WorldWideScience

Sample records for aluminum air batteries

  1. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  2. Aluminum-based metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  3. Neutral electrolyte aluminum air battery with open configuration

    Institute of Scientific and Technical Information of China (English)

    HAN Bin; LIANG Guangchuan

    2006-01-01

    A kind of new long life aluminum air batteries with open configuration was developed, using aluminum alloy doped with Ga, In, Sn, Bi, Pb and Mn as anode, NaCl solution as electrolyte and air electrode as cathode. The polarization curves of aluminum electrode and air electrode were tested. And the cell's performance was tested to calculate the utilization of aluminum electrode and the energy density. It is shown that, in the 3.5% NaCl solution, the cell can discharge at 0.29 A for 140 h with the working voltage keeping over 1.1 V. The utilization ratio of aluminum anode is over 44%, and the life of battery is longer than 2400 h.

  4. Development of hydrocyclones for aluminum/air battery applications

    Science.gov (United States)

    Newman, M.

    1984-04-01

    An aluminum air battery consists of three main components: a galvanic cell stack fueled by aluminum and water, a crystallizer (a fluidized bed), and a hydro-cyclone, to separate electrolyte from aluminum trihydroxide. The crystallizer stabilizes the electrolyte by extracting excess aluminum trihydroxide. A separator (the hydrocyclone) is necessary to divert heavy particles to the crystallizer while recycling fine particles to the cells. A hydrocyclone suited to this application was developed based on the design of a commercially available unit, the PC-1, manufactured by Krebs Engineers of Menlo Park. Information supplied by Krebs indicated that a cut point of 15 micrometers could be achieved. At time intervals of 120, 240 and 360 minutes of testing, the particle size cut point remained constant at 20.2-25.4 micrometers. The separation coefficient was .47, .48 and .51, respectively. The discrepancy between the actual and the anticipated results is most likely due to variance from suggested sizing and the use of a tangential feed instead of the involuted feed of the Krebs design.

  5. The Salty Science of the Aluminum-Air Battery

    Science.gov (United States)

    Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul

    2008-01-01

    Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an…

  6. Research of Air Cathodes for Aluminum Air Batteries

    Science.gov (United States)

    2006-05-31

    Catalysts used in the existing cathodes include: platinum, silver, manganese and cobalt . Ruthenium is known for its catalytic ability and has received much...manganese, silver, cobalt , platinum, and ruthenium. The carbons used were Black Pearls 2000, proprietary carbons, Vulcan XC-72R, and Vapor Grown...discharge, the dissolved aluminate ion produced in this reaction precipitates out as crystalline hydrargillite (aluminum hydroxide): In addition to

  7. Improving the aluminum-air battery system for use in electrical vehicles

    Science.gov (United States)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is

  8. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  9. 铝空气电池的研究进展%Progress of research on aluminum air batteries

    Institute of Scientific and Technical Information of China (English)

    马景灵; 许开辉; 文九巴; 邵海洋

    2012-01-01

    铝空气电池制造成本低、比功率高、无毒,是一种很有发展前途的空气电池.但其商业化应用存在氧电极极化、电池不稳定、阳极过腐蚀、非均匀溶解等障碍.对铝合金阳极材料及其热处理与溶解机理、铝空气电池用电解质、空气电极及其催化剂等方面的研究现状进行了综述.铝空气电池的关键技术在于氧电极的催化剂活性及电解质中腐蚀产物Al(OH)3的处理.目前对以上两方面的研究有突破性进展,铝空气电池将成为21世纪理想动力电源.%The aluminum air battery has good prospects due to its high specific power, low cost and nontoxic. But for its commercialization application, the battery has some technology obstacles such as polarization of oxygen electrode, battery unstable, anode severe corrosion and inhomogeneous dissolution and so on. In this article, the research progress of aluminum alloy anode, the heat treatment, the dissolved mechanism, the electrolyte, air electrode and catalyst of aluminum air battery were summarized. The key technologies of aluminum air battery lay in the catalyst activeness of oxygen electrode and the processing of corrosion product AI(OH) 3 in the electrolyte. The research about the above two aspects has the breakthrough progress. The aluminum air battery will become the ideal power in the 21st century.

  10. Aluminum/air electrochemical cells

    OpenAIRE

    Wang, Lei; 王雷

    2014-01-01

    Aluminum (Al) is a very promising energy carrier given its high capacity and energy density, low cost, earth abundance and environmental benignity. The Al/air battery as a kind of metal/air electrochemical cell attracts tremendous attention. Traditional Al/air batteries suffer from the self-corrosion and related safety problems. In this work, three new approaches were investigated to tackle these challenges and to develop high-performance Al/air cells: (1) incorporate an additional hydrogen/a...

  11. The Research Progress on Electrolyte for Aluminum Air Battery%铝空气电池用电解质的研究进展

    Institute of Scientific and Technical Information of China (English)

    张笑盈; 和晓才; 李富宇; 谢刚

    2016-01-01

    Aluminum air battery is a kind of primary battery with the high energy density (<400Wh/kg), so far, it has nearly 60 years development history since the 1960s. The main discussion is on the research progress of electrolyte in the development history of aluminum air battery, and focusing on the effect of electrolyte on battery performance. The aluminum air battery has two main problems in the alkaline aqueous solution, one is the self-corrosion of aluminum and the passivation coating formed on the surface of aluminum. In order to solve the above mentioned technical problems, the addition agent is added into alkaline aqueous solution, the colloid electrolyte can be adopted to replace the new aqueous solution electrolyte, such as ethyl alcohol, ionic liquid and so on.%铝空气电池是一种拥有高能量密度(<400 Wh/kg)的一次电池,从上世纪60年代发展至今,已有近60年的历史.本文主要论述在铝空气电池发展历程中,电解质的研究进展,着重论述电解质对电池性能的影响.由于铝空气电池在碱性水溶液中存在两个主要问题,即铝的自腐蚀和铝表面形成钝化膜.为了能够解决上述技术难题,在水性碱溶液中加入添加剂、使用胶体电解质和可替代水溶液的新型电解质,如乙醇、离子液体等.

  12. (La1-xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries

    Science.gov (United States)

    Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2017-02-01

    The strontium doped Mn-based perovskites have been proposed as one of the best oxygen reduction reaction catalysts (ORRCs) to substitute the noble metal. However, few studies have investigated the catalytic activities of LSM with the A-site deficiencies. Here, the (La1-xSrx)0.98MnO3 (LSM) perovskites with A-site deficiencies are prepared by a modified solid-liquid method. The structure, morphology, valence state and oxygen adsorption behaviors of these LSM samples are characterized, and their catalytic activities toward ORR are studied by the rotating ring-disk electrode (RRDE) and aluminum-air battery technologies. The results show that the appropriate doping with Sr and introducing A-site stoichiometry can effectively tailor the Mn valence and increase the oxygen adsorption capacity of LSM. Among all the LSM samples in this work, the (La0.7Sr0.3)0.98MnO3 perovskite composited with 50% carbon (50%LSM30) exhibits the best ORR catalytic activity due to the excellent oxygen adsorption capacity. Also, this catalyst has much higher durability than that of commercial 20%Pt/C. Moreover, the maximum power density of the aluminum-air battery using 50%LSM30 as the ORRC can reach 191.3 mW cm-2. Our work indicates that the LSM/C composite catalysts with A-site deficiencies can be used as a promising ORRC in the metal-air batteries.

  13. Development and demonstration of process and components for the control of aluminum-air-battery electrolyte composition through the precipitation of aluminum trihydroxide. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swansiger, T. G.; Misra, C.

    1982-05-11

    Physical property data on density, viscosity, and electrical conductivity were developed and reduced to correlation form for synthetic electrolytes containing nominally 7 g/L Sn and 0.20 g/L Ga in 3,4,5,6 M NaOH. Concentrations of Al(OH)/sub 4/ were selected at six levels for each NaOH concentration and ranged from 0 to as high as 4 M Al(OH)/sub 4/ at 6 M NaOH. Measurements of each property were made at 25, 40, 60, and 80 C. The effect of the Sn and Ga impurities was to increase density by a relatively small percentage, increase viscosity by a significant percentage, and decrease electrical conductance by a significant percentage. Isothermal, batch precipitation experiments at 40, 60, and 80 C were utilized to develop data from which kinetic and solubility correlations were derived as functions of electrolyte and system parameters. Precipitation rate was negatively affected by tin in solution, with a 40% reduction in the rate constant being attributed to 0.06 M Sn. Both Sn and Ga co-precipitated with the Al(OH)/sub 3/ to an extent strongly dependent on temperature. Very high precipitation rates resulted in Na levels in product exceeding the target level of 0.24% Na on the hydrate basis. The incorporation of Na in product was also a strong function of temperature. A total of 108 computer simulations were performed and documented to delineate the region of feasible operation with respect to meeting the aluminate production specification. A full-scale precipitator was operated in a continuous mode to assess production rate, population changes with time, and hardware aspects. A digester was used to perform the function of an Al-Air battery, that is to drive Al(OH)/sub 4//sup -/ into solution. Results are presented in detail. (WHK)

  14. A Martian Air Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will investigate an entirely new battery chemistry by developing A Martian Air Battery. Specifically the project will explore the concept of a Martian...

  15. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  16. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  17. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  18. An Overview and Future Perspectives of Aluminum Batteries.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Marquardt, Krystan; Hoeppner, Katrin; Fantini, Sebastien; Lin, Rongying; Knipping, Etienne; Peters, Willi; Drillet, Jean-Francois; Passerini, Stefano; Hahn, Robert

    2016-09-01

    A critical overview of the latest developments in the aluminum battery technologies is reported. The substitution of lithium with alternative metal anodes characterized by lower cost and higher abundance is nowadays one of the most widely explored paths to reduce the cost of electrochemical storage systems and enable long-term sustainability. Aluminum based secondary batteries could be a viable alternative to the present Li-ion technology because of their high volumetric capacity (8040 mAh cm(-3) for Al vs 2046 mAh cm(-3) for Li). Additionally, the low cost aluminum makes these batteries appealing for large-scale electrical energy storage. Here, we describe the evolution of the various aluminum systems, starting from those based on aqueous electrolytes to, in more details, those based on non-aqueous electrolytes. Particular attention has been dedicated to the latest development of electrolytic media characterized by low reactivity towards other cell components. The attention is then focused on electrode materials enabling the reversible aluminum intercalation-deintercalation process. Finally, we touch on the topic of high-capacity aluminum-sulfur batteries, attempting to forecast their chances to reach the status of practical energy storage systems.

  19. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina;

    1993-01-01

    The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active...

  20. The rechargeable aluminum-ion battery

    KAUST Repository

    Jayaprakash, N.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl3 in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V2O5 nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g-1 in the first cycle and 273 mAh g-1 after 20 cycles, with very stable electrochemical behaviour. © The Royal Society of Chemistry 2011.

  1. The rechargeable aluminum-ion battery.

    Science.gov (United States)

    Jayaprakash, N; Das, S K; Archer, L A

    2011-12-21

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl(3) in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V(2)O(5) nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g(-1) in the first cycle and 273 mAh g(-1) after 20 cycles, with very stable electrochemical behaviour.

  2. The rechargeable aluminum-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Navaneedhakrishnan, Jayaprakash; Das, Shyamal K; Archer, Lynden A.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl₃ in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V₂O₅ nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g⁻¹ in the first cycle and 273 mAh g⁻¹ after 20 cycles, with very stable electrochemical behaviour.

  3. Evaluation of Batteries for Safe Air Transport

    Directory of Open Access Journals (Sweden)

    Nicholas Williard

    2016-05-01

    Full Text Available Lithium-ion batteries are shipped worldwide with many limitations implemented to ensure safety and to prevent loss of cargo. Many of the transportation guidelines focus on new batteries; however, the shipment requirements for used or degraded batteries are less clear. Current international regulations regarding the air transport of lithium-ion batteries are critically reviewed. The pre-shipping tests are outlined and evaluated to assess their ability to fully mitigate risks during battery transport. In particular, the guidelines for shipping second-use batteries are considered. Because the electrochemical state of previously used batteries is inherently different from that of new batteries, additional considerations must be made to evaluate these types of cells. Additional tests are suggested that evaluate the risks of second-use batteries, which may or may not contain incipient faults.

  4. Recent advances in zinc-air batteries.

    Science.gov (United States)

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  5. Metal | polypyrrole battery with the air regenerated positive electrode

    Science.gov (United States)

    Grgur, Branimir N.

    2014-12-01

    Recharge characteristics of the battery based on the electrochemically synthesized polypyrrole cathode and aluminum, zinc, or magnesium anode in 2 M NH4Cl are investigated. It is shown that polypyrrole electrode can be regenerated by the reoxidation with the dissolved oxygen from the air. Using the polypyrrole synthesized on high surface graphite-felt electrode under modest discharge conditions, stable discharge voltage of 1.1 V is obtained. Such behavior is explained by the complex interaction of polypyrrole and hydrogen peroxide produced by the oxygen reduction reaction. The electrochemical characteristics are compared with the zinc-manganese dioxide and zinc-air systems.

  6. Rechargeable aluminum batteries with conducting polymers as positive electrodes.

    Energy Technology Data Exchange (ETDEWEB)

    Hudak, Nicholas S.

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

  7. Lithium-Air Batteries with Hybrid Electrolytes.

    Science.gov (United States)

    He, Ping; Zhang, Tao; Jiang, Jie; Zhou, Haoshen

    2016-04-07

    During the past decade, Li-air batteries with hybrid electrolytes have attracted a great deal of attention because of their exceptionally high capacity. Introducing aqueous solutions and ceramic lithium superionic conductors to Li-air batteries can circumvent some of the drawbacks of conventional Li-O2 batteries such as decomposition of organic electrolytes, corrosion of Li metal from humidity, and insoluble discharge product blocking the air electrode. The performance of this smart design battery depends essentially on the property and structure of the cell components (i.e., hybrid electrolyte, Li anode, and air cathode). In recent years, extensive efforts toward aqueous electrolyte-based Li-air batteries have been dedicated to developing the high catalytic activity of the cathode as well as enhancing the conductivity and stability of the hybrid electrolyte. Herein, the progress of all aspects of Li-air batteries with hybrid electrolytes is reviewed. Moreover, some suggestions and concepts for tailored design that are expected to promote research in this field are provided.

  8. Gradient porous electrode architectures for rechargeable metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  9. High-energy metal air batteries

    Science.gov (United States)

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  10. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  11. A low cost, disposable cable-shaped Al-air battery for portable biosensors

    Science.gov (United States)

    Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun

    2016-05-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum-air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.

  12. Batteries: from alkaline to zinc-air.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    applications (for example, zinc-air for alkaline--if it is cost-effective), this is absolutely forbidden for secondary cells. Because of the differing cell voltages, charge characteristics and overcharge tolerance between different types of secondary cells, substituting a nickel-cadmium battery pack for the more expensive lithium-ion pack (if it is physically able to fit into the battery compartment), might appear to save money (e.g. $50 vs. $100) but it would be very ill advised. Since the cell characteristics are very different, it would be downright fatal to anyone within the 'kill radius' when the pack explodes. Those outside the kill radius would receive chemical burns from the electrolyte. Substitutions of secondary cell battery packs are generally not a good idea for biomeds to engage in. These are engineering decisions best left to either aftermarket battery pack manufacturers or the medical device manufacturer as a design engineering change.

  13. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    Science.gov (United States)

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).

  14. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  15. Health risks following ingestion of mercury and zinc air batteries.

    Science.gov (United States)

    Nolan, M; Tucker, I

    1981-01-01

    This paper reports on a study set up to assess the corrosive behaviour of mercury and zinc air batteries in the gastric juice environment of the stomach. The results show a relatively rapid rate of corrosion for charged mercury batteries. In contrast, the zinc air battery showed no visible corrosion under the same conditions. In view of the toxic dangers from leakage of mercury batteries, it is recommended that steps be taken to ensure that such batteries do not remain in the acidic environment of the stomach, should ingestion occur.

  16. Experimental investigation on the combustion characteristics of aluminum in air

    Science.gov (United States)

    Feng, Yunchao; Xia, Zhixun; Huang, Liya; Yan, Xiaoting

    2016-12-01

    With the aim of revealing the detailed process of aluminum combustion in air, this paper reports an experimental study on the combustion of aluminum droplets. In this work, the aluminum wires were exposed and heated by a CO2 laser to produce aluminum droplets, and then these droplets were ignited and burnt in air. The changing processes of aluminum wires, droplets and flames were directly recorded by a high-speed camera, which was equipped with a high magnification zoom lens. Meanwhile, the spectrum distribution of the flame was also registered by an optical spectrometer. Besides, burning residuals were collected and analyzed by the methods of Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Experimental results show that, during combustion, the aluminum droplet is covered by a spherical vapor-phase flame, and the diameter of this flame is about 1.4 times of the droplet diameter, statistically. In the later stages of combustion, the molten aluminum and condensed oxide products can react to generate gaseous Al and Al2O spontaneously. Little holes are found on the surface of residuals, which are the transport channels of gaseous products, namely the gaseous Al and Al2O. The combustion residuals are consisted by lots of aluminum oxide particles with diameters less than 1 μm.

  17. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.

    Science.gov (United States)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Fang, Youxing; Bridges, Craig A; Paranthaman, M Parans; Dai, Sheng; Brown, Gilbert M

    2016-01-28

    A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance.

  18. High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode.

    Science.gov (United States)

    Wang, Shuai; Jiao, Shuqiang; Wang, Junxiang; Chen, Hao-Sen; Tian, Donghua; Lei, Haiping; Fang, Dai-Ning

    2017-01-24

    On the basis of low-cost, rich resources, and safety performance, aluminum-ion batteries have been regarded as a promising candidate for next-generation energy storage batteries in large-scale energy applications. A rechargeable aluminum-ion battery has been fabricated based on a 3D hierarchical copper sulfide (CuS) microsphere composed of nanoflakes as cathode material and room-temperature ionic liquid containing AlCl3 and 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) as electrolyte. The aluminum-ion battery with a microsphere electrode exhibits a high average discharge voltage of ∼1.0 V vs Al/AlCl4(-), reversible specific capacity of about 90 mA h g(-1) at 20 mA g(-1), and good cyclability of nearly 100% Coulombic efficiency after 100 cycles. Such remarkable electrochemical performance is attributed to the well-defined nanostructure of the cathode material facilitating the electron and ion transfer, especially for chloroaluminate ions with large size, which is desirable for aluminum-ion battery applications.

  19. Advances in understanding mechanisms underpinning lithium-air batteries

    Science.gov (United States)

    Aurbach, Doron; McCloskey, Bryan D.; Nazar, Linda F.; Bruce, Peter G.

    2016-09-01

    The rechargeable lithium-air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium-air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium-air batteries.

  20. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives.

    Science.gov (United States)

    Fu, Jing; Cano, Zachary Paul; Park, Moon Gyu; Yu, Aiping; Fowler, Michael; Chen, Zhongwei

    2017-02-01

    Zinc-air batteries have attracted much attention and received revived research efforts recently due to their high energy density, which makes them a promising candidate for emerging mobile and electronic applications. Besides their high energy density, they also demonstrate other desirable characteristics, such as abundant raw materials, environmental friendliness, safety, and low cost. Here, the reaction mechanism of electrically rechargeable zinc-air batteries is discussed, different battery configurations are compared, and an in depth discussion is offered of the major issues that affect individual cellular components, along with respective strategies to alleviate these issues to enhance battery performance. Additionally, a section dedicated to battery-testing techniques and corresponding recommendations for best practices are included. Finally, a general perspective on the current limitations, recent application-targeted developments, and recommended future research directions to prolong the lifespan of electrically rechargeable zinc-air batteries is provided.

  1. Enabling aqueous binders for lithium battery cathodes - Carbon coating of aluminum current collector

    Science.gov (United States)

    Doberdò, Italo; Löffler, Nicholas; Laszczynski, Nina; Cericola, Dario; Penazzi, Nerino; Bodoardo, Silvia; Kim, Guk-Tae; Passerini, Stefano

    2014-02-01

    In this manuscript a novel approach to enable aqueous binders for lithium ion battery (LIB) cathodes is reported. Producing LiNi1/3Mn1/3Co1/3O2 (NMC) electrodes using sodium-carboxymethylcellulose (CMC) as a binder and water as a solvent, in fact, results in serious aluminum corrosion during electrode manufacturing due to the high pH of the slurry. In order to prevent the direct contact of the corrosive slurry with aluminum foil, the latter is first coated with a thin carbon layer. The CMC-based electrodes formed on carbon coated aluminum foil show enhanced performance than those made using unprotected aluminum instead. In particular, electrodes using protected aluminum foil are able to deliver a capacity of 126 mAh g-1 at 1C rate, which is rather close to that delivered by polyvinylidene-di-fluoride (PVdF)-based electrode having the same composition.

  2. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  3. Environmental dust effects on aluminum surfaces in humid air ambient

    Science.gov (United States)

    Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser

    2017-01-01

    Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems. PMID:28378798

  4. Improved zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  5. Thin-film silicon for flexible metal-air batteries.

    Science.gov (United States)

    Garamoun, Ahmed; Schubert, Markus B; Werner, Jürgen H

    2014-12-01

    Due to its high energy density, theoretical studies propose silicon as a promising candidate material for metal-air batteries. Herein, for the first time, experimental results detail the use of n-type doped amorphous silicon and silicon carbide as fuel in Si-air batteries. Thin-film silicon is particularly interesting for flexible and rolled batteries with high specific energies. Our Si-air batteries exhibit a specific capacity of 269 Ah kg(-1) and an average cell voltage of 0.85 V at a discharge current density of 7.9 μA cm(-2) , corresponding to a specific energy of 229 Wh kg(-1) . Favorably in terms of safety, low concentrated alkaline solution serves as electrolyte. Discharging of the Si-air cells continues as long as there is silicon available for oxidation.

  6. Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance.

    Science.gov (United States)

    Wang, Faxing; Yu, Feng; Wang, Xiaowei; Chang, Zheng; Fu, Lijun; Zhu, Yusong; Wen, Zubiao; Wu, Yuping; Huang, Wei

    2016-04-13

    Developing rechargeable batteries with low cost is critically needed for the application in large-scale stationary energy storage systems. Here, an aqueous rechargeable zinc//aluminum ion battery is reported on the basis of zinc as the negative electrode and ultrathin graphite nanosheets as the positive electrode in an aqueous Al2(SO4)3/Zn(CHCOO)2 electrolyte. The positive electrode material was prepared through a simple electrochemically expanded method in aqueous solution. The cost for the aqueous electrolyte together with the Zn negative electrode is low, and their raw materials are abundant. The average working voltage of this aqueous rechargeable battery is 1.0 V, which is higher than those of most rechargeable Al ion batteries in an ionic liquid electrolyte. It could also be rapidly charged within 2 min while maintaining a high capacity. Moreover, its cycling behavior is also very good, with capacity retention of nearly 94% after 200 cycles.

  7. Lithium-air batteries, method for making lithium-air batteries

    Science.gov (United States)

    Vajda, Stefan; Curtiss, Larry A.; Lu, Jun; Amine, Khalil; Tyo, Eric C.

    2016-11-15

    The invention provides a method for generating Li.sub.2O.sub.2 or composites of it, the method uses mixing lithium ions with oxygen ions in the presence of a catalyst. The catalyst comprises a plurality of metal clusters, their alloys and mixtures, each cluster consisting of between 3 and 18 metal atoms. The invention also describes a lithium-air battery which uses a lithium metal anode, and a cathode opposing the anode. The cathode supports metal clusters, each cluster consisting of size selected clusters, taken from a range of between approximately 3 and approximately 18 metal atoms, and an electrolyte positioned between the anode and the cathode.

  8. Dual-Function Air Cathode for Metal-Air Batteries with Pulse-Power Capability

    Science.gov (United States)

    2013-01-28

    Rolison , L. F. Nazar , MRS Bull. 2011 , 36 , 486 . [ 2 ] D. Linden , Ed., Handbook of Batteries : Second Edition , McGraw Hill , New...Dual-Function Air Cathode for Metal–Air Batteries with Pulse-Power Capability J. W. Long, C. N. Chervin, N. W. Kucko, E. S . Nelson, D. R. Rolison...Air Cathode for Metal-Air Batteries with Pulse-Power Capability 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d

  9. Primary zinc-air batteries for space power

    Science.gov (United States)

    Bragg, Bobby J.; Bourland, Deborah S.; Merry, Glenn; Putt, Ron

    1992-01-01

    Prismatic HR and LC cells and batteries were built and tested, and they performed well with respect to the program goals of high capacity and high rate capability at specific energies. The HR batteries suffered reduced utilizations owing to dryout at the 2 and 3 A rates for the 50 C tests owing to the requirement for forced convection. The LC batteries suffered reduced utilizations under all conditions owing to the chimney effect at 1 G, although this effect would not occur at 0 G. An empirical model was developed which accurately predicted utilizations and average voltages for single cells, although thermal effects encountered during battery testing caused significant deviations, both positive and negative, from the model. Based on the encouraging results of the test program, we believe that the zinc-air primary battery of a flat, stackable configuration can serve as a high performance and safe power source for a range of space applications.

  10. Zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  11. Fundamental mechanisms in Li-air battery electrochemistry

    DEFF Research Database (Denmark)

    Højberg, Jonathan

    The lithium-air (or Li-O2) batteries have received wide attention as an enabling technology for a mass market entry of electric vehicles due to a potential capacity much higher than current Li-ion technology. The technology is a relatively new battery concept proposed in 1996, and the current...... was used to characterize our carbon-based reference system as well as new ionic liquid-based electrolytes. Electrochemical impedance spectroscopy (EIS) has been used extensively to describe reaction mechanisms inside the battery; the origin of the measured overpotentials; and the onset potential...... battery system better than any other method available. Finally, calculations were made to support that an open system configuration is a realistic option in terms of air purification, if H2O and CO2 levels at 1 ppm are allowed....

  12. Cathodes for lithium-air battery cells with acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan; Huang, Kan; Li, Yunfeng

    2016-07-19

    In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.

  13. Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Hudak, Nicholas [Dominican Univ., River Forest, IL (United States); Huber, Dale L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gulley, Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The cycling of high-capacity electrode materials for lithium-ion batteries results in significant volumetric expansion and contraction, and this leads to mechanical failure of the electrodes. To increase battery performance and reliability, there is a drive towards the use of nanostructured electrode materials and nanoscale surface coatings. As a part of the Visiting Faculty Program (VFP) last summer, we examined the ability of aluminum oxide and gold film surface coatings to improve the mechanical and cycling properties of vapor-deposited aluminum films in lithium-ion batteries. Nanoscale gold coatings resulted in significantly improved cycling behavior for the thinnest aluminum films whereas aluminum oxide coatings did not improve the cycling behavior of the aluminum films. This summer we performed a similar investigation on vapor-deposited germanium, which has an even higher theoretical capacity per unit mass than aluminum. Because the mechanism of lithium-alloying is different for each electrode material, we expected the effects of coating the germanium surface with aluminum oxide or gold to differ significantly from previous observations. Indeed, we found that gold coatings gave only small or negligible improvements in cycling behavior of germanium films, but aluminum oxide (Al2O3) coatings gave significant improvements in cycling over the range of film thicknesses tested.

  14. First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteries

    OpenAIRE

    Siahrostami, Samira; Tripkovic, Vladimir; Lundgård, Keld Troen; Jensen, Kristian E.; Hansen, Heine A.; Hummelshøj, Jens Strabo; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs; Nørskov, Jens K.; Rossmeisl, Jan

    2013-01-01

    With surging interest in high energy density batteries, much attention has recently been devoted to metal-air batteries. The zinc-air battery has been known for more than hundred years and is commercially available as a primary battery, but recharging has remained elusive; in part because the fundamental mechanisms still remain to be fully understood. Here, we present a density functional theory investigation of the zinc dissolution (oxidation) on the anode side in the zinc-air battery. Two m...

  15. Computational Analysis and Design of New Materials for Metal-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Hummelshøj, Jens Strabo

    In the last decade, great effort has been paid to the development of next generation batteries. Metal-O2 /Air batteries (Li-, Na-, Mg-, Al-, Fe- and Zn-O2 batteries) in both aqueous and nonaqueous (aprotic) electrolytes have gained much attention. Metal-air batteries have high theoretical specifi...

  16. Reduced graphene oxide for Li–air batteries

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Overgaard, Marc; Younesi, Reza

    2015-01-01

    Reduced graphene oxide (rGO) has shown great promise as an air-cathode for Li-air batteries with high capacity. In this article we demonstrate how the oxidation time of graphene oxide (GO) affects the ratio of different functional groups and how trends of these in GO are extended to chemically...... and thermally reduced GO. We investigate how differences in functional groups and synthesis may affect the performance of Li-O-2 batteries. The oxidation timescale of the GO was varied between 30 min and 3 days before reduction. Powder Xray diffraction, micro-Raman, FE-SEM, BET analysis, and XPS were used...

  17. Sodium-metal halide and sodium-air batteries.

    Science.gov (United States)

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems.

  18. Design and fabrication of a micro zinc/air battery

    Science.gov (United States)

    Fu, L.; Luo, J. K.; Huber, J. E.; Lu, T. J.

    2006-04-01

    Micro-batteries are one of the key components that restrict the application of autonomous Microsystems. However little efforts were made to solve the problem. We have proposed a new planar zinc/air micro-battery, suitable for autonomous microsystem applications. The micro-battery has a layered structure of zinc electrode/alkaline electrolyte/air cathode. A 3D zinc electrode with a high density of posts was designed to obtain a high porosity, hence to offer a best performance. A model of the micro-battery is developed and the device performances were simulated and discussed. A four-mask process was developed to fabricate the prototype micro-batteries. The preliminary testing results showed the micro-batteries is able to deliver a maximum power up to 5 mW, and with an average power of 100 µW at a steady period for up to 2hrs. Fabrication process is still under optimization for further improvement.

  19. Modeling Zinc-Air Batteries with Aqueous Electrolytes

    OpenAIRE

    Clark, Simon; Stamm, Johannes; Horstmann, Birger; Latz, Arnulf

    2016-01-01

    Emerging markets such as electric mobility and renewable power generation are driving a demand for high-performance electrochemical energy storage. Zinc-air batteries are a promising technology due to their high theoretical specific energy, use of cheap materials, and superior operational safety. But they suffer from effects such as poor cycling stability and self-discharge due to carbonate formation in the alkaline electrolyte. The EU Horizon 2020 project Zinc Air Secondary (ZAS!) aims to o...

  20. Lithium air batteries having ether-based electrolytes

    Science.gov (United States)

    Amine, Khalil; Curtiss, Larry A.; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2016-10-25

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  1. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    Science.gov (United States)

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  2. Air cushion furnace technology for heat treatment of high quality aluminum alloy auto body sheet

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Zhaodong; Ma Mingtu; Wang Guodong; Fu Tianliang; Li Jiadong; Liang Xiong

    2014-01-01

    The process characteristics of heat treatment of aluminum alloy auto body sheet and the working prin-ciple of air cushion furnace were introduced. The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied. Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages. Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward. With the rapid de-velopment of automotive industry,there will be certainly a new upsurge of research and application of air cush-ion furnace for heat treatment of aluminum alloy auto body sheet.

  3. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles

    Science.gov (United States)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2015-01-01

    Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

  4. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H. [on leave from NTT Laboratories (Japan); Mueller, S.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  5. Reduced graphene oxide for Li–air batteries

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Overgaard, Marc; Younesi, Reza;

    2015-01-01

    Reduced graphene oxide (rGO) has shown great promise as an air-cathode for Li-air batteries with high capacity. In this article we demonstrate how the oxidation time of graphene oxide (GO) affects the ratio of different functional groups and how trends of these in GO are extended to chemically...... and thermally reduced GO. We investigate how differences in functional groups and synthesis may affect the performance of Li-O-2 batteries. The oxidation timescale of the GO was varied between 30 min and 3 days before reduction. Powder Xray diffraction, micro-Raman, FE-SEM, BET analysis, and XPS were used...... techniques can enhance the structural understanding of rGO. Different rGO cathodes were tested in Li-O-2 batteries which revealed a difference in overpotentials and discharge capacities for the different rGO's. We report the highest Li-O-2 battery discharge capacity recorded of approximately 60,000 m...

  6. Mathematical modeling of a primary zinc/air battery

    Science.gov (United States)

    Mao, Z.; White, R. E.

    1992-01-01

    The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.

  7. Testing of a refuelable zinc/air bus battery

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.; Fleming, D.; Koopman, R.; Hargrove, D.; Maimoni, A.; Peterman, K.

    1995-02-22

    We report tests of a refuelable zinc/air battery of modular, bipolar-cell design, intended for fleet electric busses and vans. The stack consists of twelve 250-cm{sup 2} cells built of two units: (1) a copper-clad glass-reinforced epoxy board supporting anode and cathode current collectors, and (2) polymer frame providing for air- and electrolyte distribution and zinc fuel storage. The stack was refueled in 4 min. by a hydraulic transfer of zinc particles entrained in solution flow.

  8. Alkaline rechargeable zinc-air battery; Alkalische wiederaufladbare Zink-Luft Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S.; Holzer, F.; Masanz, G.; Boss, S.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schlatter, C.; Comninellis, C. [Ecole Polytechnique Federale, Lausanne (Switzerland)

    1996-11-01

    Because of its high energy density, compatibility with aqueous electrolytes and the low toxicity of its active materials, the zinc-air battery system is an interesting candidate for electric vehicle applications. The use of O{sub 2} from the air as a reactant requires a partially open cell construction and a technologically challenging air interface. This report describes the research and development program at the Paul Scherrer Institute which finally led to the demonstration of a durable, electrically rechargeable zinc-oxygen battery. In a first phase the research program was focused on the development of bifunctional oxygen diffusion electrodes and pasted zinc electrodes. The current-potential behaviour and the cycle life performance of anodes and cathodes was tested in single electrode measurements (three-electrode arrangements) as well as in complete monopolar zinc-oxygen and zinc-air cells. La{sub 0.6}Ca{sub 0.4}CoO{sub 3}-activated bifunctional oxygen diffusion electrodes in combination with pasted zinc electrodes of ca 100 mAh/cm{sup 2} showed a maximum cycle life of ca. 450 cycles (6 h charge, 3 h discharge). In the second phase of the project we optimized the structure of the pasted zinc electrode to improve the available capacity and peak power of the battery system. Based on the mass of the cell components, a specific peak power of 275 W/kg with O{sub 2} and 200 W/kg with air was calculated for complete batteries. In the specific power range of 100-30 W/kg, values between 70 and 150 Wh/kg are expected for the specific energy. The cycle life of bifunctional oxygen electrodes operated at different oxygen reduction and evolution currents in pure oxygen and in air containing different concentrations of CO{sub 2} was determined. In collaboration with the Federal Inst. of Technology, Lausanne, a bipolar filter-press-type electrically rechargeable Zn/O{sub 2} battery delivering a peak power of ca. 100 W has been developed. (author) 20 figs., 2 tabs., 25 refs.

  9. Development of carbon-based cathodes for Li-air batteries: Present and future

    Science.gov (United States)

    Woo, Hyungsub; Kang, Joonhyeon; Kim, Jaewook; Kim, Chunjoong; Nam, Seunghoon; Park, Byungwoo

    2016-09-01

    Rechargeable lithium-air (Li-air) batteries are regarded as one of the most fascinating energy storage devices for use in the future electric vehicles, since Li-air batteries provide ten-times-higher theoretical capacities than those from current Li-ion batteries. Nonetheless, Li-air batteries have not yet been implemented to the market because of several major drawbacks such as low capacity, poor cycle life, and low round-trip efficiency. These battery performances are highly dependent on the design of air cathodes, thus much effort has been devoted to the development of high performance cathode. Among various materials, carbonaceous materials have been widely studied as the basis of air cathodes especially for non-aqueous Li-O2 cells due to their high electric conductivity, low cost, and ease of fabrication. This review summarizes the history, scientific background, and perspectives of Liair batteries, particularly from the viewpoint of carbon-based air cathodes.

  10. High-capacity thick cathode with a porous aluminum current collector for lithium secondary batteries

    Science.gov (United States)

    Abe, Hidetoshi; Kubota, Masaaki; Nemoto, Miyu; Masuda, Yosuke; Tanaka, Yuichi; Munakata, Hirokazu; Kanamura, Kiyoshi

    2016-12-01

    A high-capacity thick cathode has been studied as one of ways to improve the energy density of lithium secondary batteries. In this study, the LiFePO4 cathode with a capacity per unit area of 8.4 m Ah cm-2 corresponding to four times the capacity of conventional cathodes has been developed using a three-dimensional porous aluminum current collector called "FUSPOROUS". This unique current collector enables the smooth transfer of electrons and Li+-ions through the thick cathode, resulting in a good rate capability (discharge capacity ratio of 1.0 C/0.2 C = 0.980) and a high charge-discharge cycle performance (80% of the initial capacity at 2000th cycle) even though the electrode thickness is 400 μm. To take practical advantage of the developed thick cathode, conceptual designs for a 10-Ah class cell were also carried out using graphite and lithium-metal anodes.

  11. A critical review on lithium-air battery electrolytes.

    Science.gov (United States)

    Balaish, Moran; Kraytsberg, Alexander; Ein-Eli, Yair

    2014-02-21

    Metal-air batteries, utilizing the reduction of ambient oxygen, have the highest energy density because most of the cell volume is occupied by the anode while the cathode active material is not stored in the battery. Lithium metal is a tempting anode material for any battery because of its outstanding specific capacity (3842 mA h g(-1) for Li vs. 815 mA h g(-1) for Zn). Combining the high energy density of Li with ambient oxygen seems to be a promising option. Specifically, in all classes of electrolytes, the transformation from Li-O2 to Li-air is still a major challenge as the presence of moisture and CO2 reduces significantly the cell performance due to their strong reaction with Li metal. Thus, the quest for electrolyte systems capable of providing a solution to the imposed challenges due to the use of metallic Li, exposure to the environment and handling the formation of reactive discharged product is still on. This extended Review provides an expanded insight into electrolytes being suggested and researched and also a future vision on challenges and their possible solutions.

  12. Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA Lithium-Ion 18650 Battery Cells

    Directory of Open Access Journals (Sweden)

    James Michael Hooper

    2016-04-01

    Full Text Available This paper outlines a study undertaken to determine if the electrical performance of Nickel Cobalt Aluminum Oxide (NCA 3.1 Ah 18650 battery cells can be degraded by road induced vibration typical of an electric vehicle (EV application. This study investigates if a particular cell orientation within the battery assembly can result in different levels of cell degradation. The 18650 cells were evaluated in accordance with Society of Automotive Engineers (SAE J2380 standard. This vibration test is synthesized to represent 100,000 miles of North American customer operation at the 90th percentile. This study identified that both the electrical performance and the mechanical properties of the NCA lithium-ion cells were relatively unaffected when exposed to vibration energy that is commensurate with a typical vehicle life. Minor changes observed in the cell’s electrical characteristics were deemed not to be statistically significant and more likely attributable to laboratory conditions during cell testing and storage. The same conclusion was found, irrespective of cell orientation during the test.

  13. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries.

  14. Flexible Rechargeable Zinc-Air Batteries through Morphological Emulation of Human Hair Array.

    Science.gov (United States)

    Fu, Jing; Hassan, Fathy Mohamed; Li, Jingde; Lee, Dong Un; Ghannoum, Abdul Rahman; Lui, Gregory; Hoque, Md Ariful; Chen, Zhongwei

    2016-08-01

    An electrically rechargeable, nanoarchitectured air electrode that morphologically emulates a human hair array is demonstrated in a zinc-air battery. The hair-like array of mesoporous cobalt oxide nanopetals in nitrogen-doped carbon nanotubes is grown directly on a stainless-steel mesh. This electrode produces both flexibility and improved battery performance, and thus fully manifests the advantages of flexible rechargeable zinc-air batteries in practical applications.

  15. Selective poisoning of Li-air batteries for increased discharge capacity

    DEFF Research Database (Denmark)

    Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2014-01-01

    The main discharge product at the cathode of non-aqueous Li-air batteries is insulating Li2O2 and its poor electronic conduction is a main limiting factor in the battery performance. Here, we apply density functional theory calculations (DFT) to investigate the potential of circumventing...... accessible battery capacity at the expense of a limited increase in the overpotentials....

  16. A carbon-air battery for high power generation.

    Science.gov (United States)

    Yang, Binbin; Ran, Ran; Zhong, Yijun; Su, Chao; Tadé, Moses O; Shao, Zongping

    2015-03-16

    We report a carbon-air battery for power generation based on a solid-oxide fuel cell (SOFC) integrated with a ceramic CO2-permeable membrane. An anode-supported tubular SOFC functioned as a carbon fuel container as well as an electrochemical device for power generation, while a high-temperature CO2-permeable membrane composed of a CO3(2-) mixture and an O(2-) conducting phase (Sm(0.2)Ce(0.8)O(1.9)) was integrated for in situ separation of CO2 (electrochemical product) from the anode chamber, delivering high fuel-utilization efficiency. After modifying the carbon fuel with a reverse Boudouard reaction catalyst to promote the in situ gasification of carbon to CO, an attractive peak power density of 279.3 mW cm(-2) was achieved for the battery at 850 °C, and a small stack composed of two batteries can be operated continuously for 200 min. This work provides a novel type of electrochemical energy device that has a wide range of application potentials.

  17. Development and study of aluminum-air electrochemical generator and its main components

    Science.gov (United States)

    Ilyukhina, A. V.; Kleymenov, B. V.; Zhuk, A. Z.

    2017-02-01

    Aluminum-air power sources are receiving increased attention for applications in portable electronic devices, transportation, and energy systems. This study reports on the development of an aluminum-air electrochemical generator (AA ECG) and provides a technical foundation for the selection of its components, i.e., aluminum anode, gas diffusion cathode, and alkaline electrolyte. A prototype 1.5 kW AA ECG with specific energy of 270 Wh kg-1 is built and tested. The results of this study demonstrate the feasibility of AA ECGs as portable reserve and emergency power sources, as well as power sources for electric vehicles.

  18. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  19. First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteries

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Tripkovic, Vladimir; Lundgård, Keld Troen

    2013-01-01

    With surging interest in high energy density batteries, much attention has recently been devoted to metal-air batteries. The zinc-air battery has been known for more than hundred years and is commercially available as a primary battery, but recharging has remained elusive; in part because...... the fundamental mechanisms still remain to be fully understood. Here, we present a density functional theory investigation of the zinc dissolution (oxidation) on the anode side in the zinc-air battery. Two models are envisaged, the most stable (0001) surface and a kink surface. The kink model proves to be more....... The applied methodology provides new insight into computational modelling and design of secondary metal-air batteries....

  20. Novel configuration of bifunctional air electrodes for rechargeable zinc-air batteries

    Science.gov (United States)

    Li, Po-Chieh; Chien, Yu-Ju; Hu, Chi-Chang

    2016-05-01

    A novel configuration of two electrodes containing electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) pressed into a bifunctional air electrode is designed for rechargeable Zn-air batteries. MOC/25BC carbon paper (MOC consisting of α-MnO2 and XC-72 carbon black) and Fe0.1Ni0.9Co2O4/Ti mesh on this air electrode mainly serve as the cathode for the ORR and the anode for the OER, respectively. The morphology and physicochemical properties of Fe0.1Ni0.9Co2O4 are investigated through scanning electron microscopy, inductively coupled plasma-mass spectrometry, and X-ray diffraction. Electrochemical studies comprise linear sweep voltammetry, rotating ring-disk electrode voltammetry, and the full-cell charge-discharge-cycling test. The discharge peak power density of the Zn-air battery with the unique air electrode reaches 88.8 mW cm-2 at 133.6 mA cm-2 and 0.66 V in an alkaline electrolyte under an ambient atmosphere. After 100 charge-discharge cycles at 10 mA cm-2, an increase of 0.3 V between charge and discharge cell voltages is observed. The deep charge-discharge curve (10 h in each step) indicates that the cell voltages of discharge (1.3 V) and charge (1.97 V) remain constant throughout the process. The performance of the proposed rechargeable Zn-air battery is superior to that of most other similar batteries reported in recent studies.

  1. Novel composite polymer electrolyte for lithium air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Deng; Li, Ruoshi; Huang, Tao; Yu, Aishui [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2010-02-15

    Hydrophobic ionic liquid-silica-PVdF-HFP polymer composite electrolyte is synthesized and employed in lithium air batteries for the first time. Discharge performance of lithium air battery using this composite electrolyte membrane in ambient atmosphere shows a higher capacity of 2800 mAh g{sup -1} of carbon in the absence of O{sub 2} catalyst, whereas, the cell with pure ionic liquid as electrolyte delivers much lower discharge capacity of 1500 mAh g{sup -1}. When catalyzed by {alpha}-MnO{sub 2}, the initial discharge capacity of the cell with composite electrolyte can be extended to 4080 mAh g{sup -1} of carbon, which can be calculated as 2040 mAh g{sup -1} associated with the total mass of the cathode. The flat discharge plateau and large discharge capacity indicate that the hydrophobic ionic liquid-silica-PVdF-HFP polymer composite electrolyte membrane can effectively protect lithium from moisture invasion. (author)

  2. All-solid-state cable-type flexible zinc-air battery.

    Science.gov (United States)

    Park, Joohyuk; Park, Minjoon; Nam, Gyutae; Lee, Jang-soo; Cho, Jaephil

    2015-02-25

    A cable-type flexible Zn-air battery with a spiral zinc anode, gel polymer electrolyte (GPE), and air cathode coated on a nonprecious metal catalyst is designed in order to extend its application area toward wearable electronic devices.

  3. Effect of aluminum-containing additives on the reactivity in air and CO2 of carbon anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    LAI Yanqing; LI Jie; LI Qingyu; DING Fengqi

    2004-01-01

    Airbum reaction and carboxy reaction result in the excess consumption of carbon anode in aluminum electrolysis.To reduce the excess carbon consumption, carbon anode was doped with aluminum-containing additives, such as Al, Al4C3,AlF3 and Al2O3. Their reactivity in air and CO2 was determined with an isothermal-gravimetric method to study the effect of aluminum-containing additives on the reactivity in air and CO2 of carbon anode. Results shown that the airburn reactivity at 450℃ and carboxy reactivity at 970 ℃ of carbon anode both decreased with Al-containing additives adding, while shown a minimutn with the amount of Al4C3, AlF3 and Al2O3 increasing. However, all Al-containing additives increase the airbum reactivity at 550℃ of carbon anodes. Coke yield measurement and XRD examination with aluminum containing additives doped pitch cokes revealed that the effect of Al-containing additives on the airbum reactivity and carboxy reactivity of carbon anode would result from chemical factors and structural factors.

  4. Overcurrent Abuse of Primary Prismatic Zinc–Air Battery Cells Studying Air Supply Effects on Performance and Safety Shut-Down

    OpenAIRE

    Fredrik Larsson; Antti Rytinki; Istaq Ahmed; Ingvar Albinsson; Bengt-Erik Mellander

    2017-01-01

    Overcurrent abuse has been performed on commercial 48 Ah primary prismatic zinc (Zn)–Air battery cells with full air supply as well as with shut-off air supply. Compared to other battery technologies, e.g., lithium-ion batteries, metal–air batteries offer the possibility to physically stop the battery operation by stopping its air supply, thus offering an additional protection against severe battery damage in the case of, e.g., an accidental short circuit. This method may also reduce the elec...

  5. Nitrogen-Doped Carbon as a Cathode Material for Lithium-air Batteries (Postprint)

    Science.gov (United States)

    2010-04-01

    Handbook of Batteries and Fuel Cells, D. Linden , Editor, Chapter 38, Mc-Graw-Hil, New York (1984). [3] J. Read, J. Electrochem. Soc., 153, (2006) A96...MATERIAL FOR LITHIUM-AIR BATTERIES (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62203F 6. AUTHOR( S ...AFRL-RQ-WP-TP-2015-0050 NITROGEN-DOPED CARBON AS A CATHODE MATERIAL FOR LITHIUM-AIR BATTERIES (POSTPRINT) Padmakar Kichambare and Stanley

  6. Exploring Faraday's Law of Electrolysis Using Zinc-Air Batteries with Current Regulative Diodes

    Science.gov (United States)

    Kamata, Masahiro; Paku, Miei

    2007-01-01

    Current regulative diodes (CRDs) are applied to develop new educational experiments on Faraday's law by using a zinc-air battery (PR2330) and a resistor to discharge it. The results concluded that the combination of zinc-air batteries and the CRD array is simpler, less expensive, and quantitative and gives accurate data.

  7. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.

    Science.gov (United States)

    Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng

    2016-03-24

    The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices.

  8. Paper-based, printed zinc-air battery

    Science.gov (United States)

    Hilder, M.; Winther-Jensen, B.; Clark, N. B.

    A flexible battery is printed on paper by screen-printing a zinc/carbon/polymer composite anode on one side of the sheet, polymerising a poly(3,4-ethylenedioxythiophene) (PEDOT) cathode on the other side of the sheet, and applying a lithium chloride electrolyte between the two electrodes. The PEDOT cathode is prepared by inkjet printing a pattern of iron(III) p-toluenesulfonate as a solution in butan-1-ol onto paper, followed by vapour phase polymerisation of the monomer. The electrolyte is prepared as a solution of lithium chloride and lithium hydroxide and also applied by inkjet printing on to paper, where it is absorbed into the sheet cross-section. Measurements on a zinc/carbon-PEDOT/air battery in a similar configuration on a polyethylene naphthalate substrate shows a discharge capacity of up to 1.4 mAh cm -2 for an initial load of 2.5 mg zinc, equivalent to almost 70% of the zinc content of the anode, which generates 0.8 V at a discharge current of 500 μA. By comparison, the performance of the paper-based battery is lower, with an open-circuit voltage of about 1.2 V and a discharge capacity of 0.5 mAh cm 2. It appears that the paper/electrolyte combination has a limited ability to take up anode oxidation products before suffering a reduction in ionic mobility. The effects of different zinc/carbon/binder combinations, differences in application method for the zinc/carbon composite and various electrolyte compositions are discussed.

  9. Characterization of gas diffusion electrodes for metal-air batteries

    Science.gov (United States)

    Danner, Timo; Eswara, Santhana; Schulz, Volker P.; Latz, Arnulf

    2016-08-01

    Gas diffusion electrodes are commonly used in high energy density metal-air batteries for the supply of oxygen. Hydrophobic binder materials ensure the coexistence of gas and liquid phase in the pore network. The phase distribution has a strong influence on transport processes and electrochemical reactions. In this article we present 2D and 3D Rothman-Keller type multiphase Lattice-Boltzmann models which take into account the heterogeneous wetting behavior of gas diffusion electrodes. The simulations are performed on FIB-SEM 3D reconstructions of an Ag model electrode for predefined saturation of the pore space with the liquid phase. The resulting pressure-saturation characteristics and transport correlations are important input parameters for modeling approaches on the continuum scale and allow for an efficient development of improved gas diffusion electrodes.

  10. Oxygen Selective Membranes for Li-Air (O2 Batteries

    Directory of Open Access Journals (Sweden)

    Mark Salomon

    2012-05-01

    Full Text Available Lithium-air (Li-air batteries have a much higher theoretical energy density than conventional lithium batteries and other metal air batteries, so they are being developed for applications that require long life. Water vapor from air must be prevented from corroding the lithium (Li metal negative electrode during discharge under ambient conditions, i.e., in humid air. One method of protecting the Li metal from corrosion is to use an oxygen selective membrane (OSM that allows oxygen into the cell while stopping or slowing the ingress of water vapor. The desired properties and some potential materials for OSMs for Li-air batteries are discussed and the literature is reviewed.

  11. Growth of oxygen bubbles during recharge process in zinc-air battery

    Science.gov (United States)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Chen, Huicui; Xu, Huachi; Chen, Dongfang; Xing, Haoqiang

    2015-11-01

    Rechargeable zinc-air battery used for energy storage has a serious problem of charging capacity limited by oxygen bubble coalescence. Fast removal of oxygen bubbles adhered to the charging electrode surface is of great importance for improving the charging performance of the battery. Here we show that the law of oxygen bubble growth can be achieved by means of phase-field simulation, revealing two phenomena of bubble detachment and bubble coalescence located in the charging electrode on both sides. Hydrodynamic electrolyte and partial insulation structure of the charging electrode are investigated to solve the problem of oxygen bubble coalescence during charging. Two types of rechargeable zinc-air battery are developed on the basis of different tri-electrode configurations, demonstrating that the charging performance of the battery with electrolyte flow (Ⅰ) is better than that of the battery with the partially insulated electrode (Ⅱ), while the battery Ⅱ is superior to the battery Ⅰ in the discharging performance, cost and portability. The proposed solutions and results would be available for promoting commercial application of rechargeable zinc-air batteries or other metal-air batteries.

  12. Novel air electrode for metal-air battery with new carbon material and method of making same

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    This invention relates to a rechargeable battery or fuel cell. More particularly, this invention relates to a novel air electrode comprising a new carbon electrode support material and a method of making same. 3 figs.

  13. Exploration of cobalt phosphate as a potential catalyst for rechargeable aqueous sodium-air battery

    Science.gov (United States)

    Senthilkumar, Baskar; Khan, Ziyauddin; Park, Sangmin; Seo, Inseok; Ko, Hyunhyub; Kim, Youngsik

    2016-04-01

    Bifunctional catalysts are prominent to attain high capacity, maximum energy efficiency and long cycle-life for aqueous rechargeable Na-air batteries. In this work, we report the synthesis of bi-functional noble metal free, Co3(PO4)2 nanostructures by facile precipitation technique and evaluated its electrocatalytic activity. Co3(PO4)2 nanostructure was investigated as a potential electrocatalyst for rechargeable aqueous Na-air battery for the first time. The synthesized Co3(PO4)2 grain-like nanostructures showed better oxygen evolution activity compared to Pt/C catalyst. The fabricated Na-air battery with the Co3(PO4)2 catalyst as air-cathode delivered low overpotential and its round trip energy efficiency reached up to 83%. The Na-air battery exhibited stable cycle performance up to 50 cycles.

  14. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    Science.gov (United States)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  15. Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Fu, Jing; Lee, Dong Un; Hassan, Fathy Mohamed; Yang, Lin; Bai, Zhengyu; Park, Moon Gyu; Chen, Zhongwei

    2015-10-07

    A thin-film, flexible, and rechargeable zinc-air battery having high energy density is reported particularly for emerging portable and wearable electronic applications. This freeform battery design is the first demonstrated by sandwiching a porous-gelled polymer electrolyte with a freestanding zinc film and a bifunctional catalytic electrode film. The flexibility of both the electrode films and polymer electrolyte membrane gives great freedom in tailoring the battery geometry and performance.

  16. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

    Science.gov (United States)

    Cheng, Fangyi; Chen, Jun

    2012-03-21

    Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).

  17. Studies on the oxygen reduction catalyst for zinc-air battery electrode

    Science.gov (United States)

    Wang, Xianyou; Sebastian, P. J.; Smit, Mascha A.; Yang, Hongping; Gamboa, S. A.

    In this paper, perovskite type La 0.6Ca 0.4CoO 3 as a catalyst of oxygen reduction was prepared, and the structure and performance of the catalysts was examined by means of IR, X-ray diffraction (XRD), and thermogravimetric (TG). Mixed catalysts doped, some metal oxides were put also used. The cathodic polarization curves for oxygen reduction on various catalytic electrodes were measured by linear sweep voltammetry (LSV). A Zn-air battery was made with various catalysts for oxygen reduction, and the performance of the battery was measured with a BS-9300SM rechargeable battery charge/discharge device. The results showed that the perovskite type catalyst (La 0.6Ca 0.4CoO 3) doped with metal oxide is an excellent catalyst for the zinc-air battery, and can effectively stimulate the reduction of oxygen and improve the properties of zinc-air batteries, such as discharge capacity, etc.

  18. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Blomquist, Jakob; Datta, Soumendu;

    2010-01-01

    We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins...

  19. Effect of lithium or aluminum substitution on the characteristics of graphite for anode of lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    GUO Huajun; LI Xinhai; WANG Zhixing; PENG Wenjie; GUO Yongxing

    2003-01-01

    Modification of graphite for anode of lithium ion batteries is investigated. Results of X-ray diffraction shows lithium and aluminum exists as Li compound (CH3COOLi@2H2O) and Al compound (AlD3) in the graphite, respectiovely.The Bmnauer-Emmer-Teller (BET) surface area of the modified graphite increases. According to the electrochemical measurements of Li/C cell and prototype Li-ion batteries, the Li-doped graphite has large reversible capacity of 312.2mA@h/g, low irreversible capacity of 52.9 mA@h/g, and high initial coulombic efficiency of 85.51%. The 063448 size prototype battery with Li-doped graphite anode has large discharge capacity of 845 mA@h and good cycling performance. The initial charge/discharge characteristic of Al-doped graphite is close to those of undoped graphite, but the prototype battery with Al-doped anode shows the best cycling performance with capacity retention ratio of 94.06% at the 200th cycle.

  20. Preliminary Investigation of Aluminum Combustion in Air and Steam.

    Science.gov (United States)

    1983-03-01

    This thesis is prepared in conjunction with research supported in part by Naval Surface Weapons Center under project number N6092183WRW0142...Hallenbeck, Jr. 9. PERPORIING ORGANIZATION NAMC AND ADDRESS . PROGRAM ELEMENT, PROJECT , TASK AREA 6 WORK UNIT NUMMERS Naval Postgraduate School 62633N...using aluminum wire samples which had been accurately weighed. Biomation wave-form traces were made of each test sequence. The Bioma - tion recorder

  1. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    Science.gov (United States)

    2015-01-01

    Titanate for Lithium-Air Batteries by Victoria L Blair, Claire V Weiss Brennan, and Joseph M Marsico Approved for public...TR-7584 ● JAN 2015 US Army Research Laboratory Grain Boundary Engineering of Lithium-Ion- Conducting Lithium Lanthanum Titanate for Lithium... Titanate for Lithium-Air Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Victoria L Blair, Claire V

  2. Water soluble graphene as electrolyte additive in magnesium-air battery system

    Science.gov (United States)

    Saminathan, K.; Mayilvel Dinesh, M.; Selvam, M.; Srither, S. R.; Rajendran, V.; Kaler, Karan V. I. S.

    2015-02-01

    Magnesium-air (Mg-air) batteries are an important energy source used to power electronic equipment and automobiles. Metal-air batteries give more energy density due to surplus air involved in reduction reaction at air cathode. In this study, the scope of improvements in the efficiency of Metal-air batteries is investigated through addition of water soluble graphene (WSG) as inhibitor in NaCl electrolyte. The discharge performance, corrosion behaviour and electrochemical impedance are studied for (i) the conventional Mg-air battery using 3.5% NaCl and (ii) Mg-air battery with WSG-based 3.5% NaCl electrolyte. X-ray diffraction analysis for WSG is carried out and it shows the crystalline nature of WSG by an intense sharp peak at 26.3°. Scanning electron microscope study is also performed and shows the flake-like structure of WSG denoted by thin layers of carbon. The immersion of WSG in 3.5% NaCl electrolyte increased the current density from 13.24 to 19.33 mA cm-2. Meanwhile, the WSG-based Mg-air battery was found to hold specific discharge capacity of 1030.71 mAh g-1, which was higher than that obtained in 3.5% NaCl electrolyte (i.e., 822.85 mAh g-1). The WSG-based Mg-air battery shows good self-discharge capacity and higher electrochemical activity during discharge.

  3. 76 FR 76259 - National Emissions Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants

    Science.gov (United States)

    2011-12-06

    ... Quality Planning and Standards ODW Office of Drinking Water OECA Office of Enforcement and Compliance.../rtrpg.html . The TTN provides information and technology exchange in various areas of air pollution... in Rockdale, Texas; Kaiser Aluminum in Mead, Washington; Ormet Corporation in Hannibal,...

  4. Highly durable and active non-precious air cathode catalyst for zinc air battery

    Science.gov (United States)

    Chen, Zhu; Choi, Ja-Yeon; Wang, Haijiang; Li, Hui; Chen, Zhongwei

    The electrochemical stability of non-precious FeCo-EDA and commercial Pt/C cathode catalysts for zinc air battery have been compared using accelerated degradation test (ADT) in alkaline condition. Outstanding oxygen reduction reaction (ORR) stability of the FeCo-EDA catalyst was observed compared with the commercial Pt/C catalyst. The FeCo-EDA catalyst retained 80% of the initial mass activity for ORR whereas the commercial Pt/C catalyst retained only 32% of the initial mass activity after ADT. Additionally, the FeCo-EDA catalyst exhibited a nearly three times higher mass activity compared to that of the commercial Pt/C catalyst after ADT. Furthermore, single cell test of the FeCo-EDA and Pt/C catalysts was performed where both catalysts exhibited pseudolinear behaviour in the 12-500 mA cm -2 range. In addition, 67% higher peak power density was observed from the FeCo-EDA catalyst compared with commercial Pt/C. Based on the half cell and single cell tests the non-precious FeCo-EDA catalyst is a very promising ORR electrocatalyst for zinc air battery.

  5. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst

    Science.gov (United States)

    Sumboja, Afriyanti; Ge, Xiaoming; Zheng, Guangyuan; Goh, F. W. Thomas; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2016-11-01

    Neutral chloride-based electrolyte and directly grown manganese oxide on carbon paper are used as the electrolyte and air cathode respectively for rechargeable Zn-air batteries. Oxygen reduction and oxygen evolution reactions on manganese oxide show dependence of activities on the pH of the electrolyte. Zn-air batteries with chloride-based electrolyte and manganese oxide catalyst exhibit satisfactory voltage profile (discharge and charge voltage of 1 and 2 V at 1 mA cm-2) and excellent cycling stability (≈90 days of continuous cycle test), which is attributed to the reduced carbon corrosion on the air cathode and decreased carbonation in neutral electrolyte. This work describes a robust electrolyte system that improves the cycle life of rechargeable Zn-air batteries.

  6. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.

    Science.gov (United States)

    Angell, Michael; Pan, Chun-Jern; Rong, Youmin; Yuan, Chunze; Lin, Meng-Chang; Hwang, Bing-Joe; Dai, Hongjie

    2017-01-31

    In recent years, impressive advances in harvesting renewable energy have led to a pressing demand for the complimentary energy storage technology. Here, a high Coulombic efficiency (∼99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analog electrolyte made from a mixture of AlCl3 and urea in a 1.3:1 molar ratio. The battery displays discharge voltage plateaus around 1.9 and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ∼73 mAh g(-1) at a current density of 100 mA g(-1) (∼1.4 C). High Coulombic efficiency over a range of charge-discharge rates and stability over ∼150-200 cycles was easily demonstrated. In situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite (positive electrode) during charge-discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. Raman spectroscopy and NMR suggested the existence of AlCl4(-), Al2Cl7(-) anions and [AlCl2·(urea)n](+) cations in the AlCl3/urea electrolyte when an excess of AlCl3 was present. Aluminum deposition therefore proceeded through two pathways, one involving Al2Cl7(-) anions and the other involving [AlCl2·(urea)n](+) cations. This battery is a promising prospect for a future high-performance, low-cost energy storage device.

  7. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306 mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.

  8. Optimization of non-aqueous electrolytes for Primary lithium/air batteries operated in Ambient Enviroment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wu; Xiao, Jie; Zhang, Jian; Wang, Deyu; Zhang, Jiguang

    2009-07-07

    The selection and optimization of non-aqueous electrolytes for ambient operations of lithium/air batteries has been studied. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between lithium anode and water during discharge process. It is critical to make the electrolytes with high polarity so that it can reduce wetting and flooding of carbon based air electrode and lead to improved battery performance. For ambient operations, the viscosity, ionic conductivity, and oxygen solubility of the electrolyte are less important than the polarity of organic solvents once the electrolyte has reasonable viscosity, conductivity, and oxygen solubility. It has been found that PC/EC mixture is the best solvent system and LiTFSI is the most feasible salt for ambient operations of Li/air batteries. Battery performance is not very sensitive to PC/EC ratio or salt concentration.

  9. Suppression of Aluminum Current Collector Dissolution by Protective Ceramic Coatings for Better High-Voltage Battery Performance.

    Science.gov (United States)

    Heckmann, Andreas; Krott, Manuel; Streipert, Benjamin; Uhlenbruck, Sven; Winter, Martin; Placke, Tobias

    2017-01-04

    Batteries based on cathode materials that operate at high cathode potentials, such as LiNi0.5 Mn1.5 O4 (LNMO), in lithium-ion batteries or graphitic carbons in dual-ion batteries suffer from anodic dissolution of the aluminum (Al) current collector in organic solvent-based electrolytes based on imide salts, such as lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). In this work, we developed a protective surface modification for the Al current collector by applying ceramic coatings of chromium nitride (Crx N) and studied the anodic Al dissolution behavior. By magnetron sputter deposition, two different coating types, which differ in their composition according to the CrN and Cr2 N phases, were prepared and characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and their electronic conductivity. Furthermore, the anodic dissolution behavior was studied by cyclic voltammetry and chronocoulometry measurements in two different electrolyte mixtures, that is, LiTFSI in ethyl methyl sulfone and LiTFSI in ethylene carbonate/dimethyl carbonate 1:1 (by weight). These measurements showed a remarkably reduced current density or cumulative charge during the charge process, indicating an improved anodic stability of the protected Al current collector. The coating surfaces after electrochemical treatment were characterized by means of SEM and XPS, and the presence or lack of pit formation, as well as electrolyte degradation products could be well correlated to the electrochemical results.

  10. Overcurrent Abuse of Primary Prismatic Zinc–Air Battery Cells Studying Air Supply Effects on Performance and Safety Shut-Down

    Directory of Open Access Journals (Sweden)

    Fredrik Larsson

    2017-01-01

    Full Text Available Overcurrent abuse has been performed on commercial 48 Ah primary prismatic zinc (Zn–Air battery cells with full air supply as well as with shut-off air supply. Compared to other battery technologies, e.g., lithium-ion batteries, metal–air batteries offer the possibility to physically stop the battery operation by stopping its air supply, thus offering an additional protection against severe battery damage in the case of, e.g., an accidental short circuit. This method may also reduce the electrical hazard in a larger battery system since, by stopping the air supply, the voltage can be brought to zero while maintaining the energy capacity of the battery. Measurements of overdischarge currents and current cut-off by suffocation have been performed to assess the safety of this type of Zn–air battery. The time to get to zero battery voltage is shown to mainly be determined by the volume of air trapped in the cell.

  11. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries

    Science.gov (United States)

    Li, Po-Chieh; Hu, Chi-Chang; Lee, Tai-Chou; Chang, Wen-Sheng; Wang, Tsin Hai

    2014-12-01

    Due to the poor electric conductivity but the excellent catalytic ability for the oxygen reduction reaction (ORR), manganese dioxide in the α phase (denoted as α-MnO2) anchored onto carbon black powders (XC72) has been synthesized by the reflux method. The specific surface area and electric conductivity of the composites are generally enhanced by increasing the XC72 content while the high XC72 content will induce the formation of MnOOH which shows a worse ORR catalytic ability than α-MnO2. The ORR activity of such air cathodes have been optimized at the XC72/α-MnO2 ratio equal to 1 determined by the thermogravimetric analysis. By using this optimized cathode under the air atmosphere, the quasi-steady-state full-cell discharge voltages are equal to 1.353 and 1.178 V at 2 and 20 mA cm-2, respectively. Due to the usage of ambient air rather than pure oxygen, this Zn-air battery shows a modestly high discharge peak power density (67.51 mW cm-2) meanwhile the power density is equal to 47.22 mW cm-2 and the specific capacity is more than 750 mAh g-1 when this cell is operated at 1 V.

  12. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g−1carbon at 20 μA cm−2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g−1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g−1carbon at 20 μA cm−2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage. PMID:28117359

  13. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g‑1carbon at 20 μA cm‑2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g‑1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g‑1carbon at 20 μA cm‑2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  14. Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium-Air Batteries

    Science.gov (United States)

    2014-11-01

    Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium -Air Batteries by Claire Weiss Brennan, Victoria Blair...Ground, MD 21005-5069 ARL-TR-7145 November 2014 Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium -Air...COVERED (From - To) 1 June–31 August 2014 4. TITLE AND SUBTITLE Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium

  15. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    OpenAIRE

    Jiyang Sun; Ning Zhao; Yiqiu Li; Xiangxin Guo; Xuefei Feng; Xiaosong Liu; Zhi Liu; Guanglei Cui; Hao Zheng; Lin Gu; Hong Li

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (...

  16. Promising future energy storage systems: Nanomaterial based systems, Zn-air, and electromechanical batteries

    Science.gov (United States)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  17. Decyl glucoside as a corrosion inhibitor for magnesium-air battery

    Science.gov (United States)

    Deyab, M. A.

    2016-09-01

    In this research, the effects of decyl glucoside (DG) on the corrosion inhibition and battery performance of Mg-air battery have been investigated. Chemical and electrochemical techniques have been used to evaluate the corrosion rate and inhibitor efficiency. Mg surface has been characterized with scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). A significant reduction in the corrosion rate of Mg in battery electrolyte (3.5% NaCl solution) has been observed in the presence of DG surfactant. Maximum inhibition efficiency (>94%) is achieved at critical micelle concentration of DG surfactant (CMC = 2.5 mM). The presence of DG surfactant increases the activation energy of the corrosion reaction. Physisorption mechanism has been suggested for the inhibition action of DG surfactant. The Mg-air battery containing DG surfactant offers higher operating voltage, discharge capacity and anodic utilization than in its absence.

  18. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.

    Science.gov (United States)

    Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2014-11-07

    Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future.

  19. A novel rechargeable zinc-air battery with molten salt electrolyte

    Science.gov (United States)

    Liu, Shuzhi; Han, Wei; Cui, Baochen; Liu, Xianjun; Zhao, Fulin; Stuart, Jessica; Licht, Stuart

    2017-02-01

    Zinc-air batteries have been proposed for EV applications and large-scale electricity storage such as wind and solar power. Although zinc-air batteries are very promising, there are numerous technological barriers to overcome. We demonstrate for the first time, a new rechargeable zinc-air battery that utilizes a molten Li0.87Na0.63K0.50CO3 eutectic electrolyte with added NaOH. Cyclic voltammetry reveals that a reversible deposition/dissolution of zinc occurs in the molten Li0.87Na0.63K0.50CO3 eutectic. At 550 °C, this zinc-air battery performs with a coulombic efficiency of 96.9% over 110 cycles, having an average charging potential of ∼1.43 V and discharge potential of ∼1.04 V. The zinc-air battery uses cost effective steel and nickel electrodes without the need for any precious metal catalysts. Moreover, the molten salt electrolyte offers advantages over aqueous electrolytes, avoiding the common aqueous alkaline electrolyte issues of hydrogen evolution, Zn dendrite formation, ;drying out;, and carbonate precipitation.

  20. Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studies

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Younesi, Reza;

    2015-01-01

    For Li-air batteries to reach their full potential as energy storage system, a complete understanding of the conditions and reactions in the battery during operation is needed. To follow the reactions in situ a capillary-based Li-O2 battery has been developed for synchrotron-based in situ X-ray p...

  1. Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal-Air Batteries.

    Science.gov (United States)

    Gelman, Danny; Shvartsev, Boris; Ein-Eli, Yair

    2016-12-01

    Non-aqueous non-alkali (NANA) metal-air battery technologies promise to provide electrochemical energy storage with the highest specific energy density. Metal-air battery technology is particularly advantageous being implemented in long-range electric vehicles. Up to now, almost all the efforts in the field are focused on Li-air cells, but other NANA metal-air battery technologies emerge. The major concern, which the research community should be dealing with, is the limited and rather poor rechargeability of these systems. The challenges we are covering in this review are related to the initial limited discharge capacities and cell performances. By comprehensively reviewing the studies conducted so far, we show that the implementation of advanced materials is a promising approach to increase metal-air performance and, particularly, metal surface activation as a prime achievement leading to respectful discharge currents. In this review, we address the most critical areas that need careful research attention in order to achieve progress in the understanding of the physical and electrochemical processes in non-aqueous electrolytes applied in beyond lithium and zinc air generation of metal-air battery systems.

  2. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery

    Science.gov (United States)

    Hummelshøj, J. S.; Blomqvist, J.; Datta, S.; Vegge, T.; Rossmeisl, J.; Thygesen, K. S.; Luntz, A. C.; Jacobsen, K. W.; Nørskov, J. K.

    2010-02-01

    We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins of the overpotential for both processes. We also address the question of electron conductivity through the Li2O2 electrode and show that in the presence of Li vacancies Li2O2 becomes a conductor.

  3. Identity of Passive Film Formed on Aluminum in Li-ion BatteryElectrolytes with LiPF6

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xueyuan; Devine, T.M.

    2006-09-01

    The passive film that forms on aluminum in 1:1 ethylene carbonate + ethylmethyl carbonate with 1.2M LiPF{sub 6} and 1:1 ethylene carbonate + dimethyl carbonate with 1.0M LiPF{sub 6} was investigated by a combination of electrochemical quartz crystal microbalance measurements (EQCM), electrochemical impedance spectroscopy (EIS), and x-ray photoelectron spectroscopy. During anodic polarization of aluminum a film of AlF{sub 3} forms on top of the air-formed oxide, creating a duplex, or two-layered film. The thickness of the AlF{sub 3} increases with the applied potential. Independent measurements of film thickness by EQCM and EIS indicate that at a potential of 5.5V vs. Li/Li{sup +}, the thickness of the AlF{sub 3} is approximately 1 nm.

  4. Unsteady self-sustained detonation waves in flake aluminum dust/air mixtures

    CERN Document Server

    Liu, Qingming; Zhang, Yunming; Li, Shuzhuan

    2015-01-01

    Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning movement of the triple point was analyzed. The variations in velocity and overpressure of the detonation wave with propagation distance in a cell were studied. The interactions of waves in triple-point configurations were analyzed and the flow-field parameters were calculated. Three types of triple-point configuration exist in the wave front of the detonation wave of an aluminum dust/air mixture. Both strong and weak transverse waves exist in the unstable self-sustained detonation wave.

  5. A High Efficiency Aluminum-Ion Battery Using an AlCl3-Urea Ionic Liquid Analogue Electrolyte

    CERN Document Server

    Angell, Michael; Rong, Youmin; Yuan, Chunze; Lin, Meng-Chang; Hwang, BingJoe; Dai, Hongjie

    2016-01-01

    In recent years, impressive advances in harvesting renewable energy have led to pressing demand for the complimentary energy storage technology. Here, a high coulombic efficiency (~ 99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analogue electrolyte made from a mixture of AlCl3 and urea in 1.3 : 1 molar ratio. The battery displays discharge voltage plateaus around 1.9 V and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ~73 mAh g-1 at a current density of 100 mA g-1 (~ 1.4 C). High coulombic efficiency over a range of charge-discharge rates and stability over ~150-200 cycles was easily demonstrated. In-situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite in the cathode side during charge/discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. Raman spectroscopy and nuclear magnetic resonance suggested the e...

  6. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

    Science.gov (United States)

    Li, Yanguang; Gong, Ming; Liang, Yongye; Feng, Ju; Kim, Ji-Eun; Wang, Hailiang; Hong, Guosong; Zhang, Bo; Dai, Hongjie

    2013-01-01

    Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles.

  7. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    Science.gov (United States)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-02-01

    In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  8. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    Science.gov (United States)

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  9. 3-D Nanofilm Primary Li Air Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires a new primary battery capable of providing specific energy exceeding 2000Wh/kg over an operating temperature range of 0oC to 35oC with a shelf life...

  10. A refuelable zinc/air battery for fleet electric vehicle propulsion

    Science.gov (United States)

    Cooper, John F.; Fleming, Dennis; Hargrove, Douglas; Koopman, Ronald; Peterman, Keith

    1995-04-01

    We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet's home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery to form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed.

  11. Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks

    Science.gov (United States)

    Fang, Qingping; Berger, Cornelius M.; Menzler, Norbert H.; Bram, Martin; Blum, Ludger

    2016-12-01

    Iron-air rechargeable oxide batteries (ROB) comprising solid oxide cells (SOC) as energy converters and Fe/metal-oxide redox couples were characterized using planar SOC stacks. The charge and discharge of the battery correspond to the operations in the electrolysis and fuel cell modes, respectively, but with a stagnant atmosphere consisting of hydrogen and steam. A novel method was employed to establish the stagnant atmosphere for battery testing during normal SOC operation without complicated modification to the test bench and stack/battery concept. Manipulation of the gas compositions during battery operation was not necessary, but the influence of the leakage current from the testing system had to be considered. Batteries incorporating Fe2O3/8YSZ, Fe2O3/CaO and Fe2O3/ZrO2 storage materials were characterized at 800 °C. A maximum charge capacity of 30.4 Ah per layer (with an 80 cm2 active cell area) with ∼0.5 mol Fe was reached with a current of 12 A. The charge capacity lost 11% after ∼130 ROB cycles due to the increased agglomeration of active materials and formation of a dense oxide layer on the surface. The round trip efficiencies of the tested batteries were ≤84% due to the large internal resistance. With state-of-the-art cells, the round trip efficiency can be further improved.

  12. A high specific capacity membraneless aluminum-air cell operated with an inorganic/organic hybrid electrolyte

    Science.gov (United States)

    Chen, Binbin; Leung, Dennis Y. C.; Xuan, Jin; Wang, Huizhi

    2016-12-01

    Aluminum-air cells have attracted a lot of interests because they have the highest volumetric capacity density in theory among the different metal-air systems. To overcome the self-discharge issue of aluminum, a microfluidic aluminum-air cell working with KOH methanol-based anolyte was developed in this work. A specific capacity up to 2507 mAh g-1 (that is, 84.1% of the theoretical value) was achieved experimentally. The KOH concentration and water content in the methanol-based anolyte were found to have direct influence on the cell performance. A possible mechanism of the aluminum reactions in KOH methanol-based electrolyte was proposed to explain the observed phenomenon.

  13. Electrically rechargeable zinc/air battery: a high specific energy system

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, F.; Sauter, J.-C.; Masanz, G.; Mueller, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This contribution describes our research and development efforts towards the demonstration of a light-weight, low-cost 12 V/20 Ah electrically rechargeable Zn/air battery. We successfully developed electrodes having active areas of up to 200 cm{sup 2}. Deep discharge cycles at different currents as well as current-voltage curves are reported for a 10 cell Zn/air battery (serial connection) with a rated capacity of 20 Ah. Based on the discharge cycle at a power of 19 W, and the weight of the battery, a specific energy of more than 90 Wh/kg could be evaluated for the whole system. (author) 4 figs., 1 tab., 5 refs.

  14. Li-air, rechargeable, solid-state batteries using graphene and boron nitride aerogel matrices

    Science.gov (United States)

    Ergen, Onur; Thoan Pham, Thang; Demaio-Turner, Sally; Zettl, Alex

    The recent explosion of research on Li-Air batteries has provided new insights into developing more efficient air cathodes. Graphene and boron nitride aerogel matrix is anticipated to be an ideal candidate to produce a high throughput air-breathing system. We developed a Li-Air battery model that accounts for efficient O2 throughput. These unique aerogel matrices exhibit the ability to orient the O2 passing through and keep out H2O, CO2, and N2. Thus, the solid-state cells demonstrate a long cycle life, thermal stability, and high rechargeable characteristics. These cells also show an explicit discharge capacity with a constant discharge current density of 0.1mA/cm2. 1 Department of Physics, University of California at Berkeley, Ca 94720, USA 2 Materials Sciences Division, Lawrence Berkeley National Laboratory, Ca, 94720, USA 3 Kavli Energy Nanosciences Institute at the University of California, Berkeley, Ca, 94720, US.

  15. A study of mercuric oxide and zinc-air battery life in hearing aids.

    Science.gov (United States)

    Sparkes, C; Lacey, N K

    1997-09-01

    The requirement to phase out mercuric oxide (mercury) batteries on environmental grounds has led to the widespread introduction of zinc-air technology. The possibility arises that high drain hearing aids may not be adequately catered for by zinc-air cells, leading to poor performance. This study investigated the hearing aid user's ability to perceive differences between zinc-air and mercury cells in normal everyday usage. The data was collected for 100 experienced hearing aid users in field trials. Users report 50 per cent greater life for zinc-air cells in high power aids and 28 per cent in low power aids. The average life of the zinc-air cells range from 15 days in high power to 34 days in low power aids. Users are able to perceive a difference in sound quality in favour of zinc-air cells for low and medium power aids. The hearing aid population is not disadvantaged by phasing out mercury cells.

  16. A Novel Inorganic Low Melting Electrolyte for Secondary-Aluminum-Nickel Sulfide Batteries

    DEFF Research Database (Denmark)

    Hjuler, H.A.; Winbrush, S. von; Berg, Rolf W.;

    1989-01-01

    A new, inorganic low melting electrolyte with the composition LiAlCl4-NaAlCl4-NaAlBr4-KAlCl4 (3:2:3:2) [or equivalentlyLiAlBr4-NaAlCl4-KAlCl4 (3:5:2)] has been developed. The melting point for this neutral melt is 86°C; the decompositionpotential is approximately 2.0V; the ionic conductivity...... ±10% from their combination expectations. The low melting electrolyte is employed in the rechargeable batterysystem Al/electrolyte/Ni3S2 at 100°C. The open-circuit voltage of this system is from 0.82 to 1.0V. Dendrite-free aluminumdeposits are obtained. The cycling behavior of the battery system...

  17. Development of a novel metal hydride-air secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Gamburzev, S.; Zhang, W.; Velev, O.A.; Srinivasan, S.; Appleby, A.J. [Texas A and M University, College Station (United States). Center for Electrochemical Systems and Hydrogen Research; Visintin, A. [Universidad Nacional de La Plata (Argentina). Insituto Nacional de Investigaciones Fisicoquimica Teoricas y Applicadas

    1998-05-01

    A laboratory metal hydride/air cell was evaluated. Charging was via a bifunctional air gas-diffusion electrode. Mixed nickel and cobalt oxides, supported on carbon black and activated carbon, were used as catalysts in this electrode. At 30 mA cm{sup -2} in 6 M KOH, the air electrode potentials were -0.2 V (oxygen reduction) and +0.65 V (oxygen evolution) vs Hg/HgO. The laboratory cell was cycled for 50 cycles at the C/2 rate (10 mA cm{sup -2}). The average discharge/charge voltages of the cell were 0.65 and 1.6 V, respectively. The initial capacity of the metal hydride electrode decreased by about 15% after 50 cycles. (author)

  18. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.

    Science.gov (United States)

    Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young; Seo, Dong-Hwa; Gwon, Hyeokjo; Hong, Jihyun; Goddard, William A; Kim, Hyungjun; Kang, Kisuk

    2013-07-03

    Lithium-oxygen chemistry offers the highest energy density for a rechargeable system as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium-dioxygen battery". Consequently, the next step for the lithium-"air" battery is to understand how the reaction chemistry is affected by the constituents of ambient air. Among the components of air, CO2 is of particular interest because of its high solubility in organic solvents and it can react actively with O2(-•), which is the key intermediate species in Li-O2 battery reactions. In this work, we investigated the reaction mechanisms in the Li-O2/CO2 cell under various electrolyte conditions using quantum mechanical simulations combined with experimental verification. Our most important finding is that the subtle balance among various reaction pathways influencing the potential energy surfaces can be modified by the electrolyte solvation effect. Thus, a low dielectric electrolyte tends to primarily form Li2O2, while a high dielectric electrolyte is effective in electrochemically activating CO2, yielding only Li2CO3. Most surprisingly, we further discovered that a high dielectric medium such as DMSO can result in the reversible reaction of Li2CO3 over multiple cycles. We believe that the current mechanistic understanding of the chemistry of CO2 in a Li-air cell and the interplay of CO2 with electrolyte solvation will provide an important guideline for developing Li-air batteries. Furthermore, the possibility for a rechargeable Li-O2/CO2 battery based on Li2CO3 may have merits in enhancing cyclability by minimizing side reactions.

  19. Improved Accuracy of Density Functional Theory Calculations for CO2 Reduction and Metal-Air Batteries

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs

    2015-01-01

    .e. the electrocatalytic reduction of CO2 and metal-air batteries. In theoretical studies of electrocatalytic CO2 reduction, calculated DFT-level enthalpies of reaction for CO2reduction to various products are significantly different from experimental values[1-3]. In theoretical studies of metal-air battery reactions......, but compared to determine patterns in functional dependence. The method is exemplified by ensemble comparison of reaction enthalpy to methanol and formic acid depicted in Figure 1. The functional dependence on the calculated reaction enthalpy to methanol is twice as large as that to formic acid. This suggests...... errors in DFT-level computational electrocatalytic CO2reduction is hence identified. The new insight adds increased accuracy e.g., for reaction to formic acid, where the experimental enthalpy of reaction is 0.15 eV. Previously, this enthalpy has been calculated without and with correctional approaches...

  20. Rechargable Lithium-Air Batteries: Investigation of Redox Mediators Using DEMS

    DEFF Research Database (Denmark)

    Christensen, Mathias Kjærgård; Storm, Mie Møller; Norby, Poul

    2016-01-01

    material or electrolyte is being decomposed. This is also seen with Thermally reduced Graphene Oxide (TrGO). The graphene based cathode is interesting as it exhibits a high surface area which in turn increases capacity. Using the additive LiI, functioning as a redox mediator, the discharge curve remains...... shown with lithium-air batteries the water content affects the morphology of the discharge product[3]. The effect of changing experimental conditions such as varying water content will be reported....

  1. Status of the DOE Battery and Electrochemical Technology Program V

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  2. Status of the DOE Battery and Electrochemical Technology Program 5

    Science.gov (United States)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  3. Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack

    OpenAIRE

    Hongyun Ma; Baoguo Wang; Yongsheng Fan; Weichen Hong

    2014-01-01

    An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO 2 and LaNiO 3 severed as the catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D) current densities indicating a uniform voltage profile for each single cell. One hu...

  4. Remarkable impact of water on the discharge performance of a silicon-air battery.

    Science.gov (United States)

    Cohn, Gil; Macdonald, Digby D; Ein-Eli, Yair

    2011-08-22

    Here, we report on a Si-air/ionic liquid electrolyte battery whose performance improves with small amounts of water in the electrolyte. The shift of the generation zone of the SiO(2) discharge product from the air cathode surface into the bulk region of the liquid electrolyte, caused by water addition, is demonstrated through various means. Addition of 15 vol% water leads to an increase of 40% in the discharge capacity as compared to the capacity obtained using a pure ionic liquid electrolyte. If the water content increases above 20 vol%, the Si-air cell capacity dramatically decreases. The water-ionic liquid electrolyte mixture shows a maximum in the ionic conductivity with a water content of 10 vol%. In-depth studies indicate a reduced amount of discharge product at the air electrode using 15 vol% H(2)O electrolyte. The morphology of the anode surface, as well as the developed surface film in the presence of water-containing ionic liquid, is reported. This study shows that exposing a Si-air battery to a humid environment does not result in capacity losses, but rather improves cell performance.

  5. Review on Lithium-Air Batteries%锂空气电池研究述评

    Institute of Scientific and Technical Information of China (English)

    张栋; 张存中; 穆道斌; 吴伯荣; 吴锋

    2012-01-01

    由于锂空气电池具有很高的理论能量密度因而引起了广泛关注和研究。本文较为全面地论述了各种电解质体系中的锂空气电池的进展,包括:有机体系、水体系、离子液体体系、有机.水双电解质体系和全固态体系的锂空气电池;详细阐述和归纳了它们的工作原理和最新研究现状。对最新提出的锂一空气.超级电容电池的原理和特点进行了较详细的论述。结合氧气在有机电解质中的电化学还原行为指出单一有机电解质锂空气电池存在的问题以及可能的解决办法;同时展示了这类电池中空气电极催化剂的发展现状。结合双电解质锂空气电池、固态电解质锂空气电池、锂-空气一超级电容电池的结构阐述了它们各自的优缺点。本文还展示了一些可望用于单一有机电解质锂空电池、有机.水双电解质体系锂空电池的新型碳材料。最后对锂空气电池的研究发展进行了总结与展望,提出新型电解液、催化剂以及改进锂空气电池构造将会成为今后的发展趋势。%Lithium-air battery has been a focus of study for the past two decades extensively because of its excellent properties of energy and power densities. The performance, operation mechanism and state-of-the-art of Li-air batteries, operated in all of electrolytes, such as non-aqueous electrolytes, aqueous electrolytes, ionic liquids electrolytes, aqueous-nonaqueous dual-electrolytes and all solid electrolytes, are collected and discussed in detail in this paper. In special, the performance, principle and potential practical possibility of lithium-air-super-capacitor battery, which was just mentioned last year, is also reviewed in detail. Combined with the electrochemical behavior and research results of oxygen reduction reaction on different electrodes in different non-aqueous electrolytes, the defect and problem of nonaqueous electrolyte lithium-air

  6. Rapid air film continuous casting of aluminum alloy using static magnetic field

    Institute of Scientific and Technical Information of China (English)

    Fu QU; Huixue JIANG; Gaosong WANG; Qingfeng ZHU; Xiangjie WANG; Jianzhong CUI

    2009-01-01

    The influences of the cooling style and static magnetic field on the air film casting process were investigated. Ingots of 6063 aluminum alloy were produced by AIRSOL VEIL casting with double-layer cooling water and static magnetic field. Surface segregation, hot crack and variation of solute content along the radius direction of ingot were examined. The results showed that double-layer cooling water can improve the surface quality and avoid of hot crack, which created conditions to increase the casting speed. The electromagnetic casting process can effectively improve the surface quality in high speed casting process, and static magnetic field has a great influence on solute distribution along the radius direction of ingot.

  7. Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow

    Institute of Scientific and Technical Information of China (English)

    刘燕平; 欧阳陈志; 江清柏; 梁波

    2015-01-01

    Single cell temperature difference of lithium-ion battery (LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics (CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.

  8. Friction and wear of titanium alloys and copper alloys sliding against titanium 6-percent-aluminum - 4-percent-vanadium alloy in air at 430 C

    Science.gov (United States)

    Wisander, D. W.

    1976-01-01

    Experiments were conducted to determine the friction and wear characteristics of aluminum bronzes and copper-tin, titanium-tin, and copper-silver alloys sliding against a titanium-6% aluminum-4% vanadium alloy (Ti-6Al-4V). Hemispherically tipped riders of aluminum bronze and the titanium and copper alloys were run against Ti-6Al-4V disks in air at 430 C. The sliding velocity was 13 cm/sec, and the load was 250 g. Results revealed that high tin content titanium and copper alloys underwent significantly less wear and galling than commonly used aluminum bronzes. Also friction force was less erratic than with the aluminum bronzes.

  9. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    Science.gov (United States)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  10. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte

    Science.gov (United States)

    Pino, M.; Herranz, D.; Chacón, J.; Fatás, E.; Ocón, P.

    2016-09-01

    An easy treatment based in carbon layer deposition into aluminium alloys is presented to enhance the performance of Al-air primary batteries with neutral pH electrolyte. The jellification of aluminate in the anode surface is described and avoided by the carbon covering. Treated commercial Al alloys namely Al1085 and Al7475 are tested as anodes achieving specific capacities above 1.2 Ah g-1vs 0.5 Ah g-1 without carbon covering. The influence of the binder proportion in the treatment as well as different carbonaceous materials, Carbon Black, Graphene and Pyrolytic Graphite are evaluated as candidates for the covering. Current densities of 1-10 mA cm-2 are measured and the influence of the alloy explored. A final battery design of 4 cells in series is presented for discharges with a voltage plateau of 2 V and 1 Wh g-1 energy density.

  11. Tapioca binder for porous zinc anodes electrode in zinc–air batteries

    Directory of Open Access Journals (Sweden)

    Mohamad Najmi Masri

    2015-07-01

    Full Text Available Tapioca was used as a binder for porous Zn anodes in an electrochemical zinc-air (Zn-air battery system. The tapioca binder concentrations varied to find the optimum composition. The effect of the discharge rate at 100 mA on the constant current, current–potential and current density–power density of the Zn-air battery was measured and analyzed. At concentrations of 60–80 mg cm−3, the tapioca binder exhibited the optimum discharge capability, with a specific capacity of approximately 500 mA h g−1 and a power density of 17 mW cm−2. A morphological analysis proved that at this concentration, the binder is able to provide excellent binding between the Zn powders. Moreover, the structure of Zn as the active material was not affected by the addition of tapioca as the binder, as shown by the X-ray diffraction analysis. Furthermore, the conversion of Zn into ZnO represents the full utilization of the active material, which is a good indication that tapioca can be used as the binder.

  12. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    Science.gov (United States)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  13. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    Science.gov (United States)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  14. Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries.

    Science.gov (United States)

    Li, Ge; Wang, Xiaolei; Fu, Jing; Li, Jingde; Park, Moon Gyu; Zhang, Yining; Lui, Gregory; Chen, Zhongwei

    2016-04-11

    Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal-air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen-doped, partially graphitized carbon framework. Benefiting from the unique pomegranate-like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4-based composite electrocatalyst exhibited a high half-wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm(-2) for OER. A single-cell zinc-air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal-air batteries.

  15. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries

    Science.gov (United States)

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10to20mA/cm2. The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150mA/cm2, respectively.

  16. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    Science.gov (United States)

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.

  17. Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, G.A. [Dalhousie University, Department of Process Engineering and Applied Science, 1360 Barrington Street, Halifax, Nova Scotia, Canada B3J 1Z1 (Canada); Brochu, M. [McGill University, Mining and Materials Engineering Department, 3610 University Street, Montreal, Quebec, Canada H3A 0C5 (Canada); Hexemer, R.L.; Donaldson, I.W. [GKN Sinter Metals LLC, 3300 University Drive, Auburn Hills 48326 (United States); Bishop, D.P., E-mail: Paul.Bishop@dal.ca [Dalhousie University, Department of Process Engineering and Applied Science, 1360 Barrington Street, Halifax, Nova Scotia, Canada B3J 1Z1 (Canada)

    2014-07-01

    Two air atomized aluminum powders, one of commercial purity and the other magnesium-doped (0.4 wt%), were processed by SPS and conventional PM means. An investigation of SPS processing parameters and their effect on sinter quality were investigated. A comparison with conventionally processed PM counterparts was also conducted. Applied pressure and ultimate processing temperature bore the greatest influence on processing, while heating rate and hold time showed a minor effect. Full density specimens were achieved for both powders under select processing conditions. To compliment this, large (80 mm) and small (20 mm) diameter samples were made to observe possible up-scaling effects, as well as tensile properties. Large samples were successfully processed, albeit with somewhat inferior densities to the smaller counterparts presumably due to the temperature inhomogeneity during processing. An investigation of tensile properties for SPS samples exhibited extensive ductility (∼30%) at high sintering temperatures, while lower temperature SPS samples as well as all PM processed samples exhibited a brittle nature. The measurement of residual oxygen and hydrogen contents showed a significant elimination of both species in SPS samples under certain processing parameters when compared to conventional PM equivalents.

  18. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana, E-mail: dnrsp@uohyd.ac.in, E-mail: dnr-laserlab@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Deepak, K. L. N. [Department of Physics and Center for Research in Photonics, University of Ottawa, 150 Louis Pasteur, Ottawa K1N6N5, Ontario (Canada)

    2014-09-21

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C₂H₅OH) and water (H₂O) using linearly polarized Ti:sapphire fs laser pulses of ~110 fs pulse duration and ~800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  19. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    Science.gov (United States)

    Kuladeep, Rajamudili; Dar, Mudasir H.; Deepak, K. L. N.; Rao, D. Narayana

    2014-09-01

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C2H5OH) and water (H2O) using linearly polarized Ti:sapphire fs laser pulses of ˜110 fs pulse duration and ˜800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  20. A Lithium-Air Battery with a High Energy Air Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will advance an efficient and lightweight energy storage device for Oxygen Concentrators by developing a high specific energy lithium-air cell....

  1. Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Lee, Dong Un; Park, Moon Gyu; Park, Hey Woong; Seo, Min Ho; Wang, Xiaolei; Chen, Zhongwei

    2015-09-21

    A highly active and durable bifunctional electrocatalyst that consists of cobalt oxide nanocrystals (Co3 O4 NC) decorated on the surface of N-doped carbon nanotubes (N-CNT) is introduced as effective electrode material for electrically rechargeable zinc-air batteries. This active hybrid catalyst is synthesized by a facile surfactant-assisted method to produce Co3 O4 NC that are then decorated on the surface of N-CNT through hydrophobic attraction. Confirmed by half-cell testing, Co3 O4 NC/N-CNT demonstrates superior oxygen reduction and oxygen evolution catalytic activities and has a superior electrochemical stability compared to Pt/C and Ir/C. Furthermore, rechargeable zinc-air battery testing of Co3 O4 NC/N-CNT reveals superior galvanodynamic charge and discharge voltages with a significantly extended cycle life of over 100 h, which suggests its potential as a replacement for precious-metal-based catalysts for electric vehicles and grid energy storage applications.

  2. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application.

    Science.gov (United States)

    Chen, Zhu; Yu, Aiping; Higgins, Drew; Li, Hui; Wang, Haijiang; Chen, Zhongwei

    2012-04-11

    A new class of core-corona structured bifunctional catalyst (CCBC) consisting of lanthanum nickelate centers supporting nitrogen-doped carbon nanotubes (NCNT) has been developed for rechargeable metal-air battery application. The nanostructured design of the catalyst allows the core and corona to catalyze the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), respectively. These materials displayed exemplary OER and ORR activity through half-cell testing, comparable to state of the art commercial lanthanum nickelate (LaNiO(3)) and carbon-supported platinum (Pt/C), with added bifunctional capabilities allowing metal-air battery rechargeability. LaNiO(3) and Pt/C are currently the most accepted benchmark electrocatalyst materials for the OER and ORR, respectively; thus with comparable activity toward both of these reactions, CCBC are presented as a novel, inexpensive catalyst component for the cathode of rechargeable metal-air batteries. Moreover, after full-range degradation testing (FDT) CCBC retained excellent activity, retaining 3 and 13 times greater ORR and OER current upon comparison to state of the art Pt/C. Zinc-air battery performances of CCBC is in good agreement with the half-cell experiments with this bifunctional electrocatalyst displaying high activity and stability during battery discharge, charge, and cycling processes. Owing to its outstanding performance toward both the OER and ORR, comparable with the highest performing commercial catalysts to date for each of the respective reaction, coupled with high stability and rechargeability, CCBC is presented as a novel class of bifunctional catalyst material that is very applicable to future generation rechargeable metal-air batteries.

  3. Progress in lithium-air battery%锂燃料电池的研究进展

    Institute of Scientific and Technical Information of China (English)

    纪明中

    2011-01-01

    Battery with high capacity is always a hotspot in technology researches. Lithium-air batteries probably will breakthrough the bottleneck of energy capacity of cells. Theoretically, Lithium-air batteries have a specific energy capacity of 11 140 Wh/kg, which is much higher than commercial cells with 1-2 orders. According to the electrolyte used in lithium-air battery, lithium-air battery is classified into three types: aqueous solution, organic electrolyte (non-aqueous) and multiphase electrolytes.Their merits and demerits were discussed, and the problems necessary to be disposed were also analyzed. The developments on lithium air battery were reviewed.%高容量电池一直是研究的热点,锂燃料电池可能会突破电池体系的能量瓶颈.理论上,锂燃料电池的比能量高达11140 Wh/kg,高出现有商品电池体系1~2个数量级.但目前仍有不少问题需要解决,如寻找适用的电解质和空气电极.根据所用电解质的不同,将锂燃料电池分为三类:水溶性电解质电池、有机电解质电池和多相电解质电池.分别讨论了它们的优缺点和需要解决的难题,并综述了其研究进展.

  4. Carbon-based air electrodes carrying MnO 2 in zinc-air batteries

    Science.gov (United States)

    Wei, Zidong; Huang, Wenzhang; Zhang, Shengtao; Tan, Jun

    Catalysts prepared from the carbon black impregnated with manganous nitrate solution and then heated at temperature from 270°C to 450°C were investigated. It was found that the impregnated catalysts heated at temperature of 340°C exhibited the best catalytic activity for oxygen reduction in alkaline electrolyte. It was also found that the XRD spectra of pyrolytic MnO 2 from manganous nitrate over 340°C were different from those below 340°C. The enhanced catalysis of air electrodes was ascribed to the formation of MnO 2 crystal with d-value of 2.72 Å as the impregnated-catalysts was heated at temperature of 340°C. The other factors in preparation of air electrodes were also discussed.

  5. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries.

    Science.gov (United States)

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-09-27

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m(-1)·K(-1) with a bulk density of 453 kg·m(-3) at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m(-1)·K(-1)) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g(-1) at a current density of 100 mA·g(-1), and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes.

  6. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries

    Science.gov (United States)

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-09-01

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m-1·K-1 with a bulk density of 453 kg·m-3 at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m-1·K-1) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g-1 at a current density of 100 mA·g-1, and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes.

  7. Communication: The influence of CO2 poisoning on overvoltages and discharge capacity in non-aqueous Li-Air batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Knudsen, Kristian Bastholm; Mýrdal, Jón Steinar Garðarsson;

    2014-01-01

    The effects of Li2CO3 like species originating from reactions between CO2 and Li2O2 at the cathode of non-aqueous Li-air batteries were studied by density functional theory (DFT) and galvanostatic charge-discharge measurements. Adsorption energies of CO2 at various nucleation sites on a stepped (1...

  8. Charting the known chemical space for non-aqueous Lithium-air battery electrolyte solvents

    CERN Document Server

    Husch, Tamara

    2015-01-01

    The Li-Air battery is a very promising candidate for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-Air electrolyte solvents. It is shown that the problem of finding better Li-Air electrolyte solvents is not only - as previously suggested - about maximizing Li+ and O2- solubilities, but about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compoun...

  9. Charting the known chemical space for non-aqueous lithium-air battery electrolyte solvents.

    Science.gov (United States)

    Husch, Tamara; Korth, Martin

    2015-09-21

    Li-air batteries are very promising candidates for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-air electrolyte solvents. It is shown that the problem of finding better Li-air electrolyte solvents is not only - as previously suggested - about maximizing Li(+) and O2(-) solubilities, but also about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compounds screened and the way they are selected), as well as depth (considering the number and complexity of properties included).

  10. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Das, Trishna

    2016-05-01

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24 bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.

  11. Performance and cycle life of carbon- and conductive-based air electrodes for rechargeable Zn-air battery applications

    Science.gov (United States)

    Chellapandi Velraj, Samgopiraj

    The development of high-performance, cyclically stable bifunctional air electrodes are critical to the commercial deployment of rechargeable Zn-air batteries. The carbon material predominantly used as support material in the air electrodes due to its higher surface area and good electrical conductivity suffers from corrosion at high oxygen evolution overpotentials. This study addresses the carbon corrosion issues and suggests alternate materials to replace the carbon as support in the air electrode. In this study, Sm0.5Sr0.5CoO3-delta with good electrochemical performance and cyclic lifetime was identified as an alternative catalyst material to the commonly used La0.4Ca 0.6CoO3 catalyst for the carbon-based bifunctional electrodes. Also, a comprehensive study on the effects of catalyst morphology, testing conditions on the cycle life as well as the relevant degradation mechanism for the carbon-based electrode was conducted in this dissertation. The cyclic life of the carbon-based electrodes was strongly dependent on the carbon support material, while the degradation mechanisms were entirely controlled by the catalyst particle size/morphology. Some testing conditions like resting time and electrolyte concentration did not change the cyclic life or degradation mechanism of the carbon-based electrode. The current density used for cyclic testing was found to dictate the degradation mechanism leading to the electrode failure. An alternate way to circumvent the carbon corrosion is to replace the carbon support with a suitable electrically-conductive ceramic material. In this dissertation, LaNi0.9Mn0.1O3, LaNi 0.8Co0.2O3, and NiCo2O4 were synthesized and evaluated as prospective support materials due to their good electrical conductivity and their ability to act as the catalyst needed for the bifunctional electrode. The carbon-free electrodes had remarkably higher catalytic activity for oxygen evolution reaction (OER) when compared to the carbon-based electrode. However

  12. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    Science.gov (United States)

    O'Laoire, Cormac Micheal

    Unlocking the true energy capabilities of the lithium metal negative electrode in a lithium battery has until now been limited by the low capacity intercalation and conversion reactions at the positive electrodes. This is overcome by removing these electrodes and allowing lithium to react directly with oxygen in the atmosphere forming the Li-air battery. Chapter 2 discusses the intimate role of electrolyte, in particular the role of ion conducting salts on the mechanism and kinetics of oxygen reduction in non-aqueous electrolytes designed for such applications and in determining the reversibility of the electrode reactions. Such fundamental understanding of this high energy density battery is crucial to harnessing its full energy potential. The kinetics and mechanisms of O2 reduction in solutions of hexafluorophosphate salts of the general formula X+ PF6-, where, X = tetra butyl ammonium (TBA), K, Na and Li, in acetonitrile have been studied on glassy carbon electrodes using cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. Our results show that cation choice strongly influences the reduction mechanism of O2. Electrochemical data supports the view that alkali metal oxides formed via electrochemical and chemical reactions passivate the electrode surface inhibiting the kinetics and reversibility of the processes. The O2 reduction mechanisms in the presence of the different cations have been supplemented by kinetic parameters determined from detailed analyses of the CV and RDE data. The organic solvent present in the Li+-conducting electrolyte has a major role on the reversibility of each of the O2 reduction products as found from the work discussed in the next chapter. A fundamental study of the influence of solvents on the oxygen reduction reaction (ORR) in a variety of non-aqueous electrolytes was conducted in chapter 4. In this work special attention was paid to elucidate the mechanism of the oxygen electrode processes in the rechargeable Li-air

  13. Decomposition kinetics of AgO cathode material for silver oxide/aluminum battery%铝氧化银电池正极材料AgO的分解动力学研究

    Institute of Scientific and Technical Information of China (English)

    吕霖娜; 林沛; 韩雪荣

    2011-01-01

    The instability of silver (Ⅱ). Oxide electrodes used in silver oxide/aluminum reserve batteries is the well-known cause of capacity loss and the delayed activation in reserve batteries after stored in the dry and inactivated state for the extended periods of time. The decomposition kinetics of the thermodynamically unstable AgO component of silver oxide cathodes used in silver/aluminum reverse batteries was determined by a rapid and accelerated-aging thermogravimetry (TG) technique. The calculated decomposition rates of AgO could be used to predict the storage life time of primary, and reserve silver oxide/aluminum reserve batteries.%氧化银的不稳定性是导致铝氧化银贮备电池在于态、未激活的状态下长期储存容量减少、激活时间延长的主要原因.通过加速老化实验测得电化学方法制备的氧化银的分解动力学参数,并通过建立模型计算氧化银的分解速率,以此来预测铝氧化银贮备电池中氧化银电极的储存寿命.

  14. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries

    Science.gov (United States)

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-01-01

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m−1·K−1 with a bulk density of 453 kg·m−3 at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m−1·K−1) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g−1 at a current density of 100 mA·g−1, and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes. PMID:27671848

  15. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    Science.gov (United States)

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-04-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. The catalytic layer has maximum power density of 67 mW cm-2 and an acceptable cell voltage at 0.863 V when current densities increased up to 100 mA cm-2 in the Ag50Cu50-based primary zinc-air battery. The resulting rechargeable zinc-air battery exhibits low charge-discharge voltage polarization of 1.1 V at 20 mAcm-2 and high durability over 100 cycles in natural air.

  16. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries

    Science.gov (United States)

    Li, Bing; Ge, Xiaoming; Goh, F. W. Thomas; Hor, T. S. Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun

    2015-01-01

    An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization

  17. Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives

    Science.gov (United States)

    Lee, Chang Woo; Sathiyanarayanan, K.; Eom, Seung Wook; Kim, Hyun Soo; Yun, Mun Soo

    In our continued efforts to find an electrically rechargeable zn/air secondary battery, we report the unique behavior of a zinc oxide anode in the presence of additives such as phosphoric acid, tartaric acid, succinic acid and citric acid. These additives were added to the electrolyte, which is an 8.5 M KOH solution containing 25 g of ZnO and 3000 ppm of polyethylene glycol in 1 l of water. In zn/air systems there are two main problems namely the hydrogen overpotential and dendrite formation during recharging. Investigations have studied in detail both of the problems in order to overcome them. The results obtained in presence of additives are compared with the behavior of the electrolyte 8.5 M KOH in the absence of additives. It has been concluded that the hydrogen overpotential is raised enormously while dendrite formation is reduced to some extent. Out of the four acids studied, the order of increase in hydrogen overpotential is: tartaric acid > succinic acid > phosphoric acid > citric acid. The prevention of dendrite formation follows the order: citric acid > succinic acid > tartaric acid > phosphoric acid.

  18. Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2014-10-01

    Full Text Available An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO2 and LaNiO3 severed as the catalysts for the oxygen reduction reaction (ORR and oxygen evolution reaction (OER. The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D current densities indicating a uniform voltage profile for each single cell. One hundred C-D cycles were carried out for the stack. The results showed that, over the initial 10 cycles, the average C-D voltage gap was about 0.94 V and the average energy efficiency reached 89.28% with current density charging at 15 mA·cm−2 and discharging at 25 mA·cm−2. The total increase in charging voltage over the 100 C-D cycles was ~1.56% demonstrating excellent stability performance. The stack performance degradation was analyzed by galvanostatic electrochemical impedance spectroscopy. The charge transfer resistance of ORR increased from 1.57 to 2.21 Ω and that of Zn/Zn2+ reaction increased from 0.21 to 0.34 Ω after 100 C-D cycles. The quantitative analysis guided the potential for the optimization of both positive and negative electrodes to improve the cycle life of the cell stack.

  19. Magnesium, Iron and Aluminum in LLNL Air Particulate and Rain Samples with Reference to Magnesium in Industrial Storm Water

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bibby, Richard K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-25

    Storm water runoff from the Lawrence Livermore National Laboratory’s (LLNL’s) main site and Site 300 periodically exceeds the Discharge Permit Numeric Action Level (NAL) for Magnesium (Mg) under the Industrial General Permit (IGP) Order No. 2014-0057-DWQ. Of particular interest is the source of magnesium in storm water runoff from the site. This special study compares new metals data from air particulate and precipitation samples from the LLNL main site and Site 300 to previous metals data for storm water from the main site and Site 300 and alluvial sediment from the main site to investigate the potential source of elevated Mg in storm water runoff. Data for three metals (Mg, Iron {Fe}, and Aluminum {Al}) were available from all media; data for additional metals, such as Europium (Eu), were available from rain, air particulates, and alluvial sediment. To attribute source, this study compared metals concentration data (for Mg, Al, and Fe) in storm water and rain; metal-metal correlations (Mg with Fe, Mg with Al, Al with Fe, Mg with Eu, Eu with Fe, and Eu with Al) in storm water, rain, air particulates, and sediments; and metal-metal ratios ((Mg/Fe, Mg/Al, Al/Fe, Mg/Eu, Eu/Fe, and Eu/Al) in storm water, rain, air particulates and sediments. The results presented in this study are consistent with a simple conceptual model where the source of Mg in storm water runoff is air particulate matter that has dry-deposited on impervious surfaces and subsequently entrained in runoff during precipitation events. Such a conceptual model is consistent with 1) higher concentrations of metals in storm water runoff than in precipitation, 2) the strong correlation of Mg with Aluminum (Al) and Iron (Fe) in both storm water and air particulates, and 3) the similarity in metal mass ratios between storm water and air particulates in contrast to the dissimilarity of metal mass ratios between storm water and precipitation or alluvial sediment. The strong correlation of Mg with Fe and Al

  20. Effect of Amount of Aluminum on the Performance of Si-Al Codeposited Anodes for Lithium Batteries.

    Science.gov (United States)

    Patil, Vaishali; Patil, Arun; Yoon, Seok-Jin; Choi, Ji-Won

    2015-11-01

    Silicon is considered one of the most promising anode materials for high-performance Li-ion batteries due to its 4000 mAh/g theoretical specific capacity, relative abundance, low cost, and environmental benignity. However, silicon experiences a dramatic volume change (-300%) during full charge/discharge cycling, leading to severe capacity decay and poor cycling stability. Here, we report Si-Al codeposited anode material for Li-ion batteries. The Si-Al thin films were deposited by co-deposition from Si and Al target on nickel substrate. The composition of Si and Al in the film is estimated by energy-dispersive spectroscopy. The XRD and SEM analysis revealed that the Si-Al thin films were amorphous in structure. The electrochemical performance of the Si-Al thin film as anode material for lithium ion battery was investigated by the charge/discharge tests. Galvanostatic half-cell electrochemical measurements were conducted in between 0 mV to 2 V using a Li counter electrode, demonstrating that the Al rich Si-Al thin film achieved a good cycleability up to 100 cycles with a high capacity retention. Si-Al sample having 11.04% Al shows capacity 825 mAh/g over the 100 cycles.

  1. Symposium on Batteries and Fuel Cells for Stationary and Electric Vehicle Applications, Honolulu, HI, May 16-21, 1993, Proceedings

    Science.gov (United States)

    Landgrebe, Albert R.; Takehara, Zen-Ichiro

    The present conference discusses the development status of vehicular batteries in Japan, the effects of the solvent for electropolymerization of aniline on the charge/discharge characteristics of polyaniline, the charge/discharge mechanism of the amorphous FeOOH, including aniline as a cathode for a rechargeable Li battery, the effect of mesocarbon microbead structure on the electrochemistry of Li secondary batteries' negative electrode, and novel aluminum batteries. Also discussed are a room-temperature molten salt electrolyte for the Na/iron chloride battery, portable cells for redox batteries, the development status of lead-acid batteries for electric vehicles, mechanically refuelable zinc/air vehicular cells, polymer electrolyte fuel cells for transportation applications, proton exchange membrane fuel cells using gas-fed methanol, and a phosphotic acid fuel cell/battery.

  2. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  3. 77 FR 8575 - National Emissions Standards for Hazardous Air Pollutants: Secondary Aluminum Production

    Science.gov (United States)

    2012-02-14

    ... scrap shredders, thermal chip dryers, scrap dryers/delacquering kilns/decoating kilns, group 1 furnaces... following affected sources: aluminum scrap shredders (subject to PM standards), thermal chip dryers (subject... scrap shredders; afterburners for control of THC and D/F from thermal chip dryers; afterburners...

  4. Numerical Modeling of Flow Dynamics in The Aluminum Smelting Process: Comparison Between Air-Water and CO2-Cryolite Systems

    Science.gov (United States)

    Zhao, Zhibin; Feng, Yuqing; Schwarz, M. Philip; Witt, Peter J.; Wang, Zhaowen; Cooksey, Mark

    2017-04-01

    Air-water models have been widely applied as substitutes for CO2-cryolite systems in the study of the complex bubble dynamics and bubble-driven flow that occurs in the molten electrolyte phase in the aluminum electrolytic process, but the detailed difference between the two systems has not been studied. This paper makes a numerical comparison between the bubble dynamics for the two systems. Simulations of both single bubble and continuous bubbling were conducted using a three-dimensional computational fluid dynamics (3D CFD) modeling approach with a volume of fluid (VOF) method to capture the phase interfaces. In the single bubble simulations, it was found that bubbles sliding under an anode in a CO2-cryolite system have a smaller bubble thickness and a higher sliding velocity than those in the air-water system for bubbles of the same volume. Dimensionless analysis and numerical simulation show that contact angle is the dominant factor producing these differences; the effects of kinematic viscosity, surface tension, and density are very small. In the continuous bubbling simulations, the continuous stream of air bubbles detaches from the anode sidewall after a period of climbing, just as it does in the single bubble simulation, but bubbles have less tendency to migrate away from the wall. Quasi-stable state flow characteristics, i.e., time-averaged bath flow pattern, turbulence kinetic energy, turbulence dissipation rate, and gas volume fraction, show a remarkable agreement between the two systems in terms of distribution and magnitude. From the current numerical comparisons, it is believed that the air-water model is a close substitutive model for studying bubble-driven bath flow in aluminum smelting processes. However, because of the difference in bubble morphologies between the two systems, and also the reactive generation and growth of bubbles in the real system, there will likely be some differences in bubble coverage of the anode in the anode-cathode gap.

  5. Numerical Modeling of Flow Dynamics in The Aluminum Smelting Process: Comparison Between Air-Water and CO2-Cryolite Systems

    Science.gov (United States)

    Zhao, Zhibin; Feng, Yuqing; Schwarz, M. Philip; Witt, Peter J.; Wang, Zhaowen; Cooksey, Mark

    2016-12-01

    Air-water models have been widely applied as substitutes for CO2-cryolite systems in the study of the complex bubble dynamics and bubble-driven flow that occurs in the molten electrolyte phase in the aluminum electrolytic process, but the detailed difference between the two systems has not been studied. This paper makes a numerical comparison between the bubble dynamics for the two systems. Simulations of both single bubble and continuous bubbling were conducted using a three-dimensional computational fluid dynamics (3D CFD) modeling approach with a volume of fluid (VOF) method to capture the phase interfaces. In the single bubble simulations, it was found that bubbles sliding under an anode in a CO2-cryolite system have a smaller bubble thickness and a higher sliding velocity than those in the air-water system for bubbles of the same volume. Dimensionless analysis and numerical simulation show that contact angle is the dominant factor producing these differences; the effects of kinematic viscosity, surface tension, and density are very small. In the continuous bubbling simulations, the continuous stream of air bubbles detaches from the anode sidewall after a period of climbing, just as it does in the single bubble simulation, but bubbles have less tendency to migrate away from the wall. Quasi-stable state flow characteristics, i.e., time-averaged bath flow pattern, turbulence kinetic energy, turbulence dissipation rate, and gas volume fraction, show a remarkable agreement between the two systems in terms of distribution and magnitude. From the current numerical comparisons, it is believed that the air-water model is a close substitutive model for studying bubble-driven bath flow in aluminum smelting processes. However, because of the difference in bubble morphologies between the two systems, and also the reactive generation and growth of bubbles in the real system, there will likely be some differences in bubble coverage of the anode in the anode-cathode gap.

  6. Urinary and fecal elimination of nickel in relation to air-borne nickel in a battery factory

    Energy Technology Data Exchange (ETDEWEB)

    Hassler, E.; Lind, B.; Nilsson, B.; Piscator, M.

    Nickel in urine and in air from the breathing zone of 18 male workers in a battery factory was determined weekly during 11 consecutive weeks. The study started immediately following three weeks of Christmas vacation. The nickel levels in air varied but did not increase with time. The average urinary excretion of nickel showed an increase during the first weeks, after which a steady state seemed to have been reached. There was a considerable individual variation in both exposure levels and urine nickel levels. However, a correlation between the averages of nickel in air and urine could be demonstrated on a group basis. In a second study, during one week, measurements of nickel in air and feces were made on 15 of the workers. A significant correlation was found between nickel in air and fecal nickel. Smoking habits did not seem to influence neither urinary nor fecal nickel concentrations.

  7. Urinary and fecal elimination of nickel in relation to air-borne nickel in a battery factory.

    Science.gov (United States)

    Hassler, E; Lind, B; Nilsson, B; Piscator, M

    1983-01-01

    Nickel in urine and in air from the breathing zone of 18 male workers in a battery factory was determined weekly during 11 consecutive weeks. The study started immediately following three weeks of Christmas vacation. The nickel levels in air varied but did not increase with time. The average urinary excretion of nickel showed an increase during the first weeks, after which a steady state seemed to have been reached. There was a considerable individual variation in both exposure levels and urine nickel levels. However, a correlation between the averages of nickel in air and urine could be demonstrated on a group basis. In a second study, during one week, measurements of nickel in air and feces were made on 15 of the workers. A significant correlation was found between nickel in air and fecal nickel. Smoking habits did not seem to influence neither urinary nor fecal nickel concentrations.

  8. Synergistically enhanced activity of graphene quantum dots/graphene hydrogel composites: a novel all-carbon hybrid electrocatalyst for metal/air batteries

    Science.gov (United States)

    Wang, Mengran; Fang, Zhao; Zhang, Kai; Fang, Jing; Qin, Furong; Zhang, Zhian; Li, Jie; Liu, Yexiang; Lai, Yanqing

    2016-06-01

    Primary zinc/air batteries could be the next generation of energy storage devices because of their high power density and high safety. Graphene quantum dots nested in the graphene hydrogel have been proposed as excellent all-carbon hybrid oxygen reduction reaction (ORR) catalysts, indicative of their great potential in primary zinc/air batteries.Primary zinc/air batteries could be the next generation of energy storage devices because of their high power density and high safety. Graphene quantum dots nested in the graphene hydrogel have been proposed as excellent all-carbon hybrid oxygen reduction reaction (ORR) catalysts, indicative of their great potential in primary zinc/air batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02622b

  9. A hierarchical three-dimensional NiCo2O4 nanowire array/carbon cloth as an air electrode for nonaqueous Li-air batteries.

    Science.gov (United States)

    Liu, Wei-Ming; Gao, Ting-Ting; Yang, Yin; Sun, Qian; Fu, Zheng-Wen

    2013-10-14

    A 3D NiCo2O4 nanowire array/carbon cloth (NCONW/CC) was employed as the cathode for Li-air batteries with a non-aqueous electrolyte. After its discharge, novel porous ball-like Li2O2 was found to be deposited on the tip of NiCo2O4 nanowires. The special structure of Li2O2 and active sites of catalysts are also discussed.

  10. A Metal-Amino Acid Complex-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Ding, Yanjun; Niu, Yuchen; Yang, Jia; Ma, Liang; Liu, Jianguo; Xiong, Yujie; Xu, Hangxun

    2016-10-01

    Bifunctional oxygen electrocatalyst: A metal-amino acid complex is developed to prepare high-performance mesoporous carbon electrocatalyst for both oxygen reduction and oxygen evolution reactions. Such prepared catalyst can be used to assemble rechargeable zinc-air batteries with excellent durability. This work represents a new route toward low-cost, highly active, and durable bifunctional electrocatalysts for cutting-edge energy conversion devices.

  11. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications.

    Science.gov (United States)

    Lee, Dong Un; Park, Hey Woong; Park, Moon Gyu; Ismayilov, Vugar; Chen, Zhongwei

    2015-01-14

    Advanced morphology of intertwined core-corona structured bifunctional catalyst (IT-CCBC) is introduced where perovskite lanthanum nickel oxide nanoparticles (LaNiO3 NP) are encapsulated by high surface area network of nitrogen-doped carbon nanotubes (NCNT) to produce highly active and durable bifunctional catalyst for rechargeable metal-air battery applications. The unique composite morphology of IT-CCBC not only enhances the charge transport property by providing rapid electron-conduction pathway but also facilitates in diffusion of hydroxyl and oxygen reactants through the highly porous framework. Confirmed by electrochemical half-cell testing, IT-CCBC in fact exhibits very strong synergy between LaNiO3 NP and NCNT demonstrating bifunctionality with significantly improved catalytic activities of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, when compared to the state-of-art catalysts, IT-CCBC outperforms Pt/C and Ir/C in terms of ORR and OER, respectively, and shows improved electrochemical stability compared to them after cycle degradation testing. The practicality of the catalyst is corroborated by testing in a realistic rechargeable zinc-air battery utilizing atmospheric air in ambient conditions, where IT-CCBC demonstrates superior charge and discharge voltages and long-term cycle stability with virtually no battery voltage fading. These improved electrochemical properties of the catalyst are attributed to the nanosized dimensions of LaNiO3 NP controlled by simple hydrothermal technique, which enables prolific growth of and encapsulation by highly porous NCNT network. The excellent electrochemical results presented in this study highlight IT-CCBC as highly efficient and commercially viable bifunctional catalyst for rechargeable metal-air battery applications.

  12. Advance of air cathode catalysts for zinc-air batteries%锌空电池空气电极催化剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    李山梅; 刘丹宪

    2011-01-01

    论述了目前碱性锌空气电池空气电极用催化剂的种类组成,结构特征,制备方法以及催化剂特点,分析了各种催化剂的优劣和目前存在的问题.对于一次电池空气电极而言,锰氧化物系列催化剂性能较佳,而钙钛矿系列催化剂更适用于二次空气电极.载体的选择和物质的导电性也关系到空气电极整体的阻抗的大小,也是影响空气电极性能的重要因素.%The species composition, structural characteristics, synthesis method, and catalytic property of air cathodes for alkali zinc-air batteries were reviewed in this paper. The advantages and disadvantages and the problem of catalysts was analyzed. For the primary battery, the catalytic property of manganite oxides performed best, while perovskite-type oxides were even more suitable for secondary battery air electrodes. However, due to the resistance reduction, carrier selection and conductivity of materials played an important role in its electrode performance too.

  13. Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery

    Science.gov (United States)

    Lee, Chang Woo; Sathiyanarayanan, K.; Eom, Seung Wook; Yun, Mun Soo

    In our continued efforts for improving the performance of zinc anodes for a Zn/air battery, we now report the preparation of three alloys and improved performances of anodes made up with these alloys. The alloys contained zinc, nickel, and indium with different weight percentages and were calcined at two different temperatures. Out of the six alloys, the alloy which has a composition of zinc 90%, nickel 7.5% and Indium 2.5% and fired at 500 °C is found to be the best. In the case of the hydrogen evolution reaction, this alloy had its potential shifted to a more negative potential. As far as the cyclic voltammograms were concerned, the difference between the anodic and cathodic part was minimal when compared with other alloys. Surprisingly, this alloy had reversibility even after 100 cycles of the cyclic voltammogram. This is a clear indication that dendrite formation was reduced to a considerable extent. Images taken with a scanning electron microscope also indicated reduced dendrite formation.

  14. Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery

    Science.gov (United States)

    grosse Austing, Jan; Nunes Kirchner, Carolina; Komsiyska, Lidiya; Wittstock, Gunther

    2016-02-01

    In this paper the losses in coulombic efficiency are investigated for a vanadium/air redox flow battery (VARFB) comprising a two-layered positive electrode. Ultraviolet/visible (UV/Vis) spectroscopy is used to monitor the concentrations cV2+ and cV3+ during operation. The most likely cause for the largest part of the coulombic losses is the permeation of oxygen from the positive to the negative electrode followed by an oxidation of V2+ to V3+. The total vanadium crossover is followed by inductively coupled plasma mass spectroscopy (ICP-MS) analysis of the positive electrolyte after one VARFB cycle. During one cycle 6% of the vanadium species initially present in the negative electrolyte are transferred to the positive electrolyte, which can account at most for 20% of the coulombic losses. The diffusion coefficients of V2+ and V3+ through Nafion® 117 are determined as DV2+ ,N 117 = 9.05 ·10-6 cm2 min-1 and DV3+ ,N 117 = 4.35 ·10-6 cm2 min-1 and are used to calculate vanadium crossover due to diffusion which allows differentiation between vanadium crossover due to diffusion and migration/electroosmotic convection. In order to optimize coulombic efficiency of VARFB, membranes need to be designed with reduced oxygen permeation and vanadium crossover.

  15. Distribution of air and serum PCDD/F levels of electric arc furnaces and secondary aluminum and copper smelters.

    Science.gov (United States)

    Lee, Ching-Chang; Shih, Tung-Seng; Chen, Hsiu-Ling

    2009-12-30

    Metallurgical processes, such as smelting, can generate organic impurities such as organic chloride chemicals, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). The objective of this study was to elucidate the serum PCDD/F levels of 134 workers and ambient air levels around electric arc furnaces (EAF), secondary copper smelters and secondary aluminum smelters (ALSs) in Taiwan. The highest serum PCDD/F levels were found in the ALSs workers (21.9 pg WHO-TEQ/g lipid), with lower levels in copper smelter workers (21.5 pg WHO-TEQ/g lipid), and the lowest in the EAF plant workers (18.8 pg WHO-TEQ/g lipid). This was still higher than the levels for residents living within 5 km of municipal waste incinerators (14.0 pg WHO-TEQ/g lipid). For ambient samples, the highest ambient air PCDD/F level was in the copper smelters (12.4 pg WHO-TEQ/Nm(3)), with lower levels in ALSs (7.2 pg WHO-TEQ/Nm(3)), and the lowest in the EAF industry (1.8 pg WHO-TEQ/Nm(3)). The congener profiles were consistent in serum and in air samples collected in the copper smelters, but not for ALSs and EAF. In secondary copper smelters, the air PCDD/Fs levels might be directly linked to the PCDD/Fs accumulated in the workers due to the exceedingly stable congener pattern of the PCDD/F emission.

  16. Preparation of nano-sized hydrophilic aluminum fins coating materials for air conditioner

    Institute of Scientific and Technical Information of China (English)

    陈志明; 韩峰; 邵利

    2002-01-01

    Semicontinuous seeded emulsion copolymerization of acrylic acid, acrylamide and divinylbenzene was carried out at 80℃ with ammonium persulphate as the initiator and the polyether with comb configuration as the emulsifier to prepare approximately mono-dispersed nano-sized polymer particles with average diameter 90nm. The particles were used to combine with special polyether and de-ionized water was added to obtain nano-sized hydrophilic aluminum fins coating materials with solid content of 10%. The aluminum fins were coated with the materials to get the film showing self-assembly properties in some degree. The obtained hydrophilic fins have contact angles <5° with de-ionized water, minimum value 0°, after 4 cycles of wet and dry, contact angles <10° with de-ionized water.

  17. Flammability limits of lithium-ion battery thermal runaway vent gas in air and the inerting effects of halon 1301

    Science.gov (United States)

    Karp, Matthew Eugene

    Lithium-ion (rechargeable) and lithium-metal (non-rechargeable) battery cells put aircraft at risk of igniting and fueling fires. Lithium batteries can be packed in bulk and shipped in the cargo holds of freighter aircraft; currently lithium batteries are banned from bulk shipment on passenger aircraft [1]. The federally regulated Class C cargo compartment extinguishing system's utilization of a 5 %vol Halon 1301 knockdown concentration and a sustained 3 %vol Halon 1301 may not be sufficient at inerting lithium-ion battery vent gas and air mixtures [2]. At 5 %vol Halon 1301 the flammability limits of lithium-ion premixed battery vent gas (Li-Ion pBVG) in air range from 13.80 %vol to 26.07 %vol Li-Ion pBVG. Testing suggests that 8.59 %vol Halon 1301 is required to render all ratios of the Li-Ion pBVG in air inert. The lower flammability limit (LFL) and upper flammability limit (UFL) of hydrogen and air mixtures are 4.95 %vol and 76.52 %vol hydrogen, respectively. With the addition of 10 %vol and 20 %vol Halon 1301 the LFL is 9.02 %vol and 11.55 %vol hydrogen, respectively, and the UFL is 45.70 %vol and 28.39 %vol hydrogen, respectively. The minimum inerting concentration (MIC) of Halon 1301 in hydrogen and air mixtures is 26.72 %vol Halon 1301 at 16.2 %vol hydrogen. The LFL and UFL of Li-Ion pBVG and air mixtures are 7.88 %vol and 37.14 %vol Li-Ion pBVG, respectively. With the addition of 5 %vol, 7 %vol, and 8 %vol Halon 1301 the LFL is 13.80 %vol, 16.15 %vol, and 17.62 % vol Li-Ion pBVG, respectively, and the UFL is 26.07 %vol, 23.31 %vol, and 21.84 %vol Li- Ion pBVG, respectively. The MIC of Halon 1301 in Li-Ion pBVG and air mixtures is 8.59 %vol Halon 1301 at 19.52 %vol Li-Ion pBVG. Le Chatelier's mixing rule has been shown to be an effective measure for estimating the flammability limits of Li-Ion pBVGes. The LFL has a 1.79 % difference while the UFL has a 4.53 % difference. The state of charge (SOC) affects the flammability limits in an apparent parabolic

  18. The air quality and human health effects of integrating utility-scale batteries into the New York State electricity grid

    Science.gov (United States)

    Gilmore, Elisabeth A.; Apt, Jay; Walawalkar, Rahul; Adams, Peter J.; Lave, Lester B.

    In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5) result in a benefit of 4.5 ¢ kWh -1 and 17 ¢ kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3) concentrations increase due to decreases in nitrogen oxide (NO x) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At 20 per tonne of CO 2, the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated strategy from a

  19. Development status of zinc air power battery for electric vehicles%汽车用锌空气动力电池研究现状

    Institute of Scientific and Technical Information of China (English)

    景义军; 郭际; 孟宪玲; 武彩霞

    2011-01-01

    锌空气电池具有高比能量、低成本、无污染、不燃爆、可循环利用等优势,适宜用作城市电动汽车的动力电源.目前国内外电动汽车用锌空气动力电池主要采用机械充电式锌空气电池和锌膏循环式锌空气电池两种结构,这两种结构都是通过更换锌负极使电池连续工作.论述了锌空气动力电池还需要解决一些问题,并分析了其发展前景.%Zinc air battery can be an alternative power source for urban electric vehicles due to its high specific energy, low cost, non-pollution, non-explosion and recycle. Now, zinc air battery structures for electric vehicles mainly include mechanically rechargeable zinc air battery and zinc air battery with zinc slurry cycle system. The batteries with both structures continuously work by replacing the discharged zinc electrode with the new zinc electrode or the zinc slurry. The problems of zinc air power battery needed to be solved further were discussed, and its development prospect was analyzed.

  20. Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries

    Science.gov (United States)

    Wang, T.; Kaempgen, M.; Nopphawan, P.; Wee, G.; Mhaisalkar, S.; Srinivasan, M.

    Thin, lightweight, and flexible gas-diffusion electrodes (GDEs) based on freestanding entangled networks of single-walled carbon nanotubes (SWNTs) decorated with Ag nanoparticles (AgNPs) are tested as the air-breathing cathode in a zinc-air battery. The SWNT networks provide a highly porous surface for active oxygen absorption and diffusion. The high conductivity of SWNTs coupled with the catalytic activity of AgNPs for oxygen reduction leads to an improvement in the performance of the zinc-air cell. By modulating the pH value and the reaction time, different sizes of AgNPs are decorated uniformly on the SWNTs, as revealed by transmission electron microscopy and powder X-ray diffraction. AgNPs with sizes of 3-5 nm double the capacity and specific energy of a zinc-air battery as compared with bare SWNTs. The simplified, lightweight architecture shows significant advantages over conventional carbon-based GDEs in terms of weight, thickness and conductivity, and hence may be useful for mobile and portable applications.

  1. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries: Effects of the crystalline structure of manganese oxides

    Science.gov (United States)

    Li, Po-Chieh; Hu, Chi-Chang; Noda, Hiroyuki; Habazaki, Hiroki

    2015-12-01

    Manganese oxides (MnOx) in α-, β-, γ-, δ-MnO2 phases, Mn3O4, Mn2O3, and MnOOH are synthesized for systematically comparing their electrocatalytic activity of the oxygen reduction reaction (ORR) in the Zn-air battery application. The optimal MnOx/XC-72 mass ratio for the ORR is equal to 1 and the oxide crystalline structure effect on the ORR is compared. The order of composites with respect to decreasing the ORR activity is: α-MnO2/XC-72 > γ-MnO2/XC-72 > β-MnO2/XC-72 > δ-MnO2/XC-72 > Mn2O3/XC-72 > Mn3O4/XC-72 > MnOOH/XC-72. The textural properties of MnOx are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption isotherms with Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Electrochemical studies include linear sweep voltammetry (LSV), rotating ring-disk electrode (RRDE) voltammetry, and the full-cell discharge test. The discharge peak power density of Zn-air batteries varies from 61.5 mW cm-2 (α-MnO2/XC-72) to 47.1 mW cm-2 (Mn3O4/XC-72). The maximum peak power density is 102 mW cm-2 for the Zn-air battery with an air cathode containing α-MnO2/XC-72 under an oxygen atmosphere when the carbon paper is 10AA. The specific capacity of all full-cell tests is higher than 750 mAh g-1 at all discharge current densities.

  2. Mg/O2 Battery Based on the Magnesium-Aluminum Chloride Complex (MACC) Electrolyte

    DEFF Research Database (Denmark)

    Vardar, Galin; Smith, Jeffrey G.; Thomson, Travis

    2016-01-01

    rechargeability in these systems is severely limited. The Mg/O2-MACC/DME discharge product comprises a mixture of Mg(ClO4)2 and MgCl2, with the latter likely formed from slow decomposition of the former. The presence of Cl in these compounds suggests that the electrolyte participates in the cell reaction...... or reacts readily with the initial electrochemical products. A rate study suggests that O2 diffusion in the electrolyte limits discharge capacities at higher currents. Formation of an insulating product film on the positive electrodes of Mg/O2-MACC/DME cells following deep discharge increases cell impedance......Mg/O2 cells employing a MgCl2/AlCl3/DME (MACC/DME) electrolyte are cycled and compared to cells with modified Grignard electrolytes, showing that performance of magnesium/oxygen batteries depends strongly on electrolyte composition. Discharge capacity is far greater for MACC/DME-based cells, while...

  3. Nickel based alloys as electrocatalysts for oxygen evolution from alkaline solutions. [Metal--air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.W.T.; Srinivasan, S.

    1977-01-01

    The slowness of the oxygen evolution reaction is one of the main reasons for significant energy losses in water electrolysis cells and secondary air--metal batteries. To date, data on the kinetics of this reaction on alloys and intermetallic compounds are sparse. In this work, mechanically polished alloys of nickel with Ir, Ru or W and Ni--Ti intermetallic compounds were studied as oxygen electrodes. Since the oxygen evolution reaction always takes place on oxide-film covered surfaces, the nature of oxide films formed on these alloys were investigated using cyclic voltametric techniques. Steady-state potentiostatic and slow potentiodynamic (at 0.1 mV/s) methods were employed to obtain the electrode kinetic parameters for the oxygen evolution reaction in 30 wt. percent KOH at 80/sup 0/C, the conditions normally used in water electrolysis cells. The peaks for the formation or reduction of oxygen-containing layers appearing on the pure metals are not always found on the alloys. The maximum decreases in oxygen overpotential at an apparent current density of 20 mA cm/sup -2/ (as compared with that on Ni) were found for the alloys of 50Ni--50Ir and 75Ni--25Ru and the intermetallic compound Ni/sub 3/Ti, these decreases being about 40, 30, and 20 mV, respectively. On the long-term polarization in the potential region of oxygen evolution, the oxygen-containing layers on Ni--Ir or Ni--Ru alloys are essentially composed of nickel oxides instead of true mixed oxide films of two components. The present work confirms that, possibly because of coverage by oxide films, there is no direct dependence of the electrocatalytic activities of the alloys on their electronic properties. 11 figures, 1 table.

  4. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air.

    Science.gov (United States)

    Long, Jiangyou; Zhong, Minlin; Zhang, Hongjun; Fan, Peixun

    2015-03-01

    Studies regarding the wettability transition of micro- and nano-structured metal surfaces over time are frequently reported, but there seems to be no generally accepted theory that explains this phenomenon. In this paper, we aim to clarify the mechanism underlying the transition of picosecond laser microstructured aluminum surfaces from a superhydrophilic nature to a superhydrophobic one under ambient conditions. The aluminum surface studied exhibited superhydrophilicity immediately after being irradiated by a picosecond laser. However, the contact angles on the surface increased over time, eventually becoming large enough to classify the surface as superhydrophobic. The storage conditions significantly affected this process. When the samples were stored in CO2, O2 and N2 atmospheres, the wettability transition was restrained. However, the transition was accelerated in atmosphere that was rich with organic compounds. Moreover, the superhydrophobic surface could recover their original superhydrophilicity by low temperature annealing. A detailed XPS analysis indicated that this wettability transition process was mainly caused by the adsorption of organic compounds from the surrounding atmosphere onto the oxide surface.

  5. Morphology study of electrodeposited zinc from zinc sulfate solutions as anode for zinc-air and zinc-carbon batteries

    Directory of Open Access Journals (Sweden)

    Nurhaswani Alias

    2015-01-01

    Full Text Available The morphology of Zinc (Zn deposits was investigated as anode for aqueous batteries. The Zn was deposited from zinc sulfate solution in direct current conditions on a copper surface at different current densities. The morphology characterization of Zn deposits was performed via field emission scanning electron microscopy. The Zn deposits transformed from a dense and compact structure to dendritic form with increasing current density. The electrodeposition of Zn with a current density of 0.02 A cm−2 exhibited good morphology with a high charge efficiency that reached up to 95.2%. The Zn deposits were applied as the anode in zinc–air and zinc–carbon batteries, which gave specific discharge capacities of 460 and 300 mA h g−1, respectively.

  6. Electrochemical properties of lithium air batteries with Pt100-xRux (0 ≤ x ≤ 100) electrocatalysts for air electrodes

    Science.gov (United States)

    Yui, Yuhki; Sakamoto, Shuhei; Nohara, Masaya; Hayashi, Masahiko; Nakamura, Jiro; Komatsu, Takeshi

    2017-02-01

    Electrochemical properties of lithium air secondary battery cells with Pt100-xRux (0 ≤ x ≤ 100) electrocatalysts, prepared by the formic acid reduction method and loaded into air electrodes were examined in 1 mol/l LiTFSA/TEGDME electrolyte solution. Among the cells, the one with the Pt10Ru90 (x = 90)/carbon sample showed the largest discharge capacity of 1014 mAh/g and the lowest average charge voltage of 3.74 V. In addition, the x = 90 sample showed comparatively good cycle stability with discharge capacity of over 800 mAh/g at the 8th cycle. As a result, x = 90 was confirmed to be the optimized composition as the electrocatalyst for the air electrode.

  7. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.

    Science.gov (United States)

    Dunn, Jennifer B; Gaines, Linda; Sullivan, John; Wang, Michael Q

    2012-11-20

    This paper addresses the environmental burdens (energy consumption and air emissions, including greenhouse gases, GHGs) of the material production, assembly, and recycling of automotive lithium-ion batteries in hybrid electric, plug-in hybrid electric, and battery electric vehicles (BEV) that use LiMn(2)O(4) cathode material. In this analysis, we calculated the energy consumed and air emissions generated when recovering LiMn(2)O(4), aluminum, and copper in three recycling processes (hydrometallurgical, intermediate physical, and direct physical recycling) and examined the effect(s) of closed-loop recycling on environmental impacts of battery production. We aimed to develop a U.S.-specific analysis of lithium-ion battery production and in particular sought to resolve literature discrepancies concerning energy consumed during battery assembly. Our analysis takes a process-level (versus a top-down) approach. For a battery used in a BEV, we estimated cradle-to-gate energy and GHG emissions of 75 MJ/kg battery and 5.1 kg CO(2)e/kg battery, respectively. Battery assembly consumes only 6% of this total energy. These results are significantly less than reported in studies that take a top-down approach. We further estimate that direct physical recycling of LiMn(2)O(4), aluminum, and copper in a closed-loop scenario can reduce energy consumption during material production by up to 48%.

  8. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures.

    Science.gov (United States)

    Liu, Xueling; Zhang, Qi

    2015-12-15

    The environmental turbulence intensity has a significant influence on the explosion parameters of both micro- and nano-Al at the time of ignition. However, explosion research on turbulence intensity with respect to micro- and nano-Al powders is still insufficient. In this work, micro- and nano-aluminum powders were investigated via scanning electron microscopy (SEM), and their particle size distributions were measured using a laser diffraction analyzer under dispersing air pressures of 0.4, 0.6, and 0.8 MPa in a 20 L cylindrical, strong plexiglass vessel. The particle size distributions in three different mass ratio mixtures of micro- and nano-Al powders (micro-Al:nano-Al[massratio]=95:5, 90:10, and 85:15) were also measured. The results show that the agglomerate size of nano-Al powder is an order of magnitude larger than the nanoparticles' actual size. Furthermore, the turbulence intensity ranges (Urms) of the Al powder-air mixtures were measured using particle image velocimetry (PIV) under dispersing air pressures of 0.4, 0.6, and 0.8 MPa. The effect of turbulence intensity on the explosion characteristics of the micro- and nano-Al powders was investigated using a 20 L cylindrical explosion vessel. The results of micro-Al and nano-Al powder-air mixtures with a stoichiometric concentration of 337.00 g·m(-3) were discussed for the maximum explosion pressure, the maximum rate of pressure increase and the maximum effective burning velocity under the different turbulence intensity.

  9. Theoretical Analysis of the Solidification of Aluminum Alloy Billet in Air-Slip DC Mold

    Institute of Scientific and Technical Information of China (English)

    于赟; 马乃恒; 许振明; 李建国

    2004-01-01

    Based on the heat transfer analysis of Air-Slip DC mold, a numerical model was presented to study the quantitative relationships between critical solidification layer and casting rate, pouring temperature and mold cooling ability etc. The analytical results show that the Air-Slip mold heat transfer condition plays important roles on choices of a casting rate and the pouring temperature, and that the product of billet diameter and casting rate is a certain constant under a certain condition of the mold.

  10. Nitrogen-Doped Co3 O4 Mesoporous Nanowire Arrays as an Additive-Free Air-Cathode for Flexible Solid-State Zinc-Air Batteries.

    Science.gov (United States)

    Yu, Minghao; Wang, Zhengke; Hou, Cheng; Wang, Zilong; Liang, Chaolun; Zhao, Cunyuan; Tong, Yexiang; Lu, Xihong; Yang, Shihe

    2017-02-10

    The kinetically sluggish rate of oxygen reduction reaction (ORR) on the cathode side is one of the main bottlenecks of zinc-air batteries (ZABs), and thus the search for an efficient and cost-effective catalyst for ORR is highly pursued. Co3 O4 has received ever-growing interest as a promising ORR catalyst due to the unique advantages of low-cost, earth abundance and decent catalytic activity. However, owing to the poor conductivity as a result of its semiconducting nature, the ORR activity of the Co3 O4 catalyst is still far below the expectation. Herein, we report a controllable N-doping strategy to significantly improve the catalytic activity of Co3 O4 for ORR and demonstrate these N doped Co3 O4 nanowires as an additive-free air-cathode for flexible solid-state zinc-air batteries. The results of experiments and DFT calculations reveal that the catalytic activity is promoted by the N dopant through a combined set of factors, including enhanced electronic conductivity, increased O2 adsorption strength and improved reaction kinetics. Finally, the assembly of all-solid-state ZABs based on the optimized cathode exhibit a high volumetric capacity of 98.1 mAh cm(-3) and outstanding flexibility. The demonstration of such flexible ZABs provides valuable insights that point the way to the redesign of emerging portable electronics.

  11. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  12. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK Membranes for a Vanadium/Air Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Géraldine Merle

    2013-12-01

    Full Text Available Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone (cSPEEK membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a crosslinking on the sulfonic acid groups; and (b crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  13. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  14. Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries

    Science.gov (United States)

    Li, Jingsha; Zhou, Zhi; Liu, Kun; Li, Fuzhi; Peng, Zhiguang; Tang, Yougen; Wang, Haiyan

    2017-03-01

    Nitrogen-doped carbon materials containing non-precious metal (TM-N-C) and Co-based oxides have been extensively investigated as promising catalysts for oxygen reduction reaction (ORR). Herein, we report a novel Co3O4/Co-N-C modified ketjenblack carbon (KB) catalyst via a one-pot and scalable pyrolysis process using cheap melamine, cobalt acetate tetrahydrate and KB as raw materials. Owing to the high specific surface area and good electrical conductivity, this KB-based catalyst exhibits remarkable catalytic activity with a half-wave potential of 0.798 V (vs RHE) and a limiting current density of 5.10 mA cm-2 in alkaline solution, which are comparable with those of the commercial 20 wt% Pt/C. More importantly, it displays superior stability to Pt/C, which makes it one of the most promising non-noble-metal catalysts. Al-air batteries with this catalyst are also tested and generate a maximum power density of 161.1 mW cm-2, which is close to that with 20 wt% Pt/C catalyst (161.9 mW cm-2). After the discharge for 18 h at 50 mA cm-2, the voltage degradation of Al-air battery with Co3O4/Co-N-C modified KB is 7%, while that using Pt/C is increased to 12%. By virtues of its remarkable performance, low cost and simple fabrication method, Co3O4/Co-N-C modified KB here can be used as an efficient ORR cathode catalyst instead of the commercial Pt/C for practical Al-air batteries.

  15. A study of fatigue and fracture in 7075-T6 aluminum alloy in vacuum and air environments

    Science.gov (United States)

    Hudson, C. M.

    1973-01-01

    Axial load fatigue life, fatigue-crack propagation, and fracture toughness experiments were conducted on sheet specimens made of 7075-T6 aluminum alloy. These experiments were conducted at pressures ranging from atmospheric to 5 x 10 to the minus 8th torr. Analysis of the results from the fatigue life experiments indicated that for a given stress level, lower air pressures produced longer fatigue lives. At a pressure of 5 x 10 to the minus 8th torr fatigue lives were 15 or more times as long as at atmospheric pressure. Analysis of the results from the fatigue crack propagation experiments indicated that for small stress intensity factor ranges the fatigue crack propagation rates were up to twice as high at atmospheric pressure as in vacuum. The fracture toughness of 7075-T6 was unaffected by the vacuum environment. Fractographic examination showed that specimens tested in both vacuum and air developed fatigue striations. Considerably more striations developed on specimens tested at atmospheric pressure, however.

  16. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery

    Science.gov (United States)

    Zhang, Hui; Qiao, Hang; Wang, Haiyan; Zhou, Nan; Chen, Jiajie; Tang, Yougen; Li, Jingsha; Huang, Chenghuan

    2014-08-01

    High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a promising catalyst for high power metal/air battery.High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a

  17. Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc-Air Battery Based on Cross-Stacked Carbon Nanotube Sheets.

    Science.gov (United States)

    Xu, Yifan; Zhang, Ye; Guo, Ziyang; Ren, Jing; Wang, Yonggang; Peng, Huisheng

    2015-12-14

    The fabrication of flexible, stretchable and rechargeable devices with a high energy density is critical for next-generation electronics. Herein, fiber-shaped Zn-air batteries, are realized for the first time by designing aligned, cross-stacked and porous carbon nanotube sheets simultaneously that behave as a gas diffusion layer, a catalyst layer, and a current collector. The combined remarkable electronic and mechanical properties of the aligned carbon nanotube sheets endow good electrochemical properties. They display excellent discharge and charge performances at a high current density of 2 A g(-1) . They are also flexible and stretchable, which is particularly promising to power portable and wearable electronic devices.

  18. Zinc-air battery: understanding the structure and morphology changes of graphene-supported CoMn(2)O(4) bifunctional catalysts under practical rechargeable conditions.

    Science.gov (United States)

    Prabu, Moni; Ramakrishnan, Prakash; Nara, Hiroki; Momma, Toshiyuki; Osaka, Tetsuya; Shanmugam, Sangaraju

    2014-10-08

    Nitrogen-doped/undoped thermally reduced graphene oxide (N-rGO) decorated with CoMn2O4 (CMO) nanoparticles were synthesized using a simple one-step hydrothermal method. The activity and stability of this hybrid catalyst were evaluated by preparing air electrodes with both primary and rechargeable zinc-air batteries that consume ambient air. Further, we investigated the relationship between the physical properties and the electrochemical results for hybrid electrodes at various cycles using X-ray diffraction, scanning electron microscopy, galvanodynamic charge-discharging and electrochemical impedance spectroscopy. The structural, morphological and electrocatalytic performances confirm that CMO/N-rGO is a promising material for safe, reliable, and long-lasting air cathodes for both primary and rechargeable zinc-air batteries that consume air under ambient condition.

  19. A source of electrical energy using an air-aluminum element (AAE)

    Energy Technology Data Exchange (ETDEWEB)

    Anisin, A.V.; Borisenok, V.A.; Potemkin, G.A. [and others

    1996-04-01

    An air-aluminium element (AAE) is a chemical current source (CCS) with an aluminium anode and an oxygen gas-diffusion cathode. An AAE may be relegated to intermediate types of CCS, occupying a position between primary and fuel cells. The consumable material is aluminium, and the oxidizer is oxygen in the air coming from the external environment. The electrolyte is an aqueous solution of sodium chloride. Sea water may be used in this capacity. The end product of AAE operation is aluminium hydroxide, which can be regenerated into the initial anode aluminium, and is a non-toxic product.

  20. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  1. Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery

    Science.gov (United States)

    Zhang, Sheng S.; Read, Jeffrey

    2011-03-01

    In this work we study methyl nonafluorobutyl ether (MFE) and tris(2,2,2-trifluoroethyl) phosphite (TTFP), respectively, as a co-solvent for the non-aqueous electrolyte of Li-air battery. Results show that in certain solvent ratios, both solvents are able to increase the specific capacity of carbon in Li/O2 and Li/air cells. More interestingly, the improvement in discharge performance of the Li/air cells increases with discharge current density. These results cannot be explained by the ionic conductivity and viscosity data of the electrolytes since the participation of fluorinated co-solvents hardly changes viscosity of the solvent blends while reversely reduces ionic conductivity of the electrolyte. In particular, we find that a 30 wt.% (vs. solvent) addition of TTFP into a 0.2 m (molality) LiSO3CF3 PC electrolyte can significantly improve the discharge performance of Li/air cells, and that the resultant electrolyte is able to support long-term operation of Li/air cells in dry ambient environments due to its low volatility. We believe that the observed performance improvement is associated with the increased dissolution kinetics and solubility of oxygen in fluorinated solvent containing electrolyte.

  2. DFT Study On Effects of CO2 Contamination in Non-Aqueous Li-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2013-01-01

    Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials are investig......Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials...

  3. Silver decorated LaMnO3 nanorod/graphene composite electrocatalysts as reversible metal-air battery electrodes

    Science.gov (United States)

    Hu, Jie; Liu, Qiunan; Shi, Lina; Shi, Ziwei; Huang, Hao

    2017-04-01

    Perovskite LaMnO3 nanorod/reduced graphene oxides (LMO-NR/RGO) decorated with Ag nanoparticles are studied as a bifunctional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. LMO-NR/RGO composites are synthesized by using cetyltrimethyl ammonium bromide (CTAB) as template via a simple hydrothermal reaction followed by heat treatment; overlaying of Ag nanoparticles is obtained through a traditional silver mirror reaction. Electron microscopy reveals that LMO-NR is embedded between the sheets of RGO, and the material is homogeneously overlaid with Ag nanoparticles. The unique composite morphology of Ag/LMO-NR/RGO not only enhances the electron transport property by increasing conductivity but also facilitates the diffusion of electrolytes and oxygen. As confirmed by electrochemical testing, Ag/LMO-NR/RGO exhibits very strong synergy with Ag nanoparticles, LMO-NR, and RGO, and the catalytic activities of Ag/LMO-NR/RGO during ORR and OER are significantly improved. With the novel catalyst, the homemade zinc-air battery can be reversibly charged and discharged and display a stable cycle performance, indicating the great potential of this composite as an efficient bifunctional electrocatalyst for metal-air batteries.

  4. The Applications of All-aluminum Microchannel Heat Exchangers in Air Conditioning%全铝微通道换热器在空调中的应用

    Institute of Scientific and Technical Information of China (English)

    周子成

    2014-01-01

    近年来,全铝微通道换热器在空调中的应用获得了成功,使空调器提高了效率,降低了成本。本文综述全铝微通道换热器在空调中应用的结构、传热和试验。%In recent years, aluminum microchannel heat exchanger in the air conditioning application was approved to be effective to improve the efficiency and reduce the cost.In this paper, the structure, heat transfer and testing e-quipment of all-aluminum microchannel heat exchanger used in air conditioning are overviewed.

  5. Air Force Armament Laboratory (AFATL) battery power supply (BPS) operations and maintenance

    Science.gov (United States)

    Delaney, J. R.; Lippert, J. R.; Herald, W. L.

    1991-01-01

    The successful operation of the AFATL BPS system is discussed in terms of its proven reliable performance record, flexibility to adapt to different test configurations, and relatively inexpensive operating maintenance costs per test. The BPS consists of 13,728 batteries, interconnecting buswork, and a power conditioning inductor. The system is subdivided into six modules, each divided into six gangs with its own gang switch, each gang containing 24 battery strings. Each module has its own main bus pair, with the negative bus common and the positive bus switched. The operational and performance history of the AFATL BPS has proven that this battery system is effective as a prime power supply for hypervelocity launcher research. Turn-around time between tests has generally been less than that required for the test article. The power capabilities of the BPS can easily be expanded to the design point of a 200 MJ energy store. This can be done by adding more modules of batteries and reconfiguring the inductor with its existing three auxiliary turns in series.

  6. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application.

    Science.gov (United States)

    Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar

    2015-09-30

    The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries.

  7. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  8. High Energy Density aluminum/oxygen cell

    Science.gov (United States)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  9. 有机电解液型锂空气电池空气电极研究进展%Research progress on air electrode in organic electrolyte lithium-air battery

    Institute of Scientific and Technical Information of China (English)

    罗仲宽; 尹春丽; 吴其兴; 王芳; 黄洋; 李豪君; 魏蒙蒙

    2015-01-01

    Due to the advantages of ultra-high energy density, lithium-air batteries based on organic electrolyte system have received widespread concern. To seek after a high-performance, safety and applicable lithium-air battery, a lot of scholars have conducted numerous research works on cathode materials, catalysts, electrolyte, and lithium cathode. Air electrode optimization and electrolyte stability are the keys to obtaining high performance lithium-air batteries. We review some of the latest research progress on air electrode reaction mechanisms, influence factors of air electrode, materials for air cathode and catalysts in organic electrolyte lithium-air batteries. Meanwhile, advantages and disadvantages of all kinds of porous materials and catalysts, as well as impact on the electrochemical performance of batteries, were analysed. Based on these studies, we put forward the future direction for air electrodes of lithium-air batteries is to build a unique porous electrode structure with new composite oxide catalysts, to achieve high-capacity, long-life lithium-air batteries.%有机电解液体系的锂空气电池因其超高能量密度受到广泛关注。为寻求高性能、安全实用的锂空气电池,国内外就正极材料、催化剂、电解液和锂负极等开展了大量研究,其中空气电极的优化、电解液的稳定性是锂空气电池高性能发挥的关键。介绍了近年有机电解液锂空气电池空气电极上的反应机理、空气电极影响因素、正极材料和催化剂等最新研究进展,分析了各类多孔材料和催化剂的优缺点,及其对电池电化学性能的影响,结合本课题组研究成果,指出了锂空气电池空气电极的发展方向,即结合新型复合氧化物催化剂,构筑独特的多孔电极结构,以实现高容量、长寿命的锂空气电池。

  10. Turbulent Combustion in Aluminum-air Clouds for Different Scale Explosion Fields

    Science.gov (United States)

    Kuhl, Allen; Balakrishnan, Kaushik; Bell, John; Beckner, Vincent

    2015-06-01

    We have studied turbulent combustion effects in explosions, and proposed heterogeneous continuum models for the turbulent combustion fields. Also we have proposed an induction-time model for the ignition of Al particle clouds, based on Arrhenius fits to the shock tube data of Boiko. Here we explore scaling issues associated with Al particle combustion in such explosions. This is a non-premixed combustion system; the global burning rate is controlled by rate of turbulent mixing of fuel (Al particles) with air. For similitude reasons, the turbulent mixing rates should scale with the explosion length and time scales. However, the induction time for ignition of Al particles depends on an Arrhenius function, which is independent of such scales. To study this, we have performed numerical simulations of turbulent combustion in unconfined Al-SDF (shock-dispersed-fuel) explosion fields at different scales. Three different charge masses were assumed: 1-g, 1-kg and 1-T Al-powder charges. We found that there are two combustion regimes: an ignition regime--where the burning rate decays a power law function of time, and a turbulent combustion regime--where the burning rate decays exponentially with time.

  11. Turbulent combustion in aluminum-air clouds for different scale explosion fields

    Science.gov (United States)

    Kuhl, Allen L.; Balakrishnan, Kaushik; Bell, John B.; Beckner, Vincent E.

    2017-01-01

    This paper explores "scaling issues" associated with Al particle combustion in explosions. The basic idea is the following: in this non-premixed combustion system, the global burning rate is controlled by rate of turbulent mixing of fuel (Al particles) with air. From similarity considerations, the turbulent mixing rates should scale with the explosion length and time scales. However, the induction time for ignition of Al particles depends on an Arrhenius function, which is independent of the explosion length and time. To study this, we have performed numerical simulations of turbulent combustion in unconfined Al-SDF (shock-dispersed-fuel) explosion fields at different scales. Three different charge masses were assumed: 1-g, 1-kg and 1-T Al-powder charges. We found that there are two combustion regimes: an ignition regime—where the burning rate decays as a power-law function of time, and a turbulent combustion regime—where the burning rate decays exponentially with time. This exponential dependence is typical of first order reactions and the more general concept of Life Functions that control the dynamics of evolutionary systems. Details of the combustion model are described. Results, including mean and rms profiles in combustion cloud and fuel consumption histories, are presented.

  12. Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction

    Science.gov (United States)

    Wen, Yue-Hua; Cheng, Jie; Ning, Shang-Qi; Yang, Yu-Sheng

    A zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction is reported in this paper. It possesses functions of both zincate reduction and electrochemical preparation, showing the potential for increasing the electronic energy utilization. Charge/discharge tests and scanning electron microscopy (SEM) micrographs reveal that when a nickel sheet plated with the high-H 2-overpotential metal, cadmium, was used as the negative substrate electrode, the dendritic formation and hydrogen evolution are suppressed effectively, and granular zinc deposits become larger but relatively dense with the increase of charge time. The performance of batteries is favorable even if the charge time is as long as 5 h at the current density of 20 mA cm -2. Better discharge performance is achieved using a 'cavity-opening' configuration for the discharge cell rather than a 'gas-introducing' configuration. The highest energy efficiency is up to 59.2%. That is, the energy consumed by organic electro-synthesis can be recovered by 59.2%. Cyclic voltammograms show that the sintered nickel electrode exhibits a good electro-catalysis activity for the propanol oxidation. The increase of propanol concentration conduces to an enhancement in the organic electro-synthesis efficiency. The organic electro-synthesis current efficiency of 82% can be obtained.

  13. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries.

    Science.gov (United States)

    Beyer, H; Meini, S; Tsiouvaras, N; Piana, M; Gasteiger, H A

    2013-07-14

    The decomposition of lithium peroxide during the charging process of lithium-air batteries is investigated. A novel preparation method for electrodes in the discharged state, i.e., prefilled with Li2O2 using polyethylene oxide as a binder, is presented. The composition and reactivity of Li2O2-prefilled electrodes are examined by thermal analysis coupled with on-line mass spectrometry. Voltage profiles and gas evolution during the charging process of Li2O2-prefilled electrodes in battery cells are correlated with the thermal decomposition process of Li2O2 and its impact on other electrode compounds. It is found that both thermal Li2O2 decomposition and the electrochemical decomposition of Li2O2 during charging enhance the oxidation of the electrolyte, the binder, and/or carbon, which is suggested to be due to the formation of "nascent" oxygen during Li2O2 decomposition into O2 and Li2O (thermally) or into O2 and lithium ions (electrochemically).

  14. A study on lithium/air secondary batteries - Stability of NASICON-type glass ceramics in acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Shimonishi, Y.; Zhang, T.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O. [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiay-cho, Tsu, Mie 514-8507 (Japan); Johnson, P.; Sammes, N. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2010-09-15

    The stability of a NASICON-type lithium ion conducting solid electrolyte, Li{sub 1+x+y}Ti{sub 2-x}Al{sub x}P{sub 3-y}Si{sub y}O{sub 12} (LTAP), in acetic acid and formic acid solutions was examined. XRD patterns of the LTAP powders immersed in 100% acetic acid and formic acid at 50 C for 4 months showed no change as compared to the pristine LTAP. However, the electrical conductivity of LTAP drastically decreased. On the other hand, no significant electrical conductivity change of LTAP immersed in lithium formate saturated formic acid-water solution was observed, and the electrical conductivity of LTAP immersed in lithium acetate saturated acetic acid-water increased. Cyclic voltammogram tests suggested that acetic acid was stable up to a high potential, but formic acid decomposed under the decomposition potential of water. The acetic acid solution was considered to be a candidate for the active material in the air electrode of lithium-air rechargeable batteries. The cell reaction was considered as 2Li + 2 CH{sub 3}COOH + 1/2O{sub 2} = 2CH{sub 3}COOLi + H{sub 2}O. The energy density of this lithium-air system is calculated to be 1477 Wh kg{sup -1} from the weights of Li and CH{sub 3}COOH, and an observed open-circuit voltage of 3.69 V. (author)

  15. New highly active oxygen reduction electrode for PEM fuel cell and Zn/air battery applications (NORA). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, D.; Zuettel, A.

    2008-04-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning a new, highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications. The goal of this project was, according to the authors, to increase the efficiency of the oxygen reduction reaction by lowering the activation polarisation through the right choice of catalyst and by lowering the concentration polarisation. In this work, carbon nanotubes are used as support material. The use of these nanotubes grown on perovskites is discussed. Theoretical considerations regarding activation polarisation are discussed and alternatives to the use of platinum are examined. The results of experiments carried out are presented in graphical and tabular form. The paper is completed with a comprehensive list of references.

  16. Reduction of CO 2 concentration in a zinc/air battery by absorption in a rotating packed bed

    Science.gov (United States)

    Cheng, Hsu-Hsiang; Tan, Chung-Sung

    The reduction of CO 2 concentration in a gas stream containing 500 ppm of CO 2 by a technique combining chemical absorption with Higee (high gravity) was investigated in this study. Using a 2.0 L aqueous amine-based solution to treat the feed gas with a flow rate which varied from 12.9 to 20.6 L min -1, piperazine (PZ) was found to be more effective than 2-(2-aminoethylamino) ethanol (AEEA) and monoethanolamine (MEA) for reducing the CO 2 concentration to a level below 20 ppm. The effects of temperature, rotating speed, amine solution flow rate, and gas flow rate on the removal efficiency of CO 2 were systematically examined. The results indicated that the proposed compact device could effectively reduce CO 2 to a level below 20 ppm, as required by a zinc/air battery, for a long period of time using PZ and its mixture with AEEA and MEA as the absorbents.

  17. Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte

    Science.gov (United States)

    Han, Jia-Jun; Li, Ning; Zhang, Tian-Yun

    The cyclic voltammetry indicated that the oxygen reduction reaction (ORR) proceeded by the four-electron pathway mechanism on larger Ag particles (174 nm), and that the ORR proceeded by the four-electron pathway and the two-electron pathway mechanisms on finer Ag particles (4.1 nm), simultaneously. The kinetics towards ORR was measured at a rotating disk electrode (RDE) with Ag/C electrode. The number of exchanged electrons for the ORR was found to be close to four on larger Ag particles (174 nm) and close to three on finer Ag particles (4.1 nm). The zinc-air battery with Ag/C catalysts (25.9 nm) was fabricated and examined.

  18. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries.

    Science.gov (United States)

    Suntivich, Jin; Gasteiger, Hubert A; Yabuuchi, Naoaki; Nakanishi, Haruyuki; Goodenough, John B; Shao-Horn, Yang

    2011-06-12

    The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to σ-orbital (e(g)) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the σ orbital and metal-oxygen covalency on the competition between O(2)(2-)/OH(-) displacement and OH(-) regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

  19. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  20. Rechargeable Metal-Air Proton-Exchange Membrane Batteries for Renewable Energy Storage.

    Science.gov (United States)

    Nagao, Masahiro; Kobayashi, Kazuyo; Yamamoto, Yuta; Yamaguchi, Togo; Oogushi, Akihide; Hibino, Takashi

    2016-02-01

    Rechargeable proton-exchange membrane batteries that employ organic chemical hydrides as hydrogen-storage media have the potential to serve as next-generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen-storage capacity. Here, we address this challenge through the use of metal-ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn0.9In0.1P2O7-based electrolyte membrane allowed no crossover of vanadium ions through the membrane. The V(4+)/V(3+), V(3+)/V(2+), and Sn(4+)/Sn(2+) redox reactions took place at a more positive potential than that for hydrogen reduction, so that undesired hydrogen production could be avoided. The resulting electrical capacity reached 306 and 258 mAh g(-1) for VOSO4 and SnSO4, respectively, and remained at 76 and 91 % of their respective initial values after 50 cycles.

  1. Rechargeable aqueous lithium-air batteries with an auxiliary electrode for the oxygen evolution

    Science.gov (United States)

    Sunahiro, S.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N.

    2014-09-01

    A rechargeable aqueous lithium-air cell with a third auxiliary electrode for the oxygen evolution reaction was developed. The cell consists of a lithium metal anode, a lithium conducting solid electrolyte of Li1+x+yAlx(Ti,Ge)2-xSiyP3-yO12, a carbon black oxygen reduction air electrode, a RuO2 oxygen evolution electrode, and a saturated aqueous solution of LiOH with 10 M LiCl. The cell was successfully operated for several cycles at 0.64 mA cm-2 and 25 °C under air, where the capacity of air electrode was 2000 mAh gcathod-1. The cell performance was degraded gradually by cycling under open air. The degradation was reduced under CO2-free air and pure oxygen. The specific energy density was calculated to be 810 Wh kg-1 from the weight of water, lithium, oxygen, and carbon in the air electrode.

  2. Synthesis and electrochemical performance of La0.7Sr0.3Co1-xFexO3 catalysts for zinc air secondary batteries

    Science.gov (United States)

    Ahn, Seyoung; Kim, Ketack; Kim, Hyunsoo; Nam, Sangyong; Eom, Seungwook

    2010-05-01

    We prepared La0.7Sr0.3Co1-xFexO3 (x=0.1-0.4) catalysts for a zinc air battery by using the citrate method under controlled pH. The prepared precursor powder was heat treated at the calcination temperature of 700 °C and examined for the optimum structure of the cathode. The structure and performance of the catalysts were examined by x-ray diffraction and a scanning electron microscope. The air electrode was prepared by blending the catalyst, Vulcan XC-72R (carbon black), and (polytetrafluoroethylene PTFE) suspension. The oxygen reduction reaction and the oxygen evolution reaction were examined by linear sweep voltammetry. The results showed that La0.7Sr0.3Co0.7Fe0.3O3 (LSCF0.7) is an excellent catalyst for the zinc air secondary battery.

  3. Demonstration of zinc/air fuel battery to enhance the range and mission of fleet electric vehicles: Preliminary results in the refueling of a multicell module

    Science.gov (United States)

    Cooper, J. F.; Fleming, D.; Keene, L.; Maimoni, A.; Peterman, K.; Koopman, R.

    1994-08-01

    We report progress in an effort to develop and demonstrate a refuelable zinc/air battery for fleet electric vehicle applications. A refuelable module consisting of twelve bipolar cells with internal flow system has been refueled at rates of nearly 4 cells per minute, indicating a refueling time of 10 minutes for a 15 kW, 55 kWh battery. The module is refueled by entrainment of 0.5-mm particles in rapidly flowing electrolyte, which delivers the particles into hoppers above each cell in a parallel-flow hydraulic circuit. The concept of user-recovery is presented as an alternative to centralized service infrastructure during market entry.

  4. Relationship between Air Traffic Selection and Training (AT-SAT)) Battery Test Scores and Composite Scores in the Initial en Route Air Traffic Control Qualification Training Course at the Federal Aviation Administration (FAA) Academy

    Science.gov (United States)

    Kelley, Ronald Scott

    2012-01-01

    Scope and Method of Study: This study focused on the development and use of the AT-SAT test battery and the Initial En Route Qualification training course for the selection, training, and evaluation of air traffic controller candidates. The Pearson product moment correlation coefficient was used to measure the linear relationship between the…

  5. A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint)

    Science.gov (United States)

    2010-01-01

    STINFO COPY © 2009 The Electrochemical Society AIR FORCE RESEARCH LABORATORY PROPULSION DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH...Date: 19 November 2009. © 2009 The Electrochemical Society . The U.S. Government is joint author of the work and has the right to use, modify...NUMBER (Include Area Code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 Journal of The Electrochemical Society , 157

  6. Lithium--water--air battery project: progress during the month of February 1977. [LLL

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.; Hosmer, P.K.; Kelly, B.E.; Krikorian, O.H.; Parrish, W.H.

    1977-03-15

    The rotating disk electrode system designed to obtain a complete set of experimental data (electrode polarization and coulombic efficiency) for electrode materials is described. Preliminary experiments with the rotating disk Ca electrode yielded polarization curves for Ca dissolution. Open-circuit potentials for the disk electrodes were essentially indistinguishable from the computer interelectrode IR drop. Limiting currents were obtained in NaOH--NaCl mixtures. Tafel-like behavior was found for Ni(O/sub 2/). Cooling curves were obtained in vacuo for KI--LiI eutectic composition. The following tabulations are given: cell voltage losses in the recycling process; critical data used in the calculation of energy conversion degradation of the system due to transport of Li and LiOH . H/sub 2/O between fixed-site recycling centers and refueling stations; and a breakdown of energy losses associated with Li production, battery discharge, and materials transport. 3 figures, 3 tables. (RWR)

  7. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  8. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries.

    Science.gov (United States)

    Shui, Jianglan; Du, Feng; Xue, Chenming; Li, Quan; Dai, Liming

    2014-03-25

    High energy efficiency and long cycleability are two important performance measures for Li-air batteries. Using a rationally designed oxygen electrode based on a vertically aligned nitrogen-doped coral-like carbon nanofiber (VA-NCCF) array supported by stainless steel cloth, we have developed a nonaqueous Li-O2 battery with an energy efficiency as high as 90% and a narrow voltage gap of 0.3 V between discharge/charge plateaus. Excellent reversibility and cycleability were also demonstrated for the newly developed oxygen electrode. The observed outstanding performance can be attributed to its unique vertically aligned, coral-like N-doped carbon microstructure with a high catalytic activity and an optimized oxygen/electron transportation capability, coupled with the microporous stainless steel substrate. These results demonstrate that highly efficient and reversible Li-O2 batteries are feasible by using a rationally designed carbon-based oxygen electrode.

  9. Technical development and application of primary battery for air defense missile%防空导弹弹上电池技术的发展及应用

    Institute of Scientific and Technical Information of China (English)

    蔡绍伟

    2012-01-01

    防空导弹普遍采用弹上电池作为弹上主电源,经历了铅酸电池、锌银电池到热电池三个发展阶段.介绍了锌银电池,钙-铬酸钙体系、锂及锂合金-二硫化铁体系热电池技术的发展、性能特点及国内外发展现状.论述了锌银储备电池及热电池的组成、工作原理和技术优势.指出了防空导弹弹上电池技术的发展方向.%The technical development,performance and developing status of Zn/AgO battery both in China and abroad,calcium/calcium chromate system,and lithium (lithium alloy)/iron disultide system thermal batteries were introduced.The structure,principle and technical advantages of Zn/AgO battery and thermal battery were discussed.Finally,some development directions of the primary battery for air defense missile were also forecasted.

  10. An Efficient Bifunctional Electrocatalyst for a Zinc-Air Battery Derived from Fe/N/C and Bimetallic Metal-Organic Framework Composites.

    Science.gov (United States)

    Wang, Mengfan; Qian, Tao; Zhou, Jinqiu; Yan, Chenglin

    2017-02-15

    Efficient bifunctional electrocatalysts with desirable oxygen activities are closely related to practical applications of renewable energy systems including metal-air batteries, fuel cells, and water splitting. Here a composite material derived from a combination of bimetallic zeolitic imidazolate frameworks (denoted as BMZIFs) and Fe/N/C framework was reported as an efficient bifunctional catalyst. Although BMZIF or Fe/N/C alone exhibits undesirable oxygen reaction activity, a combination of these materials shows unprecedented ORR (half-wave potential of 0.85 V as well as comparatively superior OER activities (potential@10 mA cm(-2) of 1.64 V), outperforming not only a commercial Pt/C electrocatalyst but also most reported bifunctional electrocatalysts. We then tested its practical application in Zn-air batteries. The primary batteries exhibit a high peak power density of 235 mW cm(-2), and the batteries are able to be operated smoothly for 100 cycles at a curent density of 10 mA cm(-2). The unprecedented catalytic activity can be attritued to chemical coupling effects between Fe/N/C and BMZIF and will aid the development of highly active electrocatalysts and applications for electrochemical energy devices.

  11. The study of aluminium anodes for high power density Al/air batteries with brine electrolytes

    Science.gov (United States)

    Nestoridi, Maria; Pletcher, Derek; Wood, Robert J. K.; Wang, Shuncai; Jones, Richard L.; Stokes, Keith R.; Wilcock, Ian

    Aluminium alloys containing small additions of both tin (∼0.1 wt%) and gallium (∼0.05 wt%) are shown to dissolve anodically at high rates in sodium chloride media at room temperatures; current densities >0.2 A cm -2 can be obtained at potentials close to the open circuit potential, ∼-1500 mV versus SCE. The tin exists in the alloys as a second phase, typically as ∼1 μm inclusions (precipitates) distributed throughout the aluminium structure, and anodic dissolution occurs to form pits around the tin inclusions. Although the distribution of the gallium in the alloy could not be established, it is also shown to be critical in the formation of these pits as well as maintaining their activity. The stability of the alloys to open circuit corrosion and the overpotential for high rate dissolution, both critical to battery performance, are shown to depend on factors in addition to elemental composition; both heat treatment and mechanical working influence the performance of the alloy. The correlation between alloy performance and their microstructure has been investigated.

  12. The study of aluminium anodes for high power density Al/air batteries with brine electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nestoridi, Maria; Pletcher, Derek [School of Chemistry, The University, Southampton SO19 1BJ (United Kingdom); Wood, Robert J.K.; Wang, Shuncai [School of Engineering Sciences, The University, Southampton SO19 1BJ (United Kingdom); Jones, Richard L.; Stokes, Keith R.; Wilcock, Ian [dstl, Physical Sciences Department, Porton Down, Salisbury, Wilts SP4 0JQ (United Kingdom)

    2008-03-15

    Aluminium alloys containing small additions of both tin ({proportional_to}0.1 wt%) and gallium ({proportional_to}0.05 wt%) are shown to dissolve anodically at high rates in sodium chloride media at room temperatures; current densities >0.2 A cm{sup -2} can be obtained at potentials close to the open circuit potential, {proportional_to}-1500 mV versus SCE. The tin exists in the alloys as a second phase, typically as {proportional_to}1 {mu}m inclusions (precipitates) distributed throughout the aluminium structure, and anodic dissolution occurs to form pits around the tin inclusions. Although the distribution of the gallium in the alloy could not be established, it is also shown to be critical in the formation of these pits as well as maintaining their activity. The stability of the alloys to open circuit corrosion and the overpotential for high rate dissolution, both critical to battery performance, are shown to depend on factors in addition to elemental composition; both heat treatment and mechanical working influence the performance of the alloy. The correlation between alloy performance and their microstructure has been investigated. (author)

  13. Battery cell module

    Energy Technology Data Exchange (ETDEWEB)

    Shambaugh, J.S.

    1981-11-23

    A modular lithium battery having a plurality of cells, having electrical connecting means connecting the cells to output terminals, and venting means for releasing discharge byproducts to a chemical scrubber is disclosed. Stainless steel cell casings are potted in an aluminum modular case with syntactic foam and epoxy. The wall thickness resulting is about 0.5 inches.

  14. Morphology-Controllable Synthesis of Zn-Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc-Air Batteries and Water Electrolysis.

    Science.gov (United States)

    Wu, Xiaoyu; Han, Xiaopeng; Ma, Xiaoya; Zhang, Wei; Deng, Yida; Zhong, Cheng; Hu, Wenbin

    2017-04-12

    It remains an ongoing challenge to develop cheap, highly active, and stable electrocatalysts to promote the sluggish electrocatalytic oxygen evolution, oxygen reduction, and hydrogen evolution reactions for rechargeable metal-air batteries and water-splitting systems. In this work, we report the morphology-controllable synthesis of zinc cobalt mixed sulfide (Zn-Co-S) nanoarchitectures, including nanosheets, nanoplates, and nanoneedles, grown on conductive carbon fiber paper (CFP) and the micronanostructure dependent electrochemical efficacy for catalyzing hydrogen and oxygen in zinc-air batteries and water electrolysis. The formation of different Zn-Co-S morphologies was attributed to the synergistic effect of decomposed urea products and the corrosion of NH4F. Among synthesized Zn-Co-S nanostructures, the nanoneedle arrays supported on CFP exhibit superior trifunctional activity for oxygen reduction, oxygen evolution, and hydrogen evolution reactions than its nanosheet and nanoplate counterparts through half reaction testing. It also exhibited better catalytic durability than Pt/C and RuO2. Furthermore, the Zn-Co-S nanoneedle/CFP electrode enables rechargeable Zn-air batteries with low overpotential (0.85 V), high efficiency (58.1%), and long cycling lifetimes (200 cycles) at 10 mA cm(-2) as well as considerable performance for water splitting. The superior performance is contributed to the integrated nanoneedle/CFP nanostructure, which not only provides enhanced electrochemical active area, but also facilitates ion and gas transfer between the catalyst surface and electrolyte, thus maintaining an effective solid-liquid-gas interface necessary for electrocatalysis. These results indicate that the Zn-Co-S nanoneedle/CFP system is a low cost, highly active, and durable electrode for highly efficient rechargeable zinc-air batteries and water electrolysis in alkaline solution.

  15. Co3O4-CeO2/C as a Highly Active Electrocatalyst for Oxygen Reduction Reaction in Al-Air Batteries.

    Science.gov (United States)

    Liu, Kun; Huang, Xiaobing; Wang, Haiyan; Li, Fuzhi; Tang, Yougen; Li, Jingsha; Shao, Minhua

    2016-12-21

    Developing high-performance and low-cost electrocatalysts for oxygen reduction reaction (ORR) is still a great challenge for Al-air batteries. Herein, CeO2, a unique ORR promoter, was incorporated into ketjenblack (KB) supported Co3O4 catalyst. We developed a facile two-step hydrothermal approach to fabricate Co3O4-CeO2/KB as a high-performance ORR catalyst for Al-air batteries. The ORR activity of Co3O4/KB was significantly increased by mixing with CeO2 nanoparticles. In addition, the Co3O4-CeO2/KB showed a better electrocatalytic performance and stability than 20 wt % Pt/C in alkaline electrolytes, making it a good candidate for highly active ORR catalysts. Co3O4-CeO2/KB favored a four-electron pathway in ORR due to the synergistic interactions between CeO2 and Co3O4. In full cell tests, the Co3O4-CeO2/KB exhibited a higher discharge voltage plateau than CeO2/KB and Co3O4/KB when used in cathode in Al-air batteries.

  16. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    Science.gov (United States)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  17. Communication: The influence of CO2 poisoning on overvoltages and discharge capacity in non-aqueous Li-Air batteries

    Science.gov (United States)

    Mekonnen, Yedilfana S.; Knudsen, Kristian B.; Mýrdal, Jon S. G.; Younesi, Reza; Højberg, Jonathan; Hjelm, Johan; Norby, Poul; Vegge, Tejs

    2014-03-01

    The effects of Li2CO3 like species originating from reactions between CO2 and Li2O2 at the cathode of non-aqueous Li-air batteries were studied by density functional theory (DFT) and galvanostatic charge-discharge measurements. Adsorption energies of CO2 at various nucleation sites on a stepped ({1bar 100}) Li2O2 surface were determined and even a low concentration of CO2 effectively blocks the step nucleation site and alters the Li2O2 shape due to Li2CO3 formation. Nudged elastic band calculations show that once CO2 is adsorbed on a step valley site, it is effectively unable to diffuse and impacts the Li2O2 growth mechanism, capacity, and overvoltages. The charging processes are strongly influenced by CO2 contamination, and exhibit increased overvoltages and increased capacity, as a result of poisoning of nucleation sites: this effect is predicted from DFT calculations and observed experimentally already at 1% CO2. Large capacity losses and overvoltages are seen at higher CO2 concentrations.

  18. Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode

    Science.gov (United States)

    grosse Austing, Jan; Nunes Kirchner, Carolina; Hammer, Eva-Maria; Komsiyska, Lidiya; Wittstock, Gunther

    2015-01-01

    The performance of a unitised bidirectional vanadium/air redox flow battery (VARFB) is described. It contains a two-layered cathode consisting of a gas diffusion electrode (GDE) with Pt/C catalyst for discharging and of an IrO2 modified graphite felt for charging. A simple routine is shown for the modification of a graphite felt with IrO2. A maximum energy efficiency of 41.7% at a current density of 20 mA cm-2 as well as an average discharge power density of 34.6 mW cm-2 at 40 mA cm-2 were obtained for VARFB operation at room temperature with the novel cathode setup. A dynamic hydrogen electrode was used to monitor half cell potentials during operation allowing to quantify the contribution of the cathode to the overall performance of the VARFB. Four consecutive cycles revealed that crossover of vanadium ions took place and irreversible degradation processes within the reaction unit lead to a performance decrease.

  19. Electrochemical Activity of a La0.9Ca0.1Co1−xFexO3 Catalyst for a Zinc Air Battery Electrode

    OpenAIRE

    Seungwook Eom; Seyoung Ahn; Sanghwan Jeong

    2015-01-01

    The optimum composition of cathode catalyst has been studied for rechargeable zinc air battery application. La0.9Ca0.1Co1−xFexO3  (x=0–0.4) perovskite powders were prepared using the citrate method. The substitution ratio of Co2+ with Fe3+ cations was controlled in the range of 0–0.4. The optimum substitution ratio of Fe3+ cations was determined by electrochemical measurement of the air cathode composed of the catalyst, polytetrafluoroethylene (PTFE) binder, and Vulcan XC-72 carbon. The subst...

  20. Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet

    Science.gov (United States)

    Pei, X.; Lu, X.; Liu, J.; Liu, D.; Yang, Y.; Ostrikov, K.; Chu, Paul K.; Pan, Y.

    2012-04-01

    Effective biofilm inactivation using a handheld, mobile plasma jet powered by a 12 V dc battery and operated in open air without any external gas supply is reported. This cold, room-temperature plasma is produced in self-repetitive nanosecond discharges with current pulses of ˜100 ns duration, current peak amplitude of ˜6 mA and repetition rate of ˜20 kHz. It is shown that the reactive plasma species penetrate to the bottom layer of a 25.5 µm-thick Enterococcus faecalis biofilm and produce a strong bactericidal effect. This is the thickest reported biofilm inactivated using room-temperature air plasmas.

  1. Zn/gelled 6 M KOH/O 2 zinc-air battery

    Science.gov (United States)

    Mohamad, A. A.

    The gel electrolyte for the zinc-air cell was prepared by mixing hydroponics gel with a 6 M potassium hydroxide aqueous solution. The self-discharge of cells was characterized by measuring the open-circuit voltage. The effect of a discharge rate of 50 mA constant current on cell voltage and plateau hour, as well as the voltage-current and current density-power density were measured and analysed. The electrode degradation after discharge cycling was characterized by structural and surface methods. The oxidation of the electrode surface further blocked the utilization of the Zn anode and was identified as a cause for the failure of the cell.

  2. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries

    Science.gov (United States)

    Du, Guojun; Liu, Xiaogang; Zong, Yun; Hor, T. S. Andy; Yu, Aishui; Liu, Zhaolin

    2013-05-01

    We report the preparation of MnO2 nanotubes functionalized with Co3O4 nanoparticles and their use as bifunctional air cathode catalysts for oxygen reduction reaction and oxygen evolution reaction in rechargeable zinc-air batteries. These hybrid MnO2/Co3O4 nanomaterials exhibit enhanced catalytic reactivity toward oxygen evolution reaction under alkaline conditions compared with that in the presence of MnO2 nanotubes or Co3O4 nanoparticles alone.We report the preparation of MnO2 nanotubes functionalized with Co3O4 nanoparticles and their use as bifunctional air cathode catalysts for oxygen reduction reaction and oxygen evolution reaction in rechargeable zinc-air batteries. These hybrid MnO2/Co3O4 nanomaterials exhibit enhanced catalytic reactivity toward oxygen evolution reaction under alkaline conditions compared with that in the presence of MnO2 nanotubes or Co3O4 nanoparticles alone. Electronic supplementary information (ESI) available: Zinc-air cell device, XPS survey scan and power density of the cell. See DOI: 10.1039/c3nr00300k

  3. Dry Pressed Holey Graphene Composites for Li-air Battery Cathodes

    Science.gov (United States)

    Lacey, Steven; Lin, Yi; Hu, Liangbing

    Graphene is considered an ``omnipotent'' material due to its unique structural characteristics and chemical properties. By heating graphene powder in an open-ended tube furnace, a novel compressible carbon material, holey graphene (hG), can be created with controlled porosity and be further decorated with nanosized catalysts to increase electrocatalytic activity. All hG-based materials were characterized using various microscopic and spectroscopic techniques to obtain morphological, topographical, and chemical information as well as to identify any disordered/crystalline phases. In this work, an additive-free dry press method was employed to press the hG composite materials into high mass loading mixed, sandwich, and double-decker Li-air cathode architectures using a hydraulic press. The sandwich and double-decker (i.e. Big Mac) cathode architectures are the first of its kind and can be discharged for more than 200 hours at a current density of 0.2 mA/cm2. The scalable, binderless, and solventless dry press method and unique Li-air cathode architectures presented here greatly advance electrode fabrication possibilities and could promote future energy storage advancements. Support appreciated from the NASA Internships Fellowships Scholarships (NIFS) Program.

  4. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries

    Science.gov (United States)

    Prabu, Moni; Ketpang, Kriangsak; Shanmugam, Sangaraju

    2014-02-01

    A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a remarkable electrocatalytic activity towards oxygen reduction and evolution in an aqueous alkaline medium. The extraordinary bi-functional catalytic activity towards both ORR and OER was observed by the low over potential (0.84 V), which is better than that of noble metal catalysts [Pt/C (1.16 V), Ru/C (1.01 V) and Ir/C (0.92 V)], making them promising cathode materials for metal-air batteries. Furthermore, the rechargeable zinc-air battery with NCO-A1 as a bifunctional electrocatalyst displays high activity and stability during battery discharge, charge, and cycling processes.A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a

  5. Life-cycle energy analyses of electric vehicle storage batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

    1980-12-01

    The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

  6. Zn/gelled 6M KOH/O{sub 2} zinc-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, A.A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2006-09-13

    The gel electrolyte for the zinc-air cell was prepared by mixing hydroponics gel with a 6M potassium hydroxide aqueous solution. The self-discharge of cells was characterized by measuring the open-circuit voltage. The effect of a discharge rate of 50mA constant current on cell voltage and plateau hour, as well as the voltage-current and current density-power density were measured and analysed. The electrode degradation after discharge cycling was characterized by structural and surface methods. The oxidation of the electrode surface further blocked the utilization of the Zn anode and was identified as a cause for the failure of the cell. (author)

  7. Stability of carbon electrodes for aqueous lithium-air secondary batteries

    Science.gov (United States)

    Ohkuma, Hirokazu; Uechi, Ichiro; Matsui, Masaki; Takeda, Yasuo; Yamamoto, Osamu; Imanishi, Nobuyuki

    2014-01-01

    The air electrode performance of various carbon materials, such as Ketjen black (KB), acetylene black (AB and AB-S), Vulcan XC-72R (VX), and vapor grown carbon fiber (VGCF) with and without La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) catalyst were examined in an aqueous solution of saturated LiOH with 10 M LiCl in the current density range 0.2-2.0 mA cm-2. The best performance for oxygen reduction and evolution reactions was observed for the KB electrode, which has the highest surface area among the carbon materials examined. A steady over-potential of 0.2 V was obtained for the oxygen reduction reaction using the KB electrode without the catalyst, while the over-potential was 0.15 V for KB with the LSCF catalyst at 2.0 mA cm-2. The over-potentials for the oxygen evolution reaction were slightly higher than those for the oxygen reduction reaction, and gradually increased with the polarization period. Analysis of the gas in the cell after polarization above 0.4 V revealed the evolution of a small amount of CO during the oxygen evolution reaction by the decomposition of carbon in the electrode. The amount of CO evolved was significantly decreased by the addition of LSCF to the carbon electrode.

  8. A Metal-Free, Free-Standing, Macroporous Graphene@g-C₃N₄ Composite Air Electrode for High-Energy Lithium Oxygen Batteries.

    Science.gov (United States)

    Luo, Wen-Bin; Chou, Shu-Lei; Wang, Jia-Zhao; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-06-01

    The nonaqueous lithium oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg(-1)), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high energy density, long cycling stability, and low cost, the air electrode structure and the electrocatalysts play important roles. Here, a metal-free, free-standing macroporous graphene@graphitic carbon nitride (g-C3N4) composite air cathode is first reported, in which the g-C3N4 nanosheets can act as efficient electrocatalysts, and the macroporous graphene nanosheets can provide space for Li2O2 to deposit and also promote the electron transfer. The electrochemical results on the graphene@g-C3N4 composite air electrode show a 0.48 V lower charging plateau and a 0.13 V higher discharging plateau than those of pure graphene air electrode, with a discharge capacity of nearly 17300 mA h g(-1)(composite) . Excellent cycling performance, with terminal voltage higher than 2.4 V after 105 cycles at 1000 mA h g(-1)(composite) capacity, can also be achieved. Therefore, this hybrid material is a promising candidate for use as a high energy, long-cycle-life, and low-cost cathode material for lithium oxygen batteries.

  9. Research Progress and the Limiting Factors that Affect Performance of the Lithium Air Batteries%锂-空气电池性能的影响因素及研究进展

    Institute of Scientific and Technical Information of China (English)

    顾大明; 张传明; 顾硕; 张音; 王余; 强亮生

    2012-01-01

    锂-空气电池理论比能量高达3622 Wh·kg^-1(设阴极还原产物为Li2O2), 远超过目前已有的任何电池, 有希望成为新一代的二次电池。 然而, 目前其实用化研究还处于探索阶段, 在其商用之前还有许多工作要做。 对影响锂-空气电池性能的因素以及近期的研究进展进行综述, 总结了阴极材料的组成和微观结构、电解质的种类及组成、阴极疏水膜、电池结构设计、电池的组装及充、放电的工艺过程等对电池比能量、比容量以及循环性能等的影响, 概述了锂-空气电池的表征手段, 并对锂-空气电池的应用前景进行了展望。%Lithium air battery has attracted extensive attention due to its potential in achieving much higher practical specific energy than existing batteries, and it may become one of the most promising next generation battery technologies. Lithium air battery has the compelling advantage of theoretical specific energy, i.e. 3622 Wh·kg^-1 (assuming Li2O2 is the product), which is attributed to the use of a lithium metal anode and the ready availability of the cathode oxidant, i.e. oxygen, from the surrounding air. Other advantages include stable potentials, high safety, low cost, friendly to environment. However, before Lithium air batteries can be commercialized, the following challenges still need to be overcome: optimization of the cathode materials structure and the electrolyte composition, enhancement of the actual discharge special capacity, and improvement of the cycle performance and elucidating the reaction mechanism that occurs during charge and discharge. In this paper, we presented the current research progress and the limiting factors that affect performance of the batteries, such as microcomposition and microstructure of the cathode materials, constitution of the electrolytes, oxygen selective membranes, the structure design for the lithium air batteries, charge and discharge mechanism; compared

  10. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  11. 废旧锂离子电池正极材料中钴铝同浸过程研究%Study on Cobalt and Aluminum Leaching Process from Spent Lithium Ion Batteries Cathode Materials

    Institute of Scientific and Technical Information of China (English)

    尹晓莹; 满瑞林; 赵鹏飞; 常伟; 徐筱群

    2013-01-01

    Through calculation of basic thermodynamics data and drawing of E-pH diagram of reaction system , the leaching process of recovery of cobalt and aluminum from spent lithium ion battery cathode materials was carried out. The effects of sulfuric acid concentration, leaching time, leaching temperature, hydrogen peroxide dosage and ratio of solid to liquid (L/S) on leaching rate of cobalt and aluminum were investigated. The results show that under the conditions including 273 K, - 0. 277 < E < (1. 612 -0. 1182pH) , and pH<2. 17, aluminum can transform LiCoO2 into Co2+. As the leaching rate of cobalt was relatively low due to the limit in dynamics, a proper auxiliary reductant was necessary in the leaching process. The leaching rate of cobalt is 98. 5% and the recovery of aluminum foil is 76. 5% under the optimum leaching conditions including concentration of H2SO4 of 5 mol/L, reacting time of 120 min, temperature of 85 ℃ , and dosage of hydrogen peroxide of 0. 5 mL/g, 98. 6% of aluminum in lixivium is removed by ammonium hydrogen carbonate with the end pH value of 4. 5.%通过基础热力学数据计算以及绘制反应体系的E-pH图,对废旧锂离子电池正极材料回收中钴铝同浸过程进行研究,考察了硫酸浓度、浸出时间、浸出温度、双氧水用量及液固比对钴、铝浸出率的影响.结果表明,在273 K,-0.277<E<(1.612-0.1182pH),pH<2.17时,铝可以将LiCoO2转化为Co2+,但由于动力学原因,钴的浸出并不完全,需要加入辅助还原剂双氧水.正极在1.5 mol/L H2SO4、反应时间120 min、反应温度85℃、双氧水0.5 mL/g的条件下浸出,钴浸出率可以达到98.5%,同时可以回收76.5%的铝箔.使用碳酸氢铵除铝,终点pH为4.5时,可以除去浸出液中98.6%的铝.

  12. On the Zinc Air Battery Electrode Surface Seepage Phenomenon%锌空气电池电极表面渗液现象的研究

    Institute of Scientific and Technical Information of China (English)

    杨永青; 徐献芝; 李清宇; 刘晓毅

    2012-01-01

    渗液问题是锌空气电池的主要问题之一.本文通过如下实验:聚四氟乙烯膜(PTFE,poly tetra fluoro ethylene)表面特性实验、电池风冷放电、空气电极电压实验和类列斯实验,对可能影响电池渗液的因素进行了研究.这些因素包括:PTFE膜、温度、电压、电荷总量、电解质溶液.实验结果表明:PTFE膜经过KOH溶液浸泡一段时间后,其接触角会显著变小,疏水性变差;温度和电压会对渗液现象产生影响;在各类电解质溶液中,KOH溶液渗液最严重;放电过程中的电荷总量对渗液问题基本没影响.实验结果分析得出,这类电池渗液主要是由于上述因素导致电解液表面张力变化,引起气液界面移动导致的.%Seepage is one of the main problems of zinc air battery. Factors that may affect the battery seepage were investigated through following experiments: PTFE (poly tetra fluoro ethylene) film surface properties experiment, battery cooling discharge experiment, air electrode voltage experiment and Antilliean electro-osmosis test. These involved factors include PTFE film, temperature, voltaget charge quantity and electrolyte solution. Experimental results show that after soak in KOH solution for a period of time, the contact angle of PTFE film becomes significantly small and its hydrophobic property deteriorates; temperature and voltage indeed have influence on seepage phenomenon; KOH solution seepage is the most serious in all kinds of electrolyte solution) the total charge in discharge process basically has no influence on seepage. Based on analysis of experimental results, it is concluded that the battery seepage is caused by the change of electrolyte solution surface tension induced by above factors, which results in gas-liquid interface movement, Above results are valuable for improving the performance of zinc air battery.

  13. Potassium Secondary Batteries.

    Science.gov (United States)

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  14. Electric-vehicle batteries

    Science.gov (United States)

    Oman, Henry; Gross, Sid

    1995-02-01

    Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour.

  15. A critical review of zinc air battery:present status and perspective%锌空气电池关键问题与发展趋势

    Institute of Scientific and Technical Information of China (English)

    洪为臣; 马洪运; 赵宏博; 王保国

    2016-01-01

    With the advantages of high energy density,safe and reliable aqueous electrolyte and low cost,zinc-air batteries show important potential as well as challenge for electrical energy conversion and storage. These batteries used in pure electric vehicles,mobile tools and electricity storage for new energy power generations,have promising market and applications. However,some issues related to electrode structure and electrocatalyst in cathode and zinc dendrite growth in anode restrict its further development and application. This paper analyzes the critical scientific issues in zinc air batteries, especially for the electrocatalyst of air electrode,electrode configuration,dendritic growth in zinc negative electrode,discusses the battery performance in details,and points out the main barriers in developing advanced battery technology. In summary the development of novel electrocatalyst,air electrode,manufacturing technology for long-term cycle life and low cost zinc air batteries are urgent problems to be settled at present.%电化学可充的锌-空气电池具有能量密度高、水系电解液安全和成本低等特点,是电能高效转换和储存的重要技术方向,无论作为动力电池用于纯电动汽车等移动交通工具,还是用于新能源发电过程储能,都具有广阔发展前景。但正极存在电极结构设计和催化剂开发问题,负极存在抑制枝晶、控制析氢和提高锌循环性能等挑战,严重阻碍了锌空气电池的商业化进程。本文详细分析了锌-空气电池的关键科学问题,尤其是关于空气电极的催化剂、电极结构、锌枝晶等问题,结合电池性能进行详尽讨论。归纳现有研究后认为:开发新型电催化剂和空气电极,发展循环寿命长、成本低的锌负极制造技术与工艺,是锌空气电池所面临的亟需解决问题和未来的发展趋势。

  16. Development of numerical model to investigate the laser driven shock waves from aluminum target into ambient air at atmospheric pressure and its comparison with experiment

    Science.gov (United States)

    Shiva, S. Sai; Leela, Ch.; Chaturvedi, S.; Sijoy, C. D.; Kiran, P. Prem

    2017-01-01

    A one-dimensional, three-temperature (electron, ion and thermal radiation) numerical model was developed to study the laser induced shock wave (LISW) propagation from aluminum target in ambient air at atmospheric pressure. The hydrodynamic equations of mass, momentum and energy are solved by using an implicit scheme in Lagrangian form. The model considers the laser absorption to take place via inverse-bremsstrahlung due to electron-ion (e-i) process. The flux limited electron thermal energy transport due e-i and e-n thermal energy relaxation equations are solved implicitly. The experimental characterization of spatio-temporal evolution of the LISW in air generated by focusing a second harmonic (532 nm, 7ns) of Nd:YAG laser on to surface of Al is performed using shadowgraphy technique with a temporal resolution of 1.5 ns. The velocity of SW observed in the experiments over 0.2 µs-8 µs time scales was compared with the numerical results to understand the SW transition from planar to spherical evolution.

  17. Electrochemical Activity of a La0.9Ca0.1Co1−xFexO3 Catalyst for a Zinc Air Battery Electrode

    Directory of Open Access Journals (Sweden)

    Seungwook Eom

    2015-01-01

    Full Text Available The optimum composition of cathode catalyst has been studied for rechargeable zinc air battery application. La0.9Ca0.1Co1−xFexO3  (x=0–0.4 perovskite powders were prepared using the citrate method. The substitution ratio of Co2+ with Fe3+ cations was controlled in the range of 0–0.4. The optimum substitution ratio of Fe3+ cations was determined by electrochemical measurement of the air cathode composed of the catalyst, polytetrafluoroethylene (PTFE binder, and Vulcan XC-72 carbon. The substitution by Fe enhanced the electrochemical performances of the catalysts. Considering oxygen reduction/evolution reactions and cyclability, we achieved optimum substitution level of x=0.1 in La0.9Ca0.1Co1−xFexO3.

  18. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Brahim Mebarki

    2013-01-01

    Full Text Available The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.

  19. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Directory of Open Access Journals (Sweden)

    Philipp Adelhelm

    2015-04-01

    Full Text Available Research devoted to room temperature lithium–sulfur (Li/S8 and lithium–oxygen (Li/O2 batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.

  20. Mechanism of reaction in NaAlCl4 molten salt batteries with nickel felt cathodes and aluminum anodes. 2: Experimental results and comparison with model calculations

    Science.gov (United States)

    Knutz, B. C.; Berg, R. W.; Hjuler, H. A.; Bjerrum, N. J.

    1993-12-01

    The battery systems: Al/NaCl-AlCl3-Al2 X3/Ni-felt (X = S, Se, Te) and the corresponding system without chalcogen have been studied experimentally at 175 C. Charge/discharge experiments, performed on cells with NaCl saturated melts, show that advantages with regard to rate capability and cyclability can be obtained with systems containing dissolved chalcogen compared with the chalcogen-free system. Exchange of chalcogen between cathode and electrolyte during cycling was confirmed by performing gravimetric analysis and Raman spectroscopy of the electrolytes. Cathode reactions were studied by coulometric titrations (performed on cells with slightly acidic NaCl-AlCl3 melts and small amounts of chalcogen) and compared with model calculations. Cells containing chalcogen revealed at least three voltage plateaus during cycling. The lowest plateau is associated with formation/decomposition of essentially Ni(y)S(z) an d Ni(y)Se(z) in the sulfide and selenide system, respectively. Cells containing selenide revealed extra capacity below the Ni(y) Se(z)-plateau, most probably associated with a Al(v)Ni(y)Se(z) compound. On the second plateau of sulfide systems NiCl2 or a Ni(y)S(z) Cl(2y - 2z) compound with y greater than (4.4 +/- 0.2), z is formed during charging. Reduction of the formed compound to Ni takes place via consumption of sodium chloride.

  1. NixAl1-xTiO3催化剂对锌-空气电池性能影响的研究%Influence of the Catalyst NixAl1-xTiO3 on the Properties of Zinc-Air Battery

    Institute of Scientific and Technical Information of China (English)

    周春森; 竺培显; 郭佳鑫

    2011-01-01

    通过化学共沉淀法制备了钛酸镍铝掺杂催化剂,利用X射线衍射光谱法(XRD)和扫描电子显微镜法(SEM)对制备的钛酸镍铝掺杂催化剂进行检测,同时采用阴极极化曲线、恒电位放电和恒电流放电等电化学测试手段来验证,研究该催化剂在碱性电解液NaOH中的催化性能.结果表明,化学共沉淀法制备的钛酸镍铝掺杂催化剂(NirAl1-rTiO3)为钙钛矿型结构.Nix Al1-xTiO3催化剂在碱性介质6mol/LNaOH中具有较好的电催化活性,在锌-空气电池中可进行大电流放电.%The nickel aluminum titanate doped catalysts were prepared by chemical co-precipitation, the use of X-ray diffraction spectroscopy(XRD) and scanning electron microscopy(SEM) on the preparation of nickel aluminum titanate doped catalysts were detected, while cathodic polarization curves, potentiostatic and galvanostatic discharge electrochemical means to verify the catalyst in the alkaline electrolyte of NaOH in the catalytic performance. The results show that the chemical coprecipitation of nickel aluminum titanate doped catalysts(NixAl1-xTiO3) perovskite-type structure. Nir Al1-xTiO3 in alkaline medium of 6mol/L NaOH catalyst has a good electrocatalytic activity in the zinc-air battery and can be large current discharge.

  2. Oxalate-assisted oxidative degradation of 4-chlorophenol in a bimetallic, zero-valent iron-aluminum/air/water system.

    Science.gov (United States)

    Fan, Jinhong; Wang, Hongwu; Ma, Luming

    2016-08-01

    The reaction of zero-valent iron and aluminum with oxygen produced reactive oxidants that can oxidize 4-chlorophenol (4-CP). However, oxidant yield without metal surface cleaning to dissolve the native oxide layer or in the absence of ligands was too low for practical applications. The addition of oxalate (ox) to dissolved oxygen-saturated solution of Fe(0)-Al(0) significantly increased oxidant yield because of the dissolution, pH buffer, and complexing characteristics of ox. Ox-enhanced reactive oxidant generation was affected by ox concentration and solution pH. The critical effect of ox dosing was confirmed with the reactive species of [Fe(II)(ox)0] and [Fe(II)(ox)2 (2-)]. Systematic studies on the effect of the initial and in situ solution pH revealed that 4-CP oxidation was controlled by the continuous release of dissolved Fe(2+) and Al(3+), their fate, and the activation mechanisms of O2 reduction. The degradation pathway of 4-CP in ox-enhanced Fe(0)-Al(0)/O2 may follow the 4-chlorocatechol pathway. The robustness of the ox-enhanced Al(0)-Fe(0)-O2 process was determined with one-time dosing of ox. Therefore, ox is an ideal additive to enhancing the Fe(0)-Al(0)/O2 system for the oxidative degradation of aqueous organic pollutants.

  3. Impact of aluminum on the oxidation of lipids and enzymatic lipolysis in monomolecular films at the air/water interface.

    Science.gov (United States)

    Corvis, Yohann; Korchowiec, Beata; Brezesinski, Gerald; Follot, Sébastien; Rogalska, Ewa

    2007-03-13

    There is evidence that serious pathologies are associated with aluminum (Al). In the present work, the influence of Al on enzymatic lipolysis was studied with the aim to get more insight into the possible link between the Al-induced membrane modification and the cytotoxicity of the trivalent cation (AlIII). Lipid monolayers were used as model membranes. The monomolecular film technique allowed monitoring the Al-dependent modifications of the lipid monolayer properties and enzyme kinetics. Two enzymes, namely, Candida rugosa lipase and a calcium (CaII)-dependent phospholipase A2 from porcine pancreas, were used to catalyze the lipolysis of triglyceride and phosphoglyceride monolayers, respectively. The results obtained show that Al modifies both the monolayer structure and enzymatic reaction rates. While the enzymes used in this study can be considered as probes detecting lipid membrane properties, it cannot be excluded that in physiological conditions modulation of the enzyme action by the Al-bound membranes is among the reasons for Al toxicity.

  4. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al{sub 2}O{sub 3} on Li ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kashish [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States); Routkevitch, Dmitri; Varaksa, Natalia [InRedox, Longmont, Colorado 80544 (United States); George, Steven M., E-mail: Steven.George@Colorado.Edu [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-01-15

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the pores of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability. This S

  5. Electric batteries and the environment. 2. rev. and enlarged ed. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F.; Hartinger, L.; Kiehne, H.A.; Niklas, H.; Schiele, R.; Steil, H.U.

    1990-01-01

    The book deals with the prodution, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. Subjects: 1. Toxicological aspects of battery substances; 2. legal foundations of environmental protection; 3. off-air purification in battery production; 4. dust monitoring; 5. waste water of the battery industry; 6. safety aspects of battery operation; 7. recycling of battery materials; 8. disposal of used primary batteries. (orig./MM) With 67 figs.

  6. High efficiency aqueous and hybrid lithium-air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting membranes

    Science.gov (United States)

    Safanama, Dorsasadat; Adams, Stefan

    2017-02-01

    Due to their extremely high specific energy, rechargeable Li-air batteries could meet the demand for large-scale storage systems to integrate renewable sources into the power grid. Li-air batteries with aqueous catholytes with high solubility of discharge products have a higher potential to reach their slightly lower theoretical limits in practical devices. In this work, we demonstrate aqueous and hybrid Li-air batteries with NASICON-type Li1+xAxGe2-x(PO4)3 ceramic as anode-protecting membrane. The LAGP ceramic pellets with room temperature conductivity >10-4 S cm-1 are synthesized by melt quenching and subsequently annealed based on our optimized heat treatment cycle. Hybrid Li-air batteries are assembled by sandwiching LAGP membranes between Li-anode chamber and catholyte solutions (of various pH values) with CNT/Pt as air-cathode. When the two electron reduction mechanism prevails, overpotentials below 0.2 V are achieved for currents up to 0.07 mA cm-2 leading to energy efficiencies exceeding 98%.

  7. Progress of Cathode Material and Electrolyte in Non-aqueous Li-Air Battery%非水系锂空气电池的正极材料和电解液研究进展

    Institute of Scientific and Technical Information of China (English)

    杨凤玉; 张蕾蕾; 徐吉静; 刘清朝; 赵敏寿; 张新波

    2013-01-01

    A Li-air battery could provide much higher energy density than conventional lithium-ion battery,which is comparable to gasoline and,thus,many attentions have been paid to the Li-air battery in recent years.This paper summarizes the latest development of the cathode material and electrolyte in the non-aqueous Li-air battery.The cathode materials concern commercial carbon,artificial carbon with a defined morphology,catalyst and conducting polymer.Electrolytes concern widely used solvents including ester,ether,sulfone,amine and ionic liquid.Finally,the main problems in the non-aqueous Li-air battery have been pointed out and look forward to the future on non-aqueous Li-air battery.%锂空气电池的能量密度是传统锂离子电池的5~10倍,可与汽油相媲美.近几年来,锂空气电池因此受到了人们的广泛关注.本文概述了锂空气电池正极材料和电解液的最新研究进展.从商业碳、具有特定形态的碳材料、催化剂、导电聚合物等几个方面阐述了正极材料;从物质结构的角度,简要介绍了锂空气电池中常用的酯类、醚类、砜类、胺类和离子液体等电解液.最后指出了目前锂空气电池存在的问题,并对其进行了展望.

  8. 管翅式全铝换热器在家用空调上的应用研究%Application Research on Fin Tube Aluminum Exchanger Used for Room Air Conditioners

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this article, fin tube aluminum exchanger used for room air conditioners are studied and ana-lyzed in different aspects, including material option, experiment analysis and welding technology. Moreover, the feasibility which fin tube aluminum exchanger may be used for room air conditioners is raised.%  本文对家用空调器换热器采用管翅式全铝换热器的材料选择、试验分析、焊接工艺等进行了研究和分析,提出了管翅式全铝换热器在家用空调器上的应用可行性。

  9. Simulation and Experiment on Air-Cooled Thermal Energy Management of Lithium-Ion Power Batteries%锂电池热管理中空气冷却效果的实验与模拟

    Institute of Scientific and Technical Information of China (English)

    张江云; 张国庆; 张磊; 饶中浩

    2011-01-01

    把空冷方法用于商业磷酸铁锂电池以分析强化传热效果。对商用磷酸铁锂电池进行15~35A的放电测试,并根据实验数据对单一电池的温度分布进行了数值模拟。分析和模拟了空气横掠2个和3个电池情况下的冷却效果。实验和模拟的结果表明:在0~30A电流放电的情况下,空气冷却对电池热管理具有积极作用。在放电电流小于30A的情况下时,电池的最大温度低于50℃,但是电池间的温差仍然高于5℃。在放电电流大于30A的情况,仅仅通过空气冷却不能使电池和电池组内温度均匀分布,即不能满足电池散热的需求。%The air-cooled methods were used for cooling commercial LiFePO4 batteries to illustrate the effect of heat transfer enhancement. The commercial LiFePO4 batteries were tested at 15-35 A. The temperature distribution in a single battery was numerical ly simulated according to the experiment al data. Air flow across two and three batteries was simulated to illustrate the air-cooled effect. Experiment al and simulation results show that air-coola has a positive significance for the battery thermal management at discharging currents of 0-30 A. For discharging currents less than 30 A, the peak temperature in batteries is less than 50 ℃, while the temperature difference between batteries is still more than 5 ℃. When the discharging current is higher than 30 A, air-cooling for batteries and battery packs can not guarantee evenly temperature distribution, not being able to meet the regui re ment of batteriy heat dissipation.

  10. Co3O4-Pt/graphene as air cathode catalyst for lithium-air battery%四氧化三钴-铂/石墨烯锂空气电池阴极材料

    Institute of Scientific and Technical Information of China (English)

    顾大明; 杨丹丹; 李加展; 王余; 于晨涛

    2015-01-01

    It is reported that the preparation of Co3 O4-Pt/graphene hybrid and its use as air cathode catalyst for enhanced specific capacity in Lithium-air battery. Co3O4-Pt/graphene was synthesized by a two-step method. More specifically, Pt/graphene was prepared by microwave-assisted polyol process, and then it was mixed with Co3 O4 uniformly to get highly efficient Co3O4-Pt/graphene as air-cathode catalyst. Micromorphology, composition and compositional dispersion of the obtained hybrid catalyst were then characterized by X-ray diffraction ( XRD ) , scanning electron microscopy ( SEM ) , X-ray energy dispersive spectroscopy ( XEDS ) , transmission electron microscopy (TEM),Raman Spectroscopy(Ram). Co3O4-Pt/graphene air cathode catalyst was assembled with metal lithium anode, LiPF6/EC-DMC-EMC electrolyte, and PP/PE/PP to construct a lithium-air battery. The constant current charge-discharge tests of the lithium-air battery exhibit enhanced specific capacity: the discharge specific capacity reaches up to 8 000 mAh/g and the voltage is above 2. 6 V, which is superior to alternative cathode catalysts. The enhanced performance of lithium-air battery is attributed to the joint effect of preparation process, composition, and compositional dispersion.%为提高锂空气电池的比容量,采用微波辅助乙二醇还原法将H2 PtCl6 ·6H2 O及氧化石墨还原为Pt/石墨烯,再将其与Co3 O4混合均匀,得到高效Co3 O4-Pt/石墨烯锂空气电池复合阴极材料,作为对比,同时制备了Co3 O4-石墨、Co3 O4-石墨烯等阴极材料,用其与金属锂阳极、LiPF6/EC-DMC-EMC电解液、PP/PE/PP隔膜组装锂空气电池.用X射线衍射( XRD)、扫描电子显微镜( SEM)、透射电子显微镜( TEM)、X射线能量散射能谱( XEDS)、拉曼光谱( Ram)等方法对材料的微观形貌、组成及各组分在材料中的分散程度进行了表征,对电池进行恒流充放电测试,结果显示,Co3 O4-Pt/石墨烯阴极材料的比容量可超过8 000 m

  11. Élaboration de membranes échangeuses d’anions à architecture réseaux interpénétrés de polymères pour des batteries lithium-air

    OpenAIRE

    Bertolotti, Bruno

    2013-01-01

    This work focuses on the synthesis and characterization of polymer membranes to be used as anion exchange membranes for protection on an air electrode in a new lithium–air battery for electric vehicle. In these materials showing interpenetrating polymer networks (IPN) architecture, a hydrogenated cationic polyelectrolyte network, the poly(epichlorohydrin) (PECH), is associated with a neutral network, which can be either hydrogenated or fluorinated. First, the synthesis of the polyelectrolyte ...

  12. Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc-Air Battery Systems.

    Science.gov (United States)

    Hwang, Ho Jung; Chi, Won Seok; Kwon, Ohchan; Lee, Jin Goo; Kim, Jong Hak; Shul, Yong-Gun

    2016-10-05

    Rechargeable secondary zinc-air batteries with superior cyclic stability were developed using commercial polypropylene (PP) membrane coated with polymerized ionic liquid as separators. The anionic exchange polymer was synthesized copolymerizing 1-[(4-ethenylphenyl)methyl]-3-butylimidazolium hydroxide (EBIH) and butyl methacrylate (BMA) monomers by free radical polymerization for both functionality and structural integrity. The ionic liquid induced copolymer was coated on a commercially available PP membrane (Celguard 5550). The coat allows anionic transfer through the separator and minimizes the migration of zincate ions to the cathode compartment, which reduces electrolyte conductivity and may deteriorate catalytic activity by the formation of zinc oxide on the surface of the catalyst layer. Energy dispersive X-ray spectroscopy (EDS) data revealed the copolymer-coated separator showed less zinc element in the cathode, indicating lower zinc crossover through the membrane. Ion coupled plasma optical emission spectroscopy (ICP-OES) analysis confirmed over 96% of zincate ion crossover was reduced. In our charge/discharge setup, the constructed cell with the ionic liquid induced copolymer casted separator exhibited drastically improved durability as the battery life increased more than 281% compared to the pure commercial PP membrane. Electrochemical impedance spectroscopy (EIS) during the cycle process elucidated the premature failure of cells due to the zinc crossover for the untreated cell and revealed a substantial importance must be placed in zincate control.

  13. APPLICATION OF POLYTETRAFLUOROETHYLENE IN ZINC-AIR BATTERY%聚四氟乙烯在锌-空气电池中的应用

    Institute of Scientific and Technical Information of China (English)

    周震涛; 周晓斌

    2001-01-01

    为了改进锌-空气电池空气电极的性能、配方及工艺,笔者选用憎水型聚合物聚四氟乙烯作为空气电极的制膜基材和粘结剂,对其在电极中的用量及工艺参数进行了优化研究,并利用扫描电镜对电极的表观形态进行了观察,从微观结构上对电极的结构与性能关系进行了探讨。研究结果表明,所制得的空气扩散电极的电化学性能良好,由其与锌电极组装成的电池样品放电容量高达3600mAh以上。%Zinc-air battery with high energy density, low cost, and stable discharging properties is largely marketable. Domestic and overseas researchers have spent many years on this field, while one of the most important technologies which hinder its industrial production in large scale, is the manufacture of air electrode. To solve this problem, hydrophobic polymer polytetrafluoroethylene (PTFE) was tried to be applied as the matrix and adhesion agent of air electrode. In order to optimize the amotmt of P1TE in air electrode, mnechanical properties, polarization curve, and discharging curve of a group of air electrodes were measured with different PTFE proportion.

  14. Synergistic effects of carboxymethyl cellulose and ZnO as alkaline electrolyte additives for aluminium anodes with a view towards Al-air batteries

    Science.gov (United States)

    Liu, Jie; Wang, Dapeng; Zhang, Daquan; Gao, Lixin; Lin, Tong

    2016-12-01

    The synergistic effects of carboxymethyl cellulose (CMC) and zinc oxide (ZnO) have been investigated as alkaline electrolyte additives for the AA5052 aluminium alloy anode in aluminium-air battery by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of CMC and ZnO effectively retards the self-corrosion of AA5052 alloy in 4 M NaOH solution. A complex film is formed via the interaction between CMC and Zn2+ ions on the alloy surface. The carboxyl groups adsorbed on the surface of aluminium make the protective film more stable. The cathodic reaction process is mainly suppressed significantly. AA5052 alloy electrode has a good discharge performance in the applied electrolyte containing the composite CMC/ZnO additives.

  15. The design of Fe, N-doped hierarchically porous carbons as highly active and durable electrocatalysts for a Zn-air battery.

    Science.gov (United States)

    Wu, Mingjie; Tang, Qiaowei; Dong, Fang; Wang, Yongzhen; Li, Donghui; Guo, Qinping; Liu, Yuyu; Qiao, Jinli

    2016-07-28

    A new type of Fe, N-doped hierarchically porous carbons (N-Fe-HPCs) has been synthesized via a cost-effective synthetic route, derived from nitrogen-enriched polyquaternium networks by combining a simple silicate templated two-step graphitization of the impregnated carbon. The as-prepared N-Fe-HPCs present a high catalytic activity for the oxygen reduction reaction (ORR) with onset and half-wave potentials of 0.99 and 0.86 V in 0.1 M KOH, respectively, which are superior to commercially available Pt/C catalyst (half-wave potential 0.86 V vs. RHE). Surprisingly, the diffusion-limited current density of N-S-HPCs approaches ∼7.5 mA cm(-2), much higher than that of Pt/C (∼5.5 mA cm(-2)). As a cathode electrode material used in Zn-air batteries, the unique configuration of the N-Fe-HPCs delivers a high discharge peak power density reaching up to 540 mW cm(-2) with a current density of 319 mA cm(-2) at 1.0 V of cell voltage and an energy density >800 Wh kg(-1). Additionally, outstanding ORR durability of the N-Fe-HPCs is demonstrated, as evaluated by the transient cell-voltage behavior of the Zn-air battery retaining an open circuit voltage of 1.48 V over 10 hours with a discharge current density of 100 mA cm(-2).

  16. Comparatively Analysis of Characteristics of Aluminum or Magnesium Alloy Air Intake Manifold by Tilted Casting%铝、镁合金进气歧管倾转铸造的特点

    Institute of Scientific and Technical Information of China (English)

    陈红兵; 罗书强; 赵建华

    2011-01-01

    Flow behavior and heat release of aluminum alloy or magnesium alloy air intake manifolds during permanent mold tilting casting process were simulated by the Anycasting software. The results show that both magnesium alloy and aluminum alloy melt fully exhibit laminar flow during filling process. Cooling curves exhibit similar change shape for aluminum alloy and magnesium alloy manifold, however, solidification time of magnesium alloy melt is longer than that of aluminum alloy melt.%采用AnyCasting铸造模拟软件,分别模拟了金属型倾转铸造铝合金和镁合金进气歧管工艺,并对其流动模式和释放热量进行了比较.镁合金熔液在整个充型过程中完全属于层流流动,铝合金熔液也属于层流流动.模拟结果显示铝合金与镁合金进气歧管的冷却曲线变化趋势基本一致,但镁合金熔液比铝合金熔液冷却时间更长.

  17. Carbon and Binder-Free Air Electrodes Composed of Co3O 4 Nanofibers for Li-Air Batteries with Enhanced Cyclic Performance.

    Science.gov (United States)

    Lee, Chan Kyu; Park, Yong Joon

    2015-12-01

    In this study, to fabricate a carbon free (C-free) air electrode, Co3O4 nanofibers were grown directly on a Ni mesh to obtain Co3O4 with a high surface area and good contact with the current collector (the Ni mesh). In Li-air cells, any C present in the air electrode promotes unwanted side reactions. Therefore, the air electrode composed of only Co3O4 nanofibers (i.e., C-free) was expected to suppress these side reactions, such as the decomposition of the electrolyte and formation of Li2CO3, which would in turn enhance the cyclic performance of the cell. As predicted, the Co3O4-nanofiber electrode successfully reduced the accumulation of reaction products during cycling, which was achieved through the suppression of unwanted side reactions. In addition, the cyclic performance of the Li-air cell was superior to that of a standard electrode composed of carbonaceous material.

  18. 动力蓄电池风冷热管理系统的研究%A Study on the Air Cooling Thermal Management System of Power Battery Package

    Institute of Scientific and Technical Information of China (English)

    常国峰; 陈磊涛; 许思传

    2011-01-01

    The structural design is performed for the thermal management system of power battery package containing 120 6A · h nickel-hydrogen cells. Based on the theory of balanced ventilation, the evenness of air flow velocity in thermal management system is analyzed in-depth. The effects of structural parameters, such as the incline angle of battery pack, air mass flow and duct openings, etc. On air flow velocity are studied. According to the conclusion of the study, the reliability and durability of battery and the volumetric specific power of battery pack are all enhanced.%对120节6A·h镍氢电池进行热管理系统的结构设计.利用均匀送风理论,对热管理系统中空气流速的均匀性做了深入分析.研究了电池组倾角、空气流量和风道开孔等结构参数对空气流速的影响.根据研究结论,通过改变电池包的结构和调节电池周围空气的流速,提高了蓄电池的可靠性、耐久性和电池成组后的体积比功率.

  19. In Situ Coupling of Strung Co4N and Intertwined N-C Fibers toward Free-Standing Bifunctional Cathode for Robust, Efficient, and Flexible Zn-Air Batteries.

    Science.gov (United States)

    Meng, Fanlu; Zhong, Haixia; Bao, Di; Yan, Junmin; Zhang, Xinbo

    2016-08-17

    Flexible power sources with high energy density are crucial for the realization of next-generation flexible electronics. Theoretically, rechargeable flexible zinc-air (Zn-air) batteries could provide high specific energy, while their large-scale applications are still greatly hindered by high cost and resources scarcity of noble-metal-based oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) electrocatalysts as well as inferior mechanical properties of the air cathode. Combining metallic Co4N with superior OER activity and Co-N-C with perfect ORR activity on a free-standing and flexible electrode could be a good step for flexible Zn-air batteries, while lots of difficulties need to be overcome. Herein, as a proof-of-concept experiment, we first propose a strategy for in situ coupling of strung Co4N and intertwined N-C fibers, by pyrolyzation of the novel pearl-like ZIF-67/polypyrrole nanofibers network rooted on carbon cloth. Originating from the synergistic effect of Co4N and Co-N-C and the stable 3D interconnected conductive network structure, the obtained free-standing and highly flexible bifunctional oxygen electrode exhibits excellent electrocatalytic activity and stability for both OER and ORR in terms of low overpotential (310 mV at 10 mA cm(-2)) for OER, a positive half-wave potential (0.8 V) for ORR, and a stable current density retention for at least 20 h, and especially, the obtained Zn-air batteries exhibit a low discharge-charge voltage gap (1.09 V at 50 mA cm(-2)) and long cycle life (up to 408 cycles). Furthermore, the perfect bendable and twistable and rechargeable properties of the flexible Zn-air battery particularly make it a potentially power portable and wearable electronic device.

  20. 锂/空气电池非贵金属催化剂研究进展%Recent progress in non-precious metal catalysts for lithium-air batteries

    Institute of Scientific and Technical Information of China (English)

    李妍慧; 银凤翔; 何小波; 王昊

    2015-01-01

    Lithium-air battery has been considered as one of the most promising secondary batteries due to its high theoretical energy density,small volume,light weight,low cost and environment compatibility. In this review,the structures,principles and types of lithium-air battery were discussed first. Then the recent developments of non-precious metal catalysts for lithium-air batteries were overviewed,including transition metal oxides,metal nitrides,carbon materials,and transition metal macrocycles. In the end,it was proposed that the development of materials chemistry and nanotechnology as well as the clarification of catalytic reaction mechanism is crucial to obtain high-performance non-precious metal catalysts for lithium-air batteries.%锂/空气电池理论能量密度高、体积小、质量轻、价格低、无污染,是极具应用前景的二次电池。本文首先简要介绍了锂/空气电池的基本结构、原理和种类,随后重点讨论了近年来用于锂/空气电池的非贵金属催化剂的研究进展。这些催化剂主要包括过渡金属氧化物、过渡金属氮化物、碳材料以及过渡金属大环化合物等。最后认为,材料化学、纳米技术等学科的发展以及催化机理的阐明对发展高性能的锂/空气电池非贵金属催化剂起至关重要的作用。

  1. Experimental Study of Deflagration to Detonation Transition of Ethyl Ether-Aluminum-Air Mixtures%乙醚-铝粉-空气混合物燃烧转爆轰的实验研究

    Institute of Scientific and Technical Information of China (English)

    陈默; 白春华; 刘庆明

    2011-01-01

    在长为32.4 m、内径为0.199 m的大型长直水平管道中对乙醚-空气混合物、乙醚-铝粉-空气混合物的燃烧转爆轰(DDT)过程进行了实验研究.对多相混合物弱点火条件下的DDT过程不同阶段的特征进行了分析,并对不同浓度时混合物的燃爆情况进行了比较.结果表明,质量浓度为295 g/m3的乙醚-空气混合物与质量浓度分别为314,230 g/m3的乙醚-铝粉-空气混合物在管道末端测点范围内均能够形成自持爆轰.%Motivated by the current interest in the mechanism of the deflagration to detonation transition(DDT), research on DDT of ethyl ether-air mixture and ethyl ether-aluminum-air was implemented by the experimental system with a large-scale tube of 32. 4 m in length and 0.199 m of inner diameter. The processes of DDT in the clouds of the mixtures were analyzed and the mixtures with different concentrations were compared. The results indicate that a self-sustained detonation could be formed in the ethyl ether-air mixture with the ethyl ether concentration of 295 g/m3, while in the ethyl ether-aluminum-air mixture, the ethyl ether and aluminum concentrations would be 314 g/m3 and 230 g/m3, respectively.

  2. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  3. Numerical prediction of system round-trip efficiency and feasible operating conditions of small-scale solid oxide iron-air battery

    Science.gov (United States)

    Ohmori, Hiroko; Iwai, Hiroshi; Itakura, Kotaro; Saito, Motohiro; Yoshida, Hideo

    2016-03-01

    A simulation model of a small-scale solid oxide iron-air battery system was developed to clarify its fundamental characteristics and feasibility from the view point of energy efficiency. The energy flow in one cycle of charge/discharge operations was evaluated under a quasi-state assumption with 0-dimensional models of the system components, i.e., a solid oxide electrochemical cell, an iron (Fe) box and heat exchangers. Special care was taken when considering thermal aspects; not only a simple system but also a more complicated system with thermal recirculation by three heat exchangers was investigated. It was found that the system round-trip efficiency reaches 61% under the base conditions in this study. The results also show that several limitations exist for the operation parameters and conditions in view of practical applications. In particular, higher and lower limits exist for the fuel and air utilization factors under which the system operates effectively because of constraints such as the maximum allowable fuel-blower temperature and no heat input during the discharge operation.

  4. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    Science.gov (United States)

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-06-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.

  5. Numerical Investigation of Air-cooled Cylindrical Lithium-ion Battery Thermal Management System with Vent%增设通风孔的风冷式锂离子电池热管理系统数值研究

    Institute of Scientific and Technical Information of China (English)

    张新强; 洪思慧; 汪双凤

    2015-01-01

    电池热管理系统的优化设计可以维持动力电池的高效性能,进而促进电动汽车产业的发展.本文采用CFD方法研究有通风孔的情况下,风冷式锂离子电池组在放电过程中的散热性能.研究结果发现,在电池组外壳增设通风孔可以明显提高整个电池组的冷却效果.风孔开设在主出风口的相反方向时,电池组的温升和温差最小.当风孔的面积与出口面积相等时,电池组的冷却效果最佳;继续增大风孔对电池组的冷却效果影响较小.最后探讨了空气进口温度和电池间冷却通道的变化对电池组散热效果的影响.采用在电池组外壳上开设多个通风孔的办法有助于电池热管理系统的冷却优化设计.%The optimum design of battery thermal management system helps maintaining the high efficient performance of power battery, which will contribute to the development of the electric vehicle industry. In this research, a CFD model for an air-cooled battery pack with vent is developed to investigate the thermal performance of battery during discharging. It's found that the additional vent can significantly improve the cooling performance of the entire battery pack. Temperature rise and temperature difference of the battery pack reach the lowest when the vent is opened at the opposite of the outlet. Moreover, the best cooling performance is achieved as the area of the vent equals to that of the outlet. However, continuously increasing the area of the vent makes little difference on improving the cooling performance. The effects of the inlet air temperature and the volume of the cooling channel on the thermal performance of lithium-ion battery pack are also investigated. Opening multiple vents in the battery pack enable to the optimum design on the cooling capability of the battery thermal management system.

  6. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    OpenAIRE

    Seung Ho Lee; Ju Yeon Ban; Chung-Hun Oh; Hun-Kuk Park; Samjin Choi

    2016-01-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper pla...

  7. A Research on Safety Design of 18650 Power Battery System Based on Air Cooling Mode%基于风冷模式的18650动力电池系统安全性设计研究

    Institute of Scientific and Technical Information of China (English)

    裴锋; 符兴锋

    2015-01-01

    18650 power battery system based on air cooling internal circulation structure is designed in accordance with operating requirement of an electric passenger vehicle, and structural safety, thermal management safety, flame retardant and insulation safety are studied and analyzed. Based on test data, and also in combination with theoretical calculation formula, 18650 power battery heat generation calculation model is built, and flow field of battery air cooling internal circulation system is analyzed and calculated, design of battery pack internal flow field is optimized according to simulation results. Safety of 18650 power battery system based on air cooling mode is proved by vehicle test and low temperature heating equilibrium test.%针对某纯电动乘用车的使用要求,设计了基于风冷内循环结构的18650动力电池系统,研究和分析了18650动力电池的结构安全性、热管理安全性和阻燃与绝缘安全性.以该18650动力电池的试验数据为基础,结合理论计算公式,建立了18650动力电池的生热仿真计算模型,对电池风冷内循环系统的流场进行了分析计算,根据仿真计算结果优化了电池箱内部流场设计.通过实车试验和低温加热均衡试验,验证了基于风冷模式的18650动力电池系统的安全性.

  8. 往复流散热方式的锂离子电池热管理%Thermal Management of Lithium-ion Battery with Reciprocating Air-flow Cooling Mode

    Institute of Scientific and Technical Information of China (English)

    梁波; 欧阳陈志; 刘燕平; 毛聪; 唐思绮; 江清柏

    2014-01-01

    For solving the problem of the temperature unevenness among individual cells in battery module affecting service performance and lifespan of battery, a reciprocating air-flow cooling mode is adopted in this paper, with which the direction of cooling air flow is reversed periodically to reduce the temperature gradient in battery a-long air-flow direction in conventional cooling mode with unidirectional air flow. The results show that with recipro-cating flow cooling mode, the temperature evenness of battery increases by 12. 1% and 62. 4% respectively under 1C and 13. 33 C discharge current rates, so the service performance and safety of battery greatly improved with its service life extended. In addition, an optimization is also carried out on three parameters affecting heat dissipation performance, i. e. the velocity and temperature of air flow at inlet and reversal frequency, with the law of their in-fluence on the highest temperature and temperature difference of battery revealed.%为解决电池模块内部单体电池间的温度不均匀性而影响电池的使用性能和寿命的问题,本文中采用了一种往复流冷却方式,使冷却空气流动方向周期性逆转,以降低单向流空气冷却方式时单体电池沿空气流方向的温度梯度。结果表明,采用往复流冷却方式后,在1C和13.33C放电倍率下,电池温度均匀性分别提高了12.1%和62.4%,电池模块的使用性能和安全性得到改善,电池使用寿命得以提高。同时,文中还利用计算流体动力学虚拟试验与正交优化相结合,对影响往复流散热性能的往复流入口的速度与温度和往复周期3个参数进行了优化,并揭示了它们对电池最高温度和温差的影响规律。

  9. Fe-Cluster Pushing Electrons to N-Doped Graphitic Layers with Fe3C(Fe) Hybrid Nanostructure to Enhance O2 Reduction Catalysis of Zn-Air Batteries.

    Science.gov (United States)

    Yang, Jie; Hu, Jiangtao; Weng, Mouyi; Tan, Rui; Tian, Leilei; Yang, Jinlong; Amine, Joseph; Zheng, Jiaxin; Chen, Haibiao; Pan, Feng

    2017-02-08

    Non-noble metal catalysts with catalytic activity toward oxygen reduction reaction (ORR) comparable or even superior to that of Pt/C are extremely important for the wide application of metal-air batteries and fuel cells. Here, we develop a simple and controllable strategy to synthesize Fe-cluster embedded in Fe3C nanoparticles (designated as Fe3C(Fe)) encased in nitrogen-doped graphitic layers (NDGLs) with graphitic shells as a novel hybrid nanostructure as an effective ORR catalyst by directly pyrolyzing a mixture of Prussian blue (PB) and glucose. The pyrolysis temperature was found to be the key parameter for obtaining a stable Fe3C(Fe)@NDGL core-shell nanostructure with an optimized content of nitrogen. The optimized Fe3C(Fe)@NDGL catalyst showed high catalytic performance of ORR comparable to that of the Pt/C (20 wt %) catalyst and better stability than that of the Pt/C catalyst in alkaline electrolyte. According to the experimental results and first principle calculation, the high activity of the Fe3C(Fe)@NDGL catalyst can be ascribed to the synergistic effect of an adequate content of nitrogen doping in graphitic carbon shells and Fe-cluster pushing electrons to NDGL. A zinc-air battery utilizing the Fe3C(Fe)@NDGL catalyst demonstrated a maximum power density of 186 mW cm(-2), which is slightly higher than that of a zinc-air battery utilizing the commercial Pt/C catalyst (167 mW cm(-2)), mostly because of the large surface area of the N-doped graphitic carbon shells. Theoretical calculation verified that O2 molecules can spontaneously adsorb on both pristine and nitrogen doped graphene surfaces and then quickly diffuse to the catalytically active nitrogen sites. Our catalyst can potentially become a promising replacement for Pt catalysts in metal-air batteries and fuel cells.

  10. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery

    Science.gov (United States)

    Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun

    2016-09-01

    α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm‑2. At 1.0 V of cell voltage, a current density of 324 mA cm‑2 is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm‑2, and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte.

  11. NANO-BATTERY TECHNOLOGY FOR EV-HEV PANEL: A PIONEERING STUDY

    Directory of Open Access Journals (Sweden)

    Ataur Rahman

    2015-11-01

    Full Text Available Global trends toward CO2 reduction and resource efficiency have significantly increased the importance of lightweight materials for automobile original equipment manufacturers (OEM. CO2 reduction is a fundamental driver for a more lightweight automobile. The introduction of Electrical Vehicles (EVs is one initiative towards this end. However EVs are currently facing several weaknesses: limited driving range, battery pack heaviness, lack of safety and thermal control, high cost, and overall limited efficiency. This study presents a panel-style nano-battery technology built into an EV with CuO filler solid polymer electrolyte (SPE sandwiched by carbon fiber (CF and lithium (Li plate. In addition to this, an aluminum laminated polypropylene film is used as the electromagnetic compatibility (EMC shield. The proposed battery body panel of the EV would reduce the car weight by about 20%, with a charge and discharge capacity of 1.5 kWh (10% of car total power requirement, and provide the heat insulation for the car which would save about 10% power consumption of the air conditioning system. Therefore, the EV would be benefited by 30% in terms of energy reduction by using the proposed body. Furthermore, the proposed body is considered environmental-friendly since it is recyclable for use in a new product. However, the main limiting factors of the SPE are its thermal behavior and moderate ionic conductivity at low temperatures. The SPE temperature is maintained by controlling the battery panel charging/discharge rate. It is expected that the proposed panel-style nano-battery use in an EV would save up to 6.00 kWh in battery energy, equivalent to 2.81 liters of petrol and prevent 3.081 kg of CO2 emission for a travel distance of 100 km. KEYWORDS: epoxy resin; carbon fiber; lithium thin plate; energy generation; solid electrolyte battery

  12. Primary battery design and safety guidelines handbook

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E.; Trout, J. Barry

    1994-12-01

    This handbook provides engineers and safety personnel with guidelines for the safe design or selection and use of primary batteries in spaceflight programs. Types of primary batteries described are silver oxide zinc alkaline, carbon-zinc, zinc-air alkaline, manganese dioxide-zionc alkaline, mercuric oxide-zinc alkaline, and lithium anode cells. Along with typical applications, the discussions of the individual battery types include electrochemistry, construction, capacities and configurations, and appropriate safety measures. A chapter on general battery safety covers hazard sources and controls applicable to all battery types. Guidelines are given for qualification and acceptance testing that should precede space applications. Permissible failure levels for NASA applications are discussed.

  13. Enabling room temperature sodium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Mushra, Kuber; Li, Xiaolin; Qian, Jiangfeng; Engelhard, Mark H.; Bowden, Mark E.; Han, Kee Sung; Mueller, Karl T.; Henderson, Wesley A.; Zhang, Jiguang

    2016-12-01

    Rechargeable batteries based upon sodium (Na+) cations are at the core of many new battery chemistries beyond Li-ion batteries. Rather than using carbon or alloy-based anodes, the direct utilization of solid sodium metal as an anode would be highly advantageous, but its use has been highly problematic due to its high reactivity. In this work, however, it is demonstrated that, by tailoring the electrolyte formulation, solid Na metal can be electrochemically plated/stripped at ambient temperature with high efficiency (> 99%) on both copper and inexpensive aluminum current collectors thereby enabling a shift in focus to new battery chemical couples based upon Na metal operating at ambient temperature. These highly concentrated electrolytes has enabled stable cycling of Na metal batteries based on a Na metal anode and Na3V2(PO4)3 cathode at high rates with very high efficiency.

  14. Research status of zinc anode for zinc-air batteries%锌空气电池锌负极研究进展

    Institute of Scientific and Technical Information of China (English)

    洪为臣; 雷青; 马洪运; 王保国

    2016-01-01

    在可再生能源发电和电动汽车技术领域,发展能量密度高、安全可靠、绿色无污染的锌空气电池具有重要社会经济价值。但锌空气电池负极存在的问题严重影响了电池的使用性。本文从析氢腐蚀、枝晶生长、电极形变和钝化4个方面介绍锌空气电池负极的研究状况,深入分析无机缓蚀剂、有机缓蚀剂和混合缓蚀剂对析氢腐蚀的抑制作用;讨论添加剂、隔膜和操作条件对枝晶形成与生长的影响;阐述电极形变的机理与常见的解决方法;简述锌负极钝化发生的原因和对电池性能的影响。研究结果表明,电化学可充的锌空气电池比一次锌空气电池更具有市场前景,进一步抑制析氢腐蚀仍是今后锌负极研究的重点,提高循环过程的容量与功率稳定性是满足实际应用的关键。%In renewable energy power generation and electric vehicle technology,the development of high energy density,safe,reliable and pollution-free zinc-air batteries is of important social and economic value. However,some problems of zinc anode has seriously hindered its application. Therefore,this paper systematically reviews the progress on corrosion,dendrite formation,shape change and passivation of zinc anode. The inhibition effects of inorganic corrosion inhibitors,organic corrosion inhibitors and mixed corrosion inhibitors on hydrogen evolution are introduced,and the effects of additives,separators and operating conditions on the formation and growth of dendrite are discussed. The mechanism of shape change and the common solutions are reviewed,and the causes of passivation and its effects are described briefly. The analysis shows that the electrically rechargeable zinc-air batteries have more market prospects than the primary ones. Also,the inhibition of hydrogen corrosion is still the focus toward zinc anode studies in the future,and improving the capacity and power stability during cycling is

  15. Porous LaCo1-xNixO3-δ Nanostructures as an Efficient Electrocatalyst for Water Oxidation and for a Zinc-Air Battery.

    Science.gov (United States)

    Vignesh, Ahilan; Prabu, Moni; Shanmugam, Sangaraju

    2016-03-09

    Perovskites have emerged as promising earth-abundant alternatives to precious metals for catalyzing the oxygen evolution reaction (OER). Herein, we report the synthesis of a series of porous perovskite nanostructures, LaCo0.97O3-δ, with systematic Ni substitution in Co octahedral sites. Their electrocatalytic activity during the water oxidation reaction was studied in alkaline electrolytes. The electrocatalytic OER activity and stability of the perovskite nanostructure was evaluated using the rotating disk electrode technique. We show that the progressive replacement of Co by Ni in the LaCo0.97O3-δ perovskite structure greatly altered the electrocatalytic activity and that the La(Co0.71Ni0.25)0.96O3-δ composition exhibited the lowest OER overpotential of 324 and 265 mV at 10 mA cm(-2) in 0.1 M KOH and 1 M KOH, respectively. This value was much lower than that of the noble metal catalysts, IrO2, Ru/C, and Pt/C. Furthermore, the La(Co0.71Ni0.25)0.96O3-δ nanostructure showed outstanding electrode stability, with no observable decrease in performance up to 114th cycle in the auxiliary linear sweep voltammetry that lasted for 10 h in chronoamperometry studies. The excellent oxygen evolution activity of the La(Co0.71Ni0.25)0.96O3-δ perovskite nanostructure can be attributed to its intrinsic structure, interconnected particle arrangement, and unique redox characteristics. The enhanced intrinsic electrocatalytic activity of the La(Co0.71Ni0.25)0.96O3-δ catalyst was correlated with several parameters, such as the electrochemical surface area, the roughness factor, and the turnover frequency, with respect to variation in the transition metals of the perovskite structure. Subsequently, La(Co0.71Ni0.25)0.96O3-δ was utilized as the air cathode in a zinc-air battery application.

  16. The battery as a thermal storage. Impacts on the air conditioning of interior spaces, the thermal architecture and the operation strategy of electric-powered vehicles; Die Batterie als thermischer Speicher. Auswirkungen auf die Innenraumklimatisierung, die thermische Architektur und die Betriebsstrategie von Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Bouvy, Claude [Forschungsgesellschaft Kraftfahrwesen mbH, Aachen (Germany); Jeck, Peter; Gissing, Joerg; Lichius, Thomas; Baltzer, Sidney; Eckstein, Lutz [RWTH Aachen Univ. (Germany). Inst. fuer Kraftfahrzeuge

    2012-11-01

    In this paper the use of the electric traction battery as a thermal storage unit is analysed by means of simulations. The stored thermal energy is exclusively used in this work to heat the passenger cabin. For this scenario two alternative concepts are being compared to a conventional operational mode, without the use of the battery as a thermal storage. On the one hand the stored heat is directly used for cabin heating with an liquid/air heat exchanger. On the other hand a heat pump raises the temperature level. First the holistic modeling approach and the detailed architectures are presented. Then these models are simulated for a winter scenario and the results are discussed. (orig.)

  17. Co(II)1-xCo(0)x/3Mn(III)2x/3S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries.

    Science.gov (United States)

    Wang, Zilong; Xiao, Shuang; An, Yiming; Long, Xia; Zheng, Xiaoli; Lu, Xihong; Tong, Yexiang; Yang, Shihe

    2016-06-01

    Rechargeable Zn-air battery is an ideal type of energy storage device due to its high energy and power density, high safety, and economic viability. Its large-scale application rests upon the availability of active, durable, low-cost electrocatalysts for the oxygen reduction reaction (ORR) in the discharge process and oxygen evolution reaction (OER) in the charge process. Herein we developed a novel ORR/OER bifunctional electrocatalyst for rechargeable Zn-air batteries based on the codoping and hybridization strategies. The B/N-codoped mesoporous nanocarbon supported Co(II)1-xCo(0)x/3Mn(III)2x/3S nanoparticles exhibit a superior OER performance compared to that of IrO2 catalyst and comparable Zn-air battery performance to that of the Pt-based battery. The rechargeable Zn-air battery shows high discharge peak power density (over 250 mW cm(-2)) and current density (180 mA cm(-2) at 1 V), specific capacity (∼550 mAh g(-1)), small charge-discharge voltage gap of ∼0.72 V at 20 mA cm(-2) and even higher stability than the Pt-based battery. The advanced performance of the bifunctional catalysts highlights the beneficial role of the simultaneous formation of Mn(III) and Co(0) as well as the dispersed hybridization with the codoped nanocarbon support.

  18. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  19. Soldier-Portable Battery Supply: Foreign Dependence and Policy Options

    Science.gov (United States)

    2014-01-01

    military has started to deploy a lim- ited number of batteries based on zinc - air chemistry. A Zn- air cell pulls oxygen from the air to use as a cathode...mentioned earlier, the military makes use of nickel-based cells, as well as air -breathing batteries that pull oxygen from the outside air . In this section...performance. An “ air -breathing” battery structure has long been a goal of the R&D community, and has great potential for use in military applications. The

  20. 75 FR 9147 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-03-01

    ...-AE44 Hazardous Materials: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials... associated with the air transport of lithium cells and batteries. PHMSA and FAA will hold a public meeting on... they will be attending the Lithium Battery Public Meeting and wait to be escorted to the...

  1. Conceptual Design Tool to Analyze Electrochemically-Powered Micro Air Vehicles

    Science.gov (United States)

    2011-03-01

    battery chemistries include the lithium thionyl chloride battery (Li/SOCl2), the zinc-air... battery , and the lithium -ion polymer battery . Compared to other lithium anode batteries , a lithium thionyl chloride system has the highest energy...40Staniewicz, R.J., “ Lithium Thionyl Chloride Cells and Batteries Technical Predictions Versus 1994 Realities,” Journal of Power Sources, Vol. 54,

  2. Lithium Air Batteries: Non-Aqueous and Hybrid Systems%基于有机和组合电解液的锂空气电池研究进展

    Institute of Scientific and Technical Information of China (English)

    童圣富; 何平; 张雪苹; 赵世勇; 周豪慎

    2015-01-01

    Developing energy storage devices and new materials,which match the requirements in electric vehicles (EVs) and hybrid electric vehicles (HEVs),is an effective way to balance the contradiction between the social development and the shortage of fossil energy and environment pollution.Rechargeable lithium-air (Li-air) batteries consisting of Li and oxygen as the anodic and cathodic reactants,respectively,have attracted much attention during the past decade due to their high theoretical specific energy.According to work conditions,the most studied types of Li-air batteries are non-aqueous,hybrid,and solid state electrolyte Li-air batteries.Challenges still exist in cathodes,anodes,electrolytes and performances (life time),though efforts have been dedicated during the past years.Based on the achievements in non-aqueous and hybrid Li-air batteries fiom our group,the history,research progress and future developing trend of Li-air batteries will be briefly introduced in this review.%发展纯电动汽车与混合动力汽车是解决能源危机与环境问题的有效途径,这对新能源材料及储能设备提出了更高的要求.其中以金属锂作为负极、以空气中的氧气作为正极活性物质组成的锂-空气二次电池具有很高的理论比能量,因在纯电动汽车、混合动力汽车方面有很好的应用前景而受到人们的广泛关注.根据工作环境及介质条件,目前研究最多的锂-空气电池主要包括有机电解液、有机一水组合电解液及全固态电解质三种类型.由于锂-空气电池的发展历史较短,目前仍处于起步阶段,在电池的正极、负极、电解液(质)及综合性能等方面均存在诸多的困难与挑战.本文从作者课题组对有机电解液及组合电解液型锂一空气电池方面的研究出发,向读者简单介绍锂一空气电池的发展历史,研究现状及未来努力的方向.

  3. Sodium-sulfur batteries for spacecraft energy storage

    Science.gov (United States)

    Dueber, R. E.

    1986-01-01

    Power levels for future space missions will be much higher than are presently attainable using nickel-cadmium and nickel-hydrogen batteries. Development of a high energy density rechargeable battery is essential in being able to provide these higher power levels without tremendous weight penalties. Studies conducted by both the Air Force and private industry have identified the sodium-sulfur battery as the best candidate for a next generation battery system. The advantages of the sodium-sulfur battery over the nickel-cadmium battery are discussed.

  4. Overview of Sandia's electric vehicle battery program

    Science.gov (United States)

    Clark, R. P.

    1993-11-01

    Sandia National Laboratories is actively involved in several projects which are part of an overall Electric Vehicle Battery Program. Part of this effort is funded by the United States Department of Energy/Office of Transportation Technologies (DOE/OTT) and the remainder is funded through the United States Advanced Battery Consortium (USABC). DOE/OTT supported activities include research and development of zinc/air and sodium/sulfur battery technologies as well as double layer capacitor (DLC) R&D. Projects in the USABC funded work include lithium/polymer electrolyte (LPE) R&D, sodium/sulfur activities and battery test and evaluation.

  5. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  6. Novel routes to metalloorganics containing aluminum from minerals

    Science.gov (United States)

    Narayanan, Ramasubramanian

    Novel pathways for synthesizing Al metalloorganics directly from widely available oxides and oxo-hydroxides of aluminum are developed. The Al metalloorganics are then used to produce low-cost precursors for ceramics and polymers containing Al. Alumatrane, an unique, air-stable, aluminum alkoxide is prepared in one step from aluminum hydroxide in quantitative yields. Subsequently, alumatrane was used to prepare and characterize all group II dialuminate ceramics (MAlsb2Osb4, M = Mg, Ca, Sr, Ba). Similarly, an air-stable alkoxide of silicon was synthesized directly from SiOsb2, and is used in conjunction with alumatrane to produce precursors for aluminosilicate ceramics (MAlSiOsb4, M = K, Li, Na). Aluminum formate is synthesized, in differing efficiencies, from different crystalline minerals of Al, by direct dissolution in formic acid. A few other aluminum carboxylates are also synthesized, either directly from minerals or from aluminum formates, thus expanding the scope of the acid dissolution of aluminum hydroxides. Aluminum allyloxypropanoate (AAP) (Al(Osb2CCHsb2CHsb2OCH{=}CHsb2)sb2(OH)), an aluminum carboxylate with a polymerizable group has been synthesized from aluminum formate. This, has been incorporated into methyl methacrylate (MMA) polymers to impart fire retardancy. The increase in char yields as a result of AAP incorporation, indicate improved fire retardancy. Fire retardant characteristics of alumatrane has also been investigated, in MMA polymers and in a polyurethane polymer, taking char yields as a measure of fire retardance efficiency.

  7. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.

    Science.gov (United States)

    2010-07-01

    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations...

  8. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Science.gov (United States)

    2010-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of...

  9. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-01-01

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  10. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-12-31

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  11. Organic electrolytes for sodium batteries

    Science.gov (United States)

    Vestergaard, B.

    1992-09-01

    A summary of earlier given status reports in connection with the project on organic electrolytes for sodium batteries is presented. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  12. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  13. Multiple Aptitude Battery-II Normative Intelligence Test Data That Distinguish U.S. Air Force AC-130 Gunship Sensor Operators

    Science.gov (United States)

    2010-06-01

    lstead, 1961; Hom & Cattell, 1966; Hebb, 1972, Piaget , 1950) to highly complex information processing approaches (Sternberg. 1985). Despite the notion of...Aptitude Battery- Second Edition {MAS-II) . Sigma Assessment Systems, Inc. Port Huron, MI. Piaget , J. (1950). The psychology of intelligence. New York

  14. Aircraft-and-Engine Mechanic (aircraft mfg; air trans.) 621.281 -- Technical Report on Development of USTES Aptitude Test Battery.

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.

    The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…

  15. Metal pad instabilities in liquid metal batteries

    CERN Document Server

    Zikanov, Oleg

    2015-01-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current and deformation of interfaces in liquid metal batteries. It is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known for aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  16. A terracotta bio-battery.

    Science.gov (United States)

    Ajayi, Folusho F; Weigele, Peter R

    2012-07-01

    Terracotta pots were converted into simple, single chamber, air-cathode bio-batteries. This bio-battery design used a graphite-felt anode and a conductive graphite coating without added catalyst on the exterior as a cathode. Bacteria enriched from river sediment served as the anode catalyst. These batteries gave an average OCV of 0.56 V ± 0.02, a Coulombic efficiency of 21 ± 5%, and a peak power of 1.06 mW ± 0.01(33.13 mW/m(2)). Stable current was also produced when the batteries were operated with hay extract in salt solution. The bacterial community on the anode of the batteries was tested for air tolerance and desiccation resistance over a period ranging from 2 days to 2 weeks. The results showed that the anode community could survive complete drying of the electrolyte for several days. These data support the further development of this technology as a potential power source for LED-based lighting in off-grid, rural communities.

  17. Memel's Batteries

    Directory of Open Access Journals (Sweden)

    Alexander F. Mitrofanov

    2015-12-01

    Full Text Available The article describes the history and equipment of the coastal and antiaircraft artillery batteries of German Navy (Kriegsmarine constructed in Memel area before and during the World War. There is given the brief description of the Soviet Navy stationed in the area in the postwar years.

  18. 烟草熏蒸过程中仓库内外环境磷化氢浓度检测%Air phosphine concentration of aluminum phosphide fumigated warehouse

    Institute of Scientific and Technical Information of China (English)

    张建中; 陈发明; 叶青; 彭言群

    2011-01-01

    Objective To investigate the variation of air phosphine (PH3) concentrations in the internal and external environment of warehouse after aluminum phosphide (AlP) fumigation and natural air ventilation.Methods Air PH3 concentrations inside and outside fumigated warehouse were measured using synchronous sampling method according to the GBZ159 air collection standard during the process of fumigation and ventilation.Results PH3 concentrations were 30.36 ~ 182.14 g/m3 inside the warehouse when it was fumigated with 0.2~0.5 g/m3 AlP.Air PH3 concentrations were 3.12~17.9 mg/m3 and 27.3~ 162.4 g/m3 respectively at the fumigation operation position andbefore the ventilation of fumigated warehouse.PH3 concentrations gradually decreased to occupationally acceptable level in 90 % of the air samples inside the warehouse after 48 hrs of natural ventilation.Conclusion Air PH3 concentrations outside the fumigated warehouse were within the occupational acceptable levels in the whole process of fumigation.The safe level of air PH3 concentrations inside the fumigated warehouse was achieved after 72 hrs of natural air ventilation.%目的 探讨某烟草仓储基地磷化铝熏蒸过程中库内及周围环境空气中磷化氢(PH3)浓度变化规律,以及熏蒸后开仓通风散气工作场所达到安全浓度所需排放时间,为烟草熏蒸安全作业提供依据.方法 按GBZ-159采样规范,采用与熏蒸和散气过程同步等时采样方法,对某烟草仓储基地1号储烟库烟草熏蒸和开仓散气过程仓库内外环境空气中PH3浓度进行现场检测,监测不同时段库内外空气中PH3浓度.结果 库内磷化铝投放量为0.2~0.5 mg/m3;库内磷化氢熏蒸浓度为30.36~182.14 mg/m3;熏蒸时操作岗位磷化氢浓度范围为3.12~17.9 mg/m3;开仓散气前库内磷化氢浓度范围为27.3~162.4 mg/m3;在开仓散气48 h后库内pH3氢浓度逐步降至职业接触限值;库外磷化氢浓度在散气时同步检测91%

  19. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  20. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  1. Tension Control System of Electrode of Zinc-Air Battery Fuzzy PID Control System Research%锌空电池极片张力PID控制系统研究

    Institute of Scientific and Technical Information of China (English)

    肖艳军; 王旭; 陈宏; 朱瑞峰

    2013-01-01

    锌空电池作为一种高效、无污染和可回收利用能源,成为当今世界电池领域开发的热点,有巨大市场前景.在锌空电池生产线中,张力对保证产品质量有重要的作用.按照张力产生原因不同,对锌空电池极片生产线控制系统进行模糊控制器的设计.以电池极片生产线的张力控制为研究对象,以开卷机构为例,建立张力控制系统的数学模型;并将模糊PID算法应用于张力控制系统中,仿真研究结果表明在控制器中引入模糊PID控制,系统的性能得到了很大的改善,能很好的实现恒张力运行.%As an efficient,no pollution and recycled kind of energy,Zn-air battery is regarded as the hotspot of its field and has market prospects.Tension in zinc-air battery production line plays an important role in ensuring the quality of products.It makes tension control of electrode of zinc-air battery production line as research object.According to the different cause of tension,designing fuzzy controller of the control system.Taking uncoiling mechanism as an example,it establishes a mathematical model of the tension control system; and applies fuzzy PID algorithm to tension control system.Simulation results show that using fuzzy PID control in the controller,the performance of the system gets a big improvement; it can realize controlling of constant tension.

  2. 锌-空气电池电解液Zn2+浓度对析氢过程的影响%Effects of Zn2+ concentration upon hydrogen evolution reaction for zinc-air battery

    Institute of Scientific and Technical Information of China (English)

    马洪运; 范永生; 王保国

    2014-01-01

    水溶液体系的二次金属-空气电池通常具有安全环保的特点,但是充电过程中仍然存在析氢副反应的安全隐患。使用线性电势扫描方法、Tafel 极化曲线及极限扩散电流密度参数定量分析了二次锌-空气电池体系电解液中Zn2+浓度对析氢反应过程的影响。结果表明,随着电解液中Zn2+浓度的提高,析氢过电势逐渐增大,Zn2+浓度在6 mol·L-1 KOH溶液中达到0.4 mol·L-1时,析氢过电势超过2.42 V,析氢过电势比空白溶液提高1.2 V,并且Tafel极化曲线的截距超过1.5 V,析氢电势达到超高过电势范围。此外,由Zn2+提供的极限扩散电流密度提高至8.9 A·cm-2,所对应的过电势提高700 mV。研究结果对于确立二次锌-空气电池极限充电范围提供定量依据,对电池安全平稳运行具有重要价值。%Owing to the usage of water solution, the secondary metal-air batteries could be excellent for energy storage systems with outstanding advantages in high safety and environmental friendliness. However, the side reaction of hydrogen evolution in the water solution system is the potential hazard for the operation of batteries. In this study, the effects of Zn2+ concentration on hydrogen evolution reaction were investigated with the methods of linear sweep voltammetry, Tafel polarization curves and parameters of limiting diffusion current density for the zinc-air battery. The results showed that the overvoltage of hydrogen evolution reaction reached 2.42 V and the overpotential was 1.2 V higher than that in the blank solution when the concentration of Zn2+ in 6 mol·L-1 KOH solution was 0.4 mol·L-1. The intercept of the Tafel equation was more than 1.5 V, which suggests that the hydrogen evolution reaction for the solution containing 0.4 mol·L-1 Zn2+ reaches the super-overpotential range. The limiting diffusion current density reached 8.9 A·cm-2 and the overpotential was raised by 700 mV. These data are

  3. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    system is integrated with the vehicle cabin air conditioning system. The reason why we were not able to achieve the 20% reduction target is because of the natural decay of the battery cell due to the number of cycles. Perhaps newer battery chemistries that are not so sensitive to cycling would have more potential for reducing the battery size due to thermal issues.

  4. Determination of the operating point and the enthalpy per unit surface of a cold battery with icy water and a double heat exchanger

    Directory of Open Access Journals (Sweden)

    B. Dieng1 ,

    2015-11-01

    Full Text Available The cold battery is a heat exchanger between two fluids, air (secondary fluid and iced water (primary fluid.The cold battery is composed of two heat exchangers in series, one of which is made up of flat-plate in galvanized steel serving as a reservoir for the iced water and the other one a copper shelland-tube exchanger with aluminum cooling blades. The two heat exchangers are connected to a pipe of the same diameter. These pipes will permit the transit of the icy water coming from the flat-plate heat exchanger by gravitation towards the tubes of the second exchanger [1]. The good operation of this cold battery depends on the knowledge of its operating point. We are proposing a technique of determination of the operating point by using one of the two fluids (water or air and the efficiencies [2, 3].The Knowledge of that operating point will enable us, through experimental means, determine the mean surface temperatureand then determine the mean surface enthalpy from the specific heat capacity at saturation obtained from the linearization of the entrance and exit air temperatures on the saturation curves.

  5. Performance of Al-0.5 Mg-0.02 Ga-0.1 Sn-0.5 Mn as anode for Al-air battery in NaCl solutions

    Science.gov (United States)

    Ma, Jingling; Wen, Jiuba; Gao, Junwei; Li, Quanan

    2014-05-01

    In this research, metal-air battery based on Al, Zn, Al-0.5 Mg-0.02 Ga-0.1 Sn and Al-0.5 Mg-0.02 Ga-0.1 Sn-0.5 Mn (wt%) is prepared and the battery performance is investigated by constant current discharge test in 2 mol L-1 NaCl solutions. The characteristics of the anodes after discharge are investigated by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM). The corrosion behavior of the anodes is studied by self-corrosion rate measurement and potentiodynamic polarization measurement. The results show that Al-Mg-Ga-Sn-Mn is more active than Al, Zn and Al-Mg-Ga-Sn anodes. The self-corrosion rate is found to be in the order: Al Mg-Ga-Sn-Mn Mg-Ga-Sn based on Al-Mg-Ga-Sn-Mn offers higher operating voltage and anodic utilization than those with others. SEM and EIS results of the alloy are in good agreement with corrosion characteristics.

  6. Effect of High Temperature Storage in Vacuum, Air, and Humid Conditions on Degradation of Gold/Aluminum Wire Bonds in PEMs

    Science.gov (United States)

    Teverovsky, Alexander

    2006-01-01

    Microcircuits encapsulated in three plastic package styles were stored in different environments at temperatures varying from 130 C to 225 C for up to 4,000 hours in some cases. To assess the effect of oxygen, the parts were aged at high temperatures in air and in vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. High temperature storage testing of decapsulated microcircuits in air, vacuum, and HAST chambers was carried out to evaluate the role of molding compounds in the environmentally-induced degradation and failure of wire bonds (WB). This paper reports on accelerating factors of environment and molding compound on WB failures. It has been shown that all environments, including oxygen, moisture, and the presence of molding compounds reduce time-to-failures compared to unencapsulated devices in vacuum conditions. The mechanism of the environmental effect on KB degradation is discussed.

  7. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Science.gov (United States)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R. K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-04-01

    Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  8. Aspects of aluminum toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, C.D.; Savory, J.; Wills, M.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  9. Wiring Zinc in Three Dimensions Re-writes Battery Performance - Dendrite-Free Cycling

    Science.gov (United States)

    2014-01-01

    rechargeable batteries . Broader context Zinc -based batteries have high practical specic energy (up to 400 W h kg1 in Zn– air cells) and many advantages over...Kordesch, J. Power Sources, 1994, 52, 217. 24 D. Linden, Zinc / air cells, Handbook of Batteries , 2nd edn, 1984, ch. 13. 25 The electroreduced Zn...Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling† Joseph F. Parker, Christopher N. Chervin, Eric S. Nelson, Debra

  10. Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing

    2017-02-01

    Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium-oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium-oxygen batteries and help to tackle the critical issues confronted.

  11. Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries

    Science.gov (United States)

    Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing

    2017-01-01

    Water contamination is generally considered to be detrimental to the performance of aprotic lithium–air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium–oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium–oxygen batteries and help to tackle the critical issues confronted. PMID:28165008

  12. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  13. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  14. A Responsive Battery with Controlled Energy Release.

    Science.gov (United States)

    Wang, Xiaopeng; Gao, Jian; Cheng, Zhihua; Chen, Nan; Qu, Liangti

    2016-11-14

    A new type of responsive battery with the fascinating feature of pressure perceptibility has been developed, which can spontaneously, timely and reliably control the power outputs (e.g., current and voltage) in response to pressure changes. The device design is based on the structure of the Zn-air battery, in which graphene-coated sponge serves as pressure-sensitive air cathode that endows the whole system with the capability of self-controlled energy release. The responsive batteries exhibit superior battery performance with high open-circuit voltage (1.3 V), and competitive areal capacity of 1.25 mAh cm(-2) . This work presents an important move towards next-generation intelligent energy storage devices with energy management function.

  15. Flexible fiber batteries for applications in smart textiles

    Science.gov (United States)

    Qu, Hang; Semenikhin, Oleg; Skorobogatiy, Maksim

    2015-02-01

    In this paper, we demonstrate flexible fiber-based Al-NaOCl galvanic cells fabricated using fiber drawing process. Aluminum and copper wires are used as electrodes, and they are introduced into the fiber structure during drawing of the low-density polyethylene microstructured jacket. NaOCl solution is used as electrolyte, and it is introduced into the battery after the drawing process. The capacity of a 1 m long fiber battery is measured to be ˜10 mAh. We also detail assembly and optimization of the electrical circuitry in the energy-storing fiber battery textiles. Several examples of their applications are presented including lighting up an LED, driving a wireless mouse and actuating a screen with an integrated shape-memory nitinol wire. The principal advantages of the presented fiber batteries include: ease of fabrication, high flexibility, simple electrochemistry and use of widely available materials in the battery design.

  16. Brazed aluminum, Plate-fin heat exchangers for OTEC

    Energy Technology Data Exchange (ETDEWEB)

    Foust, H.D.

    1980-12-01

    Brazed aluminum plate-fin heat exchangers have been available for special applications for over thirty years. The performance, compactness, versatility, and low cost of these heat exchangers has been unequaled by other heat exchanger configuration. The application of brazed aluminum has been highly limited because of necessary restrictions for clean non-corrosive atmospheres. Air and gas separation have provided ideal conditions for accepting brazed aluminum and in turn have benefited by the salient features of these plate-fin heat exchangers. In fact, brazed aluminum and cryogenic gas and air separation have become nearly synonymous. Brazed aluminum in its historic form could not be considered for a seawater atmosphere. However, technology presents a new look of significant importance to OTEC in terms of compactness and cost. The significant technological variation made was to include one-piece hollow extensions for the seawater passages. Crevice corrosion sites are thereby entirely eliminated and pitting corrosion attack will be controlled by an integral and sacrificial layer of a zinc-aluminum alloy. This paper on brazed aluminum plate-fin heat exchangers for OTEC will aquaint the reader with the state-of-art and variations suggested to qualify this form of aluminum for seawater use. In order to verify the desirable cost potential for OTEC, Trane teamed with Westinghouse to perform an OTEC system analysis with this heat exchanger. These results are very promising and reported in detail elsewhere.

  17. Is the Aluminum Hypothesis Dead?

    OpenAIRE

    Lidsky, Theodore I.

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  18. Battery life-cycle cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.R.; Humphreys, K.K.

    1988-07-01

    Life-cycle cost (LCC) estimates have been prepared for 17 combinations of battery or fuel-cell technologies and load-levelling, stand-alone power system, or electric vehicle applications. In addition, LCCs for gas-fired turbine, compressed-air energy storage, pumped hydro energy storage, and internal combustion engine technologies were estimated for comparative purposes. The objectives in preparing the estimates were to determine the relative economics among alternative battery systems and to compare battery systems economics with competing energy technologies.

  19. Is the Aluminum Hypothesis dead?

    Science.gov (United States)

    Lidsky, Theodore I

    2014-05-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust.

  20. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  1. 空调铝箔用高耐水性含氟丙烯酸疏水涂料的研制%Preparation of highly water-resistant fluoroacrylic hydrophobic coating for aluminum foils for air conditioner

    Institute of Scientific and Technical Information of China (English)

    聂建华; 周志盛; 霍泽荣

    2014-01-01

    A fluoroacrylic resin solution was synthesized by radical polymerization based on methyl methacrylate (MMA), butyl acrylate (BA), and stearyl acrylate (SA) as materials with 2-hydroxyethyl methacrylate (HEMA) as hydroxy functional monomer and fluorinated acrylate monomer as organic fluorine modifier, and then blended with curing agent to prepare a hydrophobic coating with high water resistance. The effects of different fluoroacrylate monomers on water contact angle and water dissolution rate of the coating were studied. The influence of the dosages of perfluoroalkyl ethyl methacrylate (PFMA) and HEMA on hydrophobicity and water resistance of the coating was discussed. The optimal reaction formulation was determined as follows: MMA 57%, BA 12%, SA 4%, PFMA 20%, and HEMA 7%. The coating prepared with the optimal formulation was characterized by Fourier transform infrared spectrometry,and tested for comparison of the comprehensive performance with a commercially available product. The results indicated that the coating has a water contact angle 132.7° and a water dissolution rate of 4.1%, being matchable to the comprehensive performance of the superhydrophobic coating formed from the Ultra AC series transparent vanish (a product of the Ultratech Ltd., USA, used for aluminum foils of air conditioner). The coating meets the requirement of surface treatment of aluminum foils for air conditioner.%以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)以及丙烯酸十八酯(SA)为原料,甲基丙烯酸-β-羟乙酯(HEMA)为羟基功能单体,含氟丙烯酸酯单体为有机氟改性剂,通过溶液自由基聚合反应制备了含氟丙烯酸树脂溶液,再与固化剂配合使用制得高耐水性疏水涂膜。研究了不同含氟丙烯酸酯单体对涂膜的水接触角和水溶率的影响,讨论了甲基丙烯酸全氟烷基乙酯(PFMA)与HEMA不同用量对涂膜的疏水性和耐水性的影响,获得了最佳反应配方:MMA 57%,BA 12%,SA 4%

  2. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  3. Research on Tension Control System for Aluminum Strip Air-cushion Heat Treatment line%铝带气垫式热处理线张力控制系统研究

    Institute of Scientific and Technical Information of China (English)

    付天亮; 韦云松; 王昭东; 李家栋

    2015-01-01

    针对国内某厂铝合金汽车板用气垫式连续热处理线,分析主要工艺设备张力工作特点,采用间接、直接两种张力控制模式对传动系统实施速度和转矩控制,建立了典型工艺设备张力控制方法及整线张力平衡控制策略,构建了以工艺数学模型为核心的张力控制系统.实测表明,静态张力控制精度为-0.05%~0.65%,动态张力控制精度为-3.65%~3.75%,满足热处理线对张力控制精度的需求.%Based on domestic air-cushion continuous heat treatment line for aluminum alloy automobile sheet, tension work characteristics of the main process equipment is analyzed, indirect and direct tension control mode are adopted for dirve system's velocity and torque control. And tension control method for typical process equipment and whole line tension balance control strategy are established, tension control system which centered on process mathematic model is constructed. The results show that static tension control precision is -0.05%~0.65%, and dynamic tension control percision is -3.65%~3.75%, both of which meet the needs of heat treatment line for tension control percision.

  4. LIFE CYCLE DESIGN OF AIR INTAKE MANIFOLDS; PHASE I: 2.0 L FORD CONTOUR AIR INTAKE MANIFOLD

    Science.gov (United States)

    The project team applied the life cycle design methodology to the design analysis of three alternative air intake manifolds: a sand cast aluminum, brazed aluminum tubular, and nylon composite. The design analysis included a life cycle inventory analysis, environmental regulatory...

  5. New Horizons for Conventional Lithium Ion Battery Technology.

    Science.gov (United States)

    Erickson, Evan M; Ghanty, Chandan; Aurbach, Doron

    2014-10-02

    Secondary lithium ion battery technology has made deliberate, incremental improvements over the past four decades, providing sufficient energy densities to sustain a significant mobile electronic device industry. Because current battery systems provide ∼100-150 km of driving distance per charge, ∼5-fold improvements are required to fully compete with internal combustion engines that provide >500 km range per tank. Despite expected improvements, the authors believe that lithium ion batteries are unlikely to replace combustion engines in fully electric vehicles. However, high fidelity and safe Li ion batteries can be used in full EVs plus range extenders (e.g., metal air batteries, generators with ICE or gas turbines). This perspective article describes advanced materials and directions that can take this technology further in terms of energy density, and aims at delineating realistic horizons for the next generations of Li ion batteries. This article concentrates on Li intercalation and Li alloying electrodes, relevant to the term Li ion batteries.

  6. A Li-O2/CO2 battery.

    Science.gov (United States)

    Takechi, Kensuke; Shiga, Tohru; Asaoka, Takahiko

    2011-03-28

    A new gas-utilizing battery using mixed gas of O(2) and CO(2) was developed and proved its very high discharge capacity. The capacity reached three times as much as that of a non-aqueous Li-air (O(2)) battery. The unique point of the battery is expected to be the rapid consumption of superoxide anion radical by CO(2) as well as the slow filling property of the Li(2)CO(3) in the cathode.

  7. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  8. Clinical biochemistry of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  9. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  10. Progress and Challenges for Solid-State Li-Air Batteries Based on Inorganic Ceramic Solid Electrolytes%无机陶瓷固体电解质基固态锂空气电池的研究进展及挑战

    Institute of Scientific and Technical Information of China (English)

    孙继杨; 崔忠慧; 郭向欣

    2016-01-01

    Aprotic Li-air batteries (LABs) have attracted intensive interest because of their highest theoretical energy density compared with other available battery systems. However, recent research results demonstrated that the organic electrolytes tend to decompose and form carbonates during charge/and discharge process, which severely impairs the reversibility of such batteries. Moreover, the problems related to the organic electrolytes like lfammability, volatility as well as incapacity to block the penetration of non-oxygen components from air will hinder the development of high performance aprotic LABs. Replacing organic electrolytes with inorganic ceramic solid electrolytes is promising to completely solve these problems and promotes the development from lithium oxygen batteries to lithium air batteries. This paper summarizes the progress and challenges for solid-state Li-air batteries based on inorganic ceramic solid electrolytes from the aspects of battery architecture, materials (electrodes and electrolytes) and reaction mechanism.%锂空气电池具有远高于锂离子电池的理论能量密度,是新一代高比能储能体系研发的热点。其中,以有机液体电解液为基础的非水系锂空气电池具有优异的可充电性能,最受人们关注。但研究发现常用的有机电解液在工作时易自身发生分解形成碳酸盐,严重损害电池的可逆性。同时,有机电解液的易燃性、易挥发性以及难以阻挡空气中H2O、CO2等非氧组分对锂负极的侵蚀等不足,更不利于高性能非水系锂空气电池的开发。使用无机陶瓷固体电解质构筑全固态锂空气电池有望从根本上解决上述问题,推动锂氧电池向锂空气电池发展。本文从电池结构、电极和电解质材料及反应机制等方面概述陶瓷电解质基固态锂空气电池近来的研究进展及其面临的挑战。

  11. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  12. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  13. Composite hydrophilic coating for conditioner aluminum fins

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    To solve the so-called "white rust" and 'water bridge" problems of the aluminum fins for heat exchanger of automobile air conditioner, aimed at nationalizing the art of hydrophilic coating technology, the choice of coating forming and curing materials was investigated. By measuring the water contact angle, SEM surface scanning and ingredients analysis of the coating, optimal parameters and composition are acquired. The coating forming mechanisms of the composition was also expatiated. The coating obtained has good hydrophilic and other properties.

  14. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  15. Maintenance-free lead acid battery for inertial navigation systems aircraft

    Science.gov (United States)

    Johnson, William R.; Vutetakis, David G.

    1995-05-01

    Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66 percent of the systems sold.

  16. Applied Electrochemistry of Aluminum

    DEFF Research Database (Denmark)

    Li, Qingfeng; Qiu, Zhuxian

    electrolytes. The book is an updated review of the technological advances in the fields of electrolytic production and refining of metals, electroplating, anodizing and other electrochemical surface treatments, primary and secondary batteries, electrolytic capacitors; corrosion and protection and others....

  17. Fibrous zinc anodes for high power batteries

    Science.gov (United States)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  18. Resource recovery of scrap silicon solar battery cell.

    Science.gov (United States)

    Lee, Ching-Hwa; Hung, Chi-En; Tsai, Shang-Lin; Popuri, Srinivasa R; Liao, Ching-Hua

    2013-05-01

    In order to minimize pollution problems and to conserve limited natural resources, a hydrometallurgical procedure was developed in this study to recover the valuable resources of silicon (Si), silver (Ag) and aluminum (Al) from scrap silicon solar battery cells. In this study, several methods of leaching, crystallization, precipitation, electrolysis and replacement were employed to investigate the recovery efficiency of Ag and Al from defective monocrystalline silicon solar battery cells. The defective solar battery cells were ground into powder followed by composition analysis with inductively coupled plasma-atomic emission spectrometry. The target metals Ag and Al weight percentage were found to be 1.67 and 7.68 respectively. A leaching process was adopted with nitric acid (HNO3), hydrochloric acid, sulfuric acid (H2SO4) and sodium hydroxide as leaching reagent to recover Ag and Al from a ground solar battery cell. Aluminum was leached 100% with 18N H2SO4 at 70°C and Ag was leached 100% with 6N HNO3. Pure Si of 100% was achieved from the leaching solution after the recovery of Ag and Al, and was analyzed by scanning electron microscope-energy dispersive spectroscopy. Aluminum was recovered by crystallization process and silver was recovered by precipitation, electrolysis and replacement processes. These processes were applied successfully in the recovery of valuable metal Ag of 98-100%.

  19. Solar battery energizer

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M. E.

    1985-09-03

    A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

  20. Aluminum, parathyroid hormone, and osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  1. Electrocatalysis for dioxygen reduction by a μ-oxo decavanadium complex in alkaline medium and its application to a cathode catalyst in air batteries

    Science.gov (United States)

    Dewi, Eniya Listiani; Oyaizu, Kenichi; Nishide, Hiroyuki; Tsuchida, Eishun

    The redox behavior of a decavanadium complex [(VO) 10(μ 2-O) 9(μ 3-O) 3(C 5H 7O 2) 6] ( 1) was studied using cyclic voltammetry under acidic and basic conditions. The reduction potential of V(V) was found at less positive potentials for higher pH electrolyte solutions. The oxygen reduction at complex 1 immobilized on a modified electrode was examined using cyclic voltammetry and rotating ring-disk electrode techniques in the 1 M KOH solutions. On the basis of measurements using a rotating disk electrode (RDE), the complex 1 was found to be highly active for the direct four-electron reduction of dioxygen at -0.2 V versus saturated calomel electrode (SCE). The complex 1 as a reduction catalyst of O 2 with a high selectivity was demonstrated using rotating ring-disk voltammograms in alkaline solutions. The application of complex 1 as an oxygen reduction catalyst at the cathode of zinc-air cell was also examined. The zinc-air cell with the modified electrode showed a stable discharge potential at approximately 1 V with discharge capacity of 80 mAh g -1 which was about five times larger than that obtained with the commonly used manganese dioxide catalyst.

  2. Lead exposure among lead-acid battery workers in Jamaica.

    Science.gov (United States)

    Matte, T D; Figueroa, J P; Burr, G; Flesch, J P; Keenlyside, R A; Baker, E L

    1989-01-01

    To assess lead exposure in the Jamaican lead-acid battery industry, we surveyed three battery manufacturers (including 46 production workers) and 10 battery repair shops (including 23 battery repair workers). Engineering controls and respiratory protection were judged to be inadequate at battery manufacturers and battery repair shops. At manufacturers, 38 of 42 air samples for lead exceeded a work-shift time-weighted average concentration of 0.050 mg/m3 (range 0.030-5.3 mg/m3), and nine samples exceeded 0.50 mg/m3. Only one of seven air samples at repair shops exceeded 0.050 mg/m3 (range 0.003-0.066 mg/m3). Repair shop workers, however, had higher blood lead levels than manufacturing workers (65% vs. 28% with blood lead levels above 60 micrograms/dl, respectively). Manufacturing workers had a higher prevalence of safe hygienic practices and a recent interval of minimal production had occurred at one of the battery manufacturers. Workers with blood lead levels above 60 micrograms/dl tended to have higher prevalences of most symptoms of lead toxicity than did workers with lower blood lead levels, but this finding was not consistent or statistically significant. The relationship between zinc protoporphyrin concentrations and increasing blood lead concentrations was consistent with that described among workers in developed countries. The high risk of lead toxicity among Jamaican battery workers is consistent with studies of battery workers in other developing countries.

  3. Ionene membrane battery separator

    Science.gov (United States)

    Moacanin, J.; Tom, H. Y.

    1969-01-01

    Ionic transport characteristics of ionenes, insoluble membranes from soluble polyelectrolyte compositions, are studied for possible application in a battery separator. Effectiveness of the thin film of separator membrane essentially determines battery lifetime.

  4. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  5. Metal pad instabilities in liquid metal batteries

    Science.gov (United States)

    Zikanov, Oleg

    2016-11-01

    Strong variations between the electrical conductivities of electrolyte and metal layers in a liquid metal battery indicate the possibility of 'metal pad' instabilities. Deformations of the electrolyte-metal interfaces cause strong perturbations of electric currents, which, hypothetically, can generate Lorentz forces enhancing the deformations. We investigate this possibility using two models: a mechanical analogy and a two-dimensional linearized approximation. It is found that the battery is prone to instabilities of two types. One is similar to the sloshing-wave instability observed in the Hall-Héroult aluminum reduction cells. Another is new and related to the interactions of current perturbations with the azimuthal magnetic field induced by the base current. Financial support was provided by the U.S. National Science Foundation (Grant CBET 1435269).

  6. Graphene-based battery electrodes having continuous flow paths

    Science.gov (United States)

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  7. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  8. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  9. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  10. Battery charging system

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, J.A.; Kalinsky, W.A.

    1984-02-21

    A battery charger utilizes three basic modes of operation that includes a maintenance mode, a rapid charge mode and time controlled limited charging mode. The device utilizes feedback from the battery being charged of voltage, current and temperature to determine the mode of operation and the time period during which the battery is being charged.

  11. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.

    Science.gov (United States)

    Wang, Hongsen; Rus, Eric; Sakuraba, Takahito; Kikuchi, Jun; Kiya, Yasuyuki; Abruña, Héctor D

    2014-07-01

    A three-electrode differential electrochemical mass spectrometry (DEMS) cell has been developed to study the oxidative decomposition of electrolytes at high voltage cathode materials of Li-ion batteries. In this DEMS cell, the working electrode used was the same as the cathode electrode in real Li-ion batteries, i.e., a lithium metal oxide deposited on a porous aluminum foil current collector. A charged LiCoO2 or LiMn2O4 was used as the reference electrode, because of their insensitivity to air, when compared to lithium. A lithium sheet was used as the counter electrode. This DEMS cell closely approaches real Li-ion battery conditions, and thus the results obtained can be readily correlated with reactions occurring in real Li-ion batteries. Using DEMS, the oxidative stability of three electrolytes (1 M LiPF6 in EC/DEC, EC/DMC, and PC) at three cathode materials including LiCoO2, LiMn2O4, and LiNi(0.5)Mn(1.5)O4 were studied. We found that 1 M LiPF6 + EC/DMC electrolyte is quite stable up to 5.0 V, when LiNi(0.5)Mn(1.5)O4 is used as the cathode material. The EC/DMC solvent mixture was found to be the most stable for the three cathode materials, while EC/DEC was the least stable. The oxidative decomposition of the EC/DEC mixture solvent could be readily observed under operating conditions in our cell even at potentials as low as 4.4 V in 1 M LiPF6 + EC/DEC electrolyte on a LiCoO2 cathode, as indicated by CO2 and O2 evolution. The features of this DEMS cell to unveil solvent and electrolyte decomposition pathways are also described.

  12. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  13. Self-ignition and ignition of aluminum powders in shock waves

    Science.gov (United States)

    Boiko, V. M.; Poplavski, S. V.

    Ignition of fine aluminum powders in reflected shock waves has been studied. Two ignition regimes are found: self-ignition observed at temperatures higher than 1800 K and ``low-temperature'' ignition at temperatures of 1000-1800 K. The possibility of initiating the ignition of aluminum powders in air using combustible liquids has been studied too.

  14. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  15. China’s Aluminum Resources

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The aluminum industry makes one of the keyindustries in China’s industrial and agriculturalmodernization and features a high degree ofrelevance with all industries.Of all the 124existing industries in China,113 use aluminum,representing an industrial relevance rate of91%.The consumption of aluminum is also ofhigh relevance with China’s GDP.

  16. Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn-air batteries

    Science.gov (United States)

    Park, Gi Su; Lee, Jang-Soo; Kim, Sun Tai; Park, Soojin; Cho, Jaephil

    2013-12-01

    Highly porous nitrogen doped carbon fibers like churros morphology are prepared from a simple and cost-effective fabrication process, electrospinning with bicomponent polymer consisting of polystyrene (PS) and polyacrylonitrile (PAN). From appropriate ratio of two polymer and pyrolysis at 1100 °C, newly churros morphology with extremely high surface area (1271 m2 g-1) is prepared. During carbonization, more unstable PS than PAN plays a critical role in forming such morphology by acting as sacrifice materials, thus providing additional formation of inner pores and outer etched surfaces. Furthermore, it demonstrates excellent electrocatalytic activity toward ORR, which is attributed to highly meso- and macro porous nitrogen-doped large surface area and enhanced graphitic-nitrogen groups of carbon fibers. For example, the performance of a Zn-air cell based on the nitrogen-doped porous carbon nanofibers exhibits a peak power density of 194 mW cm-2, comparable to that based on a commercial Pt/C catalyst (192 mW cm-2). Further, the generation of hydrogen peroxide ions (<20%) in a half cell is similar to that on the commercial Pt/C catalyst.

  17. Oxidation kinetics of aluminum diboride

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Michael L., E-mail: michaelwhittaker2016@u.northwestern.edu [Department of Materials Science and Engineering, University of Utah, 122S. Central Campus Drive, Salt Lake City, UT 84112 (United States); Sohn, H.Y. [Department of Metallurgical Engineering, University of Utah, 135S 1460 E, Rm 00412, Salt Lake City, UT 84112 (United States); Cutler, Raymond A. [Ceramatec, Inc., 2425S. 900W., Salt Lake City, UT 84119 (United States)

    2013-11-15

    The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time

  18. Environmental Assessment of Installation Development at Dover Air Force Base, Delaware

    Science.gov (United States)

    2007-09-01

    program includes the collection of aluminum cans, paper, glass, plastic , scrap metal, cardboard, scrap wood, used batteries, and spent fluorescent...agencies that promotes environmental practices, including acquisition of biobased , environmentally preferable, energy-efficient, water-efficient, and

  19. Department of the Air Force Supporting Data For Fiscal Year 1984 Budget Estimates Submitted to Congress, January 31, 1983. Descriptive Summaries, Research, Development, Test and Evaluation

    Science.gov (United States)

    1983-01-01

    pulsed and continuous wave lasers. Develop techniques to handle very large thermal energy loads, demonstrate a 12 KWH lithium thionyl chloride battery ...electrical power for directed energy weapons and railguns was also demonstrated. Demonstrated a lithium aluminum-iron disulfide battery which Improved tactical...fuels and explosives; (4) electrochemical processes important for improved batteries ; (5) new analytic methods for utilization in combustion

  20. Aluminum for Plasmonics

    Science.gov (United States)

    2014-01-01

    in plasmon-enhanced light harvesting,14 photocatalysis ,511 surface- enhanced spectroscopies,1216 optics-based sensing,1722 nonlinear optics,2326...optical response of Al nanoparticles has appeared inconsistent relative to calculated spectra, even forwell-characterized geometries. Some studies have...model- ing their optical response. These results pro- vide a method for estimating the metallic purity of aluminum nanoparticles directly from their

  1. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  2. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available.

  3. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  4. A comparative study of the ignition and burning characteristics of after burning aluminum and magnesium particles

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ji Hwan; Lee, Sang Hyup; Yoon, Woong Sup [Yonsei University, Seoul (Korea, Republic of)

    2014-10-15

    Ignition and the burning of air-born single aluminum and magnesium particles are experimentally investigated. Particles of 30 to 106 μm-diameters were electrodynamically levitated, ignited, and burnt in atmospheric air. The particle combustion evolution was recorded by high-speed cinematography. Instant temperature and thermal radiation intensity were measured using two-wavelength pyrometry and photomultiplier tube methods. Ignition of the magnesium particle is prompt and substantially advances the aluminum particle by 10 ms. Burning time of the aluminum particles is extended 3 to 5 times longer than the magnesium particles. Exponents of a power-law fit of the burning rates are 1.55 and 1.24 for aluminum and magnesium particles, respectively. Flame temperature is slightly lower than the oxide melting temperature. For the aluminum, dimensionless flame diameter is inert to the initial particle size, but for the magnesium inversely proportional to the initial diameter.

  5. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  6. Porous graphene nanocages for battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.

    2017-03-07

    An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.

  7. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices.

  8. Air Safety Spinoffs

    Science.gov (United States)

    1977-01-01

    Weight saving-even a matter of a few pounds-is an important consideration in airplane design and . construction. Boeing saved 200 pounds simply by substituting a new type of compressed gas cylinder on their 747 commercial airliners. For quickly evacuating passengers in the event of a ground emergency the 747 escape chutes allow ' passengers to slide to safety from the two-story height of the cabin deck. The chutes pop out of exitways and are automatically inflated in seconds by compressed air stored in pressure vessels. Boeing's weight saving resulted from a recent changeover to a new type of pressure vessel built by Structural Composites Industries Inc. of Azusa, Cal. The company employs technology originally developed for rocket motor casings; the cylinders are constructed by winding fibers around an aluminum liner. This technique offers high strength for very low weight-in this case 60 percent less than the pressure vessels earlier used on the 747. Another contribution to improved air safety is an underwater locator device. Called the "Pinger," it uses sonar techniques to locate aircraft crashed in water-or, more specifically, to recover the flight recorder aboard the airplane. Its recovery provides clues as to what caused the accident and suggests measures to prevent similar future occurrences. Until recently, there was no way to recover flight recorders aboard aircraft lost in water crashes. The Pinger, now serving 95 percent of the airline industry, provides an answer. Key element of the Pinger system is a small, battery-powered transmitter, or homing beacon, included as part of the recorder package. For as long as 30 days, the transmitter sends out an acoustic signal from water depths up to 20,000 feet. The other element of the system is a receiver, used by search crews to home in on the transmitter's signal. Originating as a U.S. Navy project, this device was refined and further developed by NASA's Langley Research Center to retrieve submerged nose cones

  9. Electronically configured battery pack

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, D.

    1997-03-01

    Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

  10. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  11. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  12. High efficiency iron electrode and additives for use in rechargeable iron-based batteries

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Sri R.; Prakash, G. K. Surya; Aniszfeld, Robert; Manohar, Aswin; Malkhandi, Souradip; Yang, Bo

    2017-02-21

    An iron electrode and a method of manufacturing an iron electrode for use in an iron-based rechargeable battery are disclosed. In one embodiment, the iron electrode includes carbonyl iron powder and one of a metal sulfide additive or metal oxide additive selected from the group of metals consisting of bismuth, lead, mercury, indium, gallium, and tin for suppressing hydrogen evolution at the iron electrode during charging of the iron-based rechargeable battery. An iron-air rechargeable battery including an iron electrode comprising carbonyl iron is also disclosed, as is an iron-air battery wherein at least one of the iron electrode and the electrolyte includes an organosulfur additive.

  13. Nanocomposite anode materials for sodium-ion batteries

    Science.gov (United States)

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  14. Aluminum Carbothermic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry

  15. Development and characterization of a high capacity lithium/thionyl chloride battery

    Science.gov (United States)

    Boyle, Gerald H.; Goebel, Franz

    A 30 V lithium/thionyl chloride battery with 320 Ah capacity capable of operating at currents of 14 to 75 A has been developed and tested over a temperature range from 15 to 71 °C. The 81 lb battery consists of nine series connected cylindrical cells in a three-by-three arrangement within an aluminum case. The cells are of a parallel disc electrode design with a total active surface area of 10 200 cm 2. Cells and batteries have each been tested for safety, performance and to a space environment. The battery has clearly performed in excess of the specification requirements. The cell design is very adaptable to many battery design requirements.

  16. Development and characterization of a high capacity lithium/thionyl chloride battery

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, G.H. [Yardney Technical Products, Inc., Pawcatuck, CT (United States); Goebel, F. [Yardney Technical Products, Inc., Pawcatuck, CT (United States)

    1995-04-01

    A 30 V lithium/thionyl chloride battery with 320 Ah capacity capable of operating at currents of 14 to 75 A has been developed and tested over a temperature range from 15 to 71 C. The 81 lb battery consists of nine series connected cylindrical cells in a three-by-three arrangement within an aluminum case. The cells are of a parallel disc electrode design with a total active surface area of 10 200 cm{sup 2}. Cells and batteries have each been tested for safety, performance and to a space environment. The battery has clearly performed in excess of the specification requirements. The cell design is very adaptable to many battery design requirements. (orig.)

  17. Evaluation of heat sink materials for thermal management of lithium batteries

    Science.gov (United States)

    Dimpault-Darcy, E. C.; Miller, K.

    1988-01-01

    Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.

  18. Role of Spirulina in mitigating hemato-toxicity in Swiss albino mice exposed to aluminum and aluminum fluoride.

    Science.gov (United States)

    Sharma, Shweta; Sharma, K P; Sharma, Subhasini

    2016-12-01

    Aluminum is ingested through foods, water, air, and even drugs. Its intake is potentiated further through foods and tea prepared in aluminum utensils and Al salt added in the drinking water for removal of suspended impurities and also fluoride in the affected areas. The ameliorating role of a blue green alga Spirulina is well documented to various pollutants in the animal models. We, therefore, examined its protective role (230 mg/kg body weight) on the hematology of male Swiss albino mice treated with aluminum (sub-acute = 78.4 mg/kg body weight for 7 days, sub-chronic = 7.8 mg/kg body weight for 90 days) and aluminum fluoride (sub-acute = 103 mg/kg body weight, sub-chronic = 21 mg/kg body weight), along with their recovery after 90 days of sub-chronic exposure. This study revealed significant reduction in the values of RBC (5-18 %), Hb (15-17 %), PCV (8-14 %), and platelets (26-36 %), and increase in WBC (54-124 %) in the treated mice, particularly after sub-acute exposure. Aluminum fluoride was comparatively more toxic than aluminum. Further, Spirulina supplement not only alleviated toxicity of test chemicals in Swiss albino mice but also led to their better recovery after withdrawal.

  19. Laser assisted foaming of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kathuria, Y.P. [Laser X Co. Ltd., Aichi (Japan)

    2001-09-01

    Recently aluminum foams have evoked considerable interest as an alternative material owing to their wide range of applications ranging from microelectronics, through automobiles to aerospace industries. The manufacturing techniques and characterization methods for aluminum foams require further development to achieve effective and economical use of this material. In this communication the authors demonstrate the feasibility of unidirectional and localized expansion of the aluminum foam using the Nd-YAG/CO{sub 2} laser and powder metallurgy. (orig.)

  20. Battery actuation of NITINOL at sub-zero temperatures

    Science.gov (United States)

    Goldstein, David

    1989-04-01

    It is feasible to use batteries to produce rapid shape memory response in NITINOL wires which are in sub-zero temperature ambients. Data are presented on lithium thionyl chloride batteries used to joule heat 10 mil diameter wires of nominal transformation temperatures of 90 to 105 C. The batteries and wires were jointly tested in a -35 C ambient air environment. The wire contracted 5 percent in length (0.4 inch) and lifted a 1 pound load in 1/2 second.

  1. Silicon Betavoltaic Batteries Structures

    Directory of Open Access Journals (Sweden)

    V.N. Murashev

    2015-12-01

    Full Text Available For low-power miniature energy creation sources the particular interest is nickel Ni63. This paper discusses the main types of betavoltaic battery structures with the prospects for industrial application using - isotope of nickel Ni63. It is shown that the prospects for improving the effective efficiency are planar multijunction betavoltaic batteries.

  2. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, Lucia; Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2007-01-01

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  3. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications t

  4. Battery thermal management unit

    Science.gov (United States)

    Sanders, Nicholas A.

    1989-03-01

    A battery warming device has been designed which uses waste heat from an operating internal combustion engine to warm a battery. A portion of the waste heat is stored in the sensible and latent heat of a phase change type material for use in maintaining the battery temperature after the engine is shut off. The basic design of the device consists of a Phase Change Material (PCM) reservoir and a simple heat exchanger connected to the engineer's cooling system. Two types of units were built, tested and field trialed. A strap-on type which was strapped to the side of an automotive battery and was intended for the automotive after-market and a tray type on which a battery or batteries sat. This unit was intended for the heavy duty truck market. It was determined that both types of units increased the average cranking power of the batteries they were applied to. Although there were several design problems with the units such as the need for an automatic thermostatically controlled bypass valve, the overall feeling is that there is a market opportunity for both the strap-on and tray type battery warming units.

  5. The Rechargeability of Silicon-Air Batteries

    Science.gov (United States)

    2012-06-01

    Silicon cyclic voltammetry , studies were performed with EG&G Princeton Applied Research potentiostat /galvanostat 2273. Discharge experiments were carried...electrochemical reduction performance / ability. A solution of 0.1M SiO2 in EMI(HF)2.3F ionic liquid was examined, and a cyclic - voltammetry reduction peak... potentiostat /galvanostat 273/273A. In all studies Pt counter and quasi reference wire electrode were applied. Two types of working electrodes were

  6. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  7. Electrolytes for advanced batteries

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, G.E. [Energizer, Westlake, OH (United States)

    1999-09-01

    The choices of the components of the electrolyte phase for advanced batteries (lithium and lithium ion batteries) are very sensitive to the electrodes which are used. There are also a number of other requirements for the electrolyte phase, which depend on the cell design and the materials chosen for the battery. The difficulty of choice is compounded when the cell is a rechargeable one. This paper looks at each of these requirements and the degree to which they are met for lithium and lithium ion batteries. The discussion is broken into sections on anode or negative electrode stability requirements, cathode or positive electrode stability requirements, conductivity needs, viscosity and wetting requirements. The effects of these properties and interactions on the performance of batteries are also discussed. (orig.)

  8. Neurofibrillary pathology and aluminum in Alzheimer's disease

    OpenAIRE

    Shin, R. W.; Lee, V.M.Y.; Trojanowski, J.Q.

    1995-01-01

    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  9. Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials.

    Science.gov (United States)

    Chen, Renjie; Luo, Rui; Huang, Yongxin; Wu, Feng; Li, Li

    2016-10-01

    Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi-electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in-depth understanding of multi-electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi-electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi-electron reactions are classified in this review: lithium- and sodium-ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal-air batteries, and Li-S batteries. It is noted that challenges still exist in the development of multi-electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this.

  10. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  11. Mathematical Storage-Battery Models

    Science.gov (United States)

    Chapman, C. P.; Aston, M.

    1985-01-01

    Empirical formula represents performance of electrical storage batteries. Formula covers many battery types and includes numerous coefficients adjusted to fit peculiarities of each type. Battery and load parameters taken into account include power density in battery, discharge time, and electrolyte temperature. Applications include electric-vehicle "fuel" gages and powerline load leveling.

  12. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  13. Ballistic Evaluation of 2060 Aluminum

    Science.gov (United States)

    2016-05-24

    experiments in Experimental Facilities (EFs) 108 and 106, as well as John Hogan of ARL/AMB, Hugh Walter of Bowhead Science and Technology, and David Handshoe...new aluminum (Al)-based monocoque armored-vehicle hulls such as those of the M2 Bradley Infantry Fighting Vehicles. Also in 2012 the Aluminum

  14. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  15. Wettability of Aluminum on Alumina

    Science.gov (United States)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  16. 40 CFR Table 1 to Subpart Zzzzzz... - Applicability of General Provisions to Aluminum, Copper, and Other Nonferrous Foundries Area Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Applicability of General Provisions to Aluminum, Copper, and Other Nonferrous Foundries Area Sources 1 Table 1 to Subpart ZZZZZZ of Part 63... Standards for Hazardous Air Pollutants: Area Source Standards for Aluminum, Copper, and Other...

  17. A Critical Assessment of the Resource Depletion Potential of Current and Future Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jens F. Peters

    2016-12-01

    Full Text Available Resource depletion aspects are repeatedly used as an argument for a shift towards new battery technologies. However, whether serious shortages due to the increased demand for traction and stationary batteries can actually be expected is subject to an ongoing discussion. In order to identify the principal drivers of resource depletion for battery production, we assess different lithium-ion battery types and a new lithium-free battery technology (sodium-ion under this aspect, applying different assessment methodologies. The findings show that very different results are obtained with existing impact assessment methodologies, which hinders clear interpretation. While cobalt, nickel and copper can generally be considered as critical metals, the magnitude of their depletion impacts in comparison with that of other battery materials like lithium, aluminum or manganese differs substantially. A high importance is also found for indirect resource depletion effects caused by the co-extraction of metals from mixed ores. Remarkably, the resource depletion potential per kg of produced battery is driven only partially by the electrode materials and thus depends comparably little on the battery chemistry itself. One of the key drivers for resource depletion seems to be the metals (and co-products in electronic parts required for the battery management system, a component rather independent from the actual battery chemistry. However, when assessing the batteries on a capacity basis (per kWh storage capacity, a high-energy density also turns out to be relevant, since it reduces the mass of battery required for providing one kWh, and thus the associated resource depletion impacts.

  18. Toward a Lithium−“Air” Battery: The Effect of CO_2 on the Chemistry of a Lithium−Oxygen Cell

    OpenAIRE

    2013-01-01

    Lithium–oxygen chemistry offers the highest energy density for a rechargeable system as a “lithium–air battery”. Most studies of lithium–air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a “lithium–dioxygen battery”. Consequently, the next step for the lithium–“air” battery is to understand how the reaction chemistry is affected by the constituents of ambient air. Among the components of air, CO_2 is of ...

  19. Recycling of Li/SOCl{sub 2} battery wastes

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.; Edelstein, A. [National Technical Systems, Inc., Valencia, CA (United States)

    1995-07-01

    Recycling of materials from lithium-oxyhalide batteries is a complex task, since the dismantling of batteries is associated with many hazards. The electrolyte and the lithium anode metal are extremely reactive in the presence of water or water vapor. Therefore, the dismantling process is a complex task. In this process, the lithium battery is electrically discharged, then frozen in liquid argon, and cut into small size pieces. These are fed into an incinerator, where the unreacted portion of lithium metal, thionyl chloride, plastic separators and carbon paste are decomposed and burned to gaseous products. The aluminum, iron (steel) and nickel pieces are recovered as saleable scrap metals. The off-gases are scrubbed with an alkaline sodium carbonate containing solution. The clean gases are released to the environment. The particulate matter recovered from the scrub-suspension would be available as additive to the cement industry. The recycling of battery decomposition products improves the economic viability of the disposal processes. Work is in progress to develop safe handling, processing and recycling large size lithium batteries.

  20. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  1. Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li−Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; García Lastra, Juan Maria; Hummelshøj, Jens S.

    2015-01-01

    The formation and oxidation of the main discharge product in nonaqueous secondary Li−O2 batteries, that is, Li2O2, has been studied intensively, but less attention has been given to the formation of cathode−electrolyte interfaces, which can significantly influence the performance of the Li−O2 bat...

  2. Expandable-graphite-derived graphene for next-generation battery chemistries

    Science.gov (United States)

    Zu, Chenxi; Li, Longjun; Qie, Long; Manthiram, Arumugam

    2015-06-01

    Lithium-sulfur and lithium-air batteries offer theoretical energy densities an order of magnitude higher than that of current lithium-ion batteries and are considered as promising candidates as the next-generation battery chemistries. For an efficient use of these new battery chemistries, careful selection of suitable electrode materials/structures is critical. Graphene, a unique two-dimensional nanomaterial, with its superior electronic conductivity, mechanical strength, and flexibility has been successfully applied in battery studies. Graphene, even with imperfect layers, will be of great interest to battery industrial applications if the manufacturing cost is reduced. Herein, we demonstrate the application of low-cost graphene sponge/sheets derived from expandable graphite in both lithium-sulfur and hybrid lithium-air batteries, respectively, as a cathode conductive matrix to accommodate the soluble polysulfides and as a catalyst for the oxygen reduction reaction. High utilization of active materials and good cycling stability are realized in lithium-sulfur and hybrid lithium-air batteries by employing this low-cost material, demonstrating its promise for use in next-generation battery chemistries.

  3. Hualu Aluminum Will Construct Large Coal-Power-Aluminum Aluminum Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The reporter learned from relevant departments of Baiyin City that in order to further push forward industrial upgrading,fulfill expansion and consolidation of the enterprise,Gansu Hualu Aluminum Co.,Ltd(Hualu Aluminum)will implement Out-Of-City-Into-Park project,

  4. Heat Transfer and Acoustic Properties of Open Cell Aluminum Foams

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The aluminum open cell foams have been prepared by the conventional precision casting method to investigate the thermal and acoustic properties. A water heating system and silencers were organized as a first step for its applications. The temperature increase between the top and bottom of the foam became larger as the cell size increased in the heat transfer measurement. Sound absorption ratio of the close cell foams was 60%-100%,whereas the open cell aluminum foam showed only 10%-20% of sound absorption at low frequency. When the prototype electric water heater manufactured by combining aluminum open cell foam with a heater was heated to 100-400℃, the highest temperature of water was in the range of 16-46℃. This suggests that there could be potential for this type of heater to be used as a commercial electric water heater. Sound silencer made with the aluminum open cell foam was applied to exit of exhaustion side at air pressure line. Sound silencing effect of open-celled aluminum foam showed that the noise level went down by introducing smaller cell size foam.

  5. Lithium Sulfuryl Chloride Battery.

    Science.gov (United States)

    Primary batteries , Electrochemistry, Ionic current, Electrolytes, Cathodes(Electrolytic cell), Anodes(Electrolytic cell), Thionyl chloride ...Phosphorus compounds, Electrical conductivity, Calibration, Solutions(Mixtures), Electrical resistance, Performance tests, Solvents, Lithium compounds

  6. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  7. Thermal battery degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  8. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  9. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  10. Battery energy storage technologies

    Science.gov (United States)

    Anderson, Max D.; Carr, Dodd S.

    1993-03-01

    Battery energy storage systems, comprising lead-acid batteries, power conversion systems, and control systems, are used by three main groups: power generating utilities, power distributing utilities, and major power consumers (such as electric furnace foundries). The principal advantages of battery energy storage systems to generating utilities include load leveling, frequency control, spinning reserve, modular construction, convenient siting, no emissions, and investment deferral for new generation and transmission equipment. Power distributing utilities and major power consumers can avoid costly demand changes by discharging their batteries at peak periods and then recharging with lower cost off-peak power (say, at night). Battery energy storage systems are most cost effective when designed for discharge periods of less than 5 h; other systems (for example, pumped water storage) are better suited for longer discharges. It is estimated that by the year 2000 there will be a potential need for 4000 MW of battery energy storage. New construction of five plants totaling 100 MW is presently scheduled for completion by the Puerto Rico Electric Power Authority between 1992 and 1995.

  11. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    Science.gov (United States)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  12. Nanowire Electrodes for Advanced Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Lei eHuang

    2014-10-01

    Full Text Available Since the commercialization of lithium ion batteries (LIBs in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism needs to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reactions which limit the cycling performance of LIBs. Based on the in situ observations, some feasible structure architecture strategies, including prelithiation, coaxial structure, nanowire arrays and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some beyond Li-ion batteries, such as Li-S and Li-air battery, are also described.

  13. COBE battery overview: History, handling, and performance

    Science.gov (United States)

    Yi, Thomas; Tiller, Smith; Sullivan, David

    1991-01-01

    The following topics are presented in viewgraph format: Cosmic Background Explorer (COBE) mission background; battery background and specifications; cell history; battery mechanical/structural design; battery test data; and flowcharts of the various battery approval procedures.

  14. Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li−Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; García Lastra, Juan Maria; Hummelshøj, Jens S.;

    2015-01-01

    vacancies accumulate at the peroxide part of the interface during charge, reducing the coherent electron transport by two to three orders of magnitude compared with pristine Li2O2. During discharge, Li2O2@Li2CO3 interfaces may, however, provide an alternative in-plane channel for fast electron polaron...... battery. Here we apply density functional theory with the Hubbard U correction (DFT+U) and nonequilibrium Green’s function (NEGF) methods to investigate the role of Li2O2@Li2CO3 interface layers on the ionic and electronic transport properties at the oxygen electrode. We show that, for example, lithium...... hopping that could improve the electronic conductivity and ultimately increase the practical capacity in nonaqueous Li−O2 batteries....

  15. Thin and flexible bio-batteries made of electrospun cellulose-based membranes.

    Science.gov (United States)

    Baptista, A C; Martins, J I; Fortunato, E; Martins, R; Borges, J P; Ferreira, I

    2011-01-15

    The present work proposes the development of a bio-battery composed by an ultrathin monolithic structure of an electrospun cellulose acetate membrane, over which was deposited metallic thin film electrodes by thermal evaporation on both surfaces. The electrochemical characterization of the bio-batteries was performed under simulated body fluids like sweat and blood plasma [salt solution--0.9% (w/w) NaCl]. Reversible electrochemical reactions were detected through the cellulose acetate structure. Thus, a stable electrochemical behavior was achieved for a bio-battery with silver and aluminum thin films as electrodes. This device exhibits the ability to supply a power density higher than 3 μW cm(-2). Finally, a bio-battery prototype was tested on a sweated skin, demonstrating the potential of applicability of this bio-device as a micropower source.

  16. `Energy storage` using liquid air

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.C. [Melbourne Univ., Parkville, VIC (Australia)

    1995-12-31

    Storage of liquid air is relatively simple, and the work needed to manufacture it is, at least in principle, entirely recoverable. Available energy densities seem excellent. Unfortunately the technology to use liquid air for energy storage has never been developed. The Phillips-Stirling and McMahon and Gifford air liquefiers, and a previous proposal by Smith, provide leads as to the form which the technology might take. This paper introduces the concept of `Exergy`, and how it can be utilized in the storage of liquid air. It concludes that liquid air seems to present some real advantages over batteries for energy storage. The development presents a challenge. Since battery technology is not making the huge advances promised, it could be time to take a more serious look at this alternative. (author). 4 figs., 14 refs.

  17. Lithium-Air Cell Development

    Science.gov (United States)

    Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.

    2014-01-01

    Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.

  18. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  19. Detection of Cracks in Aluminum Structure Beneath Inconel Repair Bushings

    Science.gov (United States)

    2008-04-01

    conductivity (i.e. Inconel 718 ) – Primary challenge then becomes detecting the weak eddy current field in the structure beyond the bushing wall...was able to be selected with inspectability as a goal. – Inconel 718 • low permeability (~μ0) • low conductivity (< 2% IACS) • Combined with...Detection of Cracks in Aluminum Structure beneath Inconel Repair Bushings Mr. Kenneth J. LaCivita (USAF) AFRL/RXSA Air Force Research Laboratory

  20. Gating of Permanent Molds for Aluminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-01-01

    sprue-wells should be evaluated. In order for a runner extension to operate efficiently, it must have a small squared cross-section. If it is tapered, the first metal to enter the first metal to enter the system is not effectively trapped. If the cross section is large, there is less turbulence when the aluminum enters the mold cavity in comparison to the smaller cross sectioned, squared runner. However, a large runner reduces yield. In bottom-feeding gating systems, a filter can significantly improve the filling of the casting. The filter helps to slow the metal flow rate enough to reduce jetting into the mold cavity. In top feeding gating systems, a filter can initially slow the metal flow rate, but because the metal drops after passing the filter, high velocities are achieved during free fall when a filter is in place. Side feeding gating systems provide less turbulent flow into the mold cavity. The flow is comparable to a bottom-feeding gating system with a filter. Using properly designed side-gating system instead of a bottom-feeding system with a filter can potentially save the cost of the filter. Rough coatings promote better fill than smooth coatings. This conclusion seems at first counter intuitive. One tends to assume a rough coating creates more friction resistance to the flow of molten metal. In actuality the molten aluminum stream flows inside an oxide film envelope. When this film rests on top of the ridges of a rough coating the microscopic air pockets between the coating and the oxide film provide more thermal insulation than in a smooth coating. This insulation promotes longer feeding distances in the mold as demonstrated in the experiments. Much of this work is applicable to vertically parted sand molds as well, although the heat transfer conditions do vary from a metal mold generally used in permanent molding of aluminum. The flow measurements were conducted using graphite molds and real time X-Ray radiography recorded at a rate of 30 images per

  1. Used batteries - REMINDER

    CERN Document Server

    2006-01-01

    With colder weather drawing in, it is quite likely that older car batteries will fail. On this subject, the Safety Commission wishes to remind everyone that CERN is not responsible for the disposal of used batteries from private vehicles. So please refrain from abandoning them on pavements or around or inside buildings. Used batteries can be disposed of safely, free-of-charge and without any damage to the environment at waste disposal sites (déchetteries) close to CERN in both France (Ain and Haute-Savoie) and in the Canton of Geneva in Switzerland (Cheneviers). Since the average car battery lasts a number of years, this only represents a small effort on your part over the whole lifetime of your vehicle. Most people don't need reminding that car batteries contain concentrated sulphuric acid, which can cause severe burns. Despite this, we frequently find them casually dumped in scrap metal bins! For more information, please contact R. Magnier/SC-GS 160879 We all have a responsibility for safety and th...

  2. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish for an integ...... be obtained by shining light from the backside of the workpiece. When there is no light from the backside, the front surface seems totally untouched. This was achieved by laser ablation with ultra-short pulses.......Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  3. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  4. Relativity and the mercury battery.

    Science.gov (United States)

    Zaleski-Ejgierd, Patryk; Pyykkö, Pekka

    2011-10-06

    Comparative, fully relativistic (FR), scalar relativistic (SR) and non-relativistic (NR) DFT calculations attribute about 30% of the mercury-battery voltage to relativity. The obtained percentage is smaller than for the lead-acid battery, but not negligible.

  5. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  6. Implications of CO2 Contamination in Rechargeable Nonaqueous Li-O2 Batteries.

    Science.gov (United States)

    Gowda, S R; Brunet, A; Wallraff, G M; McCloskey, B D

    2013-01-17

    In this Letter, the effect of CO2 contamination on nonaqueous Li-O2 battery rechargeability is explored. Although CO2 contamination was found to increase the cell's discharge capacity, it also spontaneously reacts with Li2O2 (the primary discharge product of a nonaqueous Li-O2 battery) to form Li2CO3. CO2 evolution from Li2CO3 during battery charging was found to occur only at very high potentials (>4 V) compared to O2 evolution from Li2O2 (∼3-3.5 V), and as a result, the presence of CO2 during discharge dramatically reduced the voltaic efficiency of the discharge-charge cycle. These results emphasize the importance of not only completely removing CO2 from air fed to a Li-air battery, but also developing stable cathodes and electrolytes that will not decompose during battery operation to form carbonate deposits.

  7. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  8. PEM Fuel Cell System Replacement for BA-559O Battery

    Science.gov (United States)

    2007-11-02

    H Power Corp. developed a fuel cell system to demonstrate that fuel cells can be effectively designed for missions requiring a high degree of...equivalent in size to that of a BA-5590 battery. The system comprised an air-cooled fuel cell stack, a metal-hydride-based fuel storage section, and a

  9. Apparatuses for making cathodes for high-temperature, rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Meinhardt, Kerry D.; Sprenkle, Vincent L.; Coffey, Gregory W.

    2016-09-13

    The approaches and apparatuses for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  10. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  11. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-01

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  12. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  13. H+ diffusion and electrochemical stability of Li1+x+yAlxTi2-xSiyP3-yO12 glass in aqueous Li/air battery electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei; Xu, Wu; Shao, Yuyan; Chen, Xilin; Wang, Zhiguo; Gao, Fei; Liu, Xingjiang; Zhang, Ji-Guang

    2012-09-01

    It is well known that LATP (Li1+x+yAlxTi2-xSiyP3-yO12) glass is a good lithium ion conductor. However, the interaction between LATP glass and H+ ions (including its diffusion and surface adsorption) needs to be well understood before the long-term application of LATP glass in an aqueous electrolyte based Li-air batteries where H+ always present. In this work, we investigate the H+ ion diffusion properties in LATP glass and their surface interactions using both experimental and modeling approaches. Our analysis indicates that the apparent H+ related current observed in the initial cyclic voltammetry scan should be attributed to the adsorption of H+ ions on the LATP glass rather than the bulk diffusion of H+ ions in the glass. Furthermore, the density functional theory calculations indicate that the H+ ion diffusion energy barrier (3.21 eV) is much higher than that of Li+ ion (0.79 eV) and Na+ ion (0.79 eV) in NASICON type LiTi2(PO4)3 material. As a result, the H+ ion conductivity in LATP glass is negligible at room temperature. However, significant surface corrosion was found after the LATP glass was soaked in strong alkaline electrolyte for extended time. Therefore, appropriate electrolytes have to be developed to prevent the corrosion of LATP glass before its practical application for Li-air batteries using aqueous electrolyte.

  14. Batteries, from Cradle to Grave

    Science.gov (United States)

    Smith, Michael J.; Gray, Fiona M.

    2010-01-01

    As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…

  15. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  16. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  17. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  18. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    Science.gov (United States)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  19. Calculation of buffer batteries with voltage-adding storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    Boldin, R.V.; Koloskov, A.A.; Ratner, G.B.; Sharov, V.N.

    1982-01-01

    A technique is proposed for buffer storage batteries of the NKG type with voltage-adding storage batteries. These batteries (B) guarantee comparatively narrow range of change in the voltage for load with discharge of the storage batteries of the main B to the assigned minimum voltage. The purpose of the calculation is to determine the number of voltage-adding B and the number of storage batteries in each of them. The initial data for calculation are minimum and maximum values of voltage for load and storage batteries of the main B. Expressions have been obtained for determining the depth of the discharge and the final expression for determining the depth of the discharge and the final discharge voltage of the storage batteries of each voltage-adding B. The necessary formulas are presented and the order for making the calculation is given.

  20. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  1. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  2. Secondary alkaline batteries

    Science.gov (United States)

    McBreen, J.

    1984-03-01

    The overall reactions (charge/discharge characteristics); electrode structures and materials; and cell construction are studied for nickel oxide-cadmium, nickel oxide-iron, nickel oxide-hydrogen, nickel oxide-zinc, silver oxide-zinc, and silver oxide-cadmium, silver oxide-iron, and manganese dioxide-zinc batteries.

  3. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system in

  4. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  5. Batteries: Imaging degradation

    Science.gov (United States)

    Shearing, Paul R.

    2016-11-01

    The degradation and failure of Li-ion batteries is strongly associated with electrode microstructure change upon (de)lithiation. Now, an operando X-ray tomography approach is shown to correlate changes in the microstructure of electrodes to cell performance, and thereby predict degradation pathways.

  6. Lightweight bipolar storage battery

    Science.gov (United States)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  7. Extending battery life: A low-cost practical diagnostic technique for lithium-ion batteries

    Science.gov (United States)

    Merla, Yu; Wu, Billy; Yufit, Vladimir; Brandon, Nigel P.; Martinez-Botas, Ricardo F.; Offer, Gregory J.

    2016-11-01

    Modern applications of lithium-ion batteries such as smartphones, hybrid & electric vehicles and grid scale electricity storage demand long lifetime and high performance which typically makes them the limiting factor in a system. Understanding the state-of-health during operation is important in order to optimise for long term durability and performance. However, this requires accurate in-operando diagnostic techniques that are cost effective and practical. We present a novel diagnosis method based upon differential thermal voltammetry demonstrated on a battery pack made from commercial lithium-ion cells where one cell was deliberately aged prior to experiment. The cells were in parallel whilst being thermally managed with forced air convection. We show for the first time, a diagnosis method capable of quantitatively determining the state-of-health of four cells simultaneously by only using temperature and voltage readings for both charge and discharge. Measurements are achieved using low-cost thermocouples and a single voltage measurement at a frequency of 1 Hz, demonstrating the feasibility of implementing this approach on real world battery management systems. The technique could be particularly useful under charge when constant current or constant power is common, this therefore should be of significant interest to all lithium-ion battery users.

  8. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义

    2004-01-01

    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  9. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely... additive, expressed as niacin, shall appear on the label of the food additive container or on that of...

  10. Environmental Control over the Primary Aluminum Industry

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> To strengthen environmental control over theprimary aluminum industry,the State Environ-mental Protection Administration of China hasrecently issued a notice addressing the follow-ing points:Strengthening environmental control over theexisting primary aluminum companies

  11. OPTIMIZING AN ALUMINUM EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Mohammed Ali Hajeeh

    2013-01-01

    Full Text Available Minimizing the amount of scrap generated in an aluminum extrusion process. An optimizing model is constructed in order to select the best cutting patterns of aluminum logs and billets of various sizes and shapes. The model applied to real data obtained from an existing extrusion factory in Kuwait. Results from using the suggested model provided substantial reductions in the amount of scrap generated. Using sound mathematical approaches contribute significantly in reducing waste and savings when compared to the existing non scientific techniques.

  12. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    Science.gov (United States)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  13. Microemulsion-assisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde.

    Science.gov (United States)

    Xu, Zhihua; Yu, Jiaguo; Low, Jingxiang; Jaroniec, Mietek

    2014-02-12

    Mesoporous aluminum oxyhydroxides composed of nanoflakes were prepared via a water-in-oil microemulsion-assisted hydrothermal process at 50 °C using aluminum salts as precursors and ammonium hydroxide as a precipitating agent. The microstructure, morphology, and textural properties of the as-prepared materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption, and X-ray photoelectron spectroscopy (XPS) techniques. It is shown that the aluminum oxyhydroxide nanostructures studied are effective adsorbents for removal of formaldehyde (HCHO) at ambient temperature, due to the abundance of surface hydroxyl groups, large specific surface area, and suitable pore size. Also, the type of aluminum precursor was essential for the microstructure formation and adsorption performance of the resulting materials. Namely, the sample prepared from aluminum sulfate (Al-s) exhibited a relatively high HCHO adsorption capacity in the first run, while the samples obtained from aluminum nitrate (Al-n) and chloride (Al-c) exhibited high adsorption capacity and relatively stable recyclability. A combination of high surface area and strong surface affinity of the prepared aluminum oxyhydroxide make this material a promising HCHO adsorbent for indoor air purification.

  14. Electrochemical Behavior of Aluminum in Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hui; ZHU; Li-yang; LIN; Ru-shan; TAN; Hong-bin; HE; Hui

    2013-01-01

    Aluminum is one of cladding materials for nuclear fuel,it is important to investigate the electrolytic dissolution of aluminum in nitric acid.The electrochemical impedance spectroscopy,polarization curve and cyclic voltammetry cure of anodic aluminum electrode in nitric acid under various conditions were collected(Fig.1).It turns out,under steady state,the thickness of the passivated film of aluminum

  15. Determination of the heat capacities of Lithium/BCX (bromide chloride in thionyl chloride) batteries

    Science.gov (United States)

    Kubow, Stephen A.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    1989-12-01

    Heat capacities of twelve different Lithium/BCX (BrCl in thionyl chloride) batteries in sizes AA, C, D, and DD were determined. Procedures and measurement results are reported. The procedure allowed simple, reproducible, and precise determinations of heat capacities of industrially important Lithium/BCX cells, without interfering with performance of the cells. Use of aluminum standards allowed the accuracy of the measurements to be maintained. The measured heat capacities were within 5 percent of calculated heat capacity values.

  16. Preparation of Chromium Oxide Coatings on Aluminum Borate Whiskers by a Hydrothermal Deposition Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Aluminum borate whiskers (9Al2O32B2O3) can be used to reinforce aluminum alloys to produce light and strong composites. However, the adverse interfacial reactions between the whiskers and the aluminum alloys inhibit their practical uses; therefore, a protective coating is needed on whiskers. In this work, aluminum borate whiskers were coated with chromium-coating deposits in a hydrothermal solution containing CrCl3, Na2C4H4O6, NaPH2O2, and H3BO3. The presence of the impurity P in the hydrothermal deposits can be avoided by reducing the amount of NaPH2O2 in the coating solution. Thermodynamic analysis was used to discuss the behavior of ions in the coating process. The subsequent heating of the hydrothermal products in air at 800 ℃ yielded smooth Cr2O3 films with a thickness of 0.060.07 μm.

  17. Modular Battery Charge Controller

    Science.gov (United States)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell

  18. 76 FR 23490 - Aluminum tris (O

    Science.gov (United States)

    2011-04-27

    ... AGENCY 40 CFR Part 180 Aluminum tris (O-ethylphosphonate), Butylate, Chlorethoxyfos, Clethodim, et al..., fosthiazate, propetamphos, and tebufenozide; the fungicide aluminum tris (O-ethylphosphonate); the herbicides.... Also, EPA is revoking the tolerances for aluminum tris (O-ethylphosphonate) on pineapple fodder...

  19. Guangxi Aluminum Giant Made Investment in Changfeng

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>A aluminum processing and supporting project (450,000 tons) of Hefei Guangyin Aluminum Company kicked off in Xiatang Town of Changfeng County recently. It is a project jointly invested by Guangxi Investment Group and Guangxi Baise Guangyin Aluminum in Xiatang Town of Changfeng County.

  20. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin

    Science.gov (United States)

    Kwon, Young-Soon; Gromov, Alexander A.; Strokova, Julia I.

    2007-04-01

    The results of investigation and analysis of electro-exploded aluminum nanopowders, whose surface were passivated with the following substances: liquids - nitrocellulose (NC), oleic acid (C 17H 33COOH) and stearic acid (C 17H 35COOH), suspended in kerosene and ethanol, fluoropolymer; solids - boron and nickel; gases - N 2, CO 2 and air (for a comparison) are discussed. The surface protection for the aluminum nanopowders by coatings of different chemical origins leads to the some advantages of the powders properties for an application in energetic systems, e.g. solid propellants and "green" propellants (Al-H 2O). Aluminum nanopowders with a protected surface showed the increased stability to oxidation in air during the storage period and higher reactivity by heating. The TEM-visual diagram of the formation and stabilization of the coatings on the particles has been proposed on the basis of experimental results. The kinetics of the interaction of aluminum nanopowders with air has been discussed. The recommendations concerning an efficiency of the protective "non-Al 2O 3" layers on aluminum nanoparticles were proposed.