WorldWideScience

Sample records for aluminum alloyed contacts

  1. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cudzinovic, M.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  2. Non-contact sheet forming using lasers applied to a high strength aluminum alloy

    Directory of Open Access Journals (Sweden)

    Rafael Humberto Mota Siqueira

    2016-07-01

    Full Text Available Laser beam forming (LBF is a contactless mechanical process accomplished by the introduction of thermal stresses on the surface of a material using a laser in order to induce plastic deformation. In this work, LBF was performed on 1.6 mm thick sheets of a high strength aluminum alloy, AA6013-T4 class by using a defocused continuous Yb-fiber laser beam of 0.6 mm in diameter on the sheet top surface. The laser power and process speed were varied from 200 W to 2000 W and from 3 to 30 mm/s, respectively. For these experimental conditions, the bending angle of the sheet ranged from 0.1° to 2.5° per run. In the highest bending angle condition, 1000 W and 30 mm/s, the depth of remelted pool was 0.6 mm and the microstructure near the plate bottom surface remained unaltered. For the whole set of experimental conditions, the hardness remained constant at approximately 100 HV, which is similar to the base material. In order to verify the applicability of the method, some previously T-welded sheets were straightened. The method was efficient in correcting the distortion of the sheets with a bending angle up to 5°.

  3. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D2/ = 1.9 x 10-2 exp (--22,400/RT) cc (NTP)atm/sup --1/2/ s-1cm-1. The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  4. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  5. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  6. Microbial corrosion of aluminum alloy.

    Science.gov (United States)

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors. PMID:10592801

  7. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  8. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  9. Materials data handbook: Aluminum alloy 2219

    Science.gov (United States)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  10. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  11. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  12. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  13. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  14. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  15. Composite purification technology and mechanism of recycled aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    房文斌; 耿耀宏; 安阁英; 叶荣茂

    2002-01-01

    Iron-rich inclusions in aluminum alloys can be effectively removed by composite purification of sedimentation and filtration technology.The results show that the purposed method has no negative effects on aluminum alloys and obviously improve their mechanical properties.

  16. [The corrosion resistance of aluminum and aluminum-based alloys studied in artificial model media].

    Science.gov (United States)

    Zhakhangirov, A Zh; Doĭnikov, A I; Aboev, V G; Iankovskaia, T A; Karamnova, V S; Sharipov, S M

    1991-01-01

    Samples of aluminum and its alloys, designed for orthodontic employment, were exposed to 4 media simulating the properties of biologic media. The corrosion resistance of the tested alloys was assessed from the degree of aluminum migration to simulation media solutions, which was measured by the neutron activation technique. Aluminum alloy with magnesium and titanium has shown the best corrosion resistance. PMID:1799002

  17. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 3600C and flow tests (approx. 20 ft/sec) in reactor process water at 1300C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 3600C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 3600C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 1500C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 500C

  18. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    International Nuclear Information System (INIS)

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic

  19. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  20. Galvanic aspects of aluminum sacrificial anode alloys in seawater.

    OpenAIRE

    Cummings, Jon Richard

    2012-01-01

    Galvanic aspects of aluminum sacrificial anode alloys in artificial seawater were investigated. Specifically, two mercury-bearing alloys and one tin-bearing alloy were studied. The polarization behavior of the aluminum sacrificial anode alloys coupled to HY-80 steel is discussed. Current versus time curves were obtained for aluminum/steel galvanic couples immersed in artificial seawater for specific intervals. Scanning elecron microscopy was used to characterize the anode dissolution patt...

  1. Development on research of advanced rare-earth aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    聂祚仁; 金头男; 邹景霞; 付静波; 杨军军; 左铁镛

    2003-01-01

    The active mechanisms of rare earth element erbium ( Er ) in part of aluminum alloys were investigated. Based on the investigation of the effect of the unitary rare earth elements (Er, La, Y, Ce, Nd, Gd, and Sc) and the transition element zirconium on the aluminum alloys, it is concluded that, with Er alloyed, high purity aluminum and Al-Mg alloys are featured with refined grain structure, superior heat stability and even higher hardness or tensile strength with unchanged ductility; but Er is not beneficial to the mechanical property of Al-Cu alloy, so is Sc. It may also be concluded, to most of the aluminum alloys, Er can be an effective alloying element, like Sc; and for the lower price of Er, the cost of modifying aluminum alloys by Er will be reduced.

  2. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  3. Torsional Stability of Aluminum Alloy Seamless Tubing

    Science.gov (United States)

    Moore, R L; Paul, D A

    1939-01-01

    Torsion tests were made on 51ST aluminum-alloy seamless tubes having diameter-to-thickness ratios of from 77 to 139 and length-to-diameter ratios of from 1 to 60. The torsional strengths developed in the tubes which failed elastically (all tubes having lengths greater than 2 to 6 times the diameter) were in most cases within 10 percent of the value indicated by the theories of Donnel, Timoshenko, and Sturm, assuming a condition of simply supported ends.

  4. Deuterium transport and trapping in aluminum alloys

    International Nuclear Information System (INIS)

    A simple model of diffusion and evolution of the density of deuterium in metals is presented. A model of the deuterium evolution in the presence of uniform and nonuniform distributions of traps, as well as perfectly reflecting and partially permeable boundary conditions is discussed. Computers are compared with experimental results describe deuterium distribution after fatigue crack growth of 2219 and 7075 aluminum alloys in a D2O water vapor environment and after ion implantation

  5. Aluminum alloy nanosecond vs femtosecond laser marking

    Indian Academy of Sciences (India)

    S Rusu; A Buzaianu; D G Galusca; L Ionel; D Ursescu

    2013-11-01

    Based on the lack of consistent literature publications that analyse the effects of laser marking for traceability on various materials, the present paper proposes a study of the influence of such radiation processing on an aluminum alloy, a vastly used material base within several industry fields. For the novelty impact, femtolaser marking has been carried out, besides the standard commercial nanosecond engraving. All the marks have been analysed using profilometry, overhead and cross-section SEM microscopy, respectively and EDAX measurements.

  6. Tribological properties of laser cladding TiB2 particles reinforced Ni-base alloy composite coatings on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Long He; Ye-Fa Tan; Xiao-Long Wang; Qi-Feng Jing; Xiang Hong

    2015-01-01

    To improve the wear resistance of aluminum alloy frictional parts,TiB2 particles reinforced Ni-base alloy composite coatings were prepared on aluminum alloy 7005 by laser cladding.The microstructure and tribological properties of the composite coatings were investigated.The results show that the composite coating contains the phases of NiAl,Ni3Al,Al3Ni2,TiB2,TiB,TiC,CrB,and Cr23C6.Its microhardness is HV0.5 855.8,which is 15.4 % higher than that of the Ni-base alloy coating and is 6.7 times as high as that of the aluminum alloy.The friction coefficients of the composite coatings are reduced by 6.8 %-21.6 % and 13.2 %-32.4 % compared with those of the Ni-base alloy coatings and the aluminum alloys,while the wear losses are 27.4 %-43.2 % less than those of the Ni-base alloy coatings and are only 16.5 %-32.7 % of those of the aluminum alloys at different loads.At the light loads ranging from 3 to 6 N,the calculated maximum contact stress is smaller than the elastic limit contact stress.The wear mechanism of the composite coatings is micro-cutting wear,but changes into multi-plastic deformation wear at 9 N due to the higher calculated maximum contact stress than the elastic limit contact stress.As the loads increase to 12 N,the calculated flash temperature rises to 332.1 ℃.The composite coating experiences multi-plastic deformation wear,micro-brittle fracture wear,and oxidative wear.

  7. Thermal coatings for titanium-aluminum alloys

    Science.gov (United States)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  8. The in-situ Ti alloying of aluminum alloys and its application in A356 alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties, The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fine equiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing) is superior to that of the later (tradition), leading to an excellent combination of strength and ductility from the testing alloys and wheels.

  9. Fabrication of superhydrophobic nanostructured surface on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R.; Farzaneh, M. [Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2011-01-15

    A superhydrophobic surface was prepared by consecutive immersion in boiling water and sputtering of polytetrafluoroethylene (PTFE or Teflon registered) on the surface of an aluminum alloy substrate. Immersion in boiling water was used to create a micro-nanostructure on the alloy substrate. Then, the rough surface was coated with RF-sputtered Teflon film. The immersion time in boiling water plays an important role in surface morphology and water repellency of the deposited Teflon coating. Scanning electron microscopy images showed a ''flower-like'' structure in first few minutes of immersion. And as the immersion time lengthened, a ''cornflake'' structure appeared. FTIR analyses of Teflon-like coating deposited on water treated aluminum alloy surfaces showed fluorinated groups, which effectively reduce surface energy. The Teflon-like coating deposited on a rough surface achieved with five-minute immersion in boiling water provided a high static contact angle ({proportional_to}164 ) and low contact angle hysteresis ({proportional_to}4 ). (orig.)

  10. China’s Aluminum Alloy Cable Market has Taken Shape

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Aluminum alloy cable is a mature product and technology that has been used for nearly fifty years in the U.S.Through six years’promotion,it has been widely recognized and accepted in the China market since 2013,which laid the foundation for the development of the aluminum alloy cable market.Aluminum alloy cable is widely applied in the fields of civil construction and industrial and mining enterprises,especially in real estate,steel and metallurgy.

  11. The Technological Improvements of Aluminum Alloy Coloring by Electrolysis

    Institute of Scientific and Technical Information of China (English)

    LI Nai-jun

    2004-01-01

    The technological process of coloring golden-tawny on aluminum alloy by electrolysis was improved in this paper. The optimum composition of electrolyte was found, the conditions of deposition and anodic oxidation by electrolysis were studied. The oxidative membrane on aluminum alloy was satisfying, the colored aluminum alloy by electrolysis is uniformity,bright and beautiful, and the coloring by electrolysis is convenient and no pollution.

  12. Facile formation of superhydrophobic aluminum alloy surface and corrosion-resistant behavior

    Science.gov (United States)

    Feng, Libang; Yan, Zhongna; Qiang, Xiaohu; Liu, Yanhua; Wang, Yanping

    2016-03-01

    Superhydrophobic surface with excellent corrosion resistance was prepared on aluminum alloy via boiling water treatment and surface modification with stearic acid. Results suggested that the micro- and nanoscale hierarchical structure along with the hydrophobic chemical composition surface confers the aluminum alloy surface with good superhydrophobicity, and the water contact angle and the water sliding angle can reach 156.6° and 3°, respectively. The corrosion resistance of the superhydrophobic aluminum alloy was first characterized by potentiodynamic polarization, and then the long-term corrosion resistance was investigated by immersing the sample in NaCl solution for 90 days. The surface wettability, morphology, and composition before and after immersion were examined, and results showed that the superhydrophobic aluminum alloy surface possessed good corrosion resistance under the experimental conditions, which is favorable for its practical application as an engineering material in seawater corrosion conditions. Finally, the mechanism of the superhydrophobicity and excellent corrosion resistance is deduced.

  13. Research progress of aluminum alloy automotive sheet and application technology

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; You Jianghai; Lu Hongzhou; Wang Zhiwen

    2012-01-01

    Pretrcatment technology is deeply discussed to explain its importance in guaranteeing properties and form- ability of aluminum alloy automotive sheet. Some typical applications of aluminum alloy automotive sheet to automotive industry are listed. Based on the author's knowledge and recognition and research progress presently, the important re- search contents about aluminum alloy automotive sheet are emphasized. Reducing cost and price of sheet and going deeply into application research are the main work for expending the application of aluminum alloy automotive sheet in the automobile.

  14. Technique of Aluminum Alloy Composite by Inversion Casting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influence of the temperature of liquid aluminum alloy, the dipping time in liquid alloy and the thickness of base strips on the solidified layer was studied during the process of producing aluminum alloy composite strips used in automobile radiator with inversion casting. It is concluded that there is welding as well as diffusion of alloying elements between the base strip and the coating. Experiments proved that the interface has a good bonding.

  15. Microstructures and properties of aluminum die casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  16. Laser perforation of aluminum alloy sheet

    Science.gov (United States)

    Migliore, Leonard; Nazary, George

    2010-02-01

    Recent advances in the design of gain modules for diode-pumped solid-state lasers have allowed the manufacture of high-powered Q-switched products. The high available pulse energy and good mode quality enable highly efficient harmonic conversion, enabling the generation of several hundred watts of average power at a wavelength of 532nm. Among the applications for which this class of product may be suited is the rapid drilling of small-diameter holes in aluminum sheet. To investigate this application, plates of several aluminum alloys were drilled under a variety of conditions. The drilled plates were sectioned and subjected to analysis by optical metallography. The initial results indicate ways in which the process may be optimized.

  17. Research on Protection Against Contact Corrosion of 7050 Aluminum Alloy in Marine Atmosphere%7050铝合金在海洋大气中的接触腐蚀防护研究

    Institute of Scientific and Technical Information of China (English)

    王晴晴; 上官晓峰

    2013-01-01

    Outdoor atmospheric exposure tests of 7050 aluminum alloy were carried out in Hainan for 1 year. Unilateral tolerance factor method, probability and statistics T test, morphology observing, EDX,etc. were used to investigate the corrosion features and protective measures of 7050 aluminum alloy with different surface condition and different connective condition. The results show that the main corrosion of anodized 7050 aluminum alloy is the pitting initiation, especially concentrating in the joint between the 7050 aluminum alloy and TCI8 titanium alloy. From T test results, marine atmospheric corrosion plays an obvious role on fatigue life of 7050 aluminum alloy, whether samples painted and jointed or not. To some extent,painting and connection with glue can decrease the influence of atmospheric corrosion and galvanic corrosion on 7050 aluminum alloy.%通过在海南开展的7050铝合金为期1年的户外大气暴露试验,并利用单侧容限因数法、概率统计T检验、形貌观察和EDX等手段研究了不同表面状态、连接状态的7050铝合金在海洋大气环境中的腐蚀特征和防护措施.研究表明:表面阳极化处理的7050铝合金的腐蚀是以点蚀萌生为主,特别是在与TC18钛合金连接处腐蚀比较集中;从T检验的结果得知,无论7050铝合金涂漆与否、装配与否,海洋大气腐蚀对疲劳寿命都有显著影响;涂漆和胶结装配可在一定程度上降低大气腐蚀和电偶腐蚀对7050铝合金的影响.

  18. Modeling of Alternative Compositions of Recycled Wrought Aluminum Alloys

    Science.gov (United States)

    Kevorkijan, Varužan

    2013-08-01

    Nowadays, a significant part of postconsumed wrought aluminum scrap is still used for the production of comparatively cheaper cast alloys, in that way losing an important part of the potential added value. The share of postconsumed scrap in wrought aluminum alloys could be increased either by sorting to fractions with the required chemical composition and/or by broadening the standard compositional tolerance limits of alloying elements. The first solution requires hand or automatic sorting of postconsumed scrap as alloys or groups of alloys to the degree of separation sufficient to enable the blending of standard compositions of wrought alloys; the second solution is much more radical, predicting changes in the existing standards for wrought aluminum alloys toward nonstandard alloys but yet having properties acceptable for customers. In this case, the degree of separation of incoming postconsumed scrap required is much less demanding. The model presented in this work enables the design of optimal (standard and nonstandard recycling-friendly) compositions and properties of wrought aluminum alloys with significantly increased amounts of postconsumed scrap. The following two routes were modeled in detail: (I) the blending of standard and nonstandard compositions of wrought aluminum alloys starting from postconsumed aluminum scrap sorted to various degrees simulated by the model and (II) changing the initial standard composition of wrought aluminum alloys to nonstandard "recycling-friendly" ones, with broader concentration tolerance limits of alloying elements and without influencing the selected alloy properties, specified in advance. The applied algorithms were found to be very useful in the industrial design of both procedures: (I) the computation of the required chemical composition of the scrap streams obtained by sorting (or, in other words, the postconsumed scrap sorting level), necessary for achieving the standard wrought alloy composition and (II) the

  19. Precipitate-Accommodated Plasma Nitriding for Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Patama Visittipitukul; Tatsuhiko Aizawa; Hideyuki Kuwahara

    2004-01-01

    Reliable surface treatment has been explored to improve the strength and wear resistance of aluminum alloy parts in automotives. Long duration time as well as long pre-sputtering time are required for plasma nitriding of aluminum or its alloys only with the thickness of a few micrometers. New plasma inner nitriding is proposed to realize the fast-rate nitriding of aluminum alloys. Al-6Cu alloy is employed as a targeting material in order to demonstrate the effectiveness of this plasma nitriding. Mechanism of fast-rate nitriding process is discussed with consideration of the role of Al2Cu precipitates.

  20. The Elastic Constants for Wrought Aluminum Alloys

    Science.gov (United States)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  1. Processing of Aluminum Alloys Containing Displacement Reaction Products

    OpenAIRE

    Stawovy, Michael Thomas

    1998-01-01

    Aluminum and metal-oxide powders were mixed using mechanical alloying. Exothermic displacement reactions could be initiated in the powders either by mechanical alloying alone or by heat treating the mechanically alloyed powders. Exponential relationships developed between the initiation time of the reaction and the mechanical alloying charge ratio. The exponential relationships were the result of changes in the intensity and quantity of collisions occurring during mechanical alloying. Di...

  2. The Role of Particles in Fatigue Crack Propagation of Aluminum Matrix Composites and Casting Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Zhenzhong CHEN; Ping HE; Liqing CHEN

    2007-01-01

    Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high AK region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.

  3. Alkaline oxide conversion coatings for aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  4. Wear of aluminum and hypoeutectic aluminum-silicon alloys in boundary-lubricated pin-on disk sliding

    Science.gov (United States)

    Ferrante, J.; Brainard, W. A.

    1979-01-01

    The friction and wear of pure aluminum and a number of hypoeutectic aluminum-silicon alloys (with 3 to 12 wt %Si) were studied with a pin-on-disk apparatus. The contacts were lubricated with mineral oil and sliding was in the boundary-lubrication regime at 2.6 cm/sec. Surfaces were analyzed with photomicrographs, scanning electron microscopy, X-ray dispersive analysis, and diamond pyramid hardness measurements. There were two wear regimes for the alloys - high and low - whereas pure aluminum exhibited a high wear rate throughout the test period. Wear rate decreased and the transition stress from high to low wear increased with increasing hardness. There was no correlation between friction coefficient and hardness. A least squares curve fit indicated a wear-rate dependence greater than the inverse first power of hardness. The lower wear rates of the alloys may be due to the composites of silicon platelets in aluminum resulting in increased hardness and thus impairing the shear of the aluminum.

  5. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  6. Measurement of Thermodynamic Properties of Titanium Aluminum Alloys

    Science.gov (United States)

    Mehrotra, Gopal

    1995-01-01

    This final report is a summary of the work done by Professor Mehrotra at NASA Lewis Research Center. He has worked extensively on the measurement of thermodynamic properties of titanium aluminum alloys over the past six years.

  7. Paint-Bonding Improvement for 2219 Aluminum Alloy

    Science.gov (United States)

    Daech, Alfred F.; Cibula, Audrey Y.

    1987-01-01

    Bonding of adhesives and primers to 2219 aluminum alloy improved by delaying rinse step in surface-treatment process. Delaying rinse allows formation of rougher surface for stronger bonding and greater oxide buildup.

  8. The development of recycle-friendly automotive aluminum alloys

    Science.gov (United States)

    Das, Subodh K.; Green, J. A. S.; Kaufman, J. Gilbert

    2007-11-01

    The continuing growth of aluminum alloy usage in transportation applications, notably passenger automobiles and minivans, and the demonstrated economic benefits of recycling aluminum-rich vehicles increase the need to seriously consider the desirability of designing recycling-friendly alloys. This article focuses on that aspect of the recycling process for passenger vehicles. The goals are to illustrate the opportunities afforded by identifying and taking full advantage of potential metal streams in guiding the development of new alloys that use those streams. In speculating on several possible aluminum recovery practices and systems that might be used in recycling passenger vehicles, likely compositions are identified and preliminary assessments of their usefulness for direct recycling are made. Specific compositions for possible new recycle-friendly alloys are suggested. In addition, recommendations on how the aluminum enterprise, including industry, academia, and government, can work together to achieve the aggressive but important goals described here are discussed.

  9. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  10. Challenges for research and development of new aluminum alloys

    Directory of Open Access Journals (Sweden)

    D. Vojtĕch

    2010-07-01

    Full Text Available Modern trends in research and development of new aluminum alloys are characterized in the present work. Although conventional wrought and casting Al-based alloys show good specific strength, as compared to steels or Ti-based alloys, there is still a potential for significant improvement of their performance. It consists in application of new alloying elements, mainly transition metals, and uncommon processing routes, for example powder metallurgy. By this way, qualitatively new materials with ultra high strength and excellent thermal stability can be developed. However, there are many questions to be answered before new alloys can be competitive to conventional Al-based materials.

  11. CORROSION RESISTANCE OF ALUMINUM CANS IN CONTACT WITH BEER

    Directory of Open Access Journals (Sweden)

    Luiza Esteves

    2015-07-01

    Full Text Available Aluminum cans with an organic coating are used in Brazil as packaging for carbonated beverages (soft drinks, beer, which act as electrolyte solutions. These electrolytes, in contact with the inner metal can, initiate a corrosion process of aluminum. The presence of metallic ions can change the flavor of the beverage, compromising the product quality. This work aims to evaluate the corrosion resistance of aluminum in beer environment using the technique of Electrochemical Impedance Spectroscopy (EIS. The Scanning Electron Microscopy (SEM and the Energy Dispersive Spectroscopy (EDS were used to evaluate the metal surface. Two batches with different coating thickness were analyzed for the same date of manufacture. The electrolyte resistance and the aluminum charge transfer resistance in beer varied depending on the batch analyzed.

  12. Particulate and gaseous emissions when welding aluminum alloys.

    Science.gov (United States)

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  13. China’s Aluminum Alloy Die Castings Industry has Promising Prospects

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Engine aluminum alloy engine block die casting experienced rapid development in recent years. Domestic enterprises introduced large die casting machine automatic production lines, and developed large aluminum alloy die cast-

  14. Comments on process of duplex coatings on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Samir H.A.; QIAN Han-cheng(钱翰城); XIA Bo-cai(夏伯才); WU Shi-ming(吴仕明)

    2004-01-01

    Despite the great achievements made in improvement of wear resistance properties of aluminum alloys,their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on aluminum alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.

  15. Microstructural evolution of aluminum alloy 3003 during annealing

    Institute of Scientific and Technical Information of China (English)

    WU Wen-xiang; ZHANG Xin-ming; SUN De-qin; HU Guo-qiang; LIU Guo-jin

    2006-01-01

    The microstructural evolution of cold-rolled aluminum alloy 3003 during annealing was investigated by means of micro-hardness measurement, electrical resistivity measurement, optical microscopy and transmission electron microscopy. The interaction of recrystallization and precipitation of aluminum alloy 3003 was also discussed. The results show that the recrystallized grain size of cold-rolled aluminum alloy 3003 is strongly affected by precipitation during annealing. When precipitation occurs prior to recrystallization at low temperature(300 ℃), the grain structure becomes coarse, and the precipitation process is affected by the presence of lattice defects, i.e. high cold reduction results in a large number of precipitates. When annealing at 500 ℃, however, for the recrystallization is prior to precipitation, the precipitation is independent of cold deformation reduction and a fine, equiaxed grain structure is obtained.

  16. Experimental study on activating welding for aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Huang Yong; Fan Ding

    2005-01-01

    TIG welding and EB welding for aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneously. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.

  17. Low activation R-tokamak with aluminum alloy

    International Nuclear Information System (INIS)

    An aluminum alloy system is considered as an alternative of the first phase design of the R-tokamak. The 1-D calculation showed that the radiation level outside the vacuum vessel could be reduced by a factor of 30 about half a month after a D-T shot, when the aluminum alloy system is adopted instead of a stainless steel system. The aluminum system has weak mechanical strength, is highly conductive, and shows overaging effect at a certain low temperature. Accordingly, it is necessary to overcome these points. The highly conductive aluminum case leads to considerable increase in power consumption. Various problems on the toroidal coils, the vacuum system, and the limiter were studied. The optimization of the device parameters was investigated. (Kato, T.)

  18. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Luo Yuting; Sun Linyu [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: Black-Right-Pointing-Pointer Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. Black-Right-Pointing-Pointer Superhydrophobic surfaces with a high water contact angle of 162 Degree-Sign and a low rolling angle of 2 Degree-Sign were obtained. Black-Right-Pointing-Pointer The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162 Degree-Sign and the sliding angle of 2 Degree-Sign was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed

  19. Superplasticity in powder metallurgy aluminum alloys and composites

    International Nuclear Information System (INIS)

    Superplasticity in powder metallurgy Al alloys and composites has been reviewed through a detailed analysis. The stress-strain curves can be put into 4 categories: classical well-behaved type, continuous strain hardening type, continuous strain softening type and complex type. The origin of these different types of is discussed. The microstructural features of the processed material and the role of strain have been reviewed. The role of increasing misorientation of low angle boundaries to high angle boundaries by lattice dislocation absorption is examined. Threshold stresses have been determined and analyzed. The parametric dependencies for superplastic flow in modified conventional aluminum alloys, mechanically alloyed alloys and Al alloy matrix composites is determined to elucidate the superplastic mechanism at high strain rates. The role of incipient melting has been analyzed. A stress exponent of 2, an activation energy equal to that for grain boundary diffusion and a grain size dependence of 2 generally describes superplastic flow in modified conventional Al alloys and mechanically alloyed alloys. The present results agree well with the predictions of grain boundary sliding models. This suggests that the mechanism of high strain rate superplasticity in the above-mentioned alloys is similar to conventional superplasticity. The shift of optimum superplastic strain rates to higher values is a consequence of microstructural refinement. The parametric dependencies for superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of 313 kJ/mol best describes the composites having SiC reinforcements. The role of shape of the reinforcement (particle or whisker) and processing history is addressed. The analysis suggests that the mechanism for superplasticity in composites is interface diffusion controlled grain boundary sliding

  20. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate

    Science.gov (United States)

    Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu

    2015-07-01

    This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7°. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.

  1. Forming analysis and application for aluminum-alloy material

    Institute of Scientific and Technical Information of China (English)

    Wei Yuansheng

    2012-01-01

    The increase in car ownership brought about by energy shortages, and environmental crises became more acute. The most effective way to achieve energy saving and emission reduction of car is to improve engine efficiency. In addition to that, lightweight body is the key. Aluminum, magnesium alloy as significant materials of lightweight, and the application amount in the car body is a significant upward trend. However, there is high cost of material, with im- mature applied technology and a series of bottleneck problems. All of them affect general application of lightweight mate- rials. This paper focuses on forming process issues for aluminum, magnesium alloy and the solutions to achieve.

  2. Thermodynamics of Titanium-Aluminum-Oxygen Alloys Studied

    Science.gov (United States)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Titanium-aluminum alloys are promising intermediate-temperature alloys for possible compressor applications in gas-turbine engines. These materials are based on the a2-Ti3Al + g-TiAl phases. The major issue with these materials is high oxygen solubility in a2-Ti3Al, and oxidation of unsaturated alloys generally leads to mixed non-protective TiO2+Al2O3 scales. From phase diagram studies, oxygen saturated a2-Ti3Al(O) is in equilibrium with Al2O3; however, oxygen dissolution has a detrimental effect on mechanical properties and cannot be accepted. To better understand the effect of oxygen dissolution, we examined the thermodynamics of titanium-aluminum-oxygen alloys.

  3. Titanium-zirconium-phosphonate hybrid film on 6061 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Shuanghong WANG; Lei WANG; Changsheng LIU

    2011-01-01

    Three titanium-zirconium-phosphonate hybrid films were formed on AA6061 aluminum alloy by immersing in fluorotitanic acid and fluorozirconic acid based solution containing different phosphonic acids for protective coatings of aluminium alloy. The corrosion resistance of three hybrid films as the substitute for chromate film were evaluated and compared. The neutral salt spray test was explored,the immersion test was conducted and electrochemical test was also executed. The hybrid films exhibited well-pleasing corrosion resistance and adhesion to epoxy resin paints. It was found out that the hybrid films could efficiently be a substitute for chromate based primer over aluminium alloy.

  4. Lead induced intergranular fracture in aluminum alloy AA6262

    NARCIS (Netherlands)

    De Hosson, JTM

    2003-01-01

    The influence of lead on the fracture behavior of aluminum alloy AA6262 is investigated. Under certain conditions, the mode of fracture changes from transgranular microvoid coalescence to an intergranular mechanism. Three different intergranular fracture mechanisms are observed: liquid metal embritt

  5. Testing of 2219-T87 aluminum alloy at 40K

    International Nuclear Information System (INIS)

    The tensile and fracture properties of heavy section (1.5 inches thick) 2219-T87 plate aluminum alloy at 40K were determined. Transverse and longitudinal crack growth parameters were measured. Tensile specimens were taken at L, T, and ST orientations and tensile data is tabulated. K/sub Ic/ tests results and fatigue-crack growth data are summarized

  6. Fracture behavior of low-density replicated aluminum alloy foams

    NARCIS (Netherlands)

    Amsterdam, E.; Goodall, R.; Mortensen, A.; Onck, P. R.; De Hosson, J. Th. M.

    2008-01-01

    Tensile tests have been performed on replicated aluminum alloy foams of relative density between 4.5% and 8%. During the test the electrical resistance was measured with a four-point set-up and the displacements along the gage section were measured using a digital image correlation (DIC) technique.

  7. Study made of ductility limitations of aluminum-silicon alloys

    Science.gov (United States)

    Bailey, W. A.; Frederick, S. F.

    1967-01-01

    Study of the relation between microstructure and mechanical properties of aluminum-silicon alloys determines the cause of the variations in properties resulting from differences in solidification rate. It was found that variations in strength are a consequence of variations in ductility and that ductility is inversely proportional to dendrite cell size.

  8. Roping in 6111 aluminum alloys with various iron contents

    Energy Technology Data Exchange (ETDEWEB)

    Jin, H. [Novelis Global Technology Centre, Novelis Inc., P.O. Box 8400, Kingston, Ont., K7L 5L9 (Canada)]. E-mail: haiou.jin@novelis.com; Lloyd, D.J. [Novelis Global Technology Centre, Novelis Inc., P.O. Box 8400, Kingston, Ont., K7L 5L9 (Canada)

    2005-08-25

    The development of surface roughness and roping after straining and its correlation with grain size and texture were investigated in AA6111 aluminum alloys with various Fe contents, using optical microscopy, scanning electron microscopy (SEM), electron back scatter diffraction (EBSD) in SEM, X-ray diffraction, and 3D non-contact profilometry. It has been demonstrated that the spatial distribution of texture components is a critical factor for roping. When the {l_brace}0 0 1{r_brace}<1 0 0> (cube) and {l_brace}0 1 1{r_brace}<1 0 0> (Goss) texture components are banded along the rolling direction (RD) and alternately distributed in the transverse direction (TD), intensive roping develops when the sheet is stretched in the TD regardless of grain size. During rolling the cube and Goss are metastable orientations in AA6111 and form cube and Goss bands along the RD. These bands are the preferred nucleation sites for recrystallization, resulting in the banded structure being retained in the final solutionised sheet. Increasing the Fe content leads to a finer grain size and lower strain induced surface roughness, but roping is insensitive to the Fe content and simply dependent on the degree of cold rolling prior to solutionising.

  9. New all aluminum alloy ultrahigh vacuum system and fittings

    International Nuclear Information System (INIS)

    The Al-ICF ALFLAT FLANGE corresponds to the ordinary stainless steel Conflat flange. The Al-ICF ALFLAT FLANGE is made of special aluminum alloy 2219-T87 by forging. It has the highest strength at elevated high temperature among all aluminum alloys as well as superior weldability and stress corrosion cracking resistivity. CrN or TiC coating on the flange surface by ion plating. The CrN or TiC treatment on the surface gave nearly protection against sticking between the knife edge of the flange and the aluminum gasket and surface scratching. Sealing surface of the knife edge for the Helicoflex is finished to a smooth mirror surface by a diamond tool. (author)

  10. System for ultra high vacuum made of aluminum alloys

    International Nuclear Information System (INIS)

    We have developed the system for ultra high vacuum made of aluminum alloys for proton and electron synchrotron. This is the first system for ultra high vacuum in which bakable metal seal flange and small diametral bellows of aluminum alloys have been put to practical use. The system consists of the flange protected by a CrN thin film and made of 2219-T87 alloy, the chamber made of 6063-T6 alloy, the aluminum metal gasket of Helico Flex and the bellows made of 5052 alloy. As a result of experiments at the National Laboratory for High Energy Physics (KEK), it had been confirmed that this system shows the special qualities of ultra high vacuum operation, resistance to hard radiation and baking and cooling operations. Up to now, this system has been widely used for the beam lines of the booster synchrotron utilization facility, K1, K2, linac, PI 1 and EP2-B extension of the KEK proton synchrotron. We investigate that this system is applicable to nuclear energy utilization facility and general vacuum apparatus. (author)

  11. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Science.gov (United States)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  12. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  13. Effect of contact load on dual-rotary fretting tribological behavior of 7075 aluminum alloy%接触载荷对7075铝合金扭转复合微动摩擦学行为的影响

    Institute of Scientific and Technical Information of China (English)

    沈明学; 杨莎; 周琰; 蔡振兵; 朱旻昊

    2012-01-01

    On an advanced dual-rotary fretting rig, the dual-rotary fretting (DRF) wear behavior of 7075 Al alloy flat against GCr15 steel ball was investigated with various contact loads. Thus, the effect of contact load on the DRF wear behavior was examined. Based on the analysis of the frictional kinetics and the observation of wear morphologies, the damage characteristics of 7075 Al alloy were discussed in detail. The results show that the fretting regimes change with the variation of the contact load, the gross slip regime and mixed fretting regime of dual-rotary fretting are postponed, and the mixed fretting regime is broadened slowly. Under the same fretting regime, the Ft/Fn presents a same trend of evolution with the increase of the cycles, while the effect is insignificant with the increase of contact load. The value of Ft/Fn decreases with the increase of the contact load. With the increase of the contact load, the fretting is more approachable to control by torsional fretting component under a higher contact load, obviously accompanies with detachment. The wear mechanisms of DRF are mainly abrasive wear, oxidative wear and delamination.%在新型扭转复合微动试验机上,以7075铝合金平面/GCr15钢球配副为研究对象,研究不同接触载荷对7075铝合金扭转复合微动磨损行为的影响.在动力学特性分析的基础上结合磨痕形貌微观观察,研究7075铝合金扭转复合微动的磨损机理.结果表明:接触载荷明显地改变微动运行区域,随着接触载荷的增加,微动推迟进入混合区和滑移区,且混合区逐渐扩大;在相同的微动运行区域内,Ft/F系数随循环次数增加的变化趋势受接触载荷的影响不大,但Ft/Fn系数随着法向接触载荷的增加依次降低;在其它参量不变的情况下,接触载荷越大,微动更趋向于受扭动微动分量控制,表面损伤伴随着明显的剥落.扭转复合微动的磨损机制主要为磨粒磨损、氧化磨损和剥层.

  14. Optimum parameters for wetting and pressureless infiltration of silicon carbide preforms by aluminum alloys

    Science.gov (United States)

    Pech-Canul, Martin Ignacio

    The effect of processing parameters on the wetting of SiC by molten aluminum and the pressureless infiltration of SiCp preforms by aluminum alloys has been investigated. The effect of magnesium and silicon additions to aluminum, free silicon on the SiC substrate, nitrogen gas in the atmosphere, and process temperature on the wetting characteristics of SiC by aluminum alloys was investigated using the sessile drop technique. The contribution of each of these parameters and their interactions to the contact angle, surface tension, and driving force for wetting were determined via an L8 Taguchi experiment and analysis of variance (ANOVA). In addition, an optimized process for enhanced wetting is suggested and validated. The process parameters under which optimum wetting of SiC by Al was obtained were used to infiltrate SiCp preforms with Al without the use of pressure. The effect of SiC particle size, infiltration time, preform height, vol. % SiC in the preform, and Si coating on the SiC particles on the pressureless infiltration of SiCp compacts with aluminum was investigated and quantified via a Taguchi experiment and ANOVA. The contribution of each of these parameters and their interactions to the density, modulus of elasticity, and modulus of rupture of the composites were determined. Processing conditions for obtaining optimum density, modulus of rupture and modulus of elasticity were projected. The projected modulus of elasticity obtainable under optimum processing conditions was validated experimentally. A mechanism is proposed to explain the beneficial role that the interaction of nitrogen with magnesium plays in enhancing wetting. The role of silicon in wetting and pressureless infiltration of SiCp preforms by aluminum alloys is explained.

  15. Deformation and Damage of Two Aluminum Alloys from Ballistic Impact

    Science.gov (United States)

    Anderson, Charles E., Jr.; Dannemann, Kathryn A.

    2002-07-01

    A series of impact experiments were conducted on 4.76-mm-thick aluminum plates to investigate the deformation and damage behavior of two aluminum alloys, 6061-T6 and 7075-T6. The Sierra 165 lead-filled bullet was used to load the plates. Impact velocities were varied from approximately 260 m/s to 370 m/s. The flow stress for 7075-T6 aluminum is approximately twice that for 6061-T6 aluminum; however, the ballistic limit velocities differ by only 10%. The 7075-T6 aluminum plates exhibit less deformation than the 6061-T6 plates at the same impact velocity, but at some critical velocity, a through-thickness crack appears in the 7075-T6 plate, ultimately leading to plate perforation. In contrast, the 6061-T6 plates continue to deform and fail by ductile tearing. These differences in damage/failure result in the two alloys having much closer ballistic limit velocities than expected based on differences in strength.

  16. Microstructure and mechanical properties of aluminum back contact layers

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, V.A.; Janssen, M.; Richardson, I.M. [Delft University of Technology, Department of Materials Science and Engineering, Delft (Netherlands); van Amstel, T.; Bennett, I.J. [Energy Research Centre of the Netherlands, Solar Energy, PV Module Technology, Petten (Netherlands)

    2011-01-15

    The overall demand to reduce solar energy costs gives a continuous drive to reduce the thickness of silicon wafers. Handling and bowing problems associated with thinner wafers become more and more important, as these can lead to cells cracking and thus to high yield losses. In this paper the microstructure and mechanical properties of the aluminum on the rear side of a solar cell are discussed. It is shown that the aluminum back contact has a complex composite-like microstructure, consisting of five main components: (1) the back surface field layer; (2) a eutectic layer; (3) spherical (3-5 {mu}m) hypereutectic Al-Si particles surrounded by a thin aluminum oxide layer (200 nm); (4) a bismuth-silicate glass matrix; and (5) pores (14 vol%). The Young's modulus of the Al-Si particles is estimated by nanoindentation and the overall Young's modulus is estimated on the basis of bowing measurements. These results are used as input parameters for the improved thermomechanical multiscale model of a solar cell. (author)

  17. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Sun, Linyu; Luo, Yuting [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu, Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang, Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Chen, Yi; Zeng, Guangsheng; Liu, Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-09-01

    The transition from the hydrophilic surface to the superhydrophilic and superhydrophobic surface on aluminum alloy via hydrochloric acid etching and polymer coating was investigated by contact angle (CA) measurements and scanning electron microscope (SEM). The effects of etching and polymer coating on the surface were discussed. The results showed that a superhydrophilic surface was facilely obtained after acid etching for 20 min and a superhydrophobic surface was readily fabricated by polypropylene (PP) coating after acid etching. When the etching time was 30 min, the CA was up to 157{sup o}. By contrast, two other polymers of polystyrene (PS) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after acid etching. The results showed that the CA was up to 159{sup o} by coating PP-g-MAH, while the CA was only 141{sup o} by coating PS. By modifying the surface with the silane coupling agent before PP coating, the durability and solvent resistance performance of the superhydrophobic surface was further improved. The micro–nano concave–convex structures of the superhydrophilic surface and the superhydrophobic surface were further confirmed by scanning electron microscope (SEM). Combined with the natural hydrophilicity of aluminum alloy, the rough micro–nano structures of the surface led to the superhydrophilicity of the aluminum alloy surface, while the rough surface structures led to the superhydrophobicity of the aluminum alloy surface by combination with the material of PP with the low surface free energy.

  18. Thermodynamic calculation on metallic thermoreduction during preparation of aluminum-rare master alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A thermodynamic calculation method on metallic thermoreduction during preparation of aluminum-rare metal alloys was presented. Taking preparation of aluminum-scandium master alloys using aluminum and magnesium thermoreduction of scandiumchloride as an example, this method was applied and the results were testified by experiment.

  19. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  20. Laser treatment of aluminum copper alloys: A mechanical enhancement

    International Nuclear Information System (INIS)

    Aluminum-copper alloys are commonly used as structural components for the car and aircraft industry. They combine low density, high strength, high fracture toughness and good machinability. Moreover, the strength and wear-resistance of the surface of alloys are improved by a high power laser beam. In this way the molten surface will be self-quenched by conduction of heat into the bulk. This technique ensures solidification velocities of 0.01--1 m/s. These high solidification velocities have a significant influence on the size and distribution of the morphology. This work concentrates on Al-Cu alloys, in which the Cu content ranges between 0--40 wt.%, and is aimed at describing the mechanical and microstructural properties of these alloys upon variation of the laser scan velocity in the range of 0.0125 to 0.125 m/s

  1. Fatigue crack propagation of new aluminum lithium alloy bonded with titanium alloy strap

    Institute of Scientific and Technical Information of China (English)

    Sun Zhenqi; Huang Minghui

    2013-01-01

    A new type of aluminum lithium alloy (A1-Li alloy) Al-Li-S-4 was investigated by test in this paper.Alloy plate of 400 mm × 140 mm × 6 mm with single edge notch was made into samples bonded with Ti-6Al-4V alloy (Ti alloy) strap by FM 94 film adhesive after the surface was treated.Fatigue crack growth of samples was investigated under cyclic loading with stress ratio (R) of 0.1 and load amplitude constant.The results show that Al-Li alloy plate bonded with Ti alloy strap could retard fatigue crack propagation.Retardation effect is related with width and thickness of strap.Flaws have an observable effect on crack propagation direction.

  2. Overheating temperature of 7B04 high strength aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    GAO Feng-hua; LI Nian-kui; TIAN Ni; SUN Qiang; LIU Xian-dong; ZHAO Gang

    2008-01-01

    The microstructure and overheating characteristics of the direct chill semicontinuous casting ingot of 7B04 high strength aluminum alloy, and those after industrial homogenization treatment and multi-stage homogenization treatments, were studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDX). The results show that the microstructure of direct chill semicontinuous casting ingot of the 7B04 alloy contains a large number of constituents in the form of dendritic networks that consist of nonequilibrium eutectic and Fe-containing phases. The nonequilibrium eutectic contains Al, Zn, Mg and Cu, and the Fe-containing phases include two kinds of phases, one containing Al, Fe, Mn and Cu, and the other having Al, Fe, Mn, Cr, Si and Cu. The melting point of the nonequilibrium eutectic is 478 ℃ for the casting ingot of the 7B04 alloy which is usually considered as its overheating temperature. During industrial homogenization treatment processing at 470 ℃, the nonequilibrium eutectic dissolves into the matrix of this alloy partly, and the remainder transforms into Al2CuMg phase that cannot be dissolved into the matrix at that temperature completely. The melting point of the Al2CuMg phase which can dissolve into the matrix completely by slow heating is about 490 ℃. The overheating temperature of this high strength aluminum alloy can rise to 500-520 ℃. By means of special multi-stage homogenization, the temperature of the homogenization treatment of the ingot of the 7B04 high strength aluminum alloy can reach 500 ℃ without overheating.

  3. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  4. Cracking susceptibility of aluminum alloys during laser welding

    Directory of Open Access Journals (Sweden)

    Lara Abbaschian

    2003-06-01

    Full Text Available The influence of laser parameters in welding aluminum alloys was studied in order to reduce hot cracking. The extension of cracks at the welding surface was used as a cracking susceptibility (CS index. It has been shown that the CS changes with changing welding velocity for binary Al-Cu alloys. In general, the CS index increased until a maximum velocity and then dropped to zero, generating a typical lambda-curve. This curve is due to two different mechanisms: 1 the refinement of porosities with increasing velocity and 2 the changes in the liquid fraction due to decreasing microsegregation with increasing velocities.

  5. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  6. Friction and wear of titanium alloys and copper alloys sliding against titanium 6-percent-aluminum - 4-percent-vanadium alloy in air at 430 C

    Science.gov (United States)

    Wisander, D. W.

    1976-01-01

    Experiments were conducted to determine the friction and wear characteristics of aluminum bronzes and copper-tin, titanium-tin, and copper-silver alloys sliding against a titanium-6% aluminum-4% vanadium alloy (Ti-6Al-4V). Hemispherically tipped riders of aluminum bronze and the titanium and copper alloys were run against Ti-6Al-4V disks in air at 430 C. The sliding velocity was 13 cm/sec, and the load was 250 g. Results revealed that high tin content titanium and copper alloys underwent significantly less wear and galling than commonly used aluminum bronzes. Also friction force was less erratic than with the aluminum bronzes.

  7. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  8. Residual stress profiling of an aluminum alloy by laser ultrasonics

    Institute of Scientific and Technical Information of China (English)

    PAN Yondong; QIAN Menglu; XU Weijiang; M. OURAK

    2004-01-01

    A residual-stress profile along the thickness of an aluminum alloy sheet is determined by laser-ultrasonic technique. Surface acoustic waves are generated by a Nd:YAG pulse laser and detected by a Heterodyne interferometer on a lateral free surface of the sheet. The distribution of residual stress is determined by measuring the relative variation of the wavevelocities at different location of the sample along its thickness. This technique is validated by three different residual stress profiles obtained experimentally.

  9. Experimental Studies of Cold Roll Bonded Aluminum Alloys

    OpenAIRE

    Lauvdal, Steinar

    2011-01-01

    This master’s thesis is based on experimental studies of the parameters influencing cold roll bonding (CRB) of the aluminum alloys AA1200 and AA3103,in the work hardened and annealed condition. The effect on the bond strength from the preparations parameters as degreasing agent, scratch brushing and exposure time for oxide growth is investigated in comparison to former studies. Further the effect of rolling speed and effect from contributing factors from the different testing methods is ...

  10. Linear Anomaly in Welded 2219-T87 Aluminum Alloy

    Science.gov (United States)

    Jemian, Wartan A.

    1987-01-01

    Study of causes and significance of two types of linear anomalies sometimes appearing in radiographs of welds described in preliminary report. Manifested as light or dark linear features parallel to weld line in radiograph of weld. Contains diagrams and descriptions of phenomena occurring during welding process. Includes microdensitometer traces from x-radiographs of actual welds and from computer simulations based calculation of x-ray transmission through assumed weld structures. Concludes anomalies not unique to 2219-T87 aluminum alloy.

  11. Residual stress in quenched 7075 aluminum alloy thick plates

    Institute of Scientific and Technical Information of China (English)

    林高用; 张辉; 朱伟; 彭大暑; 梁轩; 周鸿章

    2003-01-01

    The influence of quenching water temperature, pre-stretching amount and aging temperature and times on residual stress in 7075 aluminum thick plate was studied by the measurement of residual stress using drilling hole method. The results indicate that residual stress decreases by 30% with increasing quenching water temperature from 40 ℃ to 80 ℃, 20% with increasing aging temperature from 100 ℃ to 180 ℃,and 20% with increasing aging times from 5 h to 25 h. Also, residual stress decreases to zero with increasing pre-stretching amount to approximately 2%. Hence, residual stress in 7075 aluminum thick plate is reduced by the control of quenching water temperature at 80 ℃ and with pre-stretching amount of about 2%. An optimal aging temperature and time should be systemically investigated to obtain combination of high mechanical performances and lower residual stress for manufacturing of 7075 aluminum alloy thick plates.

  12. Butt-welding Residual Stress of Heat Treatable Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    C.M. Cheng

    2007-01-01

    This study, taking three types of aluminum alloys 2024-T351, 6061-T6 and 7075-T6 as experimental materials, conducted single V-groove GTAW (gas tungsten arc welding) butt-welding to analyze and compare the magnitude and differences of residual stress in the three aluminum alloys at different single V-groove angles and in restrained or unrestrained conditions. The results show that the larger the grooving angle of butt joint, the higher the residual tensile stress. Too small grooving angle will lead to dramatic differences due to the amount of welding bead filler metal and pre-set joint geometry. Therefore, only an appropriate grooving angle can reduce residual stress. While welding, weldment in restrained condition will lead to a larger residual stress. Also, a residual stress will arise from the restraint position. The ultimate residual stress of weldment is determined by material yield strength at equilibrium temperature. The higher the yield strength at equilibrium temperature, the higher the material residual stress. Because of its larger thermal conductivity, aluminum alloy test specimens have small temperature differential. Therefore, the residual tensile stress of all materials is lower than their yield strength.

  13. Scuffing of aluminum/steel contacts under dry sliding conditions

    Science.gov (United States)

    Sheiretov, Todor Konstantinov

    Some typical applications where scuffing may occur are gear teeth, piston rings and cylinder pairs, cams and followers, splines, sleeve bearings, and parts of swash and wobble plate compressors. Unlike other tribology-related failures, scuffing occurs very fast, without any warning, and usually leads to the complete destruction of the sliding pair. Practical experience with steel has helped to outline safe ranges of operation for some components. Very little, however, is known about aluminum, which is the second most commonly used engineering metal. The aim of this study is to obtain a better understanding scuffing and seizure of aluminum/steel contacts. The research includes an experimental study of scuffing of aluminum/steel contacts under dry sliding conditions, a study of the physics of the scuffing process, evaluation of various hypotheses for scuffing, and modeling of scuffing. The experiments are conducted in a custom-designed tribometer, which provides accurate control of the environmental conditions. Special instrumentation, experimental procedures and software are developed as a part of the experimental program. These provide a reliable reproduction and identification of scuffing under laboratory conditions. The scuffing characteristics of five materials are obtained in air and refrigerant (R134a) environments. The effects of load, sliding velocity, mechanical strength, environmental temperature, specimen geometry, time, loading history, and type of environment are evaluated. The mechanisms leading to scuffing are studied by examination of surfaces, subsurfaces and wear debris of specimens in the process of scuffing. Quantitative measurements of subsurface plastic strain are also obtained. The theoretical part of the study includes the development of a finite element model for the contact of runned-in rough surfaces and several other models for subsurface stresses, temperatures, and strains. These models provide information about the local conditions in

  14. Solidification crack susceptibility of aluminum alloy weld metals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The susceptibilities of the three aluminum alloys to solidification crack were studied with trans-varestraint tests and tensile tests at elevated temperature. Their metallurgical characteristics, morphologies of the fractured surface and dynamic cracking behaviors at elevated temperature were analyzed with a series of micro-analysis methods. The results show that dynamic cracking models can be classified into three types. The first model has the healing effect which is called type A. The second is the one with deformation and breaking down of metal bridge, called type B. The last one is with the separation of liquid film along grain boundary, called type C.Moreover, the strain rate has different effects on crack susceptibility of aluminum alloys with different cracking models. ZL101 and 5083 alloys belong to type A and type C cracking model respectively, in which strain rate has greater effect on eutectic healing and plastic deformation of metal bridge. 6082 alloy is type B cracking model in which the strain rate has little effect on the deformation ability of the liquid film.

  15. Russian aluminum-lithium alloys for advanced reusable spacecraft

    Science.gov (United States)

    Charette, Ray O.; Leonard, Bruce G.; Bozich, William F.; Deamer, David A.

    1998-01-01

    Cryotanks that are cost-affordable, robust, fuel-compatible, and lighter weight than current aluminum design are needed to support next-generation launch system performance and operability goals. The Boeing (McDonnell Douglas Aerospace-MDA) and NASA's Delta Clipper-Experimental Program (DC-XA) flight demonstrator test bed vehicle provided the opportunity for technology transfer of Russia's extensive experience base with weight-efficient, highly weldable aluminum-lithium (Al-Li) alloys for cryogenic tank usage. As part of NASA's overall reusable launch vehicle (RLV) program to help provide technology and operations data for use in advanced RLVs, MDA contracted with the Russian Academy of Sciences (RAS/IMASH) for design, test, and delivery of 1460 Al-Li alloy liquid oxygen (LO2) cryotanks: one for development, one for ground tests, and one for DC-XA flight tests. This paper describes the development of Al-Li 1460 alloy for reusable LO2 tanks, including alloy composition tailoring, mechanical properties database, forming, welding, chemical milling, dissimilar metal joining, corrosion protection, completed tanks proof, and qualification testing. Mechanical properties of the parent and welded materials exceeded expectations, particularly the fracture toughness, which promise excellent reuse potential. The LO2 cryotank was successfully demonstrated in DC-XA flight tests.

  16. Mechanical properties of hot rolled 2519 aluminum alloy plate

    Institute of Scientific and Technical Information of China (English)

    彭大暑; 陈险峰; 林启权; 张辉

    2003-01-01

    The effects of differences of temper on mechanical properties of T6, T7 and T8 plates of aluminum alloy 2519 were studied. The stress corrosion cracking(SCC) sensitivity was evaluated with parameters such as Kσ and Kδ.Tensile tests were divided into two groups: one was performed on tensile specimens without pre-corrosion, the other was performed on tensile specimens which were pre-corroded in 3.5%NaCl+1%H2O2 solution at 25 ℃.The results show that SCC resistance of alloy 2519 ranks in the order of T8>T7>T6 and the mechanical properties rank in the order of T6>T8>T7. SEM fractographs of the failed specimen show that the SCC sensitivity can be determined by the distribution of the second phase particles and size and the shape of grains in the alloy.

  17. Enhancement of superplastic formability in a high strength aluminum alloy

    Science.gov (United States)

    Agrawal, S. P.; Turk, G. R.; Vastava, R.

    1988-01-01

    A 7475 aluminum alloy was developed for superplastic forming (SPF). By lowering the Fe and Si contents in this alloy significantly below their normal levels and optimizing the thermomechanical processing to produce sheet, over 2000 percent thickness strain to failure was obtained. The microstructure, elevated-temperature uniaxial and biaxial tension, and cavitation behavior of the alloy were determined. In addition, a constitutive model was used to form a generic structural shape from which mechanical test specimens were removed and post-SPF characteristics were evaluated. The constitutive model included both material strain hardening and strain rate hardening effects, and was verified by accurately predicting forming cycles which resulted in successful component forming. Stress-life fatigue, stress rupture, and room and elevated temperature tensile tests were conducted on the formed material.

  18. Radiation Damages in Aluminum Alloy SAV-1 under Neutron Irradiation

    Science.gov (United States)

    Salikhbaev, Umar; Akhmedzhanov, Farkhad; Alikulov, Sherali; Baytelesov, Sapar; Boltabaev, Azizbek

    2016-05-01

    The aim of this work was to study the effect of neutron irradiation on the kinetics of radiation damages in the SAV-1 alloy, which belongs to the group of aluminum alloys of the ternary system Al-Mg-Si. For fast-neutron irradiation by different doses up to fluence 1019 cm-2 the SAV-1 samples were placed in one of the vertical channels of the research WWR type reactor (Tashkent). The temperature dependence of the electrical resistance of the alloy samples was investigated in the range 290 - 490 K by the four-compensation method with an error about 0.1%. The experimental results were shown that at all the temperatures the dependence of the SAV-1 alloy resistivity on neutron fluence was nonlinear. With increasing neutron fluence the deviation from linearity and the growth rate of resistivity with temperature becomes more appreciable. The observed dependences are explained by means of martensitic transformations and the radiation damages in the studied alloy under neutron irradiation. The mechanisms of radiation modification of the SAV-1 alloy structure are discussed.

  19. Dilution of molybdenum on aluminum during laser surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Hitesh D.; Rajamure, Ravi Shanker [Laboratory of Laser Material Processing and Synthesis, Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle 305310, Denton, TX 76203-5017 (United States); Soundarapandian, Santhanakrishnan [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Srinivasan, S.G. [Laboratory of Laser Material Processing and Synthesis, Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle 305310, Denton, TX 76203-5017 (United States); Dahotre, Narendra B., E-mail: Narendra.Dahotre@unt.edu [Laboratory of Laser Material Processing and Synthesis, Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle 305310, Denton, TX 76203-5017 (United States)

    2013-09-05

    Highlights: •Laser surface alloying significantly increased the solubility of transition metal. •Laser surface alloying produced dense coating with good metallurgical bonding. •Laser process parameters greatly influenced the evolution of various intermetallics. •Computationally predicted results closely matched with experimental findings. •Ability to generalize present model to other metal-transition metal systems. -- Abstract: A multiphysics based computational model was developed to predict the dilution of molybdenum (Mo) on an aluminum (Al) substrate during the laser surface alloying process. The influence of laser surface alloying processing parameters such as input energy, scanning speed, and overlapping ratio on dilution of Mo in Al was explored via computational model. The computational model, closely predicts the melt pool geometry (width and depth) that subsequently helps in estimating dilution. It was observed that the dilution increases with the increase in laser power, while it decreases with the increase in scanning speed. The phase and microstructural analyses revealed the existence of Al{sub 5}Mo intermetallic for most of the laser surface alloying processing conditions. However, at higher (3.18 × 10{sup 7} J/m{sup 2}) and lower (1.91 × 10{sup 7} J/m{sup 2}) laser energy densities, the Al{sub 8}Mo{sub 3} intermetallic was also evolved. These experimental observations validate the model’s predictions and points to its reliability in predicting the expected intermetallics in Al–Mo system for various laser surfacing alloying processing conditions.

  20. Effect of vapor phase corrosion inhibitor on microbial corrosion of aluminum alloys.

    Science.gov (United States)

    Yang, S S; Ku, C H; Bor, H J; Lin, Y T

    1996-02-01

    Vapor phase corrosion inhibitors were used to investigate the antimicrobial activities and anticorrosion of aluminum alloy. Aspergillus flavus, A. niger, A. versicolor, Chaetomium globosum and Penicillium funiculosum had moderate to abundant growth on the aluminum alloy AA 1100 at Aw 0.901, while there was less growth at Aw 0.842. High humidity stimulated microbial growth and induced microbial corrosion. Dicyclohexylammonium carbonate had a high inhibitory effect on the growth of test fungi and the microbial corrosion of aluminum alloy, dicyclohexylammonium caprate and dicyclohexylammonium stearate were the next. Aluminum alloy coating with vapor phase corrosion inhibitor could prevent microbial growth and retard microbial corrosion. PMID:10592784

  1. From 2007 to 2010,China Will Manufacture More Than 10,000 Aluminum Alloy Railcars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The clear advantage of the aluminum alloy rail- cars is the weight reduction.The deadweight of the aluminum alloy railcars usually does not exceed 8.5t each.The 52 motor train units used in the sixth nationwide railway speedup are all made of aluminum alloys except for the train units used in the line between Guangzhou and Shenzhen.It is estimated that in 2010,there are more than 10,000 railcars made of aluminum alloys,which will consume about 105kt alumi- num.

  2. A High-Fe Aluminum Matrix Welding Filler Metal for Hardfacing Aluminum-Silicon Alloys

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A high-Fe containing aluminum matrix filler metal for hardfacing aluminum-silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as-cast and as-welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al-Si-Fe-Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al-Si-Mg-Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper-eutectic aluminum-silicon alloy with 27% Si and 1% Ni.

  3. Effects of shot peening on internal friction in CP aluminum and aluminum alloy 6008

    Energy Technology Data Exchange (ETDEWEB)

    Flejszar, Aneta; Ludian, Tomasz; Mielczarek, Agnieszka; Riehemann, Werner; Wagner, Lothar [Clausthal Univ. of Science and Technology, Inst. of Materials Science and Technology, Clausthal-Zellerfeld (Germany)

    2009-06-15

    The strain-amplitude-dependent damping of bending beams of aluminum alloy 6008 and CP aluminum was measured at room temperature after different heat treatments and after shot peening. Shot peening led to an increase of damping in almost the whole measured amplitude strain range from 10{sup -6} to 10{sup -3} for CP aluminum. Strong ageing effects at room temperature were observed immediately after the shot peening process, namely an increase of the amplitude dependent part and a decrease of the amplitude-independent part of damping. After about 2700 h, ageing of the samples had saturated. For aluminum alloy 6008 much smaller ageing effects were found being due to compensating effects like formation of Cottrell clouds, precipitation of G.P. - zones, and the reduction of foreign atoms in solid solution. The found amplitude-dependent damping can be explained by the reversible movement of dislocations between strong pinning points like, e.g., precipitates and weak pinning points like solid solute atoms as proposed by the dislocation damping theory of Granato and Luecke. Using this model the found ageing effects can be explained by the diffusion of solid solute atoms to the dislocations. (orig.)

  4. The Effect of Impurities on the Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic

  5. Bearing Strengths of Some Wrought-aluminum Alloys

    Science.gov (United States)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  6. Electric pulse treatment of welded joint of aluminum alloy

    Directory of Open Access Journals (Sweden)

    A.A. Mitiaev

    2013-08-01

    Full Text Available Purpose. Explanation of the redistribution effect of residual strengthes after electric pulse treatment of ark welding seam of the aluminum alloy. Methodology. Alloy on the basis of aluminium of АК8М3 type served as the research material. As a result of mechanical treatment of the ingots after alloy crystallization the plates with 10 mm thickness were obtained. After edge preparation the elements, which are being connected were butt welded using the technology of semiautomatic argon arc welding by the electrode with a diameter of 3 mm of AK-5 alloy. Metal structure of the welded joint was examined under the light microscope at a magnification of 200 and under the scanning electronic microscope «JSM-6360 LA». The Rockwell hardness (HRF was used as a strength characteristic of alloy. Hardness measuring of the phase constituents (microhardness was carried out using the device PМТ-3, with the indenter loadings 5 and 10 g. The crystalline structure parameters of alloy (dislocation density, second kind of the crystalline grid distortion and the scale of coherent scattering regions were determined using the methods of X-ray structural analysis. Electric pulse treatment (ET was carried out on the special equipment in the conditions of the DS enterprise using two modes A and В. Findings. On the basis of researches the previously obtained microhardness redistribution effect in the area of welded connection after ET was confirmed. As a result of use of the indicated treatment it was determined not only the reduction of microhardness gradient but also the simultaneous hardening effect in the certain thermal affected areas near the welding seam. During study of chemical composition of phase constituents it was discovered, that the structural changes of alloy as a result of ET first of all are caused by the redistribution of chemical elements, which form the connections themselves. By the nature of the influence the indicated treatment can be

  7. DSC Analysis of LT-3 Aluminum Alloy Vacuum Brazing

    Institute of Scientific and Technical Information of China (English)

    FENG Tao; WU Lu-hai; LOU Song-nian; LI Ya-jiang

    2005-01-01

    LT-3 aluminum alloy is a kind of two-side cladding aluminum special used in vacuum brazing. Differential Scanning Calorimeter (DSC) was used to measure the exothermic and endothermic reaction during the brazing process that the cortex metal and the base metal are melted and re-crystal. The analysis results inidicate that eutectic reaction is the main reaction in the melted cortex metal crystallization process. But the main reaction in the melted base metal crystallization process is the reaction that a-A1 segregated out. According to the experimental details, the critical work of nucleation is 3.82 × 1017J, the critical radius of nucleation is 8.69 × 1010 m, the volume of critical crystal nucleus is 2.75× 10-27 m3 and the per unit cell in critical crystal nucleus is 43.

  8. Comparison of recrystallization and recrystallization textures in cold-rolled DC and CC AA 5182 aluminum alloys

    International Nuclear Information System (INIS)

    The recrystallization and recrystallization textures in cold-rolled direct chill cast (DC) and continuous cast (CC) AA 5182 aluminum alloys were investigated. The recrystallization behavior of cold-rolled DC and CC AA 5182 aluminum alloys was evaluated by tensile properties. The evolution of recrystallization textures in cold-rolled DC and CC AA 5182 aluminum alloys was determined by X-ray diffraction. The results showed that the recrystallization temperature of cold-rolled DC AA 5182 aluminum alloy was somewhat lower than that of cold-rolled CC AA 5182 aluminum alloy. The resulting recrystallization textures of cold-rolled AA 5182 aluminum alloy were characterized by the strong R orientation and the cube orientation with strong scattering about the rolling direction towards the Goss orientation. CC AA 5182 aluminum alloy showed slightly weaker recrystallization textures than DC AA 5182 aluminum alloy

  9. Structure and Hardness of 01570 Aluminum Alloy Friction Stir Welds Processed Under Different Conditions

    Science.gov (United States)

    Il'yasov, R. R.; Avtokratova, E. V.; Markushev, M. V.; Predko, P. Yu.; Konkevich, V. Yu.

    2015-10-01

    Structure and hardness of the 01570 aluminum alloy joints processed by friction stir welding at various speeds are investigated. It is shown that increasing the traverse tool speed lowers the probability of macrodefect formation in the nugget zone; however, this can lead to anomalous grain growth in the zone of contact with the tool shoulder. Typical "onion-like" structure of the weld consisting of rings that differ by optical contrast is formed for all examined welding regimes. It is demonstrated that this contrast is caused by the difference in the grain sizes in the rings rather than by their chemical or phase composition. Mechanisms of transformation of the alloy structure during friction stir welding are discussed.

  10. Electrodeposition of aluminum and aluminum-magnesium alloys at room temperature

    Institute of Scientific and Technical Information of China (English)

    阚洪敏; 祝跚珊; 张宁; 王晓阳

    2015-01-01

    Electrodeposition of aluminum from benzene-tetrahydrofuran−AlCl3−LiAlH4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and crystal size, including current density, temperature, molar ratio of benzene/tetrahydrofuran and stirring speed. The deposit microstructure was adjusted by changing the parameters, and the optimum operating conditions were determined. Dense, bright and adherent aluminum coatings were obtained over a wide range of current densities (10−25 mA/cm2), molar ratio of benzene and tetrahydrofuran (4:1 to 7:8) and stirring speeds (200−500 r/min). Smaller grain sizes and well-adhered deposits were obtained at lower temperatures. Aluminum-magnesium alloys could potentially be used as hydrogen storage materials. A novel method for Al−Mg deposition was proposed by using pure Mg anodes in the organic solvents system benzene-tetrahydrofuran−AlCl3−LiAlH4. XRD shows that the aluminum−magnesium alloys are mainly Al3Mg2 and Al12Mg17.

  11. Corrosion damage evolution and residual strength of corroded aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Youhong Zhang; Guozhi Lv; Hui Wang; Bomei Si; Yueliang Cheng

    2008-01-01

    The LY12CZ aluminum alloy specimens were eurroded under the conditions of different test temperatures and exposure durations. After corrosion exposure, fatigue tests were performed. Scanning electron microscopy and optical microscope analyses on corrosion damage were carried out. The definition of surface corrosion damage ratio was provided to describe the extent of surface corrosion damage. On the basis of the measured data sets of the corrosion damage ratio, the probabilistic model of corrosion damage evolution was built. The corrosion damage decreased the fatigue life by a factor of about 1.25 to 2.38 and the prediction method of residual strength of the corroded structure was presented.

  12. Effect of Coolant Water Flow Rate on Aluminum Alloys Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Golosov, O.A. [Institute of Nuclear Materials, Zarechny, Sverdlovsk region, 624250 (Russian Federation)

    2011-07-01

    One of the most important factors limiting a life-time of fuel elements in high-flux research reactors are a corrosion rate of fuel cladding material and a formation rate of oxide film. This study presents the results of the corrosion tests with and without irradiation. The aluminum alloys systems Al-Fe-Ni, Al-Fe-Ni-Cu-Mg and Al-Mg-Si-Cu were irradiated in the water flow of a velocity from 1.3 to 14.2m/s at 200 {sup o}C for time within 570 to 2000 hours. (author)

  13. Solar selective black nickel-cobalt coatings on aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shashikala, A.R.; Sharma, A.K.; Bhandari, D.R. [Thermal System Group, ISRO Satellite Centre, Bangalore 560 017 (India)

    2007-04-16

    Solar selective black nickel-cobalt plating on pre cleaned aluminum alloy substrates with nickel undercoat were investigated. Process optimization was carried out by the hull cell experiments investigating the influence of operating variables on the optical selectivity of the coating. The coatings were characterized with scanning electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopic and polarization studies. Evaluation of the coatings was carried out by adhesion, measurement of coating thickness and optical properties, humidity, thermal cycling, thermo-vacuum performance and thermal stability tests. (author)

  14. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    王蕤; 罗震; 单平; 步贤政; 袁书现; 敖三三

    2010-01-01

    In this paper,the sensors array technique is applied to the quality detection of aluminum alloy spot welding.The sensors array has three forms,i.e.,linear magnetic sensors array,annular magnetic sensors array and cross magnetic sensors array.An algorithm based on principal component analysis is proposed to extract the signal eigenvalues.The three types of magnetic sensors array are used in the experiment of monitoring the signal.After the eigenvalues are extracted,they are used to build a relationship with ...

  15. Corrosion fatigue of 2219-T87 aluminum alloy

    Science.gov (United States)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  16. Recrystallization model for hot-rolling of 5182 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A recrystallization model for hot-rolling of 5182 aluminum alloy was presented by means of the fractional softening during double interval deformation. It is found that the recrystallization rate depends on strain rate more sensitively than deformation temperature, and the time for full recrystallization is very short as strain rate is greater than 1 s-1. Using the recrystallization—time—temperature curves, the desirable hot rolled microstructure can be obtained by controlling the rolling speed, temperature and cooling rate before cooling during the last pass in reversing mill.

  17. Nickel-coated Steel Stud to Aluminum Alloy Joints Made by High Frequency Induction Brazing

    Institute of Scientific and Technical Information of China (English)

    GE Jiaqi; WANG Kehong; ZHANG Deku; WANG Jian

    2015-01-01

    Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 Al alloy foil asfi ller metal were joined by using high frequency induction brazing. The microstructure of Fe/Al brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-Al intermetallic compound which is brittle by blocking the contact between Al and Fe. Intermetallic compounds, i e,Al3Ni2, Al1.1Ni0.9 and Al0.3Fe3Si0.7 presented in Al side, FeNi and Fe-Al-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of Al side, where plenty of Al3Ni2 intermetallic compounds were distributed continuously.

  18. Rheo-diecasting Process for Semi-solid Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel one-step semisolid processing technique, the rheo-diecasting (RDC) process, was developed, which adapts in situ creation of semisolid metal slurry with fine and spherical solid particles followed by direct shaping of the slurry into a near-net shape component using the existing cold chamber diecasting process. The RDC process was applied to process A356 and A380 aluminum alloys. The resulting microstructures and mechanical properties of RDC products under as-cast and various heat treatment conditions were analyzed. The experimental results show that the RDC samples have an extremely low porosity, a fine and uniform microstructure throughout entire casting, and consequently much improved strength and ductility in the as-cast condition. The strength of RDC A356 alloy can be substantially improved under T5 and T6 heat treatments without loss of ductility.

  19. Damage percolation during stretch flange forming of aluminum alloy sheet

    Science.gov (United States)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  20. A Rare Earth High-iron Aluminum Alloy Cable Company to Settle in Chongqing

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On September 14,the reporter learnt from the Seminar on Application of New Rare Earth High-iron Aluminum Alloy Cable Technologies for Energy Conservation and Environmental Protection held by Chongqing Electric Industry Association that a rare earth high-iron aluminum alloy cable company with

  1. Interfacial characterization of resistance spot welded joint of steel and aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Zhang Weihua; Sun Daqian; Yin Shiqiang; Han Lijun; Qiu Xiaoming; Chen Qinglei

    2010-01-01

    The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/aluminum interface. The welded joint presented a tensile shear load of 3.3 kN with an aluminum alloy nugget diameter of 5.7 ram. The interfucial failure mode was observed for the tensile shear specimen and fracture occurred at reaction layer and aluminum alloy fusion zone beside the interface. The reaction layer with compounds was the main reason for reduction of the welded joint mechanical property.

  2. Use of Permanent Magnets in Electromagnetic Facilities for the Treatment of Aluminum Alloys

    Science.gov (United States)

    Beinerts, Toms; Bojarevičs, Andris; Bucenieks, Imants; Gelfgat, Yuri; Kaldre, Imants

    2016-06-01

    The possibility of applying the electromagnetic induction pump with permanent magnets for the transportation and stirring of aluminum melts in metallurgical furnaces is investigated. The electromagnetic and hydraulic characteristics of the pump have been investigated theoretically and experimentally with regard to its position in the furnace. The results of the experiments performed with a model in a eutectic InGaSn melt are in good agreement with the calculation data. Extrapolation of the experimental results on the physical characteristics of aluminum melts allows recommending such pumps for contactless control of motion and heat/mass transfer in aluminum melts in different technological processes. A high temperature and the aggressive properties of aluminum alloys make it complicated to use different mechanical devices to solve technological problems, such as liquid metal transportation, dosing, stirring, etc. In this case, any device units or elements moving in or contacting with the melt suffer from corrosion polluting the melt. Therefore, of more importance and topicality are contactless electromagnetic methods for processing of molten metals.

  3. Single-aging characteristics of 7055 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; YIN Zhi-min; SHEN Kai; LI Jie; HUANG ji-wu

    2007-01-01

    The microstructures and properties of 7055 aluminum alloy were studied at different single-aging for up to 48 h using hardness test, tensile test, electrical conductivity measurement, XRD and TEM microstructure analysis. The results show that at the early stage of aging, the hardness and strength of the alloy increase rapidly, the peak hardness and strength are approached after 120 ℃ aging for 4 h, then maintained at a high level for a long time. The suitable single-aging treatment of 7055 alloy is 480 ℃, 1 h solution treatment and water quenching, then aging at 120 ℃ for 24 h. Under those condition, the tensile strength, yield strength, elongation and electrical conductivity of the studied alloy are 513 MPa, 462 MPa, 9.5% and 29%(IACS), respectively. During aging, the solid solution decomposes and precipitation occurs. At the early aging stage of 120 ℃, GP zones form and then grow up gradually with increasing ageing time. η' phase forms after ageing for 4 h and η phase starts to occur after 24 h aging.

  4. Microstructure and mechanical properties of aluminum back contact layers

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, V.A.; Janssen, M.; Richardson, I.M. [Delft University of Technology, Department of Materials Science and Engineering, Delft (Netherlands); Van Amstel, T.; Bennett, I.J. [ECN Solar Energy, Petten (Netherlands)

    2009-09-15

    The overall demand to reduce solar energy costs gives a continuous drive to reduce the thickness of silicon wafers. Handling and bowing problems associated with thinner wafers become more and more important, as these can lead to cells cracking and thus to high yield losses. In this paper the microstructure and mechanical properties of the aluminium on the rear side of a solar cell are discussed. It is shown that the aluminium back contact has a complex composite-like microstructure, consisting of five main components: (1) the back surface field layer; (2) a eutectic layer; (3) spherical (3 - 5 {mu}m) hypereutectic Al-Si particles surrounded by a thin aluminum oxide layer (200 nm); (4) a bismuth-silicate glass matrix; and (5) pores (14 vol.%). The Young's modulus of the Al-Si particles is estimated by nanoindentation and the overall Young's modulus is estimated on the basis of bowing measurements. These results are used as input parameters for an improved thermomechanical multiscale model of a silicon solar cell.

  5. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  6. A perspective of microplasma oxidation (MPO) and vapor deposition coatings in surface engineering of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2004-01-01

    Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.

  7. Air cushion furnace technology for heat treatment of high quality aluminum alloy auto body sheet

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Zhaodong; Ma Mingtu; Wang Guodong; Fu Tianliang; Li Jiadong; Liang Xiong

    2014-01-01

    The process characteristics of heat treatment of aluminum alloy auto body sheet and the working prin-ciple of air cushion furnace were introduced. The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied. Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages. Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward. With the rapid de-velopment of automotive industry,there will be certainly a new upsurge of research and application of air cush-ion furnace for heat treatment of aluminum alloy auto body sheet.

  8. Interfacial study of semi-solid aluminum alloy and stainless steel sheathed extrusion

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-wei; GUO Cheng; LIU Xu-feng; SHAO Guang-jie

    2006-01-01

    Using sheathed extrusion technique, the bonding and forming of semi solid aluminum alloy with stainless steel sheath are successfully realized. The relationship between the interfacial shear strength and the solid fraction of semi solid aluminum alloy at different extrusion ratios is analyzed; the interfacial and fracture structure of the sheath material are studied by optical microscopy(OM) and scanning electric microscopy(SEM). The result shows that interfacial shear strength increases with the increase of extrusion ratio, the maximum value of the interfacial shear strength is obtained when solid fraction of aluminum alloy is 30%,solid phase and liquid phase of the semi solid aluminum alloy are bonded with stainless steel by turns along the interface, and the aluminum alloy can not be peeled from the stainless steel completely, which means nicer bonding occurs at the interface.

  9. Stress corrosion cracking susceptibility of 7A52 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jun-jun; WANG Wei-xin; CAI Zhi-hai; ZHANG Ping

    2006-01-01

    The stress corrosion sensitivity of 7A52 aluminum alloy was investigated in the artificial sea water through slow stain rate test(SSRT). The stress corrosion cracking(SCC) susceptibility was estimated with the loss of elongation and stress corrosion sensitivity index. The results show that the susceptibility of 7A52 aluminum alloy is always high when the strain rate is in the range of 10-5-10-7s-1. It reaches the maximum at the strain rate of 8.7×10-7s-1, and the sensitivity index reaches 0.346. The characteristics of stress corrosion can be observed clearly on the fracture of tensile specimen. The process of SCC is depicted according to the fracture morphology. The SCC initiates at the edge of the specimen. Then the SCC grows rapidly because of the anode dissolving and stress concentration. When the area of specimen cannot support the tensile stress, it ruptures suddenly. The secondary cracks and quasi-cleavage surface can be found on the fracture morphology.susceptibility

  10. Fatigue crack growth in an aluminum alloy-fractographic study

    Science.gov (United States)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  11. Flexural-torsional buckling behavior of aluminum alloy beams

    Institute of Scientific and Technical Information of China (English)

    Xiaonong GUO; Zhe XIONG; Zuyan SHEN

    2015-01-01

    This paper presents an investigation on the flexural-torsional buckling behavior of aluminum alloy beams (AAB). First, based on the tests of 14 aluminum alloy beams under concentrated loads, the failure pattern, load- deformation curves, bearing capacity and flexural-torsional buckling factor are studied. It is found that all the beam specimens collapsed in the flexuml-torsional buckling with excessive deformation pattern. Moreover, the span, loading location and slenderness ratio influence the flexural-torsional buckling capacity of beams significantly. Secondly, besides the experiments, a finite element method (FEM) analysis on the flexural-torsional buckling behavior of AAB is also conducted. The main parameters in the FEM analysis are initial imperfection, material property, cross-section and loading scheme. According to the analytical results, it is indicated that the FEM is reasonable to capture mechanical behavior of AAB. Finally, on the basis of the experimental and analytical results, theoretical formulae to estimate the flexural- torsional buckling capacity of AAB are proposed, which could improve the application of present codes for AAB.

  12. Investigation of Corrosion Behavior Of 6013 Aluminum Alloys For Artificial Aged Microwave Furnace

    Directory of Open Access Journals (Sweden)

    Muzaffer Erdoğan

    2014-01-01

    Full Text Available Low density and high strength aluminum alloys can be achieved today is a type of an alloy. These alloys are more resistant, particularly the aging process is the precipitate formed. In this study, increased strength 6013 aluminum alloy in a microwave furnace yaşlandırarak artificial. Volume samples in a microwave oven aging method and aging has provided a homogeneous way.6013 aluminum alloys, pure argon gas atmosphere in a microwave furnace hardness after being subjected to artificial aging process analysis, the internal structure (optical microscope, SEM, characterization of the studied. Aging of the phases, the presence server in the XRD of the samples was determined by curves. Corrosion of artificial aged samples has been analyzed by the internal structure of the phases present. Depending on the time of artificial aging of aluminum alloy 6013 samples in a microwave furnace in the mechanical properties of the sediment affected the corrosion resistance values.

  13. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    Science.gov (United States)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  14. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling

    Science.gov (United States)

    Muñiz Lerma, Jose Alberto; Jung, In-Ho; Brochu, Mathieu

    2016-06-01

    Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn-Wall-Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV-Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

  15. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

    Science.gov (United States)

    Yu, Xin-ye; Xing, Wen-qing; Ding, Min

    2016-07-01

    In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa. PMID:26964943

  16. Wettability of Molten Aluminum-Silicon Alloys on Graphite and Surface Tension of Those Alloys at 1273 K (1000 °C)

    Science.gov (United States)

    Mao, Weiji; Noji, Takayasu; Teshima, Kenichiro; Shinozaki, Nobuya

    2016-06-01

    The wettability of molten aluminum-silicon alloys with silicon contents of 0, 6, 10, and 20 mass pct on graphite substrates by changing the placing sequence of aluminum and silicon and the surface tension of those alloys were investigated at 1273 K (1000 °C) using the sessile drop method under vacuum. The results showed that the wetting was not affected by changing the placing sequence of the Al-Si alloys on the graphite substrates. The wettability was not improved significantly upon increasing the Si content from 0 to 10 mass pct, whereas a notable decrease of 22 deg in the contact angle was observed when increasing the Si content from 10 to 20 mass pct. This was attributed to the transformation of the interfacial reaction product from Al4C3 into SiC, provided the addition of Si to Al was sufficient. It was verified that the liquid Al can wet the SiC substrate very well in nature, which might explain why the occurrence of SiC would improve the wettability of the Al-20 mass pct Si alloy on the graphite substrate. The results also showed that the surface tension values of the molten Al-Si alloys decreased monotonously with an increase in Si content, being 875, 801, 770, and 744 mN/m for molten Al, Al-6 mass pct Si, Al-10 mass pct Si, and Al-20 mass pct Si alloys, respectively.

  17. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    Science.gov (United States)

    Brar, Nachhatter; Joshi, Vasant

    2011-06-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.

  18. Surface properties of aluminum alloy as material for ultrahigh vacuum

    International Nuclear Information System (INIS)

    The characteristics of aluminum alloy (2017 alloy) for the vacuum chambers of TRISTAN were studied. Machining, electric discharge machining and chemical polishing were made successively on the samples of the 2017 alloy. The observation of surface state, the analysis of surface composition and high temperature desorption experiment were performed. The measurement of surface roughness with a probe, the observation with a scanning electron microscope (SEM), and the measurement of surface roughness factor (SRF) were carried out as the study of the surface state. The analysis of surface composition was made by the Auger electron spectrometry. It was found that the surfaces of samples treated by discharge machining were rough and have thick oxide layer. When chemical polishing was applied to these samples, the surfaces became smooth, and the oxide layer became thin. By heating the samples to raise the temperature, the desorption of H2O, CO and CO2 was caused. The amount of desorption was in close relation with the SRF. (Kato, T.)

  19. Friction stir welding characteristics of two aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    刘会杰; 藤井英俊; 前田将克; 野城清

    2003-01-01

    The friction stir welding characteristics of the strain-hardened AA1050-H24 and precipitate-hardened AA2017-T351 aluminum alloys were examined in order to reveal the effects of the alloy properties on the friction stir welding behavior of the base materials. The results show that (1) for AA1050-H24, the weld possesses a smooth surface and clear ripples, there is no elliptical weld nugget in the weld, there is not discernible interface between the stir zone and the thermo-mechanically affected zone(TMAZ), and the internal defect of the weld looks like a long crack and is located in the lower part of the weld; (2) for AA2017-T351, the weld usually possesses a rough surface and visible ripples, the elliptical weld nugget clearly exists in the weld and there is obvious plastic flow and a discernible interface between the nugget and the TMAZ, and the internal defect of the weld is composed of many voids and distributed in the middle part of the weld; (3) the effective ranges of the welding parameters for AA1050-H24 and AA2017-T351 are both narrow, especially for the latter; and (4) the tensile strength efficiencies of the joints for the two typical alloys are similar, i e 79% for AA1050-H24 and 82% for AA2017-T351.

  20. Microstructural features of intergranular brittle fracture and cold cracking in high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D. G.; ten Brink, Gert; Katgerman, L.

    2010-01-01

    Intergranular brittle fracture has been mainly observed and reported in steel alloys and precipitation hardened At-alloys where intergranular precipitates cover a major fraction of the grain boundary area. 7xxx series aluminum alloys suffer from this problem in the as-cast condition when brittle int

  1. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ding-Ni, E-mail: siping4840@126.com [The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234 (China); Shangguan, Qian-Qian [The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234 (China); Xie, Can-Jun [Commercial Aircraft Corporation of China, Ltd., Shanghai 200120 (China); Liu, Fu [Shanghai Aircraft Design and Research Institute of COMAC, Shanghai 201210 (China)

    2015-01-15

    Highlights: • The dynamic mechanical behaviors at various strain rates were measured. • The strain rate hardening effect of 7075-T6 aluminum alloy is significant. • A new Johnson–Cook constitutive model of 7075-T6 aluminum alloy was obtained. • Numerical simulations of tensile tests at different rates were conducted. • Accuracy of the modified Johnson–Cook constitutive equation was proved. - Abstract: The dynamic mechanical behaviors of 7075-T6 aluminum alloy at various strain rates were measured by dynamic tensile tests using the electronic universal testing machine, high velocity testing system and split Hopkinson tensile bar (SHTB). Stress–strain curves at different rates were obtained. The results show that the strain rate hardening effect of 7075-T6 aluminum alloy is significant. By modifying the strain rate hardening term in the Johnson–Cook constitutive model, a new Johnson–Cook (JC) constitutive model of 7075-T6 aluminum alloy was obtained. The improved Johnson–Cook model matched the experiment results very well. With the Johnson–Cook constitutive model, numerical simulations of tensile tests at different rates for 7075-T6 aluminum alloy were conducted. According to tensile loading and stress–strain relation of 7075-T6 aluminum alloy, calculation results were compared with experimental results. Accuracy of the modified Johnson–Cook constitutive equation was further proved.

  2. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Highlights: • The dynamic mechanical behaviors at various strain rates were measured. • The strain rate hardening effect of 7075-T6 aluminum alloy is significant. • A new Johnson–Cook constitutive model of 7075-T6 aluminum alloy was obtained. • Numerical simulations of tensile tests at different rates were conducted. • Accuracy of the modified Johnson–Cook constitutive equation was proved. - Abstract: The dynamic mechanical behaviors of 7075-T6 aluminum alloy at various strain rates were measured by dynamic tensile tests using the electronic universal testing machine, high velocity testing system and split Hopkinson tensile bar (SHTB). Stress–strain curves at different rates were obtained. The results show that the strain rate hardening effect of 7075-T6 aluminum alloy is significant. By modifying the strain rate hardening term in the Johnson–Cook constitutive model, a new Johnson–Cook (JC) constitutive model of 7075-T6 aluminum alloy was obtained. The improved Johnson–Cook model matched the experiment results very well. With the Johnson–Cook constitutive model, numerical simulations of tensile tests at different rates for 7075-T6 aluminum alloy were conducted. According to tensile loading and stress–strain relation of 7075-T6 aluminum alloy, calculation results were compared with experimental results. Accuracy of the modified Johnson–Cook constitutive equation was further proved

  3. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    Science.gov (United States)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  4. Corrosion of an aluminum alloy chilled in flowing seawater and the effect of cathodic prevention

    Energy Technology Data Exchange (ETDEWEB)

    Yabuki, A. [Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama, Higashi-hiroshima, 739-8527 (Japan); Yasunaga, D.T. [Technical Development Group, Kobe Steel Ltd. 9-12, Kita-Shinagawa 5-chome, Shinagawa-ku, Tokyo, 141-0001 (Japan); Shibutani, T.; Shinkai, K. [Machinery and Engineering Company, Kobe Steel Ltd. 3-1, Shinhama 2-chome, Arai, Takasago, Hyogo 676-8670 (Japan)

    2007-05-15

    A new type of jet-in-slit testing apparatus for a specimen, chilled with a peltier element, was developed to investigate corrosion on the heat transfer surface of an aluminum alloy heat exchanger, in contact with a liquefaction gas at cryogenic temperature and in flowing seawater. The specimen can be chilled, even under flowing conditions, using this apparatus. Corrosion tests and polarization measurements of a specimen chilled by a peltier element were carried out in flowing seawater at various temperatures. The effect of chilling a specimen was equivalent to the effect achieved for a test in solution at a lower temperature. The process was dependent on a passive film, formed on the surface of the aluminum alloy specimen, as evidenced by polarization measurements. The extent of corrosion damage increased with increasing temperature of the solution, and showed maximum damage at high temperature. At high temperatures, erosion-corrosion was found at the central part of the specimen, but the effect of flow was negligible at low temperature. Corrosion tests for a cathodically polarized specimen were conducted under flowing conditions. Corrosion damage was accelerated by cathodic polarization at lower temperatures. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. High temperature tribological behaviour of carbon based (B{sub 4}C and DLC) coatings in sliding contact with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Gharam, A. Abou, E-mail: abougha@uwindsor.c [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada); Lukitsch, M.J.; Balogh, M.P. [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, 30500 Mound Road, Warren, MI 48090-9055 (United States); Alpas, A.T. [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada)

    2010-12-30

    Carbon based coatings, particularly diamond-like carbon (DLC) films are known to resist aluminum adhesion and reduce friction at room temperature. This attractive tribological behaviour is useful for applications such as tool coatings used for aluminum forming and machining. However, for those operations that are performed at elevated temperatures (e.g. hot forming) or that generate frictional heat during contact (e.g. dry machining) the suitable coatings are required to maintain their tribological properties at high temperatures. Candidates for these demanding applications include boron carbide (B{sub 4}C) and DLC coatings. An understanding of the mechanisms of friction, wear and adhesion of carbon based coatings against aluminum alloys at high temperatures will help in designing coatings with improved high temperature tribological properties. With this goal in mind, this study focused on B{sub 4}C and a hydrogenated DLC coatings sliding against a 319 grade cast aluminum alloy by performing pin-on-disk experiments at temperatures up to 400 {sup o}C. Experimental results have shown that the 319 Al/B{sub 4}C tribosystem generated coefficient of friction (COF) values ranging between 0.42 and 0.65, in this temperature range. However, increased amounts of aluminum adhesion were detected in the B{sub 4}C wear tracks at elevated temperatures. Focused ion beam (FIB) milled cross sections of the wear tracks revealed that the coating failed due to shearing along the columnar grain boundaries of the coating. The 319 Al/DLC tribosystem maintained a low COF (0.15-0.06) from room temperature up to 200 {sup o}C. This was followed by an abrupt increase to 0.6 at 400 {sup o}C. The deterioration of friction behaviour at T > 200 {sup o}C was attributed to the exhaustion of hydrogen and hydroxyl passivants on the carbon transfer layer formed on the Al pin.

  6. High temperature tribological behaviour of carbon based (B4C and DLC) coatings in sliding contact with aluminum

    International Nuclear Information System (INIS)

    Carbon based coatings, particularly diamond-like carbon (DLC) films are known to resist aluminum adhesion and reduce friction at room temperature. This attractive tribological behaviour is useful for applications such as tool coatings used for aluminum forming and machining. However, for those operations that are performed at elevated temperatures (e.g. hot forming) or that generate frictional heat during contact (e.g. dry machining) the suitable coatings are required to maintain their tribological properties at high temperatures. Candidates for these demanding applications include boron carbide (B4C) and DLC coatings. An understanding of the mechanisms of friction, wear and adhesion of carbon based coatings against aluminum alloys at high temperatures will help in designing coatings with improved high temperature tribological properties. With this goal in mind, this study focused on B4C and a hydrogenated DLC coatings sliding against a 319 grade cast aluminum alloy by performing pin-on-disk experiments at temperatures up to 400 oC. Experimental results have shown that the 319 Al/B4C tribosystem generated coefficient of friction (COF) values ranging between 0.42 and 0.65, in this temperature range. However, increased amounts of aluminum adhesion were detected in the B4C wear tracks at elevated temperatures. Focused ion beam (FIB) milled cross sections of the wear tracks revealed that the coating failed due to shearing along the columnar grain boundaries of the coating. The 319 Al/DLC tribosystem maintained a low COF (0.15-0.06) from room temperature up to 200 oC. This was followed by an abrupt increase to 0.6 at 400 oC. The deterioration of friction behaviour at T > 200 oC was attributed to the exhaustion of hydrogen and hydroxyl passivants on the carbon transfer layer formed on the Al pin.

  7. Standard guide for conducting exfoliation corrosion tests in aluminum alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This guide differs from the usual ASTM standard in that it does not address a specific test. Rather, it is an introductory guide for new users of other standard exfoliation test methods, (see Terminology G 15 for definition of exfoliation). 1.2 This guide covers aspects of specimen preparation, exposure, inspection, and evaluation for conducting exfoliation tests on aluminum alloys in both laboratory accelerated environments and in natural, outdoor atmospheres. The intent is to clarify any gaps in existent test methods. 1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  8. Compressive formability of 7075 aluminum alloy rings under hydrostatic pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Gang; WANG Li-liang; YUAN Shi-jian; WANG Zhong-ren

    2006-01-01

    In order to investigate the influence of hydrostatic pressure on compression limit of the ring, numerical simulation and experimental research were carried out. The effect of hydrostatic pressure on the deformation of aluminum alloy 7075 ring was obtained by numerical simulation. The die set for compressing ring under high hydrostatic pressure was designed and manufactured. Experimental results show that the compression limit increases linearly as the hydrostatic pressure increases in a certain range. At 100 MPa the maximum compressive strain is increased by 32.42%. At strain limit, the cracks initiate from the corner of the outer wall to the middle of the inner wall along the direction of the maximum shear stress.

  9. Subsequent yield loci of 5754O aluminum alloy sheet

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-bo; WAN Min; WU Xiang-dong; YAN Yu

    2009-01-01

    Complex loading paths were realized with cruciform specimens and biaxial loading testing machine. Experimental method for determining the subsequent yield locus of sheet metal was established. With this method, the subsequent yield loci of 5754O aluminum alloy sheet were obtained under complex loading paths. Theoretical subsequent yield loci based on Yld2000-2d yield criterion and three kinds of hardening modes were calculated and compared with the experimental results. The results show that the theoretical subsequent yield loci based on mixed hardening mode describe the experimental subsequent yield loci well, whereas isotropic hardening mode, which is widely used in sheet metal forming fields, predicts values larger than the experimental results. Kinematic hardening mode predicts values smaller than the experimental results and its errors are the largest.

  10. Amorphous coatings deposited on aluminum alloy by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2005-01-01

    Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 μm/min if the current density is 0.9 mA/mm2. XRD results show that the PEO coatings are amorphous in the current density range of 0.3 - 0.9mA/mm2. EDS results show that the coatings are composed of O, Si and Al elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.

  11. Microstructural stability of ultrafine grained cold sprayed 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Champagne, V.R. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-01-30

    The microstructural stability of ultrafine grained (UFG) cold spray 6061 aluminum deposits produced by high pressure cold spray were investigated by in situ heating to a fully annealed state via a hot-stage transmission electron microscope (TEM). It was possible to observe the precise locations and temperatures of different microstructural changes, like dislocation movement and other restoration processes. Even after heating up to the annealing temperature for this alloy, the deposited layer in the perpendicular direction was found to preserve the UFG structures, which were the result of different recrystallization mechanisms caused by the high strains present during cold spraying. Extensive solute segregation at the grain boundaries acted as an obstruction for grain boundary migration in this direction, thereby preventing grain growth. However, in the direction parallel to the deposited surface, the UFGs were not resistant to grain coursing like the other direction, since the grain boundaries had much less solute segregation.

  12. Applications of pattern recognition in aluminum alloy texture characterization

    Science.gov (United States)

    Liu, Guizhong; Rehbein, D. K.; Foley, James C.; Thompson, R. B.

    2000-05-01

    This paper presents a methodology to extract texture information in Aluminum alloys using pattern recognition algorithm. The orientation of the samples can be obtained by the orientation Image Microscope (OIM) technique. The ISO DATA pattern recognition algorithm is implemented to classify the OIM data into different clusters. Based on the classification results, the probability density function (pdf) is estimated. Then, the pdf is expanded as a series of Legendre functions with coefficients, i.e., the orientation distribution coefficients (ODC) as texture parameters. Three of these ODC's are of special interests, namely W400, W420, and W440. This paper includes results from ultrasonic NDE and this novel algorithm.—Ames Laboratory is operated for U.S. Department of Energy by Iowa State University under Contract W-7405-ENG-82. This work was supported by the Office of Basic Energy Sciences as a part of the Center of Excellence of the Synthesis and Processing of Advanced Materials.

  13. High cycle fatigue characteristics of 2124-T851 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xue; YIN Zhimin; NIE Bo; ZHONG Li; PAN Qinglin; JIANG Feng

    2007-01-01

    The fatigue crack growth rate, fracture toughness and fatigue S-N curve of 2124-T851 aluminum alloy at high cycle fatigue condition were measured and fatigue fracture process and fractography were studied using optical microscopy (OM), X-ray diffraction (XRD) technique, trans-mission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that at room tempera-ture and R = 0.1 conditions, the characteristics of fatigue fracture could be observed. Under those conditions, the fatigue strength and the fracture toughness of a 2124-T851 thick plate is 243 MPa and 29.64 MPa·m1/2,respectively.At high cycle fatigue condition, the higher the stress amplitude,the wider the space between fatigue striations, the faster the rate of fatigue crack developing and going into the intermittent fracture area, and the greater the ratio between the intermittent fracture area and the whole fracture area.

  14. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    Science.gov (United States)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  15. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    Science.gov (United States)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  16. Interface properties and phase formation between surface coated SKD61 and aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Se-Weon CHOI; Young-Chan KIM; Se-Hun CHANG; Ik-Hyun OH; Joon-Sik PARK; Chang-Seog KANG

    2009-01-01

    The intermediate phase formation and surface protection effects between SKD61 die mold alloys and aluminum alloys were investigated during a simulated die-casting process. The surface coatings of SKD61 alloy were carried out via Si pack cementation coatings at 900 ℃ for 10 h and the e-FeSi phase formed. When the coated SKD61 alloy was dipped in the liquid aluminum alloy (ALDC12), the surface coated SKD61 alloys showed better surface properties compared with uncoated SKD61 alloys, i.e., the intermediate phases (FeSiAl compound) were not produced for the coated SKD61 alloy. The coating layer of e-FeSi served as a diffusion barrier for the formation of FeSiAl compounds.

  17. Effects of zincate treatment on adhesion of electroless Ni-P coating onto various aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Makoto HINO; Koji MURAKAMI; Yutaka MITOOKA; Ken MURAOKA; Teruto KANADANI

    2009-01-01

    The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined. Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element. The zinc deposits in the 2nd zincate treatment became thinly uniform, and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element. XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid. This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.

  18. Corrosion Behavior of Commercial Aluminum Alloy Processed by Equal Channel Angular Pressing

    OpenAIRE

    Atef Korchef; Abdelkrim Kahoul

    2013-01-01

    A commercial aluminum alloy was subjected to severe plastic deformation through equal channel angular pressing (ECAP). The alloy contains a low volume fraction of α-AlFeSi located essentially at the grain boundaries. The corrosion behavior of the ECAP’ed alloy was investigated in NaCl solution using potentiodynamic polarization and immersion tests. The effects of scan rate and NaCl concentration on the alloy susceptibility to corrosion were also studied. The results obtained were compared wit...

  19. In-plane anisotropy of 1545 aluminum alloy sheet

    Institute of Scientific and Technical Information of China (English)

    PENG Yong-yi; YIN Zhi-min; YANG Jin; DU Yu-xuan

    2005-01-01

    The microstructures and the tensile mechanical properties in the rolling plane of 1545 aluminum alloy sheet at different orientations with respect to the rolling direction were studied by means of tensile test,X-ray diffractometer(XRD),optical microscope and transmission electron microscope.The in-plane anisotropy of tensile mechanical properties was calculated and the inverse pole figures of the rolling plane,transversal section and longitudinal section were obtained by Harris method.The results show that the 1545 Al alloy sheet has remarkable in-plane anisotropy of mechanical properties and the main texture component is{110}texture.On the basis of the model that regards the sheet containing only{110}texture as a monocrystal,the relationship of in-plane anisotropy and the anisotropy of crystallography was analyzed.The study shows that it is the combined effects of the anisotropy of crystallography and microstructures that cause the in-plane anisotropy of mechanical properties,but the main cause is the crystallographic texture.

  20. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Zhenjiang Watercraft College, Zhenjiang 212000, Jiangsu (China); Wu, Jie [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Qu, Yao; Yang, Chaolin; Wang, Bin; Wu, Xianying [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-14

    A plasma electrolytic oxidation (PEO) process was performed on the 2024 aluminum alloy in silicate electrolyte to fabricate ceramic coatings under a constant voltage. Optical emission spectroscopy (OES) was employed to evaluate the characteristics of plasma discharge during PEO process. The plasma electron temperature and density were obtained by analyzing the spectral lines of OES, and the atomic ionization degree in discharge zone was calculated in terms of Saha thermal ionization equation. The illumination intensity of plasma discharge and the temperature in the interior of alloy were measured. Combining the surface morphology and cross-sectional microstructure with the optical emission spectra and illumination at different discharge stage, a discharge model in the growth of PEO ceramic coatings was proposed. It is found that there are two discharge modes of type A with small spark size and type B with large spark size, and the latter only appears in the intermediate stage of PEO process. The illumination intensity has a maximum value in the initial stage of oxidation with many sparks of discharge type A. The electron temperature in plasma discharge zone is about 3000 K–7000 K and atomic ionization degree of Al is about 2.0 × 10{sup −5}–7.2 × 10{sup −3}, which depend on discharge stage. The discharge type B plays a key role on the electron temperature and atomic ionization degree. The electron density keeps stable in the range of about 8.5 × 10{sup 21} m{sup −3}–2.6 × 10{sup 22} m{sup −3}. - Highlights: • The characteristics of PEO plasma discharge was evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • Discharge model for the growth of PEO coatings was proposed. • Temperature in the interior of alloy during PEO process was measured.

  1. Temperature rise and wear of sliding contact of alloy steels

    Science.gov (United States)

    Goswami, Arindam Roy; Sardar, Santanu; Karmakar, Santanu Kumar

    2016-07-01

    The tribo-failure of machine elements under relative sliding velocities is greatly affected by frictional heating and resultant contact temperature rise. Nevertheless, the tribo-failure of automotive components is a combined effect of mechanical, thermal and chemical phenomena. Over the decades, there have been developed a number of different mathematical models for predicting surface temperature rise at sliding contact under different geometries of asperity contacts and operating conditions. The experimental investigation is still relevant today to find out the surface temperature rise at sliding contact along with the outcomes of friction and wear under various operating conditions for real time applications. The present work aims at finding average surface temperature rise at different sliding velocities, normal loads with different surface roughness experimentally. It also involves to prepare two different rough surfaces of alloy steels and to study their influences in the process of generating contact temperature rise under a given operating conditions.

  2. Study on Hot Deformation Behavior of 7085 Aluminum Alloy during Backward Extrusion Process

    Directory of Open Access Journals (Sweden)

    R. B. Mei

    2015-01-01

    Full Text Available Compression test was carried out and the true stress-strain curves were obtained from the hot compression of 7085 alloy. A numerical simulation on the deformation behavior of 7085 aluminum alloy during the backward extrusion was also performed by finite element method. The results show that dynamic recrystallization occurs in the hot compression of 7085 alloy and the peak stress reaches higher values as the strain rate increases and deformation temperature decreases. The backward extrusion processes include contact deformation, initial deformation, and steady deformation. Severe plastic deformation of shear and compression occurs when the metal flowed into the channel between fillet of punch and wall of die so that the grain size can be refined by backward extrusion. The deformation in the region of top of wall is too small to meet the mechanical properties of requirements and the metal usually needs to be trimmed. The experiments with the same parameters as simulation had been carried out and the experimental cup after extrusion has better quality.

  3. Quantification of recrystallization texture evolution in cold rolled AA 5182 aluminum alloy

    International Nuclear Information System (INIS)

    The evolution of recrystallization textures in cold rolled AA 5182 aluminum alloy was investigated by X-ray diffraction. The transformation kinetics of recrystallization textures during isothermal annealing was quantified by using an Avrami type equation

  4. Quantification of recrystallization texture evolution in cold rolled AA 5182 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.C.; Zhai, T.; Man, C.-S.; Morris, J.G

    2003-09-15

    The evolution of recrystallization textures in cold rolled AA 5182 aluminum alloy was investigated by X-ray diffraction. The transformation kinetics of recrystallization textures during isothermal annealing was quantified by using an Avrami type equation.

  5. Aluminum-Lithium Alloy 2050 for Reduced-Weight, Increased-Stiffness Space Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Touchstone Research Laboratory, along with Alcan Rolled Products ? Ravenswood WV, has identified the Aluminum-Lithium Alloy 2050 as a potentially game-changing...

  6. ENVIRONMENTALLY COMPLIANT CORROSION-ACTIVATED INHIBITOR SYSTEM FOR ALUMINUM ALLOYS - PHASE I

    Science.gov (United States)

    The federal government is estimated to spend $1 billion on painting/repainting aircraft annually. Aircraft have surfaces composed of aluminum alloys that are highly susceptible to corrosion and must be protected with corrosion-preventative treatments that typically conta...

  7. Computational Modeling aided Near Net Shape Manufacturing for Aluminum Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will focus on developing and validating computational models for near-net shape processing of aluminum alloys. Computational models will be developed...

  8. Statistical analysis of constituent particles in 7075-T6 aluminum alloy

    Science.gov (United States)

    Harlow, D. G.; Wei, R. P.; Wang, M. Z.

    2006-11-01

    Pitting corrosion is a primary degradation mechanism that affects the durability and integrity of aluminum alloy structures especially in aircraft. The heterogeneity of aluminum alloys is directly responsible for pitting corrosion because about 200 constituent particles per mm2 are on polished surfaces. Corrosion pits commence at surface particles and evolve into severe pits by sustained growth through particle clusters. Severe pits are nuclei for subsequent corrosion fatigue cracking. Thus, heterogeneous clusters of constituent particles are critical to the quality of aluminum alloys subjected to deleterious environments. Models for structural reliability including corrosion fundamentally depend on quantitative descriptions of the spatial statistics of the particles and particle clusters, including their location, size, and density. The primary purpose of this effort is to statistically estimate the distribution functions of the key geometrical properties of the constituent particles in 7075-T6 aluminum alloy and their role in pitting corrosion.

  9. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  10. A novel simple approach to preparation of superhydrophobic surfaces of aluminum alloys

    Science.gov (United States)

    Xie, Degang; Li, Wen

    2011-11-01

    A novel two-step methodology is successfully developed to fabricate superhydrophobic surfaces of aluminum alloys. The essential procedure is that samples are first immersed and etched in a boiling aqueous solution of NaOH for 5 min without preprocessing, and then they are modified for 30 min in an ethanol solution of lauric acid, cheaper and more efficient than the fluorinated silane frequently adopted by other researchers. If the concentration of NaOH solution is larger than 5 g/L, the contact angle of the prepared surfaces will be larger than 150° with a negligible hysteresis. Such a fast, low-cost, and reliable method for superhydrophobic surfaces implies significant promising industrial applications.

  11. Simulation of 3D chip shaping of aluminum alloy 7075 in milling processes

    Institute of Scientific and Technical Information of China (English)

    DONG Hui-yue; KE Ying-lin

    2005-01-01

    By adopting an equivalent geometry model of machining process and considering thermo-plastic properties of the work material, a finite element method(FEM) to study oblique milling process of aluminum alloy with a double-edge tool was presented. In the FEM, shear flow stress was determined by material test. Re-meshing technology was used to represent chip separation process. Comparing the predicted cutting forces with the measured forces shows the 3D FEM is reasonable. Using this FEM, chip forming process and temperature distribution were predicted. Chips obtained by the 3D FEM are in spiral shape and are similar to the experimental ones. Distribution and change trend of temperature in the tool and chip indicate that contact length between tool rake face and chip is extending as tool moving forward. These results confirm the capability of FEM simulation in predicting chip flow and selecting optimal tool.

  12. Superplasticity of the aluminum alloys containing the Al{sub 3}Ni eutectic particles

    Energy Technology Data Exchange (ETDEWEB)

    Portnoy, V.K. [Department of Physical Metallurgy Non-Ferrous Metals, National University of Science and Technology ' ' MISIS' ' , Moscow (Russian Federation); Mikhaylovskaya, A.V.

    2012-09-15

    The structures and parameters of superplasticity of aluminum alloys containing fine and coarse eutectic Al{sub 3}Ni particles were investigated. Traditional hot and cold rolling were used for sheet producing. The research alloys have low- or high - alloying solid solution. Superplasticity characterization of the alloy with high-alloying solid solution is much better beside alloys with low-alloying solid solution. Alloying by zirconium improves superplasticity in some investigated alloys. Some alloys with partially recrystallized structure show d = 500-700% at T = 0.95 Tm with the constant strain rates to the range of (1.10{sup -3}-1.10{sup -2}) s{sup -1}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  14. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    Science.gov (United States)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  15. Corrosion Damage of Aluminum Alloy in Unsymmetric Uimethyl Hydrazine and Dinitrogen Tetroxide Liquid Propellant

    Directory of Open Access Journals (Sweden)

    Zhang Youhong

    2016-01-01

    Full Text Available The high strength aluminum alloy double cantilever beam (DCB specimens were corroded under the conditions of different liquid propellant environment. After the stress corrosion exposure, the scanning electron microscopy and energy-dispersal analyses on corrosion damage were carried out. The corrosion damage sensitivity and the stress corrosion character of the LD10 high strength aluminum alloy in N2O4, UDMH and 3.5% NaCl corrosion solution were analyzed.

  16. Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens

    Science.gov (United States)

    Dawicke, D. S.; Pollock, W. D.

    1997-01-01

    A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.

  17. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  18. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  19. Numerical simulation of different pulse width of long pulsed laser on aluminum alloy

    Science.gov (United States)

    Li, Mingxin; Jin, Guangyong; Zhang, Wei; Chen, Guibo; Bi, Juan

    2015-03-01

    Established a physical model to simulate the melt ejection induced by long pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. This simulation is based on the interaction between single pulsed laser with different pulse width and different peak energy and aluminum alloy material. By comparing the theoretical simulation data and the actual test data, we discover that: the theoretical simulation curve is well consistent with the actual experimental curve, this two-dimensional model is with high reliability; when the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature at the center of aluminum alloy surface reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole appears on the surface of the target, an increment of the keyhole, the maximum temperature at the center of aluminum alloy surface gradually moves inwardly. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  20. Machining studies of die cast aluminum alloy-silicon carbide composites

    Science.gov (United States)

    Sornakumar, Thambu; Kathiresan, Marimuthu

    2010-10-01

    Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.

  1. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys

    International Nuclear Information System (INIS)

    Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys was characterized by transmission electron microscopy. In the weld nugget zone and the thermo-mechanically affected zone some metastable precipitates overaged to equilibrium phase while others solutionized into the aluminum solid solution. In the heat-affected zone the precipitates coarsened.

  2. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-05-01

    Full Text Available Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  3. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    Science.gov (United States)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  4. Calculation of Liquidus Temperature for Aluminum and Magnesium Alloys Applying Method of Equivalency

    Directory of Open Access Journals (Sweden)

    Mile B. Djurdjević

    2013-01-01

    Full Text Available The purpose of this paper is to develop a mathematical equation, which will be able to accurately predict the liquidus temperature of various aluminum and magnesium cast alloys on the basis of their known chemical compositions. An accurate knowledge of liquidus temperature permits a researcher to predict a variety of physical parameters pertaining to a given alloy. The analytical expressions presented in this paper are based on the “method of equivalency.” According to this concept, the influence of any alloying element on the liquidus temperature of an aluminum and/or magnesium alloy can be translated into the equivalent influence of a reference element. Silicon as a reference element has been chosen for aluminum alloys and aluminum for magnesium alloys. The sum of the equivalent concentrations for other elements, when added to the influence of the actual reference element is used to calculate the liquidus temperature of the alloy. The calculated liquidus temperatures for wide ranges of alloy chemical compositions show a good correlation with corresponding measured liquidus temperatures.

  5. Selection Of Cutting Inserts For Aluminum Alloys Machining By Using MCDM Method

    Science.gov (United States)

    Madić, Miloš; Radovanović, Miroslav; Petković, Dušan; Nedić, Bogdan

    2015-07-01

    Machining of aluminum and its alloys requires the use of cutting tools with special geometry and material. Since there exists a number of cutting tools for aluminum machining, each with unique characteristics, selection of the most appropriate cutting tool for a given application is very complex task which can be viewed as a multi-criteria decision making (MCDM) problem. This paper is focused on multi-criteria analysis of VCGT cutting inserts for aluminum alloys turning by applying recently developed MCDM method, i.e. weighted aggregated sum product assessment (WASPAS) method. The MCDM model was defined using the available catalogue data from cutting tool manufacturers.

  6. Iron-aluminum alloys having high room-temperature and method for making same

    Science.gov (United States)

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  7. Corrosion Behavior of Commercial Aluminum Alloy Processed by Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    Atef Korchef

    2013-01-01

    Full Text Available A commercial aluminum alloy was subjected to severe plastic deformation through equal channel angular pressing (ECAP. The alloy contains a low volume fraction of α-AlFeSi located essentially at the grain boundaries. The corrosion behavior of the ECAP’ed alloy was investigated in NaCl solution using potentiodynamic polarization and immersion tests. The effects of scan rate and NaCl concentration on the alloy susceptibility to corrosion were also studied. The results obtained were compared with those of the nonpressed alloy. ECAP leads to an intensive grain refinement accompanied by an increased dislocation density. All electrochemical tests confirm that corrosion resistance of the alloy remarkably diminished with increasing the ECAP number of passes. This is presumably due to the breakdown of the α-AlFeSi after ECAP leading to higher number of galvanic cells and enhanced dissolution of the aluminum matrix.

  8. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  9. Accelerated corrosion test and corrosion failure distribution model of aircraft structural aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-lin; MU Zhi-tao; JIN Ping

    2006-01-01

    Based on corrosion damage data of 10 years for a type of aircraft aluminum alloy, the statistical analysis was conducted by Gumbel, Normal and two parameters Weibull distribution function. The results show that aluminum alloy structural member has the corrosion history of pitting corrosion-intergranular corrosion-exfoliation corrosion, and the maximum corrosion depth is in conformity to normal distribution. The accelerated corrosion test was carried out with the complied equivalent airport accelerated environment spectrum. The corrosion damage failure modes of aluminum alloy structural member indicate that the period of validity of the former protective coating is about 2.5 to 3 years, and that of the novel protective coating is about 4.0 to 4.5 years. The corrosion kinetics law of aluminum spar flange was established by fitting corrosion damage test data. The law indicates two apparent corrosion stages of high strength aluminum alloy section material: pitting corrosion and intergranular corrosion/exfoliation corrosion.The test results agree with the statistical fit result of corrosion data collected from corrosion member in service. The fractional error is 5.8% at the same calendar year. The accelerated corrosion test validates the corrosion kinetics law of aircraft aluminum alloy in service.

  10. Grain refining potency of LaB6 on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Pengting; TIAN Wenjie; WANG Dong; LIU Xiangfa

    2012-01-01

    Al-LaB6 alloy was successfully prepared by aluminum melt reaction method.Microstructure analysis of this alloy was carried out by field emission scanning electron microscopy (FESEM),Raman spectroscopy and transmission electron microscopy (TEM).It was found that cubic LaB6 particles were highly dispersed in aluminum matrix with a uniform edge length of about 4.5 μm.Grain refining potency of LaB6 on commercial pure aluminum was also investigated.It was shown that LaB6 could act as an effective and stable nucleation substrate for α-Al during solidification process,due to their crystallographic similarity.The coarse grains of commercial pure aluminum were obviously refined to small equiaxed ones by addition of 0.5% Al-5LaB6 alloy at 720 ℃.

  11. Rheological behavior of continuous roll casting process of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAN Li-hua; ZHONG Jue; LI Xiao-qian; HUANG Ming-hui

    2005-01-01

    The rheological behavior of aluminum alloy and its influencing factors in physical simulation of continuous roll casting process were studied by using a Gleeble-1500 thermal-mechanical simulation tester with a set of special clamp system. The relationships between the flow stress and the strain rate in the deformation process of simulating roll casting experiment were obtained. The results show that four different characteristic stages exist in the temperature range of the whole rheological process. The first occurs when the temperature is higher than 600℃, which belongs to the creep deformation stage; the second occurs when the temperature lies in the range of 500-600℃, and it can be regarded as the high temperature and low stress level deformation stage; the third occurs when the temperature decreases to the range of 300-500℃, it is considered to be the middle stress level deformation stage; the last occurs when the temperature is less than 300℃ and the strain rate is less than 1.00 s -1, it belongs to middle stress level deformation stage. But when the strain rate is larger than 1.00 s -1, it belongs to the high stress level deformation stage. And the relative constitutive models suitable for the four different stages of continuous roll casting process were established through multivariate linear regression analysis of the experimental data.

  12. Analysis on microstructure and mechanical properties of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Dissimilar metal joining between 5A02 aluminum alloy and AISI 304 stainless steel was conducted by gas tungsten arc welding with ZnAl15 and AlSi12 flux-cored filler metals,and the effect of the filler metal composition on the microstructures and mechanical properties of the joints were investigated.The results revealed that the tensile strength of as-welded joints made with ZnAl15 and AlSi12 flux-cored filler metals was 121 MPa and 162 MPa respectively.After annealed at 280 ℃ for 30 min,the tensile strength of joints made with ZnAl15 flux-cored filler metal reached 180 MPa,while that with AlSi12 flux-cored filler metal was 166 MPa.The interfacial layer in the weld made with ZnAl15 filler metal was comprised of Znx and [Fe2Al5]Znx,and ternary intermetallic compound Al7.4Fe2Si was found in the interfacial layer in the joint made with AlSi12 flux-cored filler metal.The thickness of the interfacial layers made with both filler metal was less than 10 μm.

  13. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; LUO Zhen; SHAN Ping; BU Xianzheng; YUAN Shuxian; AO Sansan

    2010-01-01

    In this paper, the sensors array technique is applied to the quality detection of aluminum alloy spot weld-ing. The sensors array has three forms, i.e., linear magnetic sensors array, annular magnetic sensors array and cross magnetic sensors array. An algorithm based on principal component analysis is proposed to extract the signal eigen-values. The three types of magnetic sensors array are used in the experiment of monitoring the signal. After the eigen-values are extracted, they are used to build a relationship with the nugget information. The result shows that when the distance between the core of the array and the pole is 60 mm, the arrays work best. In this case, when the eigenvalues' range of the linear array is 0.006 5-0.015 1, the quality of the spots is eligible. To the annular and cross array, when the ranges are 0.082 9—0.131 6 and 0.085 1—0.098 2 respectively, the nugget quality is eligible.

  14. Cooling Rate Determination in Additively Manufactured Aluminum Alloy 2219

    Science.gov (United States)

    Brice, Craig A.; Dennis, Noah

    2015-05-01

    Metallic additive manufacturing processes generally utilize a conduction mode, welding-type approach to create beads of deposited material that can be arranged into a three-dimensional structure. As with welding, the cooling rates in the molten pool are relatively rapid compared to traditional casting techniques. Determination of the cooling rate in the molten pool is critical for predicting the solidified microstructure and resultant properties. In this experiment, wire-fed electron beam additive manufacturing was used to melt aluminum alloy 2219 under different thermal boundary conditions. The dendrite arm spacing was measured in the remelted material, and this information was used to estimate cooling rates in the molten pool based on established empirical relationships. The results showed that the thermal boundary conditions have a significant effect on the resulting cooling rate in the molten pool. When thermal conduction is limited due to a small thermal sink, the dendrite arm spacing varies between 15 and 35 µm. When thermal conduction is active, the dendrite arm spacing varies between 6 and 12 µm. This range of dendrite arm spacing implies cooling rates ranging from 5 to 350 K/s. Cooling rates can vary greatly as thermal conditions change during deposition. A cooling rate at the higher end of the range could lead to significant deviation from microstructural equilibrium during solidification.

  15. Strengthening of Aluminum Alloy 2219 by Thermo-mechanical Treatment

    Science.gov (United States)

    Li, Xifeng; Lei, Kun; Song, Peng; Liu, Xinqin; Zhang, Fei; Li, Jianfei; Chen, Jun

    2015-10-01

    Strengthening of aluminum alloy 2219 by thermo-mechanical treatment has been compared with artificial aging. Three simple deformation modes including pre-stretching, compression, and rolling have been used in thermo-mechanical treatment. The tensile strength, elongation, fracture feature, and precipitated phase have been investigated. The results show that the strengthening effect of thermo-mechanical treatment is better than the one of artificial aging. Especially, the yield strength significantly increases with a small decrease of elongation. When the specimen is pre-stretched to 8.0%, the yield strength reaches 385.0 MPa and increases by 22.2% in comparison to the one obtained in aging condition. The maximum tensile strength of 472.4 MPa is achieved with 4.0% thickness reduction by compression. The fracture morphology reveals locally ductile and brittle failure mechanism, while the coarse second-phase particles distribute on the fracture surface. The intermediate phases θ″ or θ' orthogonally precipitate in the matrix after thermo-mechanical treatment. As compared to artificial aging, the cold plastic deformation increases distribution homogeneity and the volume fraction of θ'' or θ' precipitates. These result in a better strengthening effect.

  16. Friction stir welding of 5052 aluminum alloy plates

    Institute of Scientific and Technical Information of China (English)

    Yong-Jai KWON; Seong-Beom SHIM; Dong-Hwan PARK

    2009-01-01

    Friction stir welding between 5052 aluminum alloy plates with a thickness of 2 mm was performed. The tool for welding was rotated at speeds ranging from 500 to 3 000 r/min under a constant traverse speed of 100 mm/min. The results show that at all tool rotation speeds, defect-free welds are successfully obtained. Especially at 1 000, 2 000 and 3 000 r/min, the welds exhibit very smooth surface morphologies. At 500, 1 000, and 2 000 r/min, onion ring structure is clearly observed in the friction-stir-welded zone (SZ). In addition, the onion ring structure region becomes wider as the tool rotation speed is increased. The gain size in the SZ is smaller than that in the base metal, and is decreased with a decrease of the tool rotation speed. In all tool rotation speeds, the SZ exhibits higher average hardness than the base metal. Especially at 500 r/min, the average hardness of the SZ reaches a level about 33% greater than that of the base metal. At 500, 1 000 and 2 000 r/min, the tensile strength of the friction stir welded (FSWed) plates is similar to that of the base metal (about 204 Mpa). The elongation of the FSWed plates is lower than that of the base metal (about 22%). However, it is noticeable that the maximum elongation of about 21% is obtained at 1 000 r/min.

  17. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    Science.gov (United States)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  18. Influence of Shot Peening on Failure of an Aluminum Alloy Exposed to Aggressive Aqueous Environments

    Science.gov (United States)

    Lv, Shengli; Cu, You; Zhang, Wei; Tong, Xiaoyan; Srivatsan, T. S.; Gao, Xiaosheng

    2013-06-01

    Pre-corrosion damage tests were performed on the high strength aluminum alloy (Al-Zn-Mg-Cu) that was subject to shot peening surface treatment. The tests were performed for different time levels and compared one-on-one with the performance and characteristics of the non-shot-peened alloy. The residual stress induced by the shot peening surface treatment for two different intensity levels was measured using the method of incremental drilling of holes. Based on an observation of morphology of corrosion experienced by the aluminum alloy the depth of corrosion was measured using a laser displacement sensor. The surface of the aluminum alloy that was shot peened revealed an overall better resistance to pitting while concurrently revealing evidence of partial degradation. The depth of degradation is related to the residual stress that is induced in the aluminum alloy sample by the shot peening treatment. The key mechanisms that control damage during corrosion of the shot-peened aluminum alloy can be divided into the distinct stages of (a) initial occurrence of uniform corrosion followed by (b) the generation of degradation, and (c) culminating in the initiation of pitting once the depth of degradation reaches a certain level.

  19. Investigation on the Explosive Welding of 1100 Aluminum Alloy and AZ31 Magnesium Alloy

    Science.gov (United States)

    Chen, Pengwan; Feng, Jianrui; Zhou, Qiang; An, Erfeng; Li, Jingbo; Yuan, Yuan; Ou, Sanli

    2016-07-01

    The undesirable properties of magnesium alloys include easy embrittlement, low oxidation resistance, and difficulty in welding with other materials. Their application in industry is, therefore, restricted. In this paper, plates of 1100 aluminum alloy and AZ31 magnesium alloy were successfully welded together using the explosive welding technique. The influences of the welding parameters on the weld quality were investigated. The surface morphology and microstructure near the weld interface were examined by optical microscopy, scanning electron microscopy (equipped with energy-dispersive x-ray spectroscopy), and transmission electron microscopy. The experimental results demonstrated the typical wavy bonding interface. In addition, elemental diffusion with a thickness of approximately 3 μm occurred near the bonding interface. The two plates were joined together well at the atomic scale. Nanograins with a size of approximately 5 nm were observed in the diffusion layer. The microhardness and shear strength were measured to evaluate the mechanical properties, which confirmed that a high quality of bonding was acquired.

  20. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bochkareva, Anna, E-mail: avb@ispms.tsc.ru; Lunev, Aleksey, E-mail: agl@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Barannikova, Svetlana, E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Gorbatenko, Vadim, E-mail: gvv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Shlyakhova, Galina, E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Zuev, Lev, E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined for the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.

  1. Material effects in fretting wear: application to iron, titanium, and aluminum alloys

    Science.gov (United States)

    Blanchard, P.; Colombie, C.; Pellerin, V.; Fayeulle, S.; Vincent, L.

    1991-07-01

    Fretting wear tests were performed on several alloys (low alloyed and stainless steels, Ti6A14V titanium alloy, 2024 and 7075 aluminum alloys) slid against themselves in air under relatively low stresses for various displacements (±15 to ±50 μm). Friction logs, where tangential force is plotted as a function of displacement and number of cycles, were used to characterize the fretting behavior of the materials. Wear scars and cross sections were characterized by optical and scanning electron microscopy. Depending on the amplitude of displacement, sticking, partial slip, or gross slip occurs at the interface. Gross slip leads to debris formation. Metallic particles are detached from localized, very highly deformed areas whose properties and structures are different from those of the initial material. Sticking is observed on titanium and aluminum alloys tested under the smallest displacement. Samples are only deformed elastically. During partial slip, cracks can initiate and propagate in titanium and aluminum alloys. Millimeters-long cracks are observed on aluminum alloys after 106 cycles. Mechanisms for crack formation and propagation are described in terms of fatigue properties.

  2. Aluminum base alloy powder metallurgy process and product

    Science.gov (United States)

    Paris, Henry G. (Inventor)

    1986-01-01

    A metallurgical method including cooling molten aluminum particles and consolidating resulting solidified particles into a multiparticle body, wherein the improvement comprises the provision of greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn. Aluminum containing greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn.

  3. 铝及铝合金TIG焊接特性%Character of TIG Welding for Aluminum and Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    殷春喜; 黄军庆; 熊震东; 贾翠催

    2011-01-01

    The characters of TIG welding for aluminum and aluminum alloys were described, it includes the shielding gas and groove of TIG welding and the effect of welding process on the weld shape and welding quality.%概述了铝及铝合金TIG焊接技术特性,包括铝及铝合金TIG焊接保护气体、坡口的选择和焊接工艺对焊缝成形和焊接质量的影响.

  4. Impurity control and corrosion resistance of magnesium-aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M. [GM China Lab; Song, GuangLing [ORNL

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  5. Development of Deformation-Semisolid-Casting (D-SSC) Process and Applications to Some Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent advances in the semisolid casting technologies are introduced for aluminum alloys. The advantages of the rheocast and thixocast methods to fabricate alloys with refined spheroidized α-Al particles are described.The deformation-semisolid-casting (D-SSC) process developed by the author's group is presented. The D-SSC process is extremely effective to produce microstructures of refined intermetallic compound particles as well as the spheroidized α-Al particles in the Al-Si based alloys containing highly concentrated Fe. In the D-SSC processed Al-Si-Cu alloy high elongation of about 20% was achieved even contained concentrated impurity of Fe. The D-SSC process is also useful to produce wrought aluminum alloys with microstructures of refined α-Al particles.

  6. Determination of dynamic shear strength of 2024 aluminum alloy under shock compression

    Science.gov (United States)

    Zhang, H. S.; Yan, M.; Wang, H. Y.; Shen, L. T.; Dai, L. H.

    2016-04-01

    A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa), the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.

  7. Determination of dynamic shear strength of 2024 aluminum alloy under shock compression

    Directory of Open Access Journals (Sweden)

    H. S. Zhang

    2016-04-01

    Full Text Available A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa, the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.

  8. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system.

    Science.gov (United States)

    Yang, S S; Lin, J Y; Lin, Y T

    1998-09-01

    To investigate the microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system, aluminum alloys A356, AA 5052, AA 5083 and AA 6061 were chosen as the test alloys and Cladosporium and several fuel-oil contaminated microbes isolated in Taiwan were used as test organisms. Aluminum alloy AA 5083 in fuel-oil/aqueous system was the most susceptible material for microbial corrosion, then followed by aluminum alloys AA 5052 and A356, and AA 6061 was more resistant to microbial aggression. Mixed culture had high capability of corrosion, then followed by Penicillium sp. AM-F5, Fusarium sp. AM-F1, Pseudomonas aeruginosa AM-B5, Ps. fluorescens AM-B9, C. resinae ATCC 22712, Penicillium sp. AM-F2, Candida sp. AM-Y1 and Ps. aeruginosa AM-B11. From energy dispersive spectrometer analysis, aluminum and magnesium contents decreased in the corrosion area, while chlorine and sulfur contents increased. The major organic acid produced in fuel-oil/aqueous system was acetic acid, and the total organic acids content had a positive correlation with the degree of microbial corrosion. PMID:10496152

  9. The Effects of Corrosive Media on Fatigue Performance of Structural Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Huihui Yang

    2016-07-01

    Full Text Available The effects of corrosive media on rotating bending fatigue lives (the cyclic numbers from 104 to 108 of different aluminum alloys were investigated, which involved the corrosion fatigue lives of five kinds of aluminum alloys in air, at 3.5 wt. % and 5.0 wt. % NaCl aqueous solutions. Experimental results indicate that corrosive media have different harmful influences on fatigue lives of different aluminum alloys, in which the differences of corrosion fatigue lives depend strongly on the plastic property (such as the elongation parameter of aluminum alloys and whether to exist with and without fracture mode II. The other various influence factors (such as the dropping corrosive liquid rate, the loading style, and the nondimensionalization of strength of corrosion fatigue lives in three media were also discussed in detail by using the typical cases. Furthermore, fracture morphologies and characteristics of samples, which showed the different fatigue cracking behaviors of aluminum alloys in three media, were investigated by scanning electron microscopy (SEM in this paper.

  10. Study on shear resistance of aluminum alloy I-section members

    Institute of Scientific and Technical Information of China (English)

    Zhen DONG; Qilin ZHANG

    2008-01-01

    The design method for the shear resistance of aluminum alloy I-section members is presented, taking into consideration of the post-buckling strength of webs and the restraint effect of flanges, and the practical design formulas are proposed. The deflection of aluminum alloy I-section members under concentrated load is simulated by using the finite element method, and several design theories are discussed. The relation of shear resistance to the maximum web displacement reflects that the web of aluminum alloy I-section member is under fewer shears buckling force, while the whole member has higher shear resistance. However, the traditional design method is not able to give the real shear resistance of aluminum alloy I-section members. The proposed design formulas for the shear resistance of aluminum alloy I-section members is used to calculate accurately the post-buckling resistance of webs and the shear resistance contribution of flanges. The results are in a great agreement with the test data of Hamoodi M J, Burr C A, Evans H R and the results from Eurocode9 formulas.

  11. Material characterization and finite element simulations of aluminum alloy sheets during non-isothermal forming process

    Science.gov (United States)

    Zhang, Nan

    The utilization of more non-ferrous materials is one of the key factors to succeed out of the constantly increasing demand for lightweight vehicles in automotive sector. Aluminum-magnesium alloys have been identified as the most promising substitutions to the conventional steel without significant compromise in structural stiffness and strength. However, the conventional forming methods to deform the aluminum alloy sheets are either costly or insufficient in formability which limit the wide applications of aluminum alloy sheets. A recently proposed non-isothermal hot stamping approach, which is also referred as Hot Blank - Cold Die (HB-CD) stamping, aims at fitting the commercial grade aluminum alloy sheets, such as AA5XXX and AA7XXX, into high-volume and cost-effective production for automotive sector. In essence, HB-CD is a mutation of the conventional hot stamping approach for boron steel (22MnB5) which deforms the hot blank within the cold tool set. By elevating the operation temperature, the formability of aluminum alloy sheets can be significantly improved. Meanwhile, heating the blank only and deforming within the cold tool sets allow to reduce the energy and time consumed. This research work aims at conducting a comprehensive investigation of HB-CD with particular focuses on material characterization, constitutive modeling and coupled thermo-mechanical finite element simulations with validation. The material properties of AA5182-O, a popular commercial grade of aluminum alloy sheet in automotive sector, are obtained through isothermal tensile testing at temperatures from 25° to 300°, covering a quasi-static strain-rate range (0.001--0.1s-1). As the state-of-the-art non-contact strain measurement technique, digital image correlation (DIC) system is utilized to evaluate the stress-strain curves as well as to reveal the details of material deformation with full-field and multi-axis strain measurement. Material anisotropy is characterized by extracting the

  12. Optimization of Squeeze Casting for Aluminum Alloy Parts

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important

  13. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  14. Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes

    Institute of Scientific and Technical Information of China (English)

    MA Jingling; WEN Jiuba; LI Xudong; ZHAO Shengli; YAN Yanfu

    2009-01-01

    The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-ln sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chlo-fide solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy, resulting in the improved current capacity and efficiency of the alloy. The equivalent circuit based on the EIS experimental data revealed less corrosion and lower adsorbed corrosion pro-duction on the surface of the aluminum alloy with a combination of 1 wt.% Mg and 0.05 wt.% Ti, which suggested that the corrosion behav-ior seemed to be strongly related to the presence of precipitate particles in the aluminum alloy, and moderate amounts of precipitate particles could be beneficial to the electrochemical performance of the aluminum alloy sacrificial anode.

  15. Environmental behavior and stress corrosion characteristics of nano/sub-micron E950 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, Eli; Guinguis, Inbar [Department of Materials Engineering, Ben-Gurion University of the Negev Beer-Sheva (Israel)

    2009-11-15

    The corrosion performance and stress corrosion resistance of E950 Aluminum alloy with nano/sub-micron structure were evaluated in 3.5% NaCl solution. The results obtained indicated that the corrosion and stress corrosion resistance of E950 alloy were relatively reduced compared to that of the conventional coarse-grained alloy (Al-4.65%Mg). In particular, the inherently improved ultimate tensile strength of E950 alloy was significantly decreased under stress corrosion conditions. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  16. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Osami [Muroran it., Hokkaido (Japan)

    2008-06-15

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl{sub 3}. The FeAl{sub 3} particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl{sub 3} particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl{sub 3} free surface was an electrochemical treatment such as cathodic current density of -2 kAm{sup -2} in a 20-30 mass% HNO{sub 3} solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl{sub 3} free particles are examined in a 0.1 kmol/m{sup 3} NaCl solution. It is found that aluminum with free FeAl{sub 3} particles shows higher corrosion resistance than aluminum with FeAl{sub 3} particles.

  17. 铝及铝合金先进焊接技术%Advanced Welding Technology of Aluminum and Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    杨芙; 吕文桂; 张文明

    2012-01-01

    The weldability of aluminum and aluminum alloy and the causes and solutions of welding defects, such as porosity, hot cracks, etc., were analyzed. The research and application of several advanced welding technology for aluminum and aluminum alloy, such as laser welding, electron beam welding, variable polarity plasma arc welding, friction stir welding, etc., were discussed. The development status and tendency for the next few years welding were simply analyzed.%分析了铝及铝合金的焊接性及其在焊接过程中易出缺陷(气孔、热裂纹等)的原因和解决措施;探讨了铝及铝合金的几种先进焊接工艺(激光焊、电子束焊、变极性等离子电弧焊、搅拌摩擦焊等)的研究现状及其应用;分析了铝及铝合金焊接技术的发展状况以及未来几年的前景.

  18. Numerical and experimental study of phase transformation in resistance spot welding of 6082 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Xinxin; SHA Ping; LUO Zhen; LUO Baofa

    2009-01-01

    Resistance spot welding(RSW) is an efficient and convenient joining process for aluminum alloy sheet assembly. Because the RSW has the character of energy concentration and quick cooling rate, the microstructure transformation of the base metal can be confined in the least limit. The material properties and the welding parameters have significant effects on thequality of the nugget. To predict the microstructure evolution in the melted zone and the heat-affected zone, an electrical, thermal, metallurgical and mechanical coupled finite element model is described and applied to simulate the welding process of the 6082 aluminum alloy. Experimental tests are also carried out. The comparison between experimental and numerical results shows that the adopted model is effective enough to well interpret and predict some important phenomena in terms of the phase transformation in spot welding of 6082 aluminum alloy.

  19. Investigation of Stress Corrosion Cracking Initiation of 7A52 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    LI Qi; ZHAO Junjun; ZHANG Ping

    2012-01-01

    The stress corrosion cracking(SCC) behaviour of 7A52 aluminum alloy in air and in 3.5%NaCl solution was researched by slow strain rate test(SSRT) and SEM-EDS.The SCC susceptibility was estimated with the loss of the reduction in area.The experimental results indicate that the SCC susceptibility of 7A52 aluminum alloy in 3.5% chloride solution is the highest at strain rate of 1 × 10-6 s-1.The lowest one is under the condition of 1 × 10-5 s-1.Stress concentration and anode dissolving around Al-Fe-Mn intermetallics initiate micropores which will result in microcracks.The existence of intermetallics in the microstructure may play an important role in understanding the SCC initiation mechanisms of 7A52 aluminum alloy.

  20. Experimental study of corrosion behavior for burnished aluminum alloy by EWF, EBSD, EIS and Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljlhit@126.com [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing, 100191 (China); Hongyun, Luo, E-mail: luo7128@163.com [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing, 100191 (China); Jinpeng, Xie [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing, 100191 (China)

    2013-05-15

    The effect of burnish process on 2024 aluminum alloy was studied by electron work function and electron backscattered diffraction (EBSD). Moreover, the corrosion resistance of thin passive films formed on 2024 aluminum alloy in borate buffer solutions was studied by the electrochemical impedance spectroscopy (EIS), the Mott–Schottky plots and the galvanostatic techniques. The composition of passive films was analyzed by Raman spectra. The results obtained indicated that the impedance increased due to burnish and this was attributed to decreased electron work function and higher current efficiency in the burnished aluminum alloy which led to thicker passive films. It was further supported by Raman spectra experiment. Moreover, the donor and acceptor concentration of passive films and their the semiconductor type have changed due to burnish.

  1. Welding Distortion Prediction in 5A06 Aluminum Alloy Complex Structure via Inherent Strain Method

    Directory of Open Access Journals (Sweden)

    Zhi Zeng

    2016-09-01

    Full Text Available Finite element (FE simulation with inherent deformation is an ideal and practical computational approach for predicting welding stress and distortion in the production of complex aluminum alloy structures. In this study, based on the thermal elasto-plastic analysis, FE models of multi-pass butt welds and T-type fillet welds were investigated to obtain the inherent strain distribution in a 5A06 aluminum alloy cylindrical structure. The angular distortion of the T-type joint was used to investigate the corresponding inherent strain mechanism. Moreover, a custom-designed experimental system was applied to clarify the magnitude of inherent deformation. With the mechanism investigation of welding-induced buckling by FE analysis using inherent deformation, an application for predicting and mitigating the welding buckling in fabrication of complex aluminum alloy structure was developed.

  2. A Study on Friction Stir Welding of 12mm Thick Aluminum Alloy Plates

    Institute of Scientific and Technical Information of China (English)

    Deepati Anil Kumar; Pankaj Biswas; Sujoy Tikader; M. M. Mahapatra; N. R. Mandal

    2013-01-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  3. Welding phenomena of aluminum-copper alloy in electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Nogi, K.; Sumi, Y.; Aoki, Y.; Yamamoto, T.; Fujii, H. [Osaka Univ., Ibaraki (Japan). Joining and Welding Res. Inst.

    2000-07-01

    Electron beam welding of an aluminum-copper alloy (2219) was performed using a small-sized electron beam welding apparatus under microgravity and in a high vacuum. The effect of gravity on various welding phenomena and the effect of the aluminum oxide film on the formation of bubbles were investigated. A much flatter weld bead is formed in the microgravity environment than in the terrestrial environment. When an aluminum alloy is exposed to atomic oxygen, the thickness of the aluminum oxide film increases and porosity after welding also increases. It is thought that the porosity is formed by the Al{sub 2}O gas through the reaction between Al{sub 2}O{sub 3} and Al. (orig.)

  4. Galvanic compatibility of corrosion protective coatings with AA7075 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lodhi, Z.F.; Hamer, W.J. [Netherlands Institute for Metals Research (NIMR), Mekelweg 2, 2628 CD Delft (Netherlands); Mol, J.M.C.; Wit, J.H.W. de [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Terryn, H. [Netherlands Institute for Metals Research (NIMR), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Metallurgy, Electrochemistry and Materials Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium)

    2008-04-15

    The galvanic compatibility of aerospace aluminum alloy AA7075 with cadmium (Cd), zinc (Zn), and zinc-cobalt-iron (Zn-Co-Fe, 32-37%Co and 1%Fe) alloys was investigated. A comparison of open circuit potential [OCP vs. saturated calomel electrode (SCE)] measurements in 0.6 mM NaCl showed that all coatings would act anodically to AA7075 with an exception of Zn-Co-Fe (37%Co + 1%Fe) alloy which was electropositive to AA7075. During the zero resistance ammetry (ZRA) measurement in 0.6 M NaCl electrolyte the coupled OCP and current density were measured during 7 days of immersion and both Zn and Cd acted anodic and thus sacrificial to AA7075. Galvanic coupling of AA7075 with (37%Co + 1%Fe) Zn-Co-Fe alloy resulted in the consequent dissolution of the AA7075 aluminum alloy. In contrast, Zn-Co-Fe (32%Co + 1%Fe) alloy was found to be anodic to AA7075 during the first 26 h of immersion but after dezincification and cobalt enrichment at the surface became cathodic to the AA7075 aluminum alloy. During coupling with Zn, some pitting was also observed on AA7075. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. Numerical analysis of thermal effect in aluminum alloy by monopulse laser

    Science.gov (United States)

    Gu, Xiuying; Chen, Guibo; Jin, Guangyong; Zhang, Wei; Li, Mingxin

    2014-12-01

    A spatial axisymmetric finite element model is established to investigate the distribution characteristics of temperature field that monopulse millisecond laser act on aluminum alloy. The thermal process of laser acting on aluminum alloy (melting, gasification and temperature drop) is simulated. Using the specific quivalent heat capacity method to simulate the solid-liquid, liquid-gas phase transition of aluminum alloy, and considering the differences of thermal physical parameters between different states (solid-liquid, liquid-gas) of aluminum alloy in the process of numerical simulation. The distribution of temperature field of aluminum alloy caused by the change of energy density, pulse width and spot radius of monopulse millisecond laser are investigated systematically by using numerical simulation model. The numerical results show that the temperature of target no longer rises after reaching the target gasification. Given the pulse width and spot radius, the temperature of target rise as the energy density increases, the laser intensity distribution is gaussian, so the temperature distribution of the target surface also shows Gaussian. The energy absorption mechanism of aluminum alloy is surface absorption mechanism, the temperature gradient in axial of the target is much lager than the temperature gradient in radial of the target surface, so the temperature rise in axial only exists a thin layer of target surface. Given the energy density and spot radius, as the pulse width increases, the power density of laser decreases, therefore the temperature of target center point decreases as the pulse width increases, and the temperature difference becomes small. As the pulse width decreases, the heat transfer in axial reduce, the deposition of energy enhances on the surface. Given the energy density and pulse width, the distribution of the temperature is enlarged as the spot radius increases, but the distribution of the temperature in axial is independent of the spot

  6. Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding

    Science.gov (United States)

    Kolubaev, E. A.

    2015-02-01

    Special features of the microstructure of joints of aluminum-magnesium and aluminum-copper alloys produced by friction stir welding are analyzed. It is demonstrated that a layered structure with ultradisperse grains is produced by friction stir welding at the center of the weld joint. An analogy is drawn between the microstructures of joints produced by friction stir welding and surface layer produced by sliding friction.

  7. Local melting and tool slippage during friction stir spot welding of aluminum alloys

    Science.gov (United States)

    Gerlich, Adrian Piotr

    Local melting and tool slippage during friction stir spot welding of different aluminum alloys is examined using a combination of detailed microscopy and temperature measurement. It has been widely accepted that friction stir welding is a solid-state process and does not involve melting. The present research indicates that local melting is an inherent feature when Al 7075 and Al 2024 alloys are spot welded, and produces tool slippage at the tool contact interface. In contrast, intermetallic particles contained in the Al 5754 and Al 6061 as-received materials do not melt and a no-slip condition is maintained. A combination of data acquisition of key welding parameters (axial force, torque and tool displacement), high-speed imaging, temperature measurement and metallography are employed to study the tool penetration stage and the subsequent dwell period during spot welding. A methodology is developed for reliably determining the stir zone temperature using thermocouples embedded within the tool itself. Tool slippage is investigated by determining the strain rate in stir zone material adjacent to the rotating tool. The strain rate is estimated by substituting stir zone temperature and subgrain size measurements into the Zener-Hollomon equation. Tool penetration early in the friction stir spot welding process can be explained as a progression of wear events from mild (delamination) wear, through to severe wear, and finally to melt wear in the material located immediately under the tip of the rotating pin. The stir zone peak temperature during welding is limited by either the solidus temperature of the alloy in question, or by local melting of intermetallic particles contained in the base material such as Al 7075 or Al 2024 alloys. Melted films dissolve rapidly in the high temperature stir zone, and as the weld cools to room temperature. Metallographic evidence confirming local melting and cracking is observed in Al 7075 and Al 2024 alloy friction stir spot welds made

  8. Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol-water solution

    Institute of Scientific and Technical Information of China (English)

    Chen Xin; Tian Wenming; Li Songmei; Yu Mei; Liu Jianhua

    2016-01-01

    The effect of temperature on the corrosion behavior of 3003 aluminum alloy in ethylene glycol–water solution was investigated by potentiodynamic polarization and electrochemical impe-dance spectroscopy (EIS) techniques. The surface characterization was observed and determined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive spec-trometer (EDS). The results demonstrate that the anodic aluminum dissolution and the cathodic oxygen reduction were accelerated by the increased temperature. However, as temperature was over 60 °C, the solubility and concentration of oxygen decreased, resulting in the inhibition of cathodic reaction. The cathodic reaction rate of 3003 aluminum alloy rose to the maximum at 60 °C. The Warburg impedance in Nyquist diagram diminished and then was replaced by a negative capaci-tance caused by the absorption of intermediate corrosion product on electrode. On the other hand, after potentiodynamic measurements, 3003 aluminum alloy suffered pitting corrosion. The dissolu-tion of aluminum alloy around secondary phase particles expanded both horizontally and vertically. © 2016 The Authors. Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

  9. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Cheon; Cheong, Seong Kyun [Seoul Nat' l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2012-11-15

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue.

  10. Influence of Density on Compressive Properties and Energy Absorption of Foamed Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    WEI Peng; LIU Lin

    2007-01-01

    The foamed aluminum alloys with different densities were fabricated by melt foaming technique. The compressive properties and energy absorption of the foamed aluminum alloy with different densities were analyzed. The results reveal that the compressive stress-strain curves follow the typical behavior of cellular foams with three deformation stages. Under the same strain, the energy absorption capability decreases with the decrease of density. However, with increasing the strain, the energy absorption efficiency of foamed metal increases initially and then decreases. The lower the density, the longer the plateau region, within the range of high strain, the energy absorption efficiency is always high.

  11. Thermal conductivity prediction of closed-cell aluminum alloy considering micropore effect

    Directory of Open Access Journals (Sweden)

    Donghui Zhang

    2015-02-01

    Full Text Available Large quantities of micro-scale pores are observed in the matrix of closed-cell aluminum alloy by scanning electron microscope, which indicates the dual-scale pore characteristics. Corresponding to this kind of special structural morphology, a new kind of dual-scale method is proposed to estimate its effective thermal conductivity. Comparing with the experimental results, the article puts forward the view that the prediction accuracy can be improved by the dual-scale method greatly. Different empirical formulas are also investigated in detail. It provides a new method for thermal properties estimation and makes preparation for more suitable empirical formula for closed-cell aluminum alloy.

  12. Study on quality of resistance spot welded aluminum alloys under various electrode pressures

    Institute of Scientific and Technical Information of China (English)

    San-san AO; Zhen LUO; Xin-xin TANG; Lin-shu ZHOU; Shu-xian YUAN; Rui WANG; Kai-lei SONG; Xing-zheng BU; Xiao-yi LI; Zhi-qing XUE

    2009-01-01

    The electrode force is One of the main parameters in resistance spot welding (RSW). It is very important to guarantee the quality of aluminum alloys and determine whether the electrode pressure is stable or adjustable in the welding process. With the drive set of a servo-motor, we conduct the RSW tests and tensile shear tests on the 5052 aluminum alloy sheets. Results of these tests show that all variable pressure curves are suitable for spot welding, and all have their own rules in affecting the tensile strength of the spot welded joints.

  13. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints

    Science.gov (United States)

    Rajakumar, S.; Balasubramanian, V.

    2012-06-01

    AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.

  14. Low temperature bonding of LD31 aluminum alloys by electric brush plating Ni and Cu coatings

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhenqing; Wang Chunqing; Du Miao

    2005-01-01

    Soldering of LD31 aluminum alloys using Sn-Pb solder paste after electric brush plating Ni and Cu coatings was nvestigated. The technology of electric brush plating Ni and Cu was studied and plating solution was developed. The microstructure of the coatings, soldered joint and fracture face were analyzed using optic microscopy, SEM and EDX. The shear strength of soldered joint could reach as high as 26. 83 MPa. The results showed that reliable soldered joint could be obtained at 230℃, the adhesion of coatings and LD31 aluminum alloy substrate was high enough to bear the thermal process in the soldering.

  15. Effect of Electromagnetic Frequency on Microstructures of Continuous Casting Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloyswas studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuouscasting process, the microstructures of as-cast ingot was examined by scanning electron microscopy (SEM) equippedwith energy dispersive spectrometer (EDS). The results showed that electromagnetic frequency greatly influencedsegregation and microstructures of as-cast ingot, and product quality can be guaranteed by the application of aproper frequency. Electromagnetic frequency plays a significant role in solute redistribution; Iow frequency is moreefficient for promoting solution of alloying elements.

  16. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    Science.gov (United States)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  17. Effect of Porosity and Cell Size on the Dynamic Compressive Properties of Aluminum Alloy Foams

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizeshave been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The experimentalresults showed that the dynamic compressive stress-strain curves exhibited a typical three-stage behavior: elastic,plateau and densification. The dynamic compressive strength of foams is affected not only by the relative densitybut also by the strain rate and cell size. Aluminum alloy foams with higher relative density or smaller cell size aremore sensitive to the strain rate than foams with lower relative density or larger cell size.

  18. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source

  19. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    Energy Technology Data Exchange (ETDEWEB)

    Goeppner, G.A.

    1996-05-29

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source.

  20. A Parametric Analysis of CO2 Laser Heat Absorption Profile of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    JOSEPH .I. ACHEBO

    2010-06-01

    Full Text Available Aluminum alloys are amongst the most difficult everyday metals that can be welded using the laser welding process. For this reason, high power density lasers are needed to weld these alloys because they require higher thermal diffusivity to form a key hole than would be needed for other metals such as steel. This means that more heat wouldhave to be applied while welding aluminum alloys than would be needed to weld steel to achieve a satisfactory coupling effect. The heat input generated from laser welding is affected by the absorptivity coefficient, the welding speed and the time spent. Once the optimum heat input is attained, it is expected to create less heat distortion, its energy is more concentrated within the weld area and deep weld penetration is achieved. Determining optimum values of welding parameters would lead to acceptable weld quality. In this study, the heat absorption profile of a CO2 laser welding of 5083 aluminum alloy was investigated using the models proposed by Bramson in 1968 and Okon et al in 2002. The 4mm thick aluminum alloy investigated was as received from the vendors. The calculated laser beam absorptivity coefficient, irradiance and boiling temperature were 0.12, 2.3 x 106 Wcm-2 and 2482oC respectively. These calculated values compared well with reported values in other literature.

  1. ARTIFICIAL NEURAL NETWORK MODEL OF CONSTITUTIVE RELATIONSHIP FOR 2A70 ALUMINUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    F. Liu; D.B. Shan; Y. Lu; Y.Y. Yang

    2005-01-01

    The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over a wide range of temperatures 360-480℃ with strain rates of 0.01-1s-1 and the largest deformation of 60%, and the true stress of the material was obtained under the above-mentioned conditions. The experimental results shows that 2A70 aluminum alloy is a kind of aluminum alloy with the property of dynamic recovery; its flow stress declines with the increase of temperature, while its flow stress increases with the increase of strain rates. On the basis of experiments, the constitutive relationship of the 2A70 aluminum alloy was constructed using a BP artificial neural network. Comparison of the predicted values with the experimental data shows that the relative error of the trained model is less than ±3% for the sampled data while it is less than ±6% for the nonsampled data. It is evident that the model constructed by BP ANN can accurately predict the flow stress of the 2A70 alloy.

  2. Aging Optimization of Aluminum-Lithium Alloy L277 for Application to Cryotank Structures

    Science.gov (United States)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Cho, A.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties and improved damage tolerance. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. A design of experiments aging study was conducted for plate and a limited study on extrusions. To achieve the T8 temper, Alloy L277 is typically aged at 290 F for 40 hours. In the study for plate, a two-step aging treatment was developed through a design of experiments study and the one step aging used as a control. Based on the earlier NASA studies on 2195, the first step aging temperature was varied between 220 F and 260 F. The second step aging temperatures was varied between 290 F and 310 F, which is in the range of the single-step aging temperature. For extrusions, two, single-step, and one two-step aging condition were evaluated. The results of the design of experiments used for the T8 temper as well as a smaller set of experiments for the T6 temper for plate and the results for extrusions will be presented.

  3. Microstructure and properties of 2618-Ti heat resistant aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    王建华; 易丹青; 王斌

    2003-01-01

    The mechanical properties of alloy 2618 with 0.5%(mass fraction) titanium and its microstructures in different states such as as-cast and quenching-aging were investigated. Titanium was added into the alloy with Al-5%Ti master alloy that was extruded severely. Al3Ti particles in the microstructure of cast alloy 2618-Ti are very small because those of master alloy are also small. When titanium is used as an alloying element, it does not affect the morphology of Al9FeNi phase in cast alloy, but decreases the grain size of as-cast alloy remarkably. The grain size of quenching-aging alloy 2618 decreases apparently due to the existence of a great deal of dispersive Al3Ti particles. Adding 0.5%Ti has no effect on the room temperature tensile properties of alloy 2618, but apparently increases the elevated temperature instantaneous tensile properties and that of the alloy which is exposed at 250 ℃ for 100 h.

  4. Quantitative analysis of impurities in aluminum alloys by laser-induced breakdown spectroscopy without internal calibration

    Institute of Scientific and Technical Information of China (English)

    LI Hong-kun; LIU Ming; CHEN Zhi-jiang; LI Run-hua

    2008-01-01

    To develop a fast and sensitive alloy elemental analysis method, a laser-induced breakdown spectroscopy(LIBS) system was established and used to carry out quantitative analysis of impurities in aluminum alloys in air at atmospheric pressure. A digital storage oscilloscope was used as signal recording instrument, instead of traditional gate integrator or Boxcar averager, to reduce the cost of the whole system. Linear calibration curves in the concentration range of 4×10-5-10-2 are built for Mg, Cr, Mn, Cu and Zn using absolute line intensity without internal calibrations. Limits of detection for these five elements in aluminum alloy are determined to be (2-90)×10-6. It is demonstrated that LIBS can provide quantitative trace elemental analysis in alloys even without internal calibration. This approach is easy to use in metallurgy industries and relative research fields.

  5. Evaluation of Aluminum Alloy 2050-T84 Microstructure and Mechanical Properties at Ambient and Cryogenic Temperatures

    Science.gov (United States)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320degF. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  6. Evaluation of Aluminum Alloy 2050-T84 Microstructure Mechanical Properties at Ambient and Cryogenic Temperatures

    Science.gov (United States)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable the designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320 F. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  7. Laser welding of automotive aluminum alloys to achieve defect-free, structurally sound and reliable welds

    Energy Technology Data Exchange (ETDEWEB)

    DebRoy, T.

    2000-11-17

    The objective of this program was to seek improved process control and weldment reliability during laser welding of automotive aluminum alloys while retaining the high speed and accuracy of the laser beam welding process. The effects of various welding variables on the loss of alloying elements and the formation of porosity and other geometric weld defects such as underfill and overfill were studied both experimentally and theoretically.

  8. Research on Semisolid Microstructural Evolution of 2024 Aluminum Alloy Prepared by Powder Thixoforming

    OpenAIRE

    Pubo Li; Tijun Chen; Suqing Zhang; Renguo Guan

    2015-01-01

    A novel method, powder thixoforming, for net-shape forming of the particle-reinforced Aluminum matrix composites in semi-solid state has been proposed based on powder metallurgy combining with thixoforming technology. The microstructural evolution and phase transformations have been investigated during partial remelting of the 2024 bulk alloy, prepared by cold pressing of atomized alloy powders to clarify the mechanisms of how the consolidated powders evolve into small and spheroidal primary...

  9. Atmospheric Corrosion Behavior of 2A12 Aluminum Alloy in a Tropical Marine Environment

    OpenAIRE

    Zhongyu Cui; Xiaogang Li; Huan Zhang; Kui Xiao; Chaofang Dong; Zhiyong Liu; Liwei Wang

    2015-01-01

    Atmospheric corrosion behavior of 2A12 aluminum alloy exposed to a tropical marine environment for 4 years was investigated. Weight loss of 2A12 alloy in the log-log coordinates can be well fitted with two linear segments, attributing to the evolution of the corrosion products. EIS results indicate that the corrosion product layer formed on the specimens exposed for 12 months or longer presents a good barrier effect. Corrosion morphology changes from pitting corrosion to severe intergranular ...

  10. EBSD characterization of deformation in high strain rate application aluminum alloys

    OpenAIRE

    Kozmel, Thomas; Vural, Murat; Tin, Sammy

    2014-01-01

    Advances in materials characterization tools and techniques are contributing to an improved physics based understanding pertaining to the characteristic behavior of engineering alloys. Aluminum alloys, such as 2139, 2519, 5083, and 7039 are commonly used for lightweight armor applications where resistance to high strain rate deformation is paramount. Failure of these materials is often attributed to the onset of shear band formation. This study was aimed at complimenting the constituent predi...

  11. Calculation of Liquidus Temperature for Aluminum and Magnesium Alloys Applying Method of Equivalency

    OpenAIRE

    Mile B. Djurdjević; Srećko Manasijević; Zoran Odanović; Natalija Dolić

    2013-01-01

    The purpose of this paper is to develop a mathematical equation, which will be able to accurately predict the liquidus temperature of various aluminum and magnesium cast alloys on the basis of their known chemical compositions. An accurate knowledge of liquidus temperature permits a researcher to predict a variety of physical parameters pertaining to a given alloy. The analytical expressions presented in this paper are based on the “method of equivalency.” According to this concept, the influ...

  12. TESTING OF ALUMINUM-SILICON ALLOYS MECHANICAL PROPERTIES ON SEPARATELY CASTED SPECIMENS

    OpenAIRE

    Krushenko, G.

    2010-01-01

    The mechanical properties of aluminum alloys before casting into moulds were determined on separately casted control specimens casted in horizontal or vertical forms. A comparison of the mechanical properties (tensile strength t, elongation 8, hardness HB) of 12-mm-diameter individually casted of AK7ch alloy control specimens and its density in the solid state (p) showed that it is necessary to use specimens casted in a horizontal mold for evaluation of castings quality. It was estimated that...

  13. Dynamic process of angular distortion between aluminum and titanium alloys with TIG welding

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; LIANG Zhen-xin; ZHANG Jian-xun

    2008-01-01

    The dynamic process of welding angular distortion in the overlaying welding of 5A12 aluminum alloy and BT20 titanium alloy was investigated. Information of dynamic distortion was got via self-made welding dynamic measuring system. Research results show that the characteristics of dynamic distortions at various positions of the plate edge parallel to the weld of 5A12 and BT20 alloy are different. Comparison between 5A12 and BT20 alloy shows that transverse shrinkage and downward longitudinal bending are main factors influencing the dynamic angular distortion processes of 5A12 and BT20 alloy under welding heat input of 0.32 kJ/mm. The angular distortion of 5A12 alloy is completely inversed with welding heat input increasing to 0.4 kJ/mm, and the position of weld center and buckling distortion become the primary factors.

  14. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  15. Novel strategy in increasing stability and corrosion resistance for super-hydrophobic coating on aluminum alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yin Bo [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); Fang Liang, E-mail: fangliangcqu@yahoo.com.cn [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 (China); Tang Anqiong; Huang Qiuliu; Hu Jia; Mao Jianhui [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); Bai, Ge; Bai, Huan [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 (China)

    2011-10-15

    A novel super-hydrophobic coating was prepared by chemical modification on the anodized aluminum alloy surface. The surface structure was characterized by water contact angle measurement, scanning electron microscopy (SEM), and the composition was measured by X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the super-hydrophobic coating was evaluated by the polarization curve and the electrochemical impedance spectroscopy (EIS). It was found that the static water contact angle on the surface of super-hydrophobic coating was as high as 167.7 {+-} 1.2 deg., and the sliding angle was 5 deg. The super-hydrophobic coating resulted in excellent corrosion resistance property and the super-hydrophobic coating showed a good stability.

  16. Evolution of Surface Oxide Film of Typical Aluminum Alloy During Medium-Temperature Brazing Process

    Institute of Scientific and Technical Information of China (English)

    程方杰; 赵海微; 王颖; 肖兵; 姚俊峰

    2014-01-01

    The evolution of the surface oxide film along the depth direction of typical aluminum alloy under medium-temperature brazing was investigated by means of X-ray photoelectron spectroscopy (XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the en-richment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloy-ing elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during medium-temperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.

  17. Grain Refining Performance of SHS Al-50TiC Master Alloys for Commercially Pure Aluminum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An Al-50wt%TiC composite was directly synthesized by self-propagating high-temperature synthesis (SHS) technology,and then was used as a grain refining master alloy for commercially pure aluminum.The microstructure and grain refining performance of the synthesized master alloy were emphatically investigated.The SHS master alloy only contained submicron TiC particles except for Al matrix.Moreover,TiC particles were relatively free of agglomeration. Grain refining tests show that adding only 0.1 wt% of the master alloys to the aluminum melt could transform the structure of the solidified samples from coarse columnar grains to fine equiaxed grains (average grain size 120μm),and that this grain refining effectiveness could be maintained for almost 1.5h at 1003K. Therefore,it is concluded that the SHS master alloy is an effective grain refiner for aluminum and its alloys, and that it is highly resistant to the grain refining fading encountered with most grain refiners.

  18. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    Science.gov (United States)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Rioja, R.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 (Al-1.0 Li-4.0 Cu-0.4 Mg-0.4 Ag-0.12 Zr) for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. These newer alloys generally have lithium content less than 2 wt. % and their composition and processing have been carefully tailored to increase the toughness and reduce the mechanical property anisotropy of the earlier generation alloys such 2090 and 8090. Alloy processing, particularly the aging treatment, has a significant influence on the strength-toughness combinations and their dependence on service environments for aluminum-lithium alloys. Work at NASA Marshall Space Flight Center on alloy 2195 has shown that the cryogenic toughness can be improved by employing a two-step aging process. This is accomplished by aging at a lower temperature in the first step to suppress nucleation of the strengthening precipitate at sub-grain boundaries while promoting nucleation in the interior of the grains. Second step aging at the normal aging temperature results in precipitate growth to the optimum size. A design of experiments aging study was conducted for plate. To achieve the T8 temper, Alloy C458 (Al-1.8 Li-2.7 Cu-0.3 Mg- 0.08 Zr-0.3 Mn-0.6 Zn) is typically aged at 300 F for 24 hours. In this study, a two-step aging treatment was developed through a comprehensive 24 full factorial design of experiments study and the typical one-step aging used as a reference. Based on the higher lithium content of C458 compared with 2195, the first step aging temperature was varied between 175 F and 250 F. The second step aging temperatures was

  19. Development and Processing Improvement of Aerospace Aluminum Alloys

    Science.gov (United States)

    Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report, in multiple presentation format, describes a comprehensive multi-tasked contract study to improve the overall property response of selected aerospace alloys, explore further a newly-developed and registered alloy, and correlate the processing, metallurgical structure, and subsequent properties achieved with particular emphasis on the crystallographic orientation texture developed. Modifications to plate processing, specifically hot rolling practices, were evaluated for Al-Li alloys 2195 and 2297, for the recently registered Al-Cu-Ag alloy, 2139, and for the Al-Zn-Mg-Cu alloy, 7050. For all of the alloys evaluated, the processing modifications resulted in significant improvements in mechanical properties. Analyses also resulted in an enhanced understanding of the correlation of processing, crystallographic texture, and mechanical properties.

  20. Measurements of degree of sensitization (DoS) in aluminum alloys using EMAT ultrasound.

    Science.gov (United States)

    Li, Fang; Xiang, Dan; Qin, Yexian; Pond, Robert B; Slusarski, Kyle

    2011-07-01

    Sensitization in 5XXX aluminum alloys is an insidious problem characterized by the gradual formation and growth of beta phase (Mg(2)Al(3)) at grain boundaries, which increases the susceptibility of alloys to intergranular corrosion (IGC) and intergranular stress-corrosion cracking (IGSCC). The degree of sensitization (DoS) is currently quantified by the ASTM G67 Nitric Acid Mass Loss Test, which is destructive and time consuming. A fast, reliable, and non-destructive method for rapid detection and the assessment of the condition of DoS in AA5XXX aluminum alloys in the field is highly desirable. In this paper, we describe a non-destructive method for measurements of DoS in aluminum alloys with an electromagnetic acoustic transducer (EMAT). AA5083 aluminum alloy samples were sensitized at 100°C with processing times varying from 7days to 30days. The DoS of sensitized samples was first quantified with the ASTM 67 test in the laboratory. Both ultrasonic velocity and attenuation in sensitized specimens were then measured using EMAT and the results were correlated with the DoS data. We found that the longitudinal wave velocity was almost a constant, independent of the sensitization, which suggests that the longitudinal wave can be used to determine the sample thickness. The shear wave velocity and especially the shear wave attenuation are sensitive to DoS. Relationships between DoS and the shear velocity, as well as the shear attenuation have been established. Finally, we performed the data mining to evaluate and improve the accuracy in the measurements of DoS in aluminum alloys with EMAT. PMID:21232777

  1. Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020

    Indian Academy of Sciences (India)

    Santosh Kumar; T K G Namboodhiri

    2011-04-01

    AA7020 Al–Mg–Zn, a medium strength aluminium alloy, is used in welded structures in military and aerospace applications. As it may be subjected to extremes of environmental exposures, including high pressure liquid hydrogen, it could suffer hydrogen embrittlement. Hydrogen susceptibility of alloy AA7020 was evaluated by slow strain-rate tensile testing, and delayed failure testing of hydrogen-charged specimens of air-cooled, duplexaged, and water-quenched duplex agedmaterials. The resistance to hydrogen embrittlement of the alloy was found to be in the order of air-cooled duplex aged alloy > as-received (T6 condition) > water quenched duplex aged material.

  2. Softening phenomenon during compression test in nanograined aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ko, S.H.; Jang, J.M.; Lee, W. [Korea Inst. of Industrial Technology, ChonAn (Korea)

    2005-07-01

    Al-Mg and Al-Mg-Cu alloys are known well to reveal superplasticity in tension at high temperatures. In this study, deformation behaviors of those alloys nanograined were investigated under compression test at room temperature. During plastic deformation softening phenomena occurred obviously in nanograined Al-1.5wt%Mg and Al-0.7wt%Mg-1.0wt%Cu alloys while slight strain hardening appeared in nanograined pure Al. These results suggest that the softening strongly depends on composition of alloys. The softening takes place over strain rate range from 10{sup -4} up to 10{sup -1}. (orig.)

  3. Order/disorder in electrodeposited aluminum-titanium alloys

    Directory of Open Access Journals (Sweden)

    Stafford G.R.

    2003-01-01

    Full Text Available The composition, morphology, and crystallographic microstructure of Al-Ti alloys electrodeposited from two different chloroaluminate molten salt electrolytes were examined. Alloys containing up to 28 % atomic fraction Ti were electrodeposited at 150 °C from 2:1 AlCl3-NaCl with controlled additions of Ti2+. The apparent limit on alloy composition is proposed to be due to a mechanism by which Al3Ti forms through the reductive decomposition of [Ti(AlCl43]-. The composition of Al-Ti alloys electrodeposited from the AlCl3-EtMeImCl melt at 80 °C is limited by the diffusion of Ti2+ to the electrode surface. Alloys containing up to 18.4 % atomic fraction Ti are only obtainable at high Ti2+ concentrations in the melt and low current densities. Alloys electrodeposited from the higher temperature melt have an ordered L12 crystal structure while alloys of similar composition but deposited at lower temperature are disordered fcc. The appearance of antiphase boundaries in the ordered alloys suggests that the deposit may be disordered initially and then orders in the solid state, subsequent to the charge transfer step and adatom incorporation into the lattice. This is very similar to the disorder-trapping observed in rapidly solidified alloys. The measured domain size is consistent with a mechanism of diffusion-controlled doman growth at the examined deposition temperatures and times.

  4. Deposition of aluminum-magnesium alloys from electrolytes containing organo-aluminum complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, H.; Mehler, K.; Bongard, H.; Tesche, B. [Max-Planck-Inst. fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Reinhold, B. [Audi AG Technische Entwicklung, Ingolstadt (Germany)

    2001-06-01

    Organo-aluminum compounds have been used for many years as electrolytes in the coating industry. In this communication the development of a galvanic process for generating aluminum-magnesium coatings from organometallic electrolyte systems is reported as well as results on physical properties like adhesion, ductility and corrosion resistance. (orig.)

  5. DSC analyses of static and dynamic precipitation of an Al–Mg–Si–Cu aluminum alloy

    OpenAIRE

    Manping Liu; Zhenjie Wu; Rui Yang; Jiangtao Wei; Yingda Yu; Pål C. Skaret; Hans J. Roven

    2015-01-01

    In the present investigation, both static and dynamic precipitations of an Al–Mg–Si–Cu aluminum alloy after solid-solution treatment (SST) were comparatively analyzed using differential scanning calorimetry (DSC). Dynamic aging was performed in the SST alloy through equal channel angular pressing (ECAP) at different temperatures of room temperature, 110, 170, 191 and 300 °C. For comparison, static artificial aging was conducted in the SST alloy at 191 °C with two aging times of 4 and 10 h. Th...

  6. Laser Shock Peening of Aluminum Alloy 7050 for Fatigue Life Improvement

    Institute of Scientific and Technical Information of China (English)

    Qian; Ming; Lian; Ying; Zou; Shikun; Gong; Shuili

    2007-01-01

    The effects of laser shock peening (LSP) on improving fatigue life of aluminum alloy 7050 are investigated.Surface hardness is increased corresponding to a high dislocation density induced by LSP.The X-ray diffraction stress measurement shows that LSP results in prominent increase of surface compressive stress,quasi-symmetrically distributed in the laser peened region.The fatigue life of the alloy 7050 in rivet fastener hole structure is notably improved owing to LSP.The sequence of LSP and fastener hole preparation also influence the fatigue cycle life of the alloy.

  7. Effect of high-temperature pre-precipitation on microstructure and properties of 7055 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    陈康华; 黄兰萍

    2003-01-01

    The near-solvus pre-precipitation following higher temperature solution treatment was performed on 7055 aluminum alloy. The effect of the pre-precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transmission electron microscopy results show that the near-solvus pre-precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the sequent age. The stress corrosion cracking resistance of aged 7055 alloys could be improved with non-deteriorated strength and plasticity via the pre-precipitation.

  8. Aluminum Alloy Semisolid Strip Casting Using an Unequal Diameter Twin Roll Caster

    OpenAIRE

    Haga, T.; Sakaguchi, H; H. Inui; H. Watari; S. Kumai

    2005-01-01

    Purpose: A Purpose of the present study was to break through the disadvantage of the twin roll caster for aluminum alloy. They were slow casting speed and limitation of alloy. For example, the casting speed was slower than 5 m/min, and casting of hypereutectic Al-Si alloy was difficult. In order to break through the disadvantages, semisolid casting using an unequal diameter twin roll caster was tested its ability.Design/methodology/approach: The specification of the unequal diameter twin roll...

  9. Texture evolution of continuous cast and direct chill cast AA 3003 aluminum alloys during cold rolling

    International Nuclear Information System (INIS)

    The texture evolution of continuous cast (CC) and direct chill cast (DC) AA 3003 aluminum alloys during cold rolling was investigated by X-ray diffraction. The relationship between texture volume fractions and rolling true strain was described quantitatively by mathematical formulae. The effect of processing method (CC vs. DC) on texture evolution was determined

  10. Performance Comparison of Steam-Based and Chromate Conversion Coatings on Aluminum Alloy 6060

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    In this study, oxide layers generated on aluminum alloy 6060(UNS A96060) using a steam-based process were compared with conventional chromate and chromate-phosphate conversion coatings. Chemical composition and microstructure of the conversion coatings were investigated and their corrosion...

  11. Comparison of recrystallization texture in cold-rolled continuous cast AA5083 and 5182 aluminum alloys

    International Nuclear Information System (INIS)

    The recrystallization microstructure and texture of cold-rolled continuous cast AA 5083 and 5182 aluminum alloys with and without prior heat treatment were investigated by optical microscopy, X-ray diffraction and TEM. The results obtained were discussed with regard to the effect of Zener-particle pinning

  12. Comparison of recrystallization texture in cold-rolled continuous cast AA5083 and 5182 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [Department of Civil and Environmental Engineering, Beijing Jiaotong University (China); Liu, W.C. [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States); Zhai, T. [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States)]. E-mail: tzhai@engr.uky.edu; Kenik, E.A. [Metals and Ceramics Division, Oak Ridge National Laboratory, 100 Bethel Valley Road, Building 4515, MS-6064, P.O. Box 2008, Oak Ridge, TN 37831-6064 (United States)

    2005-02-15

    The recrystallization microstructure and texture of cold-rolled continuous cast AA 5083 and 5182 aluminum alloys with and without prior heat treatment were investigated by optical microscopy, X-ray diffraction and TEM. The results obtained were discussed with regard to the effect of Zener-particle pinning.

  13. Innovation Group Will Invest 20 Billion Yuan to Launch a Hard Aluminum Alloy Project

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>On November 20, the People’s Government of Tongliao City of Inner Mongolia, the People’s Government of Huolinguole City and Shandong-based Innovation Group signed an investment framework agreement on a new-type hard aluminum alloy project. Under the agreement

  14. Microstructure and Strain Fatigue Dislocation Structure of 7075-RRA Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The microstructure and the strain fatigue dislocation substructure of 7075-RRA (Retrogression and Reaging) aluminum alloy have been studied by using transmission electron microscopy. From these, a competitive mechanism of cyclic microscopic softening/hardening is put forward to explain the relation between macroscopic cyclic stability behavior and microscopic substructure.

  15. THE INVESTIGATION ON THE RHEOLOGICAL BEHAVIOR OF SEMI-SOLID ALUMINUM ALLOY DURING DIE CASTING

    Institute of Scientific and Technical Information of China (English)

    X.J. Yang; J. Lin

    2002-01-01

    Under the condition of die casting and reheating temperature of 570-580° C, the Rhe-ological behavior of semi-solid aluminum alloy (A356) is pseudoplasticity at the shearrate of 2×10s-1×104 s-1, and also shows dilatancy at the rate over 106s-1.

  16. Industrial capability to chem-mill aluminum alloy 2219 in T-37 and T-87

    Science.gov (United States)

    Milewski, C., Jr.; Chen, K. C. S.

    1979-01-01

    Procedures and chemical baths were developed for chem-milling aluminum alloy 2219. Using a series of sample etchings, it was found that good etching results could be obtained by using 'white plastic for porcelain repair (toluol, xylol, and petroleum distillates)' on top of cellosolve acetate as resist coatings and ferric chloride as on etchant.

  17. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Directory of Open Access Journals (Sweden)

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  18. Influences on Burr Size During Face-Milling of Aluminum Alloys and Cast Iron

    OpenAIRE

    Shefelbine, Wendy; Dornfeld, David

    2004-01-01

    The Exit Order Sequence (EOS) theory discussed by previous LMA students predicts the size of burrs formed during face milling. Other influences are tool geometry, coolant use, and material properties in aluminum silicon alloys and cast iron. Used, worn tools also increase the size of the burr. The effect of speed and feed are also discussed, particularly with regards to cast iron.

  19. Microstructure and mechanical properties of friction stir welded thin sheets of 2024-T4 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Lian; TONG Jian-hua; WAN Fa-rong; LONG Yi

    2006-01-01

    Friction stir welding (FSW) is a new and promising welding processing that can produce low-cost and high-quality joints of aluminum alloys. 1 mm thick sheets of 2024-T4 aluminum alloys which are always used as building and decorating materials were welded by FSW. The microstrueture and mechanical properties of friction stir welded 1 mm thick sheets of 2024-T4 aluminum alloy were studied. It was found that the thinner the 2024 aluminum alloy, the larger the FSW technological parameters field. The grains size of weld nugget zone (WNZ) is approximately 10 times smaller than that of the parent material, but the second phase in the material is not refined apparently in the welding. The FS welded joints have about 40% higher yield strength than the parent material,but the elongation of FS welded joints is under about 50% of the parent material. The electron backscattered diffraction (EBSD)results show that there are much more low angle boundaries (LAB) in WNZ than that in parent material, which indicates that FSW causes a number of sub-grain structures in WNZ, and this is also the reason of the increase of yield strength and Vickers hardness of the welded joint.

  20. Strain hardening and damage in 6xxx series aluminum alloy friction stir welds

    DEFF Research Database (Denmark)

    Simar, Aude; Nielsen, Kim Lau; de Meester, Bruno;

    2010-01-01

    A friction stir weld in 6005A-T6 aluminum alloy has been prepared and analyzed by micro-hardness measurements, tensile testing and scanning electron microscopy (SEM). The locations of the various weld zones were determined by micro-hardness indentation measurements. The flow behavior of the vario...

  1. Numerical simulation of the bulk forming processes for 1345 aluminum alloy billets

    Directory of Open Access Journals (Sweden)

    Fakhreddine. KHEROUF

    2015-08-01

    Full Text Available This paper presents an improved numerical simulation of bulk metal forming processes. It takes into the account the advanced formalism of large displacements and large deformations. Also, the interface workpiece formalism in considered. Metallographic studies are conducted to determine the evolution of the micro hardness as a function of annealing time and that to characterize accurately the plastic range of aluminum alloy for a range of plasticity 120%. The obtained results of metallographic studies are used to simulate a hot upsetting under the friction law of the plastic wave. Several simulations of forging operations of an axisymmetric billet by a rigid axisymmetric conical tool are performed with ABAQUS/standard computer code and that for preheated billets from 20 °C to 500 °C. The numerical study of the evolution of the normal stress at the interface has shown that the latter is independent of the tool roughness for a temperature close to 500 °C. The numerical study also allowed us to define the three areas of forging whatever cold; warm and hot forging. The effects of friction coefficient on the metal flow and contact pressure are numerically explored.

  2. Effect of Microstructure on Thermal Expansion Coefficient of 7A09 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    Hongzhi Ji; Lin Yuan; Debin Shan

    2011-01-01

    The relationship between microstructure evolution and coefficient of thermal expansion (CTE) of 7A09 aluminum alloy was investigated in this paper. Differential scanning calorimetry (DSC) was combined with transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) to investigate microstructure evolution taking place in 7A09 aluminum alloy during heating and cooling process. The corresponding CTE curves of the 7A0g alloy were recorded by thermal dilatometer. Results indicated that GPII zones and Ur phase were main precipitates in the highest strength tempered (T6) 7A09 alloy. The r/phase was the main participate in 7A09 alloy during the cooling process. The nonlinear dependency existed between CTE and temperature in both changing temperature processes. During the heating process, obvious additional contraction of alloy volume was directly caused by phase transition, such as dissolution of η' phase, transition from η' to η phase and dissolution of η phase. The additional contraction could slow down the increase of CTE greatly and be expressed in the nonlinearity of CTE curve. Volume and energy changes of alloy system influenced the variation trend of CTE directly, which was caused by the precipitation of U phase during the cooling process. These effects were revealed by the corresponding nonlinear change of CTE.

  3. TEM study on microstructures and properties of 7050 aluminum alloy during thermal exposure

    Institute of Scientific and Technical Information of China (English)

    SHEN Kai; CHEN Jin-ling; YIN Zhi-min

    2009-01-01

    The microstructures of 7050 aluminum alloy under different thermal exposure conditions were investigated by means of transmission electron microscopy (TEM),high resolution electron microscopy (HREM) and tensile test.Guinier preston (GP) zone and η'phase are the main precipitates in original 7050 alloy.The orientation relationship between η' and matrix is [0001]η'//[1(1-)1]_(Al)and (10(1-)0)η'//(110)_(Al).When the alloy is exposed at different temperatures for 500 h,with the thermal exposure temperature increasing,it can be seen under TEM that the precipitates become larger and the width of precipitate free zones (PFZ) becomes larger.The higher temperature the alloy is exposed at,the more the strength is reduced.Both GP zones and η'precipitates getting coarser and the PFZ getting wider should be responsible for the strength decline and elongation rise of 7050 alloy during thermal exposure.

  4. Effect of Electromagnetic Treatment on Fatigue Resistance of 2011 Aluminum Alloy

    Science.gov (United States)

    Mohin, M. A.; Toofany, H.; Babutskyi, A.; Lewis, A.; Xu, Y. G.

    2016-08-01

    Beneficial effects of the electromagnetic treatment on fatigue resistance were reported on several engineering alloys. These could be linked to the dislocation activity and the rearrangement of the crystal structure of the material under the electromagnetic field (EMF), resulting in delayed crack initiation. This paper presents an experimental study on the effect of pulsed electromagnetic treatment on the fatigue resistance of 2011 aluminum alloy. Circular cantilever specimens with loads at their ends were tested on rotating fatigue machine SM1090. Fatigue lives of treated and untreated specimens were analyzed and compared systematically. It has been found that the effect of the pulsed electromagnetic treatment on the fatigue resistance is dependent on the intensity of the pulsed EMF and the number of the treatment applied. Clear beneficial effect of the pulsed electromagnetic treatment on the fatigue resistance of the aluminum alloys has been observed, demonstrating a potential new technique to industries for fatigue life extension.

  5. Filtration of aluminum alloys and its influence on mechanical properties and shape of eutectical silicium

    Directory of Open Access Journals (Sweden)

    M. Brůna

    2008-07-01

    Full Text Available Filtration during casting of high quality aluminum alloys belongs to main refining methods. Even when there are many years of experiences and experimental works on this subject, there are still some specific anomalies. While using ceramic filtration media during casting of aluminum alloys, almost in all experiments occurred increase of strength limit and atypical increase of extension. This anomaly was not explained with classical metallurgical methods, black-white contrast after surface etching neither with color surface etching. For that reason was used deep etching on REM. By using pressed ceramic filters, by studying morphology eutectical silicon was observed modification morphology of eutectical silicon, this explains increase extension after filtration. Pressed ceramic filters were used on experimental works. Casting was executed on hardenable alloy AlSi10MgMn.

  6. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  7. A Model for Evaluation of Grain Sizes of Aluminum Alloys with Grain Refinement Additions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the assumption that the nucleation substrates are activated by constitutional undercooling generated by an adjacent grain growth and solute distribution during the initial solidification, a model for calculation of the grain size of aluminum alloys with the grain refinement is developed, where the nucleation is dominated by two parameters, I.e. Growth restriction factor Q and the undercooling parameter P. The growth restriction factor Q is proportional to the initial rate of constitutional undercooling development and can be used directly as a criterion of the grain refinement in the alloys with strong potential nucleation particles. The undercooling parameter P can be regarded as the maximum of constitutional undercooling △TC. For weak potential nucleation particles, the use of RGS would be more accurate. The experimental data of the grain refinement of pure aluminum and AISi7 alloys are coincident predicted results with the model.

  8. Effect of Yb additions on microstructures and properties of 7A60 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    FANG Hua-chan; CHEN Kang-hua; ZHANG Zhuo; ZHU Chang-jun

    2008-01-01

    Al-Zn-Mg-Cu-Zr alloys containing Yb were prepared by cast metallurgy. Effect of 0.30% Yb additions on the microstructure and properties of 7A60 aluminum alloys with T6 and T77 aging treatments was investigated by TEM, optical microscopy, hardness and electric conductivity measurement, tensile test and stress corrosion cracking test. The results show that the Yb additions to high strength Al-Zn-Mg-Cu-Zr aluminum alloys can produce fine coherent dispersoids. Those dispersoids can strongly pin dislocation and subgrain boundaries, which can significantly retard the recrystallization by inhibiting the nucleation of recrystallization and the growth of subgrains and keeping low-angle subgrain boundaries. Yb additions can obviously enhance the resistance to stress corrosion cracking and the fracture toughness property, and mildly increase the strength and ductility with T6 and T77 treatments.

  9. AMINO-TRIS-(METHYLENEPHOSPHONIC ACID) LAYERS ADSORPTION ON AA6061 ALUMINUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    S.H.Wang; C.S.Liu; F.J.Shan; G.C.Qi

    2008-01-01

    The amino-tri-(methylenephosphonic acid) layers were adsorbed on the surface of AA6061 aluminum alloy for improving the lacquer adhesion and corrosion inhibition as a substitute for chromate coatings. The surface structure and characteristic of the amino-tri-(methylenephosphonic acid) layers on AA6061 aluminum alloy were investigated by means of PiPS and ATR-FTIR analysis. The analyzed results showed that the amino-tri-(methylenephosphonic acid) adsorption layers adsorb on the surface of aluminium alloy via acid-base interaction in a bi-dentate conformation. After the amino-tri-(methylenephosphonic acid) layers were coated with epoxy resin, the layers showed good adhesive strength and favorable corrosion resistance in contrast to chromate coatings.

  10. Numerical simulation of deep cryogenic treatment electrode tip temperature for spot welding aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Wu Zhisheng; Hu Minying; Liu Cuirong

    2006-01-01

    Deep cryogenic treatment technology of electrodes is put forward to improve electrode life of resistance spot welding of aluminum alloy LF2. Deep cryogenic treatment makes electrode life for spot welding aluminum alloy improve. The specific resistivity of the deep cryogenic treatment electrodes is tested and experimental results show that specific resistivity is decreased sharply. The temperature field and the influence of deep cryogenic treatment on the electrode tip temperature during spot welding aluminium alloy is studied by numerical simulation method with the software ANSYS. The axisymmetric finite element model of mechanical, thermal and electrical coupled analysis of spot welding process is developed. The numerical simulation results show that the influence of deep cryogenic treatment on electrode tip temperature is very large.

  11. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    Science.gov (United States)

    Güler, Hande

    2014-10-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  12. Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Ripeng Jiang

    2014-07-01

    Full Text Available The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

  13. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    Science.gov (United States)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2016-06-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  14. Research for the method of image acquisition of the molten pool in the TIG welding of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    王建军; 林涛; 陈善本; 王伟

    2004-01-01

    Obtaining the image of molten pool aluminum alloy's tungsten inert gas(TIG)welding becomes a challenging problem in the welding field. In this paper, a bran-new optical sensor based analyzing the light spectrum was designed, and the clear image of the molten pool during the aluminum alloy's welding using the common industrial CCD camera was obtained. And with the new algorithm provided by myself, the desirable characteristic parameters of the molten pool of aluminum alloy's welding were obtained, and it provides a good base for advanced monitor welding quality.

  15. Semi-solid extrusion of aluminum alloy ZL116

    Institute of Scientific and Technical Information of China (English)

    Zhao Dazhi; Lu Guimin; Cui Jianzhong

    2008-01-01

    The semi-solid forward-extruding feasibility of reheated ZL116 alloy cast by the near-liquidus semicontinuous casting process was studied by analyzing the microstructures and properties of forward-extruded bars.The results show that the microstructure of the ZL116 alloy billets cast by near-liquidus semi-continuous casting is mainly made up of homogeneous,fine global-or rosette-shaped grains.The microstructure of the billets,reheated and held at 575℃,contains stable and net-spherical grains which are suitable for semi-solid thixoformina.The semi-solid forward-extruded bars of the ZL116 alloy billet are facially smooth.microstructurally fine and homogeneous.Therefore the feasibility of semi-solid foFward-extrusion of ZL116 alloy is thus excellent.

  16. Strengthening-toughening of 7xxx series high strength aluminum alloys by heat treatment

    Institute of Scientific and Technical Information of China (English)

    陈康华; 黄兰萍

    2003-01-01

    The effects of stepped solution heat treatments on the dissolution of soluble remnant constituents and mechanical properties of 7055 aluminum alloy were investigated. It was shown that a suitable pretreatment at lower temperature can enable complete dissolution of the constituent particles in 7055 alloy without overheating by subsequent high temperature solution treatment. This in turn increased the tensile strength and fracture toughness of 7055 alloy to 805 MPa and 41.5 MPa*m1/2 respectively, with approximately 9% tensile elongation. The near-solvus pre-precipitation following after high temperature solution treatment was also studied on 7055 aluminum alloy. The effect of the pre-precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transimission electron microscopy observation show that the near-solvus pre-precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the subsequent ageing. The stress corrosion cracking resistance of aged 7055 alloy can be improved via the pre-precipitation with non-deteriorated strength and plasticity.

  17. Thermal compatibility studies of unirradiated UMo alloys dispersed in aluminum

    Science.gov (United States)

    Lee, Don Bae; Kim, Ki Hwan; Kim, Chang Kyu

    1997-11-01

    The thermal compatibility of centrifugally atomized UMo alloys with aluminium has been studied. The results of the investigations show that the U-2 wt% Mo/aluminum dispersions increase in volume by 26% at 400°C after 2000 h. This large volume change is mainly due to the formation of voids and cracks resulting from nearly complete interdiffusion of UMo and aluminum. No significant dimensional changes occur in the U-10 wt% Mo/aluminum dispersions. Interdiffusion between U-10 wt% Mo and aluminum is found to be minimal. The different diffusion behavior is primarily due to the fact that U-10 wt% Mo particles are much more supersaturated with substitutional molybdenum than U-2 wt% Mo particles. The aluminum diffuses into the U-2 wt% Mo particles relatively rapidly along grain boundary with nearly pure uranium, forming UAl 3 almost fully throughout the 2000 h anneal, whereas the molybdenum supersaturated in the U-10 wt% Mo particles inhibits the diffusion of aluminum atoms. U-10 wt% Mo displays superior thermal compatibility with aluminum compared to U-2 wt% Mo.

  18. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    Science.gov (United States)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  19. Dry and clean age hardening of aluminum alloys by high-pressure gas quenching

    Science.gov (United States)

    Irretier, A.; Kessler, O.; Hoffmann, F.; Mayr, P.

    2004-10-01

    When precipitation-hardenable aluminum parts are water quenched, distortion occurs due to thermal stresses. Thereby, a costly reworking is necessary, and for this reason polymer quenchants are often used to reduce distortion, with the disadvantage that the quenched parts have to be cleaned after quenching. In opposition to liquid quenchants, gas quenching may decrease distortion due to the better temperature uniformity during quenching. Furthermore, cleaning of the quenched parts can be avoided because it is a dry process. For this purpose, a heat-treating process was evaluated that included a high-pressure gasquenching step. Gas quenching was applied to different aluminum alloys (i.e., 2024, 6013, 7075, and A357.0), and tensile tests have been carried out to determine the mechanical properties after solution annealing, gas quenching, and aging. Besides high-pressure gas quenching, alloy 2024 was quenched at ambient pressure in a gas nozzle field. The high velocity at the gas outlet leads to an accelerated cooling of the aluminum alloy in this case. Aluminum castings and forgings can be classified as an interesting field of application of these quenching methods due to their near-net shape before the heat treatment. Cost savings would be possible due to the reduced distortion, and therefore, less reworking after the precipitation hardening.

  20. Study of corrosion protection of the composite fdms on A356 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    SUN Huanhuan; WANG Hui; MENG Fanling

    2011-01-01

    Composite films were fabricated on A356 aluminum alloy by combined anodizing and rare earth deposition.The corrosion protection effect and corrosion behavior of the composite films in 3.5% NaC1 solution were studied by electrochemical impedance spectroscopy (EIS).SEM observation indicated that the rare earth Ce film completely sealed the porous structure of the anodic film,and the composite films composed of anodic film and Ce film were compact and integrated.According to the characteristics of EIS,the EIS plots of the composite films at different immersion times were simulated using the equivalent circuits of Rsol(QceRce)(QaRa),Rsol(QceRce)(QpRp)(QbRb) and Rsol(QpRp)(QbRb) models,respectively.The test results showed that the Ce film at the outer layer of the composite films had good protection effect at the initial stage of the immersion corrosion.It effectively helped the anodie film at the inner layer to prevent chloride irons from penetrating the aluminum alloy matrix.After 18 days,the Ce film lost its anticorrosive property,and the anodic film took the leading role of the corrosion protection.When the corrosion time was up to 42 days,the aluminum matrix was not corroded yet.Thus,the higher protection degree of the composite films for A356 aluminum alloy was attributed to the synergism effects of anodic film and rare earth Ce film.

  1. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Science.gov (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-01

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. PMID:27289269

  2. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Science.gov (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-01

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  3. Frictional properties of AZ80 and ZE10 magnesium alloys under dry and lubricated contact conditions

    OpenAIRE

    Ramezani, Maziar; Neitzert, Thomas; Pasang, Timotius; Sellés Cantó, Miguel Ángel

    2014-01-01

    The frictional properties of two types of magnesium alloys, i.e. AZ80 and ZE10 were investigated. A purpose-developed sheet metal forming simulator was used to conduct the experiments under constant plastic deformation. Both lubricated and dry sliding contact conditions were simulated and the effect of key process parameters such as contact pressure and sliding velocity on the frictional properties of these alloys were investigated. Due to the different sliding velocities, the contact pressur...

  4. On Residual Stresses in Resistance Spot-Welded Aluminum Alloy 6061-T6: Experimental and Numerical Analysis

    Science.gov (United States)

    Afshari, D.; Sedighi, M.; Karimi, M. R.; Barsoum, Z.

    2013-12-01

    In this study, an electro-thermal-structural-coupled finite element (FE) model and x-ray diffraction residual stress measurements have been utilized to analyze distribution of residual stresses in an aluminum alloy 6061-T6 resistance spot-welded joint with 2-mm-thickness sheet. Increasing the aluminum sheet thickness to more than 1 mm leads to creating difficulty in spot-welding process and increases the complexity of the FE model. The electrical and thermal contact conductances, as mandatory factors are applied in contact areas of electrode-workpiece and workpiece-workpiece to resolve the complexity of the FE model. The physical and mechanical properties of the material are defined as thermal dependent to improve the accuracy of the model. Furthermore, the electrodes are removed after the holding cycle using the birth-and-death elements method. The results have a good agreement with experimental data obtained from x-ray diffraction residual stress measurements. However, the highest internal tensile residual stress occurs in the center of the nugget zone and decreases toward nugget edge; surface residual stress increases toward the edge of the welding zone and afterward, the area decreases slightly.

  5. Microstructures of erbium modified aluminum-copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berghof-Hasselbaecher, Ellen; Schmidt, Gerald; Galetz, Mathias; Schuetze, Michael [DECHEMA-Forschungsinstitut, Frankfurt am Main (Germany); Masset, Patrick J. [Fraunhofer UMSICHT-ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Zhang, Ligang [Technische Univ. Bergakademie Freiberg (Germany). ZIK Virtuhcon; Liu, Libin; Jin, Zhanpeng [Central South Univ., Changsha, Hunan (China)

    2012-07-01

    Alloying with rare earth metals improves to the mechanical properties and corrosion resistance of aluminium base alloys at high temperatures. The rare earth metal erbium may be used for grain refinement. Within a project of computer-aided alloy development based on the CALPHAD (CALculation of PHAse Diagrams) method various alloys were melted on the Al-rich side of the ternary system Al-Cu-Er under argon atmosphere and their microstructures were characterized in the as-cast state or after long-term isothermal annealing (400 C/960 h) by means of different investigation techniques. As a result, the phases fcc (Al), {tau}{sub 1}-Al{sub 8}Cu{sub 4}Er, {theta}-CuAl{sub 2}, {eta}-CuAl, and Al{sub 3}Er were identified, their compositions and fractions were quantified, and their hardnesses were determined. The experimental obtained microstructures agree very well with the calculated solidification behaviors of the cast alloys. The knowledge gained from this work about the phase compositions and microstructures can also be utilized for the fine optimization of the phase diagram. (orig.)

  6. Stress corrosion cracking of an aluminum alloy used in external fixation devices.

    Science.gov (United States)

    Cartner, Jacob L; Haggard, Warren O; Ong, Joo L; Bumgardner, Joel D

    2008-08-01

    Treatment for compound and/or comminuted fractures is frequently accomplished via external fixation. To achieve stability, the compositions of external fixators generally include aluminum alloy components due to their high strength-to-weight ratios. These alloys are particularly susceptible to corrosion in chloride environments. There have been several clinical cases of fixator failure in which corrosion was cited as a potential mechanism. The aim of this study was to evaluate the effects of physiological environments on the corrosion susceptibility of aluminum 7075-T6, since it is used in orthopedic external fixation devices. Electrochemical corrosion curves and alternate immersion stress corrosion cracking tests indicated aluminum 7075-T6 is susceptible to corrosive attack when placed in physiological environments. Pit initiated stress corrosion cracking was the primary form of alloy corrosion, and subsequent fracture, in this study. Anodization of the alloy provided a protective layer, but also caused a decrease in passivity ranges. These data suggest that once the anodization layer is disrupted, accelerated corrosion processes occur. PMID:18257055

  7. Self-adjusting dynamic characteristics of pulsed MIG welding for aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    包晔峰; 周昀; 吴毅雄; 楼松年

    2004-01-01

    Pulsed MIG welding is suitable for aluminum alloys welding, because spray transfer and excellent profile can be arrived during whole welding current range, and the energy of droplet can be controlled to overcome losing of alloy elements with lower melting and steam point by controlling pulse current and pulse time. Because of the special physic properties of aluminum alloys, there are different requirements for pulsed MIG welding between starting arc short circuit and drop transfer short circuit, pulse period and base period. In order to satisfy the need of aluminum alloys MIG welding, self-adjusting dynamic characteristics are designed to output different dynamic characteristics in different welding startes. The self-adjusting dynamic characteristics of pulsed MIG welding are achieved through a short circuit controller and a dynamic electronic inductor. The welding machine(AL-MIG 350) with self-adjusting dynamic characteristics has a high rate of successfully starting arc up to 96%, and the short circuit time during transfer is less than 1 ms, in the mean time, the arc is stiffness, spatter is low and weld appearance is good.

  8. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan Srinivasan (PI); Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging

  9. Effects of electromagnetic stirring on microstructures of solidified aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    时海芳; 张伟强

    2003-01-01

    Al-20%Cu, Al-33%Cu and Al-7%Si alloys were solidified with electromagnetic stirring(EMS). The fluid flow induced by electromagnetic stirring leads to the increases of the lamellar spacing of Al-CuAl2 and Al-Si eutectics and the secondary dendritic arm spacing. Rod-like eutectic structure plus pro-eutectic α(Al) are observed in Al-Cu eutectic alloy when the agitating voltage is increased over 130 V, and in the hypoeutectic alloys, globular grains of proeutectic α(Al) grains may form when the magnetic field is strong enough. The Si flakes in the Al-Si eutectic are also coarsened by applying forced flow during solidification, which is always related to the depression of their branching in the growth by the forced convection.

  10. Corrosion of LY12 aluminum alloy in sodium chloride solution

    Institute of Scientific and Technical Information of China (English)

    程英亮; 张昭; 曹发和; 李劲风; 张鉴清; 王建明; 曹楚南

    2003-01-01

    The corrosion behavior of LY12 alloy in sodium chloride solution and its electrochemical noise were reported. The development of the micro-pits on the alloy surface was monitored by scanning electron microscopy, scanning tunneling microscopy, and electrochemical noise method. All the measurements show that the corrosion of LY12 alloy can be divided into two stages: a very reactive initial stage and a relative constant stable stage. The initial stage is corresponded to the adsorption of Cl ions and its reaction with the oxide film and the dissolution of Mg containing particles. The stable stage is corresponded to the development of the micro-pits by the galvanic attack formed by Al-Fe-Cu-Mn containing particles and the matrix. The initial stage lasts about 2-3 h while the stable stage dominates the whole corrosion process.

  11. Influence of melting and filtration processes on the structure and mechanical properties of aluminum alloys

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-10-01

    Full Text Available In the article are presented the results of the study on the applied upgrading processes such as refining, modification and filtration of thenear eutectics alloy EN AC- 44000, AlSi11, (AK11, cast into the chill. The upgrading processes applied to the said alloy caused, incomparison to the alloy which was not upgraded, significant differences in the shape of the crystallization curves, obtained in the graphicrecord of the ATD-AED method. It was demonstrated the existence of connections between the thermal and electric phenomena duringsolidification and crystallization of the studied silumin. The obtained results of the metallographic analysis showed the occurrence of theimpurities within the alloy structure in the form of porosity and oxides following the metallurgical processing (in pig sows. The primarystudies on microstructure of the cast ceramic filters have demonstrated the purposefulness of introduction of the filtration process to thetechnology of aluminum alloys manufacturing. The microstructures of the filters cast with the studied alloys illustrate the extent anddeployment of the impurities retained (in the filter during the process of samples casting for measurement of the mechanical strengthproperties. On the example of the near eutectics alloy AK11, it has been demonstrated, that in comparison to the refined alloy there isa possibility to obtain significant improvement of mechanical properties, and especially elongation A5 and impact strength KCV.

  12. Novel algorithm for determining optimal blankholder forces in deep drawing of aluminum alloy sheet

    Institute of Scientific and Technical Information of China (English)

    孙成智; 陈关龙; 林忠钦; 赵亦希

    2004-01-01

    Wrinkling and fracture are main defects in sheet metal forming of aluminum alloy sheet, which can be reduced or even eliminated by manipulating a suitable blank-holder forces (BHF). But, it is difficult to attain the optimum BHF during sheet metal forming. A new optimization algorithm integrating the finite element method (FEM)and adaptive response surface method is presented to determinate the optimal BHFs in deep drawing of aluminum rectangular box. To assure convergence, the trust region modes management strategies are used to adjust the move limit of design spaces. Finally, the optimum results of rectangular box deep drawing are given. Verification experiments are performed to verify the optimal result.

  13. Study of corrosion of aluminum alloys of nuclear purity in ordinary water: Part two

    OpenAIRE

    Pešić Milan P.; Maksin Tatjana N.; Jordanov Gabrijela; Dobrijević Rajko; Iđaković Zoja E.

    2005-01-01

    Since 2002, the effects of corrosion on aluminum alloys of nuclear purity in ordinary water of the spent fuel storage pool of the RA re search reactor at VINČA Institute of Nuclear Sciences have been examined in the frame work of the International Atomic Energy Agency Coordinated Research Project "Corrosion of Research Reactor Aluminum Clad Spent Fuel in Water". Coupons were ex posed to the pool water for a period of six months to six years. The second part of this study comprises extensive r...

  14. Effect of Surface Pretreatment on Adhesive Properties of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Jinsheng ZHANG; Xuhui ZHAO; Yu ZUO; Jinping XIONG; Xiaofeng ZHANG

    2008-01-01

    The lap-shear strength and durability of adhesive bonded AI alloy joints with different pretreatments were studied by the lap-shear test and wedge test. The results indicate that the maximum lap-shear strength and durability of the bonding joints pretreated by different processes are influenced by the grade of abrasive papers and can be obviously improved by phosphoric acid anodizing. Alkali etching can obviously improve the durability of bonding joints although it slightly influences the maximum lap-shear strength. The process which is composed of grit-finishing, acetone degreasing, alkali etching and phosphoric acid anodizing, provides a better adhesive bonding property of AI alloy.

  15. POROSITY DEVELOPMENT DURING HEAT TREATMENT OF ALUMINUM-LITHIUM ALLOYS

    OpenAIRE

    Papazian, J.; J. Wagner; Rooney, W.

    1987-01-01

    The development of a sub-surface layer of porosity during heat treatment has been studied in a variety of Al-Li alloys. Pure binary Al-Li alloys and three commercial materials were heat treated in air, vacuum and hydrogen for various lengths of time. Subsequent metallographic sectioning and polishing revealed the presence of a band of pores in the near-surface region extending approximately 300 µm into the sample after a 16 h heat treatment. This band of porosity is thought to arise from a Ki...

  16. 含钪铝合金轮毂的发展%Development of Scandium-Containing Aluminum Alloy Wheel Hub

    Institute of Scientific and Technical Information of China (English)

    马力; 刘宁; 吴玉程

    2014-01-01

    The present and prospective situations of development of aluminum alloy wheel hub was introduced .The mechanism of rare earth scandium rendering the aluminum alloy structure finer was analyzed .The addition of trace scandium to the aluminum alloy can significantly improve its performance .Consequently , prospects of application and development of the scandium-containing aluminum alloy wheel hub is broad , with the result that China ’ s scandium resource superiority will be brought into full play .%介绍了铝合金轮毂发展的现状和前景。分析了稀土钪细化铝合金组织的机制。铝合金中添加微量钪能显著提高其性能,因此铝钪合金轮毂的应用和发展前景广阔,可以充分发挥我国的钪资源优势。

  17. Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Pengyu [Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Nanling Campus of Jilin University, Changchun Jilin 130025 (China)], E-mail: linpengyu2000@yahoo.com.cn; Zhou Hong; Li Wei; Li Wenping; Sun Na [Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Nanling Campus of Jilin University, Changchun Jilin 130025 (China); Yang Rong [Public Mathematics Teaching and Research Center, College of Mathematics, Qianwei Campus of Jilin University, Changchun Jilin 130012 (China)

    2008-09-15

    This paper focused on the interactive effect of cerium (Ce) addition and aluminum (Al) content in magnesium alloy on ignition point and oxidation resistance. Ce content played an important role in improving the oxidation resistance of Mg alloy. Ignition point ascended with increasing Ce content. 0.25 wt% Ce content in Mg alloys could greatly improve tightness of the oxide film of Mg alloys. However, when Ce content in the alloy exceeded its solid solubility, ignition point descended. Furthermore, Al content in the alloy also influenced the ignition point. The higher the Al content was, the lower the ignition point.

  18. Determination of Stress-Corrosion Cracking in Aluminum-Lithium Alloy ML377

    Science.gov (United States)

    Valek, Bryan C.

    1995-01-01

    The use of aluminum-lithium alloys for aerospace applications is currently being studied at NASA Langley Research Center's Metallic Materials Branch. The alloys in question will operate under stress in a corrosive environment. These conditions are ideal for the phenomena of Stress-Corrosion Cracking (SCC) to occur. The test procedure for SCC calls for alternate immersion and breaking load tests. These tests were optimized for the lab equipment and materials available in the Light Alloy lab. Al-Li alloy ML377 specimens were then subjected to alternate immersion and breaking load tests to determine residual strength and resistance to SCC. Corrosion morphology and microstructure were examined under magnification. Data shows that ML377 is highly resistant to stress-corrosion cracking.

  19. Effect of age condition on fatigue properties of 2E12 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    YAN Liang; DU Feng-shan; DAI Sheng-long; YANG Shou-jie

    2010-01-01

    The fatigue behaviors of 2E12 aluminum alloy in T3 and T6 conditions at room temperature in air were investigated.The microstructures and fatigue fracture surfaces of the alloy were examined by transmission electron microscopy(TEM)and scanning electron microscopy(SEM).The results show that the alloy exhibits higher fatigue crack propagation(FCP)resistance in T3condition than in T6 condition,the fatigue life is increased by 54% and the fatigue crack growth rate(FCGR)decreases significantly.The fatigue fractures of the alloy in T3 and T6 conditions are transgranular.But in T3 condition,secondary cracks occur and fatigue striations are not clear.In T6 condition,ductile fatigue striations are observed.The effect of aging conditions on fatigue behaviors is explained in terms of the slip planarity of dislocations and the cyclic slip reversibility.

  20. Elasticity, anelasticity, and microplasticity of directionally crystallized aluminum-germanium alloys

    Science.gov (United States)

    Kardashev, B. K.; Korchunov, B. N.; Nikanorov, S. P.; Osipov, V. N.; Fedorov, V. Yu.

    2014-07-01

    The structure, Young's modulus defect, and internal friction in aluminum-germanium alloys have been studied under conditions of longitudinal elastic vibrations with a strain amplitude in the range of 10-6-3 × 10-4 at frequencies about 100 kHz. The ribbon-shaped samples of the alloys with the germanium content from 35 to 64 wt % have been produced by drawing from the melt by the Stepanov method at a rate of 0.1 mm/s. It has been shown that the dependences of the Young's modulus defect, logarithmic decrement, and vibration stress amplitude on the germanium content in the alloy at a constant strain amplitude have an extremum at 53 wt % Ge. This composition corresponds to the eutectic composition. The dependences of the Young's modulus defect, the decrement, and vibration stress amplitude at a constant microstrain amplitude have been explained by the vibrational displacements of dislocations, which depend on the alloy structure.

  1. Effects of Solid-Liquid Mixing on Microstructure of Semi-Solid A356 Aluminum Alloy

    Science.gov (United States)

    Guo, H. M.; Wang, L. J.; Wang, Q.; Yang, X. J.

    2014-08-01

    The desired starting material for semi-solid processing is the semi-solid slurry in which the solid phase is present as fine and globular particles. A modified solid-liquid mixing (SLM) is reported wherein semi-solid slurry can be produced by mixing a solid alloy block into a liquid alloy, and mechanical vibration is utilized to enhance the mixing. Effects such as liquid alloy temperature, mass ratio, and mixing intensity on the microstructure and the cooling curves during SLM were evaluated. 2D and 3D microstructure analysis of treated A356 aluminum alloy shows that microstructure can be refined significantly with a considerable morphology change in primary Al phase. It is critical that the temperature of mixture after mixing is lower than its liquidus temperature to obtain a valid SLM process. Specially, mixing intensity is identified as a primary factor for a favorable microstructure of semi-solid slurry.

  2. Technical parameters in electromagnetic continuous casting of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    李玉梅; 张兴国; 贾非; 姚山; 金俊泽

    2003-01-01

    The temperature field of aluminum ingot during electromagnetic continuous casting was calculated by the numerical method, and the effects of cooling water strength, position of the cooling water holes and pouring temperature as well as induction heat on casting speed, were studied. The results show that among the technical parameters the distance from the position of the cooling water holes to the bottom of the mold is the most important factor, whose change from 20mm to 15mm and from 15mm to 10mm causes the setting rate increasing respectively by 0.14mm/s and 0.3mm/s.The calculated results also agree with the experiment well. The simulation program can be used to determine technical parameters of electromagnetic casting of aluminum ingot effectively.

  3. Comparison of thermodynamic databases for 3xx and 6xxx aluminum alloys

    Science.gov (United States)

    Ravi, C.; Wolverton, C.

    2005-08-01

    Computational thermodynamics, or Calculation of Phase Diagram (CALPHAD) methods have proven useful in applications to modeling a variety of alloy properties. However, the methods are only as accurate as the thermodynamic databases they use, and two commercial thermodynamic databases exist for aluminum alloys: Thermotech and Computherm. In order to provide a critical comparison of these databases, we used both the databases to calculate equilibrium solid-state phase fractions and phase diagram isothermal sections of several industrial aluminum alloys: a 319-type and 356 cast alloys, as well as the wrought alloys 6022 and 6111. All of these alloys may be generically described as being based on the Al-Mg-Si-Cu quaternary with other additions such as Fe, Mn, and Zn. Although many of the results are consistent between the two databases, several qualitative and quantitative differences were observed. Many of these differences are found to be due to the intermetallic compounds involving Fe, Mn, Cr, and Zn. On the other hand, thermodynamics involving only phases from the Al-Mg-Si-Cu quaternary show good agreement between the databases, although some small differences still exist, particularly involving the quaternary Q phase. To understand and assess these differences, formation enthalpies and reaction energies from the databases were compared against density functional first-principles energetics. These comparisons indicate possible avenues for future improvements of Al-alloy thermodynamic databases. Finally, we demonstrate an interesting correlation between the calculated phase fractions and the measured yield strengths across this wide family of 3xx cast and 6xxx wrought alloys.

  4. Neutron diffraction studies of welds of aerospace aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Martukanitz, R.P.; Howell, P.R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Payzant, E.A.; Spooner, S.; Hubbard, C.R. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Neutron diffraction and electron microscopy were done on residual stress in various regions comprising variable polarity plasma arc welds of alloys 2219 (Al-6.3Cu) and 2195 (Al-4.0Cu-1.0Li-0.5Mg-0.5Ag). Results indicate that lattice parameter changes in the various weld regions may be attributed to residual stresses generated during welding, as well as local changes in microstructure. Distribution of longitudinal and transverse stress of welded panels shows peaks of tension and compression, respectively, within the HAZ and corroborate earlier theoretical results. Position of these peaks are related to position of minimum strength within the HAZ, and the magnitude of these peaks are a fraction of the local yield strength in this region. Weldments of alloy 2195-T8 exhibited higher peak residual stress than alloy 2219-T87. Comparison of neutron diffraction and microstructural analysis indicate decreased lattice parameters associated with the solid solution of the near HAZ; this results in decreased apparent tensile residual stress within this region and may significantly alter interpretation of residual stress measurements of these alloys. Considerable relaxation of residual stress occurs during removal of specimens from welded panels and was used to aid in differentiating changes in lattice parameters attributed to residual stress from welding and modifications in microstructure.

  5. Component- and Alloy-Specific Modeling for Evaluating Aluminum Recycling Strategies for Vehicles

    Science.gov (United States)

    Modaresi, Roja; Løvik, Amund N.; Müller, Daniel B.

    2014-11-01

    Previous studies indicated that the availability of mixed shredded aluminum scrap from end-of-life vehicles (ELV) is likely to surpass the capacity of secondary castings to absorb this type of scrap, which could lead to a scrap surplus unless suitable interventions can be identified and implemented. However, there is a lack of studies analyzing potential solutions to this problem, among others, because of a lack of component- and alloy-specific information in the models. In this study, we developed a dynamic model of aluminum in the global vehicle stock (distinguishing 5 car segments, 14 components, and 7 alloy groups). The forecasts made up to the year 2050 for the demand for vehicle components and alloy groups, for the scrap supply from discarded vehicles, and for the effects of different ELV management options. Furthermore, we used a source-sink diagram to identify alloys that could potentially serve as alternative sinks for the growing scrap supply. Dismantling the relevant components could remove up to two-thirds of the aluminum from the ELV stream. However, the use of these components for alloy-specific recycling is currently limited because of the complex composition of components (mixed material design and applied joining techniques), as well as provisions that practically prevent the production of safety-relevant cast parts from scrap. In addition, dismantling is more difficult for components that are currently penetrating rapidly. Therefore, advanced alloy sorting seems to be a crucial step that needs to be developed over the coming years to avoid a future scrap surplus and prevent negative energy use and emission consequences.

  6. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory. PMID:18075217

  7. Study of the localized corrosion of over-aged aeronautical 2024 aluminum alloy. Kelvin probe Force Microscopy (KFM) application

    OpenAIRE

    Radutoiu, Nicoleta; Lacroix, Loïc; Alexis, Joël; Abrudeanu, Marioara; Petit, Jacques-Alain

    2012-01-01

    The 2xxx serie aluminum alloys are characterized by good mechanical performances and low density, however they are susceptible to different forms of localized corrosion: pitting corrosion, intergranular corrosion and stress corrosion cracking. The 2024-T351 aluminum alloy is used in the aircraft industry for numerous applications such as fuselage and door skin. Corrosion damage of the material is also very detrimental for the structural integrity of the aircraft. The presence of coarse interm...

  8. Application of Kelvin probe Force Microscopy (KFM) to evidence localized corrosion of over-aged aeronautical 2024 aluminum alloy

    OpenAIRE

    Radutoiu, Nicoleta; Alexis, Joël; Lacroix, Loïc; Abrudeanu, Marioara; Petit, Jacques-Alain

    2013-01-01

    The 2xxx serie aluminum alloys are characterized by good mechanical performances and low density, however they are susceptible to different forms of localized corrosion: pitting corrosion, intergranular corrosion and stress corrosion cracking. The 2024-T351 aluminum alloy is used in the aircraft industry for numerous applications such as fuselage and door skin. Corrosion damage of the material is also very detrimental for the structural integrity of the aircraft. The presence of coarse interm...

  9. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    Science.gov (United States)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  10. Experimental investigation of emissivity of aluminum alloys and application of multispectral radiation thermometry

    International Nuclear Information System (INIS)

    Experiments were first conducted to measure the emissivity values of a variety of aluminum alloys at 600, 700, and 800 K. The effects of wavelength, temperature, alloy composition, and heating time on emissivity were investigated. Multispectral radiation thermometry (MRT) with linear emissivity models (LEM) and log-linear emissivity models (LLE) were then applied to predict surface temperature. Parametric influences of wavelength number, heating time and order of emissivity models were examined. Results show that the spectral emissivity decreases with increasing wavelength and increases with increasing temperature. A stronger alloy effect is evident at higher temperature. The spectral emissivity reaches steady state after the first hour heating due to the surface oxidation becoming fully-developed. Half of the temperature predictions by MRT emissivity models provide the absolute temperature error under 10% and quarter of the results are under 5%. Increasing the order of emissivity model and increasing the number of wavelengths cannot improve temperature measurement accuracy. Overall, LLE models show higher accuracy than LEM models. The first-order and second-order LLE models and the first-order LEM model give good results most frequently and provide the best compensation for different alloys, the number of wavelengths, and temperatures. - Highlights: → Emissivity behaviors of aluminum alloys were investigated experimentally. → Multispectral radiation thermometry (MRT) were examined. → Three MRT emissivity models perform well on temperature prediction.

  11. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    Science.gov (United States)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  12. Part A - low-aluminum-content iron-aluminum alloys. Part B - commercial-scale melting and processing of FAPY alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Howell, C.R.; Hall, F.; Valykeo, J. [Hoskins Manufacturing Co., Hamburg, MI (United States)

    1996-06-01

    The FAPY is a Fe-16 at. % Al alloy of nominal composition. The aluminum content of the alloy is such that it remains single phase ({alpha}) without the formation of an ordered phase (DO{sub 3}). The alloy has good oxidation resistance at temperatures up to 1000{degrees}C and has shown significantly superior performance as heating elements as compared to the commonly used nickel-based alloy, Nichrome. Although wire for the heating elements has been fabricated from small (15-1b) laboratory heats, for its commercial applications, the wire needs to be producible from large (1200 to 1500-1b) air-melted heats. The purpose of this study was to produce commercial size heats and investigate their mechanical properties and microstructure in the as-cast, hot-worked, and cold-worked conditions. The results of this study are expected to provide: (1) insight into processing steps for large heats into wire under commercial conditions, and (2) the mechanical properties data on commercial size heats in various product forms.

  13. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    M. Ovundur

    2015-03-01

    Full Text Available This study was initiated to compare the tribological performances of a 5754 quality aluminum alloy after hard anodic oxidation and micro arc oxidation processes. The structural analyses of the coatings were performed using XRD and SEM techniques. The hardness of the coatings was determined using a Vickers micro-indentation tester. Tribological performances of the hard anodized and micro arc oxidized samples were compared on a reciprocating wear tester under dry sliding conditions. The dry sliding wear tests showed that the wear resistance of the oxide coating generated by micro arc oxidation is remarkably higher than that of the hard anodized alloy.

  14. Atmospheric Corrosion Behavior of 2A12 Aluminum Alloy in a Tropical Marine Environment

    Directory of Open Access Journals (Sweden)

    Zhongyu Cui

    2015-01-01

    Full Text Available Atmospheric corrosion behavior of 2A12 aluminum alloy exposed to a tropical marine environment for 4 years was investigated. Weight loss of 2A12 alloy in the log-log coordinates can be well fitted with two linear segments, attributing to the evolution of the corrosion products. EIS results indicate that the corrosion product layer formed on the specimens exposed for 12 months or longer presents a good barrier effect. Corrosion morphology changes from pitting corrosion to severe intergranular corrosion with the extension of exposure time, resulting in the reduction of the mechanical properties.

  15. Method of Heat Treating Aluminum-Lithium Alloy to Improve Formability

    Science.gov (United States)

    Chen, Po-Shou (Inventor); Russell, Carolyn Kurgan (Inventor)

    2016-01-01

    A method is provided for heat treating aluminum-lithium alloys to improve their formability. The alloy is heated to a first temperature, maintained at the first temperature for a first time period, heated at the conclusion of the first time period to a second temperature, maintained at the second temperature for a second time period, actively cooled at the conclusion of the second time period to a third temperature, maintained at the third temperature for a third time period, and then passively cooled at the conclusion of the third time period to room temperature.

  16. Unique microstructure and property of a 2024 aluminum alloy subjected to upsetting extrusion multiple processing

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoqiang; LI Yuanyuan; CHEN Weiping; LONG Yan; HU Lianxi; WANG Erde

    2004-01-01

    The microstructure and hardness of a 2024 aluminum alloy subjected to multi-pass upsetting extrusion at ambient temperature were studied. Experimental results indicated that with the number of upsetting extrusion passes increasing, the grains of the alloy are gradually refined and the hardness increases correspondingly. After ten passes of upsetting extrusion processing, the grain size decreases to less than 200 nm in diameter and the sample maintains its original shape, while the hardness is double owing to equal-axial ultrafine grains and work hardening effect caused by large plastic deformation.

  17. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    Science.gov (United States)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  18. Fabrication And Mechanical Properties Of A Nanostructured Complex Aluminum Alloy By Three-Layer Stack Accumulative Roll-Bonding

    Directory of Open Access Journals (Sweden)

    Lee S.-H.

    2015-06-01

    Full Text Available A multi-layered complex aluminum alloy was successfully fabricated by three-layer stack accumulative roll bonding(ARB process. The ARB using AA1050 and AA5052 alloy sheets was performed up to 7 cycles at ambient temperature without lubrication. The specimen processed by the ARB showed a multi-layer aluminum alloy sheet in which two aluminum alloys are alternately stacked. The grain size of the specimen decreased with the number of ARB cycles, became about 350nm in diameter after 7cycles. The tensile strength increased with the number of ARB cycles, after 6c it reached 281MPa which is about twice higher than that of the starting material. The microstructures and mechanical properties of a three-layer AA1050/AA5052 alloy fabricated by the ARB were compared to those of the conventional ARB-processed material.

  19. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  20. Electrochemical Impedance Study of Zinc Yellow Polypropylene-Coated Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhi-hua Sun

    2010-01-01

    Full Text Available Performance of zinc yellow polypropylene-coated aluminum alloy 7B04 during accelerated degradation test is studied using electrochemical impedance spectroscopy (EIS. It has been found that the zinc yellow polypropylene paint has few flaw and acts as a pure capacitance before accelerated test. After 336-hour exposure to the test, the impedance spectroscopy shows two time constants, and water has reached to the aluminum alloy/paint interface and forms corrosive microcell. For the scratched samples, the reaction of metal corrosion and the hydrolysis of zinc yellow ion can occur simultaneously. The impedance spectroscopy indicates inductance after 1008-hour exposure to the test, but the inductance disappears after 1344-hour exposure and the passivation film has pitting corrosion.

  1. Flow stress equation for multipass hot-rolling of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of simple axisymmetric compression tests were carried out on the computer servo-controlled Gleeble 1 500 machine when strain rates ranged between 0.05-25 s-1 and deformation temperature 300-500 ℃. The results show that flow stress is related to the Zener-Hollonom parameter Z and strain, as well as the static recrystallization fraction between passes during multipass hot deformation of 5182 aluminum alloy. Hence, a modified exponential flow stress equation was presented by considering the values of lnA and β as functions of strain, and by using the uniform softening method and incorporating the static recrystallization fraction between passes to consider the effects of residual strain during multipass hot-rolling of 5182 aluminum alloy. The validity of the equation was examined by a typical non-isothermal multipass deformation test.

  2. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    Directory of Open Access Journals (Sweden)

    Nanbu H.

    2010-06-01

    Full Text Available In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  3. Preparation of Scandium-Bearing Master Alloys by Aluminum-Magnesium Thermoreduction

    Institute of Scientific and Technical Information of China (English)

    姜锋; 白兰; 尹志民

    2002-01-01

    The new preparation method of scandium-bearing master alloys, in which scandium oxide was fluorinated by reaction with NH4HF2 and then reduced by aluminum-magnesium in fused salt containing alkali and alkaline fluoride under atmosphere, was studied. The effect of sorts of metallic reductive and technique conditions such as reducing temperature and time on the recovery of Sc was discussed. When the liquid aluminum-magnesium was used as the reductive agent, the all-recovery exceeds 80% and the concentration of Sc in master alloy prepared exceeds 1.9%. The best reducing reaction temperature and time are 1100 K and 40 min respectively. The newly produced Sc from reduction combines with Al to produce the stable compound Al3Sc, so the reduction progress is sustained and the recovery of Sc is increased.

  4. Study on wear behavior of plasma electrolytic oxidation coatings on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CUI Shihai; HAN Jianmin; LI Weijing; KANG Suk-Bong; LEE Jung-Moo

    2006-01-01

    Thick and hard ceramic coatings were fabricated on A356 aluminum alloy by using plasma electrolytic oxidation(PEO) technique.The microstructure and phase composition of the PEO coatings were examined by using SEM and XRD method.It is found that the PEO coatings are mainly composed of crystalline α-Al2O3 and mullite.The dry sliding wear test of PEO coatings were carried out on a ring-on-ring wear machine.Results shows that there is hardly no wear loss of polished PEO coatings while the wear rate of uncoated aluminum alloy is 4.3×10-5 mm3·(N·m)-1 at a speed of 0.52 m·s-1 and a load of 40 N.

  5. FEM Analysis of Spring-backs in Age Forming of Aluminum Alloy Plates

    Institute of Scientific and Technical Information of China (English)

    Huang Lin; Wan Min; Chi Cailou; Ji Xiusheng

    2007-01-01

    The age forming technology, characterized by huge spring-backs, has been developed to manufacture large integral wing-skin panel parts, which necessitates devising a method of predicting spring-backs. A 7B04-T7451 aluminum alloy creep test in tension is accomplished at 155 ℃, and the creep curves are obtained. The material constants of the mechanism-based creep constitutive equations are determined through experiments. The age forming process and the spring-backs of 7B04 aluminum alloy plates are analyzed using the commercial finite element software ABAQUS. The effects of plate thickness and formingtime on spring-backs are researched. The spring-backs decrease with the increase of plate thickness and forming time. The test results verify the reliability of the finite element method (FEM) analysis.

  6. Evaluation of residual stress relief of aluminum alloy 7050 by using crack compliance method

    Institute of Scientific and Technical Information of China (English)

    王秋成; 柯映林; 邢鸿燕; 翁泽宇; 杨芳儿

    2003-01-01

    High strength aluminum alloys of 7xxx series have unacceptable levels of quenching residual stresses from solution heat treatment. The residual stress not only results in machining distortion and dimensional instability, but also increases the possibility of stress corrosion cracks. Therefore, it is necessary to reduce the residual stress to an acceptable level. The crack compliance method was adopted to study the influences of various stress relief methods on residual stress patterns in 7050 aluminum alloy. The results show that 90% residual stress can be eliminated by the cold stretching(Tx51) method. And a lower level of residual stress can be achieved by the uphill quenching(Tx53) method or the cold compression(Tx52). However, there is a very steep residual stress gradient normal to exterior surfaces.

  7. Laser fusion-brazing of aluminum alloy to galvanized steel with pure Al filler powder

    Science.gov (United States)

    Liu, Jia; Jiang, Shichun; Shi, Yan; Kuang, Yulin; Huang, Genzhe; Zhang, Hong

    2015-03-01

    The fusion-brazing connection of the dissimilar metal 5052 aluminum alloy/ST07Z steel was achieved by using the Nd:YAG laser with pure Al filler powder, and the effects of the laser power and powder feeding speed on the formation and mechanical properties of the resultant joints were investigated. The experimental results show that melting-brazing connection of 5052 aluminum alloy/galvanized steel can be successfully achieved, and the zinc plating layer has played the role of flux, assuring the brazing properties. The intermetallic compound layer was generated on the welded brazing interface. The joint exhibited a shear strength of 174 N/mm if the thickness of the intermetallic layer at the interface is about 6-7 μm.

  8. Numerical simulation on bucking distortion of aluminum alloy thin-plate weldment

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Jian-guo YANG; Ha-Mong LI; De-jun YAN; Hong-yuan FANG

    2009-01-01

    In this paper, the welding residual distortion of aluminum alloy thin plates is predicted using the elasticity-plasticity finite element method (FEM). The factors contributing to the welding buckling distortion of thin plates are studied by investigating the formation and evolution process of welding stresses. Results of experi-ments and numerical simulations show that the buckling appearance of thin-plate aluminum alloy weldments is asymmetrical in the welding length direction, and the maximum longitudinal deflection appears at the position a certain distance from the middle point of the side edge towards the arc-starting end. The angular deformation direction of thin-plate weldments is not fixed, and such case as the angular deformation value of the arc-starting end being higher than that of the arc-blowout end exists.

  9. The intermetallic bonding between a ring carrier and aluminum piston alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manasijevie, S.; Dolie, N.; Djurdjevic, M.; Misic, N.; Davitkov, N.

    2015-07-01

    This paper presents the results of investigating the formation of intermetallic bond between a ring carrier and aluminum piston alloy. The ring carrier is made of austenitic cast iron (Ni-Resist) in order to increase the wear resistance of the first ring groove and applied in highly loaded diesel engines. Metallographic examination of the quality of al fin bond was done. A metallographic investigation using an optical microscope in combination with the SEM/EDS analysis of the quality of the intermetallic bonding layer was done. The test results show that can be made successfully as well as the formation of metal connection (alfin bond) between the ring carrier and aluminum piston alloy. (Author)

  10. Effect of extrusion temperature on the physical properties of high-silicon aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Fuliang; GAN Weiping; CHEN Zhaoke

    2007-01-01

    Light-weight high-silicon aluminum alloys are used for electronic packaging in the aviation and space- flight industry. Al-30Si and Al-40Si are fabricated with air- atomization and vacuum-canning hot-extrusion process. The density, thermal conductivity, hermeticity and thermal expan- sion coefficients of the material are measured, and the relationship between extrusion temperature and properties is obtained. Experimental results show that the density of high- silicon aluminum alloys prepared with this method is as high as 99.64% of the theory density, and increases with elevating extrusion temperature. At the same time, thermal conductiv- ity varies between 104-140W/(m.K); with the extrusion temperature, thermal expansion coefficient also increases but within 13 × 10-6 (at 100℃) and hermeticity of the material is high to 10-9 order of magnitude.

  11. An Innovative Two-Stage Reheating Process for Wrought Aluminum Alloy During Thixoforming

    Science.gov (United States)

    Wang, JiaoJiao; Brabazon, D.; Phillion, A. B.; Lu, GuiMin

    2015-09-01

    An innovative two-stage reheating process has been developed to improve the thixotropic behavior of semi-solid wrought aluminum alloy during thixoforming. The variation of the microstructural evolution mechanisms with temperature and holding time during a traditional process and two-stage reheating process are presented in this paper. A preferred semi-solid microstructure with spherical-like grains surrounded by a uniform liquid film was obtained in the two-stage reheating process. The semi-solid microstructure obtained via this two-stage reheating process had a number of features beneficial for semi-solid metal processing, including smaller equivalent diameters, a higher degree of sphericity, a lower coarsening rate constant of solid grains and a reduced amount of entrapped liquid compared with that produced by the traditional reheating process. These results indicate that the two-stage reheating process is a promising method for manufacturing wrought aluminum alloy during thixoforming.

  12. Acoustic emission location on aluminum alloy structure by using FBG sensors and PSO method

    Science.gov (United States)

    Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Dong, Huijun; Sai, Yaozhang; Jia, Lei

    2016-04-01

    Acoustic emission location is important for finding the structural crack and ensuring the structural safety. In this paper, an acoustic emission location method by using fiber Bragg grating (FBG) sensors and particle swarm optimization (PSO) algorithm were investigated. Four FBG sensors were used to form a sensing network to detect the acoustic emission signals. According to the signals, the quadrilateral array location equations were established. By analyzing the acoustic emission signal propagation characteristics, the solution of location equations was converted to an optimization problem. Thus, acoustic emission location can be achieved by using an improved PSO algorithm, which was realized by using the information fusion of multiple standards PSO, to solve the optimization problem. Finally, acoustic emission location system was established and verified on an aluminum alloy plate. The experimental results showed that the average location error was 0.010 m. This paper provided a reliable method for aluminum alloy structural acoustic emission location.

  13. Specific Energy Absorbed Study Of Aluminum (2024-351T Tubes Alloy Under Lateral Crush

    Directory of Open Access Journals (Sweden)

    Ayad Arab Ghaidan

    2013-04-01

    Full Text Available This paper aims to find SEA (Specific Energy Absorber for lateral crushing (statically behavior for Aluminum (2024-T351 alloy with difference lengths (10, 20, and 30 mm. An experimental, finite element simulation, and theoretical models present to find force-deformation curves and then find SEA for difference lengths. Experimental results more agreements with finite elements simulation and theoretical when length of tubes is increase for load deformation curve, because when the length increases the plastic region increase with initial plastic collapse load (Pc. The experimental, ANSYS simulation and theoretical results have plotted and it has seen that the theory also underestimates the ANSYS results because in theoretical model, is customary to assume that the material is perfectly plastic, therefore, the finite element simulation might predict the experimental results better than the theoretical one. The results show that light density Aluminum alloy is suitable for SEA.

  14. Moiré method analysis for tensile strain field of 2024 aluminum alloy welded joint

    Institute of Scientific and Technical Information of China (English)

    徐文立; 魏艳红; 刘雪松; 方洪渊; 赵敏; 田锡唐

    2003-01-01

    Using experimental mechanics method of moiré analysis, strain field distributions of 2024 aluminum alloy welded joints under different conditions were investigated. The results show that moiré stripes of welded joint without trailing peening just before fracture are not only few and scattered but also uneven, and the stress mainly concentrates on the poor position-welded toes during the tensioning process with the relatively poor mechanical properties of welded joints; When the method of welding with trailing peening is adopted, moiré stripes of welded joint just before fracture are relatively thick and even due to the strengthening welded toes during the welding process, and fracture position transfers from the welded toes to weld, at the same time the mechanical properties of welded joints are improved greatly than conventional welding which can show that the technology of trailing peening is effective to strengthen welded joints of aluminum alloy with high strength.

  15. Characterization of Atmospheric Corrosion of 2A12 Aluminum Alloy in Tropical Marine Environment

    Science.gov (United States)

    Li, T.; Li, X. G.; Dong, C. F.; Cheng, Y. F.

    2010-06-01

    In this work, corrosion product formed on 2A12 aluminum (Al) alloy after 3 months of natural exposure in South China Sea atmosphere was characterized by various surface analysis techniques, including scanning electron microscopy, energy-dispersive x-ray analysis, x-ray photoelectron spectroscopy, and x-ray diffraction. The atmospheric corrosion mechanism of Al alloy in marine environment was derived. Results demonstrated that Al alloy specimen experiences serious general corrosion and pitting corrosion. Al and O are enriched in the product film, and Ca and Cl are also found in the film and corrosion pits in Al alloy substrate. The main component compounds existing in the film include Al2O3, Al(OH)3, and AlOOH while AlCl3 and CaCO3 are also identified. Al alloy encounters corrosion under tropical marine atmosphere. Although somewhat protective, the formed surface film on Al alloy specimen is attacked by chloride ions, resulting in significant pitting corrosion of Al alloy.

  16. Nondestructive characterization of corrosion protective coatings on aluminum alloy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.; Sathish, S.; Khobaib, M.; Meyendorf, N.; Netzelmann, U.; Matikas, T.E.

    2000-07-01

    This paper describes the initial phase of the development of a nondestructive, multisensor approach for detecting, quantifying and monitoring degradation of organic coatings applied to aluminum surfaces. Descriptions of the purposes and chemical compositions of layered coatings used on aircraft structures are provided. The discussion then concentrates on ultrasonic thickness measurements. One is the well-established pulse/echo scanning acoustic microscopy and, as a proposed alternative, continuous acoustic waves measurements with a probe in contract to the sample. Advantages and disadvantages of the two methods and their potential as in field applications are discussed.

  17. PARTING COATINGS FOR ALUMINUM-ALLOY PRESSURE-DIE CASTING MOULDS

    Directory of Open Access Journals (Sweden)

    A. M. Michalzov

    2011-01-01

    Full Text Available The paper reveals how to obtain a parting coating with high sedimentation resistance. The parting coating is used for  oiling aluminum-alloy pressure-die casting moulds and obtained on the basis of high-molecular silicon polymers (polymethylsilicone fluid PMS300 with  addition of light vegetable oil soap stocks as an emulsion the weighing material and the stabilizing agent of an emulsion filling an stabilizing agent. 

  18. Study of cavitation and failure mechanisms of a superplastic 5083 aluminum alloy

    OpenAIRE

    Boydon, Juanito F.

    2003-01-01

    Superplastic forming of AA5083 is an economical way to create components of complex shape while retaining the high strength and stiffness-to-weight ratios associated with aluminum alloys. However, failure of the material due to formation and linkage of cavities during superplastic deformation poses a major obstacle in effective industrial employment of this technology. Deformed samples of AA5083 were analyzed by various techniques after superplastic deformation under uniaxial tension, biaxial...

  19. A potentiostatic study of the corrosion behavior of anodized and nonanodized aluminum alloy.

    Science.gov (United States)

    White, K C; Svare, C W; Taylor, T D

    1985-06-01

    The clinical implication of this study is that some improvement in the corrosion resistance of denture bases made with aluminum alloy D-214 may be obtained by anodization. However, since this study does not exactly duplicate an oral environment or take into consideration the variation in oral environments, it cannot be assumed that the additional corrosion resistance would be discernible in a particular patient. PMID:3859652

  20. Residual stress analysis of 7075 aluminum alloy after vacuum electron beam welding

    Institute of Scientific and Technical Information of China (English)

    Chen Furong; Xie Ruijun; Guo Guifang

    2007-01-01

    The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress is tension stress along weld center and the stress peak value appears in the middle of the welded seam; the transversal residual stress is compression stress; the residual stress in thickness direction is very small.

  1. Determination of design allowable properties. Fracture of 2219-T87 aluminum alloy

    Science.gov (United States)

    Engstrom, W. L.

    1972-01-01

    A literature survey was conducted to provide a comprehensive report of available valid data on tensile properties, fracture toughness, fatigue crack propagation, and sustained load behavior of 2219-T87 aluminum alloy base metal and weldments, as applicable to manned spacecraft tankage. Most of the data found were from tests conducted at room temperature, -320 F and -423 F. Data are presented in graphical and tabular form, and areas in which data are lacking are established.

  2. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    OpenAIRE

    Behzad Binesh; Mehrdad Aghaie-Khafri

    2016-01-01

    Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA) process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). During the isothermal heating, intermetallic p...

  3. Studies of the Crystallization Process of Aluminum-Silicon Alloys Using a High Temperature Microscope. Thesis

    Science.gov (United States)

    Justi, S.

    1985-01-01

    It is shown that primary silicon crystals grow polyhedral in super-eutectic AlSi melts and that phosphorus additives to the melt confirm the strong seeding capacity. Primary silicon exhibits strong dendritic seeding effects in eutectic silicon phases of various silicon alloys, whereas primary aluminum does not possess this capacity. Sodium addition also produces a dendritic silicon network growth in the interior of the sample that is attributed to the slower silicon diffusion velocity during cooling.

  4. Time-dependent corrosion fatique crack propagation in 7000 series aluminum alloys. M.S. Thesis

    Science.gov (United States)

    Mason, Mark E.

    1995-01-01

    The goal of this research is to characterize environmentally assisted subcritical crack growth for the susceptible short-longitudinal orientation of aluminum alloy 7075-T651, immersed in acidified and inhibited NaCl solution. This work is necessary in order to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA-FLAGRO (NASGRO). This effort concentrates on determining relevant inputs to a superposition model in order to more accurately model environmental fatigue crack propagation.

  5. METAL-CERAMIC INTERFACES IN LASER COATED ALUMINUM-ALLOYS

    NARCIS (Netherlands)

    ZHOU, XB; DEHOSSON, JTM

    1994-01-01

    A novel process was developed to firmly coat an aluminium alloy, Al6061, with alpha-Al2O3 by means of laser processing. In this approach a mixture of SiO2 and Al powder was used to inject in the laser melted surface of aluminium. A reaction product alpha-Al2O3 layer of a thickness of 100 mum was cre

  6. Fatigue Crack Initiation and Propagation of Aluminum Alloy Bearings

    Institute of Scientific and Technical Information of China (English)

    CHENG Xian-Hua; MA Yan-Yan

    2004-01-01

    Observation of fatigue crack initiation and propagation during fatigue test in ALSn20Cu bearing has been presented. Journal center orbit, oil film pressure and stress distribution in alloy layer have been calculated and are taken as the basis for theoretically simulating the bearing fatigue process. It is found that the calculated results are in good accordance with the experimental results, which provides a feasible way for investigation of fatigue crack propagation process in the bearing.

  7. Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014

    Science.gov (United States)

    Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.

    2013-01-01

    Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.

  8. Electrodeposition of Ni-Cr alloy on aluminum substrate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ni-Cr alloys with mass fraction of 1.4%-23.9 %Cr, 76.1%-98.6 % Ni, and hardness of 70.5-80.5HR were electrodeposited on aluminium substrate from the trivalent chromium sulphate-chloride solution using citric acid as complexing agent. The aluminium was pretreated by means of degreasing and eroding, polishing and twice chemicai immersion of zinc. The effects of electrodeposition parameters such as current density, temperature, pH value and bath concentration on the composition and hardness of deposits were investigated. The results show that the Cr content increases with the increase of current density and the decrease of temperature, and that it increases with the increase of pH value to a maximum and then decreases. The increase of Cr content leads to the increase of hardness of the Ni-Cr layers. The deposits with high Cr content are of good corrosion resistance. Good adherence of Ni-Cr deposits to aluminium substrate is obtained. The Ni-Cr alloys are the Ni-Cr solid solution with fcc crystalline structure. The Ni-Cr alloy deposits are fine, bright and smooth and compact.

  9. Roles of Alloy Composition and Grain Refinement on Hot Tearing Susceptibility of 7××× Aluminum Alloys

    Science.gov (United States)

    Bai, Q. L.; Li, Y.; Li, H. X.; Du, Q.; Zhang, J. S.; Zhuang, L. Z.

    2016-08-01

    During the production of high-strength 7××× aluminum alloys, hot tearing has set up serious obstacles for attaining a sound billet/slab. In this research, some typical 7××× alloys were studied using constrained rod casting together with the measurement of thermal contraction and load development in the freezing range, aiming at investigating their hot tearing susceptibility. The results showed that the hot tearing susceptibility of an alloy depends not only on the thermal contraction in freezing range, which can decide the accumulated thermal strain during solidification, but also on the amount of nonequilibrium eutectics, which can effectively accommodate the thermally induced deformation. Our investigations reveal that Zn content has very profound effect on hot tearing susceptibility. The Zn/Mg ratio of the alloys also plays a remarkable role though it is not as pronounced as Zn content. The effect of Zn/Mg ratio is mainly associated with the amount of nonequilibrium eutectics. Grain refinement will considerably reduce the hot tearing susceptibility. However, excessive addition of grain refiner may promote hot tearing susceptibility of semi-solid alloy due to deteriorated permeability which is very likely to be caused by the heavy grain refinement and the formation of more intermetallic phases.

  10. Comparison of the texture evolution in cold rolled DC and SC AA 5182 aluminum alloys

    International Nuclear Information System (INIS)

    The hot bands of direct chill cast (DC) and strip cast (SC) AA 5182 aluminum alloys were annealed at 454 deg. C for 3 h, and then cold rolled to different reductions. The ODFs of the cold rolled samples were determined by X-ray diffraction in order to compare the texture evolution of DC and SC AA 5182 aluminum alloys during rolling. The texture volume fractions were computed by a new method, in which the Euler space representing all possible crystallographic orientations in rolling was subdivided into the cube, r-cube, Goss, r-Goss, β fiber, and random orientation regions based on the slip pattern combined with the characteristics of microstructure and texture. Empirical formulae of the texture volume fractions and true strain were constructed to predict the texture of cold rolled DC and SC AA 5182 aluminum alloys. The results show that the processing method (DC vs. SC) strongly affects the texture after annealing at 454 deg. C and the texture evolution during the subsequent rolling

  11. Thixoforming of an ECAPed Aluminum A356 Alloy: Microstructure Evolution, Rheological Behavior, and Mechanical Properties

    Science.gov (United States)

    Campo, Kaio Niitsu; Zoqui, Eugênio José

    2016-04-01

    Thixoforming depends upon three aspects: (a) solid to liquid transformation; (b) size and morphology of the remaining solid phase in the semisolid state, and (c) the effect of both input factors on rheology of the semisolid slurry. The aluminum A356 alloy presents an ideal solid to liquid transformation, but the solidification process generates coarse aluminum dendrites surrounded by eutectic. In this regard, Equal Channel Angular Pressing (ECAP) has great potential as a method for manufacturing thixotropic raw material due to its grain refining effect. Therefore, the microstructure evolution and rheological behavior in the semisolid state of an ECAPed aluminum A356 alloy were investigated. Samples were heated up to 853 K (580 °C) and held for 0, 30, 60, 90, 210, and 600 seconds at this temperature. The isothermal heat treatment caused the globularization of the solid phase without any significant microstructure coarsening. Compression tests were carried out at the same temperature and holding times using an instrumented mechanical press. Apparent viscosities values close to 250 Pa s were obtained, revealing the exceptional rheological behavior of the produced samples. The thixoformed material also presented good mechanical properties, with high yield and ultimate tensile strength values (YS = 110/122 MPa, UTS = 173/202), and good ductility (E = 6.9/7.5 pct). These results indicate that the production of the A356 alloy via the ECAP process increases its thixoformability.

  12. Study on phosphating treatment of aluminum alloy: role of yttrium oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shenglin

    2009-01-01

    Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2-4H2O (hopeite) and AIPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by po-larization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s.

  13. Stress-strain curves for different loading paths and yield loci of aluminum alloy sheets

    Institute of Scientific and Technical Information of China (English)

    WU Xiang-dong; WAN Min; HAN Fei; WANG Hai-bo

    2006-01-01

    To carry out biaxial tensile test in sheet metal, the biaxial tensile testing system was established. True stress-true strain curves of three kinds of aluminum alloy sheets for loading ratios of 4:1, 4:2, 4:3, 4:4, 3:4, 2:4 and 1:4 were obtained by conducting biaxial tensile test in the established testing systems. It shows that the loading path has a significant influence on the stress-strain curves and as the loading ratio increases from 4:1 to 4:4, the stress-strain curve becomes higher and n-value becomes larger.Experimental yield points for three aluminum alloy sheets from 0.2% to 2% plastic strain were determined based on the equivalent plastic work. And the geometry of the experimental yield loci were compared with the yield loci calculated from several existing yield criteria. The analytical result shows that the Barlat89 and Hosford yield criterion describe the general trends of the experimental yield loci of aluminum alloy sheets well, whereas the Mises yield criterion overestimates the yield stress in all the contours.

  14. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  15. Corrosion and wear mechanisms of aluminum alloys surface reinforced by multicharged N-implantation

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, S., E-mail: simon.thibault@ensicaen.fr [ENSICAEN, 6 Bd Maréchal Juin, 14050 Caen (France); Hug, E. [Laboratoire de Cristallographie et Sciences des Matériaux, ENSICAEN, Université de Caen, CNRS, 6 Bd Maréchal Juin, 14050 Caen (France)

    2014-08-15

    Highlights: • We performed multi-charged nitrogen implantation of aluminum alloys. • Fluence dependence of wear and corrosion resistance is investigated. • Strengthening and damaging mechanisms are identified with nanoindentation and SEM. • Optimized fluence depends on initial microstructure and the application targeted. • Stress relaxation is necessary to improve wear resistance. - Abstract: Samples of Al-1050 and of Al-2024 aluminum alloys were implanted by means of nitrogen multicharged ion beam provided by an ECR source. Wear and corrosion tests were performed in order to qualify and quantify the surface enhancement created by implantation. The tests performed, respectively, using ball-on-disk set up and linear polarization technique, combined with SEM observations and correlated with microstructural study already published, made possible the identification of damaging mechanisms of nitrogen implanted aluminum surface. The study underlines the importance which has to be given to the implanted fluence and to the initial microstructure, if a consistent surface improvement is targeted. It is demonstrated in this work that the improvement of wear resistance is strongly linked to the intrinsic properties of the nitride protective layer and not to the initial microstructure which only affects optimum fluence. Corrosion tests reveal inverse tendency. The alloy composition is, in this case, of importance, contrarily to implanted fluencies which do not affect the results. This study also shows that if nitrogen implantation is good for surface resistance, a pit (corrosion) or a crack (wear) of implanted surface causes more damage than corrosion or wear of untreated surface.

  16. Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy

    Science.gov (United States)

    Yu, J.; Gou, G.; Zhang, L.; Zhang, W.; Chen, H.; Yang, Y. P.

    2016-07-01

    Stress corrosion cracking is one of the major issues for welded joints of 6005A-T6 aluminum alloy in high-speed trains. High residual stress in the welded joints under corrosion results in stress corrosion cracking. Ultrasonic impact treatment was used to control the residual stress of the welded joints of 6005A-T6 aluminum alloy. Experimental tests show that ultrasonic impact treatment can induce compressive longitudinal and transverse residual stress in the welded joint, harden the surface, and increase the tensile strength of welded joints. Salt-fog corrosion tests were conducted for both an as-welded sample and an ultrasonic impact-treated sample. The surface of the treated sample had far fewer corrosion pits than that of the untreated sample. The treated sample has higher strength and lower tensile residual stress than the untreated sample during corrosion. Therefore, ultrasonic impact treatment is an effective technique to improve the stress corrosion cracking resistance of the welded joints of 6005A-T6 aluminum alloy.

  17. Study of the Tensile Damage of High-Strength Aluminum Alloy by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Chang Sun

    2015-11-01

    Full Text Available The key material of high-speed train gearbox shells is high-strength aluminum alloy. Material damage is inevitable in the process of servicing. It is of great importance to study material damage for in-service gearboxes of high-speed train. Structural health monitoring methods have been widely used to study material damage in recent years. This study focuses on the application of an acoustic emission (AE method to quantify tensile damage evolution of high-strength aluminum alloy. First, a characteristic parameter was developed to connect AE signals with tensile damage. Second, a tensile damage quantification model was presented based on the relationship between AE counts and tensile behavior to study elastic deformation of tensile damage. Then tensile tests with AE monitoring were employed to collect AE signals and tensile damage data of nine samples. The experimental data were used to quantify tensile damage of high-strength aluminum alloy A356 to demonstrate the effectiveness of the proposed method.

  18. Effects of Forging Process Parameters on Microstructure Evolution of Aluminum Alloy 7050

    International Nuclear Information System (INIS)

    The objective of this work is to investigate the behavior of microstructure evolution of aluminum alloy 7050 under the condition of different forging process parameters by means of combining materials physical model with finite element code. For the purpose of establishing constitutive equation and physical model of microstructure evolution, the isothermal compression test were performed by machine Gleeble 1500 on the condition of temperatures ranging from 250 deg. C to 450 deg. C and constant strain rates of 0.01s-1, 0.1s-1, 1s-1 and 10s-1. The behaviors of microstructure evolutions of aluminum alloy 7050 under difference process parameters were studied by metallographic observations. The experiment results showed that recrystallization during forming process occurred at the critical strain and the volume fraction of recrystallization changed with the temperature and strain rate. According to the results of isothermal compression test, a constitutive equation and an empirical model of DRX were obtained. A finite element code DEFORM 3D was used to analyze the influence of different forging process parameters on the behavior of microstructure evolution in details. The present model and simulation method can be served as a useful tool to predict and control the properties and shape of aluminum alloy 7050 components during forging

  19. Processing map of as-cast 7075 aluminum alloy for hot working

    Institute of Scientific and Technical Information of China (English)

    Guo Lianggang a; Yang Shuang a; Yang He a; Zhang Jun b

    2015-01-01

    The true stress–strain curves of as-cast 7075 aluminum alloy have been obtained by isothermal compression tests at temperatures of 300–500 ?C and strain rates of 0.01–10 s?1. The plastic flow instability map is established based on Gegel B and Murthy instability criteria because the deformed compression samples suggest that the combination of the above two instability criteria has more comprehensive crack prediction ability. And the processing map based on Dynamic Mate-rial Model (DMM) of as-cast 7075 aluminum alloy has been developed through a superposition of the established instability map and power dissipation map. In terms of microstructure of the deformed samples and whether plastic flow is stable or not, the processing map can be divided into five areas: stable area with as-cast grain, stable area with homogeneous grain resulting from dynamic recovery, instability area with as-cast grain, instability area with the second phase and instability area with mixed grains. In consideration of microstructure characteristics in the above five areas of the processing map, the stable area with homogeneous grain resulting from dynamic recovery, namely the temperatures at 425–465 ?C and the strain rates at 0.01–1 s?1, is suggested to be suitable processing window for the as-cast 7075 aluminum alloy.

  20. Influence of wire EDM parameters on the damping behaviour of A356.2 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Dora Siva, E-mail: dorasivaprasad@gmail.com [Dept of Mechanical Engineering, GITAM University, Visakhapatnam, 530045 (India); Shoba, Chintada [Dept of Industrial Engineering, GITAM University, Visakhapatnam, 530045 (India); Varma, Kalidindi Rahul [Dept of Mechanical Engineering, RAGHU College of Engineering, Visakhapatnam (India); Khurshid, Abdul [M.Tech (CAD/CAM), Dept of Mechanical Engineering, GITAM University, Visakhapatnam, 530045 (India)

    2015-10-15

    The effect of different Wire electrical discharge machining (WEDM) process parameters on the damping behavior of A356.2 aluminum alloy is investigated. In the present investigation pulse on time (T{sub ON}), pulse off time (T{sub OFF}) and peak current (IP) which are considered to be the most significant process parameters from the previous studies are varied using one factor at a time approach, to study the effect on damping behavior of A356.2 aluminum alloy. Damping experiments are performed on a dynamic mechanical analyzer (DMA 8000) at constant strain under dual cantilever mode over a frequency range of 1–100 Hz at room temperature. The scanning electron microscope was used for characterization of the wire EDMed samples. Experimental results reveal that the damping behavior greatly depends on the wire EDM process parameters. The related mechanisms are presented. - Highlights: • Damping capacity increase with the increase in frequency. • Increasing pulse on time increases the damping capacity of aluminum alloy. • The damping capacity was found to decrease with the increase in pulse off time. • No significant change in damping capacity was noticed with varied peak current. • The formation of white layer plays an important role in the damping behavior.

  1. The influence of Ti and Sr alloying elements on electrochemical properties of aluminum sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Saremi, M.; Sina, H.; Keyvani, A.; Emamy, M. [Metallurgy and Materials Department, University of Tehran, P.O. Box 11365/4563, Tehran (Iran)

    2004-07-01

    Aluminum sacrificial anodes are widely used in cathodic protection of alloys in seawater. The interesting properties due to low specific weight, low electrode potential and high current capacity are often hindered by the presence of a passive oxide film which causes several difficulties in their practical application. In this investigation, the electrochemical behavior of Al- 5Zn-0.02In sacrificial anode is studied in 3 wt. % sodium chloride solution. The experiments focused on the influence of Ti and Sr as alloying elements on electrochemical behavior of aluminum sacrificial anode. Ti and Sr are used in different concentrations from 0.03 to 0.1 wt.% 0.01 to 0.05 wt.%, respectively. NACE efficiency and polarization tests are used in this case. It is shown that by using 0.03 wt.% Ti and 0.01 wt.% Sr as the alloying elements to investigate the anodic behavior of the anodes, homogeneous microstructures are obtained which results in improvement of electrochemical properties of aluminum sacrificial anode such as current capacity and anode efficiency. (authors)

  2. Strengthening technology and mechanism for semi-solid die casting of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    张恒华; 许珞萍; 邵光杰; 余忠土

    2003-01-01

    Combined with theoretical evaluation,an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged under different conditions in detail,then,the semi-solid die castings and liquid die castings were heat treated with the optimized process.The results show that the mechanical properties of semi-solid die castings of aluminum alloy are superior to those of the liquid die castings,especially the strengthening degree of heat treated semi-solid die castings is much greater than that of liquid die castings with the tensile strength more than 330 Mpa and the elongation more than 10%,and this is mainly contributed to the non-dendritic and more compact microstructure of semi-solid die castings.The strengthening mechanism of heat treatment for the semi-solid die castings of A356 aluminum alloy is due to the dispersive precipitation of the second phase(Mg2 Si)and formation of GP Zone.

  3. Relationship between boundary misorientation angle and true strain during high temperature deformation of 7050 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    HU Hui-e; YANG Li; ZHEN Liang; SHAO Wen-zhu; ZHANG Bao-you

    2008-01-01

    Tensile tests of solid solution treated 7050 aluminum alloy were conducted to different strain degrees (0.1, 0.4, 0.6 and failure) at 460 ℃ with the strain rate of 1.0×10-4-1.0×10-1s-1. The boundary misorientation angle evolution during hot deformation of the 7050 aluminum alloy was studied by EBSD technique and the fracture surfaces were observed using SEM. A linear relationship between the increase in the average boundary misorientation angle and the true strain at different strain rates is assumed when aluminum alloy is deformed at 460 ℃. The increasing rate of average boundary misorientation angle is 15.1-, 15.7- and -0.75- corresponding to the strain rate of 1.0×10-4, 1.0×10-2 and 0.1 s-1, respectively. The main softening mechanism is continuous dynamic recrystallization when the strain rates are 1.0×10-4 and 1.0×10-2 s-1, and it is dynamic recovery when strain rate is 0.1 s-1.

  4. Processing map of as-cast 7075 aluminum alloy for hot working

    Directory of Open Access Journals (Sweden)

    Guo Lianggang

    2015-12-01

    Full Text Available The true stress–strain curves of as-cast 7075 aluminum alloy have been obtained by isothermal compression tests at temperatures of 300–500 °C and strain rates of 0.01–10 s−1. The plastic flow instability map is established based on Gegel B and Murthy instability criteria because the deformed compression samples suggest that the combination of the above two instability criteria has more comprehensive crack prediction ability. And the processing map based on Dynamic Material Model (DMM of as-cast 7075 aluminum alloy has been developed through a superposition of the established instability map and power dissipation map. In terms of microstructure of the deformed samples and whether plastic flow is stable or not, the processing map can be divided into five areas: stable area with as-cast grain, stable area with homogeneous grain resulting from dynamic recovery, instability area with as-cast grain, instability area with the second phase and instability area with mixed grains. In consideration of microstructure characteristics in the above five areas of the processing map, the stable area with homogeneous grain resulting from dynamic recovery, namely the temperatures at 425–465 °C and the strain rates at 0.01–1 s−1, is suggested to be suitable processing window for the as-cast 7075 aluminum alloy.

  5. Residual Strength of Stiffened LY12CZ Aluminum Alloy Panels with Widespread Fatigue Damage

    Institute of Scientific and Technical Information of China (English)

    Li Zhong; Ge Sen; Lu Guozhi; Chen Li; Ding Huiliang

    2008-01-01

    Experimental and analytical investigations on the residual strength of the stiffened LY12CZ aluminum alloy panels with widespread fatigue damage (WFD) are conducted. Nine stiffened LY12CZ aluminum alloy panels with three different types of damage are tested for residual strength. Each specimen is pre-cracked at rivet holes by saw cuts and subjected to a monotonically increasing tensile load until failure is occurred and the failure load is recorded. The stress intensity factors at the tips of the lead crack and the adjacent WFD cracks of the stiffened aluminum alloy panels are calculated by compounding approach and finite element method (FEM) respectively. The residual strength of the stiffened panels with WFD is evaluated by the engineering method with plastic zone linkup criterion and the FEM with apparent fracture toughness criterion respectively. The predicted residual strength agrees well with the experiment results. It indicates that in engineering practice these methods can be used for residual strength evaluation with the acceptable accuracy. It can be seen from this research that WFD can significantly reduce the residual strength and the critical crack length of the stiffened panels with WFD. The effect of WFD crack length on residual strength is also studied.

  6. Production of Magnesium and Aluminum-Magnesium Alloys from Recycled Secondary Aluminum Scrap Melts

    Science.gov (United States)

    Gesing, Adam J.; Das, Subodh K.; Loutfy, Raouf O.

    2016-02-01

    An experimental proof of concept was demonstrated for a patent-pending and trademark-pending RE12™ process for extracting a desired amount of Mg from recycled scrap secondary Al melts. Mg was extracted by electrorefining, producing a Mg product suitable as a Mg alloying hardener additive to primary-grade Al alloys. This efficient electrorefining process operates at high current efficiency, high Mg recovery and low energy consumption. The Mg electrorefining product can meet all the impurity specifications with subsequent melt treatment for removing alkali contaminants. All technical results obtained in the RE12™ project indicate that the electrorefining process for extraction of Mg from Al melt is technically feasible. A techno-economic analysis indicates high potential profitability for applications in Al foundry alloys as well as beverage—can and automotive—sheet alloys. The combination of technical feasibility and potential market profitability completes a successful proof of concept. This economical, environmentally-friendly and chlorine-free RE12™ process could be disruptive and transformational for the Mg production industry by enabling the recycling of 30,000 tonnes of primary-quality Mg annually.

  7. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys

    NARCIS (Netherlands)

    Zhang, L.; Eskin, D.G.; Katgerman, L.

    2011-01-01

    Ultrasonic melt treatment (UST) is known to induce grain refining in aluminum alloys. Previous studies have clearly shown that in Al–Zr–Ti alloys, the primary Al3Zr intermetallics were dramatically refined by cavitation-assisted fragmentation, and a good refinement effect was achieved. In this artic

  8. Effect of bariun on the refinement of primary aluminum and eutectics in a hypoeutectic Al-Si alloy

    Institute of Scientific and Technical Information of China (English)

    LI Wei; FAN Hongyuan; ZHANG Xianju; SHEN Baoluo

    2003-01-01

    The effect of barium on the refinement of primary aluminum and on the modification of eutectics in a hypoeutectic aluminm-silicon alloy was investigated. The results indicate that barium not only modifies the eutectic silicon but also refines the primary aluminum and there is a relationship between the retained barium and the second spacing of primary aluminum. Experiments of barium-treated commercial Al-Si hypoeutectic alloy show that barium is a better modifier than sodium when there is a longer holding time.

  9. Effect of porosity on the tensile properties of low ductility aluminum alloys

    Directory of Open Access Journals (Sweden)

    Gustavo Waldemar Mugica

    2004-06-01

    Full Text Available The literature contains reports of several studies correlating the porosity and mechanical properties of aluminum alloys. Most of these studies determine this correlation based on the parameter of global volumetric porosity. These reports, however, fail to separate the effects of microstructural features and porosity on alloys, though recognizing the influence of the latter on their mechanical properties. Thus, when the decrease in tensile strength due to the porosity effect is taken into account, the findings are highly contradictory. An analysis was made of the correlation between mechanical properties and global volumetric porosity and volumetric porosity in the fracture, as well as of the beta-Al5FeSi phase present in 380 aluminum alloy. Our findings indicate that mechanical properties in tension relating to global volumetric porosity lead to overestimations of the porosity effect in detriment to the mechanical properties. Moreover, the proposed models that take into account the effects of particles, both Si and beta-Al5FeSi, are unapplicable to low ductility alloys.

  10. Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Koumoulos, E.P. [National Technical University of Athens, Department of Chemical Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece); Charitidis, C.A., E-mail: charitidis@chemeng.ntua.gr [National Technical University of Athens, Department of Chemical Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece); Daniolos, N.M.; Pantelis, D.I. [National Technical University of Athens, Department of Naval Architecture and Marine Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece)

    2011-11-25

    Lightweight alloys are of major concern, due to their functionality and applications in transport and industry applications. Friction stir welding (FSW) is a solid-state welding process for joining aluminum and other metallic alloys and has been employed in aerospace, rail, automotive and marine industries. Compared to the conventional welding techniques, FSW produces joints which do not exhibit defects caused by melting. The objective of the present study is to investigate the surface hardness (H) and elastic modulus (E) in friction stir welded aluminum alloy AA6082-T6. The findings of the present study reveal that the welding process softens the material, since the weld nugget is the region where the most deformations are recorded (dynamic recrystallization, production of an extremely fine, equiaxial structure), confirmed by optical microscopy and reduced nanomechanical properties in the welding zone. A yield-type pop-in occurs upon low loading and represents the start of phase transformation, which is monitored through a gradual slope change of the load-displacement curve. Significant pile-up is recorded during nanoindentation of the alloy through SPM imaging.

  11. Mold Materials For Permanent Molding of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    John F Wallace; David Schwam; Wen Hong dxs11@po.cwru.edu

    2001-09-14

    A test that involves immersion of the potential mod materials for permanent molds has been developed that provides a thermal cycle that is similar to the experienced during casting of aluminum in permanent molds. This test has been employed to determine the relative thermal fatigue resistance of several different types of mold materials. Four commercial mold coatings have been evaluated for their insulating ability, wear resistance and roughness. The results indicate that composition and structure of the mold materials have considerable effect on their thermal fatigue cracking behavior. Irons with a gray iron structure are the most prone to thermal fatigue cracking followed by compacted graphite irons with the least thermal fatigue cracking of the cast irons experienced by ductile iron. The composition of these various irons affects their behavior.

  12. Numerical simulation for mold-filling of thin-walled aluminum alloy castings in traveling magnetic field

    OpenAIRE

    Wu, Shiping; Bangsheng LI; Guo, Jingjie

    2004-01-01

    The numeical simulation for mold-filling of thin-walled aluminum alloy castins in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyzing traveling magnetic field carefully. Numerical model of Al alloy mold-filling is founded based on N-S equation, which was suitable for traveling magnetic field. By using acryl glass mold with indium as alloy melt, the experiment testiied the filling state of alloy in traveling m...

  13. Composition and hardness of mullite coatings formed with direct current power supply on LY12 aluminum alloy surface

    Institute of Scientific and Technical Information of China (English)

    XIN Shi-gang; JIANG Zhao-hua; LI Yan-ping; ZHANG Ji-lin

    2005-01-01

    The surface modification of aluminum and its alloys using plasma technology is increasingly being investigated. Thick ceramic coatings with high hardness on aluminum alloys can be prepared successfully using a micro-plasma oxidation (MPO) technique. In this work, the composition, microstructure and elemental distribution of ceramic coatings formed by MPO on LY 12 aluminum alloy and its hardness are investigated using XRD, EPMA and microhardness instruments. The results show that the ceramic coatings consist of mullite, γ -Al2 O3 and a lot of amorphous matter. The content of silicon in the coatings increases from interface to the coatings, however, the content of aluminum decreases along this direction. The maximum hardness of ceramic coatings is up to 9. 2 GPa.

  14. Hot deformation behavior and microstructural evolution of Ag-containing 2519 aluminum alloy

    International Nuclear Information System (INIS)

    The hot deformation behaviors of Ag-containing 2519 aluminum alloy were studied by isothermal compression at 300-500 oC with strain rates from 0.01 s-1 to 10 s-1. The microstructural evolution of the alloy was investigated using Polyvar-MET optical microscope and Tecnai G2 20 transmission electron microscope (TEM). It has been shown that the flow stress of the alloy increases with increasing the strain rate and decreasing the deformation temperature. When the strain rate is lower than 10 s-1, the flow stress increases with increasing strain until the stress reached the peak value, after which the flow stress remains almost constant. This result indicates that dynamic recovery happens during deformation. When the strain rate is 10 s-1 and the temperature is higher than 300 oC, serrated flow behavior is generally observed with the stress decreasing with increasing strain, a typical phenomenon of dynamic recrystallization.

  15. The Effect of Aluminum Content on the Microstructure and Cavitation Wear of Feal Intermetallic Alloys

    Directory of Open Access Journals (Sweden)

    Jasionowski Robert

    2014-03-01

    Full Text Available Intermetallic-based alloys (so called intermetallics of the Fe-Al binary system are modern construction materials, which in recent decades have found application in many branches of the power, chemical and automotive industries. High resistance of FeAl based alloys to cavitational erosion results first of all from their high hardness in the as-cast state, large compressive stresses in the material, as well as homogeneous structure. In the present paper, the effect of aluminum content on the microstructure, texture and strain implemented upon cavitation wear of FeAl intermetallic alloys, have been analyzed by field emission gun scanning electron microscopy (FEG SEM and electron backscatter diffraction (EBSD analysis. Obtained results of structural characterization indicates that with increasing aluminium content effects of orientation randomization (weakening of //ND casting texture, grain refinement and rising of mechanical strenght (and so cavitational resistance take place.

  16. Deformation character of the aluminum alloy AA 6063 depending on the homogenization state

    Energy Technology Data Exchange (ETDEWEB)

    Kelesoglu, Erguen [Yildiz Technical Univ. (Turkey). Research and Development Centre for Industrial Cooperation; Erarslan, Yaman [Metallurgical and Materials Engineering, Yildiz Technical Univ. (Turkey); Oezer, Goekhan [Metallurgical and Materials Engineering, Yildiz Technical Univ. (Turkey); Yildiz Technical Univ. (TR). Balkan Centre of Advanced Casting Technologies (BCACT)

    2009-07-01

    In the work for this contribution, homogenization heat treatment was evaluated with respect to its effect on deformation ability of AA6063 aluminum alloy which is a widely used extrusion alloy. The samples machined from extrusion billets were homogenized at 540 C, 560 C and 580 C for a time period of 2, 4, 6, 8 and 10 h. The homogenization state of the samples was assessed via microstructure examination. The hardness of the samples was determined using Brinell hardness method. Tensile test was carried out in order to evaluate the deformation ability. Tensile strength and elongation at rupture were compared depending on the homogenization state of the alloy. Depending on the homogenization grade, the elongation at rupture was increased, and samples showed a gradual shift from brittle fracture to ductile fracture. (orig.)

  17. Improvement on the Corrosion Resistance of AZ91D Magnesium Alloy by Aluminum Diffusion Coating

    Institute of Scientific and Technical Information of China (English)

    Hongwei HUO; Ying LI; Fuhui WANG

    2007-01-01

    By combination of magnetron sputtering deposition and vacuum annealing, an aluminum diffusion coating was prepared on the substrate of AZ91D alloy to improve its corrosion resistance. The microstructure and composition of the diffusion coating was investigated by scanning electron microscopy and X-ray diffraction. The diffusion coating was mainly comprised of β phase-Al12Mg17. The continuous immersion test in 3.5 wt pct neutral NaCl solution indicated that the specimen with diffusion coating had better corrosion resistance compared with the bare AZ91D alloy specimen. The potentiodynamic polarization measurement indicated that the diffusion coating could function as an effectively protective layer to reduce the corrosion rate of AZ91D alloy when exposed to 3.5 wt pct NaCl solution.

  18. VAMAS tests of structural materials on aluminum alloy and composite material at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, T. [National Research Institute for Metals, Tsukuba, Ibaraki (Japan); Evans, D. [Rutherford Appleton Lab., Chilton (United Kingdom)

    1997-06-01

    A Technical Working Area 17, cryogenic structural materials, has been organized in the Versailles Project on Advanced Materials and Standards (VAMAS) to promote the prestandardization program on material properties tests of glass fiber reinforced polymer (GFRP) composite materials and alloys at liquid helium temperature. A series of international interlaboratory comparisons of both tensile and fracture toughness tests for aluminum alloy 2219 and compression and shear tests for composite material G-10CR were performed. Nine research institutes from seven nations have participated in this project. The results prove that there are few problems in cryogenic tensile tests for alloy materials. In compression and shear tests, the amount of data scatter was identified and further experiments are planned. This paper presents the program details and interim results of round robin tests.

  19. VAMAS tests of structural materials on aluminum alloy and composite material at cryogenic temperatures

    International Nuclear Information System (INIS)

    A Technical Working Area 17, cryogenic structural materials, has been organized in the Versailles Project on Advanced Materials and Standards (VAMAS) to promote the prestandardization program on material properties tests of glass fiber reinforced polymer (GFRP) composite materials and alloys at liquid helium temperature. A series of international interlaboratory comparisons of both tensile and fracture toughness tests for aluminum alloy 2219 and compression and shear tests for composite material G-10CR were performed. Nine research institutes from seven nations have participated in this project. The results prove that there are few problems in cryogenic tensile tests for alloy materials. In compression and shear tests, the amount of data scatter was identified and further experiments are planned. This paper presents the program details and interim results of round robin tests

  20. Stress corrosion cracking resistance of aluminum alloy 7000 series after two-step aging

    Directory of Open Access Journals (Sweden)

    Jegdić Bore V.

    2015-01-01

    Full Text Available The effect of one step-and a new (short two-step aging on the resistance to stress corrosion cracking of an aluminum alloy 7000 series was investigated, using slow strain rate test and fracture mechanics method. Aging level in the tested alloy was evaluated by means of scanning electron microscopy and measurements of electrical resistivity. It was shown that the alloy after the new two-step aging is significantly more resistant to stress corrosion cracking. Values of tensile properties and fracture toughness are similar for both thermal states. Processes that take place at the crack tip have been considered. The effect of the testing solution temperature on the crack growth rate on the plateau was determined. Two values of the apparent activation energy were obtained. These values correspond to different processes that control crack growth rate on the plateau at higher and lower temperatures. [Projekat Ministarstva nauke Republike Srbije, br. TR 34028 i br. TR 34016

  1. Aluminum alloy production for the reinforcement of the CMS conductor

    CERN Document Server

    Sequeira-Lopes-Tavares, S; Campi, D; Curé, B; Horváth, I L; Riboni, P; Sgobba, Stefano; Smith, R P

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the Large Hadron Collider (LHC) project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. To reinforce the high-purity (99.998%) Al-stabilized conductor of the magnet against the magnetic loadings experienced during operation at 4.2 K, two continuous sections of Al-alloy (AA) reinforcement are Electron Beam (EB) welded to it. The reinforcements have a section of 24*18 mm and are produced in continuous 2.55 km lengths. The alloy EN AW-6082 has been selected for the reinforcement due to its excellent extrudability, high strength in the precipitation hardened states, high toughness and strength at cryogenic temperature and good EB weldability. Each of the continuous lengths of the reinforcement is extruded billet on billet and press quenched on-line from the extrusion temperature in an industrial extrusion plant. In order to insure the ready EB welda...

  2. Lateral extrusion of tailor welded aluminum alloy pipes with a lost core of low temperature melting alloy

    OpenAIRE

    Ohashi, T.; Liu, G.

    2009-01-01

    Purpose: In this paper, the authors employ tailor welded aluminum alloy pipes for lateral extrusion process with a lost core to perform a hollow light-weight-part.Design/methodology/approach: The pipe is welded longitudinally by YAG-laser. “The lateral extrusion process with a lost core (LELC)” consists of lateral extrusion of pipes with a soluble solid core, called the “lost core”, which serves as a plastic mandrel. The process proceeds as follows. First, the pipe cavity is filled with the l...

  3. Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel

    Institute of Scientific and Technical Information of China (English)

    San-bao LIN; Jian-ling SONG; Guang-chao MA; Chun-li YANG

    2009-01-01

    Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel was investigated, and the wettability and spreadability of aluminum filler metal on the steel surface were analyzed. The resultant joint was characterized in order to determine the brittle intermetallic compound (IMC) in the interfacial layer, and the mechan-ical property of the joint was tested. The results show that the zinc coated layer can improve the wettability and spreadability of liquid aluminum filler metal on the surface of the steel, and the wetting angle can reach less than 20°. The lap joint has a dual characteristic and can be divided into a welding part on the aluminum side and a brazing part on the steel side. The interfacial IMC layer in the steel side is about 9.0 μm in thickness, which transfers from (α-Al + FeAl3) in the welded seam side to (Fe2Al5+ FeAl2) and (FeAl2+ FeAl) in the steel side. The crystal grain of the welded seam is obviously larger in size in the aluminum side. The local incomplete brazing is found at the root of the lap joint, which weakens the property of the joint. The fracture of the joint occurs at the root and the average tensile strength reaches 90 MPa.

  4. Mechanical Properties of Solid-State Recycled 4xxx Aluminum Alloy Chips

    Science.gov (United States)

    Tokarski, Tomasz

    2016-08-01

    The direct production of aluminum from bauxite ores is known to be a very energetic-intensive operation compared to other metallurgical processes. Due to energy issues and the rapid increase in aluminum demand, new kinds of aluminum production processes are required. Aluminum waste recycling, which has an advantage of lowering the cost of electric power consumption, is considered to be an alternative route for material manufacturing. In this work, the way of reusing aluminum EN-AC 44000 alloy scraps by hot extrusion was presented. Metal chips of different sizes and morphology were cold compacted into billet form and then hot extruded. Mechanical properties investigations combined with microstructure observations were performed. Mechanical anisotropy behavior of material was evaluated on the base of tensile test experiments performed on samples machined at 0°, 45°, and 90°, respectively, to the extrusion direction. It was found that the initial size of the chips has an influence on the mechanical properties of the received profiles. Samples produced from fine chips revealed higher tensile strength in comparison to larger chips, which can be attributed to a refined microstructure containing fine, hard Si particles and Fe-rich intermetallic phases. Finally, it was found that anisotropic behavior of chip-based profiles is similar to conventionally cast and extruded materials which prove good bonding quality between chips.

  5. Mechanical Properties of Solid-State Recycled 4xxx Aluminum Alloy Chips

    Science.gov (United States)

    Tokarski, Tomasz

    2016-06-01

    The direct production of aluminum from bauxite ores is known to be a very energetic-intensive operation compared to other metallurgical processes. Due to energy issues and the rapid increase in aluminum demand, new kinds of aluminum production processes are required. Aluminum waste recycling, which has an advantage of lowering the cost of electric power consumption, is considered to be an alternative route for material manufacturing. In this work, the way of reusing aluminum EN-AC 44000 alloy scraps by hot extrusion was presented. Metal chips of different sizes and morphology were cold compacted into billet form and then hot extruded. Mechanical properties investigations combined with microstructure observations were performed. Mechanical anisotropy behavior of material was evaluated on the base of tensile test experiments performed on samples machined at 0°, 45°, and 90°, respectively, to the extrusion direction. It was found that the initial size of the chips has an influence on the mechanical properties of the received profiles. Samples produced from fine chips revealed higher tensile strength in comparison to larger chips, which can be attributed to a refined microstructure containing fine, hard Si particles and Fe-rich intermetallic phases. Finally, it was found that anisotropic behavior of chip-based profiles is similar to conventionally cast and extruded materials which prove good bonding quality between chips.

  6. Effect of Post-Weld Heat Treatment on the Mechanical Properties of Friction Stir Welds of Dissimilar Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    P. Murali Krishna

    2011-07-01

    Full Text Available This paper focuses on the effect of post weld heat treatment (PWHT on microstructure and mechanical properties of dissimilar friction stir welding (FSW of AA2024-T6 to AA6351-T6. FSW is getting widened to be used to join the aluminum alloys. PWHT of AA2024 and AA6351 aluminum alloys are not reported so far even though these alloys are widely used in aerospace and automobile industries. A post weld solution treatment and subsequent ageing resulted in improvement in mechanical properties (hardness and tensile strength.

  7. EXPERIMENTAL INVESTIGATION ON ELECTRICAL DISCHARGE MACHINING OF TITANIUM ALLOY USING COPPER, BRASS AND ALUMINUM ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. DHANABALAN

    2015-01-01

    Full Text Available In the present study, an evaluation has been done on Material Removal Rate (MRR, Surface Roughness (SR and Electrode Wear Rate (EWR during Electrical Discharge Machining (EDM of titanium alloy using copper, brass and aluminum electrodes. Analyzing previous work in this field, it is found that electrode wear and material removal rate increases with an increase current. It is also found that the electrode wear ratio increases with an increase in current. The higher wear ratio is found during machining of titanium alloy using a brass electrode. An attempt has been made to correlate the thermal conductivity and melting point of electrode with the MRR and electrode wear. The MRR is found to be high while machining titanium alloy using brass electrode. During machining of titanium alloy using copper electrodes, a comparatively smaller quantity of heat is absorbed by the work material due to low thermal conductivity. Due to the above reason, the MRR becomes very low. Duringmachining of titanium alloy using aluminium electrodes, the material removal rate and electrode wear rate are only average value while machining of titanium alloy using brass and copper electrodes.

  8. The effect warming time of mechanical properties and structural phase aluminum alloy nickel

    International Nuclear Information System (INIS)

    Ferrous aluminum alloys as fuel cladding will experience the process of heat treatment above the recrystallization temperature. Temperature and time of heat treatment will affect the nature of the metal. Heating time allows will affect change in mechanical properties, thermal and structure of the metal phase. This study aims to determine the effect of time of heat treatment on mechanical properties and phase metal alloys. Testing the mechanical properties of materials, especially violence done by the method of Vickers. Observation of microstructural changes made by metallographic-optical and phase structure were analyzed Based on the x-ray diffraction patterns Elemental analysis phase alloy compounds made by EDS-SEM. Test results show the nature of violence AlFeNiMg alloy by heating at 500°C with a warm-up time 1 hour, 2 hours and 3 hours respectively decreased range 94.4 HV, 87.6 HV and 85.1 HV. The nature of violence AlFeNi alloy showed a decrease in line with the longer heating time. Metallographic-optical observations show the microstructural changes with increasing heating time. Microstructure shows the longer the heating time trend equi axial shaped grain structure of growing and the results showed a trend analyst diffraction pattern formation and phase θ α phase (FeAl3) in the alloy. (author)

  9. Effect of aluminum on microstructure and property of Cu–Ni–Si alloys

    International Nuclear Information System (INIS)

    The effect of aluminum on the microstructure and properties of Cu–Ni–Si alloys has been investigated using hardness test, electrical conductivity measurement, optical microscopy, X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Compared with Cu–Ni–Si alloy, Cu–Ni–Si–Al alloy had finer grains. After homogenization treatment at 940 °C for 4 h, hot rolling by 80% at 850 °C, solution treatment at 970 °C for 4 h, cold rolling by 50% and ageing treatment at 450 °C for 60 min, properties better than Cu–Ni–Si alloy have been obtained in Cu–Ni–Si–Al alloy: hardness was 343 HV, electrical conductivity was 28.1% IACS, tensile strength was 1080 MPa, yield strength was 985 MPa, elongation percentage was 3.1% and stress relaxation rate was 9.83% (as tested at 150 °C and loading for 100 h). β-Ni3Si and δ-Ni2Si formed during the ageing process and the crystal orientation relationship between matrix and precipitates was : (02-bar 2-bar )Cu (01-bar 1-bar )β (010)δ, [100]Cu [100]β [001]δ; (111-bar )Cu (111-bar )β (02-bar 1)δ, [112]Cu [112]β [012]δ. Addition of Al promoted the precipitation, and effectively enhanced the anti-stress relaxation property. Quasi-cleavage fracture with shallow dimples appeared in designed Cu–Ni–Si–(Al) alloy

  10. Preparation of casting alloy ZL101 with coarse aluminum-silicon alloy

    Institute of Scientific and Technical Information of China (English)

    YOU Jing; WANG Yao-wu; FENG Nai-xiang; YANG Ming-sheng

    2008-01-01

    The coarse Al-Si alloy produced by carbothermal reduction of aluminous ore contains 55% Al, 25% Si and some impurities. The main impurities are slag and iron. The process of manufacturing casting Al-Si alloy ZL101 with the coarse Al-Si alloy was studied. The phase constitution and microstructure of the coarse Al-Si alloy, slag and ZL101 were examined by X-ray diffractometry and scanning electron microscopy. The results show that the content of silicon and iron in the casting alloy reduces with the increase of the dosage of purificant and manganese, but increases with the rise of filtering temperature. It is found that casting Al-Si alloy conforming to industrial standard can be produced after refining by using purificant, and removing iron by using manganese and added magnesium.

  11. Characteristics of radioactivities induced in aluminum alloys and the effects due to those major and minor components

    International Nuclear Information System (INIS)

    In order to search the usefulness of aluminum alloys as a material for an accelerator and its surrounding apparatus, the characteristics of radioactivities induced in several aluminum alloys (AA 1230, AA 2219, JIS 5052, AA 6063 and AA 7079) and stainless steel (SUS 304) irradiated for a long time with high energy bremsstrahlung have been studied fundamentally and compared with each other. After the concentrations of major alloying elements and impurities in the above samples were determined by means of photon-activation, proton-activation and emission spectrochemical analyses, they were irradiated with 30 and 200 MeV bremsstrahlung. As the results, it was proved that the intensities of radioactivities induced in the aluminum alloys are greatly affected by those major and minor components, but are remarkably lower than that in the stainless steel. (author)

  12. Corrosion and corrosion fatigue of airframe aluminum alloys

    Science.gov (United States)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  13. Fatigue properties of an 1421 aluminum alloy processed by ECAE

    Science.gov (United States)

    Mogucheva, A.; Kaibyshev, R.

    2010-07-01

    Fatigue properties and fatigue crack growth rate were examined in an Al-Mg-Li-Sc-Zr allow subjected to equal channel angular extrusion (ECAE) with rectangular shape of channels up to a total strain of ~4 at a temperature of 325°C followed by solution treatment with subsequent oil quenching with aging. After this processing the fraction recrystallized was ~80pct; the deformed microstructure remains essentially unchanged under solution treatment due to high density of Al3Sc coherent dispersoids playing a role of effective pinning agents. It was shown that the fatigue limit of this material attained a value of ~185 MPa. Thermomechanical processing provided a decrease in fatigue crack propagation growth rate and an increase in the stress intensity factor, K1c, in comparison with extruded bar. However, characteristics of crack propagation resistance did not attain values suitable for application of this alloy for critical aircraft components.

  14. Fatigue properties of an 1421 aluminum alloy processed by ECAE

    Energy Technology Data Exchange (ETDEWEB)

    Mogucheva, A; Kaibyshev, R, E-mail: mogucheva@bsu.edu.r [Belgorod State University, Pobeda 85, Belgorod, 308015 (Russian Federation)

    2010-07-01

    Fatigue properties and fatigue crack growth rate were examined in an Al-Mg-Li-Sc-Zr allow subjected to equal channel angular extrusion (ECAE) with rectangular shape of channels up to a total strain of {approx}4 at a temperature of 325{sup 0}C followed by solution treatment with subsequent oil quenching with aging. After this processing the fraction recrystallized was {approx}80pct; the deformed microstructure remains essentially unchanged under solution treatment due to high density of Al{sub 3}Sc coherent dispersoids playing a role of effective pinning agents. It was shown that the fatigue limit of this material attained a value of {approx}185 MPa. Thermomechanical processing provided a decrease in fatigue crack propagation growth rate and an increase in the stress intensity factor, K{sub 1c}, in comparison with extruded bar. However, characteristics of crack propagation resistance did not attain values suitable for application of this alloy for critical aircraft components.

  15. Self-organization behaviors of shear bands in 7075 T73 and annealed aluminum alloy

    International Nuclear Information System (INIS)

    The self-organization behaviors of multiple adiabatic shear bands (ASBs) in the 7075 T73 aluminum alloy were investigated by means of the thick-walled cylinder (TWC) technique. Shear bands first nucleate at the inner boundary of the aluminum alloy tube and propagate along the maximum shear stress direction in the spiral trajectory. On the cross section of the specimen, shear bands distribute either in the clockwise or the anticlockwise direction. The number of ASBs in the clockwise direction is roughly twice that in the anticlockwise direction. However, the 7075 annealed alloy does not generate any shear band under the same experimental conditions. Numerical simulation with coupled thermo-mechanical analysis was carried out to investigate the evolution mechanism of adiabatic shear bands. Both uniform and non-uniform finite element models were created. The simulation results of the non-uniform model are in better agreement with those of the experiment. In the non-uniform case, the spacing between ASBs is larger than that of the uniform model, and most of the ASBs prefer to propagate in the clockwise direction. For the first time, two types of particles (second phase), hard particles and soft particles, are separately introduced into the metal matrix in the non-uniform model to simulate their effects on the self-organization of ASBs. The soft particles reduce the time required for ASBs nucleation. Stress collapse first occurs at the region where the soft particles are located and most of the ASBs pass through these soft particles. However, ASBs propagate along the paths that are adjacent to the hard particles instead of passing through them. As experimental observations, there is no shear band nucleating in the annealed alloy in simulation. Under the same conditions, the energy barrier for the formation of ASBs in the annealed aluminum alloy is about 2.5 times larger than that in the T73 alloy, which means that the adiabatic shearing is less likely to nucleate in the

  16. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

    Science.gov (United States)

    Penlington, Alex

    Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.

  17. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment.

    Science.gov (United States)

    Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A

    2015-09-01

    We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed. PMID:26271017

  18. Intergranular corrosion in AA5XXX aluminum alloys with discontinuous precipitation at the grain boundaries

    Science.gov (United States)

    Bumiller, Elissa

    The US Navy currently uses AA5xxx aluminum alloys for structures exposed to a marine environment. These alloys demonstrate excellent corrosion resistance over other aluminum alloys (e.g., AA2xxx or AA7xxx) in this environment, filling a niche in the marine structures market when requiring a light-weight alternative to steel. However, these alloys are susceptible to localized corrosion; more specifically, intergranular corrosion (IGC) is of concern. IGC of AA5xxx alloys due to the precipitation of beta phase on the grain boundaries is a well-established phenomenon referred to as sensitization. At high degrees of sensitization, the IGC path is a continuous anodic path of beta phase particles. At lower degrees of sensitization, the beta phase coverage at the grain boundaries is not continuous. The traditional ranges of susceptibility to IGC as defined by ASTM B928 are in question due to recent studies. These studies showed that even at mid range degrees of sensitization where the beta phase is no longer continuous, IGC may still occur. Previous thoughts on IGC of these alloy systems were founded on the idea that once the grain boundary precipitate became discontinuous the susceptibility to IGC was greatly reduced. Additionally, IGC susceptibility has been defined metallurgically by compositional gradients at the grain boundaries. However, AA5xxx alloys show no compositional gradients at the grain boundaries, yet are still susceptible to IGC. The goal of this work is to establish criteria necessary for IGC to occur given no continuous beta phase path and no compositional gradient at the grain boundaries. IGC performance of the bulk alloy system AA5083 has been studied along with the primary phases present in the IGC system: alpha and beta phases using electrochemistry and modeling as the primary tools. Numerical modeling supports that at steady-state the fissure tip is likely saturated with Mg in excess of the 4% dissolved in the matrix. By combining these results

  19. Studies on separation and purification of fission 99Mo from neutron activated uranium aluminum alloy

    International Nuclear Information System (INIS)

    A new method has been developed for separation and purification of fission 99Mo from neutron activated uranium–aluminum alloy. Alkali dissolution of the irradiated target (100 mg) results in aluminum along with 99Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of 99Mo was carried out using anion exchange method. The radiochemical yield of fission 99Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. - Highlights: • 99Mo separation, purification method developed from neutron activation of 100 g U–Al alloy. • Uranium, fission, activation product decontamination by alkali dissolution of activated target. • Purification by Al(OH)3, AgI/AgIO3, Mo-α-benzoin oxime precipitation and anion exchange. • Very high decontamination factors for alpha activity obtained. • Final 99Mo product (recovery >80%) complied with international pharmacopoeia standards

  20. Microstructure of Nitrided Aluminum Alloys Using an Electron-Beam-Excited-Plasma (EBEP)

    Institute of Scientific and Technical Information of China (English)

    L. Liu; A. Yamamoto; T. Hishida; H. Shoyama; T. Hara; T. Hara

    2004-01-01

    Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP)technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of substrates,aluminum alloys AA5052 and AA5083, were exposed to the down flow of EBEP source at 843 K for 45min. The specimens were characterized with respect to following properties: crystallographic structure (XRD), morphology (SEM) and the cross sectional microstructures of the nitrided layer was observed using a scanning electron microscopy (SEM). There are some Al2O3 particles on the surface of the nitrided AA5052 and AA5083. The AIN layers were formed on the substrates with the thickness of 4.5 μ m for AA5052 and 0.5 μ m for AA5083. A relatively uniform nitrided surface layer composed of AIN can be observed on the AA5052 substrate. The grains size near the interfaces between the substrate and AIN layer were smaller than that near the surface. On the surface of AIN layer, the concentration of nitrogen was high and in the middle of AIN layer it had a constant concentration like the aluminum and the concentration was decreased with approaching to the interface. On the surface of nitrided AA5083, a uniform AIN layer was not formed as the reason for the high nitriding temperature.

  1. Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Syung Yul; Park, Dong Hyun; Won, Jong Pil; Kim, Yun Hae; Lee, Myung Hoon; Moon, Kyung Man; Jeong, Jae Hyun [Korea Maritime Univ., Busan (Korea, Republic of)

    2012-06-15

    Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold and hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at 190 .deg. C for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at 190 .deg. C for 16hrs.

  2. Electrochemistry of vanadium(II and the electrodeposition of aluminum-vanadium alloys in the aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Tsuda T.

    2003-01-01

    Full Text Available The electrochemical behavior of vanadium(II was examined in the 66.7-33.3 mole percent aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt containing dissolved VCl2 at 353 K. Voltammetry experiments revealed that V(II could be electrochemically oxidized to V(III and V(IV. However at slow scan rates the V(II/V(III electrode reaction is complicated by the rapid precipitation of V(III as VCl3. The reduction of V(II occurs at potentials considerably negative of the Al(III/Al electrode reaction, and Al-V alloys cannot be electrodeposited from this melt. However electrodeposition experiments conducted in VCl2-saturated melt containing the additive, 1-ethyl-3-methylimidazolium tetrafluoroborate, resulted in Al-V alloys. The vanadium content of these alloys increased with increasing cathodic current density or more negative applied potentials. X-ray analysis of Al-V alloys that were electrodeposited on a rotating copper wire substrate indicated that these alloys did not form or contain an intermetallic compound, but were non-equilibrium or metastable solid solutions. The chloride-pitting corrosion properties of these alloys were examined in aqueous NaCl by using potentiodynamic polarization techniques. Alloys containing ~10 a/o vanadium exhibited a pitting potential that was 0.3 V positive of that for pure aluminum.

  3. A Fundamental Study of Laser Beam Welding Aluminum-Lithium Alloy 2195 for Cryogenic Tank Applications

    Science.gov (United States)

    Martukanitz, R. P.; Jan. R.

    1996-01-01

    Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.

  4. Aluminum Alloy Semisolid Strip Casting Using an Unequal Diameter Twin Roll Caster

    Directory of Open Access Journals (Sweden)

    T. Haga

    2005-12-01

    Full Text Available Purpose: A Purpose of the present study was to break through the disadvantage of the twin roll caster for aluminum alloy. They were slow casting speed and limitation of alloy. For example, the casting speed was slower than 5 m/min, and casting of hypereutectic Al-Si alloy was difficult. In order to break through the disadvantages, semisolid casting using an unequal diameter twin roll caster was tested its ability.Design/methodology/approach: The specification of the unequal diameter twin roll caster is as below. The diameter of the upper roll was 250 mm, and that of the lower roll was 1000 mm. The width of the roll was 100 mm. The semisolid slurry was made by a cooling slope.Findings: The microstructure of the strip became very fine. Especially, primary and eutectic Si became very fine. This was the effect of rapid solidification. As the result, the ductility of Al-16%Si was improved.Research limitations/implications: 6111 aluminum alloy strip was cast at speeds of 5, 10 and 20 m/min. This caster could cast the strip at the speeds higher than the conventional twin roll caster. Start of casting was very easy. The hypereutectic Al-16%Si alloy, which has wide freezing zone, could be cast in to the strip by the unequal diameter twin roll caster. This was the effect of the cooling of the strip on the lower roll.Originality/value: The roll cast Al-16mass%Si strip had good ductility, and could be cold rolled. Annealed 0.5 mm thick Al-16mass%Si could be bent at radius of 0.75mm.

  5. Prediction of low-cycle fatigue-life by acoustic emission—1: 2024-T3 aluminum alloy, and —2: 7075-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baram, J. [Ben-Gurion Univ. of the Negev, Beer Sheva (Israel). Materials Engineering Division; Rosen, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division

    1981-01-01

    1: In this paper, low-cycle fatigue tests were conducted by tension-tension until rupture, on a 2024-T3 aluminum alloy sheet. Initial crack sizes and orientations in the fatigue specimens were found to be randomly distributed. Acoustic emission was continuously monitored during the tests. Every few hundred cycles, the acoustic signal having the highest peak-amplitude, was recorded as an extremal event for the elapsed period. This high peak-amplitude is related to a fast crack propagation rate through a phenomenological relationship. The extremal peak amplitudes are shown by an ordered statistics treatment, to be extremally distributed. The statistical treatment enables the prediction of the number of cycles left until failure. Predictions performed a posteriori based on results gained early in each fatigue test are in good agreement with actual fatigue lives. Finally, the amplitude distribution analysis of the acoustic signals emitted during cyclic stress appears to be a promising nondestructive method of predicting fatigue life. 2: In this paper, low cycle high stress fatigue tests were conducted by tension-tension on an Alclad 7075-T6 aluminum sheet alloy, until rupture. Initial crack sizes and orientations in the fatigue specimens were randomly distributed. Acoustic emission was continuously monitored during the tests. Extremal peak-amplitudes, equivalent to extremal crack-propagation rates, are shown to be extremally Weibull distributed. The prediction of the number of cycles left until failure is made possible, using an ordered statistics treatment and an experimental equipment parameter obtained in previous experiments (Part 1). The predicted life-times are in good agreement with the actual fatigue lives. Finally, the amplitude distribution analysis of the acoustic signals emitted during cyclic stress has been proven to be a feasible nondestructive method of predicting fatigue life.

  6. Studies on the effect of vibration on hot cracking and Grain size in AA7075 Aluminum alloy Welding

    Directory of Open Access Journals (Sweden)

    BALASUBRAMANIAN.K

    2011-01-01

    Full Text Available The aim of this present study is to investigate the vibration effect which is applied during Gas tungsten Arc welding (GTAW welding in order to improve the quality of high strength Aluminum alloy weldment. An important metallurgical difficulty in arc welding of high strength aluminum alloys is formation of hot cracking. When Aluminum alloy is welded by GTAW process, weld fusion zone shows coarse columnar grains during weld metal solidification. This often leads to poor resistance to hot cracking. In this work, an attempt is made to reduce the hot cracking and to refine the fusion zone grains in welding of aluminum alloys through vibratory treatment. The material used for the investigation is AA7075 aluminum alloy, which is highly prone for hot cracking. Vibratory treatment was carried out in the frequency range of 100Hz to 2050Hz. Weldments made with and without vibratory treatment were compared using weld cracking tests and other characterization tests like micro structural analysis, hardness measurements. Test results show that by applying vibratory treatment, hot cracking can be largely controlled in arc welding.

  7. Prediction of 2A70 aluminum alloy flow stress based on BP artificial neural network

    Institute of Scientific and Technical Information of China (English)

    刘芳; 单德彬; 吕炎; 杨玉英

    2004-01-01

    The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble - 1500 thermal simulator over 360 ~480°C with strain rates in the range of 0.01 ~ 1 s- 1 and the largest deformation up to 60%. On the basis of experiments, a BP artificial neural network (ANN) model was constructed to predict 2A70 aluminum alloy flow stress. True strain, strain rates and temperatures were input to the network, and flow stress was the only output. The comparison between predicted values and experimental data showed that the relative error for the trained model was less than ± 3% for the sampled data while it was less than ± 6% for the non-sampled data. Furthermore, the neural network model gives better results than nonlinear regression method. It is evident that the model constructed by BP ANN can be used to accurately predict the 2A70 alloy flow stress.

  8. Separation of matrix alloy and reinforcement from aluminum metal matrix composites scrap by salt flux addition

    Indian Academy of Sciences (India)

    K R Ravi; R M Pillai; B C Pai; M Chakraborty

    2007-08-01

    Separation of matrix alloy and reinforcements from pure Al–SiCp composite scrap by salt flux addition has been theoretically predicted using interface free energies. Experiments performed confirm the theoretical prediction. Complete separation of matrix aluminum and reinforcement from metal matrix composites (MMCs) scrap has been achieved by addition of 2.05 wt% of equimolar mixture of NaCl–KCl salt flux with a metal and particle yield of 84 and 50%, respectively. By adding 5 wt% of NaF to equimolar mixture of NaCl–KCl, metal and particle yield improved to 91 and 73%, respectively. Reusability of both the matrix aluminum and the SiC separated from Al–SiCp scraps has been analysed using XRD, SEM and DTA techniques. The matrix alloy separated from Al–SiCp scraps can be used possibly as a low Si content Al–Si alloy. However, the interfacial reaction that occurred during the fabrication of the composites had degraded the SiC particles.

  9. Inhibitive Action of Ferrous Gluconate on Aluminum Alloy in Saline Environment

    Directory of Open Access Journals (Sweden)

    Patricia Abimbola Idowu Popoola

    2013-01-01

    Full Text Available The corrosion of aluminum in saline environment in the presence of ferrous gluconate was studied using weight loss and linear polarization methods. The corrosion rates were studied in different concentrations of ferrous gluconate 0.5, 1.0, 1.5, and 2.0 g/mL at 28°C. Experimental results revealed that ferrous gluconate in saline environment reduced the corrosion rate of aluminum alloy at the different concentrations studied. The minimum inhibition efficiency was obtained at 1.5 g/mL concentration of inhibitor while the optimum inhibition efficiency was achieved with 1.0 g/mL inhibitor concentration. The results showed that adsorption of ferrous gluconate on the aluminium alloy surface fits Langmuir adsorption isotherm. The potentiodynamic polarization results showed that ferrous gluconate is a mixed type inhibitor. Ferrous gluconate acted as an effective inhibitor for aluminium alloy within the temperature and concentration range studied. The data obtained from weight loss and potentiodynamic polarization methods were in good agreement.

  10. Vertical Compensation Friction Stir Welding of 6061-T6 Aluminum Alloy

    Science.gov (United States)

    Ji, Shude; Meng, Xiangchen; Xing, Jingwei; Ma, Lin; Gao, Shuangsheng

    2016-09-01

    Vertical compensation friction stir welding (VCFSW) was proposed in order to solve the adverse effect caused by a big gap at the interface between two welded workpieces. VCFSW was successfully applied to weld 6061-T6 aluminum alloy with the thickness of 4 mm, while 2024-T4 aluminum alloy was selected as a rational compensation material. The results show that VCFSW is difficult to get a sound joint when the width of strip is no less than 1.5 mm. Decreasing the welding speed is beneficial to break compensation strip into pieces and then get higher quality joint. When the width of strip is 1 mm, the tensile strength and elongation of joint at the welding speed of 50 mm/min and rotational velocity of 1,800 rpm reach the maximum values of 203 MPa and 5.2%, respectively. Moreover, the addition of 2024-T4 alloy plays a strengthening effect on weld zone (WZ) of VCFSW joint. The fracture surface morphology of joint consisting of amounts of dimples exhibits ductile fracture.

  11. Influence of hydrogen content on the behavior of grain refinement in hypereutectic aluminum-silicon alloy

    Institute of Scientific and Technical Information of China (English)

    Lina Hu; Xiufang Bian; Youfeng Duan

    2004-01-01

    Dissolved hydrogen is harmful to mechanical properties of refined hypereutectic aluminum-silicon alloys. In the present work, by using a stepped-form mold and the hydrogen-detecting instrument HYSCAN Ⅱ, the relationship between the initial hydrogen content in the melt and the refinement effect on the casting of hypereutectic aluminum-silicon alloy was investigated. The experimental results show that the cooling rate, the hydrogen content and the grain refinement effect are three interactive factors. When the hydrogen content is above 0.20 mL/100 g and the cooling rate is lower than that in 50 mm-thick step, hydrogen dissolved in the alloy melt influences the grain refinement effect. With increasing the cooling rate, the critical hydrogen content increases too. It is expected that much hydrogen in the melt make the net interfacial energy larger than or equal to zero, resulting in the shielding of the particles AlP during solidification and that the critical gas content is closely related to the critical radius of embryo bubbles.

  12. Laser alloyed Al-W coatings on aluminum for enhanced corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Rajamure, Ravi Shanker; Vora, Hitesh D.; Srinivasan, S.G.; Dahotre, Narendra B., E-mail: Narendra.Dahotre@unt.edu

    2015-02-15

    Highlights: • Al{sub 4}W intermetallic phase was formed after laser surface alloying. • Potential–time measurements show the stable behavior after laser surface alloying. • Cyclic polarization indicates increase in corrosion resistance after laser surface alloying. - Abstract: A tungsten precursor deposit was spray coated on aluminum 1100 substrate and was subsequently surface alloyed using a continuous wave diode-pumped ytterbium laser at varying laser energy densities. For the laser energy input of 21–32 J/mm{sup 2} the melt depth ranged between 135 and 150 μm. Scanning electron microscopy observations indicated the formation of uniform and continuously dense laser alloyed coatings with sound interface between the modified surface and substrate along with an equi-axed grain structure with second phase precipitates in the intergranular region. X-ray diffraction analysis confirmed that laser processing has resulted in the formation of Al{sub 4}W, as the major phase with retention of W in Al within the alloyed region. The corrosion resistance of laser alloyed coatings was evaluated in near natural chloride solution using ac and dc electrochemical techniques. After laser processing potential–time measurements has indicated the relatively stable and high potential values over the longer exposure times. Cyclic polarization results showed the reduction in the corrosion current density by a factor of 8, compared to untreated Al 1100. Besides, the electrochemical impedance spectroscopy confirmed the increase in the total resistance (47–70 kΩ cm{sup 2}) with the increase in the laser energy density.

  13. Effect of pre-treatment on recrystallization and recrystallization textures of cold rolled CC AA 5182 aluminum alloy

    International Nuclear Information System (INIS)

    The effect of pre-treatment on recrystallization and recrystallization textures of cold rolled continuous cast (CC) AA 5182 aluminum alloy as well as on the earing behavior was investigated. The progress of recrystallization was tracked by means of measurements of tensile properties. The texture of cold rolled and annealed samples was determined by X-ray diffraction. The results show that the recrystallization temperature of cold rolled CC AA 5182 aluminum alloy without pre-treatment is about 24 deg. C higher than that of the alloy with pre-treatment. The recrystallization textures of cold rolled CC AA 5182 aluminum alloy are characterized by the R, cube and Goss orientations. The recrystallization textures of cold rolled CC AA 5182 aluminum alloy without pre-treatment exhibit stronger cube and Goss components and a weaker R component than those of the alloy with pre-treatment. The deformed and recovered samples without pre-treatment possess a significantly higher 45 deg. earing than the samples with pre-treatment, while the recrystallized samples without pre-treatment possess a slightly lower 45 deg. earing than the samples with pre-treatment

  14. Admicellar polymerization and characterization of thin poly(2,2,2-trifluoroethyl acrylate) film on aluminum alloys for in-crevice corrosion control.

    Science.gov (United States)

    Le, Duc V; Kendrick, Melissa M; O'Rear, Edgar A

    2004-08-31

    Corrosion control of aluminum alloys in the aerospace industry has been of great interest in recent years, especially the aging of certain fleets in the United States Air Force. A thin film of poly(2,2,2-trifluoroethyl acrylate) (PTFEA) has been deposited on aluminum alloy coupons by admicellar polymerization for the purpose of in situ control of corrosion in narrow gaps. Polymerization conditions were chosen based on contact angle measurements, and the final product film was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Surface characterization studies have shown that the polymeric film is approximately 10 nm thick with nonuniform deposition at this scale. The modified surface is highly hydrophobic and able to delay salt solution uptake (3.5 wt % NaCl) for a period of up to 6 h in crevice corrosion tests. PTFEA films reduced the corroded area to 20% compared to 65% for a bare aluminum control and to 33% for poly(methyl methacrylate) (PMMA) film in a 24 h crevice test. PTFEA film exhibits better corrosion protection than PMMA film because it has higher hydrophobicity than a PMMA-modified surface and comparable properties as a corrosion barrier. PMID:15323534

  15. Microstructural and Hardness Study of Pulsed Nd:YAG Laser Surface Alloyed Aluminum with Iron

    Science.gov (United States)

    Ansari, Mohammad; Soltani, Reza; Heydarzadeh Sohi, Mahmoud; Valefi, Zia

    2016-04-01

    In the present study, the feasibility of the formation of surface layers containing hard iron aluminides on AA6061-T6 aluminum via pre-plasma spraying with iron and subsequently double surface melting by pulsed Nd:YAG laser is studied. The effects of single and double laser surface melting on microstructure, phase formation, and hardness of the treated layers are examined. Single-step laser treatment resulted in the presence of undissolved iron particles surrounded by lump-like Al5Fe2 and needle-like Al3Fe intermetallic compounds. Double laser surface melting dissolved the retained undissolved irons and resulted in the formation of Al-Al3Fe eutectic structure. Microhardness profiles along cross section and top surface of the treated layers indicated that laser surface alloying with iron enhanced the hardness of the aluminum to more than twice of that of the base material.

  16. The effect of corrosion on the fatigue life of aluminum alloys

    Science.gov (United States)

    Dalla, P. T.; Tragazikis, I. K.; Exarchos, D. A.; Matikas, T. E.

    2016-04-01

    The corrosion behavior of metallic structures is an important factor of material performance. In case of aluminum matrix composites corrosion occurs via electrochemical reactions at the interface between the metallic matrix and the reinforcement. The corrosion rate is determined by equilibrium between two opposing electrochemical reactions, the anodic and the cathodic. When these two reactions are in equilibrium, the flow of electrons from each reaction type is balanced, and no net electron flow occurs. In the present study, aluminum alloy tensile-shape samples are immersed in NaCl solution with an objective to study the effect of the controlled pitting corrosion in a specific area. The rest of the material is completely sealed. In order to investigate the effect of pitting corrosion on the material performance, the specimens were subjected to cyclic loading. The effect of corrosion on the fatigue life was assessed using two complimentary nondestructive methods, infrared thermography and acoustic emission.

  17. Study of corrosion of aluminum alloys of nuclear purity in ordinary water: Part two

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2005-01-01

    Full Text Available Since 2002, the effects of corrosion on aluminum alloys of nuclear purity in ordinary water of the spent fuel storage pool of the RA re search reactor at VINČA Institute of Nuclear Sciences have been examined in the frame work of the International Atomic Energy Agency Coordinated Research Project "Corrosion of Research Reactor Aluminum Clad Spent Fuel in Water". Coupons were ex posed to the pool water for a period of six months to six years. The second part of this study comprises extensive results obtained by detailed visual and microscopic examinations of the surfaces of the coupons and represents an integral part of the first report on the topic, previously presented in this journal.

  18. A technology to improve formability for aluminum alloy thin-wall corrugated sheet component hydroforming

    Directory of Open Access Journals (Sweden)

    Lang Lihui

    2015-01-01

    Full Text Available The explosively forming projectile (EFP had been traditional adopted for the aluminum thin-walled corrugated sheet, whose deformation range is large but the formability is poor, and this process usually has problems of poor surface quality, long manufacturing cycle and high cost. The active hydroforming process was suggested to solve these issues during EFP. A new technology named as blank bulging by turning the upside down active hydroforming technology was proposed to overcome difficulties in non-uniform thickness distribution and cracking failure of corrugated sheet during the conventional hydroforming process. Both numerical simulations and experiments were conducted for this new technology. The result show that the deformation capacity of aluminum alloys can be improved effectively, and the more uniform distribution of wall thickness was obtained by this new method. It is conducted that the new method is universal for thin-walled, shallow drawing parts with complex section.

  19. Recrystallization Phenomena During Friction Stir Processing of Hypereutectic Aluminum-Silicon Alloy

    Science.gov (United States)

    Rao, A. G.; Ravi, K. R.; Ramakrishnarao, B.; Deshmukh, V. P.; Sharma, A.; Prabhu, N.; Kashyap, B. P.

    2013-03-01

    Microstructural evolution and related dynamic recrystallization phenomena were investigated in overlapping multipass friction stir processing (FSP) of hypereutectic Al-30 pct Si alloy. FSP resulted in the elimination of porosities along with the refinement of primary silicon particles and alpha aluminum grains. These alpha aluminum grains predominantly exhibit high angle boundaries with various degrees of recovered substructure and dislocation densities. The substructure and grain formation during FSP take place primarily by annihilation and reorganization of dislocations in the grain interior and at low angle grain boundary. During multipass overlap FSP, small second phase particles were observed to form, which are accountable for pinning the grain boundaries and thus restricting their growth. During the multipass overlap FSP, the microstructure undergoes continuous dynamic recrystallization by formation of the subgrain boundary and subgrain growth to the grain structure comprising of mostly high angle grain boundaries.

  20. Stress-Strain Compression of AA6082-T6 Aluminum Alloy at Room Temperature

    Directory of Open Access Journals (Sweden)

    Alexandre da Silva Scari

    2014-01-01

    Full Text Available Short cylindrical specimens made of AA6082-T6 aluminum alloy were studied experimentally (compression tests, analytically (normalized Cockcroft-Latham criteria—nCL, and numerically (finite element analysis—FEA. The mechanical properties were determined with the stress-strain curves by the Hollomon equation. The elastic modulus obtained experimentally differs from the real value, as expected, and it is also explained. Finite element (FE analysis was carried out with satisfactory correlation to the experimental results, as it differs about 1,5% from the damage analysis by the nCL concerning the experimental data obtained by compression tests.

  1. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    Science.gov (United States)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  2. Pitting corrosion of friction stir welded aluminum alloy thick plate in alkaline chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Xu Weifeng, E-mail: xwf1982@mail.nwpu.edu.c [School of Materials and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Liu Jinhe; Zhu Hongqiang [School of Materials and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-03-01

    The pitting corrosion of different positions (Top, Middle and Bottom) of weld nugget zone (WNZ) along thickness plate in friction stir welded 2219-O aluminum alloy in alkaline chloride solution was investigated by using open circuit potential, cyclic polarization, scanning electron microscopy and atomic force microscope. The results indicate that the material presents significant passivation, the top has highest corrosion potential, pitting potential and re-passivation potential compared with the bottom and base material. With the increase of traverse speed from 60 to 100 mm/min or rotary speed from 500 to 600 rpm, the corrosion resistance decreases.

  3. Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate

    Energy Technology Data Exchange (ETDEWEB)

    Xu Weifeng [School of Materials and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China)], E-mail: xwf1982@mail.nwpu.edu.cn; Liu Jinhe [School of Materials and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China)

    2009-11-15

    Effect of welding parameters on the microstructure and pitting corrosion of different positions along the thickness of weld nugget zone in friction stir welded 2219-O aluminum alloy plate was investigated using scanning electron microscopy (SEM), polarization experiment and electrochemical impedance tests (EIS). It was found that the material presents significant passivation and the top has best corrosion resistance compared to the bottom and base material. Corrosion resistance decreases with the increase of traverse speed from 60 to 100 mm/min at rotary speed 400 rpm. Corrosion resistance at rotary speed 600 rpm is lower than that at 500 rpm.

  4. Exfoliation Corrosion Behavior of 2B06 Aluminum Alloy in a Tropical Marine Atmosphere

    Science.gov (United States)

    Cui, Z. Y.; Li, X. G.; Xiao, K.; Dong, C. F.; Wang, L. W.; Zhang, D. W.; Liu, Z. Y.

    2015-01-01

    In this study, corrosion behavior of 2B06 aluminum alloy was investigated after exposure to a tropical marine atmosphere for up to 4 years. After 6 months, the specimen showed exfoliation corrosion as well as rapid increase in thickness loss and corrosion rate. Exfoliation corrosion was found to initiate from hydrogen-assisted intergranular cracks and propagate extensively due to the wedge effect of the corrosion products. During the exposure test, corrosion on the groundward surface was considerably more severe than that on the skyward surface, which could be attributed to the different exposure conditions on the two surfaces.

  5. Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation

    Science.gov (United States)

    Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.

    2016-04-01

    This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.

  6. Study on the Predicting System of Breaking Chip When PCD Tool Cutting Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the field of automobile manufacture, during the aluminum alloy cutting, chip forming and breaking process are very complicated. It is affected by many facto rs. Automatic machining process can not be carried through if the chip enlaces t he workpiece or the tool. So the chip control and breaking are key technology. P CD tool has many traits, such as high cutting efficiency, machining precision an d wearability. It is desired that it be used for machining coloured metals.The p aper present the study of p...

  7. Optimized constitutive equation of material property based on inverse modeling for aluminum alloy hydroforming simulation

    Institute of Scientific and Technical Information of China (English)

    LANG Li-hui; LI Tao; ZHOU Xian-bin; B. E. KRISTENSEN; J. DANCKERT; K. B. NIELSEN

    2006-01-01

    By using aluminum alloys, the properties of the material in sheet hydroforming were obtained based on the identification of parameters for constitutive models by inverse modeling in which the friction coefficients were also considered in 2D and 3D simulations. With consideration of identified simulation parameters by inverse modeling, some key process parameters including tool dimensions and pre-bulging on the forming processes in sheet hydroforming were investigated and optimized. Based on the optimized parameters, the sheet hydroforming process can be analyzed more accurately to improve the robust design. It proves that the results from simulation based on the identified parameters are in good agreement with those from experiments.

  8. Rare earth conversion coatings grown on AA6061 aluminum alloys. Corrosion studies

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti S, S. B. [Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo y Sor Juana I. de la Cruz, Col. Los Mangos, 89440 Ciudad Madero, Tanaulipas (Mexico); Dominguez C, M. A.; Torres H, A. M.; Onofre B, E. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Altamira, Carretera Tampico-Puerto Industrial Altamira Km. 14.5, 89600 Altamira, Tamaulipas (Mexico); De la Cruz H, W., E-mail: mdominguezc@ipn.mx [UNAM, Centro de Nanociencias y Nanotecnologia, Apdo. Postal 2681, 22800 Ensenada, Baja California (Mexico)

    2014-07-01

    The present work is aimed to investigate the corrosion resistance of rare earth protective coatings deposited by spontaneous deposition on AA6061 aluminum alloy substrates. Coatings were deposited from water-based Ce(NO{sub 3}){sub 3} and La(NO{sub 3}){sub 3} solutions by varing parameters such as rare earth solution concentration, bath temperature and immersion time. The values of the Tafel slopes indicate that the cathodic process is favored by concentration polarization rather than activation polarization. Chemical and morphological characterizations of the surface before and after electrochemical evaluations were performed by X-ray photoelectron spectroscopy and scanning electron microscopy. (Author)

  9. Effect of Low Frequency Electromagnetic Field on Macrosegregation of Horizontal Direct Chill Casting Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Zhihao ZHAO; Jianzhong CUI; Jie DONG; Beijiang ZHANG

    2005-01-01

    The horizontal direct chill (HDC) casting process is a well-established production route for aluminum alloy ingot but the ingot may suffer from macrosegregation sometimes. In order to control the defect, a low frequency electromagnetic field has been applied in HDC casting process and the relevant influence has been studied. The results show that application of low frequency electromagnetic field can reduce macrosegregation in HDC casting process; and two main parameters of electromagnetic field density and frequency, have great influences on the solution distribution along the diameter of ingot. Moreover, the mechanisms of reduction of macrosegregation by electromagnetic field have been discussed.

  10. Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate

    International Nuclear Information System (INIS)

    Effect of welding parameters on the microstructure and pitting corrosion of different positions along the thickness of weld nugget zone in friction stir welded 2219-O aluminum alloy plate was investigated using scanning electron microscopy (SEM), polarization experiment and electrochemical impedance tests (EIS). It was found that the material presents significant passivation and the top has best corrosion resistance compared to the bottom and base material. Corrosion resistance decreases with the increase of traverse speed from 60 to 100 mm/min at rotary speed 400 rpm. Corrosion resistance at rotary speed 600 rpm is lower than that at 500 rpm.

  11. Characterization of large 2219 aluminum alloy hand forgings for the space shuttle solid rocket booster

    Science.gov (United States)

    Brennecke, M. W.

    1978-01-01

    The mechanical properties, including fracture toughness, and stress corrosion properties of four types of 2219-T852 aluminum alloy hand forgings are presented. Weight of the forgings varied between 450 and 3500 lb at the time of heat treatment and dimensions exceeded the maximum covered in existing specifications. The forgings were destructively tested to develop reliable mechanical property data to replace estimates employed in the design of the Space Shuttle Solid Rocket Booster (SRB) and to establish minimum guaranteed properties for structural refinement and for entry into specification revisions. The report summarizes data required from the forgers and from the SRB Structures contractor.

  12. Pitting corrosion of friction stir welded aluminum alloy thick plate in alkaline chloride solution

    International Nuclear Information System (INIS)

    The pitting corrosion of different positions (Top, Middle and Bottom) of weld nugget zone (WNZ) along thickness plate in friction stir welded 2219-O aluminum alloy in alkaline chloride solution was investigated by using open circuit potential, cyclic polarization, scanning electron microscopy and atomic force microscope. The results indicate that the material presents significant passivation, the top has highest corrosion potential, pitting potential and re-passivation potential compared with the bottom and base material. With the increase of traverse speed from 60 to 100 mm/min or rotary speed from 500 to 600 rpm, the corrosion resistance decreases.

  13. Effect of cooling rate on microstructure of friction-stir welded AA1100 aluminum alloy

    Science.gov (United States)

    Yi, D.; Mironov, S.; Sato, Y. S.; Kokawa, H.

    2016-06-01

    In this work, the microstructural changes occurring during cooling of friction-stir welded aluminum alloy AA1100 were evaluated. To this end, friction-stir welding (FSW) was performed in a wide range of cooling rates of 20-62 K/s and the evolved microstructures were studied by using electron backscatter diffraction. Below 0.6 Tm (Tm being the melting point), the stir zone material was found to experience no significant changes during cooling. At higher FSW temperatures, however, notable changes occurred in the welded material, including grain growth, sharpening of texture, reduction of the fraction of high-angle boundaries and material softening.

  14. STUDY ON THE HOT DEFORMATION BEHAVIORS OF Al-Zn-Mg-Cu-Cr ALUMINUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    G.Y. Lin; Z.F. Zhang; H. Zhang; D.S. Peng; J. Zhou

    2008-01-01

    The hot deformation behaviors and mierostructures of Al-Zn-Mg-Cu-Cr aluminum alloy have been studied using thermal simulation test, optical microscopy and transmission electron microscopy. As a result, the true stress versus true strain curves and the microstructures under various deformation conditions are obtained. The microstructures gradually incline to dynamic-recrystallization with the deformation temperature rising and the recrystallization grains refine with the decrease of deformation temperature or with raising the strain rates. The quantitative relationship between the Zener-HoUomon parameter (Z) and average recrystallization grain size in the subsequent heat treatment is set up.

  15. Crack Initiation from Corrosion Pit in Three Aluminum Alloys Under Ambient and Saltwater Environments

    Science.gov (United States)

    Sabelkin, V.; Misak, H. E.; Perel, V. Y.; Mall, S.

    2016-04-01

    Corrosion-pit-to-crack transition behaviors of three aluminum alloys using two pit configurations were investigated under ambient and saltwater environments. Fatigue stress ranges for crack initiation from a through-pit were less than that from a corner-pit in both environments in all three materials, while stress intensity factor ranges showed the opposite trend. Further, stress ranges or stress intensity factor ranges for crack initiation were less in saltwater than that in ambient environment for both pit configurations. Fatigue damage mechanisms in a test environment were similar for both pit configurations in all three materials. An empirical relationship is proposed to estimate pit-to-crack transition fatigue cycles.

  16. An initial study on welding procedure using tandem MIG welding of high strength aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    林三宝; 刚铁; 杨春利; 崔洪波

    2004-01-01

    The high-speed camera system and data acquisition system of welding parameters were created in tandem MIG welding of high strength aluminum alloy. The experiments were carried out in order to obtain the photos of droplet transfer under different welding parameters in pulsed mode. The droplet transfer mode of "one pulse one droplet" becomes the preferred selection during welding process because of its stable procedure and sound weld form. The parameter ranges for corresponding transfer mode were experimentally achieved, among which the stable droplet transfer mode of "one pulse one droplet" can be realized. These efforts brave the way for control weld heat input and weld formation in the future.

  17. Rare earth conversion coatings grown on AA6061 aluminum alloys. Corrosion studies

    International Nuclear Information System (INIS)

    The present work is aimed to investigate the corrosion resistance of rare earth protective coatings deposited by spontaneous deposition on AA6061 aluminum alloy substrates. Coatings were deposited from water-based Ce(NO3)3 and La(NO3)3 solutions by varing parameters such as rare earth solution concentration, bath temperature and immersion time. The values of the Tafel slopes indicate that the cathodic process is favored by concentration polarization rather than activation polarization. Chemical and morphological characterizations of the surface before and after electrochemical evaluations were performed by X-ray photoelectron spectroscopy and scanning electron microscopy. (Author)

  18. Analysis of the cyclic behavior and fatigue damage of extruded AA2017 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    May, A., E-mail: abdelghani1980@yahoo.fr [INSA/GPM, CNRS UMR 6634, BP 08 avenue de l' université, 76801 Saint Etienne du Rouvray Cedex (France); Laboratoire Génie des Matériaux, Ecole Militaire Polytechnique, BP 17 Bordj El-Bahri Algiers (Algeria); Taleb, L., E-mail: lakhdar.taleb@insa-rouen.fr [INSA/GPM, CNRS UMR 6634, BP 08 avenue de l' université, 76801 Saint Etienne du Rouvray Cedex (France); Belouchrani, M.A., E-mail: nbelouch@yahoo.fr [Laboratoire Génie des Matériaux, Ecole Militaire Polytechnique, BP 17 Bordj El-Bahri Algiers (Algeria)

    2013-06-01

    The present work is devoted to study the anisotropic behavior of an extruded aluminum alloy under cyclic loading in axial and shear directions. In first, we have studied its elastoplastic behavior through the evolution of stress–strain loops, isotropic and kinematic hardening and we have associated this behavior with the evolution of its elastic adaptation (shakedown). In second, we have studied the behavior of the material in fatigue damage using the evolution of stiffness. Finally, microstructural investigations were performed on fractured surfaces using scanning electron microscope (SEM) in order to understand the evolution of fatigue damage during cyclic loading.

  19. Processing map of as-cast 7075 aluminum alloy for hot working

    OpenAIRE

    Guo Lianggang; Yang Shuang; Yang He; Zhang Jun

    2015-01-01

    The true stress–strain curves of as-cast 7075 aluminum alloy have been obtained by isothermal compression tests at temperatures of 300–500 °C and strain rates of 0.01–10 s−1. The plastic flow instability map is established based on Gegel B and Murthy instability criteria because the deformed compression samples suggest that the combination of the above two instability criteria has more comprehensive crack prediction ability. And the processing map based on Dynamic Material Model (DMM) of as-c...

  20. Spectroscopic analysis of element concentrations in aluminum alloy using nanosecond laser-induced breakdown spectroscopy

    Science.gov (United States)

    Luo, Wenfeng; Tang, Jie; Gao, Cunxiao; Wang, Haojing; Zhao, Wei

    2010-06-01

    A plasma generated by 1064 nm Nd:YAG laser irradiation of aluminum alloy in air at atmospheric pressure was studied spectroscopically. The electron density was inferred by measuring the Stark broadened line profile of Cu(I) 324.75 nm, while the electron temperature was determined using the Boltzmann plot method with ten neutral iron lines. Based on the results, local thermodynamic equilibrium was studied. Moreover, calibration curves were presented for samples containing Si, Fe, Cu, Mn, Mg, Ni, Zn and Ti, and the limit of detection of trace elements was calculated based on experimental results.

  1. Ultrasonic-assisted friction stir welding on V95AT1 (7075) aluminum alloy

    Science.gov (United States)

    Tarasov, S. Yu.; Rubtsov, V. Ye.; Kolubaev, E. A.; Ivanov, A. N.; Fortuna, S. V.; Eliseev, A. A.

    2015-10-01

    Ultrasonic-assisted friction stir butt welding on aluminum alloy V95AT1 (7075) has been carried out. Samples have been characterized using metallography, microhardness and XRD. As shown, ultrasonic treatment during welding provides extra plasticizing of metal and better stirring efficiency. The latter serves for elimination of defects, such as root flaw and grain refining in the stir zone. The stress state in the welded joint is characterized by tensile stress in the direction of the weld seam centerline and compression in the transversal direction. The ultrasonic treatment was shown to increase the compression stress and relieve the tensile one.

  2. Radiographic detection of defects in friction stir welding on aluminum alloy AMg5M

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Sergei Yu., E-mail: tsy@ispms.ru; Kolubaev, Evgeny A., E-mail: eak@ispms.ru [National Research Tomsk Polytechnic University, Tomsk, 634050, Russia and Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Rubtsov, Valery E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2014-11-14

    In order to reveal weld defects specific to friction stir welding we undertook radiographic inspection of AMg5M aluminum alloy welded joints. Weld defects in the form of voids have been revealed in the weld obtained under the non-optimal rotation and feed rate. Both shape and size of these defects have been confirmed by examining metallographically successive sections prepared in the weld plane as well as in the plane transversal to the tool feed direction. Linear defects have been also found in the sections that are not seen in the radiographic images. Both the preferable localization and origination of the defects have been analyzed.

  3. The influence of the parameters of lost foam process on the quality of aluminum alloys castings

    Directory of Open Access Journals (Sweden)

    Aćimović-Pavlović Zagorka

    2010-01-01

    Full Text Available This paper presents the research results of application of Lost foam process for aluminum alloys castings of a simple geometry. The process characteristic is that patterns and gating of moulds, made of polymers, stay in the mould till the liquid metal inflow. In contact with the liquid metal, pattern intensely and in relatively short time decomposes and evaporates, which is accompanied by casting crystallization. As a consequence of polymer pattern decomposition and evaporation a great quantity of liquid and gaseous products are produced, which is often the cause of different types of casting errors. This paper presents the results of a research with a special consideration given to detecting and analyzing the errors of castings. In most cases the cause of these errors are defects of polymer materials used for evaporable patterns production, as well as defects of materials for refractory coatings production for polymer patterns. The researches have shown that different types of coatings determine properties of the obtained castings. Also, the critical processing parameters (polymer pattern density, casting temperature, permeability of refractory coating and sand, construction of patterns and gating of moulds significantly affect on castings quality. During the research a special consideration was given to control and optimization of these parameters with the goal of achieving applicable castings properties. The study of surface and internal error of castings was performed systematically in order to carry out preventive measures to avoid errors and minimize production costs. In order to achieve qualitative and profitable castings production by the method of Lost foam it is necessary to reach the balance in the system: evaporable polymer pattern - liquid metal - refractory coating - sandy cast in the phase of metal inflow, decomposition and evaporation of polymer pattern, formation and solidification of castings. By optimizing the processing

  4. Simulation of the texture evolution of aluminum alloys during primary static recrystallization using a cellular automaton approach

    Energy Technology Data Exchange (ETDEWEB)

    Marx, V.; Gottstein, G. [RWTH Aachen (Germany). Inst. fuer Metallkunde und Metallphysik

    1998-12-31

    A 3D model has been developed to simulate both primary static recrystallization and recovery of cold worked aluminum alloys. The model is based on a modified cellular automaton approach and incorporates the influence of crystallographic texture and microstructure in respect to both mechanisms mentioned above. The model takes into account oriented nucleation using an approach developed by Nes for aluminum alloys. The subsequent growth of the nuclei depends on the local stored energy of the deformed matrix (i.e. the driving pressure) and the misorientation between a growing nucleus and its surrounding matrix (i.e. the grain boundary mobility). This approach allows to model preferred growth of grains that exhibit maximum growth rate orientation relationship, e.g. for aluminum alloys a 40{degree}<111> relationship with the surrounding matrix. The model simulates kinetics, microstructure and texture development during heat treatment, discrete in time and space.

  5. Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy

    International Nuclear Information System (INIS)

    Hot tearing is a complex phenomenon attributed to alloy solidification, microstructure and stress/strain development within a casting. In this research, the conditions associated with the formation of hot tears in B206 aluminum alloy were investigated. Neutron diffraction strain mapping was carried out on three B206 castings with varying levels of titanium (i.e. unrefined, 0.02 and 0.05 wt%). Titanium additions effectively reduced grain size and transformed grain morphology from coarse dendrites to fine globular grains. Further, thermal analysis suggested that grain refinement delayed the onset of dendrite coherency in B206 and therefore enhanced the duration of bulk liquid metal feeding for the refined casting conditions. As a result, the interactive effects of such factors resulted in a more uniform distribution of strain, and subsequent higher resistance to hot tearing for the grain refined castings

  6. Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique

    Science.gov (United States)

    Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R.

    2014-06-01

    The cold metal transfer (CMT) process was explored as a weld overlay technique for synthesizing Al-Si-Mn alloy coating on a commercially pure Al plate. The effect of welding speed on the bead geometry, deposition rate, and the dilution were studied and the best parameter was used to synthesize the coatings. The CMT process can be used to produce thick coatings (>2.5 mm) without porosity and with low dilution levels. The Vickers hardness number of the Al substrate increased from 28 in the bulk to 57 in the coating. It is suggested that the CMT process can be an effective and energy-efficient technique for depositing thick coatings and is useful in weld repair of aluminum alloy components.

  7. Novel accelerated corrosion test for LY12CZ and LC4CS aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CAI Jian-ping; LIU Ming

    2006-01-01

    A new accelerated corrosion test-comprehensive environmental test (CET) was developed in order to estimate the outdoor corrosion of aluminum alloys in marine environment. The environmental characteristics in CET were studied by atmospheric corrosion monitor (ACM), and the morphology of corrosion product was observed by SEM. The correlation between the accelerated corrosion tests and outdoor exposure was discussed. The results show that the anti-corrosion ranking for LY12CZ, LC4CS, clad LY12CZ, and clad LC4CS in CET is the same as that of the alloys exposed outdoor, and ACM study shows that CET demonstrates the same environmental characteristics as that exposed outdoor. CET is a more accurate accelerated corrosion test, and a mathematical relation was obtained to describe the relation between CET and outdoor test.

  8. Modeling the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic Deformation

    Science.gov (United States)

    Khamei, A. A.; Dehghani, K.; Mahmudi, R.

    2015-05-01

    Solutionized AA6061 aluminum alloy was processed by equal-channel angular pressing followed by cold rolling. The hot ductility of the material was studied after severe plastic deformation. The hot tensile tests were carried out in the temperature range of 300-500°C and at the strain rates of 0.0005-0.01 s-1. Depending on the temperature and strain rate, the applied strain level exhibited significant effects on the hot ductility, strain-rate sensitivity, and activation energy. It can be suggested that the possible mechanism dominated the hot deformation during tensile testing is dynamic recovery and dislocation creep. Constitutive equations were developed to model the hot ductility of the severe plastic deformed AA6061 alloy.

  9. Primary and secondary creep in aluminum alloys as a solid state transformation

    Science.gov (United States)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2016-08-01

    Despite the massive literature and the efforts devoted to understand the creep behavior of aluminum alloys, a full description of this phenomenon on the basis of microstructural parameters and experimental conditions is, at present, still missing. The analysis of creep is typically carried out in terms of the so-called steady or secondary creep regime. The present work offers an alternative view of the creep behavior based on the Orowan dislocation dynamics. Our approach considers primary and secondary creep together as solid state isothermal transformations, similar to recrystallization or precipitation phenomena. In this frame, it is shown that the Johnson-Mehl-Avrami-Kolmogorov equation, typically used to analyze these transformations, can also be employed to explain creep deformation. The description is fully compatible with present (empirical) models of steady state creep. We used creep curves of commercially pure Al and ingot AA6061 alloy at different temperatures and stresses to validate the proposed model.

  10. Selection of a Microbiological Corrosion System for Studying Effects on Structural Aluminum Alloys.

    Science.gov (United States)

    Hedrick, H G; Miller, C E; Halkias, J E; Hildebrand, J E

    1964-05-01

    Two laboratory methods, a metal-strip test and a tank test, were evaluated as microbiological corrosion systems for producing corroded test specimens on a structural aluminum alloy. The results show that corrosion of the test alloy occurred best in the metal-strip test in a deionized water-fuel medium inoculated with a mixture of microorganisms under aerated conditions. The metal-strip test was more successful for producing large numbers of corroded test specimens and proved more economical than the tank-type test, since less structural material is needed to obtain a specimen with sufficient corrosion areas, and since the corrosion can more easily be restricted by maskants to certain areas for specific test purposes. PMID:16349646

  11. Effect of different grain sizes and textures on the corrosion behaviour of aluminum alloy AA6082

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, D.; Lampke, T. [Technische Universitaet Chemnitz (Germany), Institut fuer Werkstoffwissenschaft und Werkstofftechnik, Professur Oberflaechentechnik / Funktionswerkstoffe, D-09125 Chemnitz; Haendel, M.

    2011-07-15

    The fabrication and processing of aluminum alloys can result in the formation of different grain sizes and textures within the material. The effects of these differences on the corrosion behaviour of the commercially available alloy AA6082 have been investigated. The results of the macro- and microelectrochemical investigations have been compared with each other and with the resulting corrosion appearance. The observed corrosion damage is not always consistent with the measured corrosion and pitting potential. In the finer-grained part, with a strongly preferred orientation of (002) planes parallel to the sample surface, less corrosion damage could be observed than in the coarser-grained part. However, microelectrochemical measurements show a slightly lower pitting potential in the finer-grained part, so that pitting is likely to start earlier in this area. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Corrosion resistance of 2195 aluminum alloy treated by multi-step-heating-rate controlled process

    Institute of Scientific and Technical Information of China (English)

    XU Yue; LIU Yu-feng; GENG Ji-ping

    2006-01-01

    2195 aluminum-lithium alloy was widely applied in the aviation and aerospace industry, but it is highly susceptible to pitting and intergranular corrosion undergoing sever corrosive circumstance and moisture atmosphere. To solve this problem and consequently to prolong its service life, a multi-step-heating-rate(MSRC) process was carried out. Investigations were carried out to find the effect of the MSRC process on the alloys corrosion resistance. It is found that the MSRC process is more favorable for the uniform phase precipitation by comparing the corrosion resistance of samples treated by traditional heat treatments. The potential difference between phases can be reduced and intergranular corrosion is able to be prohibited efficiently. Besides, the rare earth infiltration is beneficial to improving the corrosion resistance. As heating time increases, the corrosion resistance declines gradually,samples treated by artificial aging and solid solution also exhibit a better corrosion resistance.

  13. Long-Term Atmospheric Corrosion of Aluminum Alloy 2024-T4 in a Coastal Environment

    Science.gov (United States)

    Zhang, Teng; He, Yuting; Cui, Ronghong; An, Tao

    2015-07-01

    Aluminum alloy 2024-T4 specimens were exposed to atmosphere for 7, 12, and 20 years, respectively, to study long-term corrosion in a coastal environment. One-directional corrosion region and cross-directional corrosion region were defined according to corrosion characters. The statistical regularities, surface appearance, corrosion products, and cross-sectional morphology of both regions were investigated. It was found that the minimum remaining thicknesses of each region can be described by a normal distribution and linearly decrease as the exposure time is increased from 7 to 20 years. The corrosion pits, chlorine ions, and interlinked inner pits are promoting exfoliation, and the alloy's corrosion susceptibility along the long transverse direction is strongly location dependent due to the restrictions imposed by the side material.

  14. Volta Potential Analysis of Intermetallics in 7A52 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; LI Qi; ZHAO Junjun; CAI Zhihai

    2012-01-01

    In order to study the effect of intermaetallics on the corrosion behaviour of 7A52 aluminum alloy,the alloy was characterized by means of SEM-EDS and scanning Kelvin probe force microscopy(SKPFM).The experimental results indicate that there are two different intermetallics:Al-Mn-Fe and Mg2Si.Both intermetallics exhibite the negative volta potential relative to the matrix indicating an anodic behaviour.Hereby,they are easy to be dissolved and corroded under the erosive environment,and there become the corrosion initiation sites.The Al-Mn-Fe intermetallics show stronger anodic behaviour than those of Mg2Si intermetalics.It means that Al-Mn-Fe intermetalics are easier to be corroded.

  15. The Comparison of the Microstructure and Corrosion Resistance of Sand Cast Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Dobkowska A.

    2016-03-01

    Full Text Available The influence of different types of precipitation on the corrosion behavior was investigated in three aluminum-siliconmagnesium alloys. The microstructures of the alloys were studied through optical (OM and scanning electron microscopy (SEM. The structures consisted of an α-Al solid solution matrix, Si eutectic crystals, secondary phases AlFeSi and AlMgFeSi (Chinese script, as well as Mg2Si. The corrosion behavior was examined with the use of a potentiodynamic polarization test followed by a SEM surface analysis. The results indicate that all the analyzed samples were in the passive state and AlSi10Mg was less reactive in the corrosive environment.

  16. Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    D’Elia, F., E-mail: f.delia10@gmail.com [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard St. East, Toronto, Ontario, Canada M5B 2K3 (Canada); Ravindran, C. [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard St. East, Toronto, Ontario, Canada M5B 2K3 (Canada); Sediako, D. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario, Canada K0J 1J0 (Canada)

    2015-01-29

    Hot tearing is a complex phenomenon attributed to alloy solidification, microstructure and stress/strain development within a casting. In this research, the conditions associated with the formation of hot tears in B206 aluminum alloy were investigated. Neutron diffraction strain mapping was carried out on three B206 castings with varying levels of titanium (i.e. unrefined, 0.02 and 0.05 wt%). Titanium additions effectively reduced grain size and transformed grain morphology from coarse dendrites to fine globular grains. Further, thermal analysis suggested that grain refinement delayed the onset of dendrite coherency in B206 and therefore enhanced the duration of bulk liquid metal feeding for the refined casting conditions. As a result, the interactive effects of such factors resulted in a more uniform distribution of strain, and subsequent higher resistance to hot tearing for the grain refined castings.

  17. The Strength and Characteristics of VPPA Welded 2219-T87 Aluminum Alloy

    Science.gov (United States)

    Jemian, W. A.

    1985-01-01

    A study of the variable polarity plasma arc (VPPA) welding process and those factors that control the structure and properties of VPPA welded aluminum alloy 2219-T87 was conducted. The importance of joint preparation, alignment of parts and welding process variables are already established. Internal weld defects have been eliminated. However, a variation of properties was found to be due to the size variation of interdendritic particles in the fusion zone. These particles contribute to the void formation process, which controls the ultimate tensile strength of the welded alloy. A variation of 150 microns in particle size correlated with a 10 ksi variation of ultimate tensile strength. It was found that all fracture surfaces were of the dimple rupture type, with fracture initiating within the fusion zone.

  18. Reasons for superior mechanical and corrosion properties of 2219 aluminum alloy electron beam welds

    International Nuclear Information System (INIS)

    Electron beam welds of aluminum alloy 2219 offer much higher strength compared to gas tungsten arc welds of the same alloy and the reasons for this have not been fully explored. In this study both types of welds were made and mechanical properties were evaluated by tensile testing and pitting corrosion resistance by potentio dynamic polarization tests. It is shown that electron beam welds exhibit superior mechanical and corrosion properties. The weld metals have been characterized by scanning electron microscopy; transmission electron microscopy and electron probe micro analysis. Presence of partially disintegrated precipitates in the weld metal, finer micro porosity and uniform distribution of copper in the matrix were found to be the reasons for superior properties of electron beam welds apart from the fine equiaxed grain structure. Transmission electron micrographs of the heat affected zones revealed the precipitate disintegration and over aging in gas tungsten arc welds

  19. Structure and properties of ceramic coatings formed on aluminum alloys by microarc oxidation

    Institute of Scientific and Technical Information of China (English)

    LIU Wan-hui; BAO Ai-lian; LIU Rong-xiang; WU Wan-liang

    2006-01-01

    The thick and hard ceramic coatings were deposited on 2024 Al alloy by microarc oxidation in the electrolytic solution.Microstructure, phase composition and wear resistance of the oxide coatings were investigated by SEM, XRD and friction and wear tester. The microhardness and thickness of the oxide coatings were measured. The results show that the ceramic coating is mainly composed of α-Al2O3 and γ-Al2O3. During oxidation, the temperature in the microarc discharge channel is very high to make the local coating molten. From the surface to interior of the coating, microhardness increases gradually. The microhardness of the ceramic coating is HV1 800, and the microarc oxidation coatings greatly improve the antiwear properties of aluminum alloys.

  20. Natural Aging Behavior Of Friction Stir Welded Al-Zn-Mg-Cu Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Kalemba I.

    2015-06-01

    Full Text Available The long term natural aging behavior of friction stir welded aluminum 7136-T76 and 7042 T6 extrusions was investigated. The microstructural characteristics and mechanical properties in the as-welded and six years naturally aged conditions were studied and correlated to a coupled thermal/material flow model of the joining process. Hardness profiles for the 7136 alloy taken along the mid-plane thickness of the workpiece displayed the characteristic W-shape. With natural aging, hardness recovery occurred on both sides of the weld, but the position of the hardness minima, particularly on the advancing side, shifted away from the weld centerline. The hardness profile for the 7042 alloy displayed U-shape in the as-welded condition and W-shape after natural aging. The hardness behavior upon natural aging correlated to the temperature profile developed during welding and the degree to which phase dissolution occurred in the regions adjacent to the stir zone.

  1. Process for Producing a Cast Article from a Hypereutectic Aluminum-Silicon Alloy

    Science.gov (United States)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A process for making a cast article from an aluminum alloy includes first casting an article from an alloy having the following composition, in weight percent: Silicon (Si) 14.0-25.0, Copper (CU) 5.5-8.0, Iron (Fe) 0-0.8, Magnesium (Mg) 0.5-1.5, Nickel (Ni) 0.05-1.2, Manganese (Mn) 0-1.0, Titanium (Ti) 0.05-1.2, Zirconium (Zr) 0.12-1.2, Vanadium (V) 0.05-1.2, Zinc (Zn) 0-0.9, Phosphorus (P) 0.001-0.1, Aluminum, balance. In this alloy the ration of Si:Mg is 15-35, and the ratio of Cu:Mg is 4-15. After an article is cast from the alloy, the cast article is aged at a temperature within the range of 400 F to 500 F for a time period within the range of four to 16 hours. It has been found especially advantageous if the cast article is first exposed to a solutionizing step prior to the aging step. This solutionizing step is carried out by exposing the cast article to a temperature within the range of 875 F to 1025 F for a time period of fifteen minutes to four hours. It has also been found to be especially advantageous if the solutionizing step is followed directly with a quenching step, wherein the cast article is quenched in a quenching medium such as water at a temperature within the range of 120 F to 300 F. The resulting cast article is highly suitable in a number of high temperature applications, such as heavy-duty pistons for internal combustion engines.

  2. Welding of aluminum alloys through thermite like reactions in Al-CuO-Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami Motlagh, Ehsan, E-mail: ehsan.bahramimotlagh@stu-mail.um.ac.ir [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, P.O. Box 9177948944, Mashhad (Iran, Islamic Republic of); Vahdati Khaki, Jalil; Haddad Sabzevar, Mohsen [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, P.O. Box 9177948944, Mashhad (Iran, Islamic Republic of)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Combustion synthesis reactions were utilized for welding of aluminum alloys. Black-Right-Pointing-Pointer A composite joint reinforced by different intermetallic compounds was obtained. Black-Right-Pointing-Pointer Using metal oxides as a part of raw materials makes the welding process economical. Black-Right-Pointing-Pointer Furthermore, this process introduces new applications for thermite reactions. - Abstract: In this work, first, a metastable composite powder of '14Al-3CuO-Ni' with a decreased ignition temperature was obtained via Arrested Reactive Milling (ARM), then this exothermic blend was used for welding of 1100 Aluminum alloy. The reactive media and the weld zones were investigated using scanning electron microscope. X-ray diffraction experiment and morphological investigations accompanied with the EDS analyses were carried out in order to evaluate the reactions' products. Vickers microhardness profile across the joint and the shear strength of the joints were determined. The weld zone thickness in each of the parent alloys was measured to be 750 {mu}m, approximately. Results showed that different reactions occurring during the process lead to the in situ formation of different intermetallic compounds such as Al{sub 3}Ni{sub 2} and Al{sub 7}Cu{sub 4}Ni as well as Al{sub 2}O{sub 3} nanoparticles at the interface. Thus, this area has the maximum hardness (80-90 VHN) and the minimum hardness of 35 VHN belongs to the parent alloys. The mean shear strength of the obtained joints was 27 MPa.

  3. Theoretical simulation of melt ejection during the laser drilling process on aluminum alloy by single pulsed laser

    Science.gov (United States)

    Li, Mingxin; Jin, Guangyong; Guo, Ming; Wang, Di; Gu, Xiuying

    2014-12-01

    In this paper, we establish a physical model to simulate the melt ejection induced by millisecond pulsed laser on aluminum alloy and use the finite element method to simulate the melting and vaporization process of aluminum alloy. Compared with the conventional model, this model explicitly adds the source terms of gas dynamics in the thermal-hydrodynamic equations, completes the trace of the gas-liquid interface and improves the traditional level-set method. All possible effects which can impact the dynamic behavior of the keyhole are taken into account in this two-dimensional model, containing gravity, recoil pressure of the metallic vapor, surface tension and Marangoni effect. This simulation is based on the same experiment condition where single pulsed laser with 3ms pulse width, 57J energy and 1mm spot radius is used. By comparing the theoretical simulation data and the actual test data, we discover that: the relative error between the theoretical values and the actual values is about 9.8%, the melt ejection model is well consistent with the actual experiment; from the theoretical model we can see the surrounding air of the aluminum alloy surface exist the metallic vapor; an increment of the interaction time between millisecond pulsed laser and aluminum alloy material, the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole depth is linearly increased with the increase of laser energy, respectively; the growth of the keyhole radius is in the trend to be gentle. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  4. DSC analyses of static and dynamic precipitation of an Al–Mg–Si–Cu aluminum alloy

    Directory of Open Access Journals (Sweden)

    Manping Liu

    2015-04-01

    Full Text Available In the present investigation, both static and dynamic precipitations of an Al–Mg–Si–Cu aluminum alloy after solid-solution treatment (SST were comparatively analyzed using differential scanning calorimetry (DSC. Dynamic aging was performed in the SST alloy through equal channel angular pressing (ECAP at different temperatures of room temperature, 110, 170, 191 and 300 °C. For comparison, static artificial aging was conducted in the SST alloy at 191 °C with two aging times of 4 and 10 h. The DSC analyses reveal that the dynamic precipitation has occurred in the ECAPed samples, while the activation energies associated with the strengthening precipitates in the dynamic samples are considerably higher than the energies in the SST and static aged samples. The higher activation energies are probably attributed to the smaller grains and higher dislocation density developed after ECAP. The results in the present investigation allow the prediction of the type of the dynamic precipitates to influence the strength of the ultrafine grained alloy during ECAP at various temperatures.

  5. Localized Corrosion Behavior of Al-Si-Mg Alloys Used for Fabrication of Aluminum Matrix Composites

    Science.gov (United States)

    Pech-Canul, M. A.; Giridharagopal, R.; Pech-Canul, M. I.; Coral-Escobar, E. E.

    2013-12-01

    The relationship between microstructure and localized corrosion behavior in neutral aerated chloride solutions was investigated with SEM/EDAX, conventional electrochemical techniques, and with scanning Kelvin probe force microscopy (SKPFM) for two custom-made alloys with Si/Mg molar ratios of 0.12 and 0.49. In this order, Al3Fe, Al3Mg2, and Mg2Si intermetallics were identified in the first alloy and Al(FeMn)Si and Mg2Si particles in the second one. Anodic polarization curves and corrosion morphology showed that the alloy with higher Si/Mg molar ratio exhibited a better corrosion performance and evidence was shown that it had a more corrosion-resistant passive film. The corrosion process for both alloys in aerated 0.1 M NaCl solutions was localized around the Fe-rich intermetallics. They acted as local cathodes and produced dissolution of the aluminum matrix surrounding such particles. Mg2Si and Al3Mg2 exhibited anodic behavior. SKPFM was successfully used to map the Volta potential distribution of main intermetallics. The localized corrosion behavior was correlated with a large Volta potential difference between the Fe-rich intermetallics and the matrix. After immersion in the chloride solution, such Volta potential difference decreased.

  6. Corrosion and electrochemical evaluation of an Al–Si–Cu aluminum alloy in ethanol solutions

    International Nuclear Information System (INIS)

    Highlights: •AC impedance spectroscopy can effectively reveal the corrosion of Al in ethanol. •The addition of 10 vol.% water or acetic acid increases ethanol corrosivity to Al. •Al–Si–Cu–Mg precipitates in the Al alloy are susceptible to the corrosion attack. -- Abstract: The corrosion of aluminum alloy AlSi8Cu3Fe(Zn) in ethanol and ethanol solutions containing 10 vol.% water and 10 vol.% acetic acid, respectively, was investigated by means of electrochemical impedance spectroscopy (EIS), polarization curve, immersion, optical microscopy, scanning electron microscopy and element mapping. The Al alloy in the ethanol and its solutions exhibited a capacitive loop in the measured Nyquist EIS spectra at high frequencies, which can be attributed to the ethanol’s dielectric response. Addition of 10 vol.% acetic acid increased the ethanol corrosivity more significantly than the same amount of water addition. The Al–Si–Cu–Mg precipitated zones in the alloy were susceptible to corrosion attack due to the micro-galvanic effect by the Cu-containing precipitates

  7. Effect of nanostructuring on the elastic properties of aluminum alloy AMg6

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorov, V., E-mail: pvm@tisnum.ru; Perfilov, S. [Technological Institute for Superhard and Novel Carbon Materials. Centralnaya 7a, Moscow, Troitsk, 142190 (Russian Federation); Korobov, A., E-mail: aikor42@mail.ru; Kokshaiskii, A.; Volkov, A. [Department of Acoustics, Faculty of Physics, M.V. Lomonosov Moscow State University. Leninskie gory 1, Moscow, 119991 (Russian Federation)

    2015-10-28

    We experimentally investigated the nanostructuring effect on the elastic properties of aluminum alloy AMg6 (Al–Mg–Mn system). The n-AMg6 nanostuctured specimens were prepared from a commercial polycrystalline alloy by refining and homogenizing a mixture of small chips of the alloy in a planetary mill. The resulting product consists of 200-500-micron agglomerates of nanoparticles with average nanoparticle size ∼ 40–60 nanometer according to the X-ray analysis. The compacted nanopowder was extruded at a temperature of 300°C with a reduction of cross-sectional area at least 4 times to 90 mm diameter. High resolution transmission electron microscopy studies confirmed the presence of the nanostructure with a grain size of ∼60 nanometers. For the experiments, nine parallelepiped shape specimens of 20×20×40 mm{sup 3} size were cut from the central and peripheral parts of the n-AMg6 rod. We measured of the second-order and third-order elastic coefficients of the obtained samples by ultrasonic method. The same measurements were made on specimens of the primary AMg6 alloy for comparison.

  8. Laser alloyed Al-W coatings on aluminum for enhanced corrosion resistance

    Science.gov (United States)

    Rajamure, Ravi Shanker; Vora, Hitesh D.; Srinivasan, S. G.; Dahotre, Narendra B.

    2015-02-01

    A tungsten precursor deposit was spray coated on aluminum 1100 substrate and was subsequently surface alloyed using a continuous wave diode-pumped ytterbium laser at varying laser energy densities. For the laser energy input of 21-32 J/mm2 the melt depth ranged between 135 and 150 μm. Scanning electron microscopy observations indicated the formation of uniform and continuously dense laser alloyed coatings with sound interface between the modified surface and substrate along with an equi-axed grain structure with second phase precipitates in the intergranular region. X-ray diffraction analysis confirmed that laser processing has resulted in the formation of Al4W, as the major phase with retention of W in Al within the alloyed region. The corrosion resistance of laser alloyed coatings was evaluated in near natural chloride solution using ac and dc electrochemical techniques. After laser processing potential-time measurements has indicated the relatively stable and high potential values over the longer exposure times. Cyclic polarization results showed the reduction in the corrosion current density by a factor of 8, compared to untreated Al 1100. Besides, the electrochemical impedance spectroscopy confirmed the increase in the total resistance (47-70 kΩ cm2) with the increase in the laser energy density.

  9. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zaid, B. [Division de Technologie du Combustible, Departement de Metallurgie, Centre de Recherche Nucleaire de Draria, BP. 43 Seballa, Draria (Algeria)], E-mail: zaidbachir@yahoo.com; Saidi, D. [Division de Technologie du Combustible, Departement de Metallurgie, Centre de Recherche Nucleaire de Draria, BP. 43 Seballa, Draria (Algeria); Benzaid, A. [Divisionde Physique et Application Nucleaires, Departement Application Nucleaires, Centre de Recherche Nucleaire de Draria, BP. 43 Seballa, Draria (Algeria); Hadji, S. [Division de Technologie du Combustible, Departement du combustible, Centre de Recherche Nucleaire de Draria, BP. 43 Seballa, Draria (Algeria)

    2008-07-15

    Effects of pH solution and chloride (Cl{sup -}) ion concentration on the corrosion behaviour of alloy AA6061 immersed in aqueous solutions of NaCl have been investigated using measurements of weight loss, potentiodynamic polarisation, linear polarisation, cyclic polarisation experiment combined with open circuit potential transient technique and optical or scanning electron microscopy. The corrosion behaviour of the AA6061 aluminum alloy was found to be dependant on the pH and chloride concentration [NaCl] of solution. In acidic or slightly neutral solutions, general and pitting corrosion occurred simultaneously. In contrast, exposure to alkaline solutions results in general corrosion. Experience revealed that the alloy AA6061 was susceptible to pitting corrosion in all chloride solution of concentration ranging between 0.003 wt% and 5.5 wt% NaCl and an increase in the chloride concentration slightly shifted both the pitting E{sub pit} and corrosion E{sub cor} potentials to more active values. In function of the conditions of treatment, the sheets of the alloy AA6061 undergo two types of localised corrosion process, leading to the formation of hemispherical and crystallographic pits. Polarisation resistance measurements in acidic (pH = 2) and alkaline chloride solutions (pH = 12) which are in good agreement with those of weight loss, show that the corrosion kinetic is minimised in slightly neutral solutions (pH = 6)

  10. Silicon effects on formation of EPO oxide coatings on aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, N9B 3P4 (Canada); Nie, X. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, N9B 3P4 (Canada)]. E-mail: xnie@uwindsor.ca

    2006-01-03

    Electrolytic plasma processes (EPP) can be used for cleaning, metal-coating, carburizing, nitriding, and oxidizing. Electrolytic plasma oxidizing (EPO) is an advanced technique to deposit thick and hard ceramic coatings on a number of aluminum alloys. However, the EPO treatment on Al-Si alloys with a high Si content has rarely been reported. In this research, an investigation was conducted to clarify the effects of silicon contents on the EPO coating formation, morphology, and composition. Cast hypereutectic 390 alloys ({approx} 17% Si) and hypoeutectic 319 alloys ({approx} 7% Si) were chosen as substrates. The coating morphology, composition, and microstructure of the EPO coatings on those substrates were investigated using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). A stylus roughness tester was used for surface roughness measurement. It was found that the EPO process had four stages where each stage was corresponding to various coating surface morphology, composition, and phase structures, characterised by different coating growth mechanisms.

  11. EFFECT OF CASTING MOULD ON MECHANICAL PROPERTIES OF 6063 ALUMINUM ALLOY

    Directory of Open Access Journals (Sweden)

    WASIU AJIBOLA AYOOLA

    2012-02-01

    Full Text Available Modern production methods for casting articles include the use of sand- mould, metal-mould, die, and centrifugal castings. Castings produced using sand mould is known to have peculiar microstructures depending on average size, distribution and shape of the moulding sand grains and the chemical composition of the alloy. These affect the surface finish, permeability and refractoriness of all the castings. In this paper, the effect of using CO2 process, metal mould, cement-bonded sand mould and naturally-bonded sand mould on the hardness, tensile and impact strengths of as-cast 6063 Aluminum alloy is presented. The results show that there is significant increase in hardness(33.7 HB of the alloy when naturally-bonded sand mould is used for its production over that of metal, CO2 and cement moulds. The stress-strain curves behaviour of the samples also indicated that sample from naturally bonded sand has highest tensile strength with superior ductility. The alloy shows highest impact strength when metal mould is used for sample preparation in comparison with other moulds.

  12. Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys

    International Nuclear Information System (INIS)

    Highlights: • Aluminum and magnesium alloys were joined by underwater friction stir welding. • Underwater FSW was conducted to improve properties of joint with lower heat input. • Microstructures and mechanical properties of dissimilar joint were investigated. • Intermetallic compounds developed in the fracture interface were analyzed. • Fracture features of the tensile samples were analyzed. - Abstract: Formation of intermetallic compounds in the stir zone of dissimilar welds affects the mechanical properties of the joints significantly. In order to reduce heat input and control the amount and morphological characteristics of brittle intermetallic compounds underwater friction stir welding of 6013 Al alloy and AZ31 Mg alloy was carried out. Microstructures, mechanical properties, elements distribution, and the fracture surface of the joints were analyzed by optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, etc. The result shows that sound dissimilar joint with good mechanical properties can be obtained by underwater friction stir welding. Al and Mg alloys were stirred together and undergone the process of recrystallization, forming complex intercalated flow patterns in the stir zone. Tensile strength of the dissimilar joint was up to 152.3 MPa. Maximum hardness (142HV) appeared in the middle of the centerline of the specimen. Intermetallic compounds layer consisting of Al3Mg2 and Mg17Al12 formed in the Al/Mg interface and resulted in the fracture of the joint

  13. Mechanical properties of the A356 aluminum alloy modified with La/Ce

    Institute of Scientific and Technical Information of China (English)

    E. Aguirre-De la Torre; R. Pérez-Bustamante; J. Camarillo-Cisneros; C.D. Gómez-Esparza; H.M. Medrano-Prieto; R. Martínez-Sánchez

    2013-01-01

    The research of rare earths for the synthesis of materials with improved mechanical performance is of great interest when they are considered for potential applications in the automotive industry. In this regard, the effect on the mechanical properties and microstructure of the automotive A356 aluminum alloy reinforced with 0.2 (wt.%) Al-6Ce-3La (ACL) was investigated. The ACL was added to the melted A356 alloy in the as-received condition and processed by mechanical milling. In the second route, the effect of the ACL processed by mechanical milling and powder metallurgy techniques was investigated, and compared with the results ob-tained from the A356 alloy strengthened with ACL in the as-received condition. Microstructural properties were evaluated by means of X-ray diffraction in order to observe the solubility of Ce/La in the Al matrix. In addition, electron microscopy was employed in or-der to investigate the effect of milling time on the size and morphology of La/Ce phase under milling process. Mechanical properties of the A356 alloy modified with ACL were measured by hardness and tensile test. For comparison unmodified specimens of the A356 were characterized according to the previous procedure. The microstructural and mechanical characterization was carried out in specimens after solution and artificial aging. Observations in scanning electron microscopy indicated a homogeneous dispersion of La/Ce phases by using both routes;however, mechanical results, in the modified A356 alloy with the ACL in the as-received condi-tion, showed an improvement in the mechanical performance of the A356 alloy over that reinforced with the ACL mechanically milled.

  14. Investigation of alloying effects in aluminum dispersion strengthened with Al2O3

    International Nuclear Information System (INIS)

    Two types of alloying elements were investigated to determine if the room-temperature strength could be improved and if, through lowering the oxide content, the high-temperature ductility could be improved. Mg was investigated for its solid solution strengthening in one type alloy. The other type alloy involved further dispersion strengthening through adding Fe, Mo, Zr, Cr, V, and Ti which form highly stable intermetallic compounds with Al. Fabrication techniques were developed which produced uniform and reproducible rods for testing. Prealloyed powders were produced by atomizing the molten alloys and collecting the powders in water. This procedure produced uniform powders with a very fine distribution of the intermetallic compounds. Fabrication into rods then included ball-milling, vacuum hot pressing, vacuum heat treating, and hot extrusion. Mg additions improved strengths up to 2000C with little effect above that temperature. Room-temperature tensile strengths up to 77,000 psi were obtained which are comparable to the strengths obtained in conventional aluminum alloys. The additional dispersion strengthening of the intermetallic compounds is additive to that of the oxide from room temperature to 4500C. No significant improvements in ductility are obtained by reducing the oxide content since even at very low ball-milling times (i.e., low oxide contents) the uniform elongation at 4500C is typically 0.5 percent. Good combinations of strength and ductility at 4500C were obtained in some of the alloys containing intermetallic compounds with no ball-milling. Typical properties at this temperature were tensile strengths of 7,000 psi, uniform elongation of 3 percent, and total elongation of 35 percent. (21 tables, 33 fig, 43 references) (auth)

  15. Fatigue-crack propagation in advanced aerospace materials: Aluminum-lithium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1988-10-01

    Characteristics of fatigue-crack propagation behavior are reviewed for recently developed commercial aluminum-lithium alloys, with emphasis on the underlying micromechanisms associated with crack advance and their implications to damage-tolerant design. Specifically, crack-growth kinetics in Alcoa 2090-T8E41, Alcan 8090 and 8091, and Pechiney 2091 alloys, and in certain powder-metallurgy alloys, are examined as a function of microstructure, plate orientation, temperature, crack size, load ratio and loading sequence. In general, it is found that growth rates for long (> 10 mm) cracks are nearly 2--3 orders of magnitude slower than in traditional 2000 and 7000 series alloys at comparable stress-intensity levels. In additions, Al-Li alloys shown enhanced crack-growth retardations following the application of tensile overloads and retain superior fatigue properties even after prolonged exposure at overaging temperatures; however, they are less impressive in the presence of compression overloads and further show accelerated crack-growth behavior for microstructurally-small (2--1000 {mu}m) cracks (some three orders of magnitude faster than long cracks). These contrasting observations are attributed to a very prominent role of crack-tip shielding during fatigue-crack growth in Al-Li alloys, promoted largely by the tortuous and zig-zag nature of the crack-path morphologies. Such crack paths result in locally reduced crack-tip stress intensities, due to crack deflection and consequent crack wedging from fracture-surface asperities (roughness-induced crack closure); however, such mechanisms are far less potent in the presence of compressive loads, which act to crush the asperities, and for small cracks, where the limited crack wake severely restricts the shielding effect. 50 refs., 21 figs.

  16. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  17. Effect of aging time and temperature on exfoliation corrosion of aluminum alloys 2024-T3 and 7075-T6

    Energy Technology Data Exchange (ETDEWEB)

    Khoshnaw, F.M.; Gardi, R.H. [Wolfson School of Mechanical and Manufacturing Engineering Loughborough University, Loughborough, LE11 3TU Leicestershire (United Kingdom)

    2007-05-15

    Two types of aluminum alloys, 2024-T3 and 7075-T6, have been selected in this study to investigate the effect of metallurgical aspects on exfoliation corrosion. To determine and evaluate the metallurgical effects of heat treatments on corrosion behaviour of these alloys, G34 ASTM test was selected to investigate the exfoliation corrosion behaviour. The results showed that with increasing the aging time for the aluminum alloy type 2024-T3 the susceptibility to exfoliation corrosion increases, while for type 7075-T6 decreased. These results refer to precipitation of the intermetallic compound phases such as CuAl{sub 2}, and MgZn{sub 2}, in 2024-T3 and 7075-T6 respectively. The amount of these phases increases with increasing the aging time for both alloys. The investigations showed the phases that initiate in 2024-T3 act as anode sites while in 7075-T6 they act as cathode sites. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  18. Effect of heat diffusion on properties of zinc-aluminum coating on AZ91D magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    LI Zhao-feng; HUANG Wei-jiu; LIU Ming

    2006-01-01

    A protecting zinc and aluminum coating on the surface of AZ91D magnesium alloys was obtained by thermal spraying to improve the corrosion and wear resistance performances. In order to enhance the combination between magnesium alloy matrix and zinc and aluminum coating, the sample was heat-treated at 300 ℃ for 2 h, then, the cross-section patterns, XRD pattern, micro-hardness, wear and corrosion resistance abilities were researched. The results indicate that the interface between the coating and substrate is metallurgical bond, and a transitional fusion layer is formed by diffusion. The micro-scale abrasion test and polarization test in 3% NaCl solution show that the diffusion-treated specimen has better wear and corrosion resistance performances in comparison with the undiffusion-treated and substrate magnesium alloys; in addition, it has relatively higher micro-hardness than the undiffusion-treated magnesium alloys.

  19. Underwater shock response of air-backed thin aluminum alloy plates: An experimental and numerical study

    Science.gov (United States)

    Ren, Peng; Zhang, Wei

    2014-05-01

    Studies on dynamic response of structures subjected to underwater explosion shock loading are of interest to ship designers. Understanding the deformation and failure mechanism of simple structures plays an important role in designing of a reliable structure under this kind of loading. The objective of this combined experimental and numerical study is to analyze the deformation and failure characteristics of 5A06 aluminum alloy plates under underwater shock loading. Some non-explosive underwater blast loading experiments were carried out on air backed circular plates of 2 mm thickness. The deformation history of the clamped circular plate was recorded using a high speed camera and the deflections of specimens at different radii were measured in order to identify deformation and failure modes. In the finite element simulations, the strength model of 5A06 aluminum alloy is considered using the slightly modified Johnson-cook mode to describe structure deformation. Good agreement between the numerical simulations and the experimental results is found. Detailed computational results of each scenario are offered to understand the deformation and failure mechanism.

  20. Development of a New Ferrous Aluminosilicate Refractory Material for Investment Casting of Aluminum Alloys

    Science.gov (United States)

    Yuan, Chen; Jones, Sam; Blackburn, Stuart

    2012-12-01

    Investment casting is a time-consuming, labour intensive process, which produces complex, high value-added components for a variety of specialised industries. Current environmental and economic pressures have resulted in a need for the industry to improve current casting quality, reduce manufacturing costs and explore new markets for the process. Alumino-silicate based refractories are commonly used as both filler and stucco materials for ceramic shell production. A new ceramic material, norite, is now being produced based on ferrous aluminosilicate chemistry, having many potential advantages when used for the production of shell molds for casting aluminum alloy. This paper details the results of a direct comparison made between the properties of a ceramic shell system produced with norite refractories and a typical standard refractory shell system commonly used in casting industry. A range of mechanical and physical properties of the systems was measured, and a full-scale industrial casting trial was also carried out. The unique properties of the norite shell system make it a promising alternative for casting aluminum based alloys in the investment foundry.