WorldWideScience

Sample records for aluminum foils interpreting

  1. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 800 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  2. Analytical scanning and transmission electron microscopy of laboratory impacts on Stardust aluminum foils: interpreting impact crater morphology and the composition of impact residues

    CERN Document Server

    Kearsley, A T; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N; Bradley, J P; Chater, R; Wozniakiewicz, P A; Spratt, J; Jones, G

    2006-01-01

    The known encounter velocity (6.1kms-1) and particle incidence angle (perpendicular) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 fall within a range that allows simulation in laboratory light gas gun experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminum foil components of the Stardust collector. Buckshot of a wide size, shape and density range of mineral, glass, polymer and metal grains, have been fired to impact perpendicularly upon samples of Stardust Al1100 foil, tightly wrapped onto aluminium alloy plate as an analogue of foil on the spacecraft collector. We have not yet been able to produce laboratory impacts by projectiles with weak and porous aggregate structure, as may occur in some cometary dust grains. In this report we present information on crater gross morphology and its dependence on particle size and density, the pre-existing major and trace element composition of the foil, geometrical issues for en...

  3. Chromic acid anodizing of aluminum foil

    Science.gov (United States)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  4. Effects of Aluminum Foil Packaging on Elemental Analysis of Bone.

    Science.gov (United States)

    Lewis, Lyniece; Christensen, Angi M

    2016-03-01

    Burned skeletal material is often very fragile and at high risk for fragmentation during packaging and transportation. One method that has been suggested to protect bones in these cases is to carefully wrap them in aluminum foil. Traces of aluminum, however, are known to transfer from foil packaging materials to food products. If such transfer occurs between aluminum foil and bones, it could interfere with subsequent chemical, elemental and isotopic analyses, which are becoming more common in forensic anthropological investigations. This study examined aluminum levels in bones prior to and following the use of aluminum foil packaging and storage for a 6-week period. Results indicate no significant change in the detected levels of aluminum (p > 0.05), even when packaged in compromised foil and exposed to elevated temperatures. Aluminum foil can therefore continue to be recommended as a packaging medium without affecting subsequent chemical examinations. PMID:27404616

  5. Microstructure and Mechanical Properties of AA1235 Aluminum Foil Stocks Produced Directly from Electrolytic Aluminum Melt

    Science.gov (United States)

    Xiong, Hanqing; Yu, Kun; Wen, Li; Yao, Sujuan; Dai, Yilong; Wang, Zhifeng

    2016-02-01

    A new process is developed to obtain high-quality AA1235 aluminum foil stocks and to replace the traditional manufacture process. During the new manufacture process, AA1235 aluminum sheets are twin-roll casted directly through electrolytic aluminum melt (EAM), and subsequently the sheets are processed into aluminum foil stocks by cold rolling and annealing. Microstructure and mechanical properties of the AA1235 aluminum sheets produced through such new process are investigated in each state by optimal microscope, scanning electron microscopy, X-ray diffraction, orientation imaging microscopy, transmission electron microscopy, etc. The results show that compared with the traditional AA1235 aluminum foil stocks produced through re-melted aluminum melt (RAM), the amount of impurities is decreased in the EAM aluminum foil stocks. The EAM aluminum foil stock obtains less β-FeSiAl5 phases, but more α-Fe2SiAl8 phases. The elongation of EAM aluminum foil stocks is improved significantly owing to more cubic orientation. Especially, the elongation value of the EAM aluminum foil stocks is approximately 25 pct higher than that of the RAM aluminum foil stocks. As a result, the EAM aluminum foil stocks are at an advantage in increasing the processing performance for the aluminum foils during subsequent processes.

  6. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays.

    Science.gov (United States)

    Biring, Sajal; Tsai, Kun-Tong; Sur, Ujjal Kumar; Wang, Yuh-Lin

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment. PMID:21730530

  7. ALUMINUM FOIL REINFORCED BY CARBON NANOTUBES

    OpenAIRE

    A. V. Alekseev; PREDTECHENSKIY M.R.

    2016-01-01

    In our research, the method of manufacturing an Al-carbon nanotube (CNT) composite by hot pressing and cold rolling was attempted. The addition of one percent of multi-walled carbon nanotubes synthesized by OCSiAl provides a significant increase in the ultimate tensile strength of aluminum. The tensile strength of the obtained composite material is at the tensile strength level of medium-strength aluminum alloys.

  8. Effect of cerium addition on microstructure and texture of aluminum foil for electrolytic capacitors

    Institute of Scientific and Technical Information of China (English)

    王海燕; 李文学; 任慧平; 黄丽颖; 王向阳

    2010-01-01

    Anode foil of aluminum electrolytic capacitor,which requires large surface area for high capacitance,were prepared by rolling,annealing and electrochemical etching.Effects of cerium addition on the capacitance of aluminum electrolytic capacitors were investigated.Microstructure of the aluminum foil surface was observed by optical microscopy(OM) and scanning electron microscopy(SEM).Electron back scattered diffraction(EBSD) was also employed to reveal texture evolvement of cold-rolled aluminum foil after ann...

  9. Element segregation on the surfaces of pure aluminum foils

    International Nuclear Information System (INIS)

    The surface segregation trend of trace elements in pure aluminum foils was investigated by density functional theory. The model of nine-layer Al(1 0 0) slab substituted partially by trace element atoms was proposed for calculating surface segregation energy. The calculating results show that (i) B, Mg, Si, Ga, Ge, Y, In, Sn, Sb, Pb and Bi exhibit negative segregation energy and possibly move to the surface, while Be, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zr exhibit positive segregation energies and migrated into the bulk; (ii) the segregation energy was found to be related with the covalent radius, the relaxed position at the surface of the substituting atom and the surface energy; (iii) the segregation behavior of trace element generates lots of defects and dislocation, which can increase the initial pitting nucleation sites in the surface of aluminum foils; (iv) the impurity atom concentration was tested with Pb-doped surfaces, the calculated negative segregation energies in all coverage increases rapidly with the Pb coverage. These conclusions are helpful for designing of the chemical composition and to advance the tunnel etching of aluminum foils.

  10. Evolution of recrystallization textures in high voltage aluminum capacitor foils

    Institute of Scientific and Technical Information of China (English)

    刘楚明; 张新明; 周鸿章; 陈志永; 邓运来; 周卓平

    2001-01-01

    The evolution of recrystallization textures in high voltage aluminum capacitor foils which are produced with a high level of cold reduction was tracked by analysis of microstructure and crystallographic texture. The results show that the deformation textures are mainly composed of S-orientation, Cu-orientation and a little Bs-orientation. During the low temperature stages of final annealing, the iron precipitates first along the sub-grain boundaries, and the Fe concentration in the matrix becomes low. Then, the cube grains nucleate preferably into the sub-grains. At high temperature stages, the cube nuclei can grow preferably because of their 40°〈111〉 orientation relationship to the S orientation, the main component of the rolling texture. Finally, the cube texture is sharply strong and the R orientation is very weak in the foils.

  11. Report on Analysis of China’s Aluminum Foil Market in 2014

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    1.China’s domestic production of aluminum foil China is a big country in terms of aluminum foil production,as it owns the highest number of most advanced 2000mm grade foil rolling mills in the world,with about 35 sets(with production capacity of about 400,000 t/a),12more than the combined sum total of all other countries worldwide.According to Antaike’s data,in 2014 China’s

  12. Aluminum Foil and Aluminum Sheet Project with the Total Investment of RMB 1 billion Officially Launched in Wanshan

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>According the news report on February 25,Wanshan district and Galaxy Aluminum Co.,Ltd. in Shengzhou,Zhejiang province signed an agreement on aluminum foil and aluminum sheet production on February 19 in Sanya,Hainan province,a sign that the project is offi- cially established in Wanshan.

  13. Life cycle Analysis of Aluminum Foil Packaging Material.

    Science.gov (United States)

    El Sebaie, Olfat; Ahmed, Manal; Hussein, Ahmed; El Sharkawy, Fahmay; Samy, Manal

    2006-01-01

    A fundamental tent of life cycle analysis (LCA) is that every material product must become a waste. To choose the greener products, it is necessary to take into account their environmental impacts from cradle to grave. LCA is the tool used to measure environmental improvements. Aluminum (Al) is the third most common element found in the earth's crust, after oxygen and silicon. Al packaging foil was chosen as the material for the study with its life cycle perspective at Alexandria. The Al packaging produced from virgin and recycled Al was investigated through life cycle stages in these two production processes; primary and secondary. The aim of this study is to evaluate the environmental impact of aluminum packaging process by using life cycle analysis of its product from two different starting raw materials (virgin and recycled aluminum). The input and output materials, energy, water, natural gas consumptions, and solid waste uses in the foil industry had been analyzed in order to identify those with significant contribution to the total environmental impacts. From the survey done on the two life cycles, it was found that in environmental terms, the most important emissions from the primary process are the emission of CO(2) and perfluorocarbon (PFC) gases, which produce the greenhouse effect, and SO(2) as well as the emission of fluorides and polyaromatic hydrocarbons (PAH compounds), which are toxic to humans and the environment. On over all material balance, it was found that the ingot shares by 45% of the feed to the casthouse furnaces at Egyptian Copper Work (ECW), net production of the casthouse is 43.76% and the yield of rotary dross furnace (RDF) is 28.8%. The net production of the foil unit represents 35% of the total input to the unit. By comparing the two life cycles, it is obvious that, for water consumption, 93.5% is used in the primary cycle, while 6.5% is used in the secondary cycle. For electricity consumption, 99.3% is used in the primary cycle

  14. Effect of Trace Sn on Pitting Behaviors of High Voltage Anode Aluminum Foil

    Institute of Scientific and Technical Information of China (English)

    Jingbo SONG; Weimin MAO; Hong YANG; Huiping FENG

    2008-01-01

    The effect of trace Sn on the pitting morphology of high voltage anode aluminum foils was investigated. The distributions of microelement Sn, Fe, Si, Cu and Mg in the surface layer of aluminum foils with different Sn content were determined by using a secondary ion mass spectrometer. It was found that the micro-alloyed Sn is enriched at the external surface. The mechanism of pitting behavior of trace Sn on aluminum surface is similar with that of lead. Enrichment of Sn in the surface layer provides large numbers of sites for initiation of pitting corrosion, while pitting sites appeared relatively inhomogenously in the foils without Sn. Sn, as an eco-friendly microelement, can be applied to replace Pb in improving the homogenous pitting behaviors of high voltage aluminum foils, in which the volume fraction of cube texture is not reduced.

  15. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils

    Institute of Scientific and Technical Information of China (English)

    Itir Bakis Dogru; Mete Batuhan Durukan; Onur Turel; Husnu Emrah Unalan

    2016-01-01

    In this work, vertically aligned carbon nanotubes (VACNTs) grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD) method. Solution based ultrasonic spray pyrolysis (USP) method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the su-percapacitor electrodes and the charge transfer resistance between the electrode and electrolyte. A specific capacitance of 2.61 mF/cm2 at a scan rate of 800 mV/s was obtained from the fabricated elec-trodes, which is further improved through the bending cycles.

  16. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils

    Directory of Open Access Journals (Sweden)

    Itir Bakis Dogru

    2016-06-01

    Full Text Available In this work, vertically aligned carbon nanotubes (VACNTs grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD method. Solution based ultrasonic spray pyrolysis (USP method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor electrodes and the charge transfer resistance between the electrode and electrolyte. A specific capacitance of 2.61 mF/cm2 at a scan rate of 800 mV/s was obtained from the fabricated electrodes, which is further improved through the bending cycles.

  17. Influence of recrystallization annealing on the cube texture in high-purity aluminum foils

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.M.; Tang, J.G.; Du, Y.X.; Zhou, Z.P.; Chen, Z.Y.; Liu, C.M. [Dept. of Materials Science and Engineering, Central South Univ., HN (China)

    2001-07-01

    The cube texture in high-purity aluminum foils under different annealing conditions was investigated by means of orientation distribution function (ODF) and microscopy. It was shown that low recrystallization temperature was favorable to the nucleation of cube orientation and to the growth of the cube nuclei, and that stronger cube texture was obtained by multistage annealing than by single one. The strongest cube texture in high purity aluminum foils annealed in two-stage in the vacuum was obtained. It demonstrated that the recrystallization behavior was controlled by the existing state of Fe in aluminum. A model of multistage annealing was proposed for development of strong cube texture with temperature. (orig.)

  18. Effect of microstructure on specific capacitance of AA3003 aluminum alloy foils

    Institute of Scientific and Technical Information of China (English)

    张新明; 靳丽; 肖亚庆; 蹇雄

    2003-01-01

    By means of OM, EDS, SEM and TEM, the effect of microstructures of AA3003 aluminum alloy foils on specific capacitance was investigated . The results show that the specific capacitance of the cathode aluminum foils depends on the microstructures of the foils, including intermetallic compound (Mn,Fe)Al6 and Al matrix, tangled dislocations in the regions adjacent to the intermetallic particles, and smaller and dispersed particles. Because the dislocation interaction with larger particles gives rise to high local lattice curvature in the matrix, which can be preferentially dissolved when etched, which results in serious remnant metal powders on the foil surface. Solid solution at 630 ℃, quenching in water and aging at 60 ℃ may increase the number of the second phase particles, and reduce the large particles, so that the capacitance of the cathode foils becomes higher and almost no powders remain on the surface of the foil. By means of aging after quenching, the precipitated particles and etch-pit density in the foil increase obviously, therefore the favourable microstructures can be produced to improve the specific capacitance of the foils.

  19. Effect of trace Sn on corrosion behaviors of high voltage anode aluminum foil

    Institute of Scientific and Technical Information of China (English)

    SONG Jing-bo; MAO Wei-min; YANG Hong; FENG Hui-ping

    2008-01-01

    The cube texture and the surface corrosion structure of aluminum anode foil for high voltage electrolytic capacitor containing trace Sn were investigated based on quantitative texture analysis and microstructure observation under SEM. High volume fraction of cube texture over 95% and obviously higher specific capacity are obtained in the foils with less than 0.002% Sn. It is indicated that the corrosion behavior of trace Sn on aluminum surface is similar with that of Pb. Higher content of Sn over 0.002% reduces the cube texture component and therefore the specific capacity. Sn, as an eco-friendly microelement, can be applied to replace Pb in improving the homogenous pitting behaviors of high voltage aluminum foils.

  20. Effects of rolling technical factors on microstructures and mechanical properties of aluminum foils

    Institute of Scientific and Technical Information of China (English)

    毛大恒; 温勇明

    2003-01-01

    The effects of rolling driving methods and technical factors on the microstructures and mechanical properties of aluminum foils based on the industrial trials were studied by TEM, tensile test and texture analysis. The results show that there exist obvious dynamic recovery and primary location re-crystallization phenomena in the aluminum foils during high-speed rolling. Meanwhile the phenomena become more obvious as the rolling speed or the reduction increases, especially in the asymmetrical rolling process with single-roller driving, the dynamic primary location recrystallization is more likely to come into being. The effects of the dynamic recovery phenomena and the dynamic primary location recrystallization on the comprehensive final product ratio and the quality of aluminum foils were discussed.

  1. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    International Nuclear Information System (INIS)

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability

  2. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, P. V., E-mail: kpv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Vlasov, I. V. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Sklyarova, E. A.; Smekalina, T. V. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  3. Ultrasonic-assisted ac etching of aluminum foils for electrolytic capacitor electrodes with enhanced capacitance

    International Nuclear Information System (INIS)

    ac etching of high-purity aluminum foils in hybrid acids including hydrochloric acid, sulphuric acid and oxalic acid was investigated and the effects of ultrasonic-assisted stirring on the performances of the etched foils were investigated in this work. Scanning electron microscopy (SEM) was used for observation of the etched foils. Compared with the classically used mechanical stirring (magnetic stirring), the assistance of ultrasonic increased the performance of the etched foil. With 20 V forming voltage, the static capacitance and bending strength of the foils etched with ultrasonic stirring reached 76.5 μF cm-2 and 98 times compared with 71.2 μF cm-2 and 85 times respectively for the foils fabricated with magnetic stirring using 100 μm aluminum foils. The performance enhancement with the assistance of ultrasonic is probably due to the cavitation effects which are beneficial for the remove of protective layer and the dispersion effects which reduce concentration polarization in the bulk etchant solutions.

  4. Numerical simulation of the experiment of electrical explosion of aluminum foil

    Science.gov (United States)

    Shutov, A. V.

    2015-11-01

    Numerical simulation of the experiment of Korobenko et al (2007 Phys. Rev. B 75 064208) in strongly coupled plasma of aluminum have been fulfilled. The results of numerical simulation and the experiment are compared. It is established that the hydrodynamic flows in the experiment can be assumed one-dimensional. The elastic-plastic effects in the dynamics of aluminum foil are also insignificant. The focus in the modeling is devoted to the study of the dynamics of the thermodynamic states of aluminum and their spatial homogeneity. It is emphasized the strong influence of the thermal conductivity for such experiments.

  5. Effect of tunnel structure on the specific capacitance of etched aluminum foil

    Institute of Scientific and Technical Information of China (English)

    Ning Peng; Li-Bo Liang; Ye-Dong He; Hong-Zhou Song; Xiao-Fei Yang; Xiao-Yu Cai

    2014-01-01

    The morphology of etched aluminum foil was observed using scanning electron microscopy, which led to the establishment of a cylindrical model and two merged models, considering the fixed weight loss of etching. The maximum of specific capacitance and the cor-responding optimum values for tunnel sizes at various anodization voltages were predicted. The increased size distribution and taper of tun-nels were demonstrated to decrease the specific capacitance, whereas the addition of polymeric additive into the tunnel widening solution was demonstrated to increase the capacitance. The formation of merged tunnels on the etched aluminum surface, irrespective of the presence of row-merged tunnels or cluster-merged tunnels, resulted in a dramatic decrease in the specific capacitance. It is concluded that, enhancing the uniformity of tunnel size and distribution and avoiding the formation of merged tunnels are the effective approach to achieving the higher capacitance for the tunnel etched and formed aluminum foil.

  6. Distribution of Microelements and Their Influence on the Corrosion Behavior of Aluminum Foil

    Institute of Scientific and Technical Information of China (English)

    Weimin MAO; Heng JIANG; Ping YANG; Huiping FENG; Yongning YU

    2005-01-01

    The distribution of microelement Fe, Si, Cu and Mg in the surface layer of aluminum foil annealed at 300℃ and 500℃ were determined by secondary ion mass spectrometer. The corrosion structure produced by electrochemical etching was also observed. It was found that the Mg concentration at external surface was increased exponentially over the fourth degree and promoted by higher annealing temperature, which will increase the number of corrosion pits inside the large grains, and therefore the specific capacity of the foils for electrolytic capacitors. The similar effects of microelement Fe, Si and Cu were not so strong.

  7. Electrochemical behavior of aluminum foil in 1-alkyl-3-methylimidazolium tetrafiuoroborate ionic liquids electrolytes

    Institute of Scientific and Technical Information of China (English)

    PENG Chengxin; YANG Li; WANG Baofeng; ZHANG Zhengxi; LI Nan

    2006-01-01

    Aluminum (Al) foil is widely used as a current collector in lithium ion batteries, EDLCs and other electrochemical devices, and its electrochemical behavior in electrolytes has great effect on the cycle performances and safety of the electrochemical devices. In this work, corrosion behavior of Al foil in 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and its electrolytes containing LiTFSI as salt were studied using cyclic voltammogram method. It was found that a passive film was firmly formed on the surface of Al foil after the anodic polarization in BMI-BF4 compared to those in EMI-BF4 and PMI-BF4.In addition, anodic polarization research showed that the passive film on Al surface in BMI-TFSI did not well exist. A good passive film formed on the surface of Al foil in BMI-BF4 was not broken down until the potential was up to 94.58 V. Moreover, EDX and XPS analysis showed that F and O exist on the Al surface after the anodic polarization in BMI-BF4, which indicated that a passive film like AIF3 and Al2O3 may be formed on its surface.

  8. Analysis of Cometary Dust Impact Residues in the Aluminum Foil Craters of Stardust

    Science.gov (United States)

    Graham, G. A.; Kearsley, A. T.; Vicenzi, E. P.; Teslich, N.; Dai, Z. R.; Rost, D.; Horz, F.; Bradley, J. P.

    2007-01-01

    In January 2006, the sample return capsule from NASA s Stardust spacecraft successfully returned to Earth after its seven year mission to comet Wild-2. While the principal capture medium for comet dust was low-density graded silica aerogel, the 1100 series aluminum foil (approximately 100 m thick) which wrapped around the T6064 aluminum frame of the sample tray assembly (STA) contains micro-craters that constitute an additional repository for Wild-2 dust. Previous studies of similar craters on spacecraft surfaces, e.g. the Long Duration Exposure Facility (LDEF), have shown that impactor material can be preserved for elemental and mineralogical characterization, although the quantity of impact residue in Stardust craters far exceeds previous missions. The degree of shock-induced alteration experienced by the Wild-2 particles impacting on foil will generally be greater than for those captured in the low-density aerogel. However, even some of the residues found in LDEF craters showed not only survival of crystalline silicates but even their solar flare tracks, which are extremely fragile structures and anneal at around 600 C. Laboratory hypervelocity experiments, using analogues of Wild-2 particles accelerated into flight-grade foils under conditions close to those of the actual encounter, showed retention of abundant projectile residues at the Stardust encounter velocity of 6.1 km/s. During the preliminary examination (PE) of the returned foils, using optical and electron microscopy studies, a diverse range in size and morphologies of micro-craters was identified. In this abstract we consider the state of residue preservation in a diverse range of craters with respect to their elemental composition and inferred mineralogy of the original projectiles.

  9. Numerical modeling of large-area beta sources constructed from anodized-aluminum foils

    International Nuclear Information System (INIS)

    The numerical modeling of large-area beta sources constructed from anodized-aluminum foils is described in this paper. Based on a realistic model for the activity depth distribution, theoretical lower and upper bounds for the efficiency and the transmission coefficient were calculated and used to analyze the comparison method recommended by ISO 8769 for measuring the surface emission rate. The analysis shows that this method can provide measurement results with relative standard uncertainties smaller than 3% for high energy beta emitters such as 90Sr–90Y, 36Cl and 204Tl.

  10. Loften Aluminum Aluminum Foil Output to Reach 120,000 Tons in 2012

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Loften Aluminum Co., Ltd. was founded in 2000 Boxing County, Shandong Province. On 31 March 2010, Loften became an A-share listed company, creating favorable conditions for raising funds to expand its operations.

  11. Effect of trace yttrium on cube texture of high-purity aluminum foils

    Institute of Scientific and Technical Information of China (English)

    刘楚明; 张新明; 陈志永; 蒋红辉; 周卓平

    2001-01-01

    The effect of trace yttrium on cube texture of high-purity aluminum foils has been investigated by means of orientation distribution functions (ODFs). The results show that a small addition of yttrium to high-purity aluminum brings about a considerable increment of the cube texture, and it reduces the content of R texture. The rare earth yttrium may combine with the other impurities to form the metallic compounds, such as FeYAl8, Fe6YAl6, Fe4YAl8 and Si2YAl2. When the precipitation of these particles in the matrix is nearly completed and the Fe concentration in the matrix becomes low, the cube texture can develop well and the R texture can be suppressed.

  12. Effect of the neutral charge fraction in the Coulomb explosion of H{sub 2}{sup +} ions through aluminum foils

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Cristian D. E-mail: cdenton@fis.utfsm.cl; Abril, Isabel; Barriga-Carrasco, Manuel D.; Garcia-Molina, Rafael; Lantschner, Gerardo H.; Eckardt, Juan C.; Arista, Netor R

    2002-06-01

    The Coulomb explosion of the proton fragments dissociated from H{sub 2}{sup +} molecules moving through thin aluminum foils has been studied by means of their energy spectra, measured in the forward direction, and by computer simulations. The covered energy range goes from 25 to 100 keV/u. Estimations of the neutral charge fraction of the fragments inside the foil have been obtained by comparison of the experimental energy spectra with the computer simulations.

  13. A simple method for determining the activity of large-area beta sources constructed from anodized aluminum foils

    International Nuclear Information System (INIS)

    A simple method has been developed for determining the activity of large-area beta reference sources in anodized aluminum foils. It is based on the modeling of the transmission of beta rays through thin foils in planar geometry using Monte Carlo simulation. The method was checked experimentally and measurement results show that the activity of large-area beta reference sources in anodized aluminum foils can be measured with standard uncertainties smaller than the limit of 10% required by ISO 8769. - Highlights: • A method for determining the activity of large-area beta sources is presented. • The method is based on a model of electron transport in planar geometry. • The method makes use of linear programming for determining the activity. • The uncertainty of the method is smaller than 10%

  14. Mechanism of strengthening of cube texture for high purity aluminum foils by additional-annealing

    Institute of Scientific and Technical Information of China (English)

    张新明; 刘胜胆; 唐建国; 周卓平

    2003-01-01

    The mechanism of strengthening of cube texture ({001}〈100〉) by additional-annealing of high purity aluminum foils was investigated by using orientation distribution functions (ODFs) and electron back scattered diffraction (EBSD). The results of ODFs and fiber show that the orientation densities of the S {123}〈634〉 and Cu {112}〈111〉 components increase in both the additional-annealed samples and the 0.11 mm final cold-rolled foils. And the EBSD results demonstrate that cube nuclei can be identified in the deformed matrix of those additional-annealed samples. It is suggested that the strengthening of cube texture can be brought out by the increasing of components of S and Cu and the formation of cube nuclei caused by additional-annealing. Moreover, it is found that the cube texture increases first and then decreases with increasing additional-annealing temperature, and it is the strongest at 180 ℃.The strengthening of cube texture by additional-annealing is proposed as the result of oriented growth of cube subgrains.

  15. Aluminum clad ferritic stainless steel foil for metallic catalytic converter substrate applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.S.; Pandey, A.; Jha, B.

    1996-09-01

    A roll bonding process was developed to produce Al clad ferritic stainless steel foil for the metallic catalytic converter substrate application. Clad foils with different chemistry were produced and their properties were evaluated. Heat treatment conditions for the homogenization of clad foils were identified. This article includes results from oxidation tests and mechanical tests on as-rolled and heat treated clad foil. Results from commercial ingot metallurgy foil were also included for comparison. The oxidation weight gain study indicates that the Al content in the foils is directly related to the usable life of the foil. However, rare earth addition is necessary to improve the oxidation resistance of this material for the high temperature applications by slowing down the weight gain kinetics and thus extend the usable life of foils. The heat treated clad foil also exhibit excellent tensile ductility when compared to the ingot metallurgy foil.

  16. Suntown Technology will Finish the Construction of 200,000 T/A Aluminum Foil Production Base

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>The"200,000 t/a world top ranking aluminum foil processing base"by the Suntown Technology Group is called"201 Project",it is also one of the Group’s key construction projects in 2014.This project formally kicked off in May 2013,and will be fully completed and launched into production at the end of October,2014.The 201 Project mainly

  17. A new method for determining the efficiency of large-area beta sources constructed from anodized aluminum foils

    International Nuclear Information System (INIS)

    A new method has been developed for determining the efficiency of large-area beta sources in anodized aluminum foils using transmission measurements. The method was applied to the efficiency measurement of a 90Sr-90Y large-area reference source. Measurement results show that the method can provide efficiency values for 90Sr-90Y reference sources with standard uncertainties smaller than 2.9%, which are far below the limit of 10% required by ISO 8769.

  18. A new method for determining the efficiency of large-area beta sources constructed from anodized aluminum foils.

    Science.gov (United States)

    Stanga, D; Maringer, F J; Ionescu, E

    2011-01-01

    A new method has been developed for determining the efficiency of large-area beta sources in anodized aluminum foils using transmission measurements. The method was applied to the efficiency measurement of a (90)Sr-(90)Y large-area reference source. Measurement results show that the method can provide efficiency values for (90)Sr-(90)Y reference sources with standard uncertainties smaller than 2.9%, which are far below the limit of 10% required by ISO 8769. PMID:20817476

  19. Fabrication and icing property of superhydrophilic and superhydrophobic aluminum surfaces derived from anodizing aluminum foil in a sodium chloride aqueous solution

    Science.gov (United States)

    Song, Meirong; Liu, Yuru; Cui, Shumin; Liu, Long; Yang, Min

    2013-10-01

    An aluminum foil with a rough surface was first prepared by anodic treatment in a neutral aqueous solution with the help of pitting corrosion of chlorides. First, the hydrophobic Al surface (contact angle around 79°) became superhydrophilic (contact angle smaller than 5°) after the anodizing process. Secondly, the superhydrophilic Al surface became superhydrophobic (contact angle larger than 150°) after being modified by oleic acid. Finally, the icing property of superhydrophilic, untreated, and superhydrophobic Al foils were investigated in a refrigerated cabinet at -12 °C. The mean total times to freeze a water droplet (6 μL) on the three foils were 17 s, 158 s and 1604 s, respectively. Thus, the superhydrophilic surface accelerates the icing process, while the superhydrophobic surface delays the process. The main reason for this transition might mainly result from the difference of the contact area of the water droplet with Al substrate: the increase in contact area with Al substrate will accelerate the heat conduct process, as well as the icing process; the decrease in contact area with Al substrate will delay the heat conduct process, as well as the icing process. Compared to the untreated Al foil, the contact area of the water droplet with the Al substrate was higher on superhydrophilic surface and smaller on the superhydrophobic surface, which led to the difference of the heat transfer time as well as the icing time.

  20. Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure

    Science.gov (United States)

    Dursch, Harry W.; Slemp, Wayne S.

    1988-01-01

    This paper describes the development and evaluation of chromic acid anodized (CAA) Al foil as a protective and thermal control coating for graphite/epoxy tubes designed for the Space Station truss structure. Special consideration is given to the development of solar-absorptance and thermal-emittance properties required of Al foil, the development of CAA parameters necessary to achieve these optical properties, and the atomic oxygen and UV testing of CAA Al foil. Results showed that 0.003-in CAA Al foil cocured or secondary bonded to graphite/epoxy tubes with thin epoxy film adhesive retains excellent bond strength and provides a superior protective and thermal control coating to the LEO environment. Processes were developed for CAA Al foils long enough to continuously wrap the 23-ft-long diagonal struts of the Space Station truss structure. Specifications are presented for the processes of chromic acid anodizing of Al foil and for the bonding of anodized Al foil to graphite/epoxy tubes.

  1. Investigation of the crater-like microdefects induced by laser shock processing with aluminum foil as absorbent layer

    Science.gov (United States)

    Ye, Y. X.; Xuan, T.; Lian, Z. C.; Feng, Y. Y.; Hua, X. J.

    2015-06-01

    This paper reports that 3D crater-like microdefects form on the metal surface when laser shock processing (LSP) is applied. LSP was conducted on pure copper block using the aluminum foil as the absorbent material and water as the confining layer. There existed the bonding material to attach the aluminum foil on the metal target closely. The surface morphologies and metallographs of copper surfaces were characterized with 3D profiler, the optical microscopy (OM) or the scanning electron microscopy (SEM). Temperature increases of metal surface due to LSP were evaluated theoretically. It was found that, when aluminum foil was used as the absorbent material, and if there existed air bubbles in the bonding material, the air temperatures within the bubbles rose rapidly because of the adiabatic compression. So at the locations of the air bubbles, the metal materials melted and micromelting pool formed. Then under the subsequent expanding of the air bubbles, a secondary shock wave was launched against the micromelting pool and produced the crater-like microdefects on the metal surface. The temperature increases due to shock heat and high-speed deformation were not enough to melt the metal target. The temperature increase induced by the adiabatic compression of the air bubbles may also cause the gasification of the metal target. This will also help form the crater-like microdefects. The results of this paper can help to improve the surface quality of a metal target during the application of LSP. In addition, the results provide another method to fabricate 3D crater-like dents on metal surface. This has a potential application in mechanical engineering.

  2. Local deposition of Copper on Aluminum based MWT Back Contact Foil using Cold Spray Technology

    Energy Technology Data Exchange (ETDEWEB)

    Goris, M.J.A.A.; Bennett, I.J.; Eerenstein, W. [ECN Solar Energy, Petten (Netherlands)

    2013-11-15

    MWT cell and module technology has been shown to result in modules with up to 5% higher power output than H-pattern modules and to be suitable for use with thin and fragile cells. In this study, the use of a low cost conductive back-sheet with aluminium as the current carrier in combination with locally applied copper (5 to 30 {mu}m) using the cold spray method is benchmarked against a standard PVF-PET-copper foil in 2 x 2 cell modules. Cell to module losses and reliability during climate chamber tests according to IEC61215 ed. 2, are comparable to module made with the standard foil. Optimizing the cold spray process can result in a cost reduction of more than a factor 10 of the current carrying component, when compared to a full copper conductive back-sheet foil.

  3. Investigation of the crater-like microdefects induced by laser shock processing with aluminum foil as absorbent layer

    International Nuclear Information System (INIS)

    Highlights: • Crater-like microdefects formed on metal surface during laser shock process. • The air bubbles in the bonding material are responsible for forming microdefects. • Adiabatic compression of the air bubbles increases the temperature effectively. • Secondary shock wave induced by air bubbles is responsible for forming the defects. • Temperature increases due to shock heat and plastic deformation are limited. - Abstract: This paper reports that 3D crater-like microdefects form on the metal surface when laser shock processing (LSP) is applied. LSP was conducted on pure copper block using the aluminum foil as the absorbent material and water as the confining layer. There existed the bonding material to attach the aluminum foil on the metal target closely. The surface morphologies and metallographs of copper surfaces were characterized with 3D profiler, the optical microscopy (OM) or the scanning electron microscopy (SEM). Temperature increases of metal surface due to LSP were evaluated theoretically. It was found that, when aluminum foil was used as the absorbent material, and if there existed air bubbles in the bonding material, the air temperatures within the bubbles rose rapidly because of the adiabatic compression. So at the locations of the air bubbles, the metal materials melted and micromelting pool formed. Then under the subsequent expanding of the air bubbles, a secondary shock wave was launched against the micromelting pool and produced the crater-like microdefects on the metal surface. The temperature increases due to shock heat and high-speed deformation were not enough to melt the metal target. The temperature increase induced by the adiabatic compression of the air bubbles may also cause the gasification of the metal target. This will also help form the crater-like microdefects. The results of this paper can help to improve the surface quality of a metal target during the application of LSP. In addition, the results provide another

  4. Investigation of the crater-like microdefects induced by laser shock processing with aluminum foil as absorbent layer

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Y.X., E-mail: yeyunxia@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 21203 (China); Jiangsu Provincial Key Laboratory for Science and Technology of Photon Manufacturing, Jiangsu University, Zhenjiang 212013 (China); Xuan, T.; Lian, Z.C.; Feng, Y.Y.; Hua, X.J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 21203 (China)

    2015-06-01

    Highlights: • Crater-like microdefects formed on metal surface during laser shock process. • The air bubbles in the bonding material are responsible for forming microdefects. • Adiabatic compression of the air bubbles increases the temperature effectively. • Secondary shock wave induced by air bubbles is responsible for forming the defects. • Temperature increases due to shock heat and plastic deformation are limited. - Abstract: This paper reports that 3D crater-like microdefects form on the metal surface when laser shock processing (LSP) is applied. LSP was conducted on pure copper block using the aluminum foil as the absorbent material and water as the confining layer. There existed the bonding material to attach the aluminum foil on the metal target closely. The surface morphologies and metallographs of copper surfaces were characterized with 3D profiler, the optical microscopy (OM) or the scanning electron microscopy (SEM). Temperature increases of metal surface due to LSP were evaluated theoretically. It was found that, when aluminum foil was used as the absorbent material, and if there existed air bubbles in the bonding material, the air temperatures within the bubbles rose rapidly because of the adiabatic compression. So at the locations of the air bubbles, the metal materials melted and micromelting pool formed. Then under the subsequent expanding of the air bubbles, a secondary shock wave was launched against the micromelting pool and produced the crater-like microdefects on the metal surface. The temperature increases due to shock heat and high-speed deformation were not enough to melt the metal target. The temperature increase induced by the adiabatic compression of the air bubbles may also cause the gasification of the metal target. This will also help form the crater-like microdefects. The results of this paper can help to improve the surface quality of a metal target during the application of LSP. In addition, the results provide another

  5. [Use of aluminum foil baths for embedding biological materials in epoxide resins].

    Science.gov (United States)

    Agaev, Iu M; Merkulov, V A

    1975-11-01

    The baths intended for embedding the biological material into epoxide resins are made of aluminium foil, 0.1 mm thick, cut in the form of rectangles (13 X 18 mm). The rectangular foil plates are placed on a soft microporous rubber separator 30--40 mm thick and by means of a form with the base equal to 5 X 10 mm the baths are pressed down by 4 mm deep. The baths are stuck to the paper stripes by rubber cement to ensure easy handling and numeration. In the process of embedding and polymerization the paper stripes having the baths are placed in the exsiccator with P2O5 and thermostate on special aluminium stands. PMID:775710

  6. Effect of hot finishing rolling on cube texture in high purity aluminum foils

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of hot finishing rolling temperature on cube texture in high purity aluminium foils was investigated by means of orientation distribution functions (ODFs). The results show that a relatively strong rotated cube orientation {100}〈011〉 exists when the end temperature of hot finishing rolling is 290  ℃, and the cube texture is the strongest after the final recrystallization. The cold rolling textures are comprised of S?-, Cu- and Bs-components, and the orientation {100}〈011〉 is unstable, it may be split and evolved into two complementary copper components (112) [1—1—1] and (1—1—2) [111] during the cold rolling. And a sharp cube recrystallization texture would nucleate and grow in the deformation matrix with the Cu-orientation.

  7. Chromatographic and Spectral Analysis of Two Main Extractable Compounds Present in Aqueous Extracts of Laminated Aluminum Foil Used for Protecting LDPE-Filled Drug Vials

    OpenAIRE

    Akapo, Samuel O.; Sajid Syed; Anicia Mamangun; Wayne Skinner

    2009-01-01

    Laminated aluminum foils are increasingly being used to protect drug products packaged in semipermeable containers (e.g., low-density polyethylene (LDPE)) from degradation and/or evaporation. The direct contact of such materials with primary packaging containers may potentially lead to adulteration of the drug product by extractable or leachable compounds present in the closure system. In this paper, we described a simple and reliable HPLC method for analysis of an aqueous extract of laminate...

  8. Effects of HNO3 concentration on the pit morphologies of aluminum foil etched in HNO3-HCl and HNO3-H2SO4-HCl solutions

    Institute of Scientific and Technical Information of China (English)

    Quan-xiu Yi; Ye-dong He; Ning Peng; Hong-zhou Song; Xiao-fei Yang; Xiao-yu Cai

    2016-01-01

    In this work, the effects of HNO3 concentration on the pit morphologies of high-cubic-texture aluminum foil etched in HNO3–HCl and HNO3–H2SO4–HCl solutions were investigated. When the aluminum foil was etched in HNO3–HCl solutions, the morphologies of pits transformed from irregular tunnels to typical tunnels (as inverted pyramids) and shallow cuboids as the HNO3 concentration in the etchant solution was increased. However, as the HCl concentration in the etchant solution was increased, the morphologies of pits transformed from shallow cuboids to typical tunnels (as inverted pyramids) and irregular tunnels. When the aluminum foil was etched inn N HNO3–(7.2−n) N H2SO4–0.8 N HCl solutions, the morphologies of the pits transformed from typical tunnels (i.e., the number of sub-tunnels formed on the main tunnels increased) to irregular tunnels (corrugated tunnels and polyline tunnels) as the HNO3 concentration in the etchant solution was increased. These effects are attributed primarily to corrosion on the (100) and (010) faces of pits being accelerated and to the (001) faces be-ing prone to passivation to different degrees when various concentrations of HNO3 are added to the etchant solutions.

  9. Prediction and characterization of heat-affected zone formation due to neighboring nickel-aluminum multilayer foil reaction

    Energy Technology Data Exchange (ETDEWEB)

    Adams, David P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hirschfeld, Deidre A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hooper, Ryan J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Manuel, Michelle V. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.

  10. Analytical Scanning and Transmission Electron Microscopy of Laboratory Impacts on Stardust Aluminium Foils: Interpreting Impact Crater Morphology and the Composition of Impact Residues.

    Energy Technology Data Exchange (ETDEWEB)

    Kearsley, A T; Graham, G A; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N; Chater, R; Wozniakiewicz, P A; Spratt, J; Jones, G

    2006-10-19

    The known encounter velocity (6.1kms{sup -1}) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 has allowed realistic simulation of dust collection in laboratory experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminium foil components of the Stardust collector. In this report we present information on crater gross morphology, the pre-existing major and trace element composition of the foil, geometrical issues for energy dispersive X-ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density and composition for particles impacted upon the Stardust aluminium foils.

  11. Aluminum Foils of the Stardust Interstellar Collector: The Challenge of Recognizing Micrometer-sized Impact Craters made by Interstellar Grains

    Science.gov (United States)

    Kearsley, A. T.; Westphal, A. J.; Burchell, M. J.; Zolensky, Michael E.

    2008-01-01

    Preliminary Examination (PE) of the Stardust cometary collector revealed material embedded in aerogel and on aluminium (Al) foil. Large numbers of sub-micrometer impact craters gave size, structural and compositional information. With experience of finding and analyzing the picogram to nanogram mass remains of cometary particles, are we now ready for PE of the Interstellar (IS) collector? Possible interstellar particle (ISP) tracks in the aerogel are being identified by the stardust@home team. We are now assessing challenges facing PE of Al foils from the interstellar collector.

  12. A review of computer aided interpretation technology for the evaluation of radiographs of aluminum welds

    Science.gov (United States)

    Lloyd, J. F., Sr.

    1987-01-01

    Industrial radiography is a well established, reliable means of providing nondestructive structural integrity information. The majority of industrial radiographs are interpreted by trained human eyes using transmitted light and various visual aids. Hundreds of miles of radiographic information are evaluated, documented and archived annually. In many instances, there are serious considerations in terms of interpreter fatigue, subjectivity and limited archival space. Quite often it is difficult to quickly retrieve radiographic information for further analysis or investigation. Methods of improving the quality and efficiency of the radiographic process are being explored, developed and incorporated whenever feasible. High resolution cameras, digital image processing, and mass digital data storage offer interesting possibilities for improving the industrial radiographic process. A review is presented of computer aided radiographic interpretation technology in terms of how it could be used to enhance the radiographic interpretation process in evaluating radiographs of aluminum welds.

  13. 电解电容器高压阳极用高纯铝箔再结晶组织研究%Study on recrystallization texture of high purity aluminum foil for electrolytic capacitor

    Institute of Scientific and Technical Information of China (English)

    王傲冰; 黄丽颖; 丛福官; 单长智

    2009-01-01

    利用Axiovert 25型金相显微镜对高纯铝箔制备过程中的组织进行了观察和分析.结果表明,轧制变形量越大,高纯铝箔的再结晶组织越细小;高纯铝箔的再结晶过程经历了回复、再结晶和晶粒长大三个阶段;高纯铝箔开始再结晶温度在200℃~230℃之间.%In this paper, Axiovert 25 type metallographic microscope was used to observe and analyze the preparation process of high-purity aluminum foils.The results showed that the greater the rolling deformation rate, the smaller of the recrystallization texture of high purity aluminum foil. The recrystallization process of high purity aluminum foil experienced three stages: reply, recrystallization and grain growth. Beginning recrystallization temperature of high purity aluminum foil is 200℃-230℃.

  14. Fabrication, performance, and figure metrology of epoxy-replicated aluminum foils for hard x-ray focusing multilayer-coated segmented conical optics

    Science.gov (United States)

    Jimenez-Garate, Mario A.; Craig, William W.; Hailey, Charles J.; Christensen, Finn E.; Hussain, Ahsen M.

    2000-11-01

    We fabricated x-ray mirrors for hard x-ray (>= 10 keV) telescopes using multilayer coatings and an improved epoxy- replicated aluminum foil (ERAF) nonvacuum technology. The ERAF optics have approximately 1 arcmin axial figure half- power diameter (HPD) and passed environmental testing. Reflectivity measurements at 8 keV on ERAFs with and without multilayer coatings show a 4.4 to 4.8 angstroms room mean square microroughness for correlation lengths EQ 15 micrometers . To reduce the dominant contribution of mirror assembly and large-scale distortion in the overall telescope HPD, we designed a figure metrology system and a new mounting technique. We describe a cylindrical metrology system built for fast axial and roundness figure measurement of hard x-ray conical optics. These developments lower cost and improve the optics performance of the HEFT (high-energy focusing telescope) and Constellation-X missions.

  15. Processing gamma-based TiAl sheet materials by cyclic cold roll bonding and annealing of elemental titanium and aluminum foils

    International Nuclear Information System (INIS)

    Previous work by the authors investigated cold roll bonding followed by annealing as a simplistic method for processing Ti/TiAl3 multi-layered composites from elemental titanium and aluminum foils. In this study, the Ti/TiAl3 multi-layered composites were subjected to further processing at higher temperatures and increased cyclic cold rolling to promote the formation of gamma-based titanium aluminide (γ-TiAl). The resulting γ-TiAl phase was characterized using light microscopy equipped with digital image analysis, scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Vickers microhardness testing. The thermodynamics and kinetics of the diffusion reaction were investigated using differential scanning calorimetry (DSC) and enthalpy (H), entropy (S), and capacity (C) thermodynamic calculations. The physical, chemical, mechanical, and microstructure changes that accompanied the phase transformation to γ-TiAl was discussed

  16. Fabrication, performance, and figure metrology of epoxy-replicated aluminum foils for hard x-ray focusing multilayer-coated segmented conical optics

    DEFF Research Database (Denmark)

    Jimenez-Garate, M.A.; Craig, W.W.; Hailey, C.J.; Christensen, Finn Erland; Hussain, A.

    2000-01-01

    We fabricated x-ray mirrors for hard x-ray (greater than or equal to 10 keV) telescopes using multilayer coatings and an improved epoxy-replicated aluminum foil (ERAF) nonvacuum technology. The ERAF optics have similar to1 arcmin axial figure half-power diameter (HPD) and passed environmental...... testing. Reflectivity measurements at 8 keV on ERAFs with and without multilayer coatings show a 4.4 to 4.8 A root mean square (rms) microroughness for correlation lengths less than or equal to 15 mum. To reduce the dominant contribution of mirror assembly and large-scale distortion in the overall...... telescope HPD, we designed a figure metrology system and a new mounting technique. We describe a cylindrical metrology system built for fast axial and roundness figure measurement of hard x-ray conical optics. These developments lower cost and improve the optics performance of the HEFT (high-energy focusing...

  17. 纯有机亲水铝箔涂覆材料的制备研究%Development of pure organic hydrophilic coating used for aluminum foil

    Institute of Scientific and Technical Information of China (English)

    董劲; 陈志明

    2011-01-01

    The preparation approach of organic hydrophilic coating used for aluminum foil was described.The experimental data showed that the preparation approach of hydrophilic resin was improved when the mass ratio of polyether prepolymer to polyurethane prepolymer was 1∶1, polyether prepolymer was added into reactor for polymerization and ratio of sodium ethylenesulphonate in monomers was increased.The blending and coating technologies were studied.The results showed that when mass ratio of hydrophilic resin to non-ionic surfactant tween-60 was 8 ~ 10, pH value of the coating was between 6 and 6.5, aluminum foil was pretreated with benzene degreasing and being soaked in lye, baking temperature was 250 ℃ , the coating has excellent long-term hydrophilicity.%介绍了一种纯有机亲水铝箔涂料的制备及研究.对亲水树脂的制备方法进行了改进,并通过实验确定:聚醚预聚体与聚氨酯预聚体投料质量比为1:1;聚合时聚醚预聚体宜加于釜底;应增大乙烯基磺酸钠单体的加入比例.研究了亲水涂料的调配及涂装工艺,确定亲水树脂与表面活性剂吐温-60的质量比在8~10、涂料的pH值在6~6.5,铝箔经汽油漂洗、碱液浸泡脱脂预处理,成膜温度在250℃时,涂膜持续亲水性能优异.

  18. Laboratory Simulation of Impacts upon Aluminum Foils of the Stardust Spacecraft: Calibration of Dust Particle Size from Comet Wild 2

    Science.gov (United States)

    Kearsley, A. T.; Burchell, M. J.; Horz, F.; Cole, M. J.; Schwandt, C. S.

    2006-01-01

    Metallic aluminium alloy foils exposed on the forward, comet-facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminium alloy to record hypervelocity impacts as bowl-shaped craters offers an opportunistic substrate for recognition of impacts by particles of a wide potential size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild 2, with a known and constant spacecraft-particle relative velocity and effective surface-perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration programme we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well-documented particle size range from 10 microns to nearly 100 microns. Light gas gun buckshot firings of these particles at approximately 6km s)exp -1) onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild 2, independent of the active impact detector instruments aboard the Stardust spacecraft.

  19. Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors

    Science.gov (United States)

    Tong, Linyue; Skorenko, Kenneth H.; Faucett, Austin C.; Boyer, Steven M.; Liu, Jian; Mativetsky, Jeffrey M.; Bernier, William E.; Jones, Wayne E.

    2015-11-01

    Laminar composite electrodes are prepared for application in supercapacitors using a catalyzed vapor-phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on the surface of commercial carbon coated aluminum foil. These highly electrically conducting polymer films provide for rapid and stable power storage per gram at room temperature. The chemical composition, surface morphology and electrical properties are characterized by Raman spectroscopy, scanning electron microscopy (SEM), and conducting atomic force microscopy (C-AFM). A series of electrical measurements including cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy are also used to evaluate electrical performance. The processing temperature of VPP shows a significant effect on PEDOT morphology, the degree of orientation and its electrical properties. The relatively high temperature leads to high specific area and large conductive domains of PEDOT layer which benefits the capacitive behavior greatly according to the data presented. Since the substrate is already highly conductive, the PEDOT based composite can be used as electrode materials directly without adding current collector. By this simple and efficient process, PEDOT based composites exhibit specific capacitance up to 134 F g-1 with the polymerization temperature of 110 °C.

  20. Comparison of effects of aluminum foil electrochemical and chemical etching on supercapacitor performance%铝箔电化学与化学刻蚀对超级电容器性能的影响比较

    Institute of Scientific and Technical Information of China (English)

    周海生; 何捍卫; 洪东升; 解东梅; 杨良

    2013-01-01

    对集流体铝箔分别进行电化学刻蚀和化学刻蚀,研究刻蚀时间对铝箔比表面积和表观形貌的影响,以及对用其组装的超级电容器的比电容与等效串联电阻的影响;并通过交流阻抗、循环伏安等性能比较2种刻蚀方法最佳刻蚀时间下铝箔制备的超级电容器的性能。结果表明,电化学刻蚀与化学刻蚀的最佳刻蚀时间分别为60 s和80 s,所组装超级电容器的比电容分别为154.4和165.2 F/g,等效串联电阻分别为1.8Ω和1.4Ω;化学刻蚀制备的铝箔具有较好的表面腐蚀状态,所组装的超级电容器具有较小的等效串联电阻与较大的比电容;2种刻蚀方法刻蚀的铝箔制备的超级电容器经2000次循环后比电容衰减均不超过0.7%,循环性都很好。%The aluminum foil collectors were respectively etched by electrochemical and chemical method. The effect of etching time on specific surface area and apparent morphology of aluminum foil was studied, and the effect of the current collector made with aluminum foil for different etching time on supercapacitor’s specific capacitance and equivalent series resistance was also researched. Performance of supercapacitor made by aluminum foil etched by two etching methods under the optimal etching time were studied and compared by AC impedance, cyclic voltammetry and so on. The results show that the optimal etching time of electrochemical etching and chemical etching are 60 and 80 s respectively, the specific capacitance of supercapacitor prepared under the optimal etching time are 154.4 and 165.2 F/g, and the equivalent series resistance are 1.8 and 1.4 Ω. Aluminum foil etched by chemical method can obtain better surface corrosion condition, and the supercapacitor prepared with aluminum foil etched by chemical method can get smaller equivalent series resistance and bigger specific capacitance. The attenuation of specific capacitance of supercapacitor prepared by

  1. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    International Nuclear Information System (INIS)

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data

  2. A MODERN INTERPRETATION OF THE BARNEY DIAGRAM FOR ALUMINUM SOLUBILITY IN TANK WASTE

    International Nuclear Information System (INIS)

    Experimental and modeling studies of aluminum solubility in Hanford tank waste have been developed and refined for many years in efforts to resolve new issues or develop waste treatment flowsheets. The earliest of these studies was conducted by G. Scott Barney, who performed solubility studies in highly concentrated electrolyte solutions to support evaporator campaign flowsheets in the 1970's. The 'Barney Diagram', a term still widely used at Hanford today, suggested gibbsite (γ-Al(OH)3) was much more soluble in tank waste than in simple sodium hydroxide solutions. These results, which were highly surprising at the time, continue to be applied to new situations where aluminum solubility in tank waste is of interest. Here, we review the history and provide a modern explanation for the large gibbsite solubility observed by Barney, an explanation based on basic research that has been performed and published in the last 30 years. This explanation has both thermodynamic and kinetic aspects. Thermodynamically, saturated salt solutions stabilize soluble aluminate species that are minor components in simple sodium hydroxide solutions. These species are the aluminate dimer and the sodium-aluminate ion-pair. Ion-pairs must be present in the Barney simulants because calculations showed that there was insufficient space between the highly concentrated ions for a water molecule. Thus, most of the ions in the simulants have to be ion-paired. Kinetics likely played a role as well. The simulants were incubated for four to seven days, and more recent data indicate that this was unlikely sufficient time to achieve equilibrium from supersaturation. These results allow us to evaluate applications of the Barney results to current and future tank waste issues or flowsheets.

  3. Tight, Flat, Smooth, Ultrathin Metal Foils for Locating Synchrotron Beams

    International Nuclear Information System (INIS)

    It is often desired to locate a synchrotron x-ray beam precisely in space with minimal disturbance of its spatial profile and spectral content. This can be done by passing the beam through an ultrathin, flat, smooth metal foil having well-defined composition, preferably a single chemical element such as chromium, titanium or aluminum. Localized fluorescence of the foil at characteristic x-ray lines where the x-ray beam passes through the foil serves to locate the beam in two dimensions. Use of two such foils along the beam direction locates the x-ray beam spatially and identifies precisely its direction. The accuracy of determining these parameters depends in part upon high uniformity in the thickness of the foil(s), good planarity, and smoothness of the foil(s). In practice, several manufacturing steps to produce a foil must be carried out with precision. The foil must be produced on a smooth removable substrate in such a way that its thickness (or areal density) is as uniform as possible. The foil must be fastened to a support ring that maintains the foil's surface quality, and it must be then stretched onto a frame that produces the desired mirror flatness. These steps are illustrated and some of the parameters specifying the quality of the resulting foils are identified

  4. Oscillating foil propulsion

    OpenAIRE

    Hauge, Jacob

    2013-01-01

    Unsteady foil theory is discussed and applied on several cases of an oscillating foil. The oscillating foil is meant as a propulsion system for a platform supply vessel.Four case studies of foil oscillation have been performed. A thrust coefficient of 0.1 was achieved at an efficiency of 0.75. A thrust coefficient of minimum 0.184 is necessary to overcome the calm water resistance of the foil.Issues connected to coupled vessel-foil models are discussed.

  5. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    Energy Technology Data Exchange (ETDEWEB)

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  6. Uniformity of aluminium foils

    International Nuclear Information System (INIS)

    Commercially produced rolled and beaten Al foils and evaporated Al foils have been examined for thickness uniformity with an areal resolution of about 5 x 10-6 cm2 by measurements of proton backscattering yield using the Harwell microbeam facility. The evaporated Al foils were found to be uniform to better than 1% but the rolled foils were found to have non-uniformities of as much as 5-10% of their mean thickness. This is sufficient to contribute significantly to systematic errors in measurement of fast heavy ion energy straggling. (Auth.)

  7. Foil Face Seal Testing

    Science.gov (United States)

    Munson, John

    2009-01-01

    In the seal literature you can find many attempts by various researchers to adapt film riding seals to the gas turbine engine. None have been successful, potential distortion of the sealing faces is the primary reason. There is a film riding device that does accommodate distortion and is in service in aircraft applications, namely the foil bearing. More specifically a foil thrust bearing. These are not intended to be seals, and they do not accommodate large axial movement between shaft & static structure. By combining the 2 a unique type of face seal has been created. It functions like a normal face seal. The foil thrust bearing replaces the normal primary sealing surface. The compliance of the foil bearing allows the foils to track distortion of the mating seal ring. The foil seal has several perceived advantages over existing hydrodynamic designs, enumerated in the chart. Materials and design methodology needed for this application already exist. Also the load capacity requirements for the foil bearing are low since it only needs to support itself and overcome friction forces at the antirotation keys.

  8. Expectations for the Laguna foil implosion experiments

    International Nuclear Information System (INIS)

    Building on the results achieved in the Pioneer shot series, the Los Alamos Trailmaster project is embarking on the Laguna foil implosion experiments. In this series a Mark-IX helical generator will be coupled to an explosively formed fuse opening switch, a surface-tracking closing switch, and a vacuum power flow and load chamber. In this paper the system design will be discussed and results from zero-, one-, and two-dimensional MHD simulations will be presented. It is anticipated that the generator will provide more than 10 MA of which ∼5.5 MA will be switched to the 5-cm-radius, 2-cm-high, 250-nm-thick aluminum foil load. This should give rise to a 1 μs implosion with more than 100 kJ of kinetic energy

  9. Design of foil implosion system for Pioneer I experiments

    International Nuclear Information System (INIS)

    A foil implosion system is described that integrates an explosive flux-compression generator, a flat plate feed section with power conditioning switches, and a vacuum electrode region containing a cylindrical foil/plasma load. Power conditioning, obtained with an explosive-driven plasma compression opening switch and explosive-actuated closing switches, provides a submicrosecond multimegampere pulse for the implosion of an aluminum plasma. The flat plate section is configured for bidirectional feed to the coaxial vacuum electrodes. Important considerations in the design of the vacuum power flow region include gap failure, feed symmetry, and radial diagnostic access. The system presently accommodates a foil radius of 3 cm. Innovative foil insertion and clamping techniques are also described

  10. Effect of Pre-deformation and Annealing on Cube Texture in High Purity Aluminum Foils%预变形及退火对高纯铝箔立方织构的影响

    Institute of Scientific and Technical Information of China (English)

    刘楚明; 张新明; 周鸿章; 陈志永; 邓运来

    2001-01-01

    The effect of pre-deformation and annealing on cube texture of high parity aluminium foils has been investigated by means of TEM and method of orientation distribution functions (ODFs).The results showed that the magnitude of stored energy in Al foils was affected by predeformation and annealing,which influenced the precipitation of impurities Fe and Si.While Fe and Si resolve into the Al matrix before final annealing,it can increase the number of cube nucleus during the low temperature period of two-stages annealing.The nucleus can prefer to grow at high temperature stage of final annealing,and the cube texture in high purity Al foils became very strong.%应用TEM和晶体取向分布函数方法研究和分析了预变形和退火工艺对高纯铝箔立方织构的影响。研究结果表明,预变形及退火主要通过影响晶体内的储存能大小,来影响Fe、Si的析出过程,影响成品箔材中立方织构{100}〈001〉取向密度的大小。由于成品退火前Fe、Si能充分固溶在铝基体中,成品低温退火阶段可促使Fe、Si析出,增加立方取向晶粒的形核率,使成品在高温退火阶段晶粒沿立方取向择优长大,大大增加了高纯铝箔中立方织构的比例。

  11. Thinning procedures and strains in the zones near crack tips of thin foils

    Institute of Scientific and Technical Information of China (English)

    李红旗; 陈奇志; 褚武扬

    1999-01-01

    Thinning procedures were observed by TEM in 310 stainless steel and pure aluminum. Foils thinned through shearing of mode Ⅲ crack or through tearing of mode I crack. Using micro-beam electron diffraction, the strains in the areas right ahead of crack tips of pure aluminum and TiAI alloy were measured to be 0.05 or more.

  12. PERFORMANCE OF LUBRICATING OIL FILM IN ALUMINIUM FOIL ROLLING

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The surface of the aluminum foil rolled has been observed with microscope on the basis of industrial experiments, and the structure of the surface adsorption film has been analyzed by means of low angle X-ray diffraction. It is advanced that the lubrication in aluminum foil rolling is in the state of thin film lubrication, surface adsorption film is an ordered multi-layered molecule film with more than 7 layers; and the layers of the ordered molecule film is influenced by the concentration of the additive in certain range; the concentration of the additive in oil is the main factor affecting the stability of rolling, controling the concentration of the additive can control the ratio of fluid friction, boundary friction, and local holding-on in deformation zone,thus obtaining good rolling deformation conditions.

  13. Effect of phototherapy with alumunium foil reflectors on neonatal hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Tony Ijong Dachlan

    2016-07-01

    Full Text Available Background Neonatal hyperbilirubinemia (NH is one of the most common problems in neonates, but it can be treated with blue light phototherapy. Developing countries with limited medical equipment and funds have difficulty providing effective phototherapy to treat NH, leading to increased risk of bilirubin encephalopathy. Phototherapy with white reflecting curtains can decrease the duration of phototherapy needed to reduce bilirubin levels. Objective To compare the duration of phototherapy needed in neonates with NH who underwent phototherapy with and without aluminum foil reflectors. Methods This open clinical trial was conducted from July to August 2013 at Dr. Hasan Sadikin Hospital, Bandung, Indonesia. The inclusion criteria were term neonates with uncomplicated NH presenting in their first week of life. Subjects were randomized into two groups, those who received phototherapy with or without aluminum foil reflectors. Serum bilirubin is taken at 12th, 24th, 48th hours, then every 24 hours if needed until phototherapy can be stopped according to American Academy of Pediatrics guidelines. The outcome measured was the duration of phototherapy using survival analysis. The difference between the two groups was tested by Gehan method. Results Seventy newborns who fulfilled the inclusion criteria and had similar characteristics were randomized into two groups. The duration of phototherapy needed was significantly less in the group with aluminum foil reflectors than in the group without reflectors [72 vs. 96 hours, respectively, (P<0.01]. Conclusion The required duration of phototherapy with aluminum foil reflectors is significantly less than that of phototherapy without reflectors, in neonates with NH.

  14. Effect of phototherapy with alumunium foil reflectors on neonatal hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Tony Ijong Dachlan

    2015-01-01

    Full Text Available Background Neonatal hyperbilirubinemia (NH is one of the most common problems in neonates, but it can be treated with blue light phototherapy. Developing countries with limited medical equipment and funds have difficulty providing effective phototherapy to treat NH, leading to increased risk of bilirubin encephalopathy. Phototherapy with white reflecting curtains can decrease the duration of phototherapy needed to reduce bilirubin levels. Objective To compare the duration of phototherapy needed in neonates with NH who underwent phototherapy with and without aluminum foil reflectors. Methods This open clinical trial was conducted from July to August 2013 at Dr. Hasan Sadikin Hospital, Bandung, Indonesia. The inclusion criteria were term neonates with uncomplicated NH presenting in their first week of life. Subjects were randomized into two groups, those who received phototherapy with or without aluminum foil reflectors. Serum bilirubin is taken at 12th, 24th, 48th hours, then every 24 hours if needed until phototherapy can be stopped according to American Academy of Pediatrics guidelines. The outcome measured was the duration of phototherapy using survival analysis. The difference between the two groups was tested by Gehan method. Results Seventy newborns who fulfilled the inclusion criteria and had similar characteristics were randomized into two groups. The duration of phototherapy needed was significantly less in the group with aluminum foil reflectors than in the group without reflectors [72 vs. 96 hours, respectively, (P<0.01]. Conclusion The required duration of phototherapy with aluminum foil reflectors is significantly less than that of phototherapy without reflectors, in neonates with NH. [Paediatr Indones. 2015;55:18-22.].

  15. Electrochemical behavior of aluminum in Grignard reagents/THF electrolytic solutions for rechargeable magnesium batteries

    International Nuclear Information System (INIS)

    The electrochemical behavior of the aluminum current collector with a fresh surface (the scratched aluminum foil) in three kinds of Grignard reagents/THF electrolytic solutions has been studied by cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS) analysis methods. The experimental results show that the passivating film on aluminum foils after five cycles of CV tests is mainly composed of Al2O3. The pitting potentials of scratched aluminum foils in three kinds of Grignard reagents/THF electrolytic solutions increase in the order of EtMgCl/THF −1 EtMgBr/THF solution has been investigated by electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR) analysis methods. The pitting resistance of aluminum foils by different surface treatment processes in 1 mol L−1 EtMgBr/THF solution increases in the order of the scratched aluminum foil < the heated aluminum foil < the normal aluminum foil. These results demonstrate that a layer of dense protective oxide film is important for the aluminum current collector to suppress the pitting corrosion

  16. Foil electrode sper light source

    International Nuclear Information System (INIS)

    Numerous laser transitions in the visible and near-infrared in four metal vapors (Li, Al, Ca, and Cu) have been observed in the recombination phase of the expanding plasmas produced by a segmented plasma device employing foil electrodes. Also described is a segmented vapor plasma discharge in using Ni foil electrodes

  17. Measurement of thermal, epithermal and fast neutron flux in the IEA-R1 reactor by the foil activation method

    International Nuclear Information System (INIS)

    Experimental and theoretical details of the foil activation method applied to neutrons flux measurements at the IEA-R1 reactor are presented. The thermal - and epithermal - neutron flux were determined form activation measurements of gold, cobalt and manganese foils; and for the fast neutron flux determination, aluminum, iron and nickel foils were used. The measurements of the activity induced in the metal foils were performed using a Ge-Li gamma spectrometry system. In each energy range of the reactor neutron spectrum, the agreement among the experimental flux values obtained using the three kind of materials, indicates the consistency of the theoretical approach and of the nuclear parameters selected. (Author)

  18. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si-xTi Foils as Active Interlayer

    Science.gov (United States)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-02-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si-xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  19. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si- xTi Foils as Active Interlayer

    Science.gov (United States)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-06-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si- xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  20. Mechanical properties of polyethylene foils

    OpenAIRE

    Ľubomír KUBÍK; Stanislav Zeman

    2014-01-01

    The paper deals with the evaluation of the mechanical properties of the polyethylene foils such as the stress, strain, modulus of elasticity and stress and strain in the moment of breaking. The thin foils (50 mm) which contained 91 % of polyethylene Bralen RA 2–63 and 9 % colored concentrate Maxithen were studied. Four sorts of foils were examined: Maxithen HP 1510 – white, Maxithen HP 231111 – yellow, Maxithen HP 533031 – blue and Maxithen HP 533 041 – violet. Longitudinal and transversal te...

  1. Shielding effect of foil covers

    International Nuclear Information System (INIS)

    For neutron spectrum determinations one often irradiates activation detectors in boxes of cadmium, or of another material. Several models for the neutron attenuation in such foil covers are being studied. Preliminary experience is presented. (author)

  2. Hydrogen permeation through metallic foils

    International Nuclear Information System (INIS)

    The process of electrolytic permeation of hydrogen through metallic foils is studied. A double electrolytic cell, in glass, in which the two compartments of reaction are separated by a metallic foil to be studied, was built. As direct result, the hydrogen diffusion coefficient in the metal is obtained. The hydrogen diffusion coefficients in the palladium and, in austenitic stainless steels 304 and 304 L, used in the Angra-1 reactor, were obtained. Samples of stainless steels with and without welding, were used. (Author)

  3. Production of large screen-mounted aluminium neutralizer foils

    Science.gov (United States)

    Stoner, John O.

    1989-10-01

    In order to convert large-diameter beams of H - to neutral H atoms, aluminum foils having a diameter of 90 cm or more and an areal density of typically 8-12 μg/cm 2 have been proposed. Production of such foils, uniform in thickness to ±20% or better and mounted on thin wire grids, has been accomplished by careful control of substrate preparation, parting-agent application, spatial location of coating filaments, floating speed and temperature, and pickup procedure. Lexan (TM) polycarbonate substrates have been used, because of their uniformity of surface quality. Evaporated NaCl has been used as the parting agent, and an alloy containing 1% silicon rather than pure aluminum has been used as the foil material for greater strength and reliability. To obtain coated areas sufficiently large and uniform, substrates having dimensions of 1.2 m × 1.2 m have been used. A specially configured water tank having a volume of 3.2 m 3 has been built to accept such large substrates. Floating has been done in chilled water to improve its stability, minimize variations in surface tension, and to prevent the development of air bubbles on immersed surfaces. Fractional coverage of better than 95% on meshes having unsupported diameters of greater than 90 cm can now be obtained on a routine basis.

  4. Measurement of XUV-absorption spectra of ZnS radiatively heated foils

    CERN Document Server

    Kontogiannopoulmos, Nikolaos; Thais, Frédéric; Chenais-Popovics, Claude; Sauvan, Pascal; Schott, R; Fölsner, Wolfgang; Arnault, Philippe; Poirier, Michel; Blenski, Thomas

    2008-01-01

    Time-resolved absorption of zinc sulfide (ZnS) and aluminum in the XUV-range has been measured. Thin foils in conditions close to local thermodynamic equilibrium were heated by radiation from laser-irradiated gold spherical cavities. Analysis of the aluminum foil radiative hydrodynamic expansion, based on the detailed atomic calculations of its absorption spectra, showed that the cavity emitted flux that heated the absorption foils corresponds to a radiation temperature in the range 55 60 eV. Comparison of the ZnS absorption spectra with calculations based on a superconfiguration approach identified the presence of species Zn6+ - Zn8+ and S5+ - S6+. Based on the validation of the radiative source simulations, experimental spectra were then compared to calculations performed by post-processing the radiative hydrodynamic simulations of ZnS. Satisfying agreement is found when temperature gradients are accounted for.

  5. Method for fabricating uranium foils and uranium alloy foils

    Science.gov (United States)

    Hofman, Gerard L.; Meyer, Mitchell K.; Knighton, Gaven C.; Clark, Curtis R.

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  6. DuraFoil{sup TM} ICR-a new material for catalytic converter substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sukonnik, I.M.; Chang, S.; Jha, B. [Texas Instruments, Inc., Attleboro, MA (United States)

    1997-12-31

    A new type of FeCrAl material for catalytic converter substrate applications, DuraFoil{sup TM} ICR, has been developed by solid state bonding of strip layers of steel and aluminum. Such clad material is further rolled to intermediate gauge and then subjected to a thermal in situ reaction to form a solid solution material. Such monolithic material is subsequently thermomechanically processed to foil gauges. The combination of roll bonding followed by thermo-mechanical processing to produce FeCrAl foil for metallic catalytic converter substrate offers many metallurgical and economic advantages over conventional ingot metallurgy practice. The fact that thermal diffusion was performed at the intermediate gauge prior to reaching the final foil thickness gives material properties for use in the wider design range of catalytic converters. In its simplest form, the requirements for a catalytic converter substrate (foil material) are dictated by four major factors: oxidation resistance; shape stability; formability (applicable ductility); and compatibility with typical substrate processing technologies such as brazing and washcoating. To this end, the microstructures, mechanical properties, chemical homogeneity, surface chemistry and morphology of two DuraFoil{sup TM} new grades foil materials, i.e., ICR-H (hard) and ICR-F (soft), were characterized. This study has shown those superior properties, desirable formability can be achieved from diffusion-made material. (orig.)

  7. Carbon foils for space plasma instrumentation

    Science.gov (United States)

    Allegrini, F.; Ebert, R. W.; Funsten, H. O.

    2016-05-01

    Carbon foils have been successfully used for several decades in space plasma instruments to detect ions and neutral atoms. These instruments take advantage of two properties of the particle-foil interaction: charge conversion of neutral atoms and/or secondary electron emission. This interaction also creates several adverse effects for the projectile exiting the foil, such as angular scattering and energy straggling, which usually act to reduce the sensitivity and overall performance of an instrument. The magnitude of these effects mainly varies with the incident angle, energy, and mass of the incoming projectile and the foil thickness. In this paper, we describe these effects and the properties of the interaction. We also summarize results from recent studies with graphene foils, which can be made thinner than carbon foils due to their superior strength. Graphene foils may soon replace carbon foils in space plasma instruments and open new opportunities for space research in the future.

  8. Dynamic imaging and hydrodynamics study of high velocity, laser-accelerated thin foil targets using multiframe optical shadowgraphy

    Indian Academy of Sciences (India)

    S Tripathi; S Chaurasia; P Leshma; L J Dhareshwar

    2012-12-01

    The main aim of the study of thin target foil–laser interaction experiments is to understand the physics of hydrodynamics of the foil acceleration, which is highly relevant to inertial confinement fusion (ICF). This paper discusses a simple, inexpensive multiframe optical shadow-graphy diagnostics developed for dynamic imaging of high velocity laser-accelerated target foils of different thicknesses. The diagnostic has a spatial and temporal resolution of 12 m and 500 ps respectively in the measurements. The target velocity is in the range of 106 - 107 cm/s. Hydrodynamic efficiency of such targets was measured by energy balance experiments together with the measurement of kinetic energy of the laser-driven targets. Effect of target foil thickness on the hydrodynamics of aluminum foils was studied for determining the optimum conditions for obtaining a directed kinetic energy transfer of the accelerated foil. The diagnostics has also been successfully used to study ablatively accelerated targets of other novel materials.

  9. How Thin Is Foil? Applying Density to Find the Thickness of Aluminum Foil

    Science.gov (United States)

    Concannon, James P.

    2011-01-01

    In this activity, I show how high school students apply their knowledge of density to solve an unknown variable, such as thickness. Students leave this activity with a better understanding of density, the knowledge that density is a characteristic property of a given substance, and the ways density can be measured. (Contains 4 figures and 1 table.)

  10. Application of an Active Foil Propeller

    OpenAIRE

    Borgen, Christian Thomas

    2010-01-01

    In this master thesis the author has investigated the potential benefits from an active foil propeller. Foils are mounted on the hull and take advantage of the heaving and pitching motion of the vessel travelling and produce thrust, similarly to the tail find of aquatic mammals. Active foil means that the angle of the foil has been controlled to constantly maximise the thrust.The author has investigated the potential fuel savings for three vessels, an offshore supply vessel, a coastal tanker ...

  11. Passive Thermal Management of Foil Bearings

    Science.gov (United States)

    Bruckner, Robert J. (Inventor)

    2015-01-01

    Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.

  12. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  13. Characterization of the GEM foil materials

    CERN Document Server

    Benussi, L; Saviano, G; Muhammad, S; Piccolo, D; Raffone, G; Caponero, M; Passamonti, L; Pierluigi, D; Russo, A; Primavera, F; Cerbelli, S; Lalli, A; Valente, M; Ferrini, M; Teissandier, B; Taborelli, M; Parvis, M; Grassini, S; Tirilló, J; Sarasini, F; Franchi, A V

    2015-01-01

    Systematic studies on the GEM foil material are performed to measure the moisture diffusion rate and saturation level. These studies are important because the presence of this compound inside the detector's foil can possibly change its mechanical and electrical properties and, in such a way, the detector performance can be affected. To understand this phenomenon, a model is developed with COMSOL Multhiphysics v. 4.3, which described the adsorption and diffusion within the geometry of GEM foil, the concentration profiles and the time required to saturate the foil. The COMSOL model is verified by experimental observations on a GEM foil sample. This note will describe the model and its experimental verification results.

  14. Shock compression response of highly reactive Ni + Al multilayered thin foils

    Science.gov (United States)

    Kelly, Sean C.; Thadhani, Naresh N.

    2016-03-01

    The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compression response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ˜150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence

  15. Enabling aqueous binders for lithium battery cathodes - Carbon coating of aluminum current collector

    Science.gov (United States)

    Doberdò, Italo; Löffler, Nicholas; Laszczynski, Nina; Cericola, Dario; Penazzi, Nerino; Bodoardo, Silvia; Kim, Guk-Tae; Passerini, Stefano

    2014-02-01

    In this manuscript a novel approach to enable aqueous binders for lithium ion battery (LIB) cathodes is reported. Producing LiNi1/3Mn1/3Co1/3O2 (NMC) electrodes using sodium-carboxymethylcellulose (CMC) as a binder and water as a solvent, in fact, results in serious aluminum corrosion during electrode manufacturing due to the high pH of the slurry. In order to prevent the direct contact of the corrosive slurry with aluminum foil, the latter is first coated with a thin carbon layer. The CMC-based electrodes formed on carbon coated aluminum foil show enhanced performance than those made using unprotected aluminum instead. In particular, electrodes using protected aluminum foil are able to deliver a capacity of 126 mAh g-1 at 1C rate, which is rather close to that delivered by polyvinylidene-di-fluoride (PVdF)-based electrode having the same composition.

  16. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  17. Hot foil transducer skin friction sensor

    Science.gov (United States)

    Vranas, T. (Inventor)

    1982-01-01

    The device utilizes foil transducers with only one edge exposed to the fluid flow. The surfaces are polished producing a foil transducer that does not generate turbulence while sufficiently thick to carry the required electrical current for high temperature fluid flow. The assembly utilizes a precut layered metal sandwich with attached electrodes eliminating a need for welding and individual sensor calibration.

  18. Nuclear Propulsion using Thin Foiled Fuel

    Science.gov (United States)

    Takahashi, H.

    1998-11-01

    A new way to produce plasma for nuclear propulsion is proposed. A thin foiled fuel can be used for converting fission energy to propulsion energy efficiently. The fission products coming out of the thin foil directly ionize the hydrogen molecules which are used for propulsion. Thus very small portion of fission energy deposited in the thin foil, and integrity of the thin foiled fuel can be maintained even in high nuclear power. Fuel material with large thermal fission cross-section is preferable to make thin foiled fuel and the heat deposition in the foil can be reduced. To get high power from the foiled fuel assembly, thermal neutrons which are created out from the assembly can be supplied, or the assembly itself can create the high intensity thermal neutrons by self-multiplication. A flexible design of a highly efficient nuclear propulsion system can be made. The thickness of the foil and the maintenance of the thermo-mechanical integrity can be determined from the fission cross-section and the slowing down power for fission products. The talk discusses the issues related to heat removal from the assembly.

  19. Dress Images on Gold-foil Figures

    DEFF Research Database (Denmark)

    Mannering, Ulla; Andersson Strand, Eva Birgitta

    2009-01-01

    From the Late Iron Age settlement Sorte Muld on Bornholm both gold foil figures with depictions of costumes and textile tools can tell about textile production.......From the Late Iron Age settlement Sorte Muld on Bornholm both gold foil figures with depictions of costumes and textile tools can tell about textile production....

  20. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  1. Experimental research of the fine foil explosion dynamics

    International Nuclear Information System (INIS)

    The work is devoted to studying of substances properties at high specific deposit energy using double-frame pulsed backlighting system. The high specific deposit energy was reached at electrical conductor explosion (ECE). Fast mode of ECE was investigated. Fine foils of aluminum, copper, titanium and nickel were used as conductors. Experiments were carried out on the experimental complex consisting of three current generators. The first generator WEG-' was used for explosion of the fine conductors. This generator represents fast capacitor with capacity 250 nF, which was charged to voltage 10 to 30 kV. The investigated conductor was mounted in special holder and the foil contacts with the electrodes were soldered. Two other generators - radiographs XPG-1 and G2 with x-pinch load were used two frame X-ray backlighting imaging. The generators current pulses had amplitude 300 kA and rising time 180 ns with a low inductance load. Four crossed molybdenum wires with diameter of 25 μm were used to form an x-pinch. Using of the x-pinches soft x-ray radiation the images of exploded foil were registered with temporal resolution of 2 ns. The images were detected by a photo film located behind the filter. The x-ray imaging, together with the measurements of the current flowing through a conductor and voltage on the exploded conductor had allowed inferring of the energy deposited into the conductor, delay time of the bubbles formation relative to the moment of current- cutoff and the time dependence of the vapor bubbles quantity

  2. Short-pulse high intensity laser thin foil interaction

    Science.gov (United States)

    Audebert, Patrick

    2003-10-01

    The technology of ultrashort pulse laser generation has progressed to the point that optical pulses larger than 10 J, 300 fs duration or shorter are routinely produced. Such pulses can be focused to intensities exceeding 10^18 W/cm^2. With high contrast pulses, these focused intensities can be used to heat solid matter to high temperatures with minimal hydrodynamic expansion, producing an extremely high energy-density state of matter for a short period of time. This high density, high temperature plasma can be studied by x-ray spectroscopy. We have performed experiments on thin foils of different elements under well controlled conditions at the 100 Terawatt laser at LULI to study the characteristics X-ray emission of laser heated solids. To suppress the ASE effect, the laser was frequency doubled. S-polarized light with a peak intensity of 10^19W/cm^2 was used to minimize resonance absorption. To decrease the effect of longitudinal temperature gradients very thin (800 μ) aluminum foil targets were used. We have also studied the effect of radial gradient by limiting the measured x-ray emission zone using 50μ or 100μ pinhole on target. The spectra, in the range 7-8Å, were recorded using a conical crystal spectrometer coupled to a 800 fs resolution streak camera. A Fourier Domain Interferometry (FDI) of the back of the foil was also performed providing a measurement of the hydrodynamic expansion as function of time for each shot. To simulate the experiment, we used the 1D hydrodynamic code FILM with a given set of plasma parameter (ρ, Te) as initial conditions. The X-ray emission was calculated by post processing hydrodynamic results with a collisional-radiative model which uses super-configuration average atomic data. The simulation reproduces the main features of the experimental time resolved spectrum.

  3. BEAM-FOIL SPECTROSCOPY OF CHLORINE AND SULFUR IONS

    OpenAIRE

    Frot, D.; Barchewitz, R.; Cukier, M.; Dei-Cas, R.; Bruneau, J

    1987-01-01

    We report on the measurement of spectra of highly stripped chlorine and sulfur ions in the energy ranges of, respectively, 2900 - 3500 eV and 2300 - 2600 eV. The spectra have been obtained after excitation of ions travelling through a thin carbon foil . X-rays emitted by the emerging beam are analyzed with a Johanntype bent crystal spectrometer. The observation angle with respect to the beam axis is 54°. The interpretation of the spectra is performed by comparing experimental results with Mul...

  4. Effects of the foil flatness on the stress-strain characteristics of U10Mo alloy based monolithic mini-plates

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Ozaltun; Pavel Medvedev

    2014-11-01

    The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate from RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.

  5. Hyaluronan-lecithin foils and their properties

    Energy Technology Data Exchange (ETDEWEB)

    BiaIopiotrowicz, Tomasz [Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-SkIodowska University, Maria Curie-SkIodowska Square 3, 20-031 Lublin (Poland); Janczuk, BronisIaw [Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-SkIodowska University, Maria Curie-SkIodowska Square 3, 20-031 Lublin (Poland); Fiedorowicz, Maciej [Department of Chemistry, Agricultural University of Krakow, Mickiewicz Ave., 21, 31 120 Cracow (Poland); Khachatryan, Gohar [Department of Chemistry, Agricultural University of Krakow, Mickiewicz Ave., 21, 31 120 Cracow (Poland); Tomasik, Piotr [Department of Chemistry, Agricultural University of Krakow, Mickiewicz Ave., 21, 31 120 Cracow (Poland)]. E-mail: rrtomasi@cyf-kr.edu.pl; Bakos, Dusan [Faculty of Chemical and Food Technology, Slovak Technical University, Radlinskeho 9, 812 37 Bratislava (Slovakia)

    2006-01-10

    Thin, elastic foils of good resistance to the air exposure, patented as wound healing aids, were prepared by evaporation of a blend of lecithin (L) and sodium hyaluronan (H) taken under varying proportions. The contact angle for water, glycerol, formamide, ethylene glycol and diiodomethane, was determined for these foils. The contact angle was correlated against the H:L foil composition. For all liquids but formamide the highest contact angle was noted for the H:L = 2:1 (g g{sup -1}) ratio. The contact angles provided estimation of the work of adhesion. At the same L:H ratio the work of adhesion was the lowest. It was suggested that lecithin cross-linked hyaluronan. Since the work of adhesion of the studied liquids was similar to that of diiodomethane, it could be concluded that almost all functional groups on the foil surface were completely blocked. Perhaps, at H:L = 2:1 (g g{sup -1}) a stoichiometric complex of hyaluronic acid with lecithin was formed, and polar functional groups from both reagents were involved. Foils seem to be electrostatic complexes of H with L. Foils with the H:L equal to 2:1 exhibited specific properties confirmed by the IR reflectance spectra of the foils. The thermogravimetry (TG/DTG) also revealed unique thermal behaviour confirming other specific properties of the foil of this composition. For the same ratio a thorough inspection of the scanning electron micrographs (SEM) revealed few irregularly distributed perforations of 1-2 {mu}m in diameter seen as black points, which can be recognized as pores. Properties of the foils determined in the contact angle measurements are nicely backed by the results from thermogravimetric and scanning electron microscopic studies.

  6. Hyaluronan-lecithin foils and their properties

    International Nuclear Information System (INIS)

    Thin, elastic foils of good resistance to the air exposure, patented as wound healing aids, were prepared by evaporation of a blend of lecithin (L) and sodium hyaluronan (H) taken under varying proportions. The contact angle for water, glycerol, formamide, ethylene glycol and diiodomethane, was determined for these foils. The contact angle was correlated against the H:L foil composition. For all liquids but formamide the highest contact angle was noted for the H:L = 2:1 (g g-1) ratio. The contact angles provided estimation of the work of adhesion. At the same L:H ratio the work of adhesion was the lowest. It was suggested that lecithin cross-linked hyaluronan. Since the work of adhesion of the studied liquids was similar to that of diiodomethane, it could be concluded that almost all functional groups on the foil surface were completely blocked. Perhaps, at H:L = 2:1 (g g-1) a stoichiometric complex of hyaluronic acid with lecithin was formed, and polar functional groups from both reagents were involved. Foils seem to be electrostatic complexes of H with L. Foils with the H:L equal to 2:1 exhibited specific properties confirmed by the IR reflectance spectra of the foils. The thermogravimetry (TG/DTG) also revealed unique thermal behaviour confirming other specific properties of the foil of this composition. For the same ratio a thorough inspection of the scanning electron micrographs (SEM) revealed few irregularly distributed perforations of 1-2 μm in diameter seen as black points, which can be recognized as pores. Properties of the foils determined in the contact angle measurements are nicely backed by the results from thermogravimetric and scanning electron microscopic studies

  7. Analysis of Mechanical Properties for GEM Foil

    CERN Document Server

    Chin, Yuk Ming

    2016-01-01

    In view of new assembly technique of the GEM detector; in which three foils stack is stretched to get the uniform gaps among the foils. We studied the mechanical properties of the foil material. We conditioned the samples in different environments to make them extra dry and wet. As holes are the major source of the charge amplification their deformation can effect the detector performance. Therefore in our studies we also studied at which level of the stress the holes deformation is seen. These tensile and holes deformation studies can help to optimize the stress during detector assembly.

  8. Tilted foils polarization at REX-ISOLDE

    CERN Document Server

    Tornqvist, H; Yordanov, D T; Imai, N; Heinz, A; Nilsson, T; Sotty, C; Hass, M; Georgiev, G; Johansson, H; Dhal, A; Stuchbery, A; Wenander, F; Hirayama, Y; Kusoglu, A; Balabanski, D

    2013-01-01

    The tilted-foils nuclear-spin polarization method has been evaluated using the REX-ISOLDE linear accelerator at the ISOLDE facility, CERN. A beam of Li-8 delivered with an energy of 300 keV/u traversed through one Mylar foil to degrade the beam energy to 200 keV/u and consequently through 10 thin diamond-like carbon foils to polarize the nuclear spin. The attained nuclear spin polarization of 3.6 +/- 0.3% was measured with a beta-NMR setup. (C) 2013 Elsevier B.V. All rights reserved.

  9. Aluminum/glass fibre and aluminum/carbon fibre hybrid laminates

    Directory of Open Access Journals (Sweden)

    Ana STAN

    2010-06-01

    Full Text Available The metal/fibre hybrid laminates consist of an alternation of 0.2 ÷ 0.5 mm metallic sheets(Aluminum or Titanium in Aeronautical Engineering and pre-pregs made of unidirectional carbon oraramid or glass fibre or of the two-dimensional fabric of these materials, bonded by a polymeradhesive (epoxy, especially. Compared with the monolithic metal foils, the essential quality of thesehybrid laminates is their superior resistance to fatigue, impact and crack propagation (existing ormade by notches. The paper presents some results regarding hybrid laminates aluminium-carbonfibre and aluminum-glass fibre achieved in the CEEX project X1C05 (2005.

  10. MUPLEX: a compact multi-layered polymer foil collector for micrometeoroids and orbital debris

    Energy Technology Data Exchange (ETDEWEB)

    Kearsley, A T; Graham, G A; Burchell, M J; Taylor, E A; Drolshagen, G; Chater, R J; McPhail, D

    2004-10-04

    Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit. We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MULPEX (MUlti-Layer Polymer EXperiment) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimized for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 micron and 40 micron) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminum casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilizing buck-shot firings of analogues to micrometeoroids (35-38 micron olivine) and space debris (4 micron alumina and 1mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimeter dimensions. Penetrations of the top foil are easily recognized, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.

  11. Effects of the shape of the foil corners on the irradiation performance of U10Mo alloy based monolithic mini-plates

    Energy Technology Data Exchange (ETDEWEB)

    Ozaltun, Hakan [Idaho National Laboratory; Medvedev, Pavel G [Idaho National Laboratory

    2015-06-01

    Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.

  12. Accident analysis for the NCSC foil experiment

    International Nuclear Information System (INIS)

    An accident analysis has been performed for the nuclear criticality safety class (NCSC) foil experiment. The Los Alamos Critical Experiments Facility (LACEF) performs this experiment regularly during its 2-, 3-, and 5-day nuclear criticality safety classes. This accident analysis is part of an effort to modify the NCSC foil experiment plan so that the experiment may be operated at delayed critical. Currently, the NCSC foil experiment may only be operated up to a neutron multiplication of 100. The purpose of the accident analysis is to ensure that any accidental nuclear excursion does not exceed the boundary of the safety envelope described in the LACEF safety analysis report (SAR). The experiment consists of very thin, highly enriched (93% 235U) uranium metal foils (23 X 23 X 0.008 cm) interleaved between Lucite plates (36 X 36 X 1.27 cm). The fuel foils and Lucite plates are stacked vertically to form a critical assembly. Extra Lucite plates placed at the top and bottom of the assembly act as vertical reflectors. The assembly is operated remotely with the use of a general-purpose vertical-lift platform machine. The accident scenario consists of one additional fuel foil being added to an existing critical or nearly critical stack. The reactivity insertion rate is 0.05 $/s, based on the speed of the vertical-lift platform. It is assumed that none of the safety systems will function properly during the accident and that the operating crew is unable to mitigate the accident

  13. Tungsten foil laminate for structural divertor applications – Analyses and characterisation of tungsten foil

    International Nuclear Information System (INIS)

    It has been attempted for several years to synthesise a tungsten material with a low brittle-to-ductile transition temperature and a high fracture toughness that can be used for structural parts. It was shown in our previous work that tungsten foil is ductile at room temperature and that this ductility can be transformed to bulk by synthesising a tungsten laminate. In this work we want to focus on tungsten foil and assess the microstructure as well as the mechanical properties of the foil. The assessment of the microstructure of 0.1 mm tungsten foil will be performed using electron microscopy. It will be shown that the grains of the tungsten foil have a dimension of 0.5 μm × 3 μm × 15 μm and a clear texture in (1 0 0) 〈0 1 1〉. This texture becomes even more pronounced by annealing. Three-point-bending tests with tungsten foil, as-received, will define the barriers: ductile at room temperature and brittle in liquid nitrogen (−196 °C). This shows that the ductility is a thermally activated process. Recrystallised tungsten foil (annealed for 1 h/2700 °C) shows ductile material behaviour at 200 °C. The paper closes with a discussion on the reasons of the ductility of 0.1 mm tungsten foil. These might be the ultra fine grained (UFG) microstructure or, in other words, a nano microstructure (see tungsten foil as-received), the high amount of mobile edge dislocations, and/or the foil effect, which means that dislocations can move to the surface and are annihilated (see tungsten foil recrystallised).

  14. Study of iron and aluminum binding to Suwannee River fulvic acid using absorbance and fluorescence spectroscopy: comparison of data interpretation based on NICA-Donnan and Stockholm humic models.

    Science.gov (United States)

    Yan, Mingquan; Benedetti, Marc F; Korshin, Gregory V

    2013-09-15

    This study examined the evolution of absorbance and fluorescence spectra of standard Suwannee River fulvic acid (SRFA) induced by its interactions with iron and aluminum. The results show that changes of SRFA absorbance are associated with a consistent response of the carboxylic and phenolic functional groups to iron and aluminum forming bonds with these groups, and their deprotonation induced by such binding. The observed changes of SRFA absorbance were quantified via the use of DSlope325-375 parameter that determines the behavior of the slope of logarithms of SRFA absorbance in the range of wavelengths 325-375 nm in the presence of varying concentrations of iron or aluminum. DSlope325-375 values were correlated linearly with the concentration of SRFA-bound iron and aluminum determined using either NICA-Donnan or Stockholm Humic Model (SHM) but the correlation was stronger for the former model (R(2) > 0.98). The slopes of these correlations were similar for both iron and aluminum concentrations <10.0 μM and at a wide pH range. Fluorescence of SRFA was responsive to metal binding but it changed less consistently in the presence of the examined metals, especially in the case of aluminum. The combination of these techniques can help explore in more detail manifestations of DOM site specificity at realistically low concentrations of DOM and metal ions. PMID:23850210

  15. Orientation and alignment effects in beam foil experiments with tilted foils

    International Nuclear Information System (INIS)

    A general density matrix theory is formulated to account for recently observed orientation and alignment effects in beam foil experiments with tilted foils. Various simplified models for the interaction between the atomic and ionic excited states and the beam surface are considered and comparison with the present experimental data leads to some direct conclusions. Further experimental tests of the proposed mechanism are suggested. (author)

  16. Charge-induced reversible bending in nanoporous alumina-aluminum composite

    Science.gov (United States)

    Cheng, Chuan; Ngan, A. H. W.

    2013-05-01

    Upon electrical charging, reversible bending was found in nanoporous anodic alumina-aluminum foil composites, as directly observed by an optical microscope and detected by in situ nanoindentation. The bending is thought to be the result of charge-induced surface stresses in the nanoporous alumina. The results suggest the possibility of a type of composite foil materials for applications as micro-scale actuators to transform electrical energy into mechanical energy.

  17. Data processing code system for foil experiments

    International Nuclear Information System (INIS)

    A code system has been developed for an efficient measurement of reaction rates in foil irradiation experiments. The code system consists of four codes, namely of, (i) setting up experimental parameters and collecting γ-ray spectrum data, (ii) analysing γ-ray spectrum, (iii) calculating reaction rate distributions, and (iv) furnishing utility programs. This code system provides a useful tool of data processing of irradiated foil to obtain the γ-ray spectrum and the reaction rate distribution. These procedures can be executed automatically. The routine for processing foil counting data covers the following functions : the data smoothing, the peak searching by means of the first and second derivative methods, and the determination of the photo peak area and its error with use of a functional fitted by a non-linear least squares method. The code for reaction rate calculation has the following functions : the determination of decay constants of each isotope by using decay data of foil counting and the calculation of reaction rates after correcting irradiation time and weight of a foil. These codes are written by FORTRAN-77 for mini-computer PDP-11/44 (DEC), of which the maximum program memory size is limited to 32k bytes. (author)

  18. Positron annihilation study of vacancy-type defects in Al single crystal foils with the tweed structures across the surface

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Pavel, E-mail: kpv@ispms.tsc.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Cizek, Jacub, E-mail: jcizek@mbox.troja.mff.cuni.cz; Hruska, Petr [Charles University in Prague, Praha, CZ-18000 Czech Republic (Czech Republic); Anwad, Wolfgang [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, D-01314 Germany (Germany); Bordulev, Yuri; Lider, Andrei; Laptev, Roman [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Mironov, Yuri [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The vacancy-type defects in the aluminum single crystal foils after a series of the cyclic tensions were studied using positron annihilation. Two components were identified in the positron lifetime spectra associated with the annihilation of free positrons and positrons trapped by dislocations. With increasing number of cycles the dislocation density firstly increases and reaches a maximum value at N = 10 000 cycles but then it gradually decreases and at N = 70 000 cycles falls down to the level typical for the virgin samples. The direct evidence on the formation of a two-phase system “defective near-surface layer/base Al crystal” in aluminum foils at cyclic tension was obtained using a positron beam with the variable energy.

  19. Positron annihilation study of vacancy-type defects in Al single crystal foils with the tweed structures across the surface

    International Nuclear Information System (INIS)

    The vacancy-type defects in the aluminum single crystal foils after a series of the cyclic tensions were studied using positron annihilation. Two components were identified in the positron lifetime spectra associated with the annihilation of free positrons and positrons trapped by dislocations. With increasing number of cycles the dislocation density firstly increases and reaches a maximum value at N = 10 000 cycles but then it gradually decreases and at N = 70 000 cycles falls down to the level typical for the virgin samples. The direct evidence on the formation of a two-phase system “defective near-surface layer/base Al crystal” in aluminum foils at cyclic tension was obtained using a positron beam with the variable energy

  20. Compressor ported shroud for foil bearing cooling

    Science.gov (United States)

    Elpern, David G.; McCabe, Niall; Gee, Mark

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  1. Making environmental sensors on plastic foil

    Directory of Open Access Journals (Sweden)

    Danick Briand

    2011-09-01

    Full Text Available With the emergence of the printed electronics industry, the development of sensing technologies on non conventional substrates such as plastic foils is on-going. In this article, we review the work performed and the trends in the development of environmental sensors on plastic and flexible foils. Our main focus is on the integration of temperature, humidity, and gas sensors on plastic substrates targeting low-power operation for wireless applications. Some perspectives in this dynamic field are also provided showing the potential for the realization of several types of transducers on substrates of different natures and their combination with other components to realize smart systems.

  2. Thrust augmentation in tandem flapping foils by foil-wake interaction

    Science.gov (United States)

    Anderson, Erik; Lauder, George

    2006-11-01

    Propulsion by pitching and heaving airfoils and hydrofoils has been a focus of much research in the field of biologically inspired propulsion. Organisms that use this sort of propulsion are self-propelled, so it is difficult to use standard experimental metrics such as thrust and drag to characterize performance. We have constructed a flapping foil robot mounted in a flume on air-bearings that allows for the determination of self-propelled speed as a metric of performance. We have used a pair of these robots to examine the impact of an upstream flapping foil on a downstream flapping foil as might apply to tandem fins of a swimming organism or in-line swimming of schooling organisms. Self-propelled speed and a force transducer confirmed significant thrust augmentation for particular foil-to-foil spacings, phase differences, and flapping frequencies. Flow visualization shows the mechanism to be related to the effective angle of attack of the downstream foil due to the structure of the wake of the upstream foil. This confirms recent computational work and the hypotheses by early investigators of fish fluid dynamics.

  3. Thermal characteristics of foils for an imaging bolometer

    International Nuclear Information System (INIS)

    The IR imaging video bolometer is an imaging bolometer which provides the intensity and distribution of plasma radiation. The sensitivity of the IR imaging bolometer is dependent on the properties of the bolometer foil. An evaluation of the thermal characteristics of various materials and thicknesses of the bolometer foil provides information on the sensitivity which is useful to choose the best foil material. We irradiated foils of various materials and thicknesses with a He-Ne laser (wavelength 633 nm), and measured the change in temperature distribution with an IR camera. As for foil materials,W, Ta, Au and Pt were employed. The foils were blackened either on both sides or on one side by graphite. For the same material foil, the temperature rise in the singleside blackened foil was always greater than the double-side blackened foil. For the double blacken foil, Ta had the largest temperature rise among foils with the same thickness. Pt had the shortest time constant for the temperature rise/decayamong foils except Au. In consideration of the attenuation thickness versus photon energy of each material, the Pt foil was the most suitable for the bolometer among the evaluated materials. (author)

  4. 6Li foil thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, Kiril D [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Favalli, Andrea [Los Alamos National Laboratory; Chung, Kiwhan [Los Alamos National Laboratory; Macarthur, Duncan W [Los Alamos National Laboratory

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  5. The Fluid Foil: The Seventh Simple Machine

    Science.gov (United States)

    Mitts, Charles R.

    2012-01-01

    A simple machine does one of two things: create a mechanical advantage (lever) or change the direction of an applied force (pulley). Fluid foils are unique among simple machines because they not only change the direction of an applied force (wheel and axle); they convert fluid energy into mechanical energy (wind and Kaplan turbines) or vice versa,…

  6. Hot rolling of gamma titanium aluminide foil

    International Nuclear Information System (INIS)

    Metal flow and microstructure evolution during the thermomechanical processing of thin-gage foil of a near-gamma titanium aluminide alloy, Ti-45.5Al-2Cr-2Nb, with an equiaxed-gamma microstructure was investigated experimentally and theoretically. Foils of thickness of 200-250 μm were fabricated via hot rolling of sheet in a can of proprietary design. The variation in gage of the rolled foils was ±15 μm except in very sporadic (local) areas, with variations of approximately 60 μm relative to the mean. Metallography revealed that the larger thickness variations were associated with large remnant colonies lying in a hard orientation for deformation. To rationalize these observations, a self-consistent model was used to estimate the strain partitioning between the softer (equiaxed-gamma) matrix and the remnant colonies. Furthermore, the efficacy of pre- or post-rolling heat treatment in eliminating remnant colonies was demonstrated and quantified using a static-spheroidization model. The elimination of remnant colonies via spheroidization prior to foil rolling gave rise to improved gage control.

  7. Hydrogen and Palladium Foil: Two Classroom Demonstrations

    Science.gov (United States)

    Klotz, Elsbeth; Mattson, Bruce

    2009-01-01

    In these two classroom demonstrations, students observe the reaction between H[subscript 2] gas and Pd foil. In the first demonstration, hydrogen and palladium combine within one minute at 1 atm and room temperature to yield the non-stoichiometric, interstitial hydride with formula close to the maximum known value, PdH[subscript 0.7]. In the…

  8. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street...

  9. Identification of Possible Interstellar Dust Impact Craters on Stardust Foil I033N,1

    Science.gov (United States)

    Ansari, A.; ISPE Team; 29,000 Stardust@home Dusters

    2011-12-01

    The Interstellar Dust Collector onboard NASA's Stardust Mission - the first to return solid extraterrestrial material to Earth from beyond the Moon - was exposed to the interstellar dust stream for a total of 229 days prior to the spacecraft's return in 2006 [1]. Aluminum foils and aerogel tiles on the collector may have captured the first samples of contemporary interstellar dust. Interstellar Preliminary Examination (ISPE) focuses in part on crater identification and analysis of residue within the craters to determine the nature and origin of the impacting particles. Thus far, ISPE has focused on nine foils and found a total of 20 craters. The number density of impact craters on the foils exceeds by far estimates made from interstellar flux calculations [2]. To identify craters, foil I1033N,1 was scanned with the Field Museum's Evo 60 Scanning Electron Microscope (SEM) at a resolution of 52 nm/pixel with a 15 kV and 170-240 pA beam. Contamination was monitored according to the ISPE protocol: four 4 μm × 3 μm areas of C layers of different thicknesses on a Stardust-type Al foil were irradiated 20 times for 50 s each, while the C and Al signals were recorded with energy-dispersive X-ray spectroscopy (EDS). The C/Al ratio did not increase after 20 repetitions on each of the four areas. The same experiment repeated 7 months later yielded identical results. Thus, analysis with the SEM results in no detectable contamination. Crater candidates were manually selected from SEM images, then reimaged at higher resolution (17 nm/pixel) in order to eliminate false detections. The foil was then sent to Washington University for Auger Nanoprobe elemental analysis of crater 11_175 (diam. 1.1 μm), and to the Naval Research Laboratory for focused ion beam work and transmission electron microscopy and EDS. Twelve crater candidates (diam. 0.28 - 1.1 μm), both elliptical and circular, were identified. The number density of craters on foil 1033N is 15.8 cm^-2. Auger measurements

  10. Beryllium foils for windows in counter of nuclear radiation

    International Nuclear Information System (INIS)

    Based on the optimization of the main structural characteristics (grain structure, texture, dislocation substructure) are defined modes of deformation and heat treatment of beryllium foils (purity > 99.95%), providing their excellent mechanical properties and optimized modes of deformation and heat treatment. Analyzed various technological methods rolling foils to their rational use for the practical implementation of the results of the study. It is shown that the strength and plastic properties of the foils beryllium higher than that of similar foils foreign manufacture

  11. Satellite and Opacity Effects on Resonance Line Shapes Produced from Short-Pulse Laser Heated Foils

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, R; Audebert, P; Chen, H-K; Fournier, K B; Peyreusse, O; Moon, S; Lee, R W; Price, D; Klein, L; Gauthier, J C; Springer, P

    2002-12-03

    We measure the He-like, time-resolved emission from thin foils consisting of 250 {angstrom} of carbon-250 {angstrom} of aluminum and 500 {angstrom} aluminum illuminated with a 150 fs laser pulse at an intensity of 1 x 10{sup 19} W/cm{sup 2}. Dielectronic satellite contributions to the 1s{sup 2}-1s2p({sup 1}P), 1s{sup 2}-1s3p({sup 1}P), and 1s{sup 2}1s4p({sup 1}P) line intensities are modeled using the configuration averaged code AVERROES and is found to be significant for all three resonance lines. The contribution of opacity broadening is inferred from the data and found to be significant only in the 1s{sup 2}-1s2p({sup 1}P).

  12. Liquid Oxygen Rotating Friction Ignition Testing of Aluminum and Titanium with Monel and Inconel for Rocket Engine Propulsion System Contamination Investigation

    Science.gov (United States)

    Peralta, S.; Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    Metallic contaminant was found in the liquid oxygen (LOX) pre-valve screen of the shuttle main engine propulsion system on two orbiter vehicles. To investigate the potential for an ignition, NASA Johnson Space Center White Sands Test Facility performed (modified) rotating friction ignition testing in LOX. This testing simulated a contaminant particle in the low-pressure oxygen turbo pump (LPOTP) and the high-pressure oxygen turbo pump (HPOTP) of the shuttle main propulsion system. Monel(R) K-500 and Inconel(R) 718 samples represented the LPOTP and HPOTP materials. Aluminum foil tape and titanium foil represented the contaminant particles. In both the Monel(R) and Inconel(R) material configurations, the aluminum foil tape samples did not ignite after 30 s of rubbing. In contrast, all of the titanium foil samples ignited regardless of the rubbing duration or material configuration. However, the titanium foil ignitions did not propagate to the Monel and Inconel materials.

  13. Research and Development of GEM Foil at CIAE

    Institute of Scientific and Technical Information of China (English)

    LI; Xiao-mei; ZHOU; Jing; HU; Shou-yang; SHAN; Chao; JIAN; Si-yu; YE; Li; BAI; Xin-zhan; ZHOU; Shu-hua

    2012-01-01

    <正>China Institute of Atomic Energy has signed the "License Agreement for Manufacturing and Commercialisation of Gem Foils and Gem Based Products Licensee" with CERN, and got the technical assistance from CERN. The base material of GEM foil is ultrathin, non-adhesive copper on polyimide substrate, which can be purchased from CERN and other companies. The manufacture of GEM foil is

  14. A Numerical Calculation Model of Multi Wound Foil Bearing with the Effect of Foil Local Deformation

    Science.gov (United States)

    Feng, Kai; Kaneko, Shigehiko

    Foil bearings are supposed to be one of the best candidates of supporting component for turbo-machineries because of their design simplicity, reduced weight and size, high speed and temperature capability, and easy maintenance. Among various types of foil bearings, multi wound foil bearing (MWFB), which had been designed and fabricated in our lab, is easy to analyze static characteristics even though load capability of which is small compared with other types of foil bearings. In this study, a theoretical model of MWFB taking account of the effect of the foil deformation is developed to predict its static performance. Reynolds equation is solved using Finite Difference Method (FDM) to yield air pressure distribution, while the elastic deformation equation is solved by Finite Element Method (FEM) to predict the deformation of the foil. Then, the above two equations are coupled by several iterations until the convergence criterion is reached. Based on such calculations, static characteristics of MWFB such as load capacity, torque are presented.

  15. Recrystallization behavior of high purity aluminum at 300 ℃

    Institute of Scientific and Technical Information of China (English)

    DU Yu-xuan; ZHANG Xin-ming; YE Ling-ying; LUO Zhi-hui

    2006-01-01

    The recrystallization behavior of 98.5% cold rolled high purity aluminum foils annealed at 300 ℃ was investigated, and the evolution of the microstructures was followed by electron back scattered diffraction(EBSD). The results show that the recrystallization process of the high purity aluminum foils at 300 ℃ is a mixture of discontinuous- and continuous-recrystallization.The orientations of the recrystallization nuclei include not only the cube orientation, but also other orientations such as some near deformation texture components which are the results of strong recovery process. However, such continuously recrystallized grains are usually associated with relatively high free energy, so they would be consumed by the discontinuously-recrystallized grains (cube-oriented grains) in subsequent annealing. On the other hand, the pattern quality index of recrystallized grains shows dependence on the crystal orientation which might introduce some errors into evaluating volume fraction of recrystallization by integrating pattern quality index of EBSD.

  16. Hierarchical structural nanopore arrays fabricated by pre-patterning aluminum using nanosphere lithography.

    Science.gov (United States)

    Wang, Xinnan; Xu, Shuping; Cong, Ming; Li, Haibo; Gu, Yuejiao; Xu, Weiqing

    2012-04-10

    A highly ordered and hierarchical structural nanopore array is fabricated via anodizing a pre-patterned aluminum foil under an optimized voltage. A pre-patterned hexagonal nanoindentation array on an aluminum substrate is prepared via the nanosphere lithography method. This pattern leads to an elaborate nanochannel structure with seven nanopores in each nanoindentation after anodization treatment. The structure achieved in our study is new, interesting, and likely to be applied in photonic devices. PMID:22315204

  17. Nuclear target foil fabrication for the Romano Event

    International Nuclear Information System (INIS)

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections

  18. Collodion-reinforcement and plasma-cleaning of target foils

    International Nuclear Information System (INIS)

    The preparation of evaporated target foils can often be facilitated by use of collodion coatings either on the substrate sides or on the exterior surfaces of the foils. Later, such coatings must usually be removed. Cleaning of a foil is necessary if thin layers of adhesives have crept onto the foil. Removal and/or cleaning can often be done satisfactorily with an oxygen plasma. Apparatus and procedures used for this are described. Foils that were cleaned successfully, and some that were incompatible with the cleaning process are listed

  19. Interaction experiments using thin-foil-discharge warm-dense plasma

    Science.gov (United States)

    Hasegawa, Jun; Hirai, Satoshi; Katagiri, Ken; Yonaha, Masanao; Fukuda, Hitoshi; Oguri, Yoshiyuki; Ogawa, Masao; Murakami, Takeshi

    2007-07-01

    We developed a thin-foil-discharge (TFD) plasma target for beam-plasma interaction experiments. A discharge current of several tens of kilo-amperes rapidly heated and ionized a thin aluminum foil of sub- to several micrometers thick. The target areal density seen by projectiles was expected to be almost constant during several hundred nanoseconds from the ignition of the discharge because the size of the thin foil was chosen to be much larger than the cross-section of the incident beam. The optical observation of the plasma using a fast framing camera showed that the TFD plasma expanded one-dimensionally in the early stage of the discharge. We determined the plasma density and temperature from the observed plasma thickness and the deposited electrical power with equation-of-state data. A one-dimensional plasma expansion model was developed and used to examine the expected plasma parameters under various initial conditions. We also performed beam-plasma interaction experiments with fully stripped ions of 4.3 MeV/u. The energy loss of silicon ions was measured as a function of time by the TOF method.

  20. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    International Nuclear Information System (INIS)

    Graphical abstract: A lotus-leaf-like hierarchical structure was successfully created on Al foil by a facile three-step solution–immersion method. As-obtained etched-immersed Al/STA rough surface contains interconnected convex–concave micro-structure and uniformly distributed nano-sheets that endow the surface with excellent superhydrophobicity (WCA: 164.2°; WSA: below 5°). Besides, the as-prepared etched-immersed Al/STA superhydrophobic surface on Al foil exhibits good friction-reducing ability and stable superhydrophobicity. - Highlights: • A stable superhydrophobic surface was created on aluminum foil by a facile three-step solution–immersion method. • A lotus-leaf-like hierarchical structure consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets has been constructed on the aluminum surface. • The superhydrophobic surfaces on aluminum substrate showing effective friction-reducing performance and self-cleaning ability. - Abstract: A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution–immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2° and a water sliding

  1. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peipei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Chen, Xinhua, E-mail: xuc0374@hotmail.com [College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Yang, Guangbin; Yu, Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2014-05-01

    Graphical abstract: A lotus-leaf-like hierarchical structure was successfully created on Al foil by a facile three-step solution–immersion method. As-obtained etched-immersed Al/STA rough surface contains interconnected convex–concave micro-structure and uniformly distributed nano-sheets that endow the surface with excellent superhydrophobicity (WCA: 164.2°; WSA: below 5°). Besides, the as-prepared etched-immersed Al/STA superhydrophobic surface on Al foil exhibits good friction-reducing ability and stable superhydrophobicity. - Highlights: • A stable superhydrophobic surface was created on aluminum foil by a facile three-step solution–immersion method. • A lotus-leaf-like hierarchical structure consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets has been constructed on the aluminum surface. • The superhydrophobic surfaces on aluminum substrate showing effective friction-reducing performance and self-cleaning ability. - Abstract: A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution–immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2° and a water sliding

  2. Advances in targetry with thin diamond-like carbon foils

    CERN Document Server

    Liechtenstein, V K; Olshanski, E D; Repnow, R; Levin, J; Hellborg, R; Persson, P; Schenkel, T

    2002-01-01

    Thin and stable diamond-like carbon (DLC) foils, which were fabricated at the Kurchatov Institute by sputter deposition, have proved recently to be advantageous for stripping and secondary electron timing of high energy heavy ions in a number of accelerator experiments. This resulted in expanding applications of these DLC foils which necessitated further development efforts directed toward the following applications of DLC targetry: (i) thin stripper foils for lower energy tandem accelerators, (ii) enlarged (up to 66 mm in diameter) stop foils for improved time-of-flight elastic recoil detection ion beam analysis, and (iii) ultra-thin (about 0.6 mu g/cm sup 2) DLC foils for some fundamental and applied physics experiments. Along with the fabrication of thin DLC stripper foils for tandem accelerators, much thicker (up to 200 mu g/cm sup 2) foils for post-stripping of heavy-ion beams in higher energy linacs, are within reach.

  3. Impact of GEM foil hole geometry on GEM detector gain

    Science.gov (United States)

    Karadzhinova, A.; Nolvi, A.; Veenhof, R.; Tuominen, E.; Hæggström, E.; Kassamakov, I.

    2015-12-01

    Detailed 3D imaging of Gas Electron Multiplier (GEM) foil hole geometry was realized. Scanning White Light Interferometry was used to examine six topological parameters of GEM foil holes from both sides of the foil. To study the effect of the hole geometry on detector gain, the ANSYS and Garfield ++ software were employed to simulate the GEM detector gain on the basis of SWLI data. In particular, the effective gain in a GEM foil with equally shaped holes was studied. The real GEM foil holes exhibited a 4% lower effective gain and 6% more electrons produced near the exit electrode of the GEM foil than the design anticipated. Our results indicate that the GEM foil hole geometry affects the gain performance of GEM detectors.

  4. Relativistic Electron Transport Through Carbon Foils

    Science.gov (United States)

    Seliger, M.; Takasi, K.; Reinhold, C. O.; Takabayashi, Y.; Ito, T.; Komaki, K.; Azuma, T.; Yamazaki, Y.; Yamazaki, Y.

    We present a theoretical study of convoy electron emission resulting from transmission of relativistic 390 MeV/amu Ar17+ ions through carbon foils of various thicknesses. Our approach is based on a Langevin equation describing the random walk of the electron initially bound to the argon nucleus and later in the continuum. The calculated spectra of ejected electrons in the forward direction exhibit clear signatures of multiple scattering and are found to be in good agreement with recent experimental data.

  5. Electrodeposition of Plutonium on Rhenium Foil

    Institute of Scientific and Technical Information of China (English)

    YANG; Jin-ling; YANG; Chun-li; DING; You-qian; SUN; Hong-qing

    2013-01-01

    Applying for LRIMS analysis,one of the main requirements is the production of an atomic beam(or molecular beam)with the atoms in one well defined state,i.e.,the ground state,and then the efficient excitation and ionization of the atoms.Therefore,the target nuclides must be transferred to the rhenium foil quantitatively.So the study on electrodeposistion was applied:first is the designation of electroplate

  6. Carbon nanotube thermal interfaces on gadolinium foil

    OpenAIRE

    McCarthy, Patrick T.; Marinero, Ernesto E.; Fisher, Timothy S.

    2012-01-01

    We report the thermal behavior of gadolinium foils to be used in magneto thermoelectric generator cells. Magneto thermoelectric generator cell technology exploits the ferromagnetic phase transition of gadolinium to drive the movement of a diaphragm 'shuttle' whose mechanical energy is converted to electrical form and which enhances heat transfer through both conduction and convection. Efficient heat transfer at mechanical interfaces is critical to increase shuttle speed and the commensurate r...

  7. Transport in a laser irradiated thin foil

    CERN Document Server

    Ruhl, H

    2001-01-01

    Three dimensional Particle-In-Cell simulations describing the interaction of a short intense laser pulse with thin foils are presented. It is observed that the laser generated electron current decays into magnetically isolated filaments. The filaments grow in scale and magnitude by reconnection. Two different laser wavelengths are considered. The spatial separation of the filaments varies for the two wavelengths. Many current filaments carry net electric currents exceeding the Alfven current considerably.

  8. Optical quality assurance of GEM foils

    International Nuclear Information System (INIS)

    An analysis software was developed for the high aspect ratio optical scanning system in the Detector Laboratory of the University of Helsinki and the Helsinki Institute of Physics. The system is used e.g. in the quality assurance of the GEM-TPC detectors being developed for the beam diagnostics system of the SuperFRS at future FAIR facility. The software was tested by analyzing five CERN standard GEM foils scanned with the optical scanning system. The measurement uncertainty of the diameter of the GEM holes and the pitch of the hole pattern was found to be 0.5μm and 0.3μm, respectively. The software design and the performance are discussed. The correlation between the GEM hole size distribution and the corresponding gain variation was studied by comparing them against a detailed gain mapping of a foil and a set of six lower precision control measurements. It can be seen that a qualitative estimation of the behavior of the local variation in gain across the GEM foil can be made based on the measured sizes of the outer and inner holes

  9. The calculation program for activity correction by neutron incident on the edges of the foil in the foil activation method

    International Nuclear Information System (INIS)

    Computer program with FORTRAN has been made for calculating activity correction by neutron incident on the edge of the foil. The calculation based on single on collision theory with the assumption of monoenergetic neutron and isotopic distributed. the combination of simpson rule 1/3 and gauss quadrature were chosen to solve the problems and discrete summation was used as approximation of integration to the whole of energy groups (640 groups). the inputs are dimension and mass of the foil and activation cross-section and spectrum neutron. the output are foil activity and activation correction by neutron incident on the edge of the foil. the calculation results of activity correction by neutron incident on the edges of the gold foils of 0.05383 mm and 1.27 mm thick are about 0.2% and 7.8% and for cobalt foils of 0.1128 mm and 1.128 mm thick are about 0.58% and 6.7% respectively. the discrepancy of foil activation between experiment and calculation are about 1.6% for gold foil of 0.05383 mm thick and 1% for cobalt foil of 0.1128 mm thick. from that results can be concluded that the calculation result quit close to the experiment one and the thicker foil give bigger activation correction by neutrons incident on the edges of the foil

  10. Monitoring the degradation of partly decomposable plastic foils

    Directory of Open Access Journals (Sweden)

    Rétháti Gabriella

    2014-11-01

    Full Text Available We have monitored the behaviour of different polyethylene foils including virgin medium density polyethylene (MDPE, MDPE containing pro-oxydative additives (238, 242 and MDPE with pro-oxydative additives and thermoplastic starch (297 in the soil for a period of one year. A foil based on a blend of polyester and polylactic acid (BASF Ecovio served as degradable control. The experiment was carried out by weekly measurements of conductivity and capacity of the soil, since the setup was analogous to a condenser, of which the insulating layer was the foil itself. The twelve replications allowed monthly sampling; the specimen taken out from the soil each month were tested visually for thickness, mechanical properties, morphological and structural changes, and molecular mass. Based on the obtained capacity values, we found that among the polyethylene foils, the one that contained thermoplastic starch extenuated the most. This foil had the greatest decrease in tensile strength and elongation at break due to the presence of thermoplastic starch. The starch can completely degrade in the soil; thus, the foil had cracks and pores. The polyethylene foils that contained pro-oxydant additives showed smaller external change compared to the virgin foil, since there was no available UV radiation and oxygen for their degradation. The smallest change occurred in the virgin polyethylene foil. Among the five examined samples, the commercially available BASF foil showed the largest extenuation and external change, and it deteriorated the most in the soil.

  11. Comparison of Au and Pt foils for an imaging bolometer

    International Nuclear Information System (INIS)

    The imaging bolometer is a fusion reactor relevant diagnostic for the measurement of radiated power. Essential to its ability to make accurate temporally and spatially resolved measurements of radiated power is the detailed calibration of the thin metal foil that converts the radiated power to infrared radiation measured by an infrared camera. The choice of the foil material is critical to optimizing the sensitivity of the imaging bolometer. Calibration of the foil provides information on the actual sensitivity of the foil which can help in selecting the best foil material. In this work thermal properties of the 0.63 micron thick Au and 0.87 micron thick Pt foils are investigated by heating the foils with a chopped 25 mW HeNe laser and observing the temperature change, ΔT, of the foil and the rise/decay times, τrise/decay, of the foil temperature. For a foil in which the cooling is dominated by diffusion, since the sensitivity of the foils is proportional to the ratio of the thermal diffusivity to the thermal conductivity of the foil, κ/k, which is proportional ΔT/τ, where τ is the average of the decay and rise times, we can compare the relative sensitivities of the foils by comparing these ratios for Pt and Au foils. The results surprisingly indicate that Pt is more than 9 times more sensitive than Au even though standard thermal properties indicate that Au should be 14% more sensitive than Pt. This inconsistency is largely due to a slightly smaller decay time, τ, which is inconsistent with a 5 times smaller κ, in the case of the Pt compared to Au. While the 5 -6 times larger temperature rise, ΔT, is somewhat consistent with 3.2 times smaller kt for the Pt foil compared to Au foil. This inconsistency in the thermal times, along with observed differences between the rise and decay times, indicate that the IR radiation is dominant over diffusion in the cooling of the foil. In that case the sensitivity should be evaluated by 1/k - ΔT which indicates that Pt

  12. High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication.

    Science.gov (United States)

    Biring, Sajal; Tsai, Kun-Tong; Sur, Ujjal Kumar; Wang, Yuh-Lin

    2008-09-01

    A high fidelity electrochemical replication technique for the rapid fabrication of Al nanostructures with 10 nm lateral resolution has been successfully demonstrated. Aluminum is electrodeposited onto a lithographically patterned Si master using a non-aqueous organic hydride bath of aluminum chloride and lithium aluminum hydride at room temperature. Chemical pretreatment of the Si surface allows a clean detachment of the replicated Al foil from the master, permitting its repetitive use for mass replication. This high throughput technique opens up new possibilities in the fabrication of Al-related nanostructures, including the growth of long range ordered anodic alumina nanochannel arrays. PMID:21828842

  13. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  14. Carbon stripper foils for high current heavy ion operation

    International Nuclear Information System (INIS)

    For the proposed new heavy ion linac'at'GSI the installation of a carbon foil stripper section is under discussion. High duty factor as well as high current (but low duty factor) heavy ion beams were used for machine experiments. Long term tests were performed to check the carbon foil durability. Relevant beam parameters have been measured in three measurement campaigns. After beam testing stripper foils were analyzed with different offline methods. Additionally promising results of high current beam irradiation of rotating target wheels will be presented. In the transfer line to the SIS 18 the heavy ion beam is stripped to higher charge states in a thick carbon foil. The stripper foil is loaded with 3 % of the beam power. To avoid evaporation in a single beam pulse, the beam is rapidly swept over its width. Experiences collected during the last decade of foil stripper operation at GSI will be presented. (author)

  15. Preparation of graphene on Cu foils by ion implantation with negative carbon clusters

    International Nuclear Information System (INIS)

    We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions, followed by annealing at 950 °C in vacuum. Raman spectroscopy reveals IG/I2D values varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis. (paper)

  16. Assembly and Irradiation Modeling of Residual Stresses in Low-Enriched Uranium Foil-Based Annular Targets for Molybdenum-99 Production

    Directory of Open Access Journals (Sweden)

    Srisharan G. Govindarajan

    2013-01-01

    Full Text Available This paper considers a composite cylindrical structure, with low-enriched uranium (LEU foil enclosed between two aluminum 6061-T6 cylinders. A recess is cut all around the outer circumference of the inner tube to accommodate the LEU foil of open-cross section. To obtain perfect contact at the interfaces of the foil and the tubes, an internal pressure is applied to the inner tube, thereby plastically and elastically deforming it. The residual stresses resulting from the assembly process are used along with a thermal stress model to predict the stress margins in the cladding during irradiation. The whole process was simulated as a steady-state two-dimensional problem using the commercial finite element code Abaqus FEA. The irradiation behavior of the annular target has been presented, and the effect of the assembly residual stresses has been discussed.

  17. Optofluidic dye laser in a foil

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Christiansen, Mads Brøkner; Mappes, Timo; Kristensen, Anders

    2010-01-01

    First order distributed feedback optofluidic dye lasers embedded in a 350 mu m thick TOPAS (R) foil are demonstrated. They are designed in order to give high output pulse energies. Microfluidic channels and first order distributed feedback gratings are fabricated in parallel by thermal nanoimprint...... a large gain volume. Two grating periods of 185 nm and 190 nm yield single mode laser light emission at 566 nm and 581 nm respectively. High emitted pulse energies of more than 1 mu J are reported. Stable operation for more than 25 min at 10 Hz pulse repetition rate is achieved....

  18. Foil Diffuser Investigation with GEANT4

    CERN Document Server

    Fabritius, Joseph M; Walstrom, Peter

    2013-01-01

    An investigation into the appropriate materials for use as a diffuser foil in electron radiography was undertaken in GEANT4. Simulations were run using various refractory materials to determine a material of appropriate Z number such that energy loss is minimal. The plotted results of angular spread and energy spread are shown. It is concluded that higher Z number materials such as tungsten, tantalum, platinum or uranium could be used as diffuser materials. Also, an investigation into the handling of bremsstrahlung, multiple coulomb scattering, and ionization in GEANT4 was performed.

  19. The Los Alamos foil implosion project

    International Nuclear Information System (INIS)

    The goal of the Los Alamos foil implosion project is to produce an intense (>100 TW), multi-megajoule, laboratory soft x-ray source for material studies and fusion experiments. The concept involves the implosion of annular, current-carrying, cylindrical metallic plasmas via their self-magnetic forces. The project features inductive storage systems using both capacitor banks and high explosive-driven flux compression generators as prime energy sources. Fast opening switches are employed to shorten the electrical pulses. The program will be described and activities to date will be summarized

  20. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents.

    Science.gov (United States)

    Yager-Elorriaga, D A; Steiner, A M; Patel, S G; Jordan, N M; Lau, Y Y; Gilgenbach, R M

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ∼600 kA with ∼200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines. PMID:26628134

  1. Characterization of U-Mo Foils for AFIP-7

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  2. Fast-Neutron Surveys Using Indium-Foil Activation

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Lloyd D.; Smith, Alan R.

    1958-08-13

    Activation of indium foils by thermal neutrons has been applied to measurement of fast-neutron fluxes. Foils are encased in paraffin spheres placed in cadmium boxes. The high-energy neutrons that penetrate the cadmium become thermal neutrons; the thermal-neutron flux is proportional to the incident fast-neutron flux over a range of about 20 kev to 20 Mev. The foils are removed from the boxes and counted on a methane-flow proportional counter. High instantaneous neutron fluxes are easily detected and counted by use of these foils. Many simultaneous measurements have been made easily by this method.

  3. Objective interpretation as conforming interpretation

    Directory of Open Access Journals (Sweden)

    Lidka Rodak

    2011-12-01

    Full Text Available The practical discourse willingly uses the formula of “objective interpretation”, with no regards to its controversial nature that has been discussed in literature.The main aim of the article is to investigate what “objective interpretation” could mean and how it could be understood in the practical discourse, focusing on the understanding offered by judicature.The thesis of the article is that objective interpretation, as identified with textualists’ position, is not possible to uphold, and should be rather linked with conforming interpretation. And what this actually implies is that it is not the virtue of certainty and predictability – which are usually associated with objectivity- but coherence that makes the foundation of applicability of objectivity in law.What could be observed from the analyses, is that both the phenomenon of conforming interpretation and objective interpretation play the role of arguments in the interpretive discourse, arguments that provide justification that interpretation is not arbitrary or subjective. With regards to the important part of the ideology of legal application which is the conviction that decisions should be taken on the basis of law in order to exclude arbitrariness, objective interpretation could be read as a question “what kind of authority “supports” certain interpretation”? that is almost never free of judicial creativity and judicial activism.One can say that, objective and conforming interpretation are just another arguments used in legal discourse.

  4. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    Energy Technology Data Exchange (ETDEWEB)

    Smitherman, D.P.

    1998-04-01

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}m aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.

  5. Room Temperature Anodization of Aluminum at Low Voltage

    International Nuclear Information System (INIS)

    Membranes with nanometer-scale features have many applications, such as in optics, electronics, catalysis, selective molecule separation, filtration and purification, bio sensing, and single-molecule detection. Anodization process was conducted using 15, 20, 30 and 35% by volume phosphoric acid. Results showed that Porous Anodized Aluminum (PAA) with ideal nano pore arrays can be fabricated at room temperature by one-step anodization on high purity aluminum foil at 5 V. Morphology of the PAA was characterized by scanning electron microscopy (SEM). The electrochemical behavior of anodized aluminum was studied in 0.1 M Na2SO4 solutions using electrochemical impedance spectroscopy (EIS). The highest resistance of the porous layer (Rp) was detected for the samples anodized in 20% phosphoric acid

  6. Interpretability Logic

    OpenAIRE

    de Visser, A.

    2008-01-01

    Interpretations are much used in metamathematics. The first application that comes to mind is their use in reductive Hilbert-style programs. Think of the kind of program proposed by Simpson, Feferman or Nelson (see Simpson[1988], Feferman[1988], Nelson[1986]). Here they serve to compare the strength of theories, or better to prove conservation results within a properly weak theory. An advantage of using interpretations is that even if their use should -perhaps- be classified as a prooftheoret...

  7. Actinide Foil Production for MPACT Research

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Denis

    2012-10-30

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U

  8. The Aluminum Smelting Process

    OpenAIRE

    Kvande, Halvor

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The me...

  9. Relativistic electron beam energy deposition in thin gold and aluminum targets

    International Nuclear Information System (INIS)

    Relativistic electron beam (REB) energy deposition in thin gold and aluminum targets has been investigated experimentally using radiation temperature measurements in the soft x-ray, vacuum ultraviolet (XUV) and optical spectral regions on two different particle accelerators. Energy deposition measurements were compared with numerical calculations utilizing particle-in-cell (PIC) diode codes, condensed history Monte-Carlo codes, and coupled radiation-hydrodynamic codes. The specific power deposited (i.e., power deposited/unit mass) was observed to be greater than that due to an average electron making a single pass through a thin target (6.4 μm thick gold foil on the Hydra accelerator and 38 and 6 μm thick aluminum foils on the Proto I accelerator). Self-magnetic field effects were primarily responsible for deposition enhancement in 6.4 μm gold foils on the Hydra accelerator (ν/γ approx. = 2.5). Reduction of electron scattering with aluminum foils on Proto I where ν/γ approx. = 1 led to deposition enhancement due to both self electric and magnetic fields

  10. Gas amplification properties of GEM foils

    International Nuclear Information System (INIS)

    In the framework of the detector concept International Linear Detector for the future accelerator project International Linear Collider, in which electrons and positrons at c. m. energies of 500 GeV are brought to collision, a time projection chamber shall be applied as central track detector. By the application of such a chamber as track detector a three-dimensional reconstruction of the track points is possible. If a particle passes the gas volume within the chamber it ionizises single gas atoms and the arising electrons move after the amplification in the GEM arrangement to the anode, so that a two-dimensional projection of the particle track is possible. The third dimension is calculated from the drift time of the electrons. The advances of this readout system consist therein that a better position resolution than by a multiwire proportional chamber is reached and the back-drifting ions can be strongly suppressed. Aim of this thesis are studies for a GEM module, which shall be used in a large TPC prototype. Concerning different requirements it is valid to compare different GEMs in order to can meet an optimal choice. In a small prototype present at DESY measurements for the acquisition of GEM-describing parameters were performed. The taking into operation of the test TPC was part of this thesis. Tracks were generated by a radioactive source, by means of which the gas amplification was determined. With the measurement arrangement gas-amplifier foils of different kind were compared in view of their amplification properties and their energy resolution power and systematically studied. Five different GEM performances were studied in the test TPC. These foils differ in their geometrical classification parameters, the fabrication process, or the materials. The GEMs produced at CERN possess in comparison with GEMs of the Japanese firm SciEnergy and a GEM of the US-American firm Tech-Etch the best amplification and resolution properties. Furthermore a new GEM framing

  11. Lithographic patterning of metals on flexible plastic foils

    NARCIS (Netherlands)

    Peter, M.; Furthner, F.; Deen, J.; Laat, W.J.M.de; Meinders, E.R.

    2009-01-01

    In this paper the challenges of patterning electrodes with separations in the micron and sub-micron range onto thin polyethylene naphthalate foils for use in biochips are discussed. It was found that it was necessary to improve the adhesion of the metal electrodes to the foil by using plasma treatme

  12. Foil level packaging of a chemical gas sensor

    International Nuclear Information System (INIS)

    A generic method for the packaging of transducers at the foil level is proposed and was demonstrated on chemical gas sensors made on a plastic foil. The processing was based on the lamination of pre-patterned polymeric structures on the fabricated devices and covered by a gas permeable membrane. This polymeric packaging can be either applied on plastic foils or on conventional substrates such as silicon or glass. It can be used when standard packaging techniques might not be applied or when they can represent a significant cost. Using the lamination of a foil, the dry process presented here is compatible with large-scale fabrication techniques, such as roll-to-roll processing, and aims at reducing the global fabrication cost of sensing devices made on a plastic foil. It can further lead to the fabrication of all polymeric devices. This generic processing can be used for a wide range of applications in the field of microsystems, especially for which the foil level is required and where standard techniques at the wafer level are not applicable. The foil level packaging (FLP) was implemented here for the encapsulation of gas sensors on a plastic foil and validated through gas measurements.

  13. Foil fabrication for the ROMANO event. Revision 1

    International Nuclear Information System (INIS)

    The Vacuum Processes Lab (VPL), of LLNL's M.E. Dept. - Material Fabrication Division (MFD), conducted various vacuum related support activities for the ROMANO nuclear physics experiment. This report focuses on the foil fabrication activities carried out between July and November 1983 for the ROMANO event. Other vacuum related activities for ROMANO, such as outgassing tests of materials, are covered in separate documentation. VPL was asked to provide 270 coated Parylene foils for the ROMANO event. However, due to the developmental nature of some of the procedures, approximately 400 coated foils were processed. In addition, VPL interacted with MFD's Plastics Shop to help supply Parylene substrates to other organizations (i.e., LBL and commercial vendors) which had also been asked to provide coated foils for ROMANO. The purposes of this report are (A) to document the processes developed and the techniques used to produce the foils, and (B) to suggest future directions. The report is divided into four sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, (3) calibration foil fabrication, and (4) foil and substrate inspections

  14. Quantum interpretations

    International Nuclear Information System (INIS)

    Four interpretations of quantum theory are compared: the Copenhagen interpretation (C.I.) with the additional assumption that the quantum description also applies to the mental states of the observer, and three recent ones, by Kochen, Deutsch, and Cramer. Since they interpret the same mathematical structure with the same empirical predictions, it is assumed that they formulate only different linguistic expressions of one identical theory. C.I. as a theory on human knowledge rests on a phenomenological description of time. It can be reconstructed from simple assumptions on predictions. Kochen shows that mathematically every composite system can be split into an object and an observer. Deutsch, with the same decomposition, describes futuric possibilities under the Everett term worlds. Cramer, using four-dimensional action at a distance (Wheeler-Feynman), describes all future events like past facts. All three can be described in the C.I. frame. The role of abstract nonlocality is discussed

  15. On the forced flow around a flapping foil

    CERN Document Server

    Mandujano, Francisco

    2016-01-01

    The two dimensional incompressible viscous flow past a flapping foil immersed in a uniform stream is studied numerically. Numerical simulations were performed using a Lattice-Boltzmann model for moderate Reynolds numbers. The computation of the hydrodynamic force on the foil is related to the the wake structure. In particular, when the foil's centre of mass is fixed in space, numerical results suggest a relation between drag coefficient behaviour and the flapping frequency which determines the transition from the von K\\'arm\\'an (vKm) to the inverted von K\\'arm\\'an wake. Beyond the inverted vKm transition the foil was released. Upstream swimming was observed at high enough flapping frequencies. Computed hydrodynamic forces suggest the propulsion mechanism for the swimming foil.

  16. Numerical and experimental investigation of bump foil mechanical behaviour

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2014-01-01

    Corrugated foils are utilized in air foil bearings to introduce compliance and damping thus accurate mathematical predictions are important. A corrugated foil behaviour is investigated experimentally as well as theoretically. The experimental investigation is performed by compressing the foil......, between two parallel surfaces, both statically and dynamically to obtain hysteresis curves. The theoretical analysis is based on a two dimensional quasi static FE model, including geometrical non-linearities and Coulomb friction in the contact points and neglects the foil mass. A method for implementing...... the friction is suggested. Hysteresis curves obtained via the FE model are compared to the experimental results obtained. Good agreement is observed in the low frequency range and discrepancies for higher frequencies are thoroughly discussed....

  17. Compliant Foil Journal Bearings - Investigation of Dynamic Properties

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen; Santos, Ilmar

    compliant foil bearings, and the understanding of their dynamic behaviour is growing. However, practical design involving these bearings are still associated with a large degree of trial and error. This study aims at establishing an accurate mathematical model, to calculate the pressure, film height and...... dynamic coefficients, of the compliant foil bearing together with an efficient solution method, which can be easily adopted and implemented by mechanical engineers. A theoretical model of a radial compliant foil bearing that incorporates compressibility of the lubricating gas and flexibility/compliance of...... the foil structure is presented. The compliance of the foil structure is incorporated implicitly in the Reynolds equation which is accomplished through a modification of the film gap function [8]. The resulting non-linear equation is perturbed and solved by use of the finite element method following a...

  18. Numerical analysis of bump foil bearings without nominal radial clearance

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-sheng; XU Huai-jin; ZHANG Guang-hui

    2008-01-01

    Bump foil bearings without nominal radial clearance were analyzed. An air film thickness model and a bearing theoretical analytical model were developed accounting for air compressibility and foil deformation. To analyze hydrodynamic characteristics of bump foil beatings with different operating eccentricities, the air film thickness equation and Reynolds equation were coupled through pressure and solved by Newton-Raphson Method(NRM) and Finite Difference Method (FDM). The characteristics of an bump foil bearing model were dis-cussed including load carrying capacity, film thickness and pressure distributions. The results of simulation show that bump foil beating without nominal radial clearance can provide better stability and greater load capaci-ty. This numerical analytical method also reveals a good convergence in numerical calculation.

  19. Freezing enhancement around a horizontal tube using copper foil disks

    Science.gov (United States)

    Sugawara, M.; Komatsu, Y.; Takahashi, Y.; Beer, H.

    2011-12-01

    Freezing of water saturated in circumferentially arranged copper foils around a cooling tube is studied experimentally and numerically. The copper foils need not to be welded to the cooling tube but are merely placed around the tube so that the freezing system is easily arranged. Copper foils greatly enhance freezing compared with that of a bare tube, even with a small copper volume fraction in the freezing system. Numerical calculations by means of a continuum model predict well freezing enhancement. The effect of the copper foils is also considered numerically for the melting process in order to compare with freezing. It is seen that copper foils contribute more to the melting enhancement than to the increase of the freezing rate.

  20. Foil calibration for IR imaging bolometer by laser irradiation

    International Nuclear Information System (INIS)

    The IR imaging video bolometer (IRVB) provides the power distribution of plasma radiation. The radiation distribution is obtained from the temperature distribution on the bolometer foil. It is necessary to calibrate between the temperature distribution and the incident radiation power on the bolometer foil. This paper describes a new calibration technique for the foil which we have developed. The bolometer foil was irradiated with a He-Ne laser and the temperature distribution was measured by an IR camera while changing the irradiation position. The temperature distribution measured was analyzed by the comparison with the results calculated by FEM. We repeated this comparison while changing the parameters such as effective foil thickness and effective emissivity in the calculation until the calculated distribution converged to the measured one. The temperature distribution calculated by the FEM agreed well with the measured one, so the calibration between the radiation power and the temperature profile can be suitably conducted by this technique. (author)

  1. Infrared imaging video bolometer with a double layer absorbing foil

    International Nuclear Information System (INIS)

    The object of the present paper is an infrared video bolometer with a bolometer foil consisting of two layers: the first layer is constructed of radiation absorbing blocks and the second layer is a thermal isolating base. The absorbing blocks made of a material with a high photon attenuation coefficient (gold) were spatially separated from each other while the base should be made of a material having high tensile strength and low thermal conductance (stainless steel). Such a foil has been manufactured in St. Petersburg and calibrated in NIFS using a vacuum test chamber and a laser beam as an incident power source. A finite element method (FEM) code was applied to simulate the thermal response of the foil. Simulation results are in good agreement with the experimental calibration data. The temperature response of the double layer foil is a factor of two higher than that of a single foil IR video bolometer using the same absorber material and thickness. (author)

  2. Interpreting Physics

    CERN Document Server

    MacKinnon, Edward

    2012-01-01

    This book is the first to offer a systematic account of the role of language in the development and interpretation of physics. An historical-conceptual analysis of the co-evolution of mathematical and physical concepts leads to the classical/quatum interface. Bohrian orthodoxy stresses the indispensability of classical concepts and the functional role of mathematics. This book analyses ways of extending, and then going beyond this orthodoxy orthodoxy. Finally, the book analyzes how a revised interpretation of physics impacts on basic philosophical issues: conceptual revolutions, realism, and r

  3. Quality Of Electrophotographic Prints On Foil Substrates

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2011-05-01

    Full Text Available Electrophotographic printing uses many types of substrates, our study focuses on plastic substrates. Six types ofregular and self-adhesive foil substrates were chosen to be printed using two electrophotographic presses: XeroxColour 1000 Press and Canon imagePress C7000VP. A test chart containing tone value scales and a set of samplesfor profiling was created, spectrophotomety and densitometry was applied to obtain the optical and colorimetricproperties of the substrates investigated. Xerox Color 1000 Press produced larger densities and tone value increaseon every type of substrate. The largest TVI values and reproducible colour gamut was observed on the smoothestfoil in case of both presses. Large colour differences were found between patches of full tone process colors on thedifferent substrates investigated.

  4. Bombarding insulating foils with highly energetic ions

    Science.gov (United States)

    Lanzanò, G.; de Filippo, E.; Hagmann, S.; Rothard, H.; Volant, C.

    Insulating (MYLAR), semi-insulating (MYLAR-Au) and conducting foils have been bombarded by very energetic 64 MeV u-1 78Kr32+ ions. The velocity spectra of fast electrons emitted in the backward and forward directions have been measured and analyzed as a function of the elapsed time in the run. A shift of binary encounter and convoy electrons emitted in the forward direction toward lower velocities has been observed with insulating targets. No such shift occurs with metallic targets. The surface potential evolves with time (i.e. ion fluence) both at forward and backward emission angle. It is shown that strong bulk charging of insulating targets leads to a positive potential as high as 9 kV before charge breakdown.

  5. Simulations of stable compact proton beam acceleration from a two-ion-species ultrathin foil

    International Nuclear Information System (INIS)

    We report stable laser-driven proton beam acceleration from ultrathin foils consisting of two ion species: heavier carbon ions and lighter protons. Multidimensional particle-in-cell simulations show that the radiation pressure leads to very fast and complete spatial separation of the species. The laser pulse does not penetrate the carbon ion layer, avoiding the proton Rayleigh-Taylor (RT)-like instability. Ultimately, the carbon ions are heated and spread extensively in space. In contrast, protons always ride on the front of the carbon ion cloud, forming a compact high quality bunch. We introduce a simple three-interface model to interpret the instability suppression in the proton layer. The model is backed by simulations of various compound foils such as carbon-deuterium and carbon-tritium foils. The effects of the carbon ions' charge state on proton acceleration are also investigated. It is shown that with the decrease of the carbon ion charge state, both the RT-like instability and the Coulomb explosion degrade the energy spectrum of the protons. Finally, full 3D simulations are performed to demonstrate the robustness of the stable two-ion-species regime.

  6. Design considerations for foil windows for PET radioisotope targets

    International Nuclear Information System (INIS)

    This paper describes the results of a study performed at SRL to develop analytical and computational techniques for optimizing the design of conduction-cooled foil windows for PET targets. Single foil conduction cooled windows have been found to be good target entrance windows for both low energy accelerators and medium energy cyclotrons. Detailed thermal analysis has given an approximate analytical expression for the maximum temperature reached in a foil window under conditions of realistic ion beam bombardment. The effects of 'hot spots' in the beam density profile were investigated. It was shown that a factor of two safety margin in window design should be adequate to compensate for any possible beam hot spots. In addition, the reduction of foil stress by slack mounting was verified by experiments. The properties of conventional and novel foil materials were investigated for use in conduction cooled windows. Novel foil materials include two-component Al/Ti and Al/Havar foil. Results on the testing of candidate foil materials for thermal conductivity and mechanical strength at elevated temperature were presented. Two optimum foil window geometries were analyzed: a high aspect ratio window and a multiply slotted window. The multiply slotted window combines the advantages of a high aspect ratio foil window with a circular beam strike and is a promising window design for both TCA and cyclotron targets. A multiply slotted window for a N2 gas target for 15O production was designed using the methodologies discussed above. This prototype target was successfully tested using the TCA beam at SRL. (author) 6 figs., 3 tabs., 10 refs

  7. Foil Gas Thrust Bearings for High-Speed Turbomachinery

    Science.gov (United States)

    Edmonds, Brian; DellaCorte, Christopher; Dykas, Brian

    2010-01-01

    A methodology has been developed for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs, supporting continued development of oil-free turbomachinery. A bearing backing plate is first machined and surface-ground to produce flat and parallel faces. Partial-arc slots needed to retain the foil components are then machined into the plate by wire electrical discharge machining. Slot thicknesses achievable by a single wire pass are appropriate to accommodate the practical range of foil thicknesses, leaving a small clearance in this hinged joint to permit limited motion. The backing plate is constructed from a nickel-based superalloy (Inconel 718) to allow heat treatment of the entire assembled bearing, as well as to permit hightemperature operation. However, other dimensionally stable materials, such as precipitation-hardened stainless steel, can also be used for this component depending on application. The top and bump foil blanks are cut from stacks of annealed Inconel X-750 foil by the same EDM process. The bump foil has several azimuthal slits separating it into five individual bump strips. This configuration allows for variable bump spacing, which helps to accommodate the effects of the varying surface velocity, thermal crowning, centrifugal dishing, and misalignment. Rectangular tabs on the foil blanks fit into the backing plate slots. For this application, a rather traditional set of conventionally machined dies is selected, and bump foil blanks are pressed into the dies for forming. This arrangement produces a set of bump foil dies for foil thrust bearings that provide for relatively inexpensive fabrication of various bump configurations, and employing methods and features from the public domain.

  8. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  9. Graphene-aluminum nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bartolucci, Stephen F., E-mail: stephen.bartolucci@us.army.mil [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Paras, Joseph [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Rafiee, Mohammad A. [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Rafiee, Javad [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina; Kapoor, Deepak [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Koratkar, Nikhil, E-mail: koratn@rpi.edu [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-10-15

    Highlights: {yields} We investigated the mechanical properties of aluminum and aluminum nanocomposites. {yields} Graphene composite had lower strength and hardness compared to nanotube reinforcement. {yields} Processing causes aluminum carbide formation at graphene defects. {yields} The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  10. Interpreting Metonymy.

    Science.gov (United States)

    Pankhurst, Anne

    1994-01-01

    This paper examines some of the problems associated with interpreting metonymy, a figure of speech in which an attribute or commonly associated feature is used to name or designate something. After defining metonymy and outlining the principles of metonymy, the paper explains the differences between metonymy, synecdoche, and metaphor. It is…

  11. Modification of base-side {sup 99}MO production processes for LEU metal-foil targets.

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, G. F.; Leonard, R. A.; Aase, S.; Sedlet, J.; Koma, Y.; Conner, C.; Clark, C. R.; Meyer, M. K.

    1999-09-30

    Argonne National Laboratory is cooperating with the National Atomic Energy Commission of the Argentine Republic (CNEA) to convert their {sup 99}Mo production process, which uses high enriched uranium (HEU), to low-enriched uranium (LEU), The program is multifaceted; however, discussed in this paper are (1) results of laboratory experiments to develop means for substituting LEU metal-foil targets into the current process and (2) preparation of uranium-alloy or uranium-metal/aluminum-dispersion targets. Although {sup 99}Mo production is a multi-step process, the first two steps (target dissolution and primary molybdenum recovery) are by far the most important in the conversion. Commonly, once molybdenum is separated from the bulk of the uranium, the remainder of the process need not be modified. Our results show that up to this point in our study, conversion of the CNEA process to LEU appears viable.

  12. Foil dissociation of 40-120 keV/p hydrogen clusters

    International Nuclear Information System (INIS)

    We report on measurements of angular and charge state distributions of hydrogen fragments resulting from the dissociation of fast Hn+ clusters (n ≤ 13) in a carbon foil. The proximity effects on the fragment neutralization has been investigated for beam velocities above and around the Bohr velocity. At a given velocity the angular width and the yield of neutral atoms are observed to saturate at n ≥ 5 and n ≥ 7, respectively. The interpretation of these behaviours provides some insight on the collective aspects of the collisions and on the structure of hydrogen clusters

  13. Effects of crystalline structure in the transmission of ions through thin foils

    International Nuclear Information System (INIS)

    Two fundamental aspects of ion transmission through thin foils are analyzed in this thesis.1) Energy loss.2) Angular distribution.The subject is studied in three different approaches: Theoretically, experimentally and by numerical simulations.In the theoretical approach, the models for the calculation of the energy loss and angular distribution are discussed.They are showed to be unsatisfactory to explain the effects of crystalline structure at low energies.A model is developed to estimate the angular dispersion due to the elastic scattering between the projectile and the target electrons. Simultaneously, angular distribution and energy loss measurements have been performed bombarding polycrystalline and monocrystalline gold and polycrystalline aluminum targets with protons and helium ions with energies in the range of 4-10 keV, together with a detailed study of the foils by electron transmission microscopy techniques.The experimental results are compared with the results of a numerical simulation code, modified and extended in the scope of this thesis.The results show an important influence of crystalline structure and the different targets defects in the angular distribution.This influence is much lower in the case of the angular behaviour of the energy loss (being almost negligible in the case of protons).The most relevant characteristic of the angular behaviour of the energy loss in the case of helium ions is that it is necessary to assume in the simulation method an impact parameter dependence of the stopping coefficient to obtain an agreement between simulation and experimental results

  14. The Functionality of Fiber Bragg Grating Sensor Compared to that of Foil Gauge

    Directory of Open Access Journals (Sweden)

    Bashir A. Tahir

    2005-01-01

    Full Text Available Technology such as Fiber Bragg Grating (FBG sensors are widely accepted in almost all industries. FBG are being investigated for their applicability in other markets such as smart structures. Fiber optic sensors can also be used in many different applications. Fiber optic sensors are available in several types; among them, the Bragg grating sensor is being studied in this research. For this research work, the main focus was the use of fiber Bragg grating sensors for measuring strain. The key objective of this research; to determine the functionality of fiber Bragg grating sensors compared to that of conventional foil gauges. Fiber Bragg grating sensors were chosen for this research because they have a high potential for various uses in the monitoring of smart structures. The major incentives for this type of research are the current deterioration of civil structures in west Malaysia. The laboratory tests are being reported in this research work including tests of steel straps and an aluminum test specimen. In all the tests, strain was measured using the fiber Bragg grating sensors and compared to values from a conventional foil gauge. The results are being discussed in details. It was inferred that the use of fiber optic technology for the monitoring of civil structures is very promising and the future is sure to bring further advancements and improvements.

  15. Solid state impact welding of BMG and copper by vaporizing foil actuator welding

    Energy Technology Data Exchange (ETDEWEB)

    Vivek, Anupam, E-mail: vivek.4@osu.edu [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Presley, Michael [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Flores, Katharine M. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University, One Brookings Drive, St. Louis, MO 63130 (United States); Hutchinson, Nicholas H.; Daehn, Glenn S. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States)

    2015-05-14

    The objective of this study was to create impact welds between a Zr-based Bulk Metallic Glass (BMG) and copper at a laboratory scale and subsequently investigate the relationship between interfacial structure and mechanical properties. Vaporizing Foil Actuator (VFA) has recently been demonstrated as a versatile tool for metalworking applications: impact welding of dissimilar materials being one of them. Its implementation for welding is termed as VFA Welding or VFAW. With 8 kJ input energy into an aluminum foil actuator, a 0.5 mm thick Cu110 alloy sheet was launched toward a BMG target resulting in an impact at a velocity of nearly 600 m/s. For this experiment, the welded interface was straight with a few BMG fragments embedded in the copper sheet in some regions. Hardness tests across the interface showed increase in strength on the copper side. Instrumented peel test resulted in failure in the parent copper sheet. A slower impact velocity during a separate experiment resulted in a weld, which had wavy regions along the interface and in peel failure again happened in the parent copper sheet. Some through-thickness cracks were observed in the BMG plate and there was some spall damage in the copper flyers. TEM electron diffraction on a sample, cut out from the wavy weld interface region using a focused ion beam, showed that devitrification of the BMG was completely avoided in this welding process.

  16. Solid state impact welding of BMG and copper by vaporizing foil actuator welding

    International Nuclear Information System (INIS)

    The objective of this study was to create impact welds between a Zr-based Bulk Metallic Glass (BMG) and copper at a laboratory scale and subsequently investigate the relationship between interfacial structure and mechanical properties. Vaporizing Foil Actuator (VFA) has recently been demonstrated as a versatile tool for metalworking applications: impact welding of dissimilar materials being one of them. Its implementation for welding is termed as VFA Welding or VFAW. With 8 kJ input energy into an aluminum foil actuator, a 0.5 mm thick Cu110 alloy sheet was launched toward a BMG target resulting in an impact at a velocity of nearly 600 m/s. For this experiment, the welded interface was straight with a few BMG fragments embedded in the copper sheet in some regions. Hardness tests across the interface showed increase in strength on the copper side. Instrumented peel test resulted in failure in the parent copper sheet. A slower impact velocity during a separate experiment resulted in a weld, which had wavy regions along the interface and in peel failure again happened in the parent copper sheet. Some through-thickness cracks were observed in the BMG plate and there was some spall damage in the copper flyers. TEM electron diffraction on a sample, cut out from the wavy weld interface region using a focused ion beam, showed that devitrification of the BMG was completely avoided in this welding process

  17. Measuring the Corrosion Rate of Aluminum by Using Ultra Thin Layer Activation Technique

    Directory of Open Access Journals (Sweden)

    I. Kambali

    2005-01-01

    Full Text Available Corrosion rate of aluminum (99.9% purity in 0.001 M hydrochloride acid solution has been measured by using Ultra Thin Layer Activation (UTLA technique. Iron foil of 25 μm thickness was used as the primary target and activated by 10.2 MeV proton beam coming from BATAN’s cyclotron with irradiation dose of 0.73 μAh (9.534 x 1015 protons/cm2. Radioisotope 56Co formed on the foil would have sufficient kinetic energy to run out of the foil’s surface and be implanted on the aluminum used as the secondary target. After 2 days of cooling down, about 0.397 MBq of 56Co stayed on the foil was counted by NaI(Tl detector coupled with Multi Channel Analyzer (MCA.It was found that about 9.45% of the total 56Co formed on the iron foil was successfully implanted into aluminum target. Corrosion test of aluminum was conducted in a 2 inches diameter pipe filled with 0.001 M hydrochloride acid flowing with a rate of 80 liters/minute. The corrosion rate of the aluminum was determined from the change of 56Co activity during the process. The result of experiment indicated that the sample was corroded with a very slow rate of 0.064 nm/minute and 0.0054 nm/minute for measuring time of 0-180 and 180-300 minutes respectively.

  18. Producing Foils From Direct Cast Titanium Alloy Strip

    Science.gov (United States)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  19. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    Science.gov (United States)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  20. X-ray source production in foil implosion machines

    International Nuclear Information System (INIS)

    A number of two-dimensional radiation-magneto-hydrodynamic foil implosion calculations are discussed which explore ways of producing warm x-ray sources (∼60 eV) in a reproducible manner and which would permit close-in access to the source. The discussions include the effects of contoured electrodes on the foil implosion and source output, and of tapering the average mass distribution along the length of the foil. Primarily, source evaluation by jet formation and stagnation against a dense stopping block is treated

  1. Mechanical properties of micro- and nanocrystalline diamond foils.

    Science.gov (United States)

    Lodes, M A; Kachold, F S; Rosiwal, S M

    2015-03-28

    Diamond coating of suitable template materials and subsequent delamination allows for the manufacturing of free-standing diamond foil. The evolution of the microstructure can be influenced by secondary nucleation via control of process conditions in the hot-filament chemical vapour deposition process. Bending tests show extraordinarily high strength (more than 8 GPa), especially for diamond foils with nanocrystalline structure. A detailed fractographic analysis is conducted in order to correlate measured strength values with crack-initiating defects. The size of the failure causing flaw can vary from tens of micrometres to tens of nanometres, depending on the diamond foil microstructure as well as the loading conditions. PMID:25713455

  2. Tensile and Fatigue Properties of Free-Standing Cu Foils

    Institute of Scientific and Technical Information of China (English)

    Caiyun Dai; Xiaofei Zhu; Guangping Zhang

    2009-01-01

    Tensile and fatigue properties of free-standing as-rolled Cu foils were investigated by means of uniaxial tensile and dynamic bending tests. A special testing system was established to evaluate fatigue behavior of a mi-croscale material subjected to dynamic bending load. The experimental results show that the yield strength increases, but the fracture strain and fatigue resistance decrease with decreasing foil thickness. Deformation and fatigue damage behavior was characterized. The size effect on tensile and fatigue properties of the Cu foils are evaluated to get further understanding of the mechanical behavior of the micrometer-scale metallic materials.

  3. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  4. Synchronization and Phase Dynamics of Oscillating Foils

    Science.gov (United States)

    Finkel, Cyndee L.

    In this work, a two-dimensional model representing the vortices that animals produce, when they are ying/swimming, was constructed. A D{shaped cylinder and an oscillating airfoil were used to mimic these body{shed and wing{generated vortices, respectively. The parameters chosen are based on the Reynolds numbers similar to that which is observed in nature (˜10 4). In order to imitate the motion of ying/swimming, the entire system was suspended into a water channel from frictionless air{bearings. The position of the apparatus in the channel was regulated with a linear, closed loop PI controller. Thrust/drag forces were measured with strain gauges and particle image velocimetry (PIV) was used to examine the wake structure that develops. The Strouhal number of the oscillating airfoil was compared to the values observed in nature as the system transitions between the accelerated and steady states. The results suggest that self-regulation restricts the values of the Strouhal number to a certain range where no other external sensory input is necessary. As suggested by previous work, this self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. The limit cycles were used to examine the synchronous conditions due to the coupling of the foil and wake vortices. Noise is a factor that can mask details of the synchronization. In order to control its effect, we study the locking conditions using an analytic technique that only considers the phases. Our results show that the phase locking indices are dependent on the Strouhal value as it converges to a frequency locking ratio of ≃0:5. This indicates that synchronization occurs during cruising between the motion of the foil and the measured thrust/drag response of the uid forces. The results suggest that Strouhal number selection in steady forward natural swimming and ying is the result of a limit cycle process and not actively controlled by an organism. An implication of this is

  5. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  6. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    International Nuclear Information System (INIS)

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives

  7. Error in interpreting field chlorophyll fluorescence measurements: heat gain from solar radiation

    International Nuclear Information System (INIS)

    Temperature and chlorophyll fluorescence characteristics were determined on leaves of various horticultural species following a dark adaptation period where dark adaptation cuvettes were shielded from or exposed to solar radiation. In one study, temperature of Swietenia mahagoni (L.) Jacq. leaflets within cuvettes increased from approximately 36C to approximately 50C during a 30-minute exposure to solar radiation. Alternatively, when the leaflets and cuvettes were shielded from solar radiation, leaflet temperature declined to 33C in 10 to 15 minutes. In a second study, 16 horticultural species exhibited a lower variable: maximum fluorescence (Fv:Fm) when cuvettes were exposed to solar radiation during the 30-minute dark adaptation than when cuvettes were shielded. In a third study with S. mahagoni, the influence of self-shielding the cuvettes by wrapping them with white tape, white paper, or aluminum foil on temperature and fluorescence was compared to exposing or shielding the entire leaflet and cuvette. All of the shielding methods reduced leaflet temperature and increased the Fv:Fm ratio compared to leaving cuvettes exposed. These results indicate that heat stress from direct exposure to solar radiation is a potential source of error when interpreting chlorophyll fluorescence measurements on intact leaves. Methods for moderating or minimizing radiation interception during dark adaptation are recommended. (author)

  8. International 235U fission foil mass intercomparison

    International Nuclear Information System (INIS)

    In the measurement of neutron fission cross sections, one of the larger uncertainties is associated with the mass determination of the fissionable deposit. Inconsistencies in determinations of the fission cross sections may be a result of systematic errors associated with the measurement of the deposit mass. As part of a study to check the consistency of mass scales at a number of laboratories throughout the world, two 235U deposits from the Khlopin Radium Institute (KRI) in Leningrad, USSR, were made available through the assistance of the International Atomic Energy Agency for measurements at the National Bureau of Standards (NBS) and Argonne National Laboratory (ANL). These deposits are directly traceable to foils used in very precise measurements of the 235U(n,f) cross section made in a collaborative effort by KRI and the Technical University of Dresden (TUD), GDR. The study undertaken at the NBS consisted of two parts. One part was the measurement of the alpha-decay rates of the two 235U samples (KRI VI and KRI-XV) with a low-geometry-counting spectrometry facility. The other was the measurement of the total alpha disintegration rate of the samples employing a 2II alpha counter

  9. Foil Gas Bearing Supported Quiet Fan for Spacecraft Ventilation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Developing a quiet fan for Environmental Control and Life Support systems to enhance the livable environment within the spacecraft has been a challenge. A Foil Gas...

  10. Decontamination with pasty pickling agents forming a strippable foil

    International Nuclear Information System (INIS)

    This paper describes the development of an in-situ decontamination procedure by applying onto the contaminated surface (in an one-step or multi-step process) pasty, chemically aggressive agents causing dilution and adsorption of the contaminant and then hardening to form a strippable foil. The use of such a foil will result in following advantages, with respect to usual techniques: - sensibly shorter operation duration resulting in lower personnel doses; - reduction of the arising secondary waste volume because there is no need for washing; the volume of the spent strippable foil is much smaller than currently used water volumes; - optimal conditioning of the radioactive waste due to its fixation in a solid (foil); - an accidental contamination in a controlled area can easily be fixed and covered avoiding its propagation

  11. Stratification in Al and Cu foils exploded in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Baksht, R. B. [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Electrical Discharge and Plasma Laboratory, Tel Aviv University, Tel Aviv 6997801 (Israel); Rousskikh, A. G.; Zhigalin, A. S.; Artyomov, A. P. [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oreshkin, V. I. [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation)

    2015-10-15

    An experiment with exploding foils was carried out at a current density of 0.7 × 10{sup 8} A/cm{sup 2} through the foil with a current density rise rate of about 10{sup 15} A/cm{sup 2} s. To record the strata arising during the foil explosions, a two-frame radiographic system was used that allowed tracing the dynamics of strata formation within one shot. The original striation wavelength was 20–26 μm. It was observed that as the energy deposition to a foil stopped, the striation wavelength increased at a rate of ∼(5–9) × 10{sup 3} cm/s. It is supposed that the most probable reason for the stratification is the thermal instability that develops due to an increase in the resistivity of the metal with temperature.

  12. Controlled electropolishing of copper foils at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Gi Duk; Kim, Young Woo; Moyen, Eric; Keum, Dong Hoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Young Hee [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); IBS Center for Integrated Nanostructure Physics (CINAP), Institute of Basic Science (IBS), Daejeon (Korea, Republic of); Department of Physics, Sungkyunkwan Advanced Institute of Nano-technology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Baik, Seunghyun [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); IBS Center for Integrated Nanostructure Physics (CINAP), Institute of Basic Science (IBS), Daejeon (Korea, Republic of); Pribat, Didier, E-mail: didier53@skku.edu [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-07-01

    We have studied the electrochemical polishing of copper foils at elevated temperature, in H{sub 3}PO{sub 4} electrolytes of various concentrations. Atomic force microscopy, surface reflectance measurements as well as optical microscopy and scanning electron microscopy (including electron backscattering diffraction) have been used throughout this study to characterize the surface of the electropolished foils. We have found that copper foils electropolished at 65 °C in 2.17 M H{sub 3}PO{sub 4}, exhibited a lower surface roughness and a higher percent specular reflection, comparing with values obtained after classical electropolishing in concentrated H{sub 3}PO{sub 4} at room temperature or comparing with values obtained after chemical-mechanical polishing. This work could open up new prospects for the preparation of copper foils before the growth of high quality graphene layers.

  13. Method of stabilizing Nb3Sn superconducting foils

    International Nuclear Information System (INIS)

    The stabilization of niobium-tin Nb3Sn superconducting foils with copper is carried out by deposition or by diffusion in pure copper or in a tin bath containing different copper levels, with the surface etched or unetched. The foils are covered with a copper film at a temperature of 300 to 5O0 degC using a tin solder, spread on a copper, silver or nickel layer deposited on the foil surface from solutions for electroless plating. The bond between the surface of the superconducting foil and the electroless plated metal layer is annealed in a controlled atmosphere or in a vacuum at a temperature of 200 to 500 degC for over 20 to 60 minutes. The copper stabilization layer can also be produced electrolytically. (J.B.)

  14. Material Properties of Laser-Welded Thin Silicon Foils

    OpenAIRE

    Brabec, C.J.; Auer, R.; A. Bochmann; Christiansen, S.; Schmidt, M.; K. Cvecek; Voigt, M.; Hessmann, M. T.; Kunz, T.

    2013-01-01

    An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin...

  15. Practical and research aspects of beam-foil spectroscopy

    International Nuclear Information System (INIS)

    The application of a heavy-ion accelerator to research in beam-foil spectroscopy requires certain capital equipment which is somewhat unorthodox when viewed from the standpoint of conventional, low-energy nuclear physics. It is necessary that people who wish to expand their accelerator work to include beam-foil studies understand the nature and cost of such major apparatus. We will survey the equipment needs, starting with the particle analyzer at the output of the accelerator and including the equipment used in a variety of beam-foil experiments. Electronic and computer devices will not be discussed since they are essentially identical with those employed in nuclear studies. Considerable attention will be given to optical spectrometers and spectographs including simple instruments which might be used by a laboratory just getting started in beam-foil research, or which has limited financial resources. Attention will be given to the production and use of the exciter foils. We will then discuss some typical beam-foil experiments having to do with the excitation, detection, and analysis of spectral lines from electronic levels in multiply-ionized atoms, and also with the measurement of the mean lives of such levels. Finally, we will review some of the special properties of the beam-foil light source as regards the population of the magnetic sub-states of a given level. Recent work on the character of the emitted light will be presented. That work will deal specifically with the origin of the polarization of the light. The relevant experiments involve varying the angle between the plane of the exciter foil and the particle velocity. (author)

  16. Analysis of the Caudal Vortices Evolvement around Flapping Foil

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-dong; Zhang Xiao-qing; Su Yu-min; Xu Yu-ru

    2005-01-01

    The viscous flow field around two-dimensional flapping (heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different phase angles were obtained.The relationships between the structural characteristics of the vortices and the force acting on the foil and between the widths of the caudal vortex street and of the caudal flow field were analyzed. A method to determine the shedding frequency of the vortices was proposed.

  17. Globally shed wakes for three distinct retracting foil geometries

    Science.gov (United States)

    Steele, Stephanie; Triantafyllou, Michael

    2015-11-01

    In quickly retracting foils at an angle of attack, the boundary layer vorticity along with the added mass energy is immediately and globally shed from the body into the surrounding fluid. The deposited vorticity quickly reforms into lasting vortex structures, which could be used for purposes such as manipulating or exploiting the produced flow structures by additional bodies in the fluid. The globally shed wake thus entrains the added mass energy provided by the initially moving body, reflected by the value of the circulation left in the wake. In studying experimentally as well as numerically this phenomenon, we find that the three different tested geometries leave behind distinct wakes. Retracting a square-ended foil is undesirable because the deposited wake is complicated by three-dimensional ring vorticity effects. Retracting a tapered, streamlined-tipped foil is also undesirable because the shape-changing aspect of the foil geometry actually induces energy recovery back to the retracting foil, leaving a less energetic globally shed wake. Finally, a retracting hollow foil geometry avoids both of these detrimental effects, leaving relatively simple, yet energetic, vortex structures in the wake.

  18. Propulsion of a flexible foil in a fluid

    Science.gov (United States)

    Venkatraman, Kartik; Chaithanya, Ravi

    2008-11-01

    The dynamic properties such as time dependent pressure loading, free stream velocity, and local acceleration of the hydrofoil determine the instantaneous deformation of a flexible foil. The present work is concerned with the effect of structural dynamic terms and inertia loads on a flexible foil undergoing large amplitude rigid body harmonic wave-like motion in an unsteady potential flow. The hydrofoil structural dynamics is modeled as an Euler-Bernoulli beam finite element. The unsteady fluid dynamic force is evaluated using a numerical discrete vortex implementation of an unsteady incompressible potential flow model. The hydrofoil is fixed at its leading edge and it moves with velocity parallel to its length in the undeformed state. The propulsion of the hydro-elastic system is studied in terms of the mass ratio of the foil and the fluid, as well as its structural flexibility. It is shown that the thrust coefficient and propulsive efficiency of the flexible foil decreases with increase in structural flexibility. We made a comparison of the effect of structural flexibility on the thrust coefficient and propulsive efficiency considering models of the oscillating foil with inertia and without inertia effects present. Detailed parametric studies of the effect of different parameters on propulsion of the foil were made. Including inertia loads and structural dynamic terms significantly affect the propulsive efficiency and thrust coefficient.

  19. Research and Development of Commercially Manufactured Large GEM Foils

    CERN Document Server

    Posik, M

    2014-01-01

    The recently completed Forward GEM Tracker (FGT) of the STAR experiment at RHIC took advantage of commercially produced GEM foils based on double-mask chemical etching techniques. With future experiments proposing detectors that utilize very large-area GEM foils, there is a need for commercially available GEM foils. Double-mask etching techniques pose a clear limitation in the maximum size. In contrast, single-mask techniques developed at CERN would allow one to overcome those limitations. We report on results obtained using 10 $\\times$ 10 cm$^2$ and 40$\\times$40 cm$^2$ GEM foils produced by Tech-Etch Inc. of Plymouth, MA, USA using single-mask techniques and thus the beginning for large GEM foil production on a commercial basis. A quality assurance procedure has been established through electrical and optical analyses via leakage current measurements and an automated high-resolution CCD scanner. The Tech-Etch foils show excellent electrical properties with leakage currents typically measured below 1 nA. The ...

  20. Is the Aluminum Hypothesis Dead?

    OpenAIRE

    Lidsky, Theodore I.

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  1. Mammographic interpretation

    International Nuclear Information System (INIS)

    For mammography to be an effective diagnostic method, it must be performed to a very high standard of quality. Otherwise many lesions, in particular cancer in its early stages, will simply not be detectable on the films, regardless of the skill of the mammographer. Mammographic interpretation consists of two basic steps: perception and analysis. The process of mammographic interpretation begins with perception of the lesion on the mammogram. Perception is influenced by several factors. One of the most important is the parenchymal pattern of the breast tissue, detection of pathologic lesions being easier with fatty involution. The mammographer should use a method for the systematic viewing of the mammograms that will ensure that all parts of each mammogram are carefully searched for the presence of lesions. The method of analysis proceeds according to the type of lesion. The contour analysis of primary importance in the evaluation of circumscribed tumors. After having analyzed the contour and density of a lesion and considered its size, the mammographer should be fairly certain whether the circumscribed tumor is benign or malignant. Fine-needle puncture and/or US may assist the mammographer in making this decision. Painstaking analysis is required because many circumscribed tumors do not need to be biopsied. The perception of circumscribed tumors seldom causes problems, but their analysis needs careful attention. On the other hand, the major challenge with star-shaped lesions is perception. They may be difficult to discover when small. Although the final diagnosis of a stellate lesion can be made only with the help of histologic examination, the preoperative mammorgraphic differential diagnosis can be highly accurate. The differential diagnostic problem is between malignant tumors (scirrhous carcinoma), on the one hand, and traumatic fat necrosis as well as radial scars on the other hand

  2. Picosecond time-resolved X-ray absorption spectroscopy of ultrafast aluminum plasmas.

    Science.gov (United States)

    Audebert, P; Renaudin, P; Bastiani-Ceccotti, S; Geindre, J-P; Chenais-Popovics, C; Tzortzakis, S; Nagels-Silvert, V; Shepherd, R; Matsushima, I; Gary, S; Girard, F; Peyrusse, O; Gauthier, J-C

    2005-01-21

    We have used point-projection K-shell absorption spectroscopy to infer the ionization and recombination dynamics of transient aluminum plasmas. Two femtosecond beams of the 100 TW laser at the LULI facility were used to produce an aluminum plasma on a thin aluminum foil (83 or 50 nm), and a picosecond x-ray backlighter source. The short-pulse backlighter probed the aluminum plasma at different times by adjusting the delay between the two femtosecond driving beams. Absorption x-ray spectra at early times are characteristic of a dense and rather homogeneous plasma. Collisional-radiative atomic physics coupled with hydrodynamic simulations reproduce fairly well the measured average ionization as a function of time. PMID:15698184

  3. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    International Nuclear Information System (INIS)

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered

  4. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  5. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  6. Woodgrain defect on tinned steel Flandres foil

    International Nuclear Information System (INIS)

    Tin electrocoated steel strip, also referred to as Flandres foil, is largely used for manufacturing food containers. Tinplates must have good corrosion resistance, workability, weldability, as well as a bright appearance. The woodgrain defect, a not yet fully understood defect that occurs on tinplates and accounts for their high scrap rate, consists of alternate bands of bright/dull reflectivity and resembles longitudinally cut wood. Observations of the woodgrain defect by scanning electron microscopy showed that the molten tin spreads irregularly during both the melting and solidification stages. X-ray diffraction analyses showed that the metallic tin tended to crystallize in the (200) direction for coupons with and without the woodgrain defect. Nevertheless, the preferential orientation degree decreased for coupons with the woodgrain defect. The rocking curves, also known as omega-scan, showed that the tin grains were uniformly aligned parallel to the strip surface for coupons with no defects, whereas for tinplates with woodgrain, the tin grains were not uniformly oriented, probably due to the misalignment of the grains in relation to the surface. - Graphical abstract: The woodgrain defect occurs on Flandres tinplates and consists in the formation of alternate bands of different reflectivity (bright/dull), which looks like longitudinally cut wood. X-ray diffractometry showed that the typical bright surface of tinplate is associated to the uniform distribution of aligned (200) Sn grains, whereas in tinplate with the woodgrain defect, the Sn grains were not uniformly oriented, due to the misalignment of the (200) Sn planes relative to the surface. Research highlights: → The bright surface of tinplate is associated to the uniform distribution of aligned (200) Sn grains. → The woodgrain defect on tinplate consists in alternate bands of bright/dull appearance. → In tinplate with the woodgrain defect, the Sn grains were not uniformly oriented, due to the

  7. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  8. Experimental EOS determination of aluminum at Mbar pressure

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jianping; LI; Ruxin; ZENG; Zhinan; WANG; Xingtao; XU

    2004-01-01

    A shock wave is driven by a laser pulse of 1.2 ps duration (FWHM), with the intensity of ~1014 W/cm2 at 785 nm, irradiating a 500 nm thick aluminum foil. A chirped laser pulse split from the main pulse is used to detect the shock breakout process at the rear surface of the target based on frequency domain interferometry. The mean shock velocity determination benefits from the precise synchronization (<100fs resolution) of the shock pump and probe laser pulses, which is calculated from the time the shock takes to travel the 500 nm thick aluminum. The released particle velocity determination benefits from the chirped pulse frequency domain interferometry. The average shock velocity is 15.15 km/s and the shock release particle velocity is 15.24 km/s, and the corresponding pressure after shock is 3.12 Mbar under our experimental condition.

  9. Vacancy dipole loops observed in low temperature neutron irradiated pure gold and pure aluminum

    International Nuclear Information System (INIS)

    Thin foils of pure gold and pure aluminum were quenched from high temperature. Without explosing the specimens to the temperatures at which vacancies can migrate by thermal motion, specimens were irradiated with fission neutrons at about 20 K. After the specimens were annealed at room temperature, it was observed by electron microscopy. Long straight rod shaped defects were observed together with small dotted defects. In pure gold, rod shaped defects were along directions and found to be narrow faulted dipoles. In pure aluminum they were perfect dipole and did not align to any low index direction. Possible mechanism for the formation of vacancy dipole loops are discussed. (author)

  10. Performance of Simple Gas Foil Thrust Bearings in Air

    Science.gov (United States)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  11. Neutron Diffraction Measurement of Residual Stresses, Dislocation Density and Texture in Zr-bonded U-10Mo ''Mini'' Fuel Foils and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Donald W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Okuniewski, M. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sisneros, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clausen, Bjorn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, G. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Balogh, L [Queen' s Univ., Kingston, ON (Canada)

    2014-08-07

    Aluminum clad monolithic uranium 10 weight percent molybdenum (U-10Mo) fuel plates are being considered for conversion of several research and test nuclear reactors from high-enriched to low-enriched uranium fuel due to the inherently high density of fissile material. Comprehensive neutron diffraction measurements of the evolution of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the HIP procedure significantly reduces the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stresses in the clad fuel plate do not depend strongly on the final processing step of the bare foil prior to HIP bonding. Rather, the residual stresses are dominated by the thermal expansion mismatch of the constituent materials of the fuel plate.

  12. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C

  13. Interaction of relativistic H- ions with thin foils

    International Nuclear Information System (INIS)

    The response of relativistic H- ions to thin carbon foils was investigated for beam energies ranging from 226 MeV to 800 MeV. For the foil thicknesses we have studied, ranging from 15 to 300 μg/cm2, an appreciable fraction of the H- beam survives intact, some H- ions are stripped down to protons, and the remainder is distributed over the states of H0. This experiment is different from the low energy studies in that the projectile velocity is comparable to the speed of light, leading to an interaction time of typically less than a femtosecond. The present results challenge the theoretical understanding of the interaction mechanisms. An electron spectrometer was used to selectively field-ionize the Rydberg states, 9 < n < 17, at beam energies of 581 MeV and 800 MeV. The yield of low-lying states were measured by Doppler tuning a Nd:YAG laser to excite transitions to a Rydberg state which was then field-ionized and detected. A simple model is developed to fit the yield of each state as a function of foil thickness. The simple model is successful in predicting the general features of the yield data. However, the data are suggestive of a more complex structure in the yield curves. The yield of a given state depends strongly on the foil thickness, demonstrating that the excited states are formed during the passage of the ions through a foil. The optimum thickness to produce a given state increases with the principal quantum number of the state suggesting an excitation process which is at least pratially stepwise. The results of a Monte Carlo simulation are compared with the experimental data to estimate the distribution of the excited states coming out of a foil. The distributions of the excited states and their dependence on foil thickness are discussed

  14. High energy X-ray diffraction measurement of residual stresses in a monolithic aluminum clad uranium-10 wt% molybdenum fuel plate assembly

    Science.gov (United States)

    Brown, D. W.; Okuniewski, M. A.; Almer, J. D.; Balogh, L.; Clausen, B.; Okasinski, J. S.; Rabin, B. H.

    2013-10-01

    Residual stresses are expected in monolithic, aluminum clad uranium 10 wt% molybdenum (U-10Mo) nuclear fuel plates because of the large mismatch in thermal expansion between the two bonded materials. The full residual stress tensor of the U-10Mo foil in a fuel plate assembly was mapped with 0.1 mm resolution using high-energy (86 keV) X-ray diffraction. The in-plane stresses in the U-10Mo foil are strongly compressive, roughly -250 MPa in the longitudinal direction and -140 MPa in the transverse direction near the center of the fuel foil. The normal component of the stress is weakly compressive near the center of the foil and tensile near the corner. The disparity in the residual stress between the two in-plane directions far from the edges and the tensile normal stress suggest that plastic deformation in the aluminum cladding during fabrication by hot isostatic pressing also contributes to the residual stress field. A tensile in-plane residual stress is presumed to be present in the aluminum cladding to balance the large in-plane compressive stresses in the U-10Mo fuel foil, but cannot be directly measured with the current technique due to large grain size.

  15. High energy X-ray diffraction measurement of residual stresses in a monolithic aluminum clad uranium–10 wt% molybdenum fuel plate assembly

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Brown; M. A. Okuniewski; J. D. Almer; L. Balogh; B. Clausen; J. S. Okasinski; B. H. Rabin

    2013-10-01

    Residual stresses are expected in monolithic, aluminum clad uranium 10 wt% molybdenum (U–10Mo) nuclear fuel plates because of the large mismatch in thermal expansion between the two bonded materials. The full residual stress tensor of the U–10Mo foil in a fuel plate assembly was mapped with 0.1 mm resolution using high-energy (86 keV) X-ray diffraction. The in-plane stresses in the U–10Mo foil are strongly compressive, roughly -250 MPa in the longitudinal direction and -140 MPa in the transverse direction near the center of the fuel foil. The normal component of the stress is weakly compressive near the center of the foil and tensile near the corner. The disparity in the residual stress between the two in-plane directions far from the edges and the tensile normal stress suggest that plastic deformation in the aluminum cladding during fabrication by hot isostatic pressing also contributes to the residual stress field. A tensile in-plane residual stress is presumed to be present in the aluminum cladding to balance the large in-plane compressive stresses in the U–10Mo fuel foil, but cannot be directly measured with the current technique due to large grain size.

  16. High energy X-ray diffraction measurement of residual stresses in a monolithic aluminum clad uranium–10 wt% molybdenum fuel plate assembly

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W., E-mail: dbrown@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Okuniewski, M.A. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Almer, J.D. [Argonne National Laboratory, Argonne, IL 60439 (United States); Balogh, L.; Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Okasinski, J.S. [Argonne National Laboratory, Argonne, IL 60439 (United States); Rabin, B.H. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2013-10-15

    Residual stresses are expected in monolithic, aluminum clad uranium 10 wt% molybdenum (U–10Mo) nuclear fuel plates because of the large mismatch in thermal expansion between the two bonded materials. The full residual stress tensor of the U–10Mo foil in a fuel plate assembly was mapped with 0.1 mm resolution using high-energy (86 keV) X-ray diffraction. The in-plane stresses in the U–10Mo foil are strongly compressive, roughly −250 MPa in the longitudinal direction and −140 MPa in the transverse direction near the center of the fuel foil. The normal component of the stress is weakly compressive near the center of the foil and tensile near the corner. The disparity in the residual stress between the two in-plane directions far from the edges and the tensile normal stress suggest that plastic deformation in the aluminum cladding during fabrication by hot isostatic pressing also contributes to the residual stress field. A tensile in-plane residual stress is presumed to be present in the aluminum cladding to balance the large in-plane compressive stresses in the U–10Mo fuel foil, but cannot be directly measured with the current technique due to large grain size.

  17. Burning characteristics of individual aluminum/aluminum oxide particles

    OpenAIRE

    Ruttenberg, Eric C.

    1996-01-01

    Approved for public release; distribution is unlimited An experimental investigation was conducted in which the burning characteristics of individual aluminum/aluminum oxide particles were measured using a windowed combustion bomb at atmospheric pressure and under gravity-fall conditions. A scanning electron microscope (SEM) was used to measure the size distribution of the initial aluminum particles and the aluminum oxide residue. Analysis of the residue indicated that the mass of aluminum...

  18. Purifying Aluminum by Vacuum Distillation

    Science.gov (United States)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  19. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    Science.gov (United States)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  20. Foil implosion studies with a plasma flow switch

    International Nuclear Information System (INIS)

    A plasma flow switch has been developed for the 1.5 MJ Pegasus capacitor bank to efficiently utilize the bank energy to drive a foil implosion. The object of this activity is to generate an intense burst of soft x-rays when the foil stagnates and thermalizes on axis. The peak current of the Pegasus bank, determined from the charge voltage divided by the characteristic impedance of the capacitor bank is -- 10 MA. When used to perform direct-drive, foil implosion experiments, the foil collapses to the axis when the current has risen to only -- 3 MA. The kinetic energy of the imploding foil for the direct-drive configuration cannot exceed -- 25% of the bank energy (lossless calculation). The plasma flow switch has been designed to have a conduction time of -- 4 μsec and a commutation time of -- 0.2 μsec. This permits flow implosion experiments to be performed at peak current. The soft x-ray output, as determined by volometry and by an array of filtered x-ray diodes, is compared for the two modes of operation

  1. Foil dissociation of fast molecular ions into atomic excited states

    International Nuclear Information System (INIS)

    The intensity and polarizations of light emitted from atomic excited states of dissociated molecular ions were measured. The dissociations are induced when fast molecular ions (50 to 500 keV/amu) are transmitted through thin carbon foils. A calculation of multiple scattering and the Coulomb explosion gives the average internuclear separation of the projectile at the foil surface. Experimentally, the foil thickness is varied to give varying internuclear separations at the foil surface and observe the consequent variation in light yield and optical polarization. Using HeH+ projectiles, factors of 1 to 5 enhancements of the light yields from n = 3, 13P,D states of He I and some He II and H I emissions were observed. The results can be explained in terms of molecular level crossings which provide mixings of the various final states during dissociation of the molecular ions at the exit surface. They suggest a short range surface interaction of the electron pick-up followed by a slow molecular dissociation. Alignment measurements confirm the essential features of the model. Observations of Lyman α emission after dissociation of H2+ amd H3+ show rapid variations in light yield for small internuclear separations at the foil surface

  2. Design and optimization of vertex detector foils by superplastic forming

    CERN Document Server

    Snippe, Quirin Hendrik Catherin; Meinders, V T

    2011-01-01

    The production of one of the parts in a particle detector, called the RF Foil, has been a very intensive process in the past. The design and production process, which had a trial and error character, led eventually to an RF Foil that met the most important requirement: a sufficient leak tightness value. Since these kinds of foils have to be produced in the future, it is desirable to shorten the development stage with a view to cost reduction. This research project investigates how this part can be optimized with respect to the radiation length. An important limiting factor within this optimization process is the leak tightness of the foil. The intended production method this research will investigate is superplastic forming (SPF). On the one hand, the goal is to use finite element calculations to predict the forming behavior. The leak tightness of the formed foil must also be predicted within these calculations. On the other hand, an optimization strategy is necessary to reduce the radiation length of the RF ...

  3. Development of Tracking Detectors with industrially produced GEM Foils

    CERN Document Server

    Simon, F; Becker, U; Burns, L; Crary, D; Kearney, K; Keeler, G; Majka, R; Paton, K; Saini, G; Smirnov, N; Surrow, B; Woody, C

    2007-01-01

    The planned tracking upgrade of the STAR experiment at RHIC includes a large-area GEM tracker used to determine the charge sign of electrons and positrons produced from W+(-) decays. For such a large-scale project commercial availability of GEM foils is necessary. We report first results obtained with a triple GEM detector using GEM foils produced by Tech-Etch Inc. of Plymouth, MA, USA. Measurements of gain uniformity, long-term stability as well as measurements of the energy resolution for X-Rays are compared to results obtained with an identical detector using GEM foils produced at CERN. A quality assurance procedure based on optical tests using an automated high-resolution scanner has been established, allowing a study of the correlation of the observed behavior of the detector and the geometrical properties of the GEM foils. Detectors based on Tech-Etch and CERN produced foils both show good uniformity of the gain over the active area and stable gain after an initial charge-up period, making them well sui...

  4. Dosimetric response of united, commercially available CTA foils for sup 6 sup 0 Co gamma rays

    CERN Document Server

    Peimel-Stuglik, Z

    2001-01-01

    The usefulness of two kinds of untinted CTA foils: Fuji CTR-125 dosimetric foil and technical CTA-T foil, produced by 'Zaklady Chemiczne, 'Gorzow Wielkopolski' as support for light-sensitive layers of amateur photo-films, for sup 6 sup 0 Co gamma ray dosimetry was investigated. In spite of rather bad physical parameters of the technical foil (spread of foil thickness, high and different initial absorbance) the dosimetric response of both foils for sup 6 sup 0 Co gamma rays was similar. The CTA-T foil can be used for routine dosimetry providing that dosimetric signals have to be calculated exactly as recommended by the ASTM (American Society for Testing and Materials) standard, i.e. as the difference of absorbance of irradiated and (the same) non-irradiated foil. Any other approach may lead to high errors of dose evaluation. The last is true also for other CTA foils, especially after long self-life.

  5. Dosimetric response of united, commercially available CTA foils for 60Co gamma rays

    International Nuclear Information System (INIS)

    The usefulness of two kinds of untinted CTA foils: Fuji CTR-125 dosimetric foil and technical CTA-T foil, produced by 'Zaklady Chemiczne, 'Gorzow Wielkopolski' as support for light-sensitive layers of amateur photo-films, for 60Co gamma ray dosimetry was investigated. In spite of rather bad physical parameters of the technical foil (spread of foil thickness, high and different initial absorbance) the dosimetric response of both foils for 60Co gamma rays was similar. The CTA-T foil can be used for routine dosimetry providing that dosimetric signals have to be calculated exactly as recommended by the ASTM (American Society for Testing and Materials) standard, i.e. as the difference of absorbance of irradiated and (the same) non-irradiated foil. Any other approach may lead to high errors of dose evaluation. The last is true also for other CTA foils, especially after long self-life. (author)

  6. Flapping Instability of Two Tandem Flexible Foils in Uniform Axial Flow

    Science.gov (United States)

    Gurugubelli, Pardha Saradhi; Jaiman, Rajeev Kumar; Chua, Cassey

    2015-11-01

    We present a numerical analysis on the stability and coupled dynamics of two tandem flexible foils clamped at their leading edges in a uniform axial flow. The flexible foils considered for this study correspond to the fixed-point stable regime of the single flexible foil where the flexible foil aligns itself in the flow direction with no significant trailing edge oscillations. A high-order nonlinear coupled solver based on the variational formulation has been considered for analyzing the effects of gap between the foils on the stability and coupled behaviour of both the upstream and downstream foils. As a function of decreasing gap, it is observed that the tandem foil configuration is more prone to flapping instability than its single flexible foil counterpart. The evolution of the instability for the downstream foil shows two distinct dynamical scenarios: (i) only the downstream foil exhibits flapping motion and (ii) both the upstream and the downstream foils perform flapping. With the aid of a rigid foil in the upstream of a flexible foil, we further present a detailed analysis on the effects of the upstream wake and vortex shedding on the stability and flapping dynamics of the downstream foil.

  7. A method for thin foil thickness determination by transmission electron microscopy

    International Nuclear Information System (INIS)

    With the intention of determining the local thickness within a crystalline thin foil specimen, by means of transmission electron microscopy (TEM), a method previously proposed by Zuo and Shi [J.M. Zuo, Y.F. Shi, Microsc. Microanal. 7 (Suppl. 2) (2001) 224-225] was applied. Using the convergent beam technique, with the incident beam parallel to a zone axis with low indices, diffraction patterns were obtained for some aluminum alloys with low solute content. These patterns were contrasted with those obtained from simulations based on the dynamic theory with Bloch's waves formalism. The local thickness of the thin foil was then obtained by visually comparing the simulated patterns with the experimental one. Comparison of the proposed method with that based on the analysis of two-beam convergent beam patterns [P.M. Kelly, A. Jostsons, R.G. Blake, J.G. Napier, Phys. Stat. Solidi (a) 31 (1975) 771-780] and with that based on the ratio of intensity of the zero loss peak to the total intensity in an electron energy loss spectrum [R.F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, second ed., Plenum Press, New York, 1996] was carried out. A very good agreement between thicknesses determined using the different methods was found. The sensitivity of the method of Zuo et al. was found to be about 1 or 2 nm. The advantages and limitations of the different methods are discussed. The method of Zuo et al. can provide fast and reliable results and can be applied in all modern instruments

  8. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  9. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  10. Highly sensitive urea sensing with ion-irradiated polymer foils

    International Nuclear Information System (INIS)

    Recently we prepared urea-sensors by attaching urease to the inner walls of etched ion tracks within thin polymer foil. Here, alternative track-based sensor configurations are examined where the enzyme remained in solution. The conductivities of systems consisting of two parallel irradiated polymer foils and confining different urea/urease mixtures in between were examined. The correlations between conductivity and urea concentration differed strongly for foils with unetched and etched tracks, which points at different sensing mechanisms – tentatively attributed to the adsorption of enzymatic reaction products on the latent track entrances and to the enhanced conductivity of reaction product-filled etched tracks, respectively. All examined systems enable in principle, urea sensing. They point at the possibility of sensor cascade construction for more sensitive or selective sensor systems.

  11. Development of single mask GEM foils in India

    International Nuclear Information System (INIS)

    There are various techniques available around the globe for making punch through holes for Micro Pattern Gas Detectors (MPGDs), such as Gas Electron Multipliers (GEMs). The GEM foils consists of 5 μm of Cu clad on both the sides of 50 μm polymide (PMMA/kapton) (5/50/5). At present these foils are developed in South Korea without having any adhesive between the Cu and polymide. The available techniques range from chemical etching, reactive plasma etching and laser etching. However, for GEM detectors, having an active area upto 5000 cm2, the chemical etching process using a Single Mask has been developed at CERN which is faster from the viewpoint of mass production of such foils for the upgrades which are foreseen in a couple of years with the Large Hadron Collider facility at CERN

  12. Analysis of texture of niobium thin wire and foil

    International Nuclear Information System (INIS)

    Distribution of texture components in 0.5 mm cold-worked wire and 40 μm foil (ε = 90 and 95% respectively) is investigated by X-ray diffraction method. Inhomogeneity of the product deformation texture is revealed. Textures of internal wire and foil metal volumes are traditionals ones as in similar products of bcc metals while for surface layers of metal with 5-10 μm thickness specific material textures are found. Shear texture (110) (001) of foil metal surface layer at annealing is enforced at the expense of prevailing growth in a matrix with rolling plane deformation. Removal of the metal layer with shear texture prior before annaling using etching leads to recrystallization in situ with the preservation of plane rolling deformation texture (001)-(112) (100)+(554) (225)

  13. Fabrication of antiferroelectric PLZT films on metal foils

    International Nuclear Information System (INIS)

    Fabrication of high-dielectric-strength antiferroelectric (AFE) films on metallic foils is technically important for advanced power electronics. To that end, we have deposited crack-free Pb0.92La0.08Zr0.95Ti0.05O3 (PLZT 8/95/5) films on nickel foils by chemical solution deposition. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, a conductive buffer layer of lanthanum nickel oxide (LNO) was coated by chemical solution deposition on the nickel foil before the deposition of PLZT. Use of the LNO buffer allowed high-quality film-on-foil capacitors to be processed in air. With the PLZT 8/95/5 deposited on LNO-buffered Ni foils, we observed field- and thermal-induced phase transformations of AFE to ferroelectric (FE). The AFE-to-FE phase transition field, EAF = 225 kV/cm, and the reverse phase transition field, EFA = 190 kV/cm, were measured at room temperature on a ∼1.15 μm-thick PLZT 8/95/5 film grown on LNO-buffered Ni foils. The relative permittivities of the AFE and FE states were ∼600 and ∼730, respectively, with dielectric loss ∼0.04 at room temperature. The Curie temperature was ∼210 deg. C. The thermal-induced transition of AFE-to-FE phase occurred at ∼175 deg. C. Breakdown field strength of 1.2 MV/cm was measured at room temperature

  14. Method and apparatus for tensile testing of metal foil

    Science.gov (United States)

    Wade, O. W. (Inventor)

    1976-01-01

    A method for obtaining accurate and reproducible results in the tensile testing of metal foils in tensile testing machines is described. Before the test specimen are placed in the machine, foil side edges are worked until they are parallel and flaw free. The specimen are also aligned between and secured to grip end members. An aligning apparatus employed in the method is comprised of an alignment box with a longitudinal bottom wall and two upright side walls, first and second removable grip end members at each end of the box, and a means for securing the grip end members within the box.

  15. Modeling the registration efficiency of thermal neutrons by gadolinium foils

    CERN Document Server

    Abdushukurov, D A; Bondarenko, D V; Chistyakov, D Y; Muminov, K K; Toshov, T A; Muminov, Kh.Kh.

    2007-01-01

    In the paper we present the results of mathematical modeling of the registration efficiency of thermal neutrons for the converters made of natural Gd and its 157 isotope plane-parallel foils. In the performed calculations four fixed energies of neutrons with the corresponding wavelengths of 1, 1.8, 3 and 4 $A^0$ are taken into account. We calculate the efficiencies of the converter for electron escapes to frontward and backward hemispheres and their sum, depending on thickness of converting foils. Results of comparison of our calculations with the experimental data are presented.

  16. Fabrication of aluminum foam from aluminum scrap Hamza

    OpenAIRE

    O. A. Osman1 ,; Mining and Petroleum Engineering, Faculty of Engineering- Qena, Al_Azhar University, Egypt

    2015-01-01

    In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second ...

  17. Preparation of the charge stripping foil in J-PARC RCS

    International Nuclear Information System (INIS)

    At the J-PARC 3-GeV Rapid Cycling Synchrotron (RCS), the H-charge exchange injection scheme using striping foils is adopted. The 1st stripping foil is mounted on a C-shaped holder. One edge of the foil is supported by the holders and the other edge is sandwiched by 10 μm diameter SiC fibers. The holders with not only operation foil but also spare foils were stored on the holder storage rack. The 1st stripping foil is one of the key elements deciding the beam performance in the RCS. Thus the foil preparation is very important issue. The foil preparation includes many work process as follows: a foil separation from glass substrates, salvaging the foil from the water, foil annealing, SiC fibers glueing and foil mount on the holder, and foil holders storing in the holder storage rack. In order to improve its reproducibility and increase the efficiency of work, attachment devices or support jigs are developed. (author)

  18. Effect of oxygen barrier coatings on oxidation and embrittlement of Ti-6Al-2Sn-4Zr-2Mo foil in heat shield applications

    Science.gov (United States)

    Clark, R. K.; Unnam, J.; Wiedemann, K. E.

    1986-01-01

    Because of the loss of ductility with exposure to oxidizing conditions, long time applications of titanium alloys have been limited to temperatures below 700 K and short time applications have been limited to temperatures below 815 K. Oxygen barrier coatings for shielding Ti-6Al-2Sn-4Zr-2Mo alloy from oxidation during exposure to high temperatures were studied using foil gage specimens. The coatings included micrometer-thick sputtered SiO2 and chemical-vapor-deposited silicate layers both with and without an aluminum basecoat. The oxidation rates and resistance to embrittlement of the coated specimens were significantly better than those of the uncoated specimens.

  19. Analysis of thermal effect for China spallation neutron source primary stripper foil

    International Nuclear Information System (INIS)

    Primary stripper foil device is one of the most important devices in rapid cycling synchrotron of China Spallation Neutron Source (CSNS). In normal operation conditions, the high temperature and other thermal effects on foil are the main factors which influence the foil's lifetime. In order to predict the foil's working conditions and choose an appropriate design scheme, the finite element analysis software was utilized to calculate the foil's temperature, thermal stress and deformation in different working conditions of CSNS-Ⅰ. The simulation result shows that the highest temperature on foil is 1450 K, and the mounting mode would hardly affect the thermal stress and deformation. Based on the simulation result, the final spare foil's number is designed to be 20, and the two-edge fixed method is utilized as the foil's mounting scheme. (authors)

  20. Material Properties of Laser-Welded Thin Silicon Foils

    Directory of Open Access Journals (Sweden)

    M. T. Hessmann

    2013-01-01

    Full Text Available An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1 laser spot welding with low constant feed speed, (2 laser line welding, and (3 keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.

  1. An 8b organic microprocessor on plastic foil

    NARCIS (Netherlands)

    Myny, K.; Veenendaal, E. van; Gelinck, G.H.; Genoe, J.; Dehaene, W.; Heremans, P.

    2011-01-01

    We introduce a microprocessor made by organic thin-film transistors processed directly onto flexible plastic foil. This is a direct realization of a microprocessor by thin-film technology, i.e., without transfer, on plastic. It paves the way to equip mundane supports and objects with low-cost comput

  2. Foil Bearing Starting Considerations and Requirements for Rotorcraft Engine Applications

    Science.gov (United States)

    Radil, Kevin C.; DellaCorte, Christopher

    2009-01-01

    Foil gas bearings under development for rotorcraft-sized, hot core engine applications have been susceptible to damage from the slow acceleration and rates typically encountered during the pre-ignition stage in conventional engines. Recent laboratory failures have been assumed to be directly linked to operating foil bearings below their lift-off speed while following conventional startup procedures for the engines. In each instance, the continuous sliding contact between the foils and shaft was believed to thermally overload the bearing and cause the engines to fail. These failures highlight the need to characterize required acceleration rates and minimum operating speeds for these applications. In this report, startup experiments were conducted with a large, rotorcraft engine sized foil bearing under moderate load and acceleration rates to identify the proper start procedures needed to avoid bearing failure. The results showed that a bearing under a 39.4 kPa static load can withstand a modest acceleration rate of 500 rpm/s and excessive loitering below the bearing lift-off speed provided an adequate solid lubricant is present.

  3. Characteristic Differences Between Wire and Foil X-pinches

    Science.gov (United States)

    Collins, Gilbert; Valenzuela, Julio; Krasheninnikov, Igor; Beg, Farhat; Wei, Mingsheng

    2015-11-01

    We conducted X-pinch experiments using laser-cut Ni and Cu foils on the 250kA GenASIS current driver at UC San Diego. General Atomics' Laser Micro-Machining (LMM) Center manufactured the X's. To characterize the foil X-pinches, we measured and compared the evolution, emission spectra, yield, and source size of these new arrays to that of comparably massed wire X-pinches on the same driver. Diagnostics included Si PN diodes and diamond PCDs, optical probing, X-ray spectroscopy, an XUV framing camera, a slit-wire camera, and current probes. We used novel structures machined into the crosspoint in an effort to better understand the effects of the initial geometry on the final pinch and to spatially confine the source location. Some designs entirely prohibited pinching. In other designs, when pinching occurred, the sources were comparable to ideal wire shots on GenASIS both in size (at or less than five microns) and X-ray flux (5-10 MW @ 1-10 keV). The data collected here also show considerable differences between successful foil and wire pinches. The X-ray spectra are not identical, and we find that the foil X's produce a single >2.5 keV emission pulse with none of the additional later and longer-lasting hard emission pulses found in wire X-pinches.

  4. Absolute neutronic performance of SNS from gold foil application

    International Nuclear Information System (INIS)

    The determination of absolute neutron fluxes by white beam activation of thick gold foils in conjuction with spectral analysis by time-of-flight monitors is described. A numerical integration procedure is presented and the method applied to determining the absolute performance of SNS from data obtained during the initial commissioning run in December 1984. (author)

  5. The use of fission foils for plasma neutron diagnostics

    International Nuclear Information System (INIS)

    Commonly used fission foil materials have been examined for their application to plasma diagnostics as activation foils. Such foils have been used extensively in the past for fission reactor dosiemetry. They have very well known fission cross sections, and in most cases the fission yields are reasonably well known. The materials included in this study are 226Ra, 228Th, 232Th, 231Pa, 233U, 235U, 238U, 237Np, 238Pu, and 239Pu. Of these materials 232Th, 235U, and 238U are considered to be very good candidates for this application. The others have been eliminated because of high background radioactivity, impurities which present high backgrounds, or lack of knowledge about yield distribution of fission products. Production cross sections for fission products in the vicinity of the yield maxima (A = 85 - 101, 133 143) have been calculated from known fission cross sections and independent or cumulative yields at thermal energies (where applicable) and 14 MeV. Recent measurements at 2.5 MeV are also included. For one foil (232Th) results for 3 MeV and 11 MeV are also available. The decay schemes of the more prominent fission products have been thoroughly studied and good measurement precision should result from their use

  6. Transmission of fast H3+ molecules through thin carbon foils

    International Nuclear Information System (INIS)

    Observed for the first time is the transmission of H3+ molecules (2.4 MeV) through carbon foils (2 - 7μg/cm2). The thickness dependence of the yield follows a single decreasing exponential function with a unity coefficient which is expected for H3+ transmitted with their original electrons

  7. The Visualization of Infrared Radiation Using Thermal Sensitive Foils

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…

  8. Grafting of polyethylene foils by vinyltrimethoxysilane using radiofrequency plasma discharge

    Czech Academy of Sciences Publication Activity Database

    Krupa, I.; Nedelčev, T.; Novák, I.; Kleinová, A.; Špírková, Milena

    Bratislava: Polymer Institute of the Slovak Academy of Sciences, 2006. s. 173-174. ISBN 80-968433-3-8. [Bratislava International Conference on Macromolecules: Advanced Polymeric Materials /20./. 11.06.2006-15.06.2006, Bratislava] Institutional research plan: CEZ:AV0Z40500505 Keywords : grafting * polyethylene foils Subject RIV: CD - Macromolecular Chemistry

  9. Effect of sheet thickness on deep drawing of metal foils

    Directory of Open Access Journals (Sweden)

    Y. Marumo

    2007-01-01

    Full Text Available Purpose: The objective of the present work is to study the influence of sheet thickness on blank holding forceand limiting drawing ratio.Design/methodology/approach: Variation in blankholding force and limiting drawing ratio in deep drawing ofmetal foils were evaluated by calculation.Findings: The paper shows variation in the blankholding force required for the elimination of wrinkling and thelimiting drawing ratio with sheet thickness. The blankholding force required for the elimination of wrinklingincreased rapidly as the sheet thickness decreased. When the sheet thickness was very thin, the blankholdingforce was strongly influenced by the coefficient of friction. The limiting drawing ratio decreased as sheetthickness decreased and it decreased rapidly below 0.04 mm thickness. When the sheet thickness was very thin,the limiting drawing ratio was strongly influenced by the coefficient of friction.Research limitations/implications: The control of the loading path of blankholding force will be an effectiveway to prevent the formation of defects including fractures and wrinkles in deep drawing of metal foils.Practical implications: When deep drawing of metal foils is carried out, the control of loading path of blankholdingforce during deep drawing operation can be very effective for improving the limiting drawing ratio.Originality/value: The contribution of the conducted research is observed in a possible view of improvementof deep drawability of metal foils.

  10. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  11. ALUMINUM RECLAMATION BY ACIDIC EXTRACTION OF ALUMINUM-ANODIZING SLUDGES

    Science.gov (United States)

    Extraction of aluminum-anodizing sludges with sulfuric acid was examined to determine the potential for production of commercial-strength solutions of aluminum sulfate, that is liquid alum. The research established kinetic and stoichiometric relationships and evaluates product qu...

  12. Electrochemical Stability of Carbon Fibers Compared to Metal Foils as Current Collectors for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Martha, Surendra K [ORNL; Dudney, Nancy J [ORNL; Kiggans, Jim [ORNL; Nanda, Jagjit [ORNL

    2012-01-01

    The electrochemical behaviors of highly conductive, fully-graphitic, semi-graphitic and non-graphitic carbon fibers were studied as the cathode current collectors of lithium batteries in standard electrolyte (alkyl carbonate/LiPF6) solutions and compared to bare aluminum (Al). All of these current collectors demonstrate a stable electrochemical behavior within the potential range of 2.5 to 5 V, due to passivation by surface films. Carbon fibers have comparable electrochemical stability of Al and may be used in place Al foil. While the carbon fibers do not contribute any irreversible or extra capacity when they are cycled below 4.5 V, for fully-graphitic and semi-graphitic fibers PF6 intercalation and deintercalation into the carbon fiber may occur when they are cycled at high potentials >4.5 V.

  13. Time-Of-Flight Mass Spectrometry of Laser Exploding Foil Initiated PETN Samples

    Science.gov (United States)

    Fajardo, Mario

    2015-06-01

    We report the results of time-of-flight mass spectrometry (TOFMS) measurements of the gaseous products of thin film PETN samples reacting in-vacuo. The PETN sample spots are produced by masked physical vapor deposition of PETN onto a first-surface aluminum mirror. A pulsed laser beam imaged through the soda lime glass mirror substrate converts the aluminum layer into a high-temperature high-pressure plasma which initiates chemical reactions in the overlying PETN sample. We had previously proposed to exploit differences in gaseous product chemical identities and molecular velocities to provide a chemically-based diagnostic for distinguishing between ``detonation-like'' and deflagration responses. Briefly: we expect in-vacuum detonations to produce hyperthermal (v ~ 10 km/s) thermodynamically-stable products such as N2, CO2, and H2O, and for deflagrations to produce mostly reaction intermediates, such as NO and NO2, with much slower molecular velocities - consistent with the expansion-quenched thermal decomposition of PETN. We observe primarily slow reaction intermediates (NO2, CH2NO3) at low laser pulse energies, the appearance of NO at intermediate laser pulse energies, and the appearance of hyperthemal CO/N2 at mass 28 amu at the highest laser pulse energies. However, these results are somewhat ambiguous, as the NO, NO2, and CH2NO3 intermediates persist and all species become hyperthermal at the higher laser pulse energies. Also, the purported CO/N2 signal at 28 amu may be contaminated by silicon ablated from the glass mirror substrate. We plan to mitigate these problems in future experiments by adopting the ``Buelow'' sample configuration which employs an intermediate foil barrier to shield the energetic material from the laser and the laser driven plasma. [RW PA#4930

  14. Exploring Mbar shock conditions and isochorically heated aluminum at the MEC end station of the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, L. B.; Lee, H. J.; SLAC, aff; Barbrel, B.; Gauthier, M.; Galtier, E.; Nagler, B.; Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; White, T.; Gregori, G.; Wei, M.; Falcone, R. W.; Heimann, P.; Zastrau, U.; Hastings, J. B.; Glenzer, S. H.

    2015-02-05

    Recent experiments performed at the Matter in Extreme Conditions end station (MEC) of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using Velocity Interferometer System for Any Reflector (VISAR) have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  15. Experimental and theoretical analysis of a rigid rotor supported by air foil bearings

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen; Hansen, Asger J. T.; Santos, Ilmar

    2015-01-01

    The popularity of compressors utilizing foil bearings is increasing. Their mechanical design is challenging, and an accurate prediction of the bearing coefficients is important. A mathematical model taking into account the foil structure, and the detailed geometry of a three pad foil bearing are...

  16. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  17. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  18. Oxidation kinetics of aluminum diboride

    Science.gov (United States)

    Whittaker, Michael L.; Sohn, H. Y.; Cutler, Raymond A.

    2013-11-01

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3-B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments.

  19. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    Science.gov (United States)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  20. On Teaching of Interpreting from Interpretive Theory

    Institute of Scientific and Technical Information of China (English)

    栗蔷薇; 赵保成

    2013-01-01

      This paper aims to explore teaching of interpreting nowadays by starting from the interpretive theory and its characteristics. The author believes that the theory is mainly based on the study of interpretation practice, whose core content, namely,“deverbalization”has made great strides and breakthroughs in the theory of translation;when we examine translation, or rather interpretation once again from the bi-perspective of language and culture, we will have come across new thoughts in terms of translation as well as teaching of interpreting.

  1. RECLAMATION OF ALUMINUM FINISHING SLUDGES

    Science.gov (United States)

    The research study of the reclamation of aluminum-anodizing sludges was conducted in two sequential phases focused on enhanced dewatering of aluminum-anodizing sludges to produce commercial-strength solutions of aluminum sulfate, i.e., liquid alum. The use of high-pressure (14 to...

  2. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  3. The Influence of Silicon Content on Recrystallization of Twin-Roll Cast Aluminum Alloys for Heat Exchangers

    OpenAIRE

    Poková, Michaela; Cieslar, Miroslav; Lacaze, Jacques

    2012-01-01

    International audience Thin foils of aluminum alloys are commonly used in automotive industry for manufacturing heat exchangers. Use of twin-roll casting instead of direct-chill casting requires modifications in the manufacturing process and use of improved materials. In the present study, the evolution in microstructure and mechanical properties during isochronal annealing of two AW3003-based alloys differing in silicon content was monitored. The silicon influenced both the microhardness ...

  4. Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

    International Nuclear Information System (INIS)

    Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i. e., meshed pore, was produced

  5. Dual scattering foil design for poly-energetic electron beams.

    Science.gov (United States)

    Kainz, K K; Antolak, J A; Almond, P R; Bloch, C D; Hogstrom, K R

    2005-03-01

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly

  6. Dual scattering foil design for poly-energetic electron beams

    International Nuclear Information System (INIS)

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly

  7. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  8. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  9. Hot pressing aluminum nitride

    International Nuclear Information System (INIS)

    Experiment was performed on the hot pressing of aluminum nitride, using three kinds of powder which are: a) made by electric arc method, b) made by nitrifying aluminum metal powder, and c) made from alumina and carbon in nitrogen atmosphere. The content of oxygen of these powders was analyzed by activation analysis using high energy neutron irradiation. The density of hot pressed samples was classified into two groups. The high density group contained oxygen more than 3 wt. %, and the low density group contained about 0.5 wt %. Typical density vs. temperature curves have a bending point near 1,5500C, and the sample contains iron impurity of 0.5 wt. %. Needle crystals were found to grow near 1,5500C by VLS mechanism, and molten iron acts a main part of mechanism as a liquid phase. According to the above-mentioned curve, the iron impurity in aluminum nitride prevents densification. The iron impurity accelerates crystal growth. Advance of densification may be expected by adding iron impurity, but in real case, the densification is delayed. Densification and crystal growth are greatly accelerated by oxygen impurity. In conclusion, more efforts must be made for the purification of aluminum nitride. In the present stage, the most pure nitride powder contains about 0.1 wt. % of oxygen, as compared with good silicon carbide crystals containing only 10-5 wt. % of nitrogen. (Iwakiri, K.)

  10. Frenchglen Interpretive Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this interpretive plan is to provide guidance for the development of the interpretive exhibits for the Frenchglen Interpretive Center, as well as the...

  11. Effect of modified polypropylene on the interfacial bonding of polymer–aluminum laminated films

    International Nuclear Information System (INIS)

    Highlights: • Aluminium-polymer composite packing material with high T-peel strength was prepared. • Polypropylene was grafted by acrylic acid, glycidyl methacrylate, maleic anhydride. • Grafted polypropylene greatly improved the T-peel strength. • Chemical bonding plays an important role in improving the adhesion strength. - Abstract: The interfacial bonding between functionalized polymers and chromate–phosphate treated aluminum (Al) foil were investigated in this study. Glycidyl methacrylate (GMA), acrylic acid (AA) and maleic anhydride (MAH) were grafted onto polypropylene (PP) to improve its adhesion strength with the treated Al foil. The interfacial peel strength was evaluated by the T-peel test, and the results showed that modification of PP resulted in a significant improvement in the interfacial peel strength from 1 N/15 mm for pure PP to 10–14 N/15 mm for the modified PP. The surface chemistry, topography and surface energy of the modified PP and Al foil after peeling were characterized by time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle measurement. The treated Al foil could react with the functional groups of PP, resulting in the formation of new carboxylates. The new chemical bonding rather than the mechanical interlocking contributed to the improvement of adhesion strength

  12. Fabrication and Heat Treatment of Uranium Foil for Mo-99 Production

    International Nuclear Information System (INIS)

    Uranium foil for Mo-99 production is a thin metal sheet, which is produced by fabrication of low enriched uranium (LEU) ingot. In the experiment, ingot fabrication into foil form was done by rolling, started with hot rolling at 615 0C and ended by cold rolling at room temperature. The first hot rolling is applied to uranium ingot of 6,25 mm thickness; the rolling was done in 11 passes with 8% thickness reduction for each pass, and resulted in a foil of 2.6 mm thickness. The second hot rolling is applied to the foil resulted from the first rolling and 26 rolling passes with 8-10% thickness reduction resulted in a foil of 0.26 mm thickness. This foil was subsequently shaped into rectangle and put in an open can for the next process, I.e. both-side cold rolling. The cold rolling process reduced the foil thickness into 0.130 mm and formed preferred orientation grain structure. This foil, which was of 50% thickness reduction, was subsequently subjected to a double heat treatment as to obtain a foil a fine randomly oriented gain structure. The optical metallographic examination of the foil produced by cold rolling series showed that theoptimum condition to produce a foil of a fine randomly oriented grain structure was observed during the double heat treatment

  13. Fabrication of isotopic and natural carbon foils by thermal cracking method and some issues

    International Nuclear Information System (INIS)

    Isotopic and natural carbon foils made by thermal cracking method are used for various purposes in nuclear physics experiments. An apparatus equipped with an oil free vacuum pumping system has been constructed to produce such foils on a resistively heated metallic Ta filament by the thermal cracking method. Properties of the foils such as accessible thickness and area, uniformity, purity and yield in the foil preparation were investigated. We also investigated the following issue during the foil production; when the Ta filament temperature was decreased after the cracking process, the cracked layer sometimes broke into pieces from the filament. Eventually, we could successfully fabricate enriched isotopic 12C foils and natural carbon foils with thicknesses from 0.2 to 5 mg/cm2 and with a dimension of 20 × 20 mm2 or even larger. (author)

  14. Non-uniformity effects of the inter-foil distance on GEM detector performance

    Science.gov (United States)

    Yan, Huang; Han, YI; Zhi-Gang, Xiao; Zhao, Zhang; Wen-Jing, Cheng; Li-Ming, Lü; Wei-Hua, Yan; Ren-Sheng, Wang; Hong-Jie, Li; Yan, Zhang; Li-Min, Duan; Rong-Jiang, Hu; Chen-Gui, Lu; He-Run, Yang; Peng, Ma; Hai-Yan, Gao

    2016-04-01

    The non-uniformity effect of the inter-foil distance has been studied using a gaseous electron multiplication (GEM) detector with sensitive area of 50mm × 50mm. A gradient of the inter-foil distance is introduced by using spacers with different heights at the two ends of the foil gap. While the cluster size and the intrinsic spatial resolution show insignificant dependence on the inter-foil distance, the gain exhibits an approximately linear dependence on the inter-foil distance. From the slope, a quantitative relationship between the change of the inter-foil distance and the change of the gain is derived, which can be used as a method to evaluate the non-uniformity of the foil gap in the application of large-area GEM detectors. Supported by National Natural Science Foundation of China (11375094, U1332207, 11120101004), and by Tsinghua University Initiative Scientific Research Program

  15. The electron capture of H+ ions in solid foils

    Institute of Scientific and Technical Information of China (English)

    杨百方; 缪竞威; 师勉恭; 唐阿友; 杨朝文; 刘晓东

    2002-01-01

    The negative ion yields φ (H-)and the neutral atom yields φ (H) of 0.6, 0.9, 1.2, 1.6 and1.8 MeV H+ projectiles traversing various carbon foils have been measured. The experimental re-sults showed that neither φ (H-) nor φ (H) varies with the dwell time td at the same energy. φ (H) islarger than φ (H-) by about 3-4 orders of magnitude. The charge exchanging between H+ ionsand carbon foils was analyzed. It can be seen that the charge exchange is the most basic proc-ess.The experience formula of σc/σ/has been gotten.

  16. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    Science.gov (United States)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  17. Wavelength shifting reflector foils for liquid Ar scintillation light

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Manuel [Physik Institut, Universitaet Zuerich (Switzerland); Collaboration: GERDA-Collaboration

    2013-07-01

    Liquid argon is used as a scintillator in several present and upcoming experiments. In Gerda it is used as a coolant, shielding and will be instrumented to become an active veto in Phase II. Its scintillation light has a wavelength of 128 nm, that gets absorbed by quartz. In order to measure the light using photo multiplier tubes (PMT) for cryogenic temperatures which have a quartz window, it is converted to longer wavelength by coated reflector foils. The conversion efficiency and stability of several such coatings was optimized using VM2000 and Tetratex separately as reflector foils. The efficiency has been measured in a liquid Ar set up build especially for this purpose. It employs a 3'' low radioactivity PMT of type R11065-10 from Hamamatsu, the favorite photo sensor candidate to be used in Gerda.

  18. Gaseous Electron Multiplier (GEM), foil holes deformation studies

    CERN Document Server

    Suhaj, Adam; CERN. Geneva. PH Department

    2015-01-01

    GEM detectors play an important role in the upcoming high-luminosity LHC upgrade in 2018 where they will be exposed to high doses of radiation in the muon endcap region. A series of tensile tests were performed on neutron irradiated and non-irradiated GEM foils where the shape of the holes was thoroughly examined. It was found that the GEM foil does not deform much at lower loads but the deformation gets exponentially bigger after applying more than a 60 N force. Both sets of samples behaved similarly at lower loads up to 40 N after which the holes of the irradiated samples started to deform more rapidly than the non-irradiated ones. The failure point of the non-irradiated samples occurred consistently at around 135 N while the irradiated samples experienced failure at around 85 N with two outliers failing at 120 and 135 N.

  19. Plasma flow switch for foil-implosion experiments

    International Nuclear Information System (INIS)

    Plasma-Flow-Switch (PFS) experiments have been conducted on the 1.5 MJ Pegasus capacitor bank as a part of the opening switch development for the Los Alamos Trailmaster program. The goal of this experiment is an inductive-store, opening switch (for use with an explosive-pulsed-power generator) to drive very high energy foil implosions and generate soft x-ray pulses of ≥ 1 MJ. A shot series is underway to: (1) optimize the PFS for use on Pegasus to study foil-implosion physics issues at drive currents as high as ∼ 10 MA; (2) provide scaling and benchmarking information for the simulations used to design the PFS for explosive generators at much higher energy levels

  20. Plasma flow switch and foil implosion experiments on Pegasus II

    International Nuclear Information System (INIS)

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground EXperiments) program. A goal of the program is to produce an intense (> 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10's of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy

  1. Optical scanning system for quality control of GEM-foils

    International Nuclear Information System (INIS)

    An optical scanning system was commissioned and further developed in the Detector Laboratory of Helsinki Institute of Physics and University of Helsinki. It was designed to automatically scan, perform on-line analysis and to classify the overall quality of GEM-foils especially of the GEM-TPC detectors for Super-FRS at FAIR. The optical scanning system consists of precision positioning table, lighting, optics and operating system with analysis software. It has active scanning area of 95×95 cm2 and it can study this area with the minimum resolution of 128 lp/mm. Performance of the system and first results from the GEM-foil uniformity and quality analysis are presented.

  2. Temperature dependence of the beam-foil interaction

    International Nuclear Information System (INIS)

    The beam energy dependence between 50 and 200 keV of the linear polarization fraction (M/I) of the 2s 1S--3p 1P, 5016 A transition in He I on temperature was measured. The thin carbon exciter foils were heated externally by nichrome resistance elements. The measurements of Hight et al. are duplicated; the energy and current dependences are the same for corresponding between beam heating and external heating. It was also observed that γ, the number of slow secondary electrons produced per incident ion, decreases with increasing foil temperature. These two effects, in conjunction, offer a plausible explanation for the variation of polarization with beam current density. 5 figures

  3. Tilted Foils Nuclear Spin Polarization at REX-ISOLDE

    CERN Document Server

    Törnqvist, Hans Toshihide

    2013-08-08

    This thesis will explain and summarize my work and involvement in experiments aimed at producing nuclear spin polarization of post-accelerated beams of ions with the tilted-foils technique at the REX-ISOLDE linear accelerator at CERN. Polarizing the nuclear spin of radioactive beams in particular may provide access to observables which may be difficult to obtain otherwise. Currently, the techniques commonly employed for nuclear spin polarization are restricted to specific nuclides and experimental measurement techniques. Tilted foils polarization may provide a new tool to extend the range of nuclides that can be polarized and the types of experiments that can be performed. The experiments rely not only on the production but also on the method to measure the degree of attained polarization. Two methods will be treated, based on particle scattering in Coulomb excitation that may be utilized for stable beams, and the $\\beta$-NMR that requires $\\beta$-decaying nuclei. The experimental setups and measurements will...

  4. Laser spot welding of cobalt-based amorphous metal foils

    International Nuclear Information System (INIS)

    The results concerning weldability of amorphous alloy (VAC 6025F) in shape of foils and the quality of laser-spot welded joints are presented in this paper. The aim of the research was the production of a high quality welding joint, by preserving the amorphous structure. The quality of the joint was tested by shear strength analysis and microhardness measuring. The metallographic studies were made by using optical microscope and SEM. The results show that (1) overlapped Co based amorphous metals foils can be welded with high-quality by a pulsed Nd: YAG-Laser, but only within a very narrow laser parameter window; (2) the laser welded spots show comparably high strength as the basic material; (3) the structure of the welded spot remains amorphous, so that the same characteristics as the base material can be achieved. (author)

  5. Thrombogenicity tests on ar-irradiated polycarbonate foils

    International Nuclear Information System (INIS)

    Understanding polymer surface properties is extremely important for the most wide range of their applications, from basic coating to the most complex composites and biomaterials. Low energy ion beam irradiation of polymer can improve such surface properties. By modifying its surface biocompatibility, polymers are excellent candidates for biomaterials, due to its malleability and low weight, when compared to metals. In this work, we irradiated 30-μm Bisphenol-A Polycarbonate foils with 23-keV Argon ion beam at six different doses. Aluminium foils were simultaneously irradiated in order to measure the doses by Rutherford Backscattering Spectroscopy. The surface modifications after the argon ion beam irradiation were analyzed by water contact angle measurements and atomic force microscopy. Platelet adhesion tests were used in order to investigate thrombogenicity, showing a growing tendency with the irradiated Argon dose. (author)

  6. Thrombogenicity tests on ar-irradiated polycarbonate foils

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Gustavo F.; Rizzutto, Marcia A.; Silva, Tiago F.; Moro, Marcos V.; Added, Nemitala; Tabacniks, Manfredo H., E-mail: g.ferraz@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Inst. de Fisica; Delgado, Adriana O. [Universidade Federal de Sao Carlos (UFSCAR), Sorocaba, SP (Brazil); Cunha, Tatiana F. [Biosintesis P and D do Brasil, Sao Paulo, SP (Brazil); Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia

    2013-07-01

    Understanding polymer surface properties is extremely important for the most wide range of their applications, from basic coating to the most complex composites and biomaterials. Low energy ion beam irradiation of polymer can improve such surface properties. By modifying its surface biocompatibility, polymers are excellent candidates for biomaterials, due to its malleability and low weight, when compared to metals. In this work, we irradiated 30-μm Bisphenol-A Polycarbonate foils with 23-keV Argon ion beam at six different doses. Aluminium foils were simultaneously irradiated in order to measure the doses by Rutherford Backscattering Spectroscopy. The surface modifications after the argon ion beam irradiation were analyzed by water contact angle measurements and atomic force microscopy. Platelet adhesion tests were used in order to investigate thrombogenicity, showing a growing tendency with the irradiated Argon dose. (author)

  7. Simulation of swift boron clusters traversing amorphous carbon foils

    OpenAIRE

    Heredia Ávalos, Santiago; Abril Sánchez, Isabel; Denton Zanello, Cristian D.; García Molina, Rafael

    2007-01-01

    We use a simulation code to study the interaction of swift boron clusters (Bn+, n=2–6, 14) with amorphous carbon foils. We analyze different aspects of this interaction, such as the evolution of the cluster structure inside the target, the energy and angle distributions at the detector or the stopping power ratio. Our simulation code follows in detail the motion of the cluster fragments through the target and in the vacuum until reaching a detector, taking into account the following interacti...

  8. Central tracking chamber with inflated cathode-strip foils

    International Nuclear Information System (INIS)

    A new cylindrical low-mass central drift chamber has been constructed for the K+ → π+νν experiment at BNL (E787). The chamber consists of 12 layers of axial wire cells and 6 layers of thin cathode-strip foils, four of which are supported by differential gas pressure. The momentum resolution (RMS) for muons and pions in the range 150 to 250 MeV is found to be about 0.9%. (authors)

  9. Optical observations of molecular dissociation in thin foils

    International Nuclear Information System (INIS)

    We have measured the intensity and polarizations of light emitted from atomic excited states of dissociated molecular ions. Using HeH+ projectiles, we have observed factors of 1 to 5 enhancements of the light from n=3, 13P,D states of He I and some He II and H I emissions. Observations of Lyman-α emission after dissociation of H2+ and H3+ show rapid variations in light yield for small internuclear separations at the foil surface

  10. Interaction of positron beams with thin silver foils and surfaces

    International Nuclear Information System (INIS)

    Experimental investigations of positron interactions with solid silver and the necessary platform to analyse the data have been presented. The main objective was to study Ps formation at a Ag(100) surface. The different ingredients of the scenario, including thermalization and diffusion of positrons and emission of Ps, were analysed and quantified in whatever way appropriate. The scattering and possible thermalization were described. The parametrization of Monte-Carlo simulated implantation profiles for semi-infinite materials were presented and the applicability of such profiles to thin foils assessed. The latter was done in conjunction with an analysis of experimental data on thermalization and diffusion in 1900 Aa Ag(100) foils. The necessity for MC simulated rather than parametrized implantation profiles was argued. The velocity of thermally desorbed Ps from a Ag(100) surface at ∼800 K appeared to obey and one-dimensional Maxwell Boltzmann distribution multiplied by a velocity dependent factor. More experimental investigations are needed before firm conclusions can be made on the nature of the emission process. The velocity distribution, though, was found to be near-thermal and indicative of the sample temperature. It has been shown that positrons can be converted into Ps atoms in the transmission geometry of a thin 1900 Aa Ag(100) foil with a high efficiency. Furthermore, 61% of the emitted Ps will have a mean velocity of vz=1.2x105 m/sec and 39% will have a maximum kinetic energy of 1.5 eV (vz=5.1x105 m/sec) at a foil temperature of 800 K, all velocities that are suitable for producing a 'dense' Ps gas target. (EG) 12 refs

  11. Comparison of EXAFS Foil Spectra from Around the World

    International Nuclear Information System (INIS)

    The EXAFS spectra of Cu and Pd foil from many different beamlines and synchrotrons are compared to address the dependence of the amplitude reduction factor (S02) on beamline specific parameters. Even though S02 is the same parameter as the EXAFS coordination number, the value for S02 is given little attention, and is often unreported. The S02 often differs for the same material due to beamline and sample attributes, such that no importance is given to S02-values within a general range of 0.7 to 1.1. EXAFS beamlines have evolved such that it should now be feasible to use standard S02 values for all EXAFS measurements of a specific elemental environment. This would allow for the determination of the imaginary energy (Ei) to account for broadening of the EXAFS signal rather than folding these errors into an effective S02-value. To test this concept, we model 11 Cu-foil and 6 Pd-foil EXAFS spectra from around the world to compare the difference in S02- and Ei-values.

  12. Design of organic complementary circuits and systems on foil

    CERN Document Server

    Abdinia, Sahel; Cantatore, Eugenio

    2015-01-01

    This book describes new approaches to fabricate complementary organic electronics, and focuses on the design of circuits and practical systems created using these manufacturing approaches. The authors describe two state-of-the-art, complementary organic technologies, characteristics and modeling of their transistors and their capability to implement circuits and systems on foil. Readers will benefit from the valuable overview of the challenges and opportunities that these extremely innovative technologies provide. ·         Demonstrates first circuits implemented using specific complementary organic technologies, including first printed analog to digital converter, first dynamic logic on foil and largest complementary organic circuit ·         Includes step-by-step design from single transistor level to complete systems on foil ·         Provides a platform for comparing state-of-the-art complementary organic technologies and for comparing these with other similar technologies, spec...

  13. The investigation of electrolytic surface roughening for PCB copper foil

    Science.gov (United States)

    Lee, Shuo-Jen; Liu, Chao-Kai

    2013-10-01

    This study is the application of the principle of electrochemical. The anodic dissolution has no concentration polarization. Hence, electrolyte life is substantially increased. The waste copper is high in ion concentration with a recovery value. As compared with the current PCB chemical pre-treatment method, it may have advantages of cost-saving, improvement of overall efficiency, reduction of production costs and reduction of the amount of waste generated. In the development of the copper foil for electrochemical roughening process, the use of electrolysis reaction affects the copper surface dissolution to form a unique bump coarsening. It will increase in the surface area of the copper foil to improve dry film solder mask and the adhesion between the copper surfaces. Four electrolytes, two neutral salts and two acids, were selected to explore the best of the electrolytic roughening parameters of temperature, time and voltage. The surface roughness and the surface morphology of the copper foil were measured before and after the electrolytic surface roughening. Finally, after repeated experiments, electrolytes A and B copper generates obvious inter-granular corrosion, resulting in a rough surface similar to the chemical pre-treatment. On the other hands, the surface morphology resulted from electrolytes C and D appears more like pitting. Both electrolytic could generate surface roughness of Ra 0.3 um roughened copper surface higher than industrial standard.

  14. Electroplating of Uranium -Foil Target With Ni And Zn

    International Nuclear Information System (INIS)

    The uranium foil target, which was produced by rolling, was subjected to preparation treatment prior to the electroplating. The electroplating produced certain plate thickness on the foil surface. The electroplating was applied to the uranium foil of 71 mm long and 46 mm wide using plating materials of Ni and Zn. The plating is intended to serve as barrier for fission fragment recoils, which are produced during irradiation. The plate thickness produced by the electroplating was measured by a micrometer and an analytical balance. The electroplating with Ni produced plate-thickness of 8,9 mm when measured by the micrometer, or 11.4 mm when measured by the analytical balance, while the Zn electroplating produced greater plate-thickness, i.e. 16.2 mm by the micrometer measurement or 13.7 mm by the analytical balance measurement. The current efficiency of the electroplating was 62 % for Ni and 80 % for Zn. It was observed that the optimum condition for the electroplating depended on the plating materials, plating time, and current density. The plate-thickness produced under the optimum condition was 7-15 mm at 15 mA/cm2 for Ni and ]0 mA/cm2 for Zn with plating time of 60 minutes

  15. Dreams and their interpretation : cultural interpretative systems and psychoanalytical interpretation

    OpenAIRE

    Bauer-Motti, Fanny

    2015-01-01

    This thesis focuses on the interpretive process associated with the dream and its cultural roots. If the interpretation of dreams is one of the major access routes to the unconscious, it is also a specific characteristic to some cultures. If the unconscious psychic processes are universal because they are specific to a person, specific to the human dimension, the cultural anchoring of the “dreamer” is circumstantial. The exploration has been done in Mauritius from interviews in the different ...

  16. Characterization of Ti6Al4V for integral transition structures in FRP-aluminum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Schimanski, Kai; Schumacher, Jens; Von Hehl, Axel; Zoch, Hans-Werner [Stiftung Institut fuer Werkstofftechnik, Bremen (Germany); Wottschel, Vitalij; Vollertsen, Frank [Bremer Institut fuer Angewandte Strahltechnik, Bremen (Germany)

    2012-08-15

    Components in hybrid design become more and more important in terms of their lightweight potential. In this context, the demand for weight saving in aerospace industry leads to increase numbers of applications of fiber reinforced composites for primary structural components. In consequence, the use of FRP-metal compounds is necessary. In the context of the investigations of the researcher group named ''Black-Silver'' (''Schwarz Silber'', FOR 1224) founded by the DFG (German Research Foundation) material optimized interface structures for advanced carbon fiber reinforced plastic (CFRP)-aluminum compounds are currently being studied. Within their work the researcher group focussed on three concepts realizing the transition structures: the usage of wires (titanium), foils (titanium), and fibers (glass fiber) as transition elements between CFRP and aluminum. For the connection of the aluminum sheet and the transition element die-casting and laser beam welding are basically used. The paper concentrates on the characterization of suitable materials for transition structures. Due to their high strength and low density (in comparison to steel) and the resulting potential in view on light-weight design Ti-alloys were investigated. Because of the increased availability of Ti-wires compared to Ti-foils in suitable thickness the former were used for the basic investigations on Ti-alloys which are suitable for integral transition structures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder

    International Nuclear Information System (INIS)

    Studies have been conducted to find materials with microstructures which minimize the formation of blisters. A promising class of materials appears to be sintered metal powder with small average grain sizes and low atomic number Z. Studies of the surface erosion of sintered aluminum powder (SAP 895) and of aluminum held at 4000C due to blistering by 100 keV helium ions have been conducted and the results are compared to those obtained earlier for room temperature irradiation. A significant reduction of the erosion rate in SAP 895 in comparison to annealed aluminum and SAP 930 is observed. In addition results on the blistering of sintered beryllium powder (type I) irradiated at room temperature and 6000C by 100 keV helium ions are given. These results will be compared with those reported recently for vacuum cast beryllium foil and a foil of sintered beryllium powder (type II) which was fabricated differently, than type I. For room temperature irradiation only a few blisters could be observed in sintered beryllium powder type I and type II and they are smaller in size and in number than in vacuum cast beryllium. For irradiation at 6000C large scale exfoliation of blisters was observed for vacuum cast beryllium but much less exfoliation was seen for sintered beryllium powder, type I, and type II. The results show a reduction in erosion rate cast beryllium, for both room temperature and 6000C

  18. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices. PMID:20356280

  19. Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals

    Science.gov (United States)

    Wolcott, Paul J.

    Ultrasonic additive manufacturing (UAM) is a low temperature, solid-state manufacturing process that enables the creation of layered, solid metal structures with designed anisotropies and embedded materials. As a low temperature process, UAM enables the creation of active composites containing smart materials, components with embedded sensors, thermal management devices, and many others. The focus of this work is on the improvement and characterization of UAM aluminum structures, advancing the capabilities of ultrasonic joining into sheet geometries, and examination of dissimilar material joints using the technology. Optimized process parameters for Al 6061 were identified via a design of experiments study indicating a weld amplitude of 32.8 synum and a weld speed of 200 in/min as optimal. Weld force and temperature were not significant within the levels studied. A methodology of creating large scale builds is proposed, including a prescribed random stacking sequence and overlap of 0.0035 in. (0.0889 mm) for foils to minimize voids and maximize mechanical strength. Utilization of heat treatments is shown to significantly increase mechanical properties of UAM builds, within 90% of bulk material. The applied loads during the UAM process were investigated to determine the stress fields and plastic deformation induced during the process. Modeling of the contact mechanics via Hertzian contact equations shows that significant stress is applied via sonotrode contact in the process. Contact modeling using finite element analysis (FEA), including plasticity, indicates that 5000 N normal loads result in plastic deformation in bulk aluminum foil, while at 3000 N no plastic deformation occurs. FEA studies on the applied loads during the process, specifically a 3000 N normal force and 2000 N shear force, show that high stresses and plastic deformation occur at the edges of a welded foil, and base of the UAM build. Microstructural investigations of heat treated foils confirms

  20. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  1. Oxidation kinetics of aluminum diboride

    International Nuclear Information System (INIS)

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3–B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB2 in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time–temperature plots, (b) conversion as a function of time, (c) Arrhenius plots used to calculate activation energies, and (d) activation energy

  2. Measurement of the radon diffusion through a nylon foil for different air humidities

    International Nuclear Information System (INIS)

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented

  3. The stripping foil test stand in the Linac4 transfer line

    International Nuclear Information System (INIS)

    The 160 MeV H- beam from the Linac4 (L4) linear accelerator at CERN will be injected into the proton synchrotron booster (PSB) with a new H- charge-exchange injection system. It will include a stripping foil, to convert H- into protons by stripping off the electrons. To gain experience with these very fragile foils, prior to the installation in the PSB, and test different foil materials and thicknesses, lifetimes of the foils, the foil changing mechanism and interlocking functions, a stripping foil test stand will be installed in the L4 transfer line in 2015. This paper describes the mechanical design of the system and discusses the test possibilities and parameters. (author)

  4. The stripping foil test stand in the Linac4 transfer line

    CERN Document Server

    Weterings, W; Noulibos, R; Sillanoli, Y; van Trappen, P

    2015-01-01

    The 160 MeV H− beam from the Linac4 (L4) linear accelerator at CERN will be injected into the proton synchrotron booster (PSB) with a new H− charge-exchange injection system. It will include a stripping foil, to convert H− into protons by stripping off the electrons. To gain experience with these very fragile foils, prior to the installation in the PSB, and test different foil materials and thicknesses, lifetimes of the foils, the foil changing mechanism and interlocking functions, a stripping foil test stand will be installed in the L4 transfer line in 2015. This paper describes the mechanical design of the system and discusses the test possibilities and parameters.

  5. Control of Oscillating Foil for Propulsion of Biorobotic Autonomous Underwater Vehicle (AUV

    Directory of Open Access Journals (Sweden)

    S. N. Singh

    2005-01-01

    Full Text Available The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic autonomous underwater vehicles (BAUVs. Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control of autonomous underwater vehicles (AUVs. The equations of motion of the foil include hydrodynamic lift and moment based on linear, unsteady, aerodynamic theory. A control law is derived for the lateral and rotational sinusoidal oscillation of the foil. In the closed-loop system, the lateral displacement and the rotational angle of the foil asymptotically follow sinusoidal trajectories of distinct frequencies and amplitudes independently. Simulation results are presented to show the trajectory tracking performance of the foil for different freestream velocities and sinusoidal command trajectories.

  6. Stabilizing effect of flexibility in the wake of a flapping foil

    CERN Document Server

    Marais, Catherine; Wesfreid, José Eduardo; Godoy-Diana, Ramiro

    2012-01-01

    The wake of a flexible foil undergoing pitching oscillations in a low-speed hydrodynamic tunnel is used to examine the effect of chord-wise foil flexibility in the dynamical features of flapping-based propulsion. We compare the regime transitions in the wake with respect to the case of a rigid foil and show that foil flexibility inhibits the symmetry breaking of the reverse B\\'enard-von K\\'arm\\'an wake reported in the literature. A momentum balance calculation shows the average thrust to be up to three times greater for the flexible foil than for the rigid foil. We explain both of these observations by analyzing the vortex dynamics in the very near wake.

  7. A generalized solution of elasto-aerodynamic lubrication for aerodynamic compliant foil bearings

    Institute of Scientific and Technical Information of China (English)

    YU Lie; QI Shemiao; GENG Haipeng

    2005-01-01

    Although aerodynamic compliant foil bearings are successfully applied in a number of turbo-machineries, theoretical researches on the modeling, performance prediction of compliant foil bearings and the dynamic analysis of the related rotor system seem still far behind the experimental investigation because of structural complexity of the foil bearings. A generalized solution of the elasto-aerodynamic lubrication is presented in this paper by introducing both static and dynamic deformations of foils and solving gas-lubricated Reynolds equations with deformation equations simultaneously. The solution can be used for the calculation of dynamic stiffness and damping, as well as the prediction of static performances of foil bearings. Systematical theories and methods are also presented for the purpose of the prediction of dynamic behavior of a rotor system equipped with foil bearings.

  8. Analysis of cartilage-polydioxanone foil composite grafts.

    Science.gov (United States)

    Kim, James H; Wong, Brian

    2013-12-01

    This study presents an analytical investigation into the mechanical behavior of a cartilage-polydioxanone (PDS) plate composite grafts. Numerical methods are used to provide a first-order, numerical model of the flexural stiffness of a cartilage-PDS graft. Flexural stiffness is a measure of resistance to bending and is inversely related to the amount of deformation a structure may experience when subjected to bending forces. The cartilage-PDS graft was modeled as a single composite beam. Using Bernoulli-Euler beam theory, a closed form equation for the theoretical flexural stiffness of the composite graft was developed. A parametric analysis was performed to see how the flexural properties of the composite model changed with varying thicknesses of PDS foil. The stiffness of the cartilage-PDS composite using 0.15-mm-thick PDS was four times higher than cartilage alone. The composite with a 0.5-mm-thick PDS graft was only 1.7 times stiffer than the composite with the 0.15-mm-thick PDS graft. Although a thicker graft material will yield higher flexural stiffness for the composite, the relationship between composite stiffness and PDS thickness is nonlinear. After a critical point, increments in graft thickness produce gradually smaller improvements in flexural stiffness. The small increase in stiffness when using the thicker PDS foils versus the 0.15 mm PDS foil may not be worth the potential complications (prolonged foreign body reaction, reduction in nutrient diffusion to cartilage) of using thicker artificial grafts. PMID:24327249

  9. Polycarbosilazane passivation on graphite foil used as gasket seal

    International Nuclear Information System (INIS)

    Gasket seals are often used in industry and laboratories where a leak-proof installation is needed in order to avoid loss of products or dangerous materials. Many of products transported inside tubes are at relatively high temperatures excluding polymeric gaskets. In the same line, many of transported materials contain solvents which can attack polymer sealings, therefore limiting their use. An alternative is to use graphite joints as sealings. These joints are a sandwich of graphite foil and stainless steel mesh as forming core. The problem that raises using graphite in contact with steel is that at temperatures of about 500 °C an interdiffusion of carbon on the steel structure occurs which produces adhesion of the graphite gasket on the metallic flange. Therefore this adhesion increases the time to change each gasket, since rests of previously adhered graphite has to be removed from the flange. In order to avoid the adhesion of the graphite on the flange, polycarbosilazane precursor was used as protective finishing on the graphite foil surface. After thermal transformation of the polymer into the corresponding PDC finishing, it acts in two manners: It avoids the direct contact between the carbon and the steel and it allows the sealing of liquids and gases. Adhesion tests were done and showed that the foils passivated with PDCs did not adhere to the steel flange. Moreover, the production methods and products are compatible to industrial environment and processes. The results found here show that the time to change the gasket in industry can be clearly reduced by using the PDC finishing on graphite gasket

  10. A quantitative analysis of the hydrogen-vacancy complexes in the aluminum-hydrogen system

    International Nuclear Information System (INIS)

    Full text: Aluminum foils of 99.99% purity were charged with hydrogen using a gas plasma method. The nature of the H-vacancy complexes in the Aluminium are investigated experimentally (XRD, INS, SANS, USANS, TEM, SEM and Archimedes technique) and quantitatively. It is shown experimentally and quantitatively that H does not remain in the bulk as dispersed H-vacancy defects, but instead resides within the bulk as H2 - bubbles. These bubbles are formed from the clustering of the H-vacancy complexes and extra vacancies created by the initial 1 keV ions

  11. Microcutting and forming of thin aluminium foils for MEMS

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Mortensen, Dennis; Rombach, Pirmin;

    2011-01-01

    This paper presents a simple procedure for simultaneous cutting and forming of thin Al foils for use in MEMS components. The procedure makes use of scaled down macroscopic sheet forming and cutting techniques by using a hydraulic press, a soft counterpart, and a microfabricated stamp tool. The...... lines. Using the procedure presented in this paper scaled to full 4-8 in. silicon wafer stamp tools, a fast and adequate method for high volume production of MEMS components is obtained. © 2011 American Society of Mechanical Engineers....

  12. Micro-forming of Al-Si foil

    OpenAIRE

    T. Haga; Inoue, K.; H. Watari

    2010-01-01

    Purpose: of this paper is as below. The investigation of the ability of the cold micro-forming of non-metallic glass was purpose. The grain of the rapidly solidified aluminium alloy became fine. The aluminium alloy foil with fine grain was used, and the investigation of the micro-formability of this alloy was investigated. Moreover, increase of the forming speed was investigated. The increase of the forming speed was purpose of this study, too.Design/methodology/approach: The nozzle pressing ...

  13. Acceleration region influence on beam parameters on stripping foil

    International Nuclear Information System (INIS)

    Some formulas describing the beam parameters on the stripping foil (SF) as a function of the radial amplitude of betatron oscillations and energy gain are derived. The results computed by these formulas are in good agreement with the results of the numerical calculations. Obtained results show that between the radial emittance and the energy spread exists parametric dependence via amplitude of radial betatron oscillations. This conclusion allows one to create a working diagram of expected beam parameters on SF. This diagram may be particularly useful for the extraction system designers since it gives relationship between parameters considered as the extraction system input parameters. (author)

  14. Synthetic Graphene Grown by Chemical Vapor Deposition on Copper Foils

    Science.gov (United States)

    Chung, Ting Fung; Shen, Tian; Cao, Helin; Jauregui, Luis A.; Wu, Wei; Yu, Qingkai; Newell, David; Chen, Yong P.

    2013-04-01

    The discovery of graphene, a single layer of covalently bonded carbon atoms, has attracted intense interest. Initial studies using mechanically exfoliated graphene unveiled its remarkable electronic, mechanical and thermal properties. There has been a growing need and rapid development in large-area deposition of graphene film and its applications. Chemical vapor deposition on copper has emerged as one of the most promising methods in obtaining large-scale graphene films with quality comparable to exfoliated graphene. In this paper, we review the synthesis and characterizations of graphene grown on copper foil substrates by atmospheric pressure chemical vapor deposition. We also discuss potential applications of such large-scale synthetic graphene.

  15. Laser Proton acceleration from mass limited silicon foils

    Science.gov (United States)

    Zeil, K.; Kraft, S.; Richter, T.; Metzkes, J.; Bussmann, M.; Schramm, U.; Sauerbrey, R.; Cowan, T. E.; Fuchs, J.; Buffechoux, S.

    2009-11-01

    We present recent studies on laser proton acceleration experiments using mass limited silicon targets. Small micro machined silicon foils with 2 μm thickness and 20x20 μm2 to 100x100μm2 size mounted on very tiny stalks were shot with the 100 TW LULI Laser (long pulse 150 fs) and with the new 150 TW DRACO Laser facility (short pulse 30 fs) of the Research Centre Dresden-Rossendorf. The experiments were carried out using high contrast levels. Proton spectra have been measured with magnetic spectrometers and radio chromic film stacks.

  16. Central tracking chamber with inflated cathode-strip foils

    Energy Technology Data Exchange (ETDEWEB)

    Blackmore, E.W.; Bryman, D.A.; Kuno, Y.; Lim, C.; Numao, T.; Padley, P.; Redlinger, G.; Soluk, R. [TRIUMF, Vancouver, BC (Canada); McPherson, R.A. [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)

    1998-02-21

    A new cylindrical low-mass central drift chamber has been constructed for the K{sup +}{yields}{pi}{sup +}{nu} anti {nu} experiment at BNL (E787). The chamber consists of twelve layers of axial wire cells and six layers of thin cathode-strip foils, four of which are supported by differential gas pressure. The momentum resolution (RMS) for muons and pions in the range 150-250 MeV/c is found to be about 0.9%. (orig.). 16 refs.

  17. Optical and scanning electron microscopies in examination of ultrathin foils

    Czech Academy of Sciences Publication Activity Database

    Konvalina, Ivo; Hovorka, Miloš; Fořt, Tomáš; Müllerová, Ilona

    Brno : Institute of Scientific Instruments AS CR, v.v.i, 2010 - (Mika, F.), s. 23-24 ISBN 978-80-254-6842-5. [International Seminar on Recent Trends in Charged Particle Optics and Surface Physics Instrumentation /12./. Skalský dvůr (CZ), 31.05.2010-04.06.2010] R&D Projects: GA AV ČR IAA100650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : very low energy scanning transmission electron microscopy * ultrathin foils * laser confocal microscope Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  18. A novel clear foil cushion construction incorporating an additional water layer

    OpenAIRE

    Xie, Fei

    2011-01-01

    Pneumatic clear foil cushion systems, notably as ETFE foil cushions have been developed as an alternative technology to large-scale glass glazing systems for wide-span buildings. The systems display better thermal performance and have advantages of extremely low dead-weight constructions compared to conventional glazing systems, and thereby the increasing popularity of foil cushion cladding systems have been witnessed in the last decades. However due to their lightweight and thinness, the the...

  19. Instability of a Thin Conducting Foil Accelerated by a Finite Wavelength Intense Laser

    OpenAIRE

    Eliasson, Bengt

    2014-01-01

    We derive a theoretical model for the Rayleigh-Taylor (RT)-like instability for a thin foil accelerated by an intense laser, taking into account finite wavelength effects in the laser wave field. The latter leads to the diffraction of the electromagnetic wave off the periodic structures arising from the instability of the foil, which significantly modifies the growth rate of the RT-like instability when the perturbations on the foil have wavenumbers comparable to or larger than the laser wave...

  20. Properties of transition radiation emitted from multiple thin-foil targets

    International Nuclear Information System (INIS)

    Transition Radiation(TR) is expected to be a high brilliant X-ray source because TR X-rays can be produced by low energy electrons compared to synchrotron radiation(SR) in the X-ray region. We measured energy spectra of resonance transition radiation emitted from thin-foil stacks passed by a 130MeV dc electron beam. The results discriminate between intra-foil and inter-foil resonances. (author)

  1. Interpretability in PRA

    Czech Academy of Sciences Publication Activity Database

    Bílková, Marta; De Jongh, D.; Joosten, J.J.

    Wroclaw : Universitet Wroclawski, 2007. s. 37-37. [Logic Colloquium 2007. 14.07.2007-19.07.2007, Wroclaw] Institutional research plan: CEZ:AV0Z10300504 Keywords : arithmetic * primitive recursive arithmetic * interpretability * interpretability logic * modal logic

  2. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    Science.gov (United States)

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. PMID:27431039

  3. Role of induced vortex interaction in a semi-active flapping foil based energy harvester

    Science.gov (United States)

    Wu, J.; Chen, Y. L.; Zhao, N.

    2015-09-01

    The role of induced vortex interaction in a semi-active flapping foil based energy harvester is numerically examined in this work. A NACA0015 airfoil, which acts as an energy harvester, is placed in a two-dimensional laminar flow. It performs an imposed pitching motion that subsequently leads to a plunging motion. Two auxiliary smaller foils, which rotate about their centers, are arranged above and below the flapping foil, respectively. As a consequence, the vortex interaction between the flapping foil and the rotating foil is induced. At a Reynolds number of 1100 and the position of the pitching axis at one-third chord, the effects of the distance between two auxiliary foils, the phase difference between the rotating motion and the pitching motion as well as the frequency of pitching motion on the power extraction performance are systematically investigated. It is found that compared to the single flapping foil, the efficiency improvement of overall power extraction for the flapping foil with two auxiliary foils can be achieved. Based on the numerical analysis, it is indicated that the enhanced power extraction, which is caused by the increased lift force, thanks to the induced vortex interaction, directly benefits the efficiency enhancement.

  4. Effects of heat treatment on U–Mo fuel foils with a zirconium diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Jue, Jan-Fong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Trowbridge, Tammy L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Breckenridge, Cynthia R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moore, Glenn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meyer, Mitchell K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    A monolith fuel design based on U–Mo alloy has been selected as the fuel type for conversion of the United States’ high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U–Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U–Mo foil during fabrication alters the microstructure of both the U–10Mo fuel meat and the U–Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U–Mo fuel meat and the U–Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U–Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ~9, ~13, and ~20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U–Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U–Mo coupon homogenization. The phases in the Zr/U–Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.

  5. Photoemission study of tris(8-hydroxyquinoline) aluminum/aluminum oxide/tris(8-hydroxyquinoline) aluminum interface

    International Nuclear Information System (INIS)

    The evolution of the interface electronic structure of a sandwich structure involving aluminum oxide and tris(8-hydroxyquinoline) aluminum (Alq), i.e. (Alq/AlOx/Alq), has been investigated with photoemission spectroscopy. Strong chemical reactions have been observed due to aluminum deposition onto the Alq substrate. The subsequent oxygen exposure releases some of the Alq molecules from the interaction with aluminum. Finally, the deposition of the top Alq layer leads to an asymmetry in the electronic energy level alignment with respect to the AlOx interlayer

  6. Interpreting. PEPNet Tipsheet

    Science.gov (United States)

    Darroch, Kathleen

    2010-01-01

    An interpreter's role is to facilitate communication and convey all auditory and signed information so that both hearing and deaf individuals may fully interact. The common types of services provided by interpreters are: (1) American Sign Language (ASL) Interpretation--a visual-gestural language with its own linguistic features; (2) Sign Language…

  7. Engineering Definitional Interpreters

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Ramsay, Norman; Larsen, Bradford

    2013-01-01

    A definitional interpreter should be clear and easy to write, but it may run 4--10 times slower than a well-crafted bytecode interpreter. In a case study focused on implementation choices, we explore ways of making definitional interpreters faster without expending much programming effort. We...

  8. About quantum mechanics interpretation

    OpenAIRE

    Kyriakos, Alexander G.

    2002-01-01

    There is a certainty that the modern (Copenhagen's) interpretation of quantum mechanics is correct. However, the some physicist had the opinion that the modern quantum mechanics is a phenomenological theory. The suggested theory is the new quantum mechanics interpretation that is entirely according to the modern interpretation and gives a number of results, which naturally explain the postulates of the modern quantum mechanics.

  9. Journalists as Interpretive Communities.

    Science.gov (United States)

    Zelizer, Barbie

    1993-01-01

    Proposes viewing journalists as members of an interpretive community (not a profession) united by its shared discourse and collective interpretations of key public events. Applies the frame of the interpretive community to journalistic discourse about two events central for American journalists--Watergate and McCarthyism. (SR)

  10. Genre and Interpretation

    DEFF Research Database (Denmark)

    Auken, Sune

    2015-01-01

    Despite the immensity of genre studies as well as studies in interpretation, our understanding of the relationship between genre and interpretation is sketchy at best. The article attempts to unravel some of intricacies of that relationship through an analysis of the generic interpretation carrie...

  11. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  12. Neurofibrillary pathology and aluminum in Alzheimer's disease

    OpenAIRE

    Shin, R. W.; Lee, V. M. Y; Trojanowski, J Q

    1995-01-01

    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  13. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    Science.gov (United States)

    Wright, Steven A.

    1991-01-01

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures.

  14. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    International Nuclear Information System (INIS)

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures

  15. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    International Nuclear Information System (INIS)

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnel requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm2/mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 900. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs

  16. A simple method for the measurement of reflective foil emissivity

    International Nuclear Information System (INIS)

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to 'bubble-wrap'. Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity, and the standard ASTM-E408 is implied. Unfortunately this standard is not a 'primary method' and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408

  17. A simple method for the measurement of reflective foil emissivity

    Energy Technology Data Exchange (ETDEWEB)

    Ballico, M. J.; Ham, E. W. M. van der [National Measurement Institute, Lindfield, NSW 2070 (Australia)

    2013-09-11

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to 'bubble-wrap'. Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity, and the standard ASTM-E408 is implied. Unfortunately this standard is not a 'primary method' and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408.

  18. Magnetic moments of mirror nuclei with tilted-foil polarization

    CERN Document Server

    Lindroos, M; Broude, C; Goldring, G; Haas, H; Hass, M; Muellere, L; Pearson, M R; Weissman, L

    2000-01-01

    We report here on an ongoing experimental program initiated at the ISOLDE facility at CERN for the measurement of magnetic moments of short-lived radionuclides, with the emphasis on magnetic moments of mirror nuclei in far-from-stability regions. The nuclei are polarized by the tilted foil technique and the resulting 0-180 degrees beta asymmetry is monitored as a function of RF frequency applied in an NMR setup. In order to achieve sufficiently high energy for transmission through the foils, the experimental setup is mounted on a high voltage platform. The first experiment in this program was the measurement of the beta asymmetry and the NMR resonance for the ground state of /sup 23/Mg (I=3/2, T/sub 1/2 /=11 3 S), yielding mu =-0.533(6) nm. Improvements to the experimental setup are presently being designed, to be used in conjunction with the new developments at ISOLDE for obtaining high charge-state ions from the EBIS (REX- ISOLDE) ion source. This will help pave the way for measurements of magnetic moments ...

  19. Large-area monolayer hexagonal boron nitride on Pt foil.

    Science.gov (United States)

    Park, Ji-Hoon; Park, Jin Cheol; Yun, Seok Joon; Kim, Hyun; Luong, Dinh Hoa; Kim, Soo Min; Choi, Soo Ho; Yang, Woochul; Kong, Jing; Kim, Ki Kang; Lee, Young Hee

    2014-08-26

    Hexagonal boron nitride (h-BN) has recently been in the spotlight due to its numerous applications including its being an ideal substrate for two-dimensional electronics, a tunneling material for vertical tunneling devices, and a growth template for heterostructures. However, to obtain a large area of h-BN film while maintaining uniform thickness is still challenging and has not been realized. Here, we report the systematical study of h-BN growth on Pt foil by using low pressure chemical vapor deposition with a borazine source. The monolayer h-BN film was obtained over the whole Pt foil (2 × 5 cm(2)) under film. The total pressure and orientation of the Pt lattice plane are crucial parameters for thickness control. At high pressure (∼0.5 Torr), thick film was grown on Pt (111), and in contrast, thin film was grown on Pt (001). Our advances in monolayer h-BN growth will play an important role to further develop a high quality h-BN film that can be used for vertical tunneling, optoelectronic devices and growth templates for a variety of heterostructures. PMID:25094030

  20. Tilted Foils Nuclear Spin Polarization and Measurement with Coulomb Excitation

    CERN Document Server

    Törnqvist, Hans; Kowalska, M; Wenander, F

    2012-01-01

    Developing new experimental tools is essential to expand the possibilities of probing the structure of atomic nuclei. The better the currently known properties of nuclei can be manipulated, the more information can be extracted from data collected in nuclear reaction experiments. One property that has been controlled for many years is the nuclear spin, but this has only been viable for a certain set of isotopes with restrictions on for example specific atomic excitation schemes or half-lives. This thesis will provide details on an evaluation project using thin tilted foils after the REX-ISOLDE linac at the CERN-ISOLDE experimental facility, to polarize the spin of nuclei in-flight. The nuclear polarization is then measured with a technique based on Coulomb excitation, which is a flexible and readily available experimental method at ISOLDE with the MINIBALL spectrometer. The tilted foils technique may be beneficial to polarize the nuclear spin of short-lived radioactive beams that can be difficult by other mea...

  1. Flexible foils with electrochromic coatings: science, technology and applications

    International Nuclear Information System (INIS)

    This paper covers a number of aspects of a novel flexible electrochromic foil capable of varying its optical transmittance. The foil includes thin films of tungsten oxide and nickel oxide and an intervening polymer electrolyte serving as lamination material. Concerning scientific aspects, we discuss the prevalent defects in amorphous tungsten oxide and how they lead to a consistent picture of the optical properties of tungsten oxide films as a function of non-stoichiometry and ion intercalation. We also present a refined model for the coloration/bleaching due to proton extraction/insertion in surface sheaths of nano-crystallites of nickel oxide. We then turn to aspects of technology and treat ways to enhance the bleached-state transmittance by mixing the nickel oxide with another oxide having a wide band gap, pre-assembly charge insertion/extraction by facile gas treatments of the films and practical device manufacturing. The final part covers some applications with emphasis on architectural 'smart windows' capable of achieving improved indoor comfort together with significant energy savings due to lowered demands for space cooling. We also touch upon applications concerning eyewear

  2. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  3. Aluminum Nanoholes for Optical Biosensing

    Science.gov (United States)

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  4. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    International Nuclear Information System (INIS)

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  5. On court interpreters' visibility

    DEFF Research Database (Denmark)

    Dubslaff, Friedel; Martinsen, Bodil

    the quality of the service they receive. Ultimately, the findings will be used for training purposes. Future - and, for that matter, already practising - interpreters as well as the professional users of interpreters ought to take the reality of the interpreters' work in practice into account when...... in by the participants almost immediately after the interrogations and supplemented by interviews. The main objective of the project is to explore the interpreters' own perception of the quality of the service they render as well as the professional users´ and the other language users' perception of...... assessing the quality of the service rendered/received. The paper presents a small-scale case study based on an interpreted witness interrogation. Recent research on the interpreter's role has shown that interpreters across all settings perceive themselves as "visible" (Angelelli 2003, 2004). This has led...

  6. New Measurements and Calculations to Characterize the Caliban Pulsed Reactor Cavity Neutron Spectrum by the Foil Activation Method

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, X.; Casoli, P.; Authier, N.; Rousseau, G. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Barsu, C. [Pl. de la fontaine, 25410 Corcelles-Ferrieres (France)

    2011-07-01

    Caliban is a cylindrical metallic core reactor mainly composed of uranium 235. It is operated by the Criticality and Neutron Science Research Laboratory located at the French Atomic Energy Commission research center in Valduc. As with other fast burst reactors, Caliban is used extensively for determining the responses of electronic parts or other objects and materials to neutron-induced displacements. Therefore, Caliban's irradiation characteristics, and especially its central cavity neutron spectrum, have to be very accurately evaluated. The foil activation method has been used in the past by the Criticality and Neutron Science Research Laboratory to evaluate the neutron spectrum of the different facilities it operated, and in particular to characterize the Caliban cavity spectrum. In order to strengthen and to improve our knowledge of the Caliban cavity neutron spectrum and to reduce the uncertainties associated with the available evaluations, new measurements have been performed on the reactor and interpreted by the foil activation method. A sensor set has been selected to sample adequately the studied spectrum. Experimental measured reaction rates have been compared to the results from UMG spectrum unfolding software and to values obtained with the activation code Fispact. Experimental and simulation results are overall in good agreement, although gaps exist for some sensors. UMG software has also been used to rebuild the Caliban cavity neutron spectrum from activation measurements. For this purpose, a default spectrum is needed, and one has been calculated with the Monte-Carlo transport code Tripoli 4 using the benchmarked Caliban description. (authors)

  7. Hualu Aluminum Will Construct Large Coal-Power-Aluminum Aluminum Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The reporter learned from relevant departments of Baiyin City that in order to further push forward industrial upgrading,fulfill expansion and consolidation of the enterprise,Gansu Hualu Aluminum Co.,Ltd(Hualu Aluminum)will implement Out-Of-City-Into-Park project,

  8. Aluminum Zintl anion moieties within sodium aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  9. Plasma Jets Production at Laser-Burnt-Through Foils and their Interaction with Secondary Targets

    International Nuclear Information System (INIS)

    Interactions of plasma jets with solid surfaces are extensively studied in context with development of future fusion devices. In experiments carried out on the iodine laser system PALS, the energetic ions were produced at burnt-through foils with low-to-high atomic numbers (Al, Ag, Ta). The formation of plasma jets was optimized using the three-frame interferometry, their interaction with solids (generally known as plasma–wall interaction, PWI) was studied via temporally–resolved x–ray imaging, optical spectroscopy, high–resolution x–ray spectroscopy, and analysis of craters created at surfaces of secondary targets. With respect to the found optimum conditions for the jet production, alternative experimental schemes are discussed. The examples of jets applications for investigating the transition phenomena at surfaces of plasma-exposed solids are presented. The measured diagnostic data is interpreted in terms of the plasma jets interpenetration, ion stagnation and trapping close to the secondary target. The observations are compared with conclusions of the numerical modeling based on the Arbitrary Lagrangian Eulerian code PALE. The obtained results demonstrate the potential and usefulness of the energetic plasma jets in PWI investigation. (author)

  10. Synthesis of CdTe thin films on flexible metal foil by electrodeposition

    Science.gov (United States)

    Luo, H.; Ma, L. G.; Xie, W. M.; Wei, Z. L.; Gao, K. G.; Zhang, F. M.; Wu, X. S.

    2016-04-01

    CdTe thin films have been deposited onto the Mo foil from aqueous acidic bath via electrodeposition method with water-soluble Na2TeO3 instead of the usually used TeO2. X-ray diffraction studies indicate that the CdTe thin films are crystallized in zinc-blende symmetry. The effect of tellurite concentration on the morphology of the deposited thin film is investigated. In such case, the Cd:Te molar ratios in the films are both stoichiometric at different tellurite concentrations. In addition, the reduction in tellurite concentration leads to the porous thin film and weakens the crystallinity of thin film. The island growth model is used to interpret the growth mechanism of CdTe. The bandgap of the CdTe thin films is assigned to be 1.49 eV from the UV-Vis spectroscopy measurement, which is considered to serve as a promising candidate for the heterojunction solar cells.

  11. Bonding bare die LEDs on PET foils for lighting applications: Thermal design modeling and bonding experiments

    NARCIS (Netherlands)

    Ende, D.A. van den; Kusters, R.H.L.; Cauwe, M.; Waal, A. van der; Brand, J. van den

    2012-01-01

    Integration of LEDs on flexible foil substrates is of interest for flexible lighting applications and flexible photonic devices. A matrix of LEDs on a foil combined with a diffuser can be a potential alternative for flexible OLED lighting devices. Preferably, these LEDs are integrated in an unpackag

  12. Large area flexible lighting foils using distributed bare LED dies on polyester substrates

    NARCIS (Netherlands)

    Ende, D.A. van den; Kusters, R.H.L.; Cauwe, M.; Waal, A. van der; Brand, J. van den

    2013-01-01

    Integration of LEDs on flexible foil substrates is of interest for flexible lighting applications and for backlights for flexible displays. Such a large area lighting device can be made by integrating a matrix of closely spaced LEDs on a flexible foil substrate. Preferably, these LEDs are integrated

  13. Prism Foil from an LCD Monitor as a Tool for Teaching Introductory Optics

    Science.gov (United States)

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and…

  14. Prism foil from an LCD monitor as a tool for teaching introductory optics

    International Nuclear Information System (INIS)

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and image formation in a nontrivial way and are therefore particularly useful for active learning strategies.

  15. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan;

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...

  16. Current Situation and Development Tendency of China’s Electronic Copper Foil Industry-Part Ⅰ

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>In 2011, in despite of production expansion slowdown of China’s electronic copper foil industry due to global economic downturn, European debt crisis and global inflation, China’s production capacity of copper foil rose through extensive construction of new and extension projects.

  17. Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition

    Science.gov (United States)

    Procházka, Pavel; Mach, Jindřich; Bischoff, Dominik; Lišková, Zuzana; Dvořák, Petr; Vaňatka, Marek; Simonet, Pauline; Varlet, Anastasia; Hemzal, Dušan; Petrenec, Martin; Kalina, Lukáš; Bartošík, Miroslav; Ensslin, Klaus; Varga, Peter; Čechal, Jan; Šikola, Tomáš

    2014-05-01

    Synthesis of graphene by chemical vapor deposition is a promising route for manufacturing large-scale high-quality graphene for electronic applications. The quality of the employed substrates plays a crucial role, since the surface roughness and defects alter the graphene growth and cause difficulties in the subsequent graphene transfer. Here, we report on ultrasmooth high-purity copper foils prepared by sputter deposition of Cu thin film on a SiO2/Si template, and the subsequent peeling off of the metallic layer from the template. The surface displays a low level of oxidation and contamination, and the roughness of the foil surface is generally defined by the template, and was below 0.6 nm even on a large scale. The roughness and grain size increase occurred during both the annealing of the foils, and catalytic growth of graphene from methane (≈1000 °C), but on the large scale still remained far below the roughness typical for commercial foils. The micro-Raman spectroscopy and transport measurements proved the high quality of graphene grown on such foils, and the room temperature mobility of the graphene grown on the template stripped foil was three times higher compared to that of one grown on the commercial copper foil. The presented high-quality copper foils are expected to provide large-area substrates for the production of graphene suitable for electronic applications.

  18. Foil Cooling for the Rep-Rated Electron Beam Pumped Electra Laser

    Science.gov (United States)

    Giuliani, J. L.; Hegeler, F.; Wolford, M. F.; Abdel-Khalik, S.

    2005-10-01

    The Electra program at the Naval Research Laboratory is developing the science and technologies for implementation of krypton-fluoride (KrF) lasers in inertial fusion energy. Large aperture KrF lasers are pumped by electron beams which transit a foil separating the gas target at >=1 atm pressure from the vacuum diode. A fraction of the beam energy is deposited in the foil and thus long term (>=10^8 shots), rep-rated (5 Hz) operation requires active cooling of the foil to prevent thermal yield relaxation and cycling fatigue. This paper will report on experimental data and theoretical analysis of two diverse approaches to foil thermal management: convective and conductive cooling. Convective turbulent cooling has been operational on the Electra main amp through the use of oscillating louvers within a gas recirculator containing the pumped lasing region. At 5 Hz the foil temperature (Tf) can be maintained at ˜400 ^oC for a 1 mil SS foil. Conduction cooling provides the simplest configuration with only the need for water channels in the ribs of the hibachi. For a 1 mil Al foil, Tf is predicted to be ˜140 ^oC at 5 Hz. Comparison of experimental and theoretical results and advanced foil materials will be discussed.

  19. Optical transition radiation from a thin carbon foil: a beam profile monitor for the SLC

    International Nuclear Information System (INIS)

    This memo considers placement of an ultra thin carbon foil into the SLC beam. Transition radiation light would be emitted from the surface of the foil. The optical spot from the foil could be viewed with a microscope objective lens and registered with an image detector. Multiple scattering for the foil thicknesses necessary will not affect the beam emittance. Calculations show that a thin carbon foil can withstand the electron beam if the electron beam is larger than 10 μm in size. There are many possible radiation mechanisms from a foil - bremsstrahlung, black body temperature radiation, Cerenkov light, scintillation light, and transition radiation. Transition radiation is apparently dominant. It is proposed to use thin carbon foils, 75 to 150 A thick. Calculations indicate that 5 x 1010 beam electrons will radiate a useable number of optical photons. Specifically with 150 A foils the fractional yield of useful optical photons is 10-3 photons per incident electron 5 x 10+7 optical photons imaged upon an image plane. Spread these photons over a 32 x 32 pixel CCD and one has the readout system of a monitor

  20. Flexible AMOLED display on polyethylene napthalate (PEN) foil with metal-oxide TFT backplane

    NARCIS (Netherlands)

    Tripathi, A.K.; Putten, B. van der; Steen, J.L. van der; Tempelaars, K.; Cobb, B.; Ameys, M.; Ke, T.H.; Myny, K.; Steudel, S.; Nag, M.; Schols, S.; Vicca, P.; Smout, S.; Genoe, J.; Heremans, P.; Yakimets, I.; Gelinck, G.H.

    2012-01-01

    We present a top emitting monochrome AMOLED display with 85dpi resolution using an amorphous Indium-Gallium-Zinc-Oxide (IGZO) TFT backplane on PEN-foil. Maximum processing temperature was limited to 150 °C in order to ensure an overlay accuracy < 3μm on PEN foil. The backplane process flow is based

  1. On the preparation of self-supporting zinc target foils of separated isotopes

    International Nuclear Information System (INIS)

    This is the second report on the practical method of preparation of targets for nuclear experiments following the previous one (INS-TL-121 (in Japanese)). In this report, a method is described for the preparation of self-supporting zinc foils from ZnO. The thicknesses of target foils and their uniformity were measured with an α-ray thickness gauge. (auth.)

  2. Production of thin carbon stripper foils using heated-substrates in a cathodic arc deposition system

    International Nuclear Information System (INIS)

    The lifetime of carbon stripper foil can have a marked impact on the successful running of a beam line. Standard techniques for production of carbon stripper foils include evaporation of carbon (ec) and laser-pulsed ablation (Ipa). Recent work by a using Ipa has been successful in substantially increasing the lifetime of a very thin foil. The suspected mechanism for the increased lifetime of the foil is that the amorphous carbon foil is density-matched to that of graphite (around 2.26g/cc). In this work, we attempt to reproduce this result by producing carbon stripper foils with a mass-density similar to graphite using a cathodic arc deposition system. The cathodic arc is well known for the production of tetrahedral amorphous carbon: a high density, high stress form of carbon with over 90% sp3-like bonds; to reduce the density of the carbon and promote more graphitic structure, a high bias was initially attempted but this proved unsuccessful. Another method is to use a heated-substrate holder to reduce compressive stress within the deposited film. The performance of the density-matched carbon stripper foils and the implications for future production of high-quality carbon stripper foils in our laboratory will be discussed. (authors)

  3. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  4. Ultrahigh vacuum system with aluminum

    International Nuclear Information System (INIS)

    A bakeable vacuum chamber (1500C continuous) consists of aluminum alloy beam pipe (6063-T6) and bellows (5052-F) with an aluminum alloy flange (2219-T87) and a metal seal [Helicoflex-HN: pure aluminum (1050) O-ring with an elastic core (Ni base super alloy Inconel 750) which supplies the sealing force] has been constructed. The beam pipe and the flange (6063-T6/2219-T87), and the bellows and the flange (5052-F/2219-T87) were welded by an alternate current (50 Hz) TIG process using an aluminum alloy filler wire (4043). The mechanical properties of the aluminum alloy (2219-T87) is suitable for using the Helicoflex O-ring but the groove surface for the gasket is weak for scratching. Cromium-nitride coating by ion plating method was carried out on the aluminum surface of the gasket groove [thickness: 16 μm, micro Vickers hardness: 1800]. Ordinary stainless steel vacuum system can be replaced by the aluminum vacuum system in an accelerator. (author)

  5. Interpreting land records

    CERN Document Server

    Wilson, Donald A

    2014-01-01

    Base retracement on solid research and historically accurate interpretation Interpreting Land Records is the industry's most complete guide to researching and understanding the historical records germane to land surveying. Coverage includes boundary retracement and the primary considerations during new boundary establishment, as well as an introduction to historical records and guidance on effective research and interpretation. This new edition includes a new chapter titled "Researching Land Records," and advice on overcoming common research problems and insight into alternative resources wh

  6. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    International Nuclear Information System (INIS)

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films

  7. Instability of a Thin Conducting Foil Accelerated by a Finite Wavelength Intense Laser

    CERN Document Server

    Eliasson, Bengt

    2014-01-01

    We derive a theoretical model for the Rayleigh-Taylor (RT)-like instability for a thin foil accelerated by an intense laser, taking into account finite wavelength effects in the laser wave field. The latter leads to the diffraction of the electromagnetic wave off the periodic structures arising from the instability of the foil, which significantly modifies the growth rate of the RT-like instability when the perturbations on the foil have wavenumbers comparable to or larger than the laser wavenumber. In particular, the growth rate has a local maximum at a perturbation wavenumber approximately equal to the laser wavenumber. The standard RT instability, arising from a pressure difference between the two sides of a foil, is approximately recovered for perturbation wavenumbers smaller than the laser wavenumber. Differences in the results for circular and linear polarization of the laser light are pointed out. The model has significance to radiation pressure acceleration of thin foils and to laser-driven inertial c...

  8. Foil assisted replica molding for fabrication of microfluidic devices and their application in vitro.

    Science.gov (United States)

    Micheal, Issac J; Vidyasagar, Aditya J; Bokara, Kiran Kumar; Mekala, Naveen Kumar; Asthana, Amit; Rao, Ch Mohan

    2014-10-01

    We present a simple, rapid, benchtop, Foil Assisted Rapid Molding (FARM) method for the fabrication of microfluidic devices. This novel technique involves the use of aluminium foil, pen and an X-Y plotter to create semi-circular or plano-concave, shallow microchannels. It is an easy do-it-yourself (DIY) technique for creating a microfluidic device in three simple steps: (1) create a channel design using the CAD software, (2) plot the patterns on aluminium foil and (3) use the reverse of the engraved foil as a mold to create microfluidic devices. In this report, we present a detailed study of the proposed method by varying a range of parameters such as foil thickness, tip material, and tip sizes and by investigating their effect on the creation of channels with varying geometry. Furthermore, we demonstrated the cytocompatibility of these devices in vitro. PMID:25102283

  9. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    Energy Technology Data Exchange (ETDEWEB)

    Hönnicke, M.G., E-mail: marcelo.honnicke@unila.edu.br [Universidade Federal da Integração Latino-Americana, Foz do Iguaçu (Brazil); Delben, G.J. [Faculdade de Tecnologia Tupy, Curitiba (Brazil); Godoi, W.C. [Universidade Tecnológica Federal do Paraná, Curitiba (Brazil); Swinka-Filho, V. [Instituto de Tecnologia para o Desenvolvimento – LACTEC, Curitiba (Brazil)

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  10. Transmission Electron Microscopy of Cometary Residues from Micron-Sized Craters in the Stardust Al-Foils

    Science.gov (United States)

    Leroux, Hugues; Stroud, Rhonda M.; Dai, Zu Rong; Graham, Giles A.; Troadec, David; Bradley, John P.; Teslich, Nick; Borg, Janet; Kearsley, Anton T.; Horz, Friedrich

    2008-01-01

    We report Transmission Electron Microscopy (TEM) investigations of micro-craters that originated from hypervelocity impacts of comet 81P/Wild 2 dust particles on the aluminium foil of the Stardust collector. The craters were selected by Scanning Electron Microscopy (SEM) and then prepared by Focused Ion Beam (FIB) milling techniques in order to provide electron transparent cross-sections for TEM studies. The crater residues contain both amorphous and crystalline materials in varying proportions and compositions. The amorphous component is interpreted as resulting from shock melting during the impact and the crystalline phases as relict minerals. The latter show evidence for shock metamorphism. Based on the residue morphology and the compositional variation, the impacting particles are inferred to have been dominated by mixtures of submicron olivine, pyroxene and Fe-sulfide grains, in agreement with prior results of relatively coarse-grained mineral assemblages in the aerogel collector.

  11. MIDI Interpreter Software

    OpenAIRE

    Vahtera, Timo

    2009-01-01

    The MIDI interpreter was part of the HAMK Örch Orchestra project. The goal of the Örch Orchestra was to compete in the Artemis musical robot competition held in Athens 3.6.2008. The MIDI interpreter is a standalone hardware and software solution that interprets MIDI messages for a piano playing robot. This thesis involves everything from designing and creating the MIDI interpreter software, including relevant information about the hardware it was programmed for and about the Örch Orchestr...

  12. Standard test methods of tension testing of metallic foil

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1993-01-01

    1.1 These test methods cover the tension testing of metallic foil at room temperature in thicknesses less than 0.006 in. (0.150 mm). Note 1—Exception to these methods may be necessary in individual specifications or test methods for a particular material. 1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  13. Underwater explosive welding of thin tungsten foils and copper

    International Nuclear Information System (INIS)

    Highlights: → Underwater explosive welding was used to clad tungsten and copper. → The preset inclination was varied and the microstructure was observed. → Microstructure reveals a clear wavy interface for higher preset inclination. → High pressure and high strain rate leads to plastic flow of tungsten. - Abstract: This study demonstrates the ability to clad pure tungsten foils on copper plate using underwater shock waves generated by the detonation of explosive. Microstructural characterization revealed that a higher preset inclination results in wavy morphology. Weld formed at lower inclination exhibit a planar interfacial layer comprising fine grained particles of both components. The plastic flow of tungsten is ascribed to the synergistic influence of high pressure and high strain rate at the collision point.

  14. Silver-Rutile Schottky Diode Fabricated on Oxidized Titanium Foil

    International Nuclear Information System (INIS)

    The fabrication and characterization of a gas sensing Ag-TiO2 Schottky diode are reported. The fabricated Ag-TiO2-Ti structure, formed by sintering silver nanoparticles on the thermally oxidized titanium foil, demonstrated I-V characteristics of a typical Schottky diode at elevated temperatures up to 500 deg. C. The I-V characteristics of these devices strongly depended on the concentration level of the reducing gas contaminants in the surrounding atmosphere. The samples performed like high-barrier Schottky diodes in clean air, while behaved as ohmic contacts in highly reducing atmospheres. Different concentration levels of the examined alcohol vapours could increase the reverse current of the diodes up to 5 orders of magnitude. The measured electronic features of the device were described via an energy band diagram model.

  15. Underwater explosive welding of thin tungsten foils and copper

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, P., E-mail: manikandan_exp@yahoo.com [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Lee, J.O.; Mizumachi, K. [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Mori, A. [Department of Mechanical Engineering, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082 (Japan); Raghukandan, K. [Department of Manufacturing Engineering, Annamalai University, Annamalainagar, Cuddalore District, Tamilnadu 608 002 (India); Hokamoto, K. [Shock Wave and Condensed Matter Research Center, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)

    2011-11-15

    Highlights: > Underwater explosive welding was used to clad tungsten and copper. > The preset inclination was varied and the microstructure was observed. > Microstructure reveals a clear wavy interface for higher preset inclination. > High pressure and high strain rate leads to plastic flow of tungsten. - Abstract: This study demonstrates the ability to clad pure tungsten foils on copper plate using underwater shock waves generated by the detonation of explosive. Microstructural characterization revealed that a higher preset inclination results in wavy morphology. Weld formed at lower inclination exhibit a planar interfacial layer comprising fine grained particles of both components. The plastic flow of tungsten is ascribed to the synergistic influence of high pressure and high strain rate at the collision point.

  16. Aerodynamic analysis of flapping foils using volume grid deformation code

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jin Hwan [Seoul National University, Seoul (Korea, Republic of); Kim, Jee Woong; Park, Soo Hyung; Byun, Do Young [Konkuk University, Seoul (Korea, Republic of)

    2009-06-15

    Nature-inspired flapping foils have attracted interest for their high thrust efficiency, but the large motions of their boundaries need to be considered. It is challenging to develop robust, efficient grid deformation algorithms appropriate for the large motions in three dimensions. In this paper, a volume grid deformation code is developed based on finite macro-element and transfinite interpolation, which successfully interfaces to a structured multi-block Navier-Stokes code. A suitable condition that generates the macro-elements with efficiency and improves the robustness of grid regularity is presented as well. As demonstrated by an airfoil with various motions related to flapping, the numerical results of aerodynamic forces by the developed method are shown to be in good agreement with those of an experimental data or a previous numerical solution

  17. Foil-like manganin gauges for dynamic high pressure measurements

    Science.gov (United States)

    Duan, Zhuoping; Liu, Yan; Pi, Aiguo; Huang, Fenglei

    2011-07-01

    Foil-like manganin gauges with a variety of shapes used in different ranges of pressure for the one-dimensional strain mode and axisymmetric strain mode were designed for measuring the detonation pressures of explosives and high shock pressure in materials. In the stress range of 0-53.5 GPa, the pressure-piezoresistance relationships of the manganin gauges were calibrated by the light gas gun and the planar lens of explosive. The piezoresistance coefficients were obtained in different ranges of pressure. To verify the coefficients, the detonation pressure (CJ pressure) of TNT explosive was measured by the manganin gauges, which give similar CJ pressure values to those reported by Zhang et al (2009 Detonation Physics (Beijing: Ordnance Industry Press)) with the maximum relative deviation being less than 3%.

  18. Foil-like manganin gauges for dynamic high pressure measurements

    International Nuclear Information System (INIS)

    Foil-like manganin gauges with a variety of shapes used in different ranges of pressure for the one-dimensional strain mode and axisymmetric strain mode were designed for measuring the detonation pressures of explosives and high shock pressure in materials. In the stress range of 0–53.5 GPa, the pressure–piezoresistance relationships of the manganin gauges were calibrated by the light gas gun and the planar lens of explosive. The piezoresistance coefficients were obtained in different ranges of pressure. To verify the coefficients, the detonation pressure (CJ pressure) of TNT explosive was measured by the manganin gauges, which give similar CJ pressure values to those reported by Zhang et al (2009 Detonation Physics (Beijing: Ordnance Industry Press)) with the maximum relative deviation being less than 3%

  19. Flow structures in the wake of heaving and pitching foils

    Science.gov (United States)

    Najdzin, Derek; Pardo, Enrique; Leftwich, Megan C.; Bardet, Philippe M.

    2012-11-01

    A 10-bar mechanism drives a cambering hydrofoil in an oscillatory heaving and pitching motion that replicates the flapping motion of a dolphin tail. The mechanism sits on a force-balance with six strain gages that together measure the forces and moments experienced by the fin during an oscillation. Planar Laser-Induced Fluorescence is used to image the flow structures created downstream of the cambering fin for a range of Reynolds and Strouhal numbers. The images are taken in the mid-plane, parallel to the bottom of the water tunnel. These results are compared to a rigid foil at matching conditions to investigate the role of camber changes during the flapping cycle.

  20. Electron microscope observation of single - crystalline beryllium thin foils

    International Nuclear Information System (INIS)

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3. (authors)

  1. New membranes obtained by grafted irradiated PVDF foils

    Energy Technology Data Exchange (ETDEWEB)

    Mazzei, R. [Unidad de Actividades Tecnologicas y Agropecuarias, Laboratorio de Polimeros, Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Universidad Tecnologica Nacional Facultad Regional, Buenos Aires (Argentina); Garcia Bermudez, G. [Gerencia de Investigacion y Aplicaciones, Laboratorio Tandar, Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, Universidad Nacional de General San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); Camporotondi, D.E., E-mail: camporotondi@cae.cnea.gov.ar [Unidad de Actividades Tecnologicas y Agropecuarias, Laboratorio de Polimeros, Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Arbeitman, C. [Gerencia de Investigacion y Aplicaciones, Laboratorio Tandar, Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); and others

    2012-09-15

    The present work describes a new method to produce membranes of poly(Acrylic-acid-Xmonomer) using the grafting procedure. PVDF foils irradiated with Ar{sup +} beam with energies between 30 and 150 keV were employed as substratum. Different combinations of monomers in water solutions were used: acrylic acid (AAc); acrylic acid-glycidyl methacrylate (AAc-GMA); acrylic acid-styrene (AAc-S), acrylic acid-N-isopropyl acrylamide (AAc-NIPAAm) and acrylic acid-N-isopropyl acrylamide-glycidyl methacrylate (AAc-NIPAAm-GMA). A large percentage of grafting results for specific values of: ion fluence and energy, AAc and sulfuric acid concentration, and different substrata PVDF polymorphous (alpha or beta). At a particular time of the grafting process, the poly(AAc-Xmonomer) membranes detach from the substratum and continue their grafting in the solution. This method is useful to produce increased replicated membranes of the irradiated original surface.

  2. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  3. Fouling corrosion in aluminum heat exchangers

    Directory of Open Access Journals (Sweden)

    Su Jingxin

    2015-06-01

    Full Text Available Fouling deposits on aluminum heat exchanger reduce the heat transfer efficiency and cause corrosion to the apparatus. This study focuses on the corrosive behavior of aluminum coupons covered with a layer of artificial fouling in a humid atmosphere by their weight loss, Tafel plots, electrochemical impedance spectroscopy (EIS, and scanning electron microscope (SEM observations. The results reveal that chloride is one of the major elements found in the fouling which damages the passive film and initiates corrosion. The galvanic corrosion between the metal and the adjacent carbon particles accelerates the corrosive process. Furthermore, the black carbon favors the moisture uptake, and gives the dissolved oxygen greater chance to migrate through the fouling layer and form a continuous diffusive path. The corrosion rate decreasing over time is conformed to electrochemistry measurements and can be verified by Faraday’s law. The EIS results indicate that the mechanism of corrosion can be interpreted by the pitting corrosion evolution mechanism, and that pitting was observed on the coupons by SEM after corrosive exposure.

  4. Simple production method for making 3 μg/cm2 cracked slacked carbon accelerator stripper foils

    International Nuclear Information System (INIS)

    A simple method for making thin 3 μg/cm2 carbon stripper foils for heavy ion bombardment and accelerator radiochronology is described along with a simple method for stripper foil thickness determination

  5. The foil equilibration method for carbon in sodium

    International Nuclear Information System (INIS)

    Among the non-metallic impurities in sodium, carbon plays an important role since at high temperatures the structural materials exposed to sodium are subject to carburization and decarburization depending on the carbon activity of the sodium. Carburization of austenitic stainless steels leads to reduction in ductility and fatigue properties whereas decarburization results in a decrease in the high temperature creep strength. A knowledge of the carbon activities in sodium will help understanding of the carbon transfer phenomena in operating sodium systems of the fast reactors, and also carbon diffusion, microstructural stability and mechanical behaviour of materials under different service conditions. An understanding of the carbon behaviour in sodium becomes difficult in view of the complexities of the different species present as elemental carbon, carbide, acetylide, carbonate, and cyanide. Carbon estimation techniques for sodium presently in use are: chemical analytical methods, on-line carbon monitors, and oil equilibration method. Various chemical methods have been developed for the estimation of different species like acetylide, cyanide, carbonate, elemental carbon, and total carbon in sodium. All these methods are time consuming and subject to various errors. The on-line monitors developed for carbon in sodium are able to give continuous indication of carbon activities and have higher sensitivity than the chemical methods. A still more simple method for the determination of carbon activities is by the foil equilibration first published by Natesan et al. Because of its simplicity like the vanadium wire equilibration for oxygen it is being used widely for the estimation of carbon activities in sodium systems. Carbon concentrations in operating sodium systems estimated by this procedure by applying solubility relation to carbon activities have yielded very low values of carbon, lower than the sensitivity limits of the chemical estimation methods. Foil

  6. Transmission and Reflection of Neutrons Using Foil Activation Technique

    International Nuclear Information System (INIS)

    A new neutron irradiation facility has been designed, constructed .and located at the Experimental Nuclear Physics Department, NRC, AEA, cairo. The neutrons were obtained from CNIF2 (Second Cairo Neutron Irradiation Facility) that is based on one 241 Am-Be(α, n) isotopic neutron source with a present activity of about 175 GBq results in a neutron yield of about 1.04 x107 n/s. The geometrical arrangements of the facility consider the safety and protection rules aspects. MCNP5 code is used to estimate radiation doses and neutron fluxes. This new irradiation facility provides fast and epithermal neutrons that can be used in basic research and industrial applications. The aim of the present work is to study the characteristics of this new irradiation facility and to develop methods able to use fast and epithermal neutron in some different applications. Experimental measurements for the transmission and reflection of neutrons were carried out via a number of hydrogenous materials using the activation foil technique. A comparison of the experimental results with that calculated by using Monte Carlo simulation method is presented Using the neutron transmission technique in combination with foil activation method, our arrangement is used to measure the total neutron microscopic cross-sections for some compounds. The facility is calibrated and suitable to estimate the hydrogen content H (wt %) and the weight ratios C/H in hydrocarbon materials and was used to measure these ratios for some Egyptian crude oil samples. A brief overview of the neutron activation analysis methods for elemental concentrations in bulk samples in natural conditions is presented.

  7. Determination of half-value thickness of aluminum foils for different beta sources by using fractional calculus

    Energy Technology Data Exchange (ETDEWEB)

    Şen, Mürsel, E-mail: senmursel@hotmail.com [Department of Physics, Institute of Science and Technology, Dumlupınar University, Kütahya 43100 (Turkey); Çalık, Abdullah Engin, E-mail: aengin.calik@dpu.edu.tr [Department of Physics, Arts and Sciences Faculty, Dumlupınar University, Kütahya 43100 (Turkey); Ertik, Hüseyin, E-mail: huseyinertik@akdeniz.edu.tr [Department of Mathematics Education, Alanya Faculty of Education, Akdeniz University, Alanya, Antalya 07425 (Turkey)

    2014-09-15

    Reduction of beta-ray intensity with respect to thickness of absorber material exhibits a non-exponential behavior due to the different types of the energy loss processes and many different fractal-like paths followed by beta particles in material. According to Caputo formalism of fractional calculus, the reduction process of beta-ray intensity is governed by using a simple fractional differential equation of order α ≈ 0.31. The solution is obtained in terms of Mittag–Leffler function which depends on a mass attenuation coefficient μ{sub m} and a fractional order α that can be considered as a measure of fractality of absorbing material. In the experimental part of the study, {sup 99}Tc, {sup 36}Cl, {sup 14}C, {sup 210}Pb and {sup 147}Pm radioisotopes have been used as beta sources. In the framework of fractional calculus approach, the experimental and calculated half-value thicknesses of all samples have been obtained in agreement with each other.

  8. Determination of half-value thickness of aluminum foils for different beta sources by using fractional calculus

    International Nuclear Information System (INIS)

    Reduction of beta-ray intensity with respect to thickness of absorber material exhibits a non-exponential behavior due to the different types of the energy loss processes and many different fractal-like paths followed by beta particles in material. According to Caputo formalism of fractional calculus, the reduction process of beta-ray intensity is governed by using a simple fractional differential equation of order α ≈ 0.31. The solution is obtained in terms of Mittag–Leffler function which depends on a mass attenuation coefficient μm and a fractional order α that can be considered as a measure of fractality of absorbing material. In the experimental part of the study, 99Tc, 36Cl, 14C, 210Pb and 147Pm radioisotopes have been used as beta sources. In the framework of fractional calculus approach, the experimental and calculated half-value thicknesses of all samples have been obtained in agreement with each other

  9. Prompt Reaction of Aluminum in Detonating Explosives

    International Nuclear Information System (INIS)

    The potential of aluminum (Al) reaction to boost detonation energy has been studied for decades, most recently spurred by the availability of nanometer-sized particles. A literature review is consistent with results from the small-scale shock reactivity test (SSRT). In this test, <1/2-g samples in confinement are shock loaded on one end, and the output at the other end dents a soft witness block. For samples in which 0.3 g of cyclotetramethylenetetranitramine (HMX) was mixed with 8 μm Al, the deepest dent occurred at 15% Al. When ammonium perchlorate (AP) was mixed with the same Al, the increased dents were consistent with changes in detonation velocity previously reported on similar mixtures. One outcome of this study is a new interpretation for the participation of Al in large scale gap tests on plastic-bonded explosives, which was discussed by Bernecker at this meeting in 1987

  10. Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)2]Cl for ultrasensitive SERS detecting of biomolecules

    International Nuclear Information System (INIS)

    Symmetric silver dendrites have been synthesized on commercial aluminum foil via galvanic replacement reaction with [Ag(NH3)2]Cl. This process is facile and environmentally friendly, without the use of any templates, surfactants or oxidants, and also avoiding the introduction of fluoride anions as a strong toxicity resulting in hypocalcemia. The products were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and X-ray diffraction (XRD). SEM characterizations and electrochemical measurements including an electrochemical direct current polarization method and OCP-t technique demonstrate that chloride has proven to be the key factor to the formation of well-defined dendritic shape. The as-prepared Ag dendrites are developed as a surface-enhanced Raman scattering (SERS)-active platform for detection of folic acid, DNA and RNA with well resolved bands and high Raman intensities. The detection concentration for the three biomolecules reaches the level of 10−12 M, and thus the symmetric silver dendrites can potentially be employed as effective SERS sensors for label-free and ultrasensitive biomolecule detection. - Highlights: • Simple galvanic replacement is used to synthesize Ag dendrites on commercial Al foils. • This method avoids the introduction of fluoride anions. • The as-prepared dendrites exhibit high SERS activities for biomolecules. • The detection concentration for the biomolecules reaches the level of 10−12 M

  11. Prosody and Interpretation

    Science.gov (United States)

    Erekson, James A.

    2010-01-01

    Prosody is a means for "reading with expression" and is one aspect of oral reading competence. This theoretical inquiry asserts that prosody is central to interpreting text, and draws distinctions between "syntactic" prosody (for phrasing) and "emphatic" prosody (for interpretation). While reading with expression appears as a criterion in major…

  12. The Ruby Interpreter

    OpenAIRE

    Hutton, Graham

    1993-01-01

    Ruby is a relational calculus for designing digital circuits. This document is a guide to the Ruby interpreter, which allows a special class of $quot;implementable$quot; Ruby programs to be executed. The Ruby interpreter is written in the functional programming language Lazy ML, and is used under the interactive Lazy ML system.

  13. Linguistics in Text Interpretation

    DEFF Research Database (Denmark)

    Togeby, Ole

    A model for how text interpretation proceeds from what is pronounced, through what is said to what is comunicated, and definition of the concepts 'presupposition' and 'implicature'.......A model for how text interpretation proceeds from what is pronounced, through what is said to what is comunicated, and definition of the concepts 'presupposition' and 'implicature'....

  14. The Conference Interpreter Results

    OpenAIRE

    Calvo-Ferrer, José Ramón

    2013-01-01

    Conjunto de datos relativo a la investigación realizada sobre el aprendizaje de terminología especializada en segundas lenguas con el videojuego The Conference Interpreter / Dataset from the study on L2 specialised vocabulary acquisition via The Conference Interpreter educational game.

  15. Maintenance of radio-activated stripper foils in the 3 GeV RCS of J-PARC

    International Nuclear Information System (INIS)

    In the 3 GeV rapid cycling synchrotron (RCS) of the Japan proton accelerator research complex, we adopted the multi-turn charge exchange injection scheme using the stripper foils. After the fine beam tuning in the RCS, most of the beam losses occur at the foil only. However, the high residual doses were detected around the stripper foil, which cannot be explained by the direct scattering of the injected H- and circulating proton beams with the stripper foil. From the measurements and simulations, it is identified that secondary particles produced in the nuclear reactions with the foil had caused the high residual activity around there. The radio-activation of the foil itself and the high residual dose around the foil are intrinsic problems for all high power beam accelerators with stripping foil. A safe and efficient maintenance in the high radiation and narrow space in these accelerators is important. The foil maintenance under such an environment is required to keep staff radiation exposure as low as possible to reduce the risk of radioactive foil breakup or dispersion and to retrieve the foil without breaking for its analysis. We achieved a safe and efficient maintenance method to retrieve the radioactivated stripper foils. (author)

  16. Chrome - Free Aluminum Coating System

    Science.gov (United States)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  17. Refinement of Aluminum Thermal Chrome

    International Nuclear Information System (INIS)

    Refinement of aluminum thermal chrome of the X98.5 mark by a high-temperature annealing in high vacuum is explored experimentally. It is shown that at the temperature of annealing 1150 C during 1...6 hours the content of such interstitial impurity as nitrogen is essentially depressed in chrome, and also the content of aluminum and iron admixtures is noticeably moderated

  18. Effecting Factors on Thickness of Oxide Aluminum Membrane%多孔阳极氧化铝膜厚度影响因素

    Institute of Scientific and Technical Information of China (English)

    王晓燕; 翟秀静; 张延安; 符岩; 郑双

    2011-01-01

    以H2SO4为电解液对高纯铝箔进行阳极氧化,用涡流测厚仪分析制备工艺参数对多孔氧化铝膜厚度的影响.结果表明,在一定电解液浓度及电解电压下,氧化铝膜厚度随电解液浓度及电解电压的增加而增大,但过高的电解液浓度及电解电压均会造成氧化铝膜的快速击穿.氧化铝膜厚度随电解时间的增加而增大,但初期的增长速度较快,后期随电解时间的增加变化缓慢.在一定温度范围内氧化铝膜的厚度随温度的升高而增加.%High-pure aluminum foil is oxidized in anodic with H2SO4 as electrolyte. The effect of the technological parameters on thickness of oxide aluminum membrane is investigated by using eddy current sensor thickness. The results show that the thickness of oxide aluminum membrane is increased with the increase of electrolyte concentration and voltage, but the exorbitant electrolyte concentration and electrolysis voltage are prone to rapid breakdown of aluminum foil. The thickness of oxide aluminum membrane is increased with the increase of the electrolysis time, however the growth speed of oxide aluminum membrane thickness is firstly fast and then becomes slow. Within a certain range of temperature, the thickness of oxide aluminum membrane is increased with the increase of the electrolysis temperature.

  19. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  20. Gas Electron Multiplier foil holes: a study of mechanical and deformation effects

    Science.gov (United States)

    Benussi, L.; Bianco, S.; Saviano, G.; Muhammad, S.; Piccolo, D.; Suhaj, A.; Sharma, A.; Caponero, M.; Passamonti, L.; Pierluigi, D.; Russo, A.; Lalli, A.; Valente, M.; Ferrini, M.; Langeslag, S. A. E.; Sgobba, S.; Aviles, I.; Magnani, A.; Vai, I.

    2016-08-01

    The GEM detectors will be installed at the Compact Muon Solenoid (CMS) experiment during Long Shutdown II of the LHC in 2018. The GEM foil is a basic part of the detector which consists of a composite material, i.e. polyimide coated with copper and perforated with a high density of micro holes. In this paper the results of the GEM foil material characterization are reported, and a campaign of tensile and holes deformation tests is performed. During the tests, the complex radiation environment at CMS is taken into account and samples are prepared accordingly to see the impacts of the radiation on the GEM foil, i.e. non-irradiated samples are used as the reference and compared with neutrons- and gamma- irradiated. These studies provide the information necessary to optimize the stress level without damaging the foil and holes during the detector assembly in which the GEM foils stack is stretched simultaneously to maintain the uniform gap among the foils in order to get the designed performance of the detector. Finally, an estimate of the Young's modulus of the GEM foil is provided by using the tensile test data.

  1. Carbon/graphene foils: a critical subsystem for plasma instruments in space

    Science.gov (United States)

    Allegrini, F.; Ebert, R. W.; Fuselier, S. A.; Bedworth, P.; Sinton, S.

    2015-12-01

    Thin carbon foils play a critical role in the time-of-flight (TOF) and charge conversion subsystems used in many of the plasma sensors developed for space. These instruments take advantage of properties of the particle-foil interaction: charge conversion of neutral atoms and/or secondary electron emission. This interaction also creates several adverse effects for the projectile exiting the foil, such as angular scattering and energy straggling, that usually act to reduce the sensitivity and overall performance of an instrument. The magnitude of these effects varies with the incident angle, energy, and mass of the incoming projectile and the foil thickness. The thinnest foils flown typically have a nominal thickness (as specified by the manufacturer) of ~0.5 - 1 µg cm-2. In this presentation, we will summarize several studies that have quantified the properties of ions exiting the thin carbon foil and discuss recent work on graphene foils, a promising new technology that may be capable of mitigating the undesirable effects associated with these interactions.

  2. Improvement of the accuracy of the imaging bolometer foil laser calibration

    International Nuclear Information System (INIS)

    An imaging bolometer with a single graphite-coated metal foil is a diagnostic tool for diagnosing plasma radiation from magnetic fusion plasmas. We could obtain the local foil properties (the thermal diffusivity, κ, and the product of the thermal conductivity, k, and the thickness, tf) of the metal imaging bolometer foil by analyzing the calibration data. For improving the IRVB a Tantalum (Ta) foil is offered due to strength, low neutron cross-section, and high sensitivity, however there is a large discrepancy between the value of the foil thickness from the experimental value and the nominal value. For calibrating of the foil the He-Ne laser beam is focused on 63 various locations which are determined by using the marks on the frame. The parameters of the foil are determined by comparing the measured thermal radiation data from an IR camera (FLIR/SC500) (60 Hz, 320x240 pixels, 7.5-13 μm) with the corresponding results of a finite element model. (author)

  3. Line drawing interpretation

    CERN Document Server

    Cooper, Martin

    2010-01-01

    The computer interpretation of line drawings is a classic problem in AI and has inspired the development of some fundamental AI tools. This novel approach to drawing interpretation combines new constraints with recent advances in soft constraint programming, Based on the author's considerable research experience, this book contains state-of-the-art reviews of work in drawing interpretation and discrete optimisation and is not just restricted to drawings of polyhedral objects, but also covers complex curved objects. The book will become a standard reference in the field with its coverage of man

  4. Development of Thick-foil and Fine-pitch GEMs with a Laser Etching Technique

    OpenAIRE

    Tamagawa, T.; Asami, F.; Abe, K.; Iwamoto, S.; Nakamura, S.; Hayato, A.; Iwahashi, T.; Konami, S.; Hamagaki, H.; Yamaguchi, Y. L.; Tawara, H.; Makishima, K.

    2009-01-01

    We have produced thick-foil and fine-pitch gas electron multipliers (GEMs) using a laser etching technique. To improve production yield we have employed a new material, Liquid Crystal Polymer, instead of polyimide as an insulator layer. The effective gain of the thick-foil GEM with a hole pitch of 140 um, a hole diameter of 70 um, and a thickness of 100 um reached a value of 10^4 at an applied voltage of 720 V. The measured effective gain of the thick-foil and fine-pitch GEM (80 um pitch, 40 ...

  5. Optimizing dc-resistance of a foil wounded toroidal inductor combining matlab and comsol

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold;

    2013-01-01

    An optimization routine is presented to optimize the shape of a foil winding of a toroid inductor in terms of the DC resistance. MATLAB was used to define the geometry of the foil winding and COMSOL was used to import the geometry and create a 3D finite element model. The initial parameters, the...... execution and the results of the optimization routine were all managed from a graphical user interface and the feedback from COMSOL in terms of DC resistance was used to find and plot the optimal shape of the foil. The DC resistance was improvement by 31 % compared with previous work for a 10 turn toroidal...

  6. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

    International Nuclear Information System (INIS)

    Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter

  7. Suppression of instability by double ablation in tungsten doped polyvinyl alcohol foils

    International Nuclear Information System (INIS)

    In Inertial fusion Energy (IFE) research stable acceleration of fusion targets is a significant problem due to hydrodynamic instabilities. This paper presents the results of the experiments done to investigate the effects of doping 20% of Tungsten (W) (by weight) in Polyvinyl Alcohol (PVA) polymer foils for suppression of instability during laser ablative acceleration. A 20J, 1.060μm, 900ps, Nd: Glass laser system with a focusable intensity of 3 to 9.6×1013W/cm2 was used in the experiment. It is observed that the doped PVA targets yielded stable and enhanced foil acceleration as compared to the undoped PVA foils.

  8. Large white organic light-emitting diode lighting panel on metal foils

    OpenAIRE

    Guaino, Philippe; Mazeri, Fabrizo; Hofmann, Michael; Birnstock, Jan; Avril, Ludovic; Viville, Pascal; Kanaan, Hani; Lazzaroni, Roberto; Loicq, Jerôme; Rotheudt, Frank; Pans, Christian

    2011-01-01

    Large-area top-emitting PIN structure (highly p- and n- type doped transport layers for electrons and holes and an undoped emitter layer)–organic light-emitting diode (OLED) on advanced metal foils were fabricated for lighting applications. ArcelorMittal has developed a new surface treatment on metal foils, suitable for roll-to-roll production and dedicated to large-area device integration. Both monochromatic and white devices are realized on advanced metal foils. Power efficiencies at 1000 c...

  9. Full size U-10Mo monolithic fuel foil and fuel plate fabrication-technology development

    International Nuclear Information System (INIS)

    Full-size U-10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer to the foil is performed using a hot co-rolling process. Aluminium clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy. (author)

  10. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  11. Cytological artifacts masquerading interpretation

    Directory of Open Access Journals (Sweden)

    Khushboo Sahay

    2013-01-01

    Conclusions: In order to justify a cytosmear interpretation, a cytologist must be well acquainted with delayed fixation-induced cellular changes and microscopic appearances of common contaminants so as to implicate better prognosis and therapy.

  12. A New Redshift Interpretation

    CERN Document Server

    Gentry, R V

    1997-01-01

    A nonhomogeneous universe with vacuum energy, but without spacetime expansion, is utilized together with gravitational and Doppler redshifts as the basis for proposing a new interpretation of the Hubble relation and the 2.7K Cosmic Blackbody Radiation.

  13. Principles of radiological interpretation

    International Nuclear Information System (INIS)

    Conventional radiographic procedures (plain film) are the most frequently utilized imaging modality in the evaluation of the skeletal system. This chapter outlines the essentials of skeletal imaging, anatomy, physiology, and interpretation

  14. Normative interpretations of diversity

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2009-01-01

    Normative interpretations of particular cases consist of normative principles or values coupled with social theoretical accounts of the empirical facts of the case. The article reviews the most prominent normative interpretations of the Muhammad cartoons controversy over the publication of drawings...... of the Prophet Muhammad in the Danish newspaper Jyllands-Posten. The controversy was seen as a case of freedom of expression, toleration, racism, (in)civility and (dis)respect, and the article notes different understandings of these principles and how the application of them to the controversy...... implied different social theoretical accounts of the case. In disagreements between different normative interpretations, appeals are often made to the ‘context', so it is also considered what roles ‘context' might play in debates over normative interpretations...

  15. Sign Language Interpreters' Training

    OpenAIRE

    Andriakopoulou, Eirini; Bouras, Christos; Giannaka, Eri

    2007-01-01

    Nowadays, the evolution of technology and the increasing use of computers gave the opportunity for developing new methods of education of deaf individuals and sign language interpreters. The e-learning environments that have been developed for the education of sign language provide web-based courses, designed to effectively teach to anyone the Sign Language. Recognizing the difficulties and barriers of sign language training as well as the importance of sign language interpreters for the comm...

  16. Interpretations of Negative Probabilities

    OpenAIRE

    Burgin, Mark

    2010-01-01

    In this paper, we give a frequency interpretation of negative probability, as well as of extended probability, demonstrating that to a great extent, these new types of probabilities, behave as conventional probabilities. Extended probability comprises both conventional probability and negative probability. The frequency interpretation of negative probabilities gives supportive evidence to the axiomatic system built in (Burgin, 2009; arXiv:0912.4767) for extended probability as it is demonstra...

  17. Interpretability in PRA

    Czech Academy of Sciences Publication Activity Database

    Bílková, Marta; De Jongh, D.; Joosten, J.J.

    2009-01-01

    Roč. 161, č. 2 (2009), s. 128-138. ISSN 0168-0072 R&D Projects: GA AV ČR IAA900090703 Grant ostatní: GA ČR(CZ) GA401/06/0387 Institutional research plan: CEZ:AV0Z10300504 Keywords : interpretability * arithmetic * primitive recursive arithmetic * interpretability logic Subject RIV: BA - General Mathematics Impact factor: 0.667, year: 2009

  18. Interpreting Territory and Power

    OpenAIRE

    Bevir, Mark

    2010-01-01

    This paper offers an interpretive alternative to the idea of the state as sovereign over a territory and possessing a monopoly of power. It interprets both Territory and Power (the book by Bulpitt) and territory and power (the objects studied in that book). Bulpitt’s ideas were part of a broader movement to rethink the state to (i) accommodate new behavioral topics, and (ii) to defend modernist empiricism and institutionalism from the positivism and general theories of behavioralism. Now w...

  19. Modal Functional (`Dialectica') Interpretation

    OpenAIRE

    Hernest, Dan; Trifonov, Trifon

    2012-01-01

    We adapt our light Dialectica interpretation to usual and light modal formulas (with universal quantification on boolean and natural variables) and prove it sound for a non-standard modal arithmetic based on Goedel's T and classical S_4. The range of this light modal Dialectica is the usual (non-modal) classical Arithmetic in all finite types (with booleans); the propositional kernel of its domain is Boolean and not S_4. The `heavy' modal Dialectica interpretation is a new technique; it canno...

  20. Interpreting Presidential Powers

    OpenAIRE

    Fallon, Richard Henry

    2013-01-01

    Justice Holmes famously observed that "[g]reat cases . . . make bad law." The problem may be especially acute in the domain of national security, where presidents frequently interpret their own powers without judicial review and where executive precedents play a large role in subsequent interpretive debates. On the one hand, some of the historical assertions of presidential authority that stretch constitutional and statutory language the furthest seem hard to condemn in light of the practical...

  1. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    Science.gov (United States)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  2. Structure studies of carbon foils with the aim to improve the ability for heavy-ion stripping

    International Nuclear Information System (INIS)

    Slackened carbon stripper foils of 3 to 5 μg/cm2 produced by vacuum evaporation-condensation were graphitized by annealing at about 3300 K with a pulsed laser beam (1.06 μm). An average crystal size of 10 nm was measured by electron diffraction. The texture of the 002-plane is parallel to the surface of the foil as known from slightly annealed carbon foils. Radiation damages caused by high doses of heavy ions dramatically change the crystal structure. Electron diffraction patterns reveal newly formed graphite crystals with their 002-plane perpendicular to the texture. Compared to carbon foils of the same kind, but not graphitized, a lifetime prolongation of a factor of two was achieved for such foils tested in the terminal of the Munich MP tandem. The slope of the curve for heavy-ion transmission through carbon stripper foils varies for foils of the same kind and for different ion-beam conditions. (orig.)

  3. Development of the fabrication technology of wide uranium foils for Mo-99 irradiation target by cooling-roll casting method

    International Nuclear Information System (INIS)

    An alternative fabrication method for polycrystalline uranium foils has been investigated using a cooling-roll casting method at KAERI since 2001, in order to produce a medical isotope 99Mo, the parent nuclide of 99mTc. The fabrication method of wide uranium foils produced by a cooling-roll casting was recently developed to improve the quality of the uranium foils and the economic efficiency of the foil fabrication with modifications of the casting apparatus and adjustments of the process parameters. A continuous polycrystalline LEU foil with a thickness range of 100 to 150 μm. and a width of about 50 mm, exceeding 5m in length for a batch procedure, could be fabricated with a better quality of the uranium foil and a higher yield of the foil fabrication, through improvements of the casting apparatus and variations of the process parameters. (author)

  4. Use of STIM for morphological studies of microstructured polymer foils

    International Nuclear Information System (INIS)

    In this work, morphological characterization of microstructures produced by focused 3 MeV H+ beams and chemical etching on poly(ethylene terephthalate) foils was investigated by on- and off-axis scanning transmission ion microscopy (STIM). STIM images were obtained from different energy regions of the transmitted energy spectra. STIM performance was compared to scanning electron microscopy (SEM) used as a reference. STIM and SEM images provided similar morphological information. The deviations observed between the measured dimensions obtained from both techniques were within the uncertainties of the experiment. Moreover, the scaling of the structures’ size versus etching time (i.e. the etching rates) extracted from STIM and SEM data were equivalent. Prolonged etching times of up to 60 min were performed to check the effect of the irradiation on the non-bombarded vicinity of the structured lines. STIM images clearly revealed a distribution of cavities and porosity along the structured walls for etching times above 20 min. This is attributed to thermal effects and outgassing during the proton beam writing, which probably create voids that are enlarged by the long exposure to the etching solution

  5. Foil-less plasma-filled diode for HPM generator

    Science.gov (United States)

    Eltchaninov, A. A.; Kovalchuk, B. M.; Kurkan, I. K.; Zherlitsyn, A. A.

    2014-11-01

    Plasma-filled diode regarded as perspective source of electron beam feeding HPM generator of GW power level, comparing to conventional explosive emission vacuum diode. Electron beam generation occurs in plasma double layer, where plasma boundary plays as an anode. It allows cancelling the usage of anode foils or grids in HPM generators with the virtual cathode, which could limit its life time to few shots. The presence of ions in the e-beam drift space could raise the limiting current for a drift space, but it could affect to microwave generation also. Sectioned plasma-filled diode with beam current of about 100 kA, electron beam energy of about 0.5 MV and beam current density of 1-10 kA/cm2 was realized. Cylindrical transport channel with the diameter of 200 mm and the length of about 30 cm was attached to the diode. Beam current measurements in a drift space were performed. Computer simulations of electron beam transport with the presence of ions were carried out with the 2.5D axisymmetric version of PiC-code KARAT. Obtained results would help optimizing electrodynamic system of HPM generator subjected to the presence of ions.

  6. Foil-less plasma-filled diode for HPM generator

    International Nuclear Information System (INIS)

    Plasma-filled diode regarded as perspective source of electron beam feeding HPM generator of GW power level, comparing to conventional explosive emission vacuum diode. Electron beam generation occurs in plasma double layer, where plasma boundary plays as an anode. It allows cancelling the usage of anode foils or grids in HPM generators with the virtual cathode, which could limit its life time to few shots. The presence of ions in the e-beam drift space could raise the limiting current for a drift space, but it could affect to microwave generation also. Sectioned plasma-filled diode with beam current of about 100 kA, electron beam energy of about 0.5 MV and beam current density of 1-10 kA/cm2 was realized. Cylindrical transport channel with the diameter of 200 mm and the length of about 30 cm was attached to the diode. Beam current measurements in a drift space were performed. Computer simulations of electron beam transport with the presence of ions were carried out with the 2.5D axisymmetric version of PiC-code KARAT. Obtained results would help optimizing electrodynamic system of HPM generator subjected to the presence of ions

  7. Silicon oxide permeation barrier coating of PET bottles and foils

    Science.gov (United States)

    Steves, Simon; Deilmann, Michael; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) have displaced established materials in many areas of food and beverage packaging. Plastic packing materials offer are various advantages concerning production and handling. PET bottles for instance are non-breakable and lightweight compared to glass and metal containers. However, PET offers poor barrier properties against gas permeation. Therefore, the shelf live of packaged food is reduced. Permeation of gases can be reduced by depositing transparent plasma polymerized silicon oxide (SiOx) barrier coatings. A microwave (2.45 GHz) driven low pressure plasma reactor is developed based on a modified Plasmaline antenna to treat PET foils or bottles. To increase the barrier properties of the coatings furthermore a RF substrate bias (13.56 MHz) is applied. The composition of the coatings is analyzed by means of Fourier transform infrared (FTIR) spectroscopy regarding carbon and hydrogen content. Influence of gas phase composition and substrate bias on chemical composition of the coatings is discussed. A strong relation between barrier properties and film composition is found: good oxygen barriers are observed as carbon content is reduced and films become quartz-like. Regarding oxygen permeation a barrier improvement factor (BIF) of 70 is achieved.

  8. Optical fiber sensors embedded in flexible polymer foils

    Science.gov (United States)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  9. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  10. Solid-state 27Al nuclear magnetic resonance investigation of three aluminum-centered dyes

    KAUST Repository

    Mroué, Kamal H.

    2010-02-01

    We report the first solid-state 27Al NMR study of three aluminum phthalocyanine dyes: aluminum phthalocyanine chloride, AlPcCl (1); aluminum-1,8,15,22-tetrakis(phenylthio)-29H,31H-phthalocyanine chloride, AlPc(SPh)4Cl (2); and aluminum-2,3-naphthalocyanine chloride, AlNcCl (3). Each of these compounds contains Al3+ ions coordinating to four nitrogen atoms and a chlorine atom. Solid-state 27Al NMR spectra, including multiple-quantum magic-angle spinning (MQMAS) spectra and quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) spectra of stationary powdered samples have been acquired at multiple high magnetic field strengths (11.7, 14.1, and 21.1 T) to determine their composition and number of aluminum sites, which were analyzed to extract detailed information on the aluminum electric field gradient (EFG) and nuclear magnetic shielding tensors. The quadrupolar parameters for each 27Al site were determined from spectral simulations, with quadrupolar coupling constants (CQ) ranging from 5.40 to 10.0 MHz and asymmetry parameters (η) ranging from 0.10 to 0.50, and compared well with the results of quantum chemical calculations of these tensors. We also report the largest 27Al chemical shielding anisotropy (CSA), with a span of 120 ± 10 ppm, observed directly in a solid material. The combination of MQMAS and computational predictions are used to interpret the presence of multiple aluminum sites in two of the three samples.

  11. Non-contact thickness measurement for ultra-thin metal foils with differential white light interferometry

    Institute of Scientific and Technical Information of China (English)

    Yanli Du(杜艳丽); Huimin Yan(严惠民); Yong Wu(吴勇); Xiaoqiang Yao(姚晓强); Yongjun Nie(聂永军); Baixuan Shi(施柏煊)

    2004-01-01

    A new differential white light interference technique for the thickness measurements of metal foil is presented. In this work, the differential white light system consists of two Michelson interferometers in tandem,and the measured reflective surfaces are the corresponding surfaces of metal foil. Therefore, the measuring result is only relative to the thickness but not the position of metal foil. The method is non-contact and non-destructive, it has the advantages of high accuracy, fast detection, and compact structure. Theoretical analysis and preliminary experimental verifications have shown that the technique can be used to measure the thickness of foil in the range of 1 to 80 μm with accuracy better than 0.08 μm.

  12. Electrophoretically applied dielectrics for amorphous metal foils used in pulsed power saturable reactors

    International Nuclear Information System (INIS)

    Amorphous metal foil-wound inductors have been tested as ferromagnetic saturable inductive elements for pulse-power (multi-terawatt) switching nodules. Saturation switching may provide large 100 ns current bursts necessary to accelerate ion beams for the fusion fuel pellet implosion required, for example, in PBFA (particle beam fusion accelerator) operation. In simulated capacitor testing premature dielectric breakdown of thin polyethylene terephthalate film insulation in the inductor windings occurs at considerably below 2500 V. This appears to be due to inadvertent dielectric damage from micro-spikes on the amorphous foil surface. Electron micrographs and dielectric breakdown data illustrate that electrophoretically-applied dielectric coatings, deposited from organic aqueous colloid dispersions, can be used to provide insulating coatings on the foil which provide a 240% improvement (6000 V) in the breakdown strength of wound amorphous foil inductors. The theory and operation of a dedicated electrophoretic continuous coating system is described

  13. A study of neutron fluence rates of the BNCT beam at THOR using foil activation

    International Nuclear Information System (INIS)

    Neutron fluence rates of the BNCT epithermal neutron beam at THOR were measured by using double-foil activation method free-in-air and in a water phantom. Foil sets consisting of gold, copper and manganese were used for measurements. Copper was used as an extra detector for quality check. Monte Carlo calculations using the MCNP4C code were conducted to support and compare with the measurement results. It was found that the calculation of reaction rates of foils free-in-air based on a neutron source with a coarse group energy structure is inadequate. The meetness of the assumptions on the neutron energy distribution made in the double-foil formulation for the determination of neutron fluence rates must be estimated in order to compare with the calculation. (author)

  14. LANL Experience Rolling Zr-Clad LEU-10Mo Foils for AFIP-7

    Energy Technology Data Exchange (ETDEWEB)

    Hammon, Duncan L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clarke, Kester D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alexander, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kennedy, Patrick K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Edwards, Randall L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duffield, Andrew N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-29

    The cleaning, canning, rolling and final trimming of Low Enriched Uranium-10 wt. pct. Molybdenum (LEU-10Mo) foils for ATR (Advanced Test Reactor) fuel plates to be used in the AFIP-7 (ATR Full Size Plate In Center Flux Trap Position) experiments are summarized. Six Zr-clad foils were produced from two LEU-10Mo castings supplied to Los Alamos National Laboratory (LANL) by Y-12 National Security Complex. Details of cleaning and canning procedures are provided. Hot- and cold-rolling results are presented, including rolling schedules, images of foils in-process, metallography and local compositions of regions of interest, and details of final foil dimensions and process yield. This report was compiled from the slides for the presentation of the same name given by Duncan Hammon on May 12, 2011 at the AFIP-7 Lessons Learned meeting in Salt Lake City, UT, with Los Alamos National Laboratory document number LA-UR 11-02898.

  15. Self-propelled swimming of a flexible plunging foil near a solid wall.

    Science.gov (United States)

    Dai, Longzhen; He, Guowei; Zhang, Xing

    2016-01-01

    Numerical simulations are conducted to investigate the influences of a solid wall on the self-propelled swimming of a flexible plunging foil. It is found that the presence of a solid wall enhances the cruising speed, with the cost of increasing input power. Rigid foil can achieve high percentage increase in cruising speed when swimming near a solid wall, but the propulsive efficiency may be reduced. Foils with some flexibility can enjoy the enhancements in both cruising speed and propulsive efficiency. Another advantage of the flexible foils in near-wall swimming is that smaller averaged lateral forces are produced. The effects of wall confinement on the wake structure and the vortex dynamics are also studied in this paper. The results obtained in this study shed some light on the unsteady wall effect experienced by aquatic animals and also inform the design of bio-mimetic underwater vehicles which are capable of exploiting the wall effect. PMID:27377880

  16. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  17. Structure and corrosion resistance of nickel foils deposited in a vertical gravity field

    International Nuclear Information System (INIS)

    The effects of vertical gravity fields on the structural characteristics of electrodeposited Ni foils were investigated in a centrifuge. Analysis by atomic force microscopy (AFM) shows that the surface roughness of Ni foils reduces from 37.6 nm to 8.1 nm with the increase of gravity coefficient (G) from 1 to 354. Furthermore, the roughness of Ni foils deposited at G = 62 evolves much more slowly than that deposited at G = 1. The study of the textural perfection by X-ray diffractiometry (XRD) reveals that the degree of (2 0 0) preferred orientation parallel to the substrate plane is lowered by the vertical gravity field. Randomly oriented deposits are obtained in the vertical gravity field while deposits with uniaxial texture are obtained in the natural gravity field. Due to these variations in the structure, the Ni foils obtained in the vertical gravity field exhibit improved corrosion resistance.

  18. Gas Gain Measurement Of GEM-Foil In Argon-Carbon Dioxide Mixture

    International Nuclear Information System (INIS)

    Nuclear reaction measurement with radioactive beam at low energy plays an important role in nuclear astrophysics and nuclear structure. The trajectory of particle beams can be obtained by using an active gas target, multiple-sampling and tracking proportional chamber (MSTPC), as a proportional counter. Because of intensity of low energy radioactive beam, in the stellar reaction such as (α, p), (p, α), it is necessary to increase the gain for the counter. In this case, a gas electrons multiplier (GEM) foil will be used, so the proportional counter is called GEM-MSTPC. The efficient gas gain of GEM foils which relates to foil thickness and operating pressure was investigated with two type of the foils, 400 μm and 200 μm, in Argon (70%) + Carbon dioxide (30%) mixture. (author)

  19. Method to Increase Performance of Foil Bearings Through Passive Thermal Management

    Science.gov (United States)

    Bruckner, Robert

    2013-01-01

    This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and

  20. Bonding bare die LEDs on PET foils for lighting applications: thermal design modeling and bonding experiments

    OpenAIRE

    van den Ende, Daan; Kusters, Roel; Cauwe, Maarten; A de Waal; van den Brand, Jeroen

    2012-01-01

    Integration of LEDs on flexible foil substrates is of interest for flexible lighting applications and flexible photonic devices. A matrix of LEDs on a foil combined with a diffuser can be a potential alternative for flexible OLED lighting devices. Preferably, these LEDs are integrated in an unpackaged, bare die form as it reduces cost, footprint and thickness. As a substrate, preferably low cost materials like polyesters (PET) are being used, especially for large area devices. However, the us...

  1. A review of progress and challenges in flapping foil power generation

    Science.gov (United States)

    Young, John; Lai, Joseph C. S.; Platzer, Max F.

    2014-05-01

    Power may be extracted from a flowing fluid in a variety of ways. Turbines using one or more oscillating foils are under increasingly active investigation, as an alternative to rotary wind turbines and river, oceanic and tidal current water turbines, although industrial development is at a very nascent stage. Such flapping foil turbines promise some key potential advantages, including lower foil velocities (and hence lower noise and wildlife impact), and more effective small-scale and shallow water operation. The role of a number of parameters is investigated, including foil kinematics (modes, frequencies, amplitudes and time histories of motion), foil and system geometry (shape, configuration and structural flexibility), and flow physics effects (Reynolds number and turbulence, shear flows and ground effect). Details of the kinematics are shown to have the single largest influence on power output and efficiency (measured as the ratio of power output to that available and accessible in the fluid stream). The highest levels of power and efficiency are associated with very large foil pitch angles (upwards of 70°) and angles of attack (30-40°), such that the flow is massively separated for much of the flapping cycle, in contrast to rotary turbines which rely on attached flow over as much of the rotor disk as possible. This leads to leading edge vortices comparable in size to the foil chord, and the evolution and interaction of these vortices with the foil as it moves play a central role in determining performance. The other parameters also influence the vortex behaviour, but in general to a lesser degree. Numerous gaps in the research literature and outstanding issues are highlighted.

  2. Gas-Dynamic Foil Bearings Application in High-Speed Turbines

    OpenAIRE

    Giemza Bolesław; Nowiński Emil; Domański Marek

    2015-01-01

    Authors present the general characteristics of the gas-dynamic foil bearings in the paper. The short analysis of the application and possibilities of using gas-dynamic bearings in turbo machinery, especially in the aspect of aviation technology were described. Authors also pointed out possible directions of development and gas-dynamic foil bearings application in high-speed turbines, especially working in high temperature.

  3. Analysis of a flapping foil system for energy harvesting at low Reynolds number

    OpenAIRE

    Cho, Hunkee

    2011-01-01

    The new type of power generation system which mimics the flapping motion of insects or fish has been studied in recent years. The biological flapping foil is capable of harvesting energy from incoming wind or current. A non- sinusoidal trajectory profile and linear shear inlet profile are proposed for the flapping foil in the energy harvesters instead of conventional sinusoidal plunging and pitching motions to get better energy harvesting performance. In this study we create a numerical model...

  4. Control of Oscillating Foil for Propulsion of Biorobotic Autonomous Underwater Vehicle (AUV)

    OpenAIRE

    Singh, S. N.; Mani, S.

    2005-01-01

    The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic) autonomous underwater vehicles (BAUVs). Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control...

  5. Study of the strata formation during the explosion of foils in vacuum

    Science.gov (United States)

    Zhigalin, A. S.; Rousskikh, A. G.; Oreshkin, V. I.; Chaikovsky, S. A.; Ratakhin, N. A.; Khishchenko, K. V.; Baksht, R. B.

    2015-11-01

    The formation of the strata during fast explosion of metal foils at current densities of 0.1 GA/cm2 has been studied experimentally. To observe the strata, the soft x-ray radiation generated by an X-pinch was used. The study of the process of stratification during the foil explosion was carried out with a setup consisting of three generators. One of the generators (WEG-2), was operated to initiate the explosion of the foils, while the others (XPG radiographs) were used for diagnostics. The generator WEG-2 has the capacitance of 250 nF, the charge voltage of 20 kV, and the current rate of 16 A/ns. The radiographs XPG have the capacitance of 1 μF, the charge voltage of 43 kV, the current of 300 kA, and the current rise time of 180 ns. X-pinch produced by four Mo wires was a load for the radiographs. The delay between the operation of the WEG-2 and XPG generators was set using a DPG trigger pulse generator. We performed the experiments with the Al and Cu foils. The length of foil was 2 cm, the foil width was 1 mm, and the foil thickness was 6 μm. It has been revealed that strata were formed early in the explosion, i.e. at the stage when the metal melted. Analysis of the experimental results suggests that the most probable reason for the stratification is the thermal instability developing because of the increase in resistivity of the foil metal with temperature.

  6. Foil fatigue sensor for «Structural Health Monitoring» systems

    Directory of Open Access Journals (Sweden)

    М. В. Карускевич

    2013-07-01

    Full Text Available The concept of foil fatigue sensor is presented. The deformation relief of the sensor surface is considered as an indicator of the fatigue damage. The quantitative parameter of the deformation relief intensity determined by the computer aided method is applied.   The possibility to monitor fatigue damage of metal structures by the application of foil fatigue sensor is proved. The method  to control sensitivity of the sensors is shown

  7. Foil fatigue sensor for «Structural Health Monitoring» systems

    OpenAIRE

    М.В. Карускевич; О.Ю. Корчук; М. В. Лісовська

    2013-01-01

    The concept of foil fatigue sensor is presented. The deformation relief of the sensor surface is considered as an indicator of the fatigue damage. The quantitative parameter of the deformation relief intensity determined by the computer aided method is applied.   The possibility to monitor fatigue damage of metal structures by the application of foil fatigue sensor is proved. The method  to control sensitivity of the sensors is shown

  8. Simultaneous Elastic Recoil Detection Analysis of H and Other Elements in Foils

    Institute of Scientific and Technical Information of China (English)

    LU Xiu-Qin; ZHOU Ping; GUO Ji-Yu; ZHANG Xin; ZHAO Kui; NI Mei-Nan; SUI Li; MEI Jun-Ping; LIU Jian-Cheng

    2005-01-01

    @@ Hydrogen and other elements in SixNyHz foils have been simultaneously measured by using a single E(gas)- E(PSD) telescope and heavy 127I ion beam in elastic recoil detection analysis (ERDA). Hydrogen is measuredin the non-coincidence spectrum of E(PSD), and other elements from the △E - E coincidence spectrum. Thecomposition and depth profiling of the foils are obtained from the simulated spectra.

  9. Modeling the transmission of beta rays through thin foils in planar geometry.

    Science.gov (United States)

    Stanga, D; De Felice, P; Keightley, J; Capogni, M; Ionescu, E

    2016-01-01

    This paper is concerned with the modeling of the transmission of beta rays through thin foils in planar geometry based on the plane source concept, using Monte Carlo simulation of electron transport and least squares fitting. Applications of modeling results for calculating the efficiency of large-area beta sources, transmission coefficient of beta rays through thin foils and the beta detection efficiency of large-area detectors used in surface contamination measurements are also presented. PMID:26524407

  10. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Thin diamond-like carbon (DLC) stripper foils ∼5μg/cm2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ∼4μg/cm2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine–saccharose as releasing agent, which were previously covered with evaporated carbon layers ∼1μg/cm2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4 for the 197Au− (∼9MeV, ∼1μA) and 63Cu− (∼9MeV, ∼1μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (ID/IG) measured by the Raman spectroscopy is 0.78

  11. Conceptual Design and Feasibility of Foil Bearings for Rotorcraft Engines: Hot Core Bearings

    Science.gov (United States)

    Howard, Samuel A.

    2007-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include oil-free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit.. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This overview presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. In addition, system level foil bearing testing capabilities at NASA Glenn Research Center are presented along with analysis work being conducted under NRA Cooperative Agreements.

  12. Dynamics of laser mass-limited foil interaction at ultra-high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T. P., E-mail: tongpu@nudt.edu.cn [College of Science, National University of Defense Technology, Changsha 410073 (China); State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073 (China); Sheng, Z. M. [Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, Y.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China); Pukhov, A. [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf (Germany)

    2014-05-15

    By using three-dimensional particle-in-cell simulations with synchrotron radiation damping incorporated, dynamics of ultra-intense laser driven mass-limited foils is presented. When a circularly polarized laser pulse with a peak intensity of ∼10{sup 22} W/cm{sup 2} irradiates a mass-limited nanofoil, electrons are pushed forward collectively and a strong charge separation field forms which acts as a “light sail” and accelerates the protons. When the laser wing parts overtake the foil from the foil boundaries, electrons do a betatron-like oscillation around the center proton bunch. Under some conditions, betatron-like resonance takes place, resulting in energetic circulating electrons. Finally, bright femto-second x rays are emitted in a small cone. It is also shown that the radiation damping does not alter the foil dynamics radically at considered laser intensities. The effects of the transverse foil size and laser polarization on x-ray emission and foil dynamics are also discussed.

  13. Stripper foil failure modes and cures at the Oak Ridge Spallation Neutron Source

    Science.gov (United States)

    Plum, M. A.; Cousineau, S. M.; Galambos, J.; Kim, S. H.; Ladd, P.; Luck, C. F.; Peters, C. C.; Polsky, Y.; Shaw, R. W.; Macek, R. J.; Raparia, D.

    2011-03-01

    The Oak Ridge Spallation Neutron Source comprises a 1 GeV, 1.5 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H0 excited states created during the H- charge-exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H- beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.

  14. PENGEMBANGAN FOIL NACA SERI 2412 SEBAGAI SISTEM PENYELAMAN MODEL KAPAL SELAM

    Directory of Open Access Journals (Sweden)

    Ali Munazid

    2015-06-01

    Full Text Available Bentuk  foil menghasilkan gaya angkat (lift force ketika foil dilewati oleh aliran fluida  karena adanya pengaruh interaksi antara aliran fluida dengan permukaan foil yang mengakibatkan tekanan permukaan atas lebih kecil dari permukaan bawah. Bagaimana mengaplikasikan teori foil pada hydroplane kapal selam sebagai  system penyelaman, dengan membalik foil maka lift force tersebut menjadi gaya ke bawah, dengan demikian memungkinkan kapal selam dapat menyelam, melayang dan bermanouver di bawah air, seperti halnya gerak pesawat terbang yang terbang dan melayang dengan menggunakan sayap. Dilakukan penelitian dan pengamatan terhadap kemampuan penyelaman (diving plan dari foil NACA seri 2412 pada model kapal selam, dengan mencari nilai Cl (coefisien lift di Laboratorium, serta mendesain bentuk badan kapal selam dan analisa gaya-gaya yang bekerja pada model kapal selam, jumlah gaya-gaya yang bekerja keatas lebih rendah dari gaya-gaya ke bawah maka kapal selam mampu menyelam. Penerapan Hydroplane sebagai diving plane dapat diterapkan, kemampuan penyelaman dipengaruhi oleh sudut flip  Hydroplane dan kecepatan model, semakin besar kecepatan dan sudut flip maka semakin besar kedalaman penyelaman yang dapat dilakukan.

  15. Deformation Behaviors of HIPped Foil Compared with Those of Sheet Titanium Alloys

    Science.gov (United States)

    Castelli, Michael G.

    1999-01-01

    Micromechanics-based modeling of composite material behaviors requires an accurate assessment of the constituent properties and behaviors. For the specific case of continuous-fiber-reinforced metal matrix composites (MMC's) manufactured from a foil/fiber/foil process, much emphasis has been placed on characterizing foil-based matrix materials that have been fabricated in the same way as the composite. Such materials are believed to yield mechanical properties and behaviors that are representative of the matrix constituent within the composite (in situ matrix). Therefore, these materials are desired for micromechanics modeling input. Unfortunately, such foils are extremely expensive to fabricate and procure because of the labor-intensive rolling process needed to produce them. As a potential solution to this problem that would maintain appropriately representative in situ properties, the matrix constituent could be characterized with sheet-based materials, which are considerably less expensive to manufacture than foils, are more readily procured, and result in fewer plies to obtain a desired panel thickness. The critical question is, however, does the consolidated sheet material exhibit the same properties and behaviors as do the consolidated foils? Researchers at NASA Lewis Research Center's Life Prediction Branch completed a detailed experimental investigation to answer this question for three titanium alloys commonly used in metal matrix composite form.

  16. Flapping Dynamics of an Inverted Flexible Foil in a Uniform Axial Flow

    Science.gov (United States)

    Gurugubelli Venkata, Pardha Saradhi; Jaiman, Rajeev K.

    2014-11-01

    This work presents a numerical study on self-induced flapping dynamics of an inverted flexible foil in uniform flow. The inverted foil considered in this study is clamped at the trailing edge and the leading edge is allowed to oscillate. A high-order coupled FSI solver based on CFEI formulation has been used to present the flapping response results for a wide range of nondimensional bending rigidity using a fixed Reynolds number of 1000 and a mass-ratio of 0.1. As a function of bending rigidity four flapping regimes have been discovered: fixed point, inverted limit-cycle oscillation, deflected flapping, and flipped flapping. The inverted foil configuration undergoes flapping motion more readily and experiences very large amplitude oscillations than the conventional foil. A wide variety of vortex wakes with a maximum of 14 vortices per oscillation cycle have been observed. The inverted limit-cycle flapping generate novel 4P +6S (14 vortices) and 2P +6S (10 vortices) wakes. On the other hand, the flipped flapping regime is characterized by a von Kármán wake. We also observe that inverted foil can extract 1000 times more energy from the surrounding fluid compared to the conventional foil.

  17. Characteristics of flow over traveling wavy foils in a side-by-side arrangement

    Science.gov (United States)

    Dong, Gen-Jin; Lu, Xi-Yun

    2007-05-01

    Flow over traveling wavy foils in a side-by-side arrangement has been numerically investigated using the space-time finite element method to solve the two-dimensional incompressible Navier-Stokes equations. The midline of each foil undergoes lateral motion in the form of a streamwise traveling wave, which is similar to the backbone undulation of swimming fish. Based on the phase difference between the adjacent undulating foils, two typical cases, i.e., in-phase and anti-phase traveling wavy movements, are considered in the present study. The effects of lateral interference among the foils on the forces, power consumption, propeller efficiency, and flow structures are analyzed. It is revealed that the lateral interference is of benefit to saving the swimming power in the in-phase case and enhancing the forces in the anti-phase case. Some typical vortex structures, e.g., vortex-pair row, single vortex row, and in-phase and anti-phase synchronized vortex-street, are observed in the wake of the traveling wavy foils. The results obtained in this study provide physical insight into the understanding of hydrodynamics and flow structures for flow over the traveling wavy foils and swimming mechanisms relevant to fish schooling.

  18. The development of uranium foil farication technology utilizing twin roll method for Mo-99 irradiation target

    International Nuclear Information System (INIS)

    MDS Nordion in Canada, occupying about 75% of global supply of Mo-99 isotope, has provided the irradiation target of Mo-99 using the rod-type UAlx alloys with HEU(High Enrichment Uranium). ANL (Argonne National Laboratory) through co-operation with BATAN in Indonesia, leading RERTR (Reduced Enrichment for Research and Test Reactors) program substantially for nuclear non-proliferation, has designed and fabricated the annular cylinder of uranium targets, and successfully performed irradiation test, in order to develop the fabrication technology of fission Mo-99 using LEU(Low Enrichment Uranium). As the uranium foils could be fabricated in laboratory scale, not in commercialized scale by hot rolling method due to significant problems in foil quality, productivity and economic efficiency, attention has shifted to the development of new technology. Under these circumstances, the invention of uranium foil fabrication technology utilizing twin-roll casting method in KAERI is found to be able to fabricate LEU or HEU foils. Uranium and uranium alloy foils are fabricated through twin-roll casting of a uranium melt without a hot-rolling process and heat-treatment process. An improvement in productivity and process economics due to process simplification and better quality from the absence of any residual stress on the foil are expected through this research project

  19. Spin-polarized radioactive isotope beam produced by tilted-foil technique

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Yoshikazu, E-mail: yoshikazu.hirayama@kek.jp [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Mihara, Mototsugu [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Watanabe, Yutaka; Jeong, Sun-Chan; Miyatake, Hiroari [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Momota, Sadao [Kochi University of Technology, Kochi 782-8502 (Japan); Hashimoto, Takashi; Imai, Nobuaki [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Matsuta, Kensaku [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Ishiyama, Hironobu [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Ichikawa, Shin-ichi; Ishii, Tetsuro [Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan); Izumikawa, Takuji [Radioisotope Center, Niigata University, Niigata 951-8510 (Japan); Katayama, Ichiro; Kawakami, Hirokane [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Kawamura, Hirokazu [Department of Physics, Rikkyo University, Tokyo 171-8501 (Japan); Nishinaka, Ichiro; Nishio, Katsuhisa; Makii, Hiroyuki; Mitsuoka, Shin-ichi [Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan); and others

    2013-12-15

    Highlights: • Detail study for tilted foil technique. • New equation for estimating nuclear polarization dependence on the beam energy. • Production of nuclear polarization for heaviest nucleus {sup 123}In in ground state. -- Abstract: The tilted-foil method for producing spin-polarized radioactive isotope beams has been studied using the re-accelerated radioactive {sup 8}Li and {sup 123}In beams produced at Tokai Radioactive Ion Accelerator Complex (TRIAC) facility. We successfully produced polarization in a {sup 8}Li beam of 7.3(5)% using thin polystyrene foils (4.2 μg/cm{sup 2}). The systematic study of the nuclear polarization as a function of the number of foils and beam energy has been performed, confirming the features of the tilted-foil technique experimentally. After the study, a spin-polarized radioactive {sup 123}In beam, which is the heaviest ever polarized in its ground state by this method, has been successfully generated by the tilted-foil method, for the nuclear spectroscopy around the doubly magic nucleus {sup 132}Sn.

  20. Development of a twin-flapping-foils unit to generate hydroelectric power from a water current

    Science.gov (United States)

    Abiru, H.; Yoshitake, A.; Nishi, M.

    2014-03-01

    Most of the conventional hydraulic turbines have been used for those sites having the static head larger than around 1 m. To extensively utilize not only large hydro-power but small one, which is one of renewable energy resources, development of an energy conversion system being operable under an extremely low head stream is crucial. A twin-flapping-foils unit which works based on the lift acting on the flapping foils in a stream is proposed. The foils oscillate in the transverse direction of the flow due to the lift. The pitching motion of the foils is caused by their own transverse movement through the mechanism consisting of crankshafts and con-rods. In the unit, each foil is supported vertically with a shaft in a manner of a cantilever so that no other parts need to be submerged in a water current. An experimental model with symmetric foils of 100 mm chord and 300 mm span was designed to generate average power output of 10 W at a flow velocity of 1 m/s. Through the tests carried out in the circulating water channel, the performance of the unit was verified to satisfy the design specifications. Further, the demonstration tests by using an irrigation stream performed for over a half year clarified the performance equivalent to that in the in-door water channel and the durability to a certain extent, and showed the applicability to the practical use of lighting a LED street lamp during night even at this scale model.

  1. Development of a twin-flapping-foils unit to generate hydroelectric power from a water current

    International Nuclear Information System (INIS)

    Most of the conventional hydraulic turbines have been used for those sites having the static head larger than around 1 m. To extensively utilize not only large hydro-power but small one, which is one of renewable energy resources, development of an energy conversion system being operable under an extremely low head stream is crucial. A twin-flapping-foils unit which works based on the lift acting on the flapping foils in a stream is proposed. The foils oscillate in the transverse direction of the flow due to the lift. The pitching motion of the foils is caused by their own transverse movement through the mechanism consisting of crankshafts and con-rods. In the unit, each foil is supported vertically with a shaft in a manner of a cantilever so that no other parts need to be submerged in a water current. An experimental model with symmetric foils of 100 mm chord and 300 mm span was designed to generate average power output of 10 W at a flow velocity of 1 m/s. Through the tests carried out in the circulating water channel, the performance of the unit was verified to satisfy the design specifications. Further, the demonstration tests by using an irrigation stream performed for over a half year clarified the performance equivalent to that in the in-door water channel and the durability to a certain extent, and showed the applicability to the practical use of lighting a LED street lamp during night even at this scale model

  2. Recrystallization in Commercially Pure Aluminum

    DEFF Research Database (Denmark)

    Bay, Bent; Hansen, Niels

    1984-01-01

    Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree of...... are discussed and compared with results from an earlier study1 covering the recrystallization behavior of commercial aluminum of the same purity deformed at higher degrees of deformation (50 to 90 pct reduction in thickness by cold-rolling)....

  3. Baise to Build Ecological Aluminum Industry Base

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>The government of Baise announced the construction of an ecological aluminum industry base over the next few years,pledging to turn the city into a major aluminum industry base in China and the rest of Asia.

  4. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义

    2004-01-01

    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  5. Conference Interpreting Explained

    Institute of Scientific and Technical Information of China (English)

    盖孟姣

    2015-01-01

    This book written by Roderick Jones is easy to read for me.It gives me a bit confidence through reading a book and this time I know a bit about how to read a book quickly.After this,I will read more books about interpreting and translating for my further study.From my perspective,every part of this book consists of three parts,that is,the theory part,the examples part and the concluding part.Through reading this book,I know something about interpreting such as simultaneous interpreting techniques and some actual examples.Anyhow,I still need a lot of practice to improve my English capability.What I have written below is the main content of the fourth part in this book,and the feelings of my reading the book.

  6. Copenhagen and Transactional Interpretations

    Science.gov (United States)

    Görnitz, Th.; von Weizsäcker, C. F.

    1988-02-01

    The Copenhagen interpretation (CI) never received an authoritative codification. It was a “minimum semantics” of quantum mechanics. We assume that it expresses a theory identical with the Transactional Interpretation (TI) when the observer is included into the system described by the theory. A theory consists of a mathematical structure with a physical semantics. Now, CI rests on an implicit description of the modes of time which is also presupposed by the Second Law of Thermodynamics. Essential is the futuric meaning of probability as a prediction of a relative frequency. CI can be shown to be fully consistent on this basis. The TI and CI can be translated into each other by a simple “dictionary.” The TI describes all events as CI describes past events; CI calls future events possibilities, which TI treats like facts. All predictions of both interpretations agree; we suppose the difference to be linguistic.

  7. Translation, Interpreting and Lexicography

    DEFF Research Database (Denmark)

    Tarp, Sven; Dam, Helle Vrønning

    2017-01-01

    in the sense that their practice fields are typically ‘about something else’. Translators may, for example, be called upon to translate medical texts, and interpreters may be assigned to work on medical speeches. Similarly, practical lexicography may produce medical dictionaries. In this perspective......Translation, interpreting and lexicography represent three separate areas of human activity, each of them with its own theories, models and methods and, hence, with its own disciplinary underpinnings. At the same time, all three disciplines are characterized by a marked interdisciplinary dimension......, the three disciplines frequently come into touch with each other. This chapter discusses and explores some of the basic aspects of this interrelationship, focusing on the (potential) contribution of lexicography to translation and interpreting and on explaining the basic concepts and methods of the...

  8. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... in the Federal Register on November 17, 2009 (74 FR 59254). At the request of the State agency and a... Employment and Training Administration Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood... Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division, including on- site...

  9. Conjunctive interpretations of disjunctions

    Directory of Open Access Journals (Sweden)

    Robert van Rooij

    2010-09-01

    Full Text Available In this extended commentary I discuss the problem of how to account for "conjunctive" readings of some sentences with embedded disjunctions for globalist analyses of conversational implicatures. Following Franke (2010, 2009, I suggest that earlier proposals failed, because they did not take into account the interactive reasoning of what else the speaker could have said, and how else the hearer could have interpreted the (alternative sentence(s. I show how Franke's idea relates to more traditional pragmatic interpretation strategies. doi:10.3765/sp.3.11 BibTeX info

  10. Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH

    Directory of Open Access Journals (Sweden)

    C. B. Porciúncula

    2012-06-01

    Full Text Available The objective of this work is to investigate the production of hydrogen as an energy source by means of the reaction of aluminum with water. This reaction only occurs in the presence of NaOH and KOH, which behave as catalysts. The main advantages of using aluminum for indirect energy storage are: recyclability, non-toxicity and easiness to shape. Alkali concentrations varying from 1 to 3 mol.L-1 were applied to different metallic samples, either foil (0.02 mm thick or plates (0.5 and 1 mm thick, and reaction temperatures between 295 and 345 K were tested. The results show that the reaction is strongly influenced by temperature, alkali concentration and metal shape. NaOH commonly promotes faster reactions and higher real yields than KOH.

  11. Electrochemical Behavior of Aluminum in Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hui; ZHU; Li-yang; LIN; Ru-shan; TAN; Hong-bin; HE; Hui

    2013-01-01

    Aluminum is one of cladding materials for nuclear fuel,it is important to investigate the electrolytic dissolution of aluminum in nitric acid.The electrochemical impedance spectroscopy,polarization curve and cyclic voltammetry cure of anodic aluminum electrode in nitric acid under various conditions were collected(Fig.1).It turns out,under steady state,the thickness of the passivated film of aluminum

  12. Mineral resource of the month: aluminum

    Science.gov (United States)

    Bray, E. Lee

    2012-01-01

    The article offers information on aluminum, a mineral resource which is described as the third-most abundant element in Earth's crust. According to the article, aluminum is the second-most used metal. Hans Christian Oersted, a Danish chemist, was the first to isolate aluminum in the laboratory. Aluminum is described as lightweight, corrosion-resistant and an excellent conductor of electricity and heat.

  13. Evaluation of Aluminum in Iranian Consumed Tea

    OpenAIRE

    Alireza Asgari; Mahdi Ahmadi Moghaddam; Amirhossein Mahvi; Masoud Yonesian

    2008-01-01

    Introduction: Black tea leaf is one of the most important sources of Aluminum in dietary. Therefore this research was conducted to assess the amount of Aluminum in Iranian tea infusion. Methods: To assess Aluminum in Iranian consumed tea, 27 tea samples were analyzed for Al concentration for 10 and 60 min infusion, aluminum concentration was measured with atomic absorption and the results were analyzed by SPSS.13 version. Results: The results showed that minimum and maximum concentration of A...

  14. Micro-forming of Al-Si foil

    Directory of Open Access Journals (Sweden)

    T. Haga

    2010-06-01

    Full Text Available Purpose: of this paper is as below. The investigation of the ability of the cold micro-forming of non-metallic glass was purpose. The grain of the rapidly solidified aluminium alloy became fine. The aluminium alloy foil with fine grain was used, and the investigation of the micro-formability of this alloy was investigated. Moreover, increase of the forming speed was investigated. The increase of the forming speed was purpose of this study, too.Design/methodology/approach: The nozzle pressing melt spinning method was used to attain the rapid solidification of the non-metallic grass. The Al-14mass%Si, which is hyper eutectic but is close to eutectic, was used. The roll contact surface was formed by V-groove. The cold rolling was adopted for forming. The V-groove was machined at the roll surface. The micro-forming was operated at the cold work. Findings: Micro-forming of the crystal aluminium alloy was able by the cold work. The forming speed was 0.04S to form 10 μm height. The forming speed could be drastically increased. Research limitations/implications: The angle of the V-groove, which was used in the present study, was only 60 degrees. The effect of the groove angle on the protrusion-height was not clear. The used material was only the Al-14mass%Si. Relationship between the material and protrusion-height was not clear.Practical implications: The die for the micro-forming of the resin could be made from economy material by the conventional cold rolling process at short time. Therefore, the mass production of the economy die for resin may be obtained.Originality/value: The micro-forming of the rapidly solidified non-metallic glass by cold work was original.

  15. Performance characteristics of HBC stripper foils irradiated by 650 keV H− and high intensity DC ion beams

    International Nuclear Information System (INIS)

    Newly developed Hybrid type Boron mixed Carbon (HBC) stripper foils are extensively used not only for the RCS of J-PARC and PSR of LANL, but also for other low energy, high intensity proton accelerators in medical applications. We had before tested HBC stripper foils with 3.2 MeV Ne+ and DC heavy ion beams. In order to further understand characteristics of HBC stripper foils, we measured the following parameters using the KEK-650 keV H− and light ion Cockcroft Walton DC accelerator: foil lifetime, thickness reduction, uniformity before and after beam irradiation, and foil deformation. Energy deposition in the present experiment was adjusted to a similar level to that of the HBC foil used in the RCS of J-PARC’. In addition, to understand the reason why the HBC stripper foils have high durability against high intensity beam irradiation, we investigated various physical properties, and compared them between the HBC foils and other tested carbon stripper foils. The sizes of the carbon particles in the HBC foil were found to play a vital role in the lifetime

  16. Development of long-lived cluster and hybrid carbon stripper foils for high energy, high intensity ion beams

    International Nuclear Information System (INIS)

    We have developed thin and thick long-lived carbon stripper foils for high energy, high intensity ion beams. The foil thicknesses are about 10 μg/cm2 (cluster foil) and 200 μg/cm2 (hybrid foil) for thin and thick, respectively. The thin foil is made by a controlled DC-arc discharge (CDAD) method, by using the size effect of the carbon particles. The size effect was the difference between the carbon particle sizes emitted from the cathode and the anode electrodes in the DC arc discharge, in which the particle size from the cathode is large (0.3 μmφ) and the other is small (0.003 μmφ). The thin foils composed of large particle size are not mechanically strong, but long-lived under low energy ion bombardment with a 3.2 MeV, 2-3 μA Ne+ beam. The mean lifetime is 900 mC/cm2 in average which corresponds to 25 times longer than that of commercially available standard foils. In this method, the key point in producing long-lived foils is to control the amount of carbon particles ablated from the cathode by adjusting temperature at the cathode emission spot. The thick hybrid carbon foils (multi-layer thickness about 200 μg/cm2) have been developed for use in 800 MeV, H+ ion beam at the Proton Storage Ring (PSR) of Los Alamos National Laboratory. The thick foils are prepared by means of the controlled ACDC arc discharge (CADAD) method, and are mechanically strong. The lifetime measurements of thick foils made by various methods were carried out using 800 MeV, 85-100 μA proton beams in the PSR. The foils made by the CADAD method showed very long lifetime, compared to other foils tested. (author)

  17. Guangxi Aluminum Giant Made Investment in Changfeng

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>A aluminum processing and supporting project (450,000 tons) of Hefei Guangyin Aluminum Company kicked off in Xiatang Town of Changfeng County recently. It is a project jointly invested by Guangxi Investment Group and Guangxi Baise Guangyin Aluminum in Xiatang Town of Changfeng County.

  18. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be...

  19. 21 CFR 73.2645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements...

  20. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...