electrodes. The tight and interdigitated interface between the metallic film and the carbon electrode enables high power handling, exceeding the performance and stability of a state-of-the-art carbon coated aluminum foil current collector. In particular, we find an enhancement of 300% in specific power and 186% in specific energy when comparing aluminum sputter coated electrodes with conventional electrodes with Al current collectors.

  1. Cube orientation in hot rolled high purity aluminum plate

    Institute of Scientific and Technical Information of China (English)

    杨平; 毛卫民

    2003-01-01

    X-ray diffraction and orientation mapping in EBSD measurement were applied to obtain information ofdeformation and recrystallization with the emphasis on the cube orientation in hot rolled high purity aluminumplates. It is shown that cube orientations are retained to a large extent during hot rolling. Some deformed cubegrains are found to have experienced large extent of recovery according to their Kikuchi band contrasts. The de-formed cube-oriented grains in hot rolled plates are in an unfavorite growth condition with respect to their neighbor-ing grain orientations for the subsequent annealing. The reasons for the phenomena observed, as well as the influ-ence of hot rolling process on subsequent cold rolling and final annealing were discussed.

  2. High-pressure liquid chromatographic gradient mixer

    Science.gov (United States)

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  3. High pressure liquid chromatographic gradient mixer

    Science.gov (United States)

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  4. Aluminum nanoparticle/acrylate copolymer nanocomposites for dielectric elastomers with high dielectric constants

    Science.gov (United States)

    Hu, Wei; Zhang, Suki N.; Niu, Xiaofan; Liu, Chao; Pei, Qibing

    2014-03-01

    Dielectric elastomers are useful for large-strain actuation and energy harvesting. Their application has been limited by their low dielectric constants and consequently high driving voltage. Various fillers with high dielectric constants have been incorporated into different elastomer systems to improve the actuation strain, force output and energy density of the compliant actuators and generators. However, agglomeration may happen in these nanocomposites, resulting in a decrease of dielectric strength, an increase of leakage current, and in many instances the degree of enhancement of the dielectric constant. In this work, we investigated aluminum nanoparticles as nanofillers for acrylate copolymers. This metallic nanoparticle was chosen because the availability of free electrons could potentially provide an infinite value of dielectric constant as opposed to dielectric materials including ferroelectric nanocrystals. Moreover, aluminum nanoparticles have a self-passivated oxide shell effectively preventing the formation of conductive path. The surfaces of the aluminum nanoparticles were functionalized with methacrylate groups to assist the uniform dispersion in organic solutions and additionally enable copolymerization with acrylate copolymer matrix during bulk polymerization, and thus to suppress large range drifting of the nanoparticles. The resulting Al nanoparticle-acrylate copolymer nanocomposites were found to exhibit higher dielectric constant and increased stiffness. The leakage current under high electric fields were significantly lower than nanocomposites synthesized without proper nanoparticle surface modification. The dielectric strengths of the composites were comparable with the pristine polymers. In dielectric actuation evaluation, the actuation force output and energy specific work density were enhanced in the nanocomposites compared to the pristine copolymer.

  5. Inspection technology for high pressure pipes

    International Nuclear Information System (INIS)

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  6. High pressure hydrogen time projection chamber

    International Nuclear Information System (INIS)

    We describe a high pressure hydrogen gas time projection chamber which consists of two cylindrical drift regions each 45 cm in diameter and 75 cm long. Typically, at 15 atm of H2 with 2 kV/cm drift field and 7 kV on the 35μ sense wires, the drift velocity is about 0.5 cm/μsec and the spatial resolution +-200μ

  7. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  8. Burning characteristics of individual aluminum/aluminum oxide particles

    OpenAIRE

    Ruttenberg, Eric C.

    1996-01-01

    Approved for public release; distribution is unlimited An experimental investigation was conducted in which the burning characteristics of individual aluminum/aluminum oxide particles were measured using a windowed combustion bomb at atmospheric pressure and under gravity-fall conditions. A scanning electron microscope (SEM) was used to measure the size distribution of the initial aluminum particles and the aluminum oxide residue. Analysis of the residue indicated that the mass of aluminum...

  9. Reliable Copper and Aluminum Connections for High Power Applications in Electromobility

    Science.gov (United States)

    Hofmann, Konstantin; Holzer, Matthias; Hugger, Florian; Roth, Stephan; Schmidt, Michael

    Investigations concerning the growth of intermetallic phases during the heat input both at the diffusion annealing of copper aluminum roll claddings and the subsequent welding process of copper-aluminum connections by using roll cladded inserts are compared to the analytical determination of phase growth. The temperature distribution in the cladding interface has been determined by thermal simulation, in order to calculate the growth of the intermetallic phases. A comparison between the width of the phases in the analytical calculation and the experiment is achieved. In consideration of high welding speeds, the energy input during the welding process is appraised in order to grade the growth of intermetallic phases. Furthermore the prevention of damage in the roll cladding interface by means of unadapted material thicknesses or welding parameters can be assessed analytically and numerically. The numerical simulations can determine the critical thickness of the roll cladding to avoid damage like exceeding growth of intermetallic phases.

  10. DIFFUSION COUPLE BETWEEN HIGH STRENGTH WEAR-RESISTING ALUMINUM BRONZE AND MACHINING TOOLS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Diffusion couples of tool materials (prepared from commercially available high speed steel and YW1 carbide tools) and the wear-resisting aluminum bronze (KK) were prepared by casting to study the diffusion pattern and phase formation sequence in order to clarify the diffusion wear of the tools during the turning of the wear-resisting aluminum bronze. Optical micrographs show that good contact was obtained at the tool material-KK interface. After annealed at 900 ℃ for 6 h, strong inter-diffusion across the interface was observed. Microprobe analysis was used to study the elemental distribution across the interface and X-ray diffractometry was used to study the phases formed at the interface.

  11. Mechanical and Thermal Properties of Ultra-High Carbon Steel Containing Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Syn, C K; Lesuer, D R; Goldberg, A; Tsai, H; Sherby, O D

    2006-01-31

    The properties of ultrahigh carbon steels (UHCS) are strongly influenced by aluminum additions. Hardness studies of quenched UHCS-Al alloys reveal that the temperature for the start of transformation increases with increases in aluminum content. It is shown that this change is a function of the atomic percent of solute and of the valence state when comparisons are made with UHCSs containing silicon and tin as solutes. The thermal expansion of UHCSs with dilute aluminum additions shows no discontinuity in the vicinity of the ferrite-austenite transformation temperature. This is the result of a three phase region of ferrite, carbides and austenite. The slope of the expansion curve is higher in the austenite range than in the ferrite range as a result of the dissolution of carbon in austenite with temperature. Processing to achieve a fine grain size in UHCS-Al alloys was principally by hot and warm working (HWW) followed by isothermal warm working (IWW). The high temperature mechanical properties of a UHCS-10Al-1.5C material show nearly Newtonian-viscous behavior at 900 to 1000 C. Tensile elongations of 1200% without failure were achieved in the 1.5%C material. The high oxidation corrosion resistance of the UHCS-10Al materials is described.

  12. Mechanical and Thermal Properties of Ultra-High Carbon Steel Containing Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Syn, C K; Lesuer, D R; Goldberg, A; Tsai, H C; Sherby, O D

    2005-10-03

    The properties of ultrahigh carbon steels (UHCS) are strongly influenced by aluminum additions. Hardness studies of quenched UHCS-Al alloys reveal that the temperature for the start of transformation increases with increases in aluminum content. It is shown that this change is a function of the atomic percent of solute and of the valence state when comparisons are made with UHCSs containing silicon and tin as solutes. The thermal expansion of UHCSs with dilute aluminum additions shows no discontinuity in the vicinity of the ferrite-austenite transformation temperature. This is the result of a three phase region of ferrite, carbides and austenite. The slope of the expansion curve is higher in the austenite range than in the ferrite range as a result of the dissolution of carbon in austenite with temperature. Processing to achieve a fine grain size in UHCS-Al alloys was principally by hot and warm working (HWW) followed by isothermal warm working (IWW). The high temperature mechanical properties of a UHCS-10Al-1.5C material show nearly Newtonian-viscous behavior at 900 to 1000 C. Tensile elongations of 1200% without failure were achieved in the 1.5%C material. The high oxidation corrosion resistance of the UHCS-10Al materials is described.

  13. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  14. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Thomas

    2013-05-13

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa{sub 2}Cu{sub 4}O{sub 8} at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T{sub 1} at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T{sub 1} are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional

  15. Reliability of BWR high pressure core cooling

    International Nuclear Information System (INIS)

    The high pressure coolant injection system (HPCI), and the reactor core isolation cooling system (RCIC) are steam turbine driven systems that can inject water into a boiling water reactor at full operating pressure. Their purpose is to supply water during any failure that allows water to be lost while the reactor is at pressure and temperature. A large number of BWR plants are not meeting HPCI and RCIC performance goals for core cooling. NSAC considers concurrent failure of NPCI and RCIC to be the most probable potential cause of low reactor water level and possibly fuel damage in a boiling water reactor. Between January 1978 and May 1981, 169 licensee event reports were filed where HPCI or RCIC was inoperable or was declared inoperable. The present effort has shown that at least 40% of NPCI and RCIC problems might be averted by a high quality preventive maintenance program. About half of the plants do not perform cold quick-start surveillance testing of HPCI and RCIC. They do perform routine startup tests, but the equipment is first preheated and the startup is relatively gentle. However, emergency start-ups are abrupt and from the cold condition. Therefore, cold quick-start testing is the only way to assure that all components, control systems, and instruments are functioning correctly for automatic safety initiation. (author)

  16. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  17. Mechanisms of Antigen Adsorption Onto an Aluminum-Hydroxide Adjuvant Evaluated by High-Throughput Screening.

    Science.gov (United States)

    Jully, Vanessa; Mathot, Frédéric; Moniotte, Nicolas; Préat, Véronique; Lemoine, Dominique

    2016-06-01

    The adsorption mechanism of antigen on aluminum adjuvant can affect antigen elution at the injection site and hence the immune response. Our aim was to evaluate adsorption onto aluminum hydroxide (AH) by ligand exchange and electrostatic interactions of model proteins and antigens, bovine serum albumin (BSA), β-casein, ovalbumin (OVA), hepatitis B surface antigen, and tetanus toxin (TT). A high-throughput screening platform was developed to measure adsorption isotherms in the presence of electrolytes and ligand exchange by a fluorescence-spectroscopy method that detects the catalysis of 6,8-difluoro-4-methylumbelliferyl phosphate by free hydroxyl groups on AH. BSA adsorption depended on predominant electrostatic interactions. Ligand exchange contributes to the adsorption of β-casein, OVA, hepatitis B surface antigen, and TT onto AH. Based on relative surface phosphophilicity and adsorption isotherms in the presence of phosphate and fluoride, the capacities of the proteins to interact with AH by ligand exchange followed the trend: OVA electrostatic attractions governing the interactions between an antigen adsorbed onto aluminum-containing adjuvant. PMID:27238481

  18. Talk with Your Health Care Provider about High Blood Pressure

    Science.gov (United States)

    ... Circulation Talk With Your Health Care Provider About High Blood Pressure Why is high blood pressure dangerous? Blood pressure is the force of blood ... pur-TEN-shun”). If it is not controlled, high blood pressure can cause: yy Stroke yy Kidney yy Heart ...

  19. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    Science.gov (United States)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain

  20. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  1. An initial study on welding procedure using tandem MIG welding of high strength aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    林三宝; 刚铁; 杨春利; 崔洪波

    2004-01-01

    The high-speed camera system and data acquisition system of welding parameters were created in tandem MIG welding of high strength aluminum alloy. The experiments were carried out in order to obtain the photos of droplet transfer under different welding parameters in pulsed mode. The droplet transfer mode of "one pulse one droplet" becomes the preferred selection during welding process because of its stable procedure and sound weld form. The parameter ranges for corresponding transfer mode were experimentally achieved, among which the stable droplet transfer mode of "one pulse one droplet" can be realized. These efforts brave the way for control weld heat input and weld formation in the future.

  2. High-pressure structural properties of tetramethylsilane

    Science.gov (United States)

    Zhen-Xing, Qin; Xiao-Jia, Chen

    2016-02-01

    High-pressure structural properties of tetramethylsilane are investigated by synchrotron powder x-ray diffraction at pressures up to 31.1 GPa and room temperature. A phase with the space group of Pnma is found to appear at 4.2 GPa. Upon compression, the compound transforms to two following phases: the phase with space groups of P21/c at 9.9 GPa and the phase with P2/m at 18.2 GPa successively via a transitional phase. The unique structural character of P21/c supports the phase stability of tetramethylsilane without possible decomposition upon heavy compression. The appearance of the P2/m phase suggests the possible realization of metallization for this material at higher pressure. Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (Grant No. 708070), the Fundamental Research Funds for the Central Universities, South China University of Technology (Grant No. 2014ZZ0069), the National Natural Science Foundation of China (Grant No. 51502189), and the Doctoral Project of Taiyuan University of Science and Technology, China (Grant No. 20132010).

  3. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  4. Conformable pressure vessel for high pressure gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  5. Theory of high pressure hydrogen, made simple

    CERN Document Server

    Magdau, Ioan B; Ackland, Graeme J

    2015-01-01

    Phase I of hydrogen has several peculiarities. Despite having a close-packed crystal structure, it is less dense than either the low temperature Phase II or the liquid phase. At high pressure, it transforms into either phase III or IV, depending on the temperature. Moreover, spectroscopy suggests that the quantum rotor behaviour disappears with pressurisation, without any apparent phase transition. Here we present a simple thermodynamic model for this behaviour based on packing atoms and molecules and discuss the thermodynamics of the phase boundaries. We also report first principles molecular dynamics calculations for a more detailed look at the same phase transitions.

  6. High Blood Pressure and Children: What Parents Need to Know

    Science.gov (United States)

    ... and Blood Institute Alternate Language URL Español High Blood Pressure and Children: What Parents Need to Know Page Content Children can have high blood pressure. Did you know that children could have high ...

  7. Metastable phases in the aluminum-germanium alloy system: Synthesis by mechanical alloying and pressure induced transformations

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, P.

    1994-01-01

    Al and Ge form a simple equilibrium eutectic with limited mutual solubility and no intermetallic intermediate phases. We used a regular solution approach to model effects of pressure on Al-Ge. Effects of pressure are to extend solubility of Ge in Al, to displace the eutectic composition towards the Ge rich side, and to slightly decrease the eutectic temperature. We designed thermobaric treatments to induce crystal-to-glass transformations in fine grain mixtures of Al and Ge. We used Merrill-Bassett diamond anvil cells to perform experiments at high pressures. We built an x-ray apparatus to determine the structure of alloys at pressure and from cryogenic temperatures to 400C. Two-phase Al-Ge samples with fine microstructures were prepared by splat-quenching and mechanical alloying. We observed a crystal-to-glass transformation at about 80 kbar. The amorphous phase formed was metastable at ambient temperature after pressure release. This was confirmed by TEM. The amorphous phase obtained by pressurization was found to have a liquid-like structure and was metallic. In the TEM samples we also observed the presence of a second amorphous phase formed upon release of the pressure. This second phase had a tetrahedrally-bonded continuous random network structure, similar to that of semi-conducting amorphous germanium.

  8. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Thomas

    2013-05-13

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa{sub 2}Cu{sub 4}O{sub 8} at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T{sub 1} at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T{sub 1} are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional

  9. High-pressure coal fuel processor development

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, M.L.

    1992-11-01

    The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

  10. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    Science.gov (United States)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  11. Study of metallic powder behavior in very low pressure plasma spraying (VLPPS) — Application to the manufacturing of titanium–aluminum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vautherin, B.; Planche, M.-P.; Montavon, G.; Lapostolle, F.; Quet, A.; Bianchi, L. (IRTES-LERMPS:); (CEA-CNRS)

    2015-08-28

    In this study, metallic materials made of aluminum and titanium were manufactured implementing very low pressure plasma spraying (VLPPS). Aluminum was selected at first as a demonstrative material due to its rather low vaporization enthalpy (i.e., 381.9 kJ·mol⁻¹). Developments were then carried out with titanium which exhibits a higher vaporization enthalpy (i.e., 563.6 kJ·mol⁻¹). Optical emission spectroscopy (OES) was implemented to analyze the behavior of each solid precursor (metallic powders) when it is injected into the plasma jet under very low pressure (i.e., in the 150 Pa range). Besides, aluminum, titanium and titanium–aluminum coatings were deposited in the same conditions implementing a stick-cathode plasma torch operated at 50 kW, maximum power. Coating phase compositions were identified by X-Ray Diffraction (XRD). Coating elementary compositions were quantified by Glow Discharge Optical Emission Spectroscopy (GDOES) and Energy Dispersive Spectroscopy (EDS) analyses. The coating structures were observed by Scanning Electron Microscopy (SEM). The coating void content was determined by Ultra-Small Angle X-ray Scattering (USAXS). The coatings exhibit a two-scale structure corresponding to condensed vapors (smaller scale) and solidified areas (larger scale). Titanium–aluminum sprayed coatings, with various Ti/Al atomic ratios, are constituted of three phases: metastable α-Ti, Al and metastable α₂-Ti₃Al. This latter is formed at elevated temperature in the plasma flow, before being condensed. Its rather small fraction, impeded by the rather small amount of vaporized Ti, does not allow modifying however the coating hardness.

  12. Stable magnesium peroxide at high pressure.

    Science.gov (United States)

    Lobanov, Sergey S; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B; Oganov, Artem R; Goncharov, Alexander F

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O2(2-)) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  13. Stable magnesium peroxide at high pressure

    Science.gov (United States)

    Lobanov, Sergey S.; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B.; Oganov, Artem R.; Goncharov, Alexander F.

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth’s lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O22-) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  14. High temperature vapor pressure of pure plutonium

    International Nuclear Information System (INIS)

    High temperature vapor pressure measurements have been made on pure plutonium metal by the Knudsen effusion technique. The reported experimental results extend into the transition region between molecular and viscous or hydrodynamic flow. Under the conditions used, linearity was observed up to temperatures in excess of 2200 K where pressures approaching 100 Pa were measured. The results over the temperature range 1724--2219 K yield log10P/sub Pu/(Pa) = (9.735 +- 0.105) -17066 +- 208/T and the enthalpy and entropy of vaporization and the standard deviations therein are ΔH0/sub v/(Pu,1975 K) =326.78 +- 3.97 kJ mol-1, ΔS0/sub v/(Pu,1975 K) =90.54 +- 2.01 J K-1 mol-1. Based on the most recently available free energy functions for plutonium liquid and gas, the values of the standard enthalpy of vaporization calculated via second- and third-law methods are ΔH0/sub v/(II, Pu,298 K) =344.14 +- 3.97 kJ mol-1, ΔH0/sub v/(III, Pu,298 K) =341.67 +- 1.26 kJ mol-1. Single crystal tungsten containers were used to hold the charge of plutonium and proved to be very satisfactory in alleviating problems of liquid metal creep and liquid/cell interactions normally encountered with actinides held at high temperatures for long periods

  15. Stable magnesium peroxide at high pressure.

    Science.gov (United States)

    Lobanov, Sergey S; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B; Oganov, Artem R; Goncharov, Alexander F

    2015-01-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O2(2-)) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions. PMID:26323635

  16. High Pressure Hydrogen from First Principles

    Science.gov (United States)

    Morales, M. A.

    2014-12-01

    Typical approximations employed in first-principles simulations of high-pressure hydrogen involve the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. This work was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  17. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    Science.gov (United States)

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady; Hassanein, Ahmed

    2014-04-01

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained from the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1 atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1 atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.

  18. Synthesis of sodium polyhydrides at high pressures.

    Science.gov (United States)

    Struzhkin, Viktor V; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J; Needs, Richard J; Prakapenka, Vitali B; Goncharov, Alexander F

    2016-01-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials. PMID:27464650

  19. Synthesis of sodium polyhydrides at high pressures

    Science.gov (United States)

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2016-07-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  20. Synthesis of sodium polyhydrides at high pressures.

    Science.gov (United States)

    Struzhkin, Viktor V; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J; Needs, Richard J; Prakapenka, Vitali B; Goncharov, Alexander F

    2016-01-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  1. High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials.

    Science.gov (United States)

    Riley, Conor T; Smalley, Joseph S T; Post, Kirk W; Basov, Dimitri N; Fainman, Yeshaiahu; Wang, Deli; Liu, Zhaowei; Sirbuly, Donald J

    2016-02-17

    Aluminum-doped zinc oxide (AZO) is a tunable low-loss plasmonic material capable of supporting dopant concentrations high enough to operate at telecommunication wavelengths. Due to its ultrahigh conformality and compatibility with semiconductor processing, atomic layer deposition (ALD) is a powerful tool for many plasmonic applications. However, despite many attempts, high-quality AZO with a plasma frequency below 1550 nm has not yet been realized by ALD. Here a simple procedure is devised to tune the optical constants of AZO and enable plasmonic activity at 1550 nm with low loss. The highly conformal nature of ALD is also exploited to coat silicon nanopillars to create localized surface plasmon resonances that are tunable by adjusting the aluminum concentration, thermal conditions, and the use of a ZnO buffer layer. The high-quality AZO is then used to make a layered AZO/ZnO structure that displays negative refraction in the telecommunication wavelength region due to hyperbolic dispersion. Finally, a novel synthetic scheme is demonstrated to create AZO embedded nanowires in ZnO, which also exhibits hyperbolic dispersion.

  2. Effects of High Salt Concentration and Residue on Copper and Aluminum Corrosion

    Institute of Scientific and Technical Information of China (English)

    HUO Ying; TAN Mike; Yong jun; SHU Li

    2013-01-01

    Traditional researches on metal corrosion under salt solutions deposit conditions are usually carried out by visual,electron microscopic observations and simple electrochemical measurement via a traditional one-piece electrode.These techniques have difficulties in measuring localized corrosion that frequently occur in inhomogeneous media.This paper reports the results from the experiments using specially shaped coupons and a relatively new method of measuring heterogeneous electrochemical processes,namely,the wire beam electrode(WBE).Preliminary results from copper and aluminum corrosion in highly concentrated sodium chloride solutions with and without solid deposits show that the method is useful in simulating and studying corrosion especially localized corrosion in pipelines.

  3. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    International Nuclear Information System (INIS)

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability

  4. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, P. V., E-mail: kpv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Vlasov, I. V. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Sklyarova, E. A.; Smekalina, T. V. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  5. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    Science.gov (United States)

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-10-01

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  6. Application of aluminum diffusion coatings to mitigate the KCl-induced high-temperature corrosion

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Lomholt, T. N.; Dahl, Kristian Vinter;

    2016-01-01

    Pack cementation was used to produce Fe1−xAl and Fe2Al5 diffusion coatings on ferritic-martensitic steel P91 and a Ni2Al3 diffusion coating on pure nickel. The performance of diffusion coatings against high-temperature corrosion induced by potassium chloride (KCl) was evaluated by exposing the sa...... surface and the dominant mode of attack was selective aluminum removal. Ni2Al3 showed excellent performance and no sign of attack was observed anywhere on the sample....

  7. Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

    2007-06-06

    It was desired to assemble thick-walled Al alloy 2219 pressure vessels by bobbin-tool friction-stir welding. To develop the welding-process, mechanical-property, and fitness-for-service information to support this effort, extensive friction-stir welding-parameter studies were conducted on 2.5 cm. and 3.8 cm. thick 2219 Al alloy plate. Starting conditions of the plate were the fully-heat-treated (-T62) and in the annealed (-O) conditions. The former condition was chosen with the intent of using the welds in either the 'as welded' condition or after a simple low-temperature aging treatment. Since preliminary stress-analyses showed that stresses in and near the welds would probably exceed the yield-strength of both 'as welded' and welded and aged weld-joints, a post-weld solution-treatment, quenching, and aging treatment was also examined. Once a suitable set of welding and post-weld heat-treatment parameters was established, the project divided into two parts. The first part concentrated on developing the necessary process information to be able to make defect-free friction-stir welds in 3.8 cm. thick Al alloy 2219 in the form of circumferential welds that would join two hemispherical forgings with a 102 cm. inside diameter. This necessitated going to a bobbin-tool welding-technique to simplify the tooling needed to react the large forces generated in friction-stir welding. The bobbin-tool technique was demonstrated on both flat-plates and plates that were bent to the curvature of the actual vessel. An additional issue was termination of the weld, i.e. closing out the hole left at the end of the weld by withdrawal of the friction-stir welding tool. This was accomplished by friction-plug welding a slightly-oversized Al alloy 2219 plug into the termination-hole, followed by machining the plug flush with both the inside and outside surfaces of the vessel. The second part of the project involved demonstrating that the welds were fit for the intended

  8. USE OF ALUMINUM TRIHYDRATE FILLER TO IMPROVE THE STRENGTH PROPERTIES OF CELLULOSIC PAPER EXPOSED TO HIGH TEMPERATURE TREATMENT

    Directory of Open Access Journals (Sweden)

    Hua Chen

    2011-05-01

    Full Text Available Cellulosic paper is thermolabile and its strength properties tend to decrease under high temperature conditions. In this work, the effects of aluminum trihydrate filler on the tensile and burst strength of paper prepared from bleached wood pulps were investigated. The use of aluminum trihydrate maintained the tensile and burst strength of paper sheet dried at 200 °C for 4 hours. Thermogravimetric analysis and differential scanning calorimetry gave the evidence that the maintainance of strength after drying associated with the use of aluminum trihydrate filler is possibly due to the increase in degradation temperature and heat absorption of cellulosic paper. The results regarding Fourier Transform Infrared spectroscopy, and the water retention value (WRV and crystallinity index of fibers indicated the alleviated degradation of fibers when aluminum trihydrate was incorporated into the paper matrix.

  9. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.

    Science.gov (United States)

    Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2016-07-01

    Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications. PMID:27193636

  10. A New Ceramic Substrate Glaze with High Resistance to Molten Aluminum

    Institute of Scientific and Technical Information of China (English)

    Ming ZHOU; Ke LI; Da SHU; Jiao ZHANG; Baode SUN; Jun WANG

    2003-01-01

    Corrosion resistance of ceramic substrate glazes to molten aluminum was studied in this paper. The glazes can spreadslightly in aluminum alloy according to SEM examination of solidified interface between the glazes and aluminumalloy. The components of B2O3-P2O5 glazes were not detected with electron probe at the side of aluminum alloynear the interface, but the components of boron-free glaze were detected. It is shown that borophosphate glazes canresist the corrosion of molten aluminum.

  11. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team

    International Nuclear Information System (INIS)

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed

  12. The high-pressure behavior of bloedite

    DEFF Research Database (Denmark)

    Comodi, Paola; Nazzareni, Sabrina; Balic Zunic, Tonci;

    2014-01-01

    High-pressure single-crystal synchrotron X‑ray diffraction was carried out on a single crystal of bloedite [Na2Mg(SO4)24H2O] compressed in a diamond-anvil cell. The volume-pressure data, collected up to 11.2 GPa, were fitted by a second- and a third-order Birch-Murnaghan equation of state (EOS......), yielding V0 = 495.6(7) Å3 with K0 = 39.9(6) GPa, and V0 = 496.9(7) Å3, with K0 = 36(1) GPa and K′ = 5.1 (4) GPa-1, respectively. The axial moduli were calculated using a Birch-Murnaghan EOS truncated at the second order, fixing K′ equal to 4, for a and b axes and a third-order Birch-Murnaghan EOS for c...... axis. The results were a0 = 11.08(1) and K0 = 56(3) GPa, b0 = 8.20(2) and K0 = 43(3) GPa, and c0 = 5.528(5), K0 = 40(2) GPa, K′ = 1.7(3) GPa-1. The values of the compressibility for a, b, and c axes are ba = 0.0060(3) GPa-1, bb = 0.0078(5) GPa-1, bc = 0.0083(4) GPa-1 with an anisotropic ratio of ba...

  13. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-11-01

    Full Text Available The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure and compositions (argon, nitrogen and helium on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  14. Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels

    International Nuclear Information System (INIS)

    Highlights: • Successful lap joints of Al 5754 sheet to coated DP600 and 22MnB5 steels. • Negligible effect of welding speed on mechanical properties of Al 5754/22MnB5 joints. • Lower strength of Al 5754/22MnB5 joints compared with Al 5754/DP600 joints. - Abstract: In the present paper friction stir-induced diffusion bonding is used for joining sheets of 5754 aluminum alloy to coated high strength steels (DP600 and 22MnB5) by promoting diffusion bonding in an overlap configuration. Mechanical performance and microstructures of joints were analyzed by overlap shear testing, metallography, and X-ray diffraction. Our results show that the strength of joint is dependent upon tool travel speed and the depth of the tool pin relative to the steel surface. The thickness and types of intermetallic compounds formed at the interface play a significant role in achieving a joint with optimum performance. That is, the formation of high aluminum composition intermetallic compounds (i.e. Al5Fe2) at the interface of the friction stir lap joint appeared to have a more negative effect on joint strength compared to the presence of high iron composition intermetallic phases (i.e. FeAl). This is in agreement with previously reported findings that FeAl intermetallic can improve the fracture toughness and interface strength in Al/St joints

  15. Investigation of Material Performance Degradation for High-Strength Aluminum Alloy Using Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Yibo Ai

    2015-02-01

    Full Text Available Structural materials damages are always in the form of micro-defects or cracks. Traditional or conventional methods such as micro and macro examination, tensile, bend, impact and hardness tests can be used to detect the micro damage or defects. However, these tests are destructive in nature and not in real-time, thus a non-destructive and real-time monitoring and characterization of the material damage is needed. This study is focused on the application of a non-destructive and real-time acoustic emission (AE method to study material performance degradation of a high-strength aluminum alloy of high-speed train gearbox shell. By applying data relative analysis and interpretation of AE signals, the characteristic parameters of materials performance were achieved and the failure criteria of the characteristic parameters for the material tensile damage process were established. The results show that the AE method and signal analysis can be used to accomplish the non-destructive and real-time detection of the material performance degradation process of the high-strength aluminum alloy. This technique can be extended to other engineering materials.

  16. Combustion of Shock-Dispersed Flake Aluminum - High-Speed Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Neuwald, P; Reichenbach, H; Kuhl, A

    2006-06-19

    Charges of 0.5 g PETN were used to disperse 1 g of flake aluminum in a rectangular test chamber of 4 liter inner volume and inner dimensions of approximately 10 cm x 10 cm x 40 cm. The subsequent combustion of the flake aluminum with the ambient air in the chamber gave rise to a highly luminous flame. The evolution of the luminous region was studied by means of high-speed cinematography. The high-speed camera is responsive to a broad spectral range in the visible and near infra-red. For a number of tests this response range was narrowed down by means of a band-pass filter with a center wavelength of 488 nm and a half-width of 23 nm. The corresponding images were expected to have a stronger temperature dependence than images obtained without the filter, thus providing better capability to highlight hot-spots. Emission in the range of the pass-band of the filter can be due to continuous thermal radiation from hot Al and Al{sub 2}O{sub 3} particles or to molecular band emission from gaseous AlO. A time-resolving spectrometer was improvised to inspect this topic. The results suggest that AlO emission occurs, but that the continuous spectrum is the dominating effect in our experiments.

  17. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  18. Novel High Pressure Pump-on-a-Chip Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  19. A Nutritional Strategy for the Treatment of High Blood Pressure.

    Science.gov (United States)

    Podell, Richard N.

    1984-01-01

    Some physicians wonder if high blood pressure can be controlled without the use of drugs and their potential side effects. Current findings concerning nutrition and high blood pressure are presented. (RM)

  20. High blood pressure - what to ask your doctor

    Science.gov (United States)

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  1. Even Poorer Nations Not Immune to High Blood Pressure

    Science.gov (United States)

    ... html Even Poorer Nations Not Immune to High Blood Pressure Researchers cite aging populations, diet, inactivity and lack ... HealthDay News) -- For the first time ever, high blood pressure rates are higher in low- and middle-income ...

  2. Urea and deuterium mixtures at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M., E-mail: m.donnelly-2@sms.ed.ac.uk; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  3. Digital valve for high pressure high flow applications

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Lewis, Derek; Bao, Xiaoqi; Bar-Cohen, Yoseph; Hall, Jeffery L.

    2016-04-01

    To address the challenges, which are involved with the development of flow control valves that can meet high demand requirements such as high pressure, high flow rate, limited power and limited space, the authors have conceived a novel design configuration. This design consists of a digitalized flow control valve with multipath and multistage pressure reduction structures. Specifically, the valve is configured as a set of parallel flow paths from the inlet to the outlet. A choke valve controls the total flow rate by digitally opening different paths or different combination of the paths. Each path is controlled by a poppet cap valve basically operated in on-off states. The number of flow states is 2N where N is the number of flow paths. To avoid erosion from sand in the fluid and high speed flow, the seal area of the poppet cap valve is located at a distance from the flow inlet away from the high speed flow and the speed is controlled to stay below a predefined erosion safe limit. The path is a multistage structure composed of a set of serial nozzles-expansion chambers that equally distribute the total pressure drop to each stage. The pressure drop of each stage and, therefore, the flow speed at the nozzles and expansion chambers is controlled by the number of stages. The paths have relatively small cross section and could be relatively long for large number of stages and still fit in a strict annular space limit. The paper will present the design configuration, analysis and preliminary test results.

  4. Unique high temperature microwave sintering of aluminum nitride based ceramics with high thermal conductivity

    Science.gov (United States)

    Xu, Gengfu

    High temperature microwave sintering is one of the most challenging areas in microwave processing of ceramics. In this dissertation, for the first time, stable, controlled "ultra" high temperature (up to 2100°C) microwave sintering was achieved by development of a unique insulation system based on BN/ZrO2 fiber composite powder synthesized by a unique processing route. It uses a system approach to mitigate the tendency of all insulation materials to interfere with specimen coupling. This insulation system allows stable, controlled ultra high microwave sintering and could be modified to microwave process materials with different thermal, dielectric properties with improved properties. In addition, unlike other high temperature microwave insulation schemes that must be replaced after each run, the insulation system is robust enough for repeated use. Using the insulation design, high density and very high thermal conductivity (˜225 W/m·K) AlN ceramics were fabricated much more efficiently (≤6 hours versus 10's to 100's of hours at high temperature) by microwave sintering than by comparable conventional sintering. A detailed data study of densification, grain growth and thermal conductivity in microwave sintered AlN indicated that there were two time regimes in the development of high thermal conductivity AlN and that oxygen removal was more important to the development of high thermal conductivity than removal of the liquid phase sintering phase. While there have been many previous studies examining processing of high thermal conductivity AlN, this was the first study of microwave processing of high thermal conductivity AlN. AlN-TiB2 composites, which had previously only been successfully densified with pressure-assisted techniques such as HIPing or hot pressing, were successfully microwave sintered in this dissertation. The effect of TiB 2 on the densification behavior and thermal, mechanical, and dielectric properties of microwave sintered AlN based composites

  5. The influence of aluminum and carbon on the abrasion resistance of high manganese steels

    Science.gov (United States)

    Buckholz, Samuel August

    Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.

  6. Effect of high pressure on mesophilic lactic fermentation streptococci

    Energy Technology Data Exchange (ETDEWEB)

    Reps, A; Kuzmicka, M; Wisniewska, K [Chair of Food Biotechnology, University of Warmia and Mazury, ul. Heweliusza 1, 10-724 Olsztyn (Poland)], E-mail: arnold.reps@uwm.edu.pl

    2008-07-15

    The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

  7. Effect of high pressure on mesophilic lactic fermentation streptococci

    Science.gov (United States)

    Reps, A.; Kuźmicka, M.; Wiśniewska, K.

    2008-07-01

    The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

  8. Strengthening-toughening of 7xxx series high strength aluminum alloys by heat treatment

    Institute of Scientific and Technical Information of China (English)

    陈康华; 黄兰萍

    2003-01-01

    The effects of stepped solution heat treatments on the dissolution of soluble remnant constituents and mechanical properties of 7055 aluminum alloy were investigated. It was shown that a suitable pretreatment at lower temperature can enable complete dissolution of the constituent particles in 7055 alloy without overheating by subsequent high temperature solution treatment. This in turn increased the tensile strength and fracture toughness of 7055 alloy to 805 MPa and 41.5 MPa*m1/2 respectively, with approximately 9% tensile elongation. The near-solvus pre-precipitation following after high temperature solution treatment was also studied on 7055 aluminum alloy. The effect of the pre-precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transimission electron microscopy observation show that the near-solvus pre-precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the subsequent ageing. The stress corrosion cracking resistance of aged 7055 alloy can be improved via the pre-precipitation with non-deteriorated strength and plasticity.

  9. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures.

    Science.gov (United States)

    Hobbs, Richard G; Manfrinato, Vitor R; Yang, Yujia; Goodman, Sarah A; Zhang, Lihua; Stach, Eric A; Berggren, Karl K

    2016-07-13

    In this work, we use electron energy-loss spectroscopy to map the complete plasmonic spectrum of aluminum nanodisks with diameters ranging from 3 to 120 nm fabricated by high-resolution electron-beam lithography. Our nanopatterning approach allows us to produce localized surface plasmon resonances across a wide spectral range spanning 2-8 eV. Electromagnetic simulations using the finite element method support the existence of dipolar, quadrupolar, and hexapolar surface plasmon modes as well as centrosymmetric breathing modes depending on the location of the electron-beam excitation. In addition, we have developed an approach using nanolithography that is capable of meV control over the energy and attosecond control over the lifetime of volume plasmons in these nanodisks. The precise measurement of volume plasmon lifetime may also provide an opportunity to probe and control the DC electrical conductivity of highly confined metallic nanostructures. Lastly, we show the strong influence of the nanodisk boundary in determining both the energy and lifetime of surface plasmons and volume plasmons locally across individual aluminum nanodisks, and we have compared these observations to similar effects produced by scaling the nanodisk diameter. PMID:27295061

  10. Nickel-coated Steel Stud to Aluminum Alloy Joints Made by High Frequency Induction Brazing

    Institute of Scientific and Technical Information of China (English)

    GE Jiaqi; WANG Kehong; ZHANG Deku; WANG Jian

    2015-01-01

    Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 Al alloy foil asfi ller metal were joined by using high frequency induction brazing. The microstructure of Fe/Al brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-Al intermetallic compound which is brittle by blocking the contact between Al and Fe. Intermetallic compounds, i e,Al3Ni2, Al1.1Ni0.9 and Al0.3Fe3Si0.7 presented in Al side, FeNi and Fe-Al-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of Al side, where plenty of Al3Ni2 intermetallic compounds were distributed continuously.

  11. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    International Nuclear Information System (INIS)

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond(111)/Al interface was found to be devoid of reaction products. While at the diamond(100)/Al interface, large-sized aluminum carbides (Al4C3) with twin-crystal structure were identified. The interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond(111)/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond(111)/aluminum. • The growth mechanism of Al4C3 was analyzed by crystallography theory

  12. Improved virus removal by high-basicity polyaluminum coagulants compared to commercially available aluminum-based coagulants.

    Science.gov (United States)

    Shirasaki, N; Matsushita, T; Matsui, Y; Oshiba, A; Marubayashi, T; Sato, S

    2014-01-01

    We investigated the effects of basicity, sulfate content, and aluminum hydrolyte species on the ability of polyaluminum chloride (PACl) coagulants to remove F-specific RNA bacteriophages from river water at a pH range of 6-8. An increase in PACl basicity from 1.5 to 2.1 and the absence of sulfate led to a reduction of the amount of monomeric aluminum species (i.e., an increase of the total amount of polymeric aluminum and colloidal aluminum species) in the PACl, to an increase in the colloid charge density of the PACl, or to both and, as a result, to high virus removal efficiency. The efficiency of virus removal at around pH 8 observed with PACl-2.1c, a nonsulfated high-basicity PACl (basicity 2.1-2.2) with a high colloidal aluminum content, was larger than that observed with PACl-2.1b, a nonsulfated high-basicity PACl (basicity 2.1-2.2) with a high polymeric aluminum content. In contrast, although extremely high basicity PACls (e.g., PACl-2.7ns, basicity 2.7) effectively removed turbidity and UV260-absorbing natural organic matter and resulted in a very low residual aluminum concentration, the virus removal ratio with PACl-2.7ns was smaller than the ratio with PACl-2.1c at around pH 8, possibly as a result of a reduction of the colloid charge density of the PACl as the basicity was increased from 2.1 to 2.7. Liquid (27)Al NMR analysis revealed that PACl-2.1c contained Al30 species, which was not the case for PACl-2.1b or PACl-2.7ns. This result suggests that Al30 species probably played a major role in virus removal during the coagulation process. In summary, PACl-2.1c, which has high colloidal aluminum content, contains Al30 species, and has a high colloid charge density, removed viruses more efficiently (>4 log10 for infectious viruses) than the other aluminum-based coagulants-including commercially available PACls (basicity 1.5-1.8), alum, and PACl-2.7ns-over the entire tested pH (6-8) and coagulant dosage (0.54-5.4 mg-Al/L) ranges.

  13. Metabolic Activity of Bacteria at High Pressure

    Science.gov (United States)

    Picard, A.; Daniel, I.; Oger, P.

    2008-12-01

    Over the last 20 years, there has been increasing evidence for the presence of a large number of microbes in the oceanic subsurface. Such a habitat has a very low energy input because it is deprived of light. A few meters below the sediment surface, conditions are already anoxic in most cases, sulfate reduction and/or methanogenesis becoming thus the primary respiratory reactions of organic matter. Neither the fate of methanogenesis, nor the fate of Dissimilatory Metal-Reduction (DMR) has been investigated so far as a function of pressure. For this reason, we measured experimentally the pressure limits of microbial anaerobic energetic metabolism. In practice, we measured in situ the kinetics of selenite respiration by the bacterial model Shewanella oneidensis MR-1 under high hydrostatic pressure (HHP) between 0 and 150 MPa at 30°C. MR-1 stationary-phase cells were used in Luria-Bertani (LB) medium amended with lactate as an additional electron donor and sodium selenite as an electron acceptor. In situ measurements were performed by X- ray Absorption Near-Edge Structure (XANES) spectroscopy in both a diamond-anvil cell and an autoclave. A red precipitate of amorphous Se(0) was virtually observed at any pressure to 150 MPa. A progressive reduction of selenite Se(IV) into selenium Se(0) was also observed in the evolution of XANES spectra with time. All kinetics between 0.1 and 150 MPa can be adjusted to a first order kinetic law. MR-1 respires all available selenite up to 60 MPa. Above 60 MPa, the respiration yield decreases linearly as a function of pressure and reaches 0 at 155 ±5 MPa. This indicates that selenite respiration by Shewanella oneidensis MR-1 stops at about 155 MPa, whereas its growth is arrested at 50 MPa. Hence, the present results show that the respiration of selenium by the strain MR-1 occurs efficiently up to 60 MPa and 30°C, i.e. from the surface of a continental sediment to an equivalent depth of about 2 km, or beneath a 5-km water column and

  14. Heart and Artery Damage and High Blood Pressure

    Science.gov (United States)

    ... Stroke More Heart and Artery Damage and High Blood Pressure Updated:Oct 22,2015 There are several harmful ... was last reviewed on 08/04/2014. High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  15. Comparative Study of Pressure-Induced Germination of Bacillus subtilis Spores at Low and High Pressures

    OpenAIRE

    Wuytack, Elke Y.; Boven, Steven; Michiels, Chris W.

    1998-01-01

    We have studied pressure-induced germination of Bacillus subtilis spores at moderate (100 MPa) and high (500 to 600 MPa) pressures. Although we found comparable germination efficiencies under both conditions by using heat sensitivity as a criterion for germination, the sensitivity of pressure-germinated spores to some other agents was found to depend on the pressure used. Spores germinated at 100 MPa were more sensitive to pressure (>200 MPa), UV light, and hydrogen peroxide than were those g...

  16. Design and Application of a High Sensitivity Piezoresistive Pressure Sensor for Low Pressure Conditions.

    Science.gov (United States)

    Yu, Huiyang; Huang, Jianqiu

    2015-09-08

    In this paper, a pressure sensor for low pressure detection (0.5 kPa-40 kPa) is proposed. In one structure (No. 1), the silicon membrane is partly etched to form a crossed beam on its top for stress concentration. An aluminum layer is also deposited as part of the beam. Four piezoresistors are fabricated. Two are located at the two ends of the beam. The other two are located at the membrane periphery. Four piezoresistors connect into a Wheatstone bridge. To demonstrate the stress concentrate effect of this structure, two other structures were designed and fabricated. One is a flat membrane structure (No. 2), the other is a structure with the aluminum beam, but without etched silicon (No. 3). The measurement results of these three structures show that the No.1 structure has the highest sensitivity, which is about 3.8 times that of the No. 2 structure and 2.7 times that of the No. 3 structure. They also show that the residual stress in the beam has some backside effect on the sensor performance.

  17. High-pressure superconducting state in hydrogen

    Science.gov (United States)

    Duda, A. M.; Szczȩśniak, R.; Sowińska, M. A.; Kosiacka, A. H.

    2016-10-01

    The paper determines the thermodynamic parameters of the superconducting state in the metallic atomic hydrogen under the pressure at 1 TPa, 1.5 TPa, and 2.5 TPa. The calculations were conducted in the framework of the Eliashberg formalism. It has been shown that the critical temperature is very high (in the range from 301.2 K to 437.3 K), as well as high are the values of the electron effective mass (from 3.43me to 6.88me), where me denotes the electron band mass. The ratio of the low-temperature energy gap to the critical temperature explicitly violates the predictions of the BCS theory: 2 Δ (0) /kB TC ∈ . Additionally, the free energy difference between the superconducting and normal state, the thermodynamic critical field, and the specific heat of the superconducting state have been determined. Due to the significant strong-coupling and retardation effects those quantities cannot be correctly described in the framework of the BCS theory.

  18. High Pressure Hydrogen Storage on Carbon Materials for Mobile Applications

    OpenAIRE

    Blackman, James Michael

    2005-01-01

    Recognising the difficulties encountered in measuring the adsorption of hydrogen at high pressure, a reliable volumetric differential pressure method of high accuracy and good repeatability has been developed for measurement up to ca 100 bar. The apparatus used has two identical limbs, a sample and a blank limb, between which a high accuracy differential pressure cell measures changes in pressure. By simultaneously expanding the two limbs and closely controlling the temperature of the entir...

  19. Large area Germanium Tin nanometer optical film coatings on highly flexible aluminum substrates

    Science.gov (United States)

    Jin, Lichuan; Zhang, Dainan; Zhang, Huaiwu; Fang, Jue; Liao, Yulong; Zhou, Tingchuan; Liu, Cheng; Zhong, Zhiyong; Harris, Vincent G.

    2016-09-01

    Germanium Tin (GeSn) films have drawn great interest for their visible and near-infrared optoelectronics properties. Here, we demonstrate large area Germanium Tin nanometer thin films grown on highly flexible aluminum foil substrates using low-temperature molecular beam epitaxy (MBE). Ultra-thin (10–180 nm) GeSn film-coated aluminum foils display a wide color spectra with an absorption wavelength ranging from 400–1800 nm due to its strong optical interference effect. The light absorption ratio for nanometer GeSn/Al foil heterostructures can be enhanced up to 85%. Moreover, the structure exhibits excellent mechanical flexibility and can be cut or bent into many shapes, which facilitates a wide range of flexible photonics. Micro-Raman studies reveal a large tensile strain change with GeSn thickness, which arises from lattice deformations. In particular, nano-sized Sn-enriched GeSn dots appeared in the GeSn coatings that had a thickness greater than 50 nm, which induced an additional light absorption depression around 13.89 μm wavelength. These findings are promising for practical flexible photovoltaic and photodetector applications ranging from the visible to near-infrared wavelengths.

  20. Synthesis and Characterization of High-purity Aluminum Titanate with Water Quenching Method

    Institute of Scientific and Technical Information of China (English)

    SHEN Yang; RUAN Yu-Zhong; YU Yan

    2009-01-01

    High-purity aluminum titanate was synthesized via a water quenching method with waste-residue in the aluminum factory and industrial TiO2 as the main raw materials, which belongs to the comprehensive utilization of solid wastes. Compared with the conventional method, it can reduce synthesis temperature, effectively inhibit decomposition and raise the content of AT; the addition of tiny silicon powder can improve the sintering and optimize the properties of AT. The crystalline phase structure and microstructure of each sample were characterized with XRD and SEM methods; the content of each crystalline phase in each sample was confirmed with Rietveld Quantification method; the properties of each sample were also tested. The experimental results showed that No. 4 is the optimum specimen, with the corresponding mass ratio of Al2O3/TiO2 to be 1.27 and the content of AT of 97.2 wt%. The addition of optimum tiny silicon powder is confirmed to be 8wt%; its corresponding bulk density is 2.63 g/cm3, bending strength is 46.34 MPa, and the retention of one thermal vibration bending strength is 71.5%.

  1. Large area Germanium Tin nanometer optical film coatings on highly flexible aluminum substrates

    Science.gov (United States)

    Jin, Lichuan; Zhang, Dainan; Zhang, Huaiwu; Fang, Jue; Liao, Yulong; Zhou, Tingchuan; Liu, Cheng; Zhong, Zhiyong; Harris, Vincent G.

    2016-01-01

    Germanium Tin (GeSn) films have drawn great interest for their visible and near-infrared optoelectronics properties. Here, we demonstrate large area Germanium Tin nanometer thin films grown on highly flexible aluminum foil substrates using low-temperature molecular beam epitaxy (MBE). Ultra-thin (10–180 nm) GeSn film-coated aluminum foils display a wide color spectra with an absorption wavelength ranging from 400–1800 nm due to its strong optical interference effect. The light absorption ratio for nanometer GeSn/Al foil heterostructures can be enhanced up to 85%. Moreover, the structure exhibits excellent mechanical flexibility and can be cut or bent into many shapes, which facilitates a wide range of flexible photonics. Micro-Raman studies reveal a large tensile strain change with GeSn thickness, which arises from lattice deformations. In particular, nano-sized Sn-enriched GeSn dots appeared in the GeSn coatings that had a thickness greater than 50 nm, which induced an additional light absorption depression around 13.89 μm wavelength. These findings are promising for practical flexible photovoltaic and photodetector applications ranging from the visible to near-infrared wavelengths. PMID:27667259

  2. The Effect of Tool Position for Aluminum and Copper at High Rotational Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Recep Çakır

    2015-12-01

    Full Text Available Friction Stir Welding (FSW is a solid state welding process used for welding similar and dissimilar materials. This welding technique allows welding of Aluminum alloys which present difficulties in fusion joining and allows different material couples to be welded continuously. In this study, 1050 aluminum alloy and commercially pure copper to increase heat input were produced at high rotation rate (2440 rev/min with four different pin position (0-1-1.5-2 mm and three different weld speeds (20-30-50 mm/min by friction stir welding. The influence of welding parameters on microstructure and mechanical properties of the joints was investigated. Tensile and bending tests and microhardness measurements were used to determine of mechanical properties. Nugget zone microstructures were investigated by optical microscope and scanning electron microscope (SEM and were analyzed in energy-dispersive X-ray spectroscopy (EDX. Depending on the XRD analysis results intermetallic phase was observed to form in the interfacial region. In the tensile test results, 83.55% weld performance was obtained in the friction stir welding merge of Al-Cu.

  3. An examination of the saturation microstructures achieved in ultrafine-grained metals processed by high-pressure torsion

    OpenAIRE

    Shima Sabbaghianrad; Jittraporn Wongsa-Ngam; Megumi Kawasaki; Terence G. Langdon

    2014-01-01

    Experiments were conducted on two commercial alloys, a Cu–0.1%Zr alloy and an Al-7075 aluminum alloy, to investigate the significance of the saturation microstructure which is achieved after processing by high-pressure torsion (HPT). Samples were processed by HPT and also by a combination of equal-channel angular pressing (ECAP) followed by HPT. The results show that the saturation conditions are dependent upon the grain size in the material immediately prior to the HPT processing. Additional...

  4. High Chamber Pressure, Light Weight Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure and reducing engine weight. State of...

  5. High pressure gas vessels for neutron scattering experiments

    CERN Document Server

    Done, R; Evans, B E; Bowden, Z A

    2010-01-01

    The combination of high pressure techniques with neutron scattering proves to be a powerful tool for studying the phase transitions and physical properties of solids in terms of inter-atomic distances. In our report we are going to review a high pressure technique based on a gas medium compression. This technique covers the pressure range up to ~0.7GPa (in special cases 1.4GPa) and typically uses compressed helium gas as the pressure medium. We are going to look briefly at scientific areas where high pressure gas vessels are intensively used in neutron scattering experiments. After that we are going to describe the current situation in high pressure gas technology; specifically looking at materials of construction, designs of seals and pressure vessels and the equipment used for generating high pressure gas.

  6. The effect of high density electric pulses on sintered aluminum 201AB silicon carbide MMC PM compacts during plastic deformation

    Science.gov (United States)

    Dariavach, Nader Guseinovich

    The effect of high-density electrical pulses on mechanical and structural properties of sintered aluminum SiC metal-matrix composites, fabricated by standard powder-metallurgy compaction and sintering, was investigated. Three types of phenomena where investigated during transverse rupture testing of the samples: a consolidation effect (increasing of the transverse rupture strength (TRS)), an electroplastic effect (decreasing of the flow stresses), and an increasing of the stress intensity factor by electric pulse application. It was observed, that an increase in the TRS strength of sintered powder metallurgy (PM) aluminum and aluminum metal matrix composite (MMC) compacts is a result of the electric pulse consolidation effect due to non-uniform temperature distribution around the grain boundaries. Three analytical models of the thermal effect of electric pulses on aluminum samples where considered: total temperature change of the sample due to a one electric pulse, one-dimensional steady state model and transient 2D thermal analysis of the temperature distribution around the grain boundary. The 2D transient analysis shows that the temperature rise in the grain boundary of a sintered PM aluminum sample due to an electric pulse can exceed the melting point. At the same time the temperature of the bulk material has an insignificant (melt the crack tip and increase the strength of the damaged material. The experimental study shows an increase in the stress intensity factor up to 76% for sintered aluminum PM compacts and up to 116% for sintered aluminum MMC PM compacts due to application of high-density electric pulses during transverse rapture testing.

  7. Synthesis and Characterization of High Aluminum Zeolite X from Technical Grade Materials

    Directory of Open Access Journals (Sweden)

    Seyed Kamal Masoudian

    2013-06-01

    Full Text Available Zeolites are widely used as ion exchangers, adsorbents, separation materials and catalyst due to their well-tailored and highly-reproducible structures; therefore, the synthesis of zeolite from low grade resources can be interested. In the present work, high aluminum zeolite X was prepared from mixing technical grade sodium aluminate and sodium silicate solutions at temperatures between 70°C and 100°C. The synthesized zeolite X was characterized by SEM and X-ray methods according to ASTM standard procedures. The results showed that aging of the synthesis medium at the room temperature considerably increased the selectivity of zeolite X formation. On the other hand, high temperature of reaction mixture during crystallization formed zeolite A in the product; therefore, it decreased the purity of zeolite X. In addition, it was found that increasing H2O/Na2O and decreasing Na2O/SiO2 molar ratios in the reaction mixture resulted product with higher purity. © 2013 BCREC UNDIP. All rights reservedReceived: 7th January 2013; Revised: 7th April 2013; Accepted: 19th April 2013[How to Cite: Masoudian, S. K., Sadighi, S., Abbasi, A. (2013. Synthesis and Characterization of High Alu-minum Zeolite X from Technical Grade Materials. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 54-60. (doi:10.9767/bcrec.8.1.4321.54-60][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4321.54-60] | View in  |

  8. Equation of state of unreacted high explosives at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, C-S

    1998-08-14

    Isotherms of unreacted high explosives (HMX, RDX, and PETN) have been determined to quasi-hydrostatic high pressures below 45 GPa, by using a diamond-anvil cell angle-resolved synchrotron x-ray diffraction method. The equation-of-state parameters (bulk modulus Bo, and its derivatives B' ) are presented for the 3rd-order Birch-Murnaghan formula based on the measured isotherms. The results are also used to retrieve unreacted Hugoniots in these high explosives and to develop the equations of state and kinetic models for composite high explolsivcs such as XTX-8003 and LX-04. The evidence of shear-induced chemistry of HMX in non-hydrostatic conditions is also presented.

  9. Simulating Pressure Effects of High-Flow Volumes

    Science.gov (United States)

    Kaufman, M.

    1985-01-01

    Dynamic test stresses realized without high-volume pumps. Assembled in Sections in gas-flow passage, contoured mandrel restricts flow rate to valve convenient for testing and spatially varies pressure on passage walls to simulate operating-pressure profile. Realistic test pressures thereby achieved without extremely high flow volumes.

  10. Studies on Flow Characteristics at High-Pressure Die-Casting

    International Nuclear Information System (INIS)

    The flow and filling characteristics during injection of liquid aluminum during high-pressure die-casting is studied threefoldly: a) analytically, b) experimentally and c) numerically. A planar jet of liquid aluminum is formed at the ingate due to its small width (≈O(10−3) m), its high aspect ratio (≈ 100) and high inlet velocity (up to 60 m/s). On the one hand, wavy disintegration of such a jet can inevitably lead to cold runs in the final casting. On the other hand, a high degree of atomization may strongly increase the porosity of the casting part. Both processes can highly reduce the mechanical stability of the product. Analytical investigations of Ohnesorge (or equivalently Weber) and Reynolds numbers show that the process of drop formation at the liquid planar free jet is dominated by atomization assuming an orifice nozzle geometry at the ingate. From a simple experimental investigation of an equivalent free jet of water, however, it is deduced that the process of drop formation can be changed to wavy disintegration by the nozzle geometry. Numerically, high-pressure die-casting is attacked by a Volume of Fluid approach. Although the drop formation at the phase interphase can not be captured by the numerical model since the drops are an order of magnitude smaller than feasible grid spacings, the global spreading of the free jet in the casting mold is well pictured by this first numerical simulation. In addition, a new approach is presented to detect cold runs at the final casting. Finally, the studies presented lead to an increased understanding of high pressure die casting and can help to improve the quality of casting products.

  11. Functional Sub-states by High-pressure Macromolecular Crystallography.

    Science.gov (United States)

    Dhaussy, Anne-Claire; Girard, Eric

    2015-01-01

    At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.

  12. Enhanced MgB2 Superconductivity Under High Pressure

    Institute of Scientific and Technical Information of China (English)

    刘振兴; 靳常青; 游江洋; 李绍春; 朱嘉林; 禹日成; 李风英; 苏少奎

    2002-01-01

    We report on in situ high-pressure studies up to 1.0 GPa on the MgB2 superconductor which was high-pressure synthesized. The as-prepared sample is of high quality in terms of sharp superconducting transition (Tc) at 39K from the magnetic measurements. The in situ high-pressure measurements were carried out using a Be-Cu piston-cylinder-type instrument with mixed oil as the pressure transmitting medium which warrants a quasihydrostatic pressure environment at low temperature. The superconducting transitions were measured using the electrical conductance method. It is found that Tc increases by more than 1 K with pressure in the low-pressure range, before the Tc value decreases with the further increase of the pressure.

  13. Effects of aluminum contents on high-temperature strength of 9Cr-ODS martensitic steel

    International Nuclear Information System (INIS)

    Full text of publication follows: The 9Cr-oxide dispersion strengthened (9Cr-ODS) steel is a prospective material for fusion reactor blanket as well as fuel cladding tube of advanced sodium-cooled fast reactor (SFR). In ODS steels, aluminum (Al) contamination is known to degrade the extent of oxide dispersion strengthening and provide considerable deterioration of high-temperature strength, while Al is often used for improvement of corrosion resistance. This study investigates the effects of Al addition on high temperature strength of the 9CrODS steel with a view to displaying the quantitative correlation between Al concentration and mechanical property and showing the threshold Al concentration to keep satisfactory strength. The 9Cr-ODS steel bars with different Al concentration from 0.03 to 0.15 wt% were produced by mechanical alloying and a subsequent hot-extrusion at 1,423 K, where Fe- 9wt%Cr-2W-0.2Ti-0.35Y2O3 was chosen for basic chemical composition. Elemental powders and yttria powders were used as raw material powders for the MA. Uni-axial tensile tests were performed at temperatures from R.T. to 1,073 K with load parallel to extrusion direction. Microstructures were characterized by field-emission type transmission electron microscope (TEM) and optical microscope. Aluminum addition over 0.05 wt% has apparently degraded the tensile strength. TEM observation indicated that size of nano-sized oxide particles coarsens with increasing Al concentration. Although Al is a strong ferrite-forming element, its addition has unexpectedly decreased the fraction of ferrite phase that is considered to improve high-temperature strength of the 9Cr-ODS steel. In the presentation, role of Al in mechanical property of the 9Cr-ODS steel will be discussed from the viewpoint of oxide particle distribution and type of matrix phase. (authors)

  14. High-pressure studies on molecular crystals-relations between structure and high-pressure behavior

    Energy Technology Data Exchange (ETDEWEB)

    Orgzall, Ingo [Institut fuer Duennschichttechnologie und Mikrosensorik e.V., Kantstrasse 55, D-14513 Teltow (Germany); Emmerling, Franziska [Bundesanstalt fuer Materialforschung und -pruefung, Richard-Willstaetter-Strasse 11, D-12489 Berlin (Germany); Schulz, Burkhard [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14469 Potsdam (Germany); Franco, Olga [Heinrich-Heine-Universitaet Duesseldorf, Institut fuer Physikalische Chemie II, Universitaetsstrasse 1, Gebaeude 26.42.02, D-40225 Duesseldorf (Germany)], E-mail: orgzall@uni-potsdam.de, E-mail: franziska.emmerling@bam.de, E-mail: buschu@uni-potsdam.de, E-mail: olga.franco@uni-duesseldorf.de

    2008-07-23

    This paper summarizes attempts to understand structure-property relationships for a large class of aromatic diphenyl-1,3,4-oxadiazole molecules. Starting from the investigation of the crystal structure several common packing motifs as well as characteristic differences are derived. Many different molecules show a rather planar conformation in the solid state. A stronger intermolecular twist is only observed for compounds with substituents occupying the ortho-positions of the phenyl rings. Most crystal structures are characterized by the formation of stacks leading to intense {pi}-{pi} acceptor-donor interactions between oxadiazole and phenyl rings. High-pressure investigations result in a soft compression behavior typical for organic molecular crystals. The bulk behavior may be described by the Murnaghan equation of state with similar coefficients (bulk modulus and its pressure derivative) for nearly all investigated compounds but also for related substances. The compression shows a strong anisotropy resulting from the specific features and packing motifs of the crystal structure. This is clearly indicated by a corresponding strain analysis. Additionally to the crystal structure the Raman spectrum was also investigated under increasing pressure. The different pressure behavior of external and internal modes reflects the difference between intra- and intermolecular interactions.

  15. High-pressure studies on molecular crystals-relations between structure and high-pressure behavior

    International Nuclear Information System (INIS)

    This paper summarizes attempts to understand structure-property relationships for a large class of aromatic diphenyl-1,3,4-oxadiazole molecules. Starting from the investigation of the crystal structure several common packing motifs as well as characteristic differences are derived. Many different molecules show a rather planar conformation in the solid state. A stronger intermolecular twist is only observed for compounds with substituents occupying the ortho-positions of the phenyl rings. Most crystal structures are characterized by the formation of stacks leading to intense π-π acceptor-donor interactions between oxadiazole and phenyl rings. High-pressure investigations result in a soft compression behavior typical for organic molecular crystals. The bulk behavior may be described by the Murnaghan equation of state with similar coefficients (bulk modulus and its pressure derivative) for nearly all investigated compounds but also for related substances. The compression shows a strong anisotropy resulting from the specific features and packing motifs of the crystal structure. This is clearly indicated by a corresponding strain analysis. Additionally to the crystal structure the Raman spectrum was also investigated under increasing pressure. The different pressure behavior of external and internal modes reflects the difference between intra- and intermolecular interactions

  16. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ...) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless..., particularly known corrosion and the actual operating pressures. (b) No person may operate a segment...

  17. Elastic properties of anorthite at high temperature and high pressure

    Science.gov (United States)

    Matsukage, K. N.; Nishihara, Y.; Noritake, F.; Tsujino, N.; Sakurai, M.; Higo, Y.; Kawamura, K.; Takahashi, E.

    2012-12-01

    To understand the elastic properties of subducted crustal minerals at P-T conditions of crust and upper most mantle, we performed in situ measurement of the elastic wave velocities of anorthite at temperatures up to 1100 oC at less than 2.0 GPa (in stability field) and up to 500 oC at 2.0-7.0 GPa. A fine grained polycrystalline anorthite was synthesised by using gas pressure apparatus installed at magma factory in Tokyo Institute of Technology. The quenched glass with anorthite composition was ground in ethanol and was loaded into a sealed Pt tube (3.0 mm inner diameter and 0.2 mm thickness) container. The sample was preheated at 900°C for 2 hours, and then keep at 1100°C for 20 hours at pressure of 0.3 GPa. The maximum grain size of the synthesized polycrystalline anorthite was about 15μm. The experiments were performed using the SPEED-1500 apparatus installed on beam line BL04B1 at synchrotron facility of SPring-8, Japan (Utsumi et al. 1998). The experimental design for in situ elastic wave velocities measurement at BL04B1 was presented by Higo et al. (2009). Pressure was generated by eight 26 mm tungsten carbide anvils with 11 mm truncated edge length. A Co-doped semi-sintered MgO octahedron with an 18 mm edge length was used as a pressure medium. The sample was enclosed in a BN sleeve container, and was placed in the central part (hot spot) of the furnace. Platinum foils (2.5 μm in thickness) were inserted at the both side of the sample for determination of sample length by using X-ray radiographic imaging techniques. An Al2O3 rod (5.3 mm in length and 2.0 mm in diameter) was used as buffer rod which transmit ultrasonic wave to the sample. Temperature was measured by a W97Re3-W75Re25 thermocouple. MgO was used as a pressure marker, and it was mixed with BN (MgO:BN = 1:1 by weight) to prevent grain growth at high temperatures. The ultrasonic signals were generated and received by 10oY-cut LiNbO3 transducer of 50 μm in thickness and 3.2 mm in diameter. We

  18. Investigation of Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High Field Solid State NMR

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhenchao; Xu, Suochang; Hu, Mary Y.; Bao, Xinhe; Peden, Charles HF; Hu, Jian Z.

    2015-01-22

    Aluminum site changes for dehydrated H-Beta zeolite during rehydration process are systematically investigated by ²⁷Al MAS and MQ MAS NMR at high magnetic fields up to 19.9 T. Benefiting from the high magnetic field, more detailed information is obtained from the considerably broadened and overlapped spectra of dehydrated H-beta zeolite. Dynamic changes of aluminum sites are demonstrated during rehydration process. In completely dehydrated H-Beta, invisible aluminum can reach 29%. The strength of quadrupole interactions for framework aluminum sites decreases gradually during water adsorption processes. The number of extra-framework aluminum (EFAL) species, i.e., penta- (34 ppm) and octa- (4 ppm) coordinated aluminum atoms rises initially with increasing water adsorption, and finally change into either tetra-coordinated framework or extra-framework aluminum in saturated water adsorption samples, with the remaining octa-coordinated aluminum lying at 0 and -4 ppm, respectively. Quantitative ²⁷Al MAS NMR analysis combined with ¹H MAS NMR indicates that some active EFAL species formed during calcination can reinsert into the framework during this hydration process. The assignment of aluminum at 0 ppm to EFAL cation and -4 ppm to framework aluminum is clarified for H-Beta zeolite.

  19. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  20. High Toughness Light Weight Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is a pressure vessel with 25% better Fracture Strength over equal strength designed Fiberglass to help reduce 10 to 25% weight for aerospace use. Phase I...

  1. METAL INERT GAS WELDING OF 2519-T87 HIGH STRENGTH ALUMINUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    XU Lianghong; TIAN Zhiling; ZHANG Xiaomu; PENG Yun

    2007-01-01

    20 mm thick plates of 2519-T87 high strength aluminum alloy have been welded. The effects of the compositions of filier wires, the heat input and the compositions of shielding gas on the mechanical properties and microstructure of the welded joint have been investigated. The results indicate that finer microstructure, better mechanical properties and higher value of hardness of HAZ can be obtained by using lower heat input. The use of Ar/He mixed shielding gas has several advantages over pure Ar shielding gas. With the increase of the proportion of He in the mixed shielding gas, the grain size of the weld metal as well as porosity susceptibility decreases. When the volume ratio of He to Ar reaches 7:3, the porosity and the grain size of weld metal reach the minimum, and the porosity can be further reduced by filling some CO2.

  2. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric

    KAUST Repository

    Nayak, Pradipta K.

    2013-07-18

    We report high performance solution-deposited indium oxide thin film transistors with field-effect mobility of 127 cm2/Vs and an Ion/Ioff ratio of 106. This excellent performance is achieved by controlling the hydroxyl group content in chemically derived aluminum oxide (AlOx) thin-film dielectrics. The AlOx films annealed in the temperature range of 250–350 °C showed higher amount of Al-OH groups compared to the films annealed at 500 °C, and correspondingly higher mobility. It is proposed that the presence of Al-OH groups at the AlOx surface facilitates unintentional Al-doping and efficient oxidation of the indium oxide channel layer, leading to improved device performance.

  3. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas

    2013-10-01

    The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 ÀC very little oxidation took place; at 850 ÀC oxidation occurred after an induction period, while at 950 ÀC oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 ÀC rapid passivation of the surface of the aluminum foil occurred, while at 1250 ÀC and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

  4. New development in welding thin-shell aluminum alloy structures with high strength

    Institute of Scientific and Technical Information of China (English)

    徐文立; 范成磊; 方洪渊; 田锡唐

    2004-01-01

    From the viewpoint of welding mechanics, two new welding methods-welding with trailing peening and welding with trailing impactive rolling were introduced. For aluminum alloy thin-shell structures with high strength, welding will lead to hot cracking, poor joint and distortion. In order to solve them, trailing impactive device was used behind welding torch to impact the different positions of welded joints, thus realizing the welding with free-hot cracking, low distortion and joint strengthening. By use of impactive rolling wheels instead of peening heads, the outlook of welded specimen can be improved and stress concentration at weld toes can be reduced. Equipment of this technology is simple and portable. It can used to weld sheets, longitudinal and ring-like beams of tube-like structures, as well as the thin-shell structures with closed welds such as flanges and hatches. So the technology has the wide application foreground in the fields of aviation and aerospace.

  5. Deformation Behavior of 6063 Aluminum Alloy During High-Speed Compression

    Institute of Scientific and Technical Information of China (English)

    WANG Mengjun; GAN Chunlei; LIU Xinyu

    2005-01-01

    The deformation behavior characteristics of 6063 aluminum alloy were studied experimentally by isothermal compression tests on a G leeble- 1500 thermal-mechanical simulator. Cylindrical specimens of 14 mm in height and 10mm in diameter were compressed dynamically at temperatures ranging from 473 to 723K and at higher strain rates from 5 to 30s 1 It is found that the flow curves not only depend on the strain rate and temperature but also on the dynamic recovery and recrystallization behavior. The results show that the flow stress decreased with the increase of temperature, while increased with the increase of strain rate. The discontinuous dynamic recrystallization (DDRX) may take place at a high strain rate of 20s-1 under the tested conditions. At 30s 1 , the flow curve can exhibit flow softening due to the effect of temperature rise that raised the temperature by about 32K in less than 0.05s.

  6. Modeling of Flow Stress of High Titanium Content 6061 Aluminum Alloy Under Hot Compression

    Science.gov (United States)

    Chen, Wei; Guan, Yingping; Wang, Zhenhua

    2016-09-01

    Hot compression tests were performed on high titanium content 6061 aluminum alloy (AA 6061-Ti) using a Gleeble-3500 thermomechanical testing system at temperatures from 350 to 510 °C with a constant strain rate in the range of 0.001-10 s-1. Three types of flow stress models were established from the experimental stress-strain curves, the correlation coefficient ( R), mean absolute relative error ( MARE), and root mean square deviation ( RMSD) between the predicted data and the experimental data were also calculated. The results show that the Fields-Backofen model, which includes a softening factor, was the simplest mathematical expression with a level of precision appropriate for the numerical simulations. However, the Arrhenius and artificial neural network (ANN) models were also consistent with the experimental results but they are more limited in their application in terms of their accuracy and the mathematical expression of the models.

  7. Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals

    Science.gov (United States)

    Wolcott, Paul J.

    Ultrasonic additive manufacturing (UAM) is a low temperature, solid-state manufacturing process that enables the creation of layered, solid metal structures with designed anisotropies and embedded materials. As a low temperature process, UAM enables the creation of active composites containing smart materials, components with embedded sensors, thermal management devices, and many others. The focus of this work is on the improvement and characterization of UAM aluminum structures, advancing the capabilities of ultrasonic joining into sheet geometries, and examination of dissimilar material joints using the technology. Optimized process parameters for Al 6061 were identified via a design of experiments study indicating a weld amplitude of 32.8 synum and a weld speed of 200 in/min as optimal. Weld force and temperature were not significant within the levels studied. A methodology of creating large scale builds is proposed, including a prescribed random stacking sequence and overlap of 0.0035 in. (0.0889 mm) for foils to minimize voids and maximize mechanical strength. Utilization of heat treatments is shown to significantly increase mechanical properties of UAM builds, within 90% of bulk material. The applied loads during the UAM process were investigated to determine the stress fields and plastic deformation induced during the process. Modeling of the contact mechanics via Hertzian contact equations shows that significant stress is applied via sonotrode contact in the process. Contact modeling using finite element analysis (FEA), including plasticity, indicates that 5000 N normal loads result in plastic deformation in bulk aluminum foil, while at 3000 N no plastic deformation occurs. FEA studies on the applied loads during the process, specifically a 3000 N normal force and 2000 N shear force, show that high stresses and plastic deformation occur at the edges of a welded foil, and base of the UAM build. Microstructural investigations of heat treated foils confirms

  8. Development of high pressure gas cells at ISIS

    Science.gov (United States)

    Kirichek, O.; Done, R.; Goodway, C. M.; Kibble, M. G.; Evans, B.; Bowden, Z. A.

    2012-02-01

    High-pressure research is one of the fastest-growing areas of natural science, and one that attracts as diverse communities as those of physics, bio-physics, chemistry, materials science and earth science. In condensed matter physics there are a number of highly topical areas, such as quantum criticality, pressure-induced superconductivity or non-Fermi liquid behaviour, where pressure is a fundamental parameter. Reliable, safe and user-friendly high pressure gas handling systems with gas pressures up to 1GPa should make a significant impact on the range of science possible. The ISIS facility is participating in the NMI3 FP7 sample environment project supported by the European Commission which includes high pressure gas cell development. In this paper the progress in designing, manufacturing and testing a new generation of high pressure gas cells for neutron scattering experiments is discussed.

  9. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  10. Elasticity of stishovite at high pressure

    Science.gov (United States)

    Li, Baosheng; Rigden, Sally M.; Liebermann, Robert C.

    1996-08-01

    The elastic-wave velocities of stishovite, the rutile-structured polymorph of SiO 2, were measured to 3 GPa at room temperature in a piston cylinder apparatus using ultrasonic interferometry on polycrystalline samples. These polycrystalline samples (2-3 mm in length and diameter) were hot-pressed at 14 GPa and 1050°C in a 2000 ton uniaxial split-sphere apparatus (USSA-2000) using fused silica rods as starting material. They were characterized as low porosity (less than 1%), single phase, fine grained, free of cracks and preferred orientation, and acoustically isotropic by using density measurement, X-ray diffraction, scanning electron microscopy, and bench-top velocity measurements. On the basis of subsequent in situ X-ray diffraction study at high P and T on peak broadening on similar specimens, it is evident that the single crystal grains within these polycrystalline aggregates are well equilibrated and that these specimens are free of residual strain. P- and S-wave velocities measured at 1 atm are within 1.5% of the Hashin-Shtrikman bounds calculated from single-crystal elastic moduli. Measured pressure derivatives of the bulk and shear moduli, K' 0 = 5.3 ± 0.1 and G' 0 = 1.8 ± 0.1, are not unusual compared with values measured for other transition zone phases such as silicate spinel and majorite garnet. Isothermal compression curves calculated with the measured values of K0 and K' 0 agree well with experimental P-V data to 16 GPa. The experimental value of dG /dP is in excellent agreement with predictions based on elasticity systematics. Theoretical models are not yet able to replicate the measured values of K' 0 and G' 0.

  11. What Are the Signs, Symptoms, and Complications of High Blood Pressure?

    Science.gov (United States)

    ... What Are the Signs, Symptoms, and Complications of High Blood Pressure? Because diagnosis is based on blood pressure readings, ... damaged from chronic high blood pressure. Complications of High Blood Pressure When blood pressure stays high over time, it ...

  12. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION. FINAL REPORT 08R1360-1

    International Nuclear Information System (INIS)

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  13. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  14. Development of high-strength and high-RRR aluminum-stabilized superconductor for the ATLAS thin solenoid

    CERN Document Server

    Wada, K; Sakamoto, H; Shimada, T; Nagasu, Y; Inoue, I H; Tsunoda, K; Endo, S; Yamamoto, A; Makida, Y; Tanaka, K; Doi, Y; Kondo, T

    2000-01-01

    The ATLAS central solenoid magnet is being constructed to provide a magnetic field of 2 Tesla in the central tracking part of the ATLAS detector at the LHC. Since the solenoid coil is placed in front of the liquid-argon electromagnetic calorimeter, the solenoid coil must be as thin (and transparent) as possible. The high-strength and high- RRR aluminum-stabilized superconductor is a key technology for the solenoid to be thinnest while keeping its stability. This has been developed with an alloy of 0.1 wt% nickel addition to 5N pure aluminum and with the subsequent mechanical cold working of 21% in area reduction. A yield strength of 110 MPa at 4.2 K has been realized keeping a residual resistivity ratio (RRR) of 590, after a heat treatment corresponding to coil curing at 130 degrees C for 15 hrs. This paper describes the optimization of the fabrication process and characteristics of the developed conductor. (8 refs).

  15. NASA-UVa Light Aerospace Alloy and Structures Technology Program: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1996-01-01

    This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.

  16. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  17. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    CERN Document Server

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  18. High pressure/high temperature thermogravimetric apparatus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Suuberg, E.M.

    1999-12-01

    The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C and 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.

  19. Air cushion furnace technology for heat treatment of high quality aluminum alloy auto body sheet

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Zhaodong; Ma Mingtu; Wang Guodong; Fu Tianliang; Li Jiadong; Liang Xiong

    2014-01-01

    The process characteristics of heat treatment of aluminum alloy auto body sheet and the working prin-ciple of air cushion furnace were introduced. The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied. Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages. Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward. With the rapid de-velopment of automotive industry,there will be certainly a new upsurge of research and application of air cush-ion furnace for heat treatment of aluminum alloy auto body sheet.

  20. Elastic properties of solids at high pressure

    Science.gov (United States)

    Vekilov, Yu Kh; Krasilnikov, O. M.; Lugovskoy, A. V.

    2015-11-01

    This review examines the elastic response of solids under load. The definitions of isothermal and adiabatic elastic constants of ( n≥2) for a loaded crystal are given. For the case of hydrostatic pressure, two techniques are proposed for calculating the second-, third-, and fourth-order elastic constants from the energy-strain and stress-strain relations. As an example, using the proposed approach within the framework of the density functional theory, the second- to fourth-order elastic constants of bcc tungsten are calculated for the pressure range of 0-600 GPa.

  1. Study on Manganin High Pressure Array Sensor

    Institute of Scientific and Technical Information of China (English)

    DUAN Jianhua; DU Xiaosong; YANG Bangchao; ZHOU Hongre

    2003-01-01

    A new kind of thin film manganin aray gauge is fabricated by adopting a new sensor fabrication technique. The sensitive materials (manganin thin films) are first deposited by magnetron sputtering on fused silica substrates, and then covered by a layer of SiO2 thin films by electron beam evaporation. Based on impedance match method of "back configuration", the highest pressure measured in Al target is 51.68 Gpa, the highest pressure in SiO2 package is 35.396 Gpa and the piezoresistance coefficient k is 0.026 Gpa-1. The upper limit and measure precision of sensor is improved.

  2. Characterization of Aluminum Honeycomb and Experimentation for Model Development and Validation, Volume I: Discovery and Characterization Experiments for High-Density Aluminum Honeycomb

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Korellis, John S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Lee, Kenneth L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Scheffel, Simon [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Hinnerichs, Terry Dean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solid Mechanics; Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Mechanics Development; Scherzinger, William Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solid Mechanics

    2006-08-01

    Honeycomb is a structure that consists of two-dimensional regular arrays of open cells. High-density aluminum honeycomb has been used in weapon assemblies to mitigate shock and protect payload because of its excellent crush properties. In order to use honeycomb efficiently and to certify the payload is protected by the honeycomb under various loading conditions, a validated honeycomb crush model is required and the mechanical properties of the honeycombs need to be fully characterized. Volume I of this report documents an experimental study of the crush behavior of high-density honeycombs. Two sets of honeycombs were included in this investigation: commercial grade for initial exploratory experiments, and weapon grade, which satisfied B61 specifications. This investigation also includes developing proper experimental methods for crush characterization, conducting discovery experiments to explore crush behaviors for model improvement, and identifying experimental and material uncertainties.

  3. Cold cracking in DC-cast high strength aluminum alloy ingots: An intrinsic problem intensified by casting process parameters

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D.G.; Ruvalcaba, D.; Fjaer, H.G.; Ten Cate, A.; Ontijt, N.; Katgerman, L.

    2011-01-01

    For almost half a century the catastrophic failure of direct chill (DC) cast high strength aluminum alloys has been challenging the production of sound ingots. To overcome this problem, a criterion is required that can assist the researchers in predicting the critical conditions which facilitate the

  4. Experiment Study of High-Speed Aluminum Flyers Driven by Long Pulse KrF Excimer Laser

    Institute of Scientific and Technical Information of China (English)

    TIAN; Bao-xian; LIANG; Jing; LI; Ye-jun; WANG; Zhao; HAN; Mao-lan

    2012-01-01

    <正>Laser ablation is an important method to drive high-speed flyers. In the flyer experiments, the technology of side-on shadowgraph was developed to measure the velocities of aluminum flyers. Experimental results of Al flyer track for 50 J and 100 J are shown in Fig. 1.

  5. Cyclic High Pressure Torsion of Nickel and Armco Iron

    OpenAIRE

    Wetscher, Florian; Pippan, Reinhard

    2006-01-01

    Abstract Cyclic high pressure torsion, a modified version of High Pressure Torsion, is applied to Armco-iron and nickel. The results in terms of microstructure and flow stress are compared to samples deformed by conventional high pressure torsion. For both processes and both materials, a saturation in the decrease of the structure size and the increase in the flow stress is observed. The minimum size of the structural elements which is obtainable is smallest for the conventionally ...

  6. Transportable, small high-pressure preservation vessel for cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, N; Sotome, S; Shimizu, A [Department of Environmental Engineering for Symbiosis, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Nakajima, K [Department of Bioinformatics, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Yoshimura, Y, E-mail: mf_kamimura@yahoo.co.j [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 (Japan)

    2010-03-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4{sup 0}C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4{sup 0}C.

  7. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  8. CDC Vital Signs: High Blood Pressure and Cholesterol

    Science.gov (United States)

    ... 1.36 MB] Read the MMWR Science Clips High Blood Pressure and Cholesterol Out of Control Recommend on Facebook ... by County http://apps.nccd.cdc.gov/GISCVH2/ High Blood Pressure and High Cholesterol Among US Adults SOURCES: National ...

  9. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  10. [Genesis study of omphacite at high pressure and high temperature].

    Science.gov (United States)

    Xiao, Ben-Fu; Yi, Li; Wang, Duo-Jun; Xie, Chao; Tang, Xue-Wu; Liu, Lei; Cui, Yue-Ju

    2013-11-01

    The melting and recrystallizing experiments of alkali basalt powder and mixture of pure oxides mixed as stoichiometry were performed at 3 GPa and 1 200 degrees C. Electronic microprobe analysis and Raman spectra showed that the recrystallized products were omphacites, the FWHM (full width at half maximum) of the Raman peak was narrow and its shape was sharp, which is attributed to the stable Si-O tetrahedral structure and the high degree of order in omphacite. Based on the results of previous studies, the influencing factors of omphacite genesis and its primary magma were discussed. The results showed that the formation of omphacite could be affected by many factors, such as the composition of parent rocks, the concentration of fluid in the system and the conditions of pressure and temperature. This result could support some experimental evidences on the genesis studies of omphacite and eclogite.

  11. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    International Nuclear Information System (INIS)

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20–100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of −50 °C to 300 °C. By using the modified Butterworth–van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications. (paper)

  12. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    Science.gov (United States)

    Kropelnicki, P.; Muckensturm, K.-M.; Mu, X. J.; Randles, A. B.; Cai, H.; Ang, W. C.; Tsai, J. M.; Vogt, H.

    2013-08-01

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20-100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of -50 °C to 300 °C. By using the modified Butterworth-van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications.

  13. High Pressure Cryocooling of Protein Crystals: The Enigma of Water

    Science.gov (United States)

    Gruner, Sol M.

    2010-03-01

    A novel high-pressure cryocooling technique for preparation biological samples for x-ray analysis is described. The method, high-pressure cryocooling, involves cooling samples to cryogenic temperatures (e.g., 100 K) in high-pressure Helium gas (up to 200 MPa). It bears both similarities and differences to high-pressure cooling methods that have been used to prepare samples for electron microscopy, and has been especially useful for cryocooling of macromolecular crystals for x-ray diffraction. Examples will be given where the method has been effective in providing high quality crystallographic data for difficult samples, such as cases where ligands needed to be stabilized in binding sites to be visualized, or where very high resolution data were required. The talk concludes with a discussion of data obtained by high-pressure cryocooling that pertains to two of the most important problems in modern science: the enigma of water and how water affects the activity of proteins.

  14. Low Pressure Evidence of High Pressure Shock: Thermal Histories and Annealing in Shocked Meteorites

    Science.gov (United States)

    Sharp, T. G.; Hu, J.

    2016-08-01

    In this study we look at the mineralogy associated with shock veins in several highly shocked L chondrites to better understand shock conditions and the importance of thermal history in creating and destroying high-pressure minerals.

  15. Dirty Air, High Blood Pressure Linked

    Institute of Scientific and Technical Information of China (English)

    应树道

    2001-01-01

    贵刊去年第6期曾刊登一短文,题目是:盐,迫升血压之元凶。读了该文,我开始严格控制每日的食盐摄入量,再附以药物治疗,血压果然趋于平稳。近日上网,遇一奇文,意思是人的血压与空气污染状况有涉!根据对2600个成年人的调查,得出了这样的结论:Pollution may cause changes in the part of the nervous system that controls blood pressure.文章又同时说明:Exactly how pollution might cause blood pressure to climb remains unclear.人体之奥妙由此可见一斑。

  16. Thermal stability of nanostructured aluminum powder synthesized by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Abdoli, Hamid, E-mail: habdoli@alum.sharif.edu [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Ghanbari, Mohsen [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Baghshahi, Saeid [Department of Materials Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of)

    2011-08-25

    Highlights: {yields} Thermal stability of nanostructured Al was investigated using DSC curves. {yields} Three kinds of peaks were determined: strain relaxation, grain growth and melting. {yields} A temperature (T{sub c}) was defined at which grain size transformed to unstable status. {yields} Above T{sub c}, hardness was dropped significantly with respect to Hall-Petch relation. - Abstract: The thermal stability of nanostructured aluminum powder synthesized by high energy milling was studied through isothermal annealing at high temperatures for various times. Strain relaxation and grain growth of milled powders were studied at different milling times by differential scanning calorimetry (DSC). The results showed a high level of stored enthalpy due to milling procedure. After 25 h milling, powder particles reached a steady state with equiaxed morphology and 90 nm crystallite size in average. Isothermal grain growth kinetics of nanocrystalline Al powder was investigated using X-ray diffraction (XRD). A critical temperature ({approx}0.8 of melting point) was distinguished at which a considerable increase was observed in the grain size. At below this temperature, the mean grain size remains almost stable for long annealing times due to small amounts of interstitial and substitutional impurities. However, grain growth was pronounced significantly depending on settling time above it. Stability of powder hardness after annealing was evaluated by micro-indentation. The results revealed a down-shift of the hardness beyond the critical temperature.

  17. High temperature performance of arc-sprayed aluminum bronze coatings for steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong-li; LI De-yuan; WANG Shui-yong

    2006-01-01

    The high-temperature oxidation behavior of arc-sprayed aluminum bronze coatings on steel substrate was studied during isothermal exposures in air at 900 ℃. The surface morphologies and interface of the coatings after isothermal oxidation at 900 ℃ for different times were observed. The experiments showed that the coatings on steel substrate were not deteriorated and the substrate was protected well, being exposed to high temperatures up to 900 ℃. The coatings withstood more than ten times thermal shock tests without any coating separation. The thermal expansion coefficient of the coatings was measured, revealing not much difference between it and that of steel substrate. After exposure at high temperature, the coatings were still adhered to steel substrate well.Isothermal mass gain of the coatings at elevated temperature in dry air was measured by means of a thermal balance and the oxidation behavior was evaluated by oxidation kinetic curves, exhibiting the oxidation kinetics curve accorded with a parabolic law.The parabolic rate constant of the oxidation kinetic curve is 1.02× 10-9 g2·cm-4·s-1 for the first 60 min and from 150 min to 2 880 min the constant is 5.1 × 10-12 g2·cm-4·s-1.

  18. Materials response under static and dynamic high pressures

    International Nuclear Information System (INIS)

    Studies on equation of state and phase transitions at high pressures have significantly contributed to our basic understanding of condensed matter physics. High-pressure data on materials also find important applications in applied sciences. The developments in first principle theories and experimental techniques are listed. The similarities and differences in behaviour of materials under static and dynamic pressures are discussed. The article also describes the current interplay between theoretical and experimental high-pressure research with illustrations from our own studies and emphasis on future scope. (author). 135 refs., 10 figs., 2 tabs

  19. High pressure luminescence of ZnTe:Cr2+ crystals

    International Nuclear Information System (INIS)

    Results of the high pressure low-temperature luminescence measurements of ZnTe:Cr2+ crystals in a diamond-anvil cell are reported. The luminescence spectra associated with the 5E→ 5T2 transitions are split into three bands which exhibit quite different pressure coefficients from about 8 to 12 cm-1. The different values of the pressure coefficients are well explained by the Jahn-Teller effect and pressure-dependent spin-orbit interaction with second-order correction, associated with pressure-dependent admixture of the Te ligand wavefunction to the d-type wavefunction of the Cr2+ ion

  20. High-pressure effects on intramolecular electron transfer compounds

    CERN Document Server

    He Li Ming; Li Hong; Zhang Bao Wen; Li Yi; Yang Guo Qiang

    2002-01-01

    We explore the effect of pressure on the fluorescence spectra of the intramolecular electron transfer compound N-(1-pyrenylmethyl), N-methyl-4-methoxyaniline (Py-Am) and its model version, with poly(methyl methacrylate) blended in, at high pressure up to 7 GPa. The emission properties of Py-Am and pyrene show distinct difference with the increase of pressure. This difference indicates the strength of the charge transfer interaction resulting from the adjusting of the conformation of Py-Am with increase of pressure. The relationship between the electronic state of the molecule and pressure is discussed.

  1. Cells under pressure - treatment of eukaryotic cells with high hydrostatic pressure, from physiologic aspects to pressure induced cell death.

    Science.gov (United States)

    Frey, Benjamin; Janko, Christina; Ebel, Nina; Meister, Silke; Schlücker, Eberhard; Meyer-Pittroff, Roland; Fietkau, Rainer; Herrmann, Martin; Gaipl, Udo S

    2008-01-01

    The research on high hydrostatic pressure in medicine and life sciences is multifaceted. According to the used pressure head the research has to be divided into two different parts. To study physiological aspects of pressure on eukaryotic cells physiological pressure (pHHP; highly reversible alterations and normally does not affect cellular viability. The treatment of eukaryotic cells with non-physiological pressure (HHP; > or = 100 MPa) reveals different outcomes. Treatment with HHP or = 200 MPa. Moreover, HHP treatment with > 300 MPa leads to necrosis. Therefore, HHP plays a role for the sterilisation of human transplants, of food stuff, and pharmaceuticals. Human tumour cells subjected to HHP > 300 MPa display a necrotic phenotype along with a gelificated cytoplasm, preserve their shape, and retain their immunogenicity. These observations favour the use of HHP to produce whole cell based tumour vaccines. Further experiments revealed that the increment of pressure as well as the pressure holding time influences the cell death of tumour cells. We conclude that high hydrostatic pressure offers both, an economic, easy to apply, clean, and fast technique for the generation of vaccines, and a promising tool to study physiological aspects.

  2. High temperature tribological behaviour of carbon based (B{sub 4}C and DLC) coatings in sliding contact with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Gharam, A. Abou, E-mail: abougha@uwindsor.c [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada); Lukitsch, M.J.; Balogh, M.P. [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, 30500 Mound Road, Warren, MI 48090-9055 (United States); Alpas, A.T. [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada)

    2010-12-30

    Carbon based coatings, particularly diamond-like carbon (DLC) films are known to resist aluminum adhesion and reduce friction at room temperature. This attractive tribological behaviour is useful for applications such as tool coatings used for aluminum forming and machining. However, for those operations that are performed at elevated temperatures (e.g. hot forming) or that generate frictional heat during contact (e.g. dry machining) the suitable coatings are required to maintain their tribological properties at high temperatures. Candidates for these demanding applications include boron carbide (B{sub 4}C) and DLC coatings. An understanding of the mechanisms of friction, wear and adhesion of carbon based coatings against aluminum alloys at high temperatures will help in designing coatings with improved high temperature tribological properties. With this goal in mind, this study focused on B{sub 4}C and a hydrogenated DLC coatings sliding against a 319 grade cast aluminum alloy by performing pin-on-disk experiments at temperatures up to 400 {sup o}C. Experimental results have shown that the 319 Al/B{sub 4}C tribosystem generated coefficient of friction (COF) values ranging between 0.42 and 0.65, in this temperature range. However, increased amounts of aluminum adhesion were detected in the B{sub 4}C wear tracks at elevated temperatures. Focused ion beam (FIB) milled cross sections of the wear tracks revealed that the coating failed due to shearing along the columnar grain boundaries of the coating. The 319 Al/DLC tribosystem maintained a low COF (0.15-0.06) from room temperature up to 200 {sup o}C. This was followed by an abrupt increase to 0.6 at 400 {sup o}C. The deterioration of friction behaviour at T > 200 {sup o}C was attributed to the exhaustion of hydrogen and hydroxyl passivants on the carbon transfer layer formed on the Al pin.

  3. High temperature tribological behaviour of carbon based (B4C and DLC) coatings in sliding contact with aluminum

    International Nuclear Information System (INIS)

    Carbon based coatings, particularly diamond-like carbon (DLC) films are known to resist aluminum adhesion and reduce friction at room temperature. This attractive tribological behaviour is useful for applications such as tool coatings used for aluminum forming and machining. However, for those operations that are performed at elevated temperatures (e.g. hot forming) or that generate frictional heat during contact (e.g. dry machining) the suitable coatings are required to maintain their tribological properties at high temperatures. Candidates for these demanding applications include boron carbide (B4C) and DLC coatings. An understanding of the mechanisms of friction, wear and adhesion of carbon based coatings against aluminum alloys at high temperatures will help in designing coatings with improved high temperature tribological properties. With this goal in mind, this study focused on B4C and a hydrogenated DLC coatings sliding against a 319 grade cast aluminum alloy by performing pin-on-disk experiments at temperatures up to 400 oC. Experimental results have shown that the 319 Al/B4C tribosystem generated coefficient of friction (COF) values ranging between 0.42 and 0.65, in this temperature range. However, increased amounts of aluminum adhesion were detected in the B4C wear tracks at elevated temperatures. Focused ion beam (FIB) milled cross sections of the wear tracks revealed that the coating failed due to shearing along the columnar grain boundaries of the coating. The 319 Al/DLC tribosystem maintained a low COF (0.15-0.06) from room temperature up to 200 oC. This was followed by an abrupt increase to 0.6 at 400 oC. The deterioration of friction behaviour at T > 200 oC was attributed to the exhaustion of hydrogen and hydroxyl passivants on the carbon transfer layer formed on the Al pin.

  4. Chemistry and structure of beta silicon carbide implanted with high-dose aluminum

    International Nuclear Information System (INIS)

    Single-crystal β-SiC was implanted with aluminum to 3.90 x 1017 ions/cm2 at 168 keV at 773 K. The resultant compositional and structural characteristics were studied by Rutherford backscattering spectrometry. Auger electron spectroscopy, X-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy. No aluminum redistribution was observed during implantation. The Si-to-C ratio exhibited a negative deviation from unity in the implanted region. The shift in the photoelectron binding energies indicated the formation of aluminum carbide. The studies by electron microscopy showed that the implanted region consists of slightly misoriented β-SiC crystals and textured crystalline aluminum carbide precipitates

  5. High-pressure processing for preservation of blood products

    NARCIS (Netherlands)

    Matser, A.M.; Ven, van der C.; Gouwerok, C.W.N.; Korte, de D.

    2005-01-01

    The possibilities of high pressure as a preservation method for human blood products were evaluated by examining the functional properties of blood fractions, after high-pressure processing at conditions which potentially inactivate micro-organisms and viruses. Blood platelets, red blood cells and b

  6. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ..., 2011 (76 FR 28807). The conference was held in Washington, DC, on June 1, 2011, and all persons who... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... injured by reason of imports from China of high pressure steel cylinders, provided for in subheading...

  7. 77 FR 37712 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2012-06-22

    ... Commission, Washington, DC, and by publishing the notice in the Federal Register on January 23, 2012 (77 FR... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... imports of high pressure steel cylinders from China, provided for in subheading 7311.00.00 of...

  8. Stable High-Energy Density Super-Atom Clusters of Aluminum Hydride

    Institute of Scientific and Technical Information of China (English)

    Ke-yan Lian; Yuan-fei Jiang; De-hou Fei; Wei Feng; Ming-xing Jin; Da-jun Ding; Yi Luo

    2012-01-01

    With the concept of super-atom,first principles calculations propose a new type of super stable cage clusters AlnH3n that are much more energetic stable than the well established clusters,AlnHn+2.In the new clusters,the aluminum core-frame acts as a super-atom with n vertexes and 2n Al-Al edges,which allow to adsorb n hydrogen atoms at the top-site and 2n at the bridge-site.Using Al12H36 as the basic unit,stable chain structures,(Al12H36)m,have been constructed following the same connection mechanism as for (AlH3)n linear polymeric structures.Apart from high hydrogen percentage per molecule,calculations have shown that these new clusters possess large heat of formation values and their combustion heat is about 4.8 times of the methane,making them a promising high energy density material.

  9. Development of a Two-Phase Model for the Hot Deformation of Highly-Alloyed Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Beaudoin; J. A. Dantzig; I. M. Robertson; B. E. Gore; S. F. Harnish; H. A. Padilla

    2005-10-31

    Conventional processing methods for highly alloyed aluminum consist of ingot casting, followed by hot rolling and thermal treatments. Defects result in lost productivity and wasted energy through the need to remelt and reprocess the material. This research centers on developing a fundamental understanding for deformation of wrought 705X series alloys, a key alloy system used in structural airframe applications. The development of damage at grain boundaries is characterized through a novel test that provides initiation of failure while preserving a controlled deformation response. Data from these mechanical tests are linked to computer simulations of the hot rolling process through a critical measure of damage. Transmission electron microscopy provides fundamental insight into deformation at these high working temperatures, and--in a novel link between microscale and macroscale response--the evolution of microstructure (crystallographic orientation) provides feedback for tuning of friction in the hot rolling process. The key product of this research is a modeling framework for the analysis of industrial hot rolling.

  10. Action of aluminum on high voltage-dependent calcium current and its modulation by ginkgolide B

    Institute of Scientific and Technical Information of China (English)

    Lei CHEN; Chang-jin LIU; Ming TANG; Ai LI; Xin-wu HU; Yi-mei DU; Jing-jing SHEN; Yong-li LU; Jurgen HESCHLER

    2005-01-01

    Aim: To investigate the effect of aluminum (Al) on high voltage-dependent calcium current (IHVA) and its modulation by ginkgolide B (Gin B). Methods: The whole-cell, patch-clamp technique was used to record IHVA from acutely isolated hippocampal CA1 pyramydal neurons in rats. Results: Al 0.1 mmol/L (low concentration) reduced IHVA; Al 0.75 and 1.0 mmol/L (high concentrations) increased IHVA, and Al decreased and increased IHVA at intermediate concentrations of 0.25 and 0.5 mmol/L. The increase of IHVA by Al 1.0 mmol/L was enhanced by the adenylyl cyclase (AC) agonist forskolin and was partly abolished by the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) antagonist H-89, whereas the decrease observed with Al0.1 mmol/L was neither reversed by forskolin nor affected by H-89. Gin B had no effect on IHVA in normal neurons,but canceled the increase in IHVA by 1.0 mmol/L Al. Conclusion: The results indicate that the mechanism of Al affecting IHVA differs at different concentrations,and this may be attributed to its complex actions. Gin B could prevent neurons from injury by inhibiting calcium influx.

  11. MORPHOLOGY AND PROPERTIES OF LINEAR LOW-DENSITY POLYETHYLENE HIGHLY LOADED WITH ALUMINUM HYDROXIDE

    Institute of Scientific and Technical Information of China (English)

    Gen-lin Wang; Ping-kai Jiang; Zi-kang Zhu; Jie Yin

    2002-01-01

    An experimental study was carried out to investigate the effects of isopropoxy tri(dioctyl pyrophosphoryl) titanate coupling agent on the mechanical performance, rheological property and microstructures of polyethylene highly loaded with aluminum hydroxide (Al(OH)a) composite. It was found that the addition of coupling agent results in reduced tensile strength and increased percentage elongation of the filled systems. Silane crosslinkable polyethylene substituting for polyethylene as matrix improves the tensile strength of the composite, while the percentage elongation of the composite still remains at a desired level. Melt viscosity of the composite will be improved by addition of titanate coupling agent. Microstructures of the composites were also studied by means of the scanning electron microscopy (SEM) technique. SEM micrographs reveal that finer dispersion of Al(OH)3 will be obtained upon treatment of titanate and a transition from brittle to tough fracture takes place before and after silane crosslinking structure is introduced into polyethylene highly filled with Al(OH)3 composite.

  12. Spark plasma sintering of aluminum matrix composites

    Science.gov (United States)

    Yadav, Vineet

    2011-12-01

    Aluminum matrix composites make a distinct category of advanced engineering materials having superior properties over conventional aluminum alloys. Aluminum matrix composites exhibit high hardness, yield strength, and excellent wear and corrosion resistance. Due to these attractive properties, aluminum matrix composites materials have many structural applications in the automotive and the aerospace industries. In this thesis, efforts are made to process high strength aluminum matrix composites which can be useful in the applications of light weight and strong materials. Spark Plasma Sintering (SPS) is a relatively novel process where powder mixture is consolidated under the simultaneous influence of uniaxial pressure and pulsed direct current. In this work, SPS was used to process aluminum matrix composites having three different reinforcements: multi-wall carbon nanotubes (MWCNTs), silicon carbide (SiC), and iron-based metallic glass (MG). In Al-CNT composites, significant improvement in micro-hardness, nano-hardness, and compressive yield strength was observed. The Al-CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self-lubricating effects of CNTs. In Al-SiC and Al-MG composites, microstructure, densification, and tribological behaviors were also studied. Reinforcing MG and SiC also resulted in increase in micro-hardness and wear resistance.

  13. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    Science.gov (United States)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  14. Strong environmental tolerance of Artemia under very high pressure

    International Nuclear Information System (INIS)

    It was shown by the present authors group that a tardigrade in its tun-state can survive after exposed to 7.5 GPa for 13 hours. We have extended this experiment to other tiny animals searching for lives under extreme conditions of high hydrostatic pressure. Artemia, a kind of planktons, in its dried egg-state have strong environmental tolerance. Dozens of Artemia eggs were sealed in a small Teflon capsule together with a liquid pressure medium, and exposed to the high hydrostatic pressure of 7.5 GPa. After the pressure was released, they were soaked in seawater to observe hatching rate. It was proved that 80-90% of the Artemia eggs were alive and hatched into Nauplii after exposed to the maximum pressure of 7.5 GPa for up to 48 hours. Comparing with Tardigrades, Artemia are four-times stronger against high pressure.

  15. Study of high-speed interaction processes between fluoropolymer projectiles and aluminum-based targets

    Institute of Scientific and Technical Information of China (English)

    Evgeny A. KHMELNIKOV; Alexey V. STYROV; Konstantin V. SMAGIN; Natalia S. KRAVCHENKO; Valery L. RUDENKO; Vladimir I. FALALEEV; Sergey S. SOKOLOV; Artem V. SVIDINSKY; Natalia F. SVIDINSKAYA

    2015-01-01

    The experimental results and numerical modeling of penetration process of fluoropolymer projectiles in aluminum-based targets are pre-sented. Analysis of mathematical models for interaction of elastoplastic projectile and target without taking additional energy released during interaction of fluoropolymer and aluminum into consideration is carried out. Energy fraction which is spent effectively on the increase in cavity volume is determined. The experimental and calculated results of penetration by combined and inert projectiles are compared.

  16. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1981-01-01

    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose...... to determine activation energies for reactions of importance in reactor chemistry. The activation energy of the reaction e−aq+e−aq has been determined to be 22 kJ·mol−1 (5.3 kcal·mol−1) in good agreement with literature values. Furthermore, the activation energies of the reactions Cu2++OH (13.3 kJ·mol−1, 3.......2 kcal.mol−1) and OH+OH (tentatively 8 kJ·mol−1, 1.9 kcal·mol−1) have been determined. The absorption spectrum of the OH radical has been determined up to temperatures of 200°C. The absorption maximum is found at 230 nm at all temperatures. The reaction between Fe2+ and OH radicals has been studied up...

  17. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams

    Science.gov (United States)

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a ˜450 kV, ˜400 ns pulse. It was found that 300-400 MW, ˜250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  18. Pressurized metallurgy for high performance special steels and alloys

    Science.gov (United States)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; L1, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  19. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  20. Impurity trapped excitons under high hydrostatic pressure

    Science.gov (United States)

    Grinberg, Marek

    2013-09-01

    Paper summarizes the results on pressure effect on energies of the 4fn → 4fn and 4fn-15d1 → 4fn transitions as well as influence of pressure on anomalous luminescence in Lnα+ doped oxides and fluorides. A model of impurity trapped exciton (ITE) was developed. Two types of ITE were considered. The first where a hole is localized at the Lnα+ ion (creation of Ln(α+1)+) and an electron is attracted by Coulomb potential at Rydberg-like states and the second where an electron captured at the Lnα+ ion (creation of Ln(α-1)+) and a hole is attracted by Coulomb potential at Rydberg-like states. Paper presents detailed analysis of nonlinear changes of energy of anomalous luminescence of BaxSr1-xF2:Eu2+ (x > 0.3) and LiBaF3:Eu2+, and relate them to ITE-4f65d1 states mixing.

  1. High Blood Pressure, Afib and Your Risk of Stroke

    Science.gov (United States)

    ... prescribed if you have high blood pressure or atrial fibrillation . Stroke prevention is often the focus of doctor-patient conversations in atrial fibrillation, Dr. Sacco said. But for people with high ...

  2. VS-501: a novel, nonabsorbed, calcium- and aluminum-free, highly effective phosphate binder derived from natural plant polymer

    OpenAIRE

    Wu-Wong, J Ruth; Chen, Yung-wu; Gaffin, Robert; Hall, Andy; Wong, Jonathan T; Xiong, Joseph; Wessale, Jerry L

    2014-01-01

    Inadequate control of serum phosphate in chronic kidney disease can lead to pathologies of clinical importance. Effectiveness of on-market phosphate binders is limited by safety concerns and low compliance due to high pill size/burden and gastrointestinal (GI) discomfort. VS-501 is a nonabsorbed, calcium- and aluminum-free, chemically modified, plant-derived polymer. In vitro studies show that VS-501 has a high density and a low swell volume when exposed to simulated gastric fluid (vs. sevela...

  3. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  4. On some hydrogen bond correlations at high pressures

    Science.gov (United States)

    Sikka, S. K.

    2007-09-01

    In situ high pressure neutron diffraction measured lengths of O H and H O pairs in hydrogen bonds in substances are shown to follow the correlation between them established from 0.1 MPa data on different chemical compounds. In particular, the conclusion by Nelmes et al that their high pressure data on ice VIII differ from it is not supported. For compounds in which the O H stretching frequencies red shift under pressure, it is shown that wherever structural data is available, they follow the stretching frequency versus H O (or O O) distance correlation. For compounds displaying blue shifts with pressure an analogy appears to exist with improper hydrogen bonds.

  5. Conventional superconductivity at 190 K at high pressures

    OpenAIRE

    Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.

    2014-01-01

    The highest critical temperature of superconductivity Tc has been achieved in cuprates: 133 K at ambient pressure and 164 K at high pressures. As the nature of superconductivity in these materials is still not disclosed, the prospects for a higher Tc are not clear. In contrast the Bardeen-Cooper-Schrieffer (BCS) theory gives a clear guide for achieving high Tc: it should be a favorable combination of high frequency phonons, strong coupling between electrons and phonons, and high density of st...

  6. A novel aluminum based nanocomposite with high strength and good ductility

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanalizadeh, Hossein, E-mail: hralizadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Emamy, Masoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Shokouhimehr, Mohammadreza [School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of)

    2015-11-15

    Aluminum based nanocomposite containing nano-sized Al{sub 3}Mg{sub 2} reinforcing was fabricated via mechanical milling followed by hot extrusion techniques. For this, Al and Al{sub 3}Mg{sub 2} powders were mixed mechanically and milled at different times (0, 2, 5, 7, 10, 15 and 20 h) to achieve Al–10 wt.% Al{sub 3}Mg{sub 2} composite powders. Hot extrusion of cold pressed powders was done at 400 °C with extrusion ratio of 6:1. Microstructures of the powders and consolidated materials were studied using transmission electron microscopy, scanning electron microscope and X-ray diffraction. Fracture surfaces were also investigated by scanning electron microscopy equipped with EDS analyzer. The results showed that an increase in milling time caused to reduce the grain size unlike the lattice strain of Al matrix. In addition, the fabricated composites exhibited homogeneous distribution and less agglomerations of the n-Al{sub 3}Mg{sub 2} with increasing milling time. The mechanical behavior of these nanocomposites was investigated by hardness and tensile tests, which revealed it has four times the strength of a conventional Al along with good ductility. It was found that the ultimate tensile strength (UTS) and elongation of the nanocomposites were significantly improved with increases in milling time up to 15 h. This improvement was attributed to the grain refinement strengthening and homogeneous distribution of the n-Al{sub 3}Mg{sub 2}. Fracture surfaces showed that the interfacial bonding between Al and Al{sub 3}Mg{sub 2} could be improved with increasing in milling time. Also HRTEM results from interface showed that a metallurgical clean interface and intimate contact between matrix and second phase. By extending the milling process up to 20 h, there was no significant improvement in mechanical behavior of materials, due to the completion of milling process and dynamic and static recovery of composite at higher milling times. - Highlights: • A novel aluminum

  7. On the theory of high and low pressure areas: The significance of divergence in pressure areas

    OpenAIRE

    Scherhag, Richard; Brönnimann, Stefan

    2016-01-01

    This is the edited and translated version of the article by Richard Scherhag “Zur Theorie der Hoch- und Tiefdruckgebiete. Die Bedeutung der Divergenz in Druckfeldern” (On the theory of high and low pressure areas: The significance of divergence in pressure areas), which was published in Meteorologische Zeitschrift 51, 129–138.

  8. High-pressure applications in medicine and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  9. Temperature control for high pressure processes up to 1400 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Reineke, K; Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box: 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 {mu}L sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s{sup -1} and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and

  10. Temperature control for high pressure processes up to 1400 MPa

    Science.gov (United States)

    Reineke, K.; Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s-1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling as

  11. High Manganese and Aluminum Steels for the Military and Transportation Industry

    Science.gov (United States)

    Bartlett, Laura; Van Aken, David

    2014-09-01

    Lightweight advanced high strength steels (AHSS) with aluminum contents between 4 and 12 weight percent have been the subject of intense interest in the last decade because of an excellent combination of high strain rate toughness coupled with up to a 17% reduction in density. Fully austenitic cast steels with a nominal composition of Fe-30%Mn-9%Al-0.9%C are almost 15% less dense than quenched and tempered Cr-Mo steels (SAE 4130) with equivalent strengths and dynamic fracture toughness. This article serves as a review of the tensile and high-strain-rate fracture properties associated mainly with silicon additions to this base composition. In the solution-treated condition, cast steels have high work-hardening rates with elongations up to 64%, room-temperature Charpy V-notch (CVN) impact energies up to 200 J, and dynamic fracture toughness over 700 kJ/m2. Silicon additions in the range of 0.59-1.56% Si have no significant effect on the mechanical properties of solution-treated steels but increased the tensile strength and hardness during aging. For steels aged at 530°C to an average hardness of 310 Brinell hardness number, HBW, increasing the amount of silicon from 1.07% to 1.56% decreased the room temperature CVN breaking energy from 92 J to 68 J and the dynamic fracture toughness from 376 kJ/m2 to 265 kJ/m2. Notch toughness is a strong function of phosphorus content, decreasing the solution-treated CVN impact toughness from 200 J in a 0.006% P steel to 28 J in a 0.07% P steel. For age-hardened steels with 1% Si, increasing levels of phosphorus from 0.001% to 0.043% decreased the dynamic fracture toughness from 376 kJ/m2 to 100 kJ/m2.

  12. High pressure processing reaches the U.S. market

    International Nuclear Information System (INIS)

    The first food product commercially produced by a U.S. company using high-pressure processing has had successful test market results. High-pressure processing permits food to be preserved by subjecting it to pressures in the range of 60,000-100,000 psi for a short time instead of exposing the food to heat, freezing, chemicals, or irradiation. To produce Classic Guacamole, Avomex of Keller, Texas, uses a batch isostatic press to deactivate the enzymes in the avocado and to kill bacteria, obtaining a refrigerated shelf life of over 30 days. The guacamole is then vacuum packed and processed again. The product undergoes no heat treatment and does not contain preservatives, and the high pressure does not affect its texture, color, or taste. Meanwhile, a continuous system for high-pressure processing of pumpable foods is currently being developed by Flow International of Kent, Washington, and will be used for testing and applications work at Oregon State University

  13. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    International Nuclear Information System (INIS)

    Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W)-polytetrafluoroethylene (PTFE)-aluminum (Al) with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt%) can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed

  14. High-power laser shock-induced dynamic fracture of aluminum and microscopic observation of samples

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2015-01-01

    Full Text Available High-power laser induced shocks generated by “ShenGuang II” laser facility has been used to study spall fracture of polycrystalline aluminum at strain rates more than 106/s. The free surface velocity histories of shock-loaded samples, 150 μm thick and with initial temperature from 293 K to 873 K, have been recorded using velocity interferometer system for any reflector (VISAR. From the free surface velocity profile, spall strength and yield stress are calculated, it demonstrates that spall strength will decline and yield strength increase with initial temperature. The loaded samples are recovered to obtain samples' section and free surface metallographic pictures through Laser Scanning Confocal Microscopy. It is found that there are more micro-voids and more opportunity to appear bigger voids near the spall plane and the grain size increases with temperature slowly but smoothly except the sharply change at 893 K (near melting point. Besides, the fracture mechanisms change from mainly intergranular fracture to transgranular fracture with the increase of initial temperature.

  15. Mechanism of strengthening of cube texture for high purity aluminum foils by additional-annealing

    Institute of Scientific and Technical Information of China (English)

    张新明; 刘胜胆; 唐建国; 周卓平

    2003-01-01

    The mechanism of strengthening of cube texture ({001}〈100〉) by additional-annealing of high purity aluminum foils was investigated by using orientation distribution functions (ODFs) and electron back scattered diffraction (EBSD). The results of ODFs and fiber show that the orientation densities of the S {123}〈634〉 and Cu {112}〈111〉 components increase in both the additional-annealed samples and the 0.11 mm final cold-rolled foils. And the EBSD results demonstrate that cube nuclei can be identified in the deformed matrix of those additional-annealed samples. It is suggested that the strengthening of cube texture can be brought out by the increasing of components of S and Cu and the formation of cube nuclei caused by additional-annealing. Moreover, it is found that the cube texture increases first and then decreases with increasing additional-annealing temperature, and it is the strongest at 180 ℃.The strengthening of cube texture by additional-annealing is proposed as the result of oriented growth of cube subgrains.

  16. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    R. Farrell; V. R. Pagan; A. Kabulski; Sridhar Kuchibhatl; J. Harman; K. R. Kasarla; L. E. Rodak; P. Famouri; J. Peter Hensel; D. Korakakis

    2008-05-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  17. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, R.; Pagan, V.R.; Kabulski, A.; Kuchibhatla, S.; Harman, J.; Kasarla, K.R.; Rodak, L.E.; Hensel, J.P.; Famouri, P.; Korakakis, D.

    2008-01-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE-grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  18. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.

    Science.gov (United States)

    Chou, Yu-Hsun; Wu, Yen-Mo; Hong, Kuo-Bin; Chou, Bo-Tsun; Shih, Jheng-Hong; Chung, Yi-Cheng; Chen, Peng-Yu; Lin, Tzy-Rong; Lin, Chien-Chung; Lin, Sheng-Di; Lu, Tien-Chang

    2016-05-11

    The recent development of plasmonics has overcome the optical diffraction limit and fostered the development of several important components including nanolasers, low-operation-power modulators, and high-speed detectors. In particular, the advent of surface-plasmon-polariton (SPP) nanolasers has enabled the development of coherent emitters approaching the nanoscale. SPP nanolasers widely adopted metal-insulator-semiconductor structures because the presence of an insulator can prevent large metal loss. However, the insulator is not necessary if permittivity combination of laser structures is properly designed. Here, we experimentally demonstrate a SPP nanolaser with a ZnO nanowire on the as-grown single-crystalline aluminum. The average lasing threshold of this simple structure is 20 MW/cm(2), which is four-times lower than that of structures with additional insulator layers. Furthermore, single-mode laser operation can be sustained at temperatures up to 353 K. Our study represents a major step toward the practical realization of SPP nanolasers. PMID:27089144

  19. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liu; Liu, Jinxu, E-mail: liujinxu@bit.edu.cn; Zhang, Xinbo [School of Material Science and Engineering, Beijing Institute of Technology, No.5 yard, Zhong Guan Cun South Street, Beijing, 100081 (China); Li, Shukui [School of Material Science and Engineering, Beijing Institute of Technology, No.5 yard, Zhong Guan Cun South Street, Beijing, 100081 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, No. 5 yard, Zhong Guan Cun South Street, Beijing 100081 (China)

    2015-11-15

    Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W)-polytetrafluoroethylene (PTFE)-aluminum (Al) with density of 4.12 g/cm{sup 3}, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt%) can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s{sup −1} coupled with the absorbed energy per unit volume of 120 J/cm{sup 3}, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  20. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  1. Non-contact sheet forming using lasers applied to a high strength aluminum alloy

    Directory of Open Access Journals (Sweden)

    Rafael Humberto Mota Siqueira

    2016-07-01

    Full Text Available Laser beam forming (LBF is a contactless mechanical process accomplished by the introduction of thermal stresses on the surface of a material using a laser in order to induce plastic deformation. In this work, LBF was performed on 1.6 mm thick sheets of a high strength aluminum alloy, AA6013-T4 class by using a defocused continuous Yb-fiber laser beam of 0.6 mm in diameter on the sheet top surface. The laser power and process speed were varied from 200 W to 2000 W and from 3 to 30 mm/s, respectively. For these experimental conditions, the bending angle of the sheet ranged from 0.1° to 2.5° per run. In the highest bending angle condition, 1000 W and 30 mm/s, the depth of remelted pool was 0.6 mm and the microstructure near the plate bottom surface remained unaltered. For the whole set of experimental conditions, the hardness remained constant at approximately 100 HV, which is similar to the base material. In order to verify the applicability of the method, some previously T-welded sheets were straightened. The method was efficient in correcting the distortion of the sheets with a bending angle up to 5°.

  2. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Science.gov (United States)

    Wang, Liu; Liu, Jinxu; Li, Shukui; Zhang, Xinbo

    2015-11-01

    Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W)-polytetrafluoroethylene (PTFE)-aluminum (Al) with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt%) can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ˜4820 s-1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  3. The effect of high pressure on nitrogen compounds of milk

    International Nuclear Information System (INIS)

    The effect of pressurization at different pressures (from 200 to 1000 MPa, at 200 MPa intervals, tconst. = 15 min) and periods of time (from 15 to 35 min, at 10 min intervals, pconst. = 800 MPa) on the changes of proteins and nitrogen compounds of skimmed milk was studied. The pressurization caused an increase in the amount of soluble casein and denaturation of whey proteins. The level of nonprotein nitrogen compounds and proteoso-peptone nitrogen compounds increased as a result of the high-pressure treatment. These changes increased with an increase in pressure and exposure time. High-pressure treatment considerably affected the changes in the conformation of milk proteins, which was reflected in the changes in the content of proteins sedimenting and an increase in their degree of hydration

  4. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  5. Signal processing in urodynamics: towards high definition urethral pressure profilometry

    OpenAIRE

    Klünder, Mario; Sawodny, Oliver; Amend, Bastian; Ederer, Michael; Kelp, Alexandra; Sievert, Karl-Dietrich; Stenzl, Arnulf; Feuer, Ronny

    2016-01-01

    Background Urethral pressure profilometry (UPP) is used in the diagnosis of stress urinary incontinence (SUI) which is a significant medical, social, and economic problem. Low spatial pressure resolution, common occurrence of artifacts, and uncertainties in data location limit the diagnostic value of UPP. To overcome these limitations, high definition urethral pressure profilometry (HD-UPP) combining enhanced UPP hardware and signal processing algorithms has been developed. In this work, we p...

  6. Alveolar pressure during high-frequency jet ventilation

    OpenAIRE

    Vught, Adrianus; Versprille, Adrian; Jansen, Jos

    1990-01-01

    textabstractWe studied the influence of ventilatory frequency (1-5 Hz), tidal volume, lung volume and body position on the end-expiratory alveolar-to-tracheal pressure difference during high-frequency jet ventilation (HFJV) in Yorkshire piglets. The animals were anesthetized and paralysed. Alveolar pressure was estimated with the clamp off method, which was performed by a computer controlled ventilator and which had been extensively tested on its feasibility. The alveolar-to-tracheal pressure...

  7. Isostructural Phase Transition of TiN under High Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jing-Geng; LI Yan-Chun; LIU Jing; YANG Liu-Xiang; YU Yong; YOU Shu-Jie; YU Ri-Cheng; LI Feng-Ying; CHEN Liang-Chcn; JIN Chang-Qing; LI Xiao-Dong

    2005-01-01

    @@ In situ high-pressure energy dispersive x-ray diffraction experiments on polycrystalline powder TiN with NaC1type structure have been conducted with the pressure up to 30.1 GPa by using a diamond anvil cell instrument with synchrotron radiation at room temperature. The experimental results suggest that an isostructural phase transition might exist at about 7GPa as revealed by the discontinuity of V/Vo with pressure.

  8. High pressure synthesis gas conversion. Task 2: Determination of maximum operating pressure

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The purpose of this research project was to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by C. ljungdahlil. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors. The purpose of this report was to present the results of high pressure experiments aimed at determining the maximum operating pressure of C. ljungdahlil. Preliminary experiments carried out in approaching the pressure maximum are presented, as well as experimental results at the maximum pressure of 150 psig. This latter pressure was the maximum operating pressure when using the defined medium of Phillips et al., and is expected to change if alternative media are employed.

  9. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields. PMID:27083705

  10. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M.

    2016-04-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures - while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  11. A new method for welding aluminum alloy LY12CZ sheet with high strength

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    From the viewpoint of welding mechanics, a new welding technology-trailing peening was applied firstly to weld aluminum alloy LY12CZ sheet with high susceptibility to hot cracking. Trailing peening can exert a transverse extrusion strain on the metal in brittle temperature region (BTR) which can compensate for the tensioning strain during the cooling procedure post welding. So, welding hot cracking of LY12CZ sheet can be controlled effectively on the special jig for hot cracking experiment, and the phenomenon of hot cracking can't be found in specimens with large dimensions finally. At the same time, welding with trailing peening can decrease welding distortion caused by longitudinal and transverse shrinkage of weld obviously. Due to strengthening the poor position-weld toe during the process of welding, the residual stress distribution of welded joint is more reasonable. Contrast with conventional welding, mechanical properties such as tensile strength, prolongation ratio and cold-bending angle of welded joint with trailing peening can be improved obviously, and rupture position of welded joint transits from weld toe at conventional welding to weld metal at trailing peening. So, welding with trailing peening can be regarded as a dynamic welding method with low stress, little distortion and hot cracking-free really. As far as theoretical analysis is concerned, the technology of trailing peening can be used to weld the materials with high susceptibility to hot cracking such as LY12CZ and LD10, and solve the welding distortion of thin plate-shell welded structures which contain closed welds such as flange. In addition, the technology of trailing peening has many advantages: simple device, high efficiency, low cost and flexible application which make the welding method have widely applied foreground in the field of aeronautics and aerospace.

  12. High pressure optical studies of crystalline anils and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hockert, E.N.; Drickamer, H.G.

    1977-12-01

    High pressure optical studies have been made on a series of crystalline therochromic and photochromic anils and model compounds. Measurements include absorption and emission peak locations and the integrated intensities of various absorption peaks including the uv peak and visible peaks introduced thermally or by irradiation at various temperatures and pressures. Emission yields were also obtained. For the thermochromic compounds there was a large increase in the equilibrium yield of the thermally induced peak with pressure (piezochromism), corresponding to a volume decrease of approx.1.2 cc/mole for 5-bromosalicylidene aniline (5BrSA). The emission peak shifts to lower energy and decreases in intensity primarily because of increased rate of the radiationless conversion. For salicylidene aniline and related photochromic crystals the rate of photochromic conversion varied with both pressure and temperature in a manner which depends on the size of the energy barriers to the forward and reverse processes. The emission yield increases with pressure at low pressure, goes through a maximum, and decreases at high pressure. At low pressure the dominant feature is increase in occupation of the emitting state while at high pressure the increased rate of the radiationless process governs. For 2- (O-hydroxyphenyl) benzoxazole (OHBO) (see Fig. 1), where a keto--enol rearrangement is most probable, the changes in absorption and emission intensity can be related to the same diagram used for the anils. This diagram also describes the behavior of benzilidene aniline (BA), where only a cis--trans isomerization is possible.

  13. Linear and nonlinear optical absorption coefficients in GaAs/Ga{sub 1-x}Al{sub x}As concentric double quantum rings: Effects of hydrostatic pressure and aluminum concentration

    Energy Technology Data Exchange (ETDEWEB)

    Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Escuela de Ingenieria de Antioquia, AA 7516 Medellin (Colombia); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)

    2013-02-15

    The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga{sub 1-x}Al{sub x}As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: Black-Right-Pointing-Pointer Linear and nonlinear intra-band absorption in quantum rings. Black-Right-Pointing-Pointer Threshold energy strongly depends on the hydrostatic pressure. Black-Right-Pointing-Pointer Threshold energy strongly depends on the stoichiometry and sizes of structure. Black-Right-Pointing-Pointer Optical absorption is affected by the incident optical intensity.

  14. Dissociation of silica at high pressure

    Science.gov (United States)

    Hicks, Damien; Boehly, Tom

    2005-07-01

    Measurements of the temperature and optical reflectivity of quartz and fused silica under shock loading from 100 to 1000 GPa have revealed evidence for dissociation of silica between ˜150 and 400 GPa. Using attenuating laser-driven shock waves a continuous record of the temperature and reflectivity dependence on pressure has been obtained in both materials allowing the specific heat capacity and electronic conductivity to be deduced. Results show that between 150 and 400 GPa the specific heat rises significantly above that expected from the Dulong-Petit law, indicating the presence of a latent energy. Coincident with this anomalous specific heat is a rapid rise in electronic conductivity. Both these observables suggest that dissociation is occurring in the dense fluid. In addition temperature measurements near 5000 K detect a discontinuity at the melt transition, as measured earlier on gas gun experiments. This work was performed under the auspices of the US DOE by LLNL under Contract No. W-7405-ENG-48 and by the University of Rochester under Cooperative Agreement No. DE-FC03-92SF19460.

  15. Engineering wear-resistant surfaces in automotive aluminum

    Science.gov (United States)

    Kavorkijan, V.

    2003-02-01

    Inadequate wear resistance and low seizure loads prevent the direct use of aluminum alloys in automotive parts subject to intensive friction combined with high thermal and mechanical loading, such as brake discs, pistons, and cylinder liners. To enable the use of aluminum alloys in the production of automotive brake discs and other wear-resistant products, the insertion of a monolithic friction cladding rather than surface coating has been considered in this work. Three experimental approaches, two based on the pressure-less infiltration of porous ceramic preforms and one based on the subsequent hot rolling of aluminum and metal-matrix composite strips, are currently under investigation.

  16. Equation of state of liquid Indium under high pressure

    OpenAIRE

    Huaming Li; Yongli Sun; Mo Li

    2015-01-01

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high...

  17. Germination of vegetable seeds exposed to very high pressure

    International Nuclear Information System (INIS)

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  18. Fabrication of High Sensitivity Carbon Microcoil Pressure Sensors

    Directory of Open Access Journals (Sweden)

    Shuo-Hung Chang

    2012-07-01

    Full Text Available This work demonstrates a highly sensitive pressure sensor that was fabricated using carbon microcoils (CMCs and polydimethylsiloxane (PDMS. CMCs were grown by chemical vapor deposition using various ratios of Fe-Sn catalytic solution. The pressure sensor has a sandwiched structure, in which the as-grown CMCs were inserted between two PDMS layers. The pressure sensor exhibits piezo-resistivity changes in response to mechanical loading using a load cell system. The yields of the growth of CMCs at a catalyst proportion of Fe:Sn = 95:5 reach 95%. Experimental results show that the sensor achieves a high sensitivity of 0.93%/kPa from the CMC yield of 95%. The sensitivity of the pressure sensor increases with increasing yield of CMCs. The demonstrated pressure sensor shows the advantage of high sensitivity and is suitable for mass production.

  19. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  20. Temperature effects for high pressure processing of Picornaviruses

    Science.gov (United States)

    Investigation of the effects of pre-pressurization temperature on the high pressure inactivation for single strains of aichivirus (AiV), coxsackievirus A9 (CAV9) and B5 (CBV5) viruses, as well as human parechovirus -1 (HPeV), was performed. For CAV9, an average 1.99 log10 greater inactivation was ...

  1. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction

    DEFF Research Database (Denmark)

    Marshall, William G.; Urquhart, Andrew; Oswald, Iain D. H.

    2015-01-01

    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low press...

  2. Safety analysis of high pressure gasous fuel container punctures

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R. [Univ. of Miami, Coral Gables, FL (United States)

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  3. Equation of state of liquid Indium under high pressure

    International Nuclear Information System (INIS)

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment

  4. Teaming Up Against High Blood Pressure PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    Nearly one-third of American adults have high blood pressure, and more than half of them don’t have it under control. Simply seeing a doctor and taking medications isn’t enough for many people who have high blood pressure. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  5. Equation of state of liquid Indium under high pressure

    Science.gov (United States)

    Li, Huaming; Sun, Yongli; Li, Mo

    2015-09-01

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  6. Equation of state of liquid Indium under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huaming, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu; Li, Mo, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Sun, Yongli [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  7. Isostructural Transition of MgB2 Under High Pressure

    Institute of Scientific and Technical Information of China (English)

    SUN Li-Ling; WU Qi; ZHAN Zai-Ji; WANG Wen-Kui; WANG Wen-Kui; T.Kikegawa

    2001-01-01

    The high-pressure behaviour of the superconductor MgB2 with a hexagonal structure has been investigated by the in situ synchrotron radiation x-ray diffraction method under pressures up to 42.2 GPa in a diamond anvil cell. An abrupt decrease of about 7% in the unit cell volume of this material occurs in the pressure range of 26.3-30.2 GPa. A split of the Raman spectrum was also observed. The jump of the compression curve and Raman spectrum are ascribed to an isostructural transition in MgB2 at a pressure of 30.2 GPa.

  8. Laser-driven shockwave experiments at extreme high pressures

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1979-09-21

    Laser-driven shockwave experiments have been proposed for accurate determination of equation of state data in the multimegabar pressure range. This paper gives a quantitative analysis of the prospects for such experiments. In order to unambiguously interpret shockwave data, one requires a clean shock -- that is, a planar, steady shock wave entering cold material (without significant preheat perturbation). The problems of attaining sufficiently clean shocks at high pressure are examined and scaling relations which relate the pressure achieved to laser intensity, pulse energy, etc, are developed. It is shown that significantly higher pressures can be achieved when structured (layered) targets are used.

  9. Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Jeanmaire, G., E-mail: guillaume.jeanmaire@univ-lorraine.fr [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 54011 Nancy Cedex (France); Aubert and Duval, BP1, 63770 Les Ancizes (France); Dehmas, M.; Redjaïmia, A. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 54011 Nancy Cedex (France); Puech, S. [Aubert and Duval, BP1, 63770 Les Ancizes (France); Fribourg, G. [Snecma Gennevilliers, 171 Boulevard de Valmy-BP 31, 92702 Colombes (France)

    2014-12-15

    In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc® simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (> 1 μm) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra® software. - Highlights: • Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force • Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation • Size of AlN precipitates can be reduced by quenching prior isothermal holding. • Fine precipitation of AlN related to the α → γ transformation.

  10. The effects of microstructure on MIC susceptibility in high strength aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, D.W. [California Polytechnic State Univ., San Luis Obispo, CA (United States). Materials Engineering Dept.

    1999-11-01

    Aluminum alloys, and in particular Al-Li-Cu alloys are attractive to the aerospace industry. The high specific strength and stiffness of these alloys will improve lift efficiency, fuel economy, performance and increase payload capabilities of air and spacecraft. The objectives of this work were to examine the corrosion behavior of Al 2195 (UNS A92195) (Al-4Cu-1Li) and to assess the effect of welding on corrosion behavior in biologically active and in sterile waters. Al 2219 (UNS A922 19) samples were used in parallel tests to provide a baseline for the data generated. In this study samples were exposed to mild corrosive water solutions in both the as received and as welded conditions. The results of the study indicate exposure to biologically active solutions increases the corrosion rate. In addition, welding increases the corrosion rate in both Al 2195 and Al 2219, and causes severe localization in Al 2195. Furthermore, autogenously welded Al 2195 samples were more susceptible to attack than heterogeneously welded Al 2195 samples. Heterogeneously welded samples in both materials also had high corrosion rates, but only the Al 2195 material was subject to localization of attack. The partially melted zones of Al 2195 samples were subject to severe, focused attack. In Al 2219, interdendritic constituents in welded areas and intergranular constituents in base material were cathodic to the Al rich matrix materials. In Al 2195, some interdendritic constituents in welded areas and intergranular constituents in base material were anodic to the Al rich matrix materials. Corrosion resistance was correlated to material microstructure using optical microscopy, scanning electron microscopy, electron probe microanalysis and polarization resistance.

  11. Formation Mechanism of Micropores on the Surface of Pure Aluminum Induced by High-Current Pulsed Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZOU Yang; CAI Jie; WAN Ming-Zhen; LV Peng; GUAN Qing-Feng

    2011-01-01

    The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained. It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation. The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along gra,in boundaries and/or dislocations towards the irradiated surface. It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.%The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained.It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation.The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface.It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.High-current pulsed electron beams (HCPEBs)have attracted much attention in the field of material surface modification.[1-7] During the transient bombardment process a high energy (108-109 W·cm-2) is deposited only in a very thin layer (less than tens of micrometers) within a very short time (a few microseconds) and thereby causes ultrafast heating and cooling on the irradiated surface of materials.The dynamic stress fields induced in these processes can induce intense deformation on the material surface.

  12. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  13. New nitrogen-containing materials for hydrogen storage and their characterization by high-pressure microbalance

    DEFF Research Database (Denmark)

    Vestbø, Andreas Peter

    or liquid form, technologies that are well developed and usable, but not energy efficient. Certain metals and alloys are able to contain hydrogen within practical pressure and temperature ranges very efficient volume-wise, but they are too heavy for use in cars. Recently, attention has turned to the so......-called complex hydrides, which contain hydrogen bound covalently often in very light materials involving elements such as lithium, sodium, nitrogen and aluminum. While these materials typically have high decomposition temperatures, the combination with other compounds helps to destabilize the material resulting...... in lowered effective dehydrogenation temperatures. From the discovery in 1996 by Borislav Bogdanović and his group that catalyzed sodium alanate, NaAlH4, can release hydrogen reversibly below 200 °C relatively fast, hydrogen storage in nitrogen-containing compounds beginning with lithium nitride, Li3N...

  14. In situ studies of microbial inactivation during high pressure processing

    Science.gov (United States)

    Maldonado, Jose Antonio; Schaffner, Donald W.; Cuitiño, Alberto M.; Karwe, Mukund V.

    2016-01-01

    High pressure processing (HPP) has been shown to reduce microbial concentration in foods. The mechanisms of microbial inactivation by HPP have been associated with damage to cell membranes. The real-time response of bacteria to HPP was measured to elucidate the mechanisms of inactivation, which can aid in designing more effective processes. Different pressure cycling conditions were used to expose Enterobacter aerogenes cells to HPP. Propidium iodide (PI) was used as a probe, which fluoresces after penetrating cells with damaged membranes and binding with nucleic acids. A HPP vessel with sapphire windows was used for measuring fluorescence in situ. Membrane damage was detected during pressurization and hold time, but not during depressurization. The drop in fluorescence was larger than expected after pressure cycles at higher pressure and longer times. This indicated possible reversible disassociation of ribosomes resulting in additional binding of PI to exposed RNA under pressure and its release after depressurization.

  15. Characterization of coaxial rocket injector sprays under high pressure environments

    Science.gov (United States)

    Sankar, S. V.; Wang, G.; Brena De La Rosa, A.; Rudoff, R. C.; Isakovic, A.; Bachalo, W. D.

    1992-01-01

    The effect of elevated environment pressures on the atomization characteristics of a single element, scaled-down, shear-coaxial rocket injector has been investigated. In this study, the shear coaxial injector was operated with water and air as simulants for conventionally used liquid oxygen and hydrogen gas, respectively. The experiments were conducted in a specially designed high pressure rig. A two-component PDPA/DSA system was used to study the spray characteristics at different chamber pressures ranging from atmospheric to 100 psig. The study showed an overall increase in the droplet sizes at higher chamber pressures. This phenomenon is attributed to a decrease in the secondary atomization effects at higher chamber pressures which, in turn, is directly related to a decrease in the shear experienced by the droplets as they move axially through the pressure chamber.

  16. High pressure research using muons at the Paul Scherrer Institute

    Science.gov (United States)

    Khasanov, R.; Guguchia, Z.; Maisuradze, A.; Andreica, D.; Elender, M.; Raselli, A.; Shermadini, Z.; Goko, T.; Knecht, F.; Morenzoni, E.; Amato, A.

    2016-04-01

    Pressure, together with temperature and magnetic field, is an important thermodynamical parameter in physics. Investigating the response of a compound or of a material to pressure allows to elucidate ground states, investigate their interplay and interactions and determine microscopic parameters. Pressure tuning is used to establish phase diagrams, study phase transitions and identify critical points. Muon spin rotation/relaxation (μSR) is now a standard technique making increasing significant contribution in condensed matter physics, material science research and other fields. In this review, we will discuss specific requirements and challenges to perform μSR experiments under pressure, introduce the high pressure muon facility at the Paul Scherrer Institute (PSI, Switzerland) and present selected results obtained by combining the sensitivity of the μSR technique with pressure.

  17. Strong environmental tolerance of moss Venturiella under very high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ono, F; Mori, Y; Takarabe, K [Department of Applied Science, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005 (Japan); Nishihira, N; Shindo, A [Okayama Ichinomiya High School, Okayama 700-0005 (Japan); Saigusa, M [Department of Biology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530 (Japan); Matsushima, Y [Department of Physics, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530 (Japan); Saini, N L [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185 Rome (Italy); Yamashita, M, E-mail: fumihisa@das.ous.ac.j [Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan)

    2010-03-01

    It was shown by the present authors group that tardigrade can survive under high pressure of 7.5 GPa. In the case of land plants, however, no result of such experiment has been reported. We have extended our experiments to moss searching for lives under very high pressure. Spore placentas of moss Venturiella were sealed in a small Teflon capsule together with a liquid pressure medium. The capsule was put in the center of a pyrophillite cube, and the maximum pressure of 7.5 GPa was applied using a two-stage cubic anvil press. The pressure was kept constant at the maximum pressure for12, 24, 72 and 144 hours. After the pressure was released, the spores were seeded on a ager medium, and incubated for one week and more longer at 25{sup 0}C with white light of 2000 lux. It was proved that 70-90% of the spores were alive and germinated after exposed to the maximum pressure of 7.5 GPa for up to 72 hours. However, after exposed to 7.5 GPa for 6 days, only 4 individuals in a hundred were germinated. The pressure tolerance of moss Venturiella is found to be stronger than a small animal, tardigrade.

  18. Strong environmental tolerance of moss Venturiella under very high pressure

    International Nuclear Information System (INIS)

    It was shown by the present authors group that tardigrade can survive under high pressure of 7.5 GPa. In the case of land plants, however, no result of such experiment has been reported. We have extended our experiments to moss searching for lives under very high pressure. Spore placentas of moss Venturiella were sealed in a small Teflon capsule together with a liquid pressure medium. The capsule was put in the center of a pyrophillite cube, and the maximum pressure of 7.5 GPa was applied using a two-stage cubic anvil press. The pressure was kept constant at the maximum pressure for12, 24, 72 and 144 hours. After the pressure was released, the spores were seeded on a ager medium, and incubated for one week and more longer at 250C with white light of 2000 lux. It was proved that 70-90% of the spores were alive and germinated after exposed to the maximum pressure of 7.5 GPa for up to 72 hours. However, after exposed to 7.5 GPa for 6 days, only 4 individuals in a hundred were germinated. The pressure tolerance of moss Venturiella is found to be stronger than a small animal, tardigrade.

  19. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, S.; Brake, ter H.J.M.; Jansen, H.V.; Zhao, Y.; Holland, H.J.; Burger, J.F.; Elwenspoek, M.C.

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pre

  20. HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

    2010-01-04

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).