WorldWideScience

Sample records for aluminum air batteries

  1. Aluminum-based metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  2. Neutral electrolyte aluminum air battery with open configuration

    Institute of Scientific and Technical Information of China (English)

    HAN Bin; LIANG Guangchuan

    2006-01-01

    A kind of new long life aluminum air batteries with open configuration was developed, using aluminum alloy doped with Ga, In, Sn, Bi, Pb and Mn as anode, NaCl solution as electrolyte and air electrode as cathode. The polarization curves of aluminum electrode and air electrode were tested. And the cell's performance was tested to calculate the utilization of aluminum electrode and the energy density. It is shown that, in the 3.5% NaCl solution, the cell can discharge at 0.29 A for 140 h with the working voltage keeping over 1.1 V. The utilization ratio of aluminum anode is over 44%, and the life of battery is longer than 2400 h.

  3. The Salty Science of the Aluminum-Air Battery

    Science.gov (United States)

    Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul

    2008-01-01

    Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an…

  4. The Comparative Performance of Batteries: The Lead-Acid and the Aluminum-Air Cells.

    Science.gov (United States)

    LeRoux, Xavier; And Others

    1996-01-01

    Describes a teaching program that shows how electrochemical principles can be conveyed by means of hands-on experiences of student-centered teaching experiments. Employs the readily available lead-acid cell and the simple aluminum-air cell. Discusses the batteries, equilibrium cell potential, performance comparison, current, electrode separation,…

  5. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes

    Science.gov (United States)

    Fan, Liang; Lu, Huimin

    2015-06-01

    Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.

  6. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.

    Science.gov (United States)

    Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2016-07-01

    Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications. PMID:27193636

  7. The effect of crystal orientation on the aluminum anodes of the aluminum-air batteries in alkaline electrolytes

    Science.gov (United States)

    Fan, Liang; Lu, Huimin; Leng, Jing; Sun, Zegao; Chen, Chunbo

    2015-12-01

    Recently, aluminum-air (Al-air) batteries have received attention from researchers as an exciting option for safe and efficient batteries. The electrochemical performance of Aluminum anode remains an active area of investigation. In this paper, the electrochemical properties of polycrystalline Al, Al (001), (110) and (111) single crystals are investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 4 M NaOH and KOH. Hydrogen corrosion rates of the Al anodes are determined by hydrogen collection. Battery performance using the anodes is tested by constant current discharge at 10 mA cm-2. This is the first report showing that the electrochemical properties of Al are closely related to the crystallographic orientation in alkaline electrolytes. The (001) crystallographic plane has good corrosion resistance but (110) is more sensitive. Al (001) single crystals display higher anode efficiency and capacity density. Controlling the crystallographic orientation of the Al anode is another way to improve the performance of Al-air batteries in alkaline electrolytes.

  8. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  9. Semi-rechargeable Aluminum-Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte

    Science.gov (United States)

    Mori, Ryohei

    2016-07-01

    To develop a semi-rechargeable aluminum-air battery, we attempted to insert various kinds of ceramic oxides between an aqueous NaCl electrolyte and an aluminum anode. From cyclic voltammetry experiments, we found that some of the ceramic oxide materials underwent an oxidation-reduction reaction, which indicates the occurrence of a faradaic electrochemical reaction. Using a TiO2 film as an internal layer, we successfully prepared an aluminum-air battery with secondary battery behavior. However, cell impedance increased as the charge/discharge reactions proceeded probably because of accumulation of byproducts in the cell components and the air cathode. Results of quantum calculations and x-ray photoelectron spectroscopy suggest the possibility of developing an aluminum rechargeable battery using TiO2 as an internal layer.

  10. 铝-空气电池铝合金阳极的研究进展%Research progress in aluminum alloy anodes for aluminum-air battery

    Institute of Scientific and Technical Information of China (English)

    鲁火清; 卢周广; 沈冬; 唐有根

    2012-01-01

    The research progress in aluminum (Al) alloy anodes for Al-air battery was reviewed from Al activation-passivation mechanism and effects of alloying elements, such as Ga, In, M g, Sn, Mn, Bi and Pb.%从铝活化-钝化机理、添加合金元素(镓、铟、镁、锡、锰、铋及铅等)对铝阳极性能的影响等方面,综述了铝-空气电池铝合金阳极的发展、研究及应用概况.

  11. Study of Poly (3,4-ethylenedioxythiophene)/MnO2 as Composite Cathode Materials for Aluminum-Air Battery

    International Nuclear Information System (INIS)

    Highlights: • Open-tunnel structure of MnO2 catalysts were prepared by the hydrothermal method. • PEDOT was deposited on MnO2/carbon paper by oxidative chemical vapor deposition. • PEDOT/α-MnO2/10AA composite cathode shows the highest discharge performance. • The enhancement on discharge performance was due to the clear charge transfer. - Abstract: This study focuses on the development of the composite electrode materials for an aluminum-air battery and improving the oxygen reduction reaction (ORR) of the air electrode by matching alpha- and beta- manganese dioxide (MnO2) with poly-(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer. The catalyst powders of α-MnO2 and β-MnO2 are prepared by hydrothermal method with different precursors, while PEDOT conducting polymer is subsequently deposited on the screen-printed electrodes (MnO2/carbon paper) by oxidative chemical vapor deposition (oCVD). Material characteristics of prepared MnO2 powder and PEDOT layer are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman scattering spectroscopy. The half-cell polarization curve test is found to be strongly depended on the crystalline phases of MnO2. From experimental observations and a density functional theory (DFT) study, the conductivity of PEDOT/α-MnO2 is found to be higher than PEDOT/β-MnO2 contributed to structural effect mediated improvements in charge transfer. As a result, integrating the deposition of PEDOT on α-MnO2/carbon paper as composite cathode is suitable for the use in aluminum-air battery

  12. Rechargeable Aluminum-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans [ORNL; Liu, Hansan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  13. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries

    Science.gov (United States)

    Davydova, E. S.; Atamanyuk, I. N.; Ilyukhin, A. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2016-02-01

    Cobalt tetramethoxyphenyl porphyrin and polyacrylonitrile - based catalysts for oxygen reduction reaction were synthesized and characterized by means of SEM, TEM, XPS, BET, limited evaporation method, rotating disc and rotating ring-disc electrode methods. Half-cell and Al-air cell tests were carried out to determine the characteristics of gas-diffusion cathodes. Effect of active layer thickness and its composition on the characteristics of the gas-diffusion cathodes was investigated. Power density of 300 mW cm-2 was achieved for alkaline Al-air cell with an air-breathing polyacrylonitrile-based cathode.

  14. Development and demonstration of process and components for the control of aluminum-air-battery electrolyte composition through the precipitation of aluminum trihydroxide. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swansiger, T. G.; Misra, C.

    1982-05-11

    Physical property data on density, viscosity, and electrical conductivity were developed and reduced to correlation form for synthetic electrolytes containing nominally 7 g/L Sn and 0.20 g/L Ga in 3,4,5,6 M NaOH. Concentrations of Al(OH)/sub 4/ were selected at six levels for each NaOH concentration and ranged from 0 to as high as 4 M Al(OH)/sub 4/ at 6 M NaOH. Measurements of each property were made at 25, 40, 60, and 80 C. The effect of the Sn and Ga impurities was to increase density by a relatively small percentage, increase viscosity by a significant percentage, and decrease electrical conductance by a significant percentage. Isothermal, batch precipitation experiments at 40, 60, and 80 C were utilized to develop data from which kinetic and solubility correlations were derived as functions of electrolyte and system parameters. Precipitation rate was negatively affected by tin in solution, with a 40% reduction in the rate constant being attributed to 0.06 M Sn. Both Sn and Ga co-precipitated with the Al(OH)/sub 3/ to an extent strongly dependent on temperature. Very high precipitation rates resulted in Na levels in product exceeding the target level of 0.24% Na on the hydrate basis. The incorporation of Na in product was also a strong function of temperature. A total of 108 computer simulations were performed and documented to delineate the region of feasible operation with respect to meeting the aluminate production specification. A full-scale precipitator was operated in a continuous mode to assess production rate, population changes with time, and hardware aspects. A digester was used to perform the function of an Al-Air battery, that is to drive Al(OH)/sub 4//sup -/ into solution. Results are presented in detail. (WHK)

  15. A Martian Air Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will investigate an entirely new battery chemistry by developing A Martian Air Battery. Specifically the project will explore the concept of a Martian...

  16. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  17. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  18. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  19. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina;

    1993-01-01

    The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide......-170-degrees-C) depending on melt acidity and anode material. DMTC, being specifically adsorbed and reduced on the tungsten electrode surface, had an inhibiting effect on the aluminum reduction, but this effect was suppressed on the aluminum substrate. An electrochemical process with high current density (tens...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active...

  20. Evaluation of Batteries for Safe Air Transport

    Directory of Open Access Journals (Sweden)

    Nicholas Williard

    2016-05-01

    Full Text Available Lithium-ion batteries are shipped worldwide with many limitations implemented to ensure safety and to prevent loss of cargo. Many of the transportation guidelines focus on new batteries; however, the shipment requirements for used or degraded batteries are less clear. Current international regulations regarding the air transport of lithium-ion batteries are critically reviewed. The pre-shipping tests are outlined and evaluated to assess their ability to fully mitigate risks during battery transport. In particular, the guidelines for shipping second-use batteries are considered. Because the electrochemical state of previously used batteries is inherently different from that of new batteries, additional considerations must be made to evaluate these types of cells. Additional tests are suggested that evaluate the risks of second-use batteries, which may or may not contain incipient faults.

  1. The rechargeable aluminum-ion battery

    KAUST Repository

    Jayaprakash, N.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl3 in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V2O5 nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g-1 in the first cycle and 273 mAh g-1 after 20 cycles, with very stable electrochemical behaviour. © The Royal Society of Chemistry 2011.

  2. Ambient operation of Li/Air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ji-Guang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, R.E. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA (United States)

    2010-07-01

    In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of {proportional_to}20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg{sup -1}, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte ({proportional_to}70%). Lithium metal anodes and KB-carbon account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only {proportional_to}20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products. (author)

  3. Rechargeable aluminum batteries with conducting polymers as positive electrodes.

    Energy Technology Data Exchange (ETDEWEB)

    Hudak, Nicholas S.

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

  4. Molten Air -- A new, highest energy class of rechargeable batteries

    OpenAIRE

    Licht, Stuart

    2013-01-01

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 an...

  5. Gradient porous electrode architectures for rechargeable metal-air batteries

    Science.gov (United States)

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  6. High-energy metal air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2014-07-01

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  7. High-energy metal air batteries

    Science.gov (United States)

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  8. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  9. Oxygen Selective Membranes for Li-Air (O2) Batteries

    OpenAIRE

    Mark Salomon; Owen Crowther

    2012-01-01

    Lithium-air (Li-air) batteries have a much higher theoretical energy density than conventional lithium batteries and other metal air batteries, so they are being developed for applications that require long life. Water vapor from air must be prevented from corroding the lithium (Li) metal negative electrode during discharge under ambient conditions, i.e., in humid air. One method of protecting the Li metal from corrosion is to use an oxygen selective membrane (OSM) that a...

  10. A low cost, disposable cable-shaped Al-air battery for portable biosensors

    Science.gov (United States)

    Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun

    2016-05-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum-air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.

  11. Rechargeable lithium–air batteries: characteristics and prospects

    OpenAIRE

    Nobuyuki Imanishi; Osamu Yamamoto

    2014-01-01

    High specific energy density batteries are attracting growing attention as possible power sources for electric vehicles (EVs). Lithium–air batteries are the most promising system, because of their far higher theoretical specific energy density than conventional batteries. However, no technical basis exists to support the high energy density estimated from calculation. In this review, we will discuss the state-of-the art of lithium–air (or oxygen) batteries, as well as prospects for the future...

  12. Applications of aluminum hybrid foam sandwiches in battery housings for electric vehicles

    OpenAIRE

    Baumeister, J; Weise, J; Hirtz, E.; Höhne, K; Hohe, J.

    2014-01-01

    Battery packs for purely electrical driven vehicles should allow for a long driving range, therefore they must be as light as possible. The aim of the project “SmartBatt” – funded by the EC under the 7th Framework Programme – was to create a 20 kWh battery pack which exhibits a 10-15% weight reduction as compared to the State of the Art. This was accomplished by using innovative sandwich materials made of aluminum face sheets and a core of aluminum hybrid foam for the battery housing. Aluminu...

  13. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance. PMID:26393523

  14. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  15. A low cost, disposable cable-shaped Al–air battery for portable biosensors

    Science.gov (United States)

    Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun

    2016-05-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum–air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.

  16. Advances in understanding mechanisms underpinning lithium-air batteries

    Science.gov (United States)

    Aurbach, Doron; McCloskey, Bryan D.; Nazar, Linda F.; Bruce, Peter G.

    2016-09-01

    The rechargeable lithium-air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium-air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium-air batteries.

  17. Advances in understanding mechanisms underpinning lithium–air batteries

    Science.gov (United States)

    Aurbach, Doron; McCloskey, Bryan D.; Nazar, Linda F.; Bruce, Peter G.

    2016-09-01

    The rechargeable lithium–air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium–air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium–air batteries.

  18. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.

    Science.gov (United States)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Fang, Youxing; Bridges, Craig A; Paranthaman, M Parans; Dai, Sheng; Brown, Gilbert M

    2016-01-28

    A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance. PMID:26666453

  19. Rechargeable lithium–air batteries: characteristics and prospects

    Directory of Open Access Journals (Sweden)

    Nobuyuki Imanishi

    2014-01-01

    Full Text Available High specific energy density batteries are attracting growing attention as possible power sources for electric vehicles (EVs. Lithium–air batteries are the most promising system, because of their far higher theoretical specific energy density than conventional batteries. However, no technical basis exists to support the high energy density estimated from calculation. In this review, we will discuss the state-of-the art of lithium–air (or oxygen batteries, as well as prospects for the future, with a focus on materials.

  20. Progress in development of flexible metal-air batteries

    Science.gov (United States)

    Sumboja, Afriyanti; Ge, Xiaoming; Zong, Yun; Liu, Zhaolin

    2016-04-01

    Flexible electronics has gained great interest in emerging wearable or rolling-up gadgets, such as foldable displays, electronic papers, and other personal multimedia devices. Subsequently, there is a need to develop energy storage devices that are pliable, inexpensive, and lightweight. Metal-air batteries have been identified as one of alternative energy storages for cost effective and high energy density applications. They offer cheaper production cost and higher energy density than most of the currently available battery technologies. Thus, they are promising candidates for flexible energy storage devices. Flexible metal-air batteries have to maintain their performances during various mechanical deformations. To date, efforts have been focused on fabricating flexible components for metal-air batteries. This review presents a brief introduction to the field, followed by progress on development of flexible electrolytes, electrodes, and prototype devices. Challenges and outlook towards the practical use of metal-air batteries are given in the last part.

  1. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  2. Fundamental mechanisms in Li-air battery electrochemistry

    DEFF Research Database (Denmark)

    Højberg, Jonathan

    The lithium-air (or Li-O2) batteries have received wide attention as an enabling technology for a mass market entry of electric vehicles due to a potential capacity much higher than current Li-ion technology. The technology is a relatively new battery concept proposed in 1996, and the current res...... battery system better than any other method available. Finally, calculations were made to support that an open system configuration is a realistic option in terms of air purification, if H2O and CO2 levels at 1 ppm are allowed.......The lithium-air (or Li-O2) batteries have received wide attention as an enabling technology for a mass market entry of electric vehicles due to a potential capacity much higher than current Li-ion technology. The technology is a relatively new battery concept proposed in 1996, and the current...

  3. Carbon nanotube/Co3O4 composite for air electrode of lithium-air battery

    OpenAIRE

    Yoon, Taek Han; Park, Yong Joon

    2012-01-01

    A carbon nanotube [CNT]/Co3O4 composite is introduced as a catalyst for the air electrode of lithium-air [Li/air] batteries. Co3O4 nanoparticles are successfully attached to the sidewall of the CNT by a hydrothermal method. A high discharge capacity and a low overvoltage indicate that the CNT/Co3O4 composite is a very promising catalyst for the air electrode of Li/air batteries.

  4. Thin-film silicon for flexible metal-air batteries.

    Science.gov (United States)

    Garamoun, Ahmed; Schubert, Markus B; Werner, Jürgen H

    2014-12-01

    Due to its high energy density, theoretical studies propose silicon as a promising candidate material for metal-air batteries. Herein, for the first time, experimental results detail the use of n-type doped amorphous silicon and silicon carbide as fuel in Si-air batteries. Thin-film silicon is particularly interesting for flexible and rolled batteries with high specific energies. Our Si-air batteries exhibit a specific capacity of 269 Ah kg(-1) and an average cell voltage of 0.85 V at a discharge current density of 7.9 μA cm(-2) , corresponding to a specific energy of 229 Wh kg(-1) . Favorably in terms of safety, low concentrated alkaline solution serves as electrolyte. Discharging of the Si-air cells continues as long as there is silicon available for oxidation. PMID:25251223

  5. Improved zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  6. Zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  7. A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery

    OpenAIRE

    Wang, Fang; Xu, Yang-Hai; Luo, Zhong-Kuan; PANG, YAN; Liang, Chun-Sheng; Chen, Jing; Liu, Dong; Zhang, Xianghua

    2014-01-01

    International audience Cathode structure plays a vital role in lithium-air battery for that it can provide space for discharged products accommodation and free path for oxygen, e− and Li+ transport. However, pore blockage, cathode passivation and degradation all result in low discharge rates and poor cycling capability. To get rid of these predicaments, a novel highly conductive dual pore carbon aerogel based air cathode is fabricated to construct a lithium-air battery, which exhibits 18 t...

  8. An improved high-performance lithium-air battery

    Science.gov (United States)

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-07-01

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh gcarbon-1 and 3 A gcarbon-1, respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  9. Cathodes for lithium-air battery cells with acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan; Huang, Kan; Li, Yunfeng

    2016-07-19

    In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.

  10. Hydrolysis of aluminum nitride powders in moist air

    International Nuclear Information System (INIS)

    High thermal conductivity is required for successful application of aluminum nitride (AlN) as a substrate material in electronic devices. AlN powders of low oxygen content are needed since oxygen contamination greatly reduces the thermal conductivity of AlN ceramics. High-purity AlN powders are commercially available, but can be contaminated by oxygen when contacting water/oxygen in powder processing after manufacturing. The present study investigates the hydrolysis properties of AlN powders in moist air at room temperature, so as to understand the degradation phenomena during powder handling in the normal atmospheric environment. The powders investigated were produced via three major commercial processes, namely, chemical vapor deposition from triethyl aluminum, carbothermal reduction and nitridation of alumina, and direct nitridation of aluminum. At the beginning of hydrolysis, an induction period is observed for each powder, which is attributed to slow hydrolysis of the surface oxide/oxyhydroxide layer. The length of this period is thus dependent on the composition and thickness of the surface layer, which is in turn affected by the manufacturing method. The AlN powder produced by the carbothermal process shows the longest induction period. The hydrolysis reaction produces initially amorphous AlOOH, which is further hydrolyzed to mixtures of bayerite, nordstrandite, and gibbsite, forming agglomerates around the unreacted AlN. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  11. Li-air batteries having ether-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2015-03-03

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  12. Coating of porous carbon for use in lithium air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Lu, Jun; Du, Peng; Lei, Yu; Elam, Jeffrey W

    2015-04-14

    A cathode includes a carbon material having a surface, the surface having a first thin layer of an inert material and a first catalyst overlaying the first thin layer, the first catalyst including metal or metal oxide nanoparticles, wherein the cathode is configured for use as the cathode of a lithium-air battery.

  13. Analysis of electrolyte level change in a lithium air battery

    Science.gov (United States)

    Huang, Jing; Faghri, Amir

    2016-03-01

    A two-dimensional physical model that employs the deformed mesh method to track the electrolyte level in a Li-air coin cell battery is presented and used to investigate the effects of electrolyte level drop during cell discharge. The electrolyte level drop is caused by solid phase volume decrease and electrolyte solvent evaporation. Simulation results show that by neglecting the drop in electrolyte level, a Li-air battery model would under-estimate cell discharge capacity by as much as 22.5% in the parameter range studied. This counter-intuitive result is explained by an in-depth analysis of simulation results. A more realistic prediction of Li2O2 deposit distribution is obtained, with the peak value of Li2O2 volume fraction in the middle of the cathode instead of on the top surface, as predicted by previous studies. The interaction between the battery and its surroundings is considered by incorporating the air chamber into the computation domain. The diffusion of solvent vapor and oxygen in this chamber is included. For batteries using volatile solvents such as DMF, increasing the air chamber radius from 5 cm to 15 cm would result in a 72% increase of discharge capacity at the cost of losing a large amount of electrolyte.

  14. Lithium air batteries having ether-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Curtiss, Larry A.; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2016-10-25

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  15. Air cushion furnace technology for heat treatment of high quality aluminum alloy auto body sheet

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Zhaodong; Ma Mingtu; Wang Guodong; Fu Tianliang; Li Jiadong; Liang Xiong

    2014-01-01

    The process characteristics of heat treatment of aluminum alloy auto body sheet and the working prin-ciple of air cushion furnace were introduced. The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied. Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages. Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward. With the rapid de-velopment of automotive industry,there will be certainly a new upsurge of research and application of air cush-ion furnace for heat treatment of aluminum alloy auto body sheet.

  16. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H. [on leave from NTT Laboratories (Japan); Mueller, S.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  17. Reduced graphene oxide for Li–air batteries

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Overgaard, Marc; Younesi, Reza;

    2015-01-01

    Reduced graphene oxide (rGO) has shown great promise as an air-cathode for Li-air batteries with high capacity. In this article we demonstrate how the oxidation time of graphene oxide (GO) affects the ratio of different functional groups and how trends of these in GO are extended to chemically...... and thermally reduced GO. We investigate how differences in functional groups and synthesis may affect the performance of Li-O-2 batteries. The oxidation timescale of the GO was varied between 30 min and 3 days before reduction. Powder Xray diffraction, micro-Raman, FE-SEM, BET analysis, and XPS were used...... techniques can enhance the structural understanding of rGO. Different rGO cathodes were tested in Li-O-2 batteries which revealed a difference in overpotentials and discharge capacities for the different rGO's. We report the highest Li-O-2 battery discharge capacity recorded of approximately 60,000 m...

  18. Computational Modeling of Transport Limitations in Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Emily M.; Ferris, Kim F.; Tartakovsky, Alexandre M.; Khaleel, Mohammad A.

    2013-02-22

    In this paper we investigate transport limitations in the electrodes of lithium-air batteries through computational modeling. We use meso-scale models to consider the effects of dendrites on the current and potential at the anode surface, and to investigate the effects of reaction and transport parameters on the formation of precipitates in the cathode. The formation of dendrites on the anode surface during cycling reduces the transport of ions and can lead to short circuits in the cell. Growth of precipitates in the cathode reduces the specific capacity of the cell due to surface passivation and pore clogging. Both of these degradation mechanisms depend on meso-scale phenomena, such as the pore-scale reactive transport in the cathode. To understand the effects of the meso-scale transport and precipitation on the performance and lifetime of Li-air batteries, meso-scale modeling is needed that is able to resolve the electrodes and their microstructures.

  19. Lithium-air batteries: survey on the current status and perspectives towards automotive applications from a battery industry standpoint

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myounggu; Sun, Heeyoung; Lee, Hyungbok; Lee, Junesoo [Battery R and D, SK Innovation, Wonchon-dong, Yuseong-gu, Daejeon (Korea, Republic of); Cho, Jaephil [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-07-15

    Li-air rechargeable batteries theoretically have advantages from both secondary batteries and fuel cells, which can be viewed as the best technological blends for automotive applications resolving the so called mileage anxiety problem due to the limited driving range of electrical vehicles based upon Li-ion batteries; this problem is rooted in the intrinsically small energy density of Li-ion batteries. This very scientific trait of Li-air batteries, which is apparently suited to the requirements of batteries for future electric vehicles, has induced quite a strong surge of research recently. This occurrence has motivated the authors to undertake a thorough review in an effort to understand the current status of Li-air battery related technologies. A comprehensive survey from a battery industry standpoint has been conducted on the fundamentals of chemistry, utilized Li-air cell configurations (or types) vs. performance, and major components comprising Li-air batteries using various sources of previously published peer-reviewed journal papers, book chapters, patents, and industrial reports. The survey results are presented here. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Development of carbon-based cathodes for Li-air batteries: Present and future

    Science.gov (United States)

    Woo, Hyungsub; Kang, Joonhyeon; Kim, Jaewook; Kim, Chunjoong; Nam, Seunghoon; Park, Byungwoo

    2016-09-01

    Rechargeable lithium-air (Li-air) batteries are regarded as one of the most fascinating energy storage devices for use in the future electric vehicles, since Li-air batteries provide ten-times-higher theoretical capacities than those from current Li-ion batteries. Nonetheless, Li-air batteries have not yet been implemented to the market because of several major drawbacks such as low capacity, poor cycle life, and low round-trip efficiency. These battery performances are highly dependent on the design of air cathodes, thus much effort has been devoted to the development of high performance cathode. Among various materials, carbonaceous materials have been widely studied as the basis of air cathodes especially for non-aqueous Li-O2 cells due to their high electric conductivity, low cost, and ease of fabrication. This review summarizes the history, scientific background, and perspectives of Liair batteries, particularly from the viewpoint of carbon-based air cathodes.

  1. 77 FR 16987 - National Emission Standards for Hazardous Air Pollutants: Secondary Aluminum Production

    Science.gov (United States)

    2012-03-23

    ... for hazardous air pollutants for secondary aluminum production (77 FR 8576). The EPA is extending the... the proposed rule published February 14, 2012, (77 FR 8576) is being extended for 14 days to April 13... Aluminum Production AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of extension of...

  2. Nb-doped TiO2 air-electrode for advanced Li-air batteries

    Directory of Open Access Journals (Sweden)

    Hee-Dae Lim

    2015-03-01

    Full Text Available As new substrate materials to replace a conventional carbon substrate, TiO2 and Nb-doped TiO2 air-electrodes for Li-air batteries were investigated. Through a simple two-step process, we successfully synthesized anatase Nb-doped TiO2 nanoparticles and demonstrated the potential applicability of TiO2-based materials for use in Li-air battery electrode. An air-electrode with Nb-doped TiO2 nanoparticles could deliver a higher discharge capacity than a bare TiO2 electrode due to the enhanced conductivity, which implies the importance of facile electron transport during the discharge process.

  3. Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA Lithium-Ion 18650 Battery Cells

    Directory of Open Access Journals (Sweden)

    James Michael Hooper

    2016-04-01

    Full Text Available This paper outlines a study undertaken to determine if the electrical performance of Nickel Cobalt Aluminum Oxide (NCA 3.1 Ah 18650 battery cells can be degraded by road induced vibration typical of an electric vehicle (EV application. This study investigates if a particular cell orientation within the battery assembly can result in different levels of cell degradation. The 18650 cells were evaluated in accordance with Society of Automotive Engineers (SAE J2380 standard. This vibration test is synthesized to represent 100,000 miles of North American customer operation at the 90th percentile. This study identified that both the electrical performance and the mechanical properties of the NCA lithium-ion cells were relatively unaffected when exposed to vibration energy that is commensurate with a typical vehicle life. Minor changes observed in the cell’s electrical characteristics were deemed not to be statistically significant and more likely attributable to laboratory conditions during cell testing and storage. The same conclusion was found, irrespective of cell orientation during the test.

  4. Novel configuration of bifunctional air electrodes for rechargeable zinc-air batteries

    Science.gov (United States)

    Li, Po-Chieh; Chien, Yu-Ju; Hu, Chi-Chang

    2016-05-01

    A novel configuration of two electrodes containing electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) pressed into a bifunctional air electrode is designed for rechargeable Zn-air batteries. MOC/25BC carbon paper (MOC consisting of α-MnO2 and XC-72 carbon black) and Fe0.1Ni0.9Co2O4/Ti mesh on this air electrode mainly serve as the cathode for the ORR and the anode for the OER, respectively. The morphology and physicochemical properties of Fe0.1Ni0.9Co2O4 are investigated through scanning electron microscopy, inductively coupled plasma-mass spectrometry, and X-ray diffraction. Electrochemical studies comprise linear sweep voltammetry, rotating ring-disk electrode voltammetry, and the full-cell charge-discharge-cycling test. The discharge peak power density of the Zn-air battery with the unique air electrode reaches 88.8 mW cm-2 at 133.6 mA cm-2 and 0.66 V in an alkaline electrolyte under an ambient atmosphere. After 100 charge-discharge cycles at 10 mA cm-2, an increase of 0.3 V between charge and discharge cell voltages is observed. The deep charge-discharge curve (10 h in each step) indicates that the cell voltages of discharge (1.3 V) and charge (1.97 V) remain constant throughout the process. The performance of the proposed rechargeable Zn-air battery is superior to that of most other similar batteries reported in recent studies.

  5. Effect of aluminum-containing additives on the reactivity in air and CO2 of carbon anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    LAI Yanqing; LI Jie; LI Qingyu; DING Fengqi

    2004-01-01

    Airbum reaction and carboxy reaction result in the excess consumption of carbon anode in aluminum electrolysis.To reduce the excess carbon consumption, carbon anode was doped with aluminum-containing additives, such as Al, Al4C3,AlF3 and Al2O3. Their reactivity in air and CO2 was determined with an isothermal-gravimetric method to study the effect of aluminum-containing additives on the reactivity in air and CO2 of carbon anode. Results shown that the airburn reactivity at 450℃ and carboxy reactivity at 970 ℃ of carbon anode both decreased with Al-containing additives adding, while shown a minimutn with the amount of Al4C3, AlF3 and Al2O3 increasing. However, all Al-containing additives increase the airbum reactivity at 550℃ of carbon anodes. Coke yield measurement and XRD examination with aluminum containing additives doped pitch cokes revealed that the effect of Al-containing additives on the airbum reactivity and carboxy reactivity of carbon anode would result from chemical factors and structural factors.

  6. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jie; Mei, Donghai; Li, Xiaolin; Xu, Wu; Wang, Deyu; Graff, Gordon L.; Bennett, Wendy D.; Nie, Zimin; Saraf, Laxmikant V.; Aksay, Ilhan A.; Liu, Jun; Zhang, Jiguang

    2011-11-09

    Functionalized graphene sheets (FGS) are successfully utilized as a novel air electrode for Li-O2 batteries. An extremely high capacity of 15,000 mAh/g was achieved by using the as-prepared graphene air electrode at a current density of 0.1 mA/cm2 in the pure oxygen environment. Although there is no pore in the two-dimensional FGS the as-prepared graphene air electrode consists of randomly arranged graphene nano-sheets which automatically form tunnels with different sizes. The large tunnels work as highways for the oxygen to quickly flow into the air electrode while the small pore-like tunnels can be considered as the numerous exits where the discharge products are accumulated. Combined with an appropriate electrolyte, the ideal discharge product Li2O2 is obtained without any carbonates byproducts in this system. Even when operated in ambient environment with a relative humidity of ~20% the specific capacity delivered from the pouch type cell achieves more than 5000 mAh/g making the graphene-based air electrode extremely attractive in the energy storage applications.

  7. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  8. Recent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory

    OpenAIRE

    Jun Lu; Khalil Amine

    2013-01-01

    Rechargeable non-aqueous Li-air battery technology offers potential advantages over other existing battery systems in terms of specific energy and energy density, which could enable the driving range of an electric vehicle to be comparable to that of gasoline vehicles. Development of efficient cathode catalysts and stable electrolytes for the Li-air battery has been intensively investigated for the past several years, and a number of review articles covering different topics are already avail...

  9. Exploring Faraday's Law of Electrolysis Using Zinc-Air Batteries with Current Regulative Diodes

    Science.gov (United States)

    Kamata, Masahiro; Paku, Miei

    2007-01-01

    Current regulative diodes (CRDs) are applied to develop new educational experiments on Faraday's law by using a zinc-air battery (PR2330) and a resistor to discharge it. The results concluded that the combination of zinc-air batteries and the CRD array is simpler, less expensive, and quantitative and gives accurate data.

  10. 77 FR 2677 - National Emission Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants...

    Science.gov (United States)

    2012-01-19

    ... Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants'' is being extended for 12 days. DATES: Comments. The public comment period for the proposed rule published December 6, 2011, (76 FR... AGENCY 40 CFR Part 63 RIN 2060-AQ-92 National Emission Standards for Hazardous Air Pollutants:...

  11. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.

    Science.gov (United States)

    Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng

    2016-03-24

    The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. PMID:26929017

  12. Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement

    Science.gov (United States)

    Xu, M.; Ivey, D. G.; Xie, Z.; Qu, W.

    2015-06-01

    Zn-air batteries, which are cost-effective and have high energy density, are promising energy storage devices for renewable energy and power sources for electric transportation. Nevertheless, limited charge and discharge cycles and low round-trip efficiency have long been barriers preventing the large-scale deployment of Zn-air batteries in the marketplace. Technology advancements for each battery component and the whole battery/cell assembly are being pursued, with some key milestones reached during the past 20 years. As an example, commercial Zn-air battery products with long lifetimes and high energy efficiencies are being considered for grid-scale energy storage and for automotive markets. In this review, we present our perspectives on improvements in Zn-air battery technology through the exploration and utilization of different electrolyte systems. Recent studies ranging from aqueous electrolytes to nonaqueous electrolytes, including solid polymer electrolytes and ionic liquids, as well as hybrid electrolyte systems adopted in Zn-air batteries have been evaluated. Understanding the benefits and drawbacks of each electrolyte, as well as the fundamental electrochemistry of Zn and air electrodes in different electrolytes, are the focus of this paper. Further consideration is given to detailed Zn-air battery configurations that have been studied and applied in commercial or nearing commercial products, with the purpose of exposing state-of-the-art technology innovations and providing insights into future advancements.

  13. A nanostructured bifunctional Pd/C gas-diffusion electrode for metal-air batteries

    OpenAIRE

    McKerracher, R.D.; Alegre, C.; Baglio, V.; Aricò, A.S.; Ponce de León, C.; Mornaghini, F.; Rodlert, M.; Walsh, F. C.

    2015-01-01

    Designing a bifunctional air electrode which catalyses both the oxygen reduction and oxygen evolution reactions is an essential part of progress towards fully rechargeable metal-air batteries, such as the iron-air battery which is environmentally friendly, low cost, and does not suffer risk of thermal runaway like lithium-ion batteries. This paper reports the development of a lightweight carbon-based bifunctional air electrode, catalysed by a small (0.5 mg cm?2) loading of 30 wt.% palladium o...

  14. Characterization of gas diffusion electrodes for metal-air batteries

    Science.gov (United States)

    Danner, Timo; Eswara, Santhana; Schulz, Volker P.; Latz, Arnulf

    2016-08-01

    Gas diffusion electrodes are commonly used in high energy density metal-air batteries for the supply of oxygen. Hydrophobic binder materials ensure the coexistence of gas and liquid phase in the pore network. The phase distribution has a strong influence on transport processes and electrochemical reactions. In this article we present 2D and 3D Rothman-Keller type multiphase Lattice-Boltzmann models which take into account the heterogeneous wetting behavior of gas diffusion electrodes. The simulations are performed on FIB-SEM 3D reconstructions of an Ag model electrode for predefined saturation of the pore space with the liquid phase. The resulting pressure-saturation characteristics and transport correlations are important input parameters for modeling approaches on the continuum scale and allow for an efficient development of improved gas diffusion electrodes.

  15. Oxygen Selective Membranes for Li-Air (O2 Batteries

    Directory of Open Access Journals (Sweden)

    Mark Salomon

    2012-05-01

    Full Text Available Lithium-air (Li-air batteries have a much higher theoretical energy density than conventional lithium batteries and other metal air batteries, so they are being developed for applications that require long life. Water vapor from air must be prevented from corroding the lithium (Li metal negative electrode during discharge under ambient conditions, i.e., in humid air. One method of protecting the Li metal from corrosion is to use an oxygen selective membrane (OSM that allows oxygen into the cell while stopping or slowing the ingress of water vapor. The desired properties and some potential materials for OSMs for Li-air batteries are discussed and the literature is reviewed.

  16. A new insight into the oxygen diffusion in porous cathodes of lithium-air batteries

    International Nuclear Information System (INIS)

    Slow air transport in the cathodes limits the performance of the metal-air battery. In this work, the diffusion mechanisms in the lithium-air battery have been investigated. It has been found that Knudsen diffusivity can be influenced dramatically by the different pore sizes while bulk diffusivity is almost a constant at a fixed temperature. Limiting current density and concentration polarization, both limited by impeded gas diffusion in the porous cathode, have been evaluated systematically. The analysis of the correlation between those electrochemical parameters and diffusivities improves the quantitative evaluation of gas-based batteries at various materials and operation conditions. - Highlights: • Gas diffusion models are applied to evaluate the lithium-air battery cathode. • Knudsen and bulk diffusivities are introduced to analyze cathode materials. • Analysis is performed for assessing the battery efficiency

  17. "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries.

    Science.gov (United States)

    Kühnel, R-S; Reber, D; Remhof, A; Figi, R; Bleiner, D; Battaglia, C

    2016-08-16

    The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology. PMID:27488137

  18. Modeling Crystal Growth and Multi-Phase Flow in Metal-Air Batteries

    OpenAIRE

    Horstmann, Birger; Danner, Timo; Latz, Arnulf

    2015-01-01

    We contributed to research on lithium-air batteries with aqueous as well as non-aqueous electrolytes on the pore level and the cell level. Based on the developed modeling methodologies, we study silicon-air and zinc-air batteries. In aqueous alkaline electrolytes, lithium ions react with oxygen to form lithium hydroxide in a gas diffusion electrode (GDE), where liquid and gas coexist in a porous structure. We model the electrochemical dynamics within a GDE including the effects of pressure...

  19. Développement de cathodes performantes pour batteries lithium/air

    OpenAIRE

    Berenger, Sophie

    2014-01-01

    In this thesis, high-performance cathodes for lithium/air batteries have been investigated. The main limitations for lithium/air batteries are oxygen diffusion into the cathode and in the electrolyte and the progressive clogging of cathode pores by lithium oxide. The development of the air cathode is strongly dependant on the organic electrolyte used, thus the nature of the electrolyte has been here considered. Electrode porosity and the kind of catalyst employed influence the cathode perform...

  20. Novel air electrode for metal-air battery with new carbon material and method of making same

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    This invention relates to a rechargeable battery or fuel cell. More particularly, this invention relates to a novel air electrode comprising a new carbon electrode support material and a method of making same. 3 figs.

  1. Unsteady self-sustained detonation waves in flake aluminum dust/air mixtures

    OpenAIRE

    Liu, Qingming; Huang, Jinxiang; Zhang, Yunming; Li, Shuzhuan

    2015-01-01

    Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning...

  2. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    Science.gov (United States)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  3. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective.

    Science.gov (United States)

    Kar, Mega; Simons, Tristan J; Forsyth, Maria; MacFarlane, Douglas R

    2014-09-21

    Metal-air batteries are a well-established technology that can offer high energy densities, low cost and environmental responsibility. Despite these favourable characteristics and utilisation of oxygen as the cathode reactant, these devices have been limited to primary applications, due to a number of problems that occur when the cell is recharged, including electrolyte loss and poor efficiency. Overcoming these obstacles is essential to creating a rechargeable metal-air battery that can be utilised for efficiently capturing renewable energy. Despite the first metal-air battery being created over 100 years ago, the emergence of reactive metals such as lithium has reinvigorated interest in this field. However the reactivity of some of these metals has generated a number of different philosophies regarding the electrolyte of the metal-air battery. Whilst much is already known about the anode and cathode processes in aqueous and organic electrolytes, the shortcomings of these electrolytes (i.e. volatility, instability, flammability etc.) have led some of the metal-air battery community to study room temperature ionic liquids (RTILs) as non-volatile, highly stable electrolytes that have the potential to support rechargeable metal-air battery processes. In this perspective, we discuss how some of these initial studies have demonstrated the capabilities of RTILs as metal-air battery electrolytes. We will also show that much of the long-held mechanistic knowledge of the oxygen electrode processes might not be applicable in RTIL based electrolytes, allowing for creative new solutions to the traditional irreversibility of the oxygen reduction reaction. Our understanding of key factors such as the effect of catalyst chemistry and surface structure, proton activity and interfacial reactions is still in its infancy in these novel electrolytes. In this perspective we highlight the key areas that need the attention of electrochemists and battery engineers, in order to progress

  4. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Blomquist, Jakob; Datta, Soumendu;

    2010-01-01

    We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins...

  5. Water soluble graphene as electrolyte additive in magnesium-air battery system

    Science.gov (United States)

    Saminathan, K.; Mayilvel Dinesh, M.; Selvam, M.; Srither, S. R.; Rajendran, V.; Kaler, Karan V. I. S.

    2015-02-01

    Magnesium-air (Mg-air) batteries are an important energy source used to power electronic equipment and automobiles. Metal-air batteries give more energy density due to surplus air involved in reduction reaction at air cathode. In this study, the scope of improvements in the efficiency of Metal-air batteries is investigated through addition of water soluble graphene (WSG) as inhibitor in NaCl electrolyte. The discharge performance, corrosion behaviour and electrochemical impedance are studied for (i) the conventional Mg-air battery using 3.5% NaCl and (ii) Mg-air battery with WSG-based 3.5% NaCl electrolyte. X-ray diffraction analysis for WSG is carried out and it shows the crystalline nature of WSG by an intense sharp peak at 26.3°. Scanning electron microscope study is also performed and shows the flake-like structure of WSG denoted by thin layers of carbon. The immersion of WSG in 3.5% NaCl electrolyte increased the current density from 13.24 to 19.33 mA cm-2. Meanwhile, the WSG-based Mg-air battery was found to hold specific discharge capacity of 1030.71 mAh g-1, which was higher than that obtained in 3.5% NaCl electrolyte (i.e., 822.85 mAh g-1). The WSG-based Mg-air battery shows good self-discharge capacity and higher electrochemical activity during discharge.

  6. Recent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory

    Directory of Open Access Journals (Sweden)

    Jun Lu

    2013-11-01

    Full Text Available Rechargeable non-aqueous Li-air battery technology offers potential advantages over other existing battery systems in terms of specific energy and energy density, which could enable the driving range of an electric vehicle to be comparable to that of gasoline vehicles. Development of efficient cathode catalysts and stable electrolytes for the Li-air battery has been intensively investigated for the past several years, and a number of review articles covering different topics are already available. This review mainly focuses on the research activities on rechargeable non-aqueous Li-air batteries at Argonne National Laboratory, with the emphasis on the gains in understanding of electrolyte decomposition, the structure and magnetic properties of lithium peroxide (Li2O2, development of an air-breathing cathode, and the effect of oxygen crossover on the lithium anode. Insights from this research have led to the improvement of the electrochemical performance of Li-air batteries. Promising paths for future work on rechargeable Li-air batteries are also discussed.

  7. Recent progress in non-precious catalysts for metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Lee, Jang-Soo; Cho, Jaephil [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of); Liu, Meilin [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, NW Atlanta, GA (United States)

    2012-07-15

    Electrical energy storage and conversion is vital to a clean, sustainable, and secure energy future. Among all electrochemical energy storage devices, metal-air batteries have potential to offer the highest energy density, representing the most promising systems for portable (electronics), mobile (electrical vehicles), and stationary (micro-grids) applications. To date, however, many fundamental issues are yet to be overcome to realize this potential. For example, efficient catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air-electrode are yet to be developed to significantly reduce the polarization loss in metal-air batteries, which severely hinders the rate capability, energy efficiency, and operational life. In this progress report, a brief overview is first presented of the critical issues relevant to air-electrodes in metal-air batteries. Some recent advancements in the development of non-precious catalysts for ORR in Li-air and Zn-air batteries are then highlighted, including transition metal oxides, low-dimensional carbon-based structures, and other catalysts such as transition-metal macrocycles and metal nitrides. New directions and future perspectives for metal-air batteries are also outlined. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Effect of lithium or aluminum substitution on the characteristics of graphite for anode of lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    GUO Huajun; LI Xinhai; WANG Zhixing; PENG Wenjie; GUO Yongxing

    2003-01-01

    Modification of graphite for anode of lithium ion batteries is investigated. Results of X-ray diffraction shows lithium and aluminum exists as Li compound (CH3COOLi@2H2O) and Al compound (AlD3) in the graphite, respectiovely.The Bmnauer-Emmer-Teller (BET) surface area of the modified graphite increases. According to the electrochemical measurements of Li/C cell and prototype Li-ion batteries, the Li-doped graphite has large reversible capacity of 312.2mA@h/g, low irreversible capacity of 52.9 mA@h/g, and high initial coulombic efficiency of 85.51%. The 063448 size prototype battery with Li-doped graphite anode has large discharge capacity of 845 mA@h and good cycling performance. The initial charge/discharge characteristic of Al-doped graphite is close to those of undoped graphite, but the prototype battery with Al-doped anode shows the best cycling performance with capacity retention ratio of 94.06% at the 200th cycle.

  9. A SnO2-Based Cathode Catalyst for Lithium-Air Batteries.

    Science.gov (United States)

    Mei, Delong; Yuan, Xianxia; Ma, Zhong; Wei, Ping; Yu, Xuebin; Yang, Jun; Ma, Zi-Feng

    2016-05-25

    SnO2 and SnO2@C have been successfully synthesized with a simple hydrothermal procedure combined with heat treatment, and their performance as cathode catalysts of Li-air batteries has been comparatively evaluated and discussed. The results show that both SnO2 and SnO2@C are capable of catalyzing oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) at the cathode of Li-air batteries, but the battery with SnO2@C displays better performance due to its unique higher conductivity, larger surface area, complex pore distribution, and huge internal space. PMID:27152996

  10. Air compressor battery duration with mechanical ventilation in a field anesthesia machine.

    Science.gov (United States)

    Szpisjak, Dale F; Giberman, Anthony A

    2015-05-01

    Compressed air to power field anesthesia machine ventilators may be supplied by air compressor with battery backup. This study determined the battery duration when the compPAC ventilator's air compressor was powered by NiCd battery to ventilate the Vent Aid Training Test Lung modeling high (HC = 0.100 L/cm H2O) and low (LC = 0.020 L/cm H2O) pulmonary compliance. Target tidal volumes (VT) were 500, 750, and 1,000 mL. Respiratory rate = 10 bpm, inspiratory-to-expiratory time ratio = 1:2, and fresh gas flow = 1 L/min air. N = 5 in each group. Control limits were determined from the first 150 minutes of battery power for each run and lower control limit = mean VT - 3SD. Battery depletion occurred when VT was below the lower control limit. Battery duration ranged from 185.8 (±3.2) minutes in the LC-1000 group to 233.3 (±3.6) minutes in the HC-750 group. Battery duration of the LC-1000 group was less than all others (p = 0.027). The differences among the non-LC-1000 groups were not clinically significant. PMID:25939102

  11. Chemical Stability Investigations of Polyisobutylene as New Binder for Application in Lithium Air-Batteries

    International Nuclear Information System (INIS)

    ABSTRACT: The side reactions of LiO2, Li2O2 and Li2O, formed during the discharge process at the cathode/electrolyte interphase, are still a main challenge of lithium-air batteries. During these reactions, polyvinylidene difluoride (PVdF), as the commonly used cathode binder material, is decomposing, leading to a shorter lifetime of the battery. In this paper, we introduced and investigated polyisobutylene (PIB), a chemically and electrochemically inert polymeric material, to substitute PVdF as binder for lithium-air batteries. Results obtained by X-ray diffraction and spectroscopic methods showed, that PIB is far more stable in the presence of O2−, O22− as well as O2− species compared to PVdF. This distinct inertness makes PIB a promising binder for lithium-air batteries

  12. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306 mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.

  13. The lithium/air battery: still an emerging system or a practical reality?

    Science.gov (United States)

    Grande, Lorenzo; Paillard, Elie; Hassoun, Jusef; Park, Jin-Bum; Lee, Yung-Jung; Sun, Yang-Kook; Passerini, Stefano; Scrosati, Bruno

    2015-02-01

    Lithium/air is a fascinating energy storage system. The effective exploitation of air as a battery electrode has been the long-time dream of the battery community. Air is, in principle, a no-cost material characterized by a very high specific capacity value. In the particular case of the lithium/air system, energy levels approaching that of gasoline have been postulated. It is then not surprising that, in the course of the last decade, great attention has been devoted to this battery by various top academic and industrial laboratories worldwide. This intense investigation, however, has soon highlighted a series of issues that prevent a rapid development of the Li/air electrochemical system. Although several breakthroughs have been achieved recently, the question on whether this battery will have an effective economic and societal impact remains. In this review, a critical evaluation of the progress achieved so far is made, together with an attempt to propose future R&D trends. A forecast on whether Li/air may have a role in the next years' battery technology is also postulated. PMID:25645073

  14. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    International Nuclear Information System (INIS)

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes

  15. Decyl glucoside as a corrosion inhibitor for magnesium-air battery

    Science.gov (United States)

    Deyab, M. A.

    2016-09-01

    In this research, the effects of decyl glucoside (DG) on the corrosion inhibition and battery performance of Mg-air battery have been investigated. Chemical and electrochemical techniques have been used to evaluate the corrosion rate and inhibitor efficiency. Mg surface has been characterized with scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). A significant reduction in the corrosion rate of Mg in battery electrolyte (3.5% NaCl solution) has been observed in the presence of DG surfactant. Maximum inhibition efficiency (>94%) is achieved at critical micelle concentration of DG surfactant (CMC = 2.5 mM). The presence of DG surfactant increases the activation energy of the corrosion reaction. Physisorption mechanism has been suggested for the inhibition action of DG surfactant. The Mg-air battery containing DG surfactant offers higher operating voltage, discharge capacity and anodic utilization than in its absence.

  16. Unsteady self-sustained detonation waves in flake aluminum dust/air mixtures

    CERN Document Server

    Liu, Qingming; Zhang, Yunming; Li, Shuzhuan

    2015-01-01

    Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning movement of the triple point was analyzed. The variations in velocity and overpressure of the detonation wave with propagation distance in a cell were studied. The interactions of waves in triple-point configurations were analyzed and the flow-field parameters were calculated. Three types of triple-point configuration exist in the wave front of the detonation wave of an aluminum dust/air mixture. Both strong and weak transverse waves exist in the unstable self-sustained detonation wave.

  17. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery

    Science.gov (United States)

    Hummelshøj, J. S.; Blomqvist, J.; Datta, S.; Vegge, T.; Rossmeisl, J.; Thygesen, K. S.; Luntz, A. C.; Jacobsen, K. W.; Nørskov, J. K.

    2010-02-01

    We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins of the overpotential for both processes. We also address the question of electron conductivity through the Li2O2 electrode and show that in the presence of Li vacancies Li2O2 becomes a conductor.

  18. Developments in electrode materials and electrolytes for aluminium-air batteries

    OpenAIRE

    Egan, D; Ponce De Leon, Carlos; R.J.K. Wood; Jones, R. L.; Stokes, K.R.; Walsh, F. C.

    2013-01-01

    Aluminium-air cells are high-energy density (< 400 W h kg-1), primary batteries first developed in the 1960s. The review shows how the performance of the battery is influenced by the choice of materials, including the type of aluminium alloy, oxygen reduction catalyst and electrolyte type. Two continuing issues with these batteries are (a) the parasitic corrosion of the aluminium, at open-circuit and under discharge, due to the reduction of water on the anode surface and (b) the passive hydro...

  19. Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studies

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Younesi, Reza;

    2015-01-01

    For Li-air batteries to reach their full potential as energy storage system, a complete understanding of the conditions and reactions in the battery during operation is needed. To follow the reactions in situ a capillary-based Li-O2 battery has been developed for synchrotron-based in situ X...

  20. 锂离子动力电池铝外壳的腐蚀%Corrosion of Aluminum Casing of Lithium-ion Power Battery

    Institute of Scientific and Technical Information of China (English)

    张娜; 李杨

    2015-01-01

    通过电性能测试与扫描电子显微镜(SEM)、电感耦合等离子光谱(ICP)、X 射线衍射(XRD),能谱定量分析(EDS)等方法对外壳发生腐蚀的铝壳锂离子动力电池和正常电池进行了研究,并分析了腐蚀发生的条件。研究发现,腐蚀电池在循环、存储以及放电倍率等性能上有明显下降,分析表明当电池内部负极耳与铝壳内壁接触并经过半年以上的放置或者使用时,有可能会发生腐蚀反应,腐蚀首先发生在铝壳内壁,然后逐步发展到铝壳外侧,腐蚀产物主要是 Li2 CO3和铝盐。%Electrical property test,the SEM,ICP,XRD and EDS were used to study the lithium-ion power batteries;including decomposed and normal batteries with corroded aluminum casing,and the corrosion conditions were discussed.It was found that the cycle life,storage and discharge rate of corrosion batteries had a rapid declining.When the anode tab was contacted with the aluminum inner wall of aluminum lithium-ion battery,corrosion reaction might occur after more than six months of placement or using,the corrosion reaction occurd in the aluminum inner wall first,and then gradually developed into the outer aluminum.The main corrosion products were Li2 CO3 and aluminum salts.

  1. 3-D Nanofilm Primary Li Air Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires a new primary battery capable of providing specific energy exceeding 2000Wh/kg over an operating temperature range of 0oC to 35oC with a shelf life...

  2. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations

    Energy Technology Data Exchange (ETDEWEB)

    Abouimrane, A.; Ding, J.; Davidson, I.J. [Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Road, Ottawa K1A 0R6 (Canada)

    2009-04-01

    The performance of a liquid electrolyte composed of lithium bis-fluorosulfonyl imide (LiSFI) in a 1:1 volume of ethylene carbonate and dimethyl carbonate is evaluated for use in lithium ion batteries. Imide salts offer the benefits of higher thermal stability and could provide a safer alternative to LiPF{sub 6} which is prone to the formation of HF. However, the most studied lithium imide salt, lithium bis(trifluoromethanesulfonyl) imide, is well known to have a problem with corrosion of aluminum which is commonly used as the cathode current collector. Consequently, the corrosion properties of liquid electrolytes based on lithium bis-fluorosulfonyl imide are also investigated. (author)

  3. Identity of Passive Film Formed on Aluminum in Li-ion BatteryElectrolytes with LiPF6

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xueyuan; Devine, T.M.

    2006-09-01

    The passive film that forms on aluminum in 1:1 ethylene carbonate + ethylmethyl carbonate with 1.2M LiPF{sub 6} and 1:1 ethylene carbonate + dimethyl carbonate with 1.0M LiPF{sub 6} was investigated by a combination of electrochemical quartz crystal microbalance measurements (EQCM), electrochemical impedance spectroscopy (EIS), and x-ray photoelectron spectroscopy. During anodic polarization of aluminum a film of AlF{sub 3} forms on top of the air-formed oxide, creating a duplex, or two-layered film. The thickness of the AlF{sub 3} increases with the applied potential. Independent measurements of film thickness by EQCM and EIS indicate that at a potential of 5.5V vs. Li/Li{sup +}, the thickness of the AlF{sub 3} is approximately 1 nm.

  4. Non-aqueous electrolytes for lithium-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Chen, Zonghai; Zhang, Zhengcheng

    2016-06-07

    A lithium-air cell includes a negative electrode; an air positive electrode; and a non-aqueous electrolyte which includes an anion receptor that may be represented by one or more of the formulas. ##STR00001##

  5. Synthesis of aluminum nitride in a coke-calcium reduction bed using nitrogen in air

    Institute of Scientific and Technical Information of China (English)

    Ehsan Noorizadeh Dehkordi; H.R. Samim Banihashemi; R. Naghizadeh; H.R.Rezaie; M.Goodarzi

    2015-01-01

    An experimental study on the heating of a mixture of aluminum and lithium hydroxide (LiOH) powders in a reductive bed under air atmosphere is reported. The formation of aluminum nitride (AlN) during this process was the focus of this study. The formation of AlN was achieved using LiOH as an additive and heating the sample in a resistance furnace in a specially designed double crucible within a bed of a mixture of coke and filamentous calcium. The temperature range of the reaction was between 700°C and 1100°C. The optimum tem-perature of 1100°C and the optimum LiOH amount (5wt%) required to achieve maximum yield were determined by powder X-ray diffrac-tion (XRD) analysis. Scanning electron microscopy (SEM) micrographs clearly indicated the transformation of grain structures from rods (700°C) to cauliflower shapes (1100°C).

  6. Facile preparation of Ag-Cu bifunctional electrocatalysts for zinc-air batteries

    International Nuclear Information System (INIS)

    Highlights: • Ag-Cu dendrites are observed for the first time to exhibit high catalytic activity for oxygen reduction reaction. • Ag-Cu dendrites are directly synthesized through galvanic displacement on the current collector layer made of Ni foams. • A bifunctional air cathode is fabricated using Ag-Cu dendrites as a carbon-free, binder-free catalyst layer. • Both the primary and rechargeable zinc–air batteries fabricated by Ag-Cu catalysts exhibit excellent performance. - ABSTRACT: An inexpensive, facile galvanic displacement reaction for the direct growth of silver–copper (Ag-Cu) catalysts on nickel foams is developed for the first time. The resulting Ag-Cu catalysts exhibit dendritic morphologies. Ag and Cu atoms are in their metallic state while the presence of CuO and Cu2O are limited on the surface of catalyst. The catalysts demonstrate high catalytic activity for oxygen reduction reaction (ORR) in alkaline solution, as evaluated by both linear scanning voltammetry and rotating disk electrode polarization measurements. The ORR catalysed by Ag-Cu catalyst in alkaline solution proceeds through a four-electron pathway. An air cathode is fabricated using Ag-Cu catalyst as a carbon-free, binder-free catalyst layer. Using this Ag-Cu catalyst based air cathode, both the primary and rechargeable zinc-air batteries show excellent battery performance. The specific capacity of the primary zinc-air battery is 572 mAh g−1. Especially, the rechargeable zinc-air battery shows high round-trip efficiency, appealing stability at a long charge-discharge cycle period

  7. Electrically rechargeable zinc/air battery: a high specific energy system

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, F.; Sauter, J.-C.; Masanz, G.; Mueller, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This contribution describes our research and development efforts towards the demonstration of a light-weight, low-cost 12 V/20 Ah electrically rechargeable Zn/air battery. We successfully developed electrodes having active areas of up to 200 cm{sup 2}. Deep discharge cycles at different currents as well as current-voltage curves are reported for a 10 cell Zn/air battery (serial connection) with a rated capacity of 20 Ah. Based on the discharge cycle at a power of 19 W, and the weight of the battery, a specific energy of more than 90 Wh/kg could be evaluated for the whole system. (author) 4 figs., 1 tab., 5 refs.

  8. A lithium air battery with a lithiated Al-carbon anode.

    Science.gov (United States)

    Guo, Ziyang; Dong, XiaoLi; Wang, Yonggang; Xia, Yongyao

    2015-01-14

    A lithiated Al-carbon composite electrode with a uniform SEI film was prepared by an electrochemical method, and was then coupled with an O2 catalytic electrode to form a rechargeable Li-O2 (or air) battery with a LixAl-C anode. PMID:25415761

  9. Status of the DOE battery and electrochemical technology program. III

    International Nuclear Information System (INIS)

    This report reviews the status of the Department of Energy Subelement on Electrochemical Storage Systems. It emphasizes material presented at the Fourth US Department of Energy Battery and Electrochemical Contractors' Conference, held June 2-4, 1981. The conference stressed secondary batteries, however, the aluminum/air mechanically rechargeable battery and selected topics on industrial electrochemical processes were included. The potential contributions of the battery and electrochemical technology efforts to supported technologies: electric vehicles, solar electric systems, and energy conservation in industrial electrochemical processes, are reviewed. The analyses of the potential impact of these systems on energy technologies as the basis for selecting specific battery systems for investigation are noted. The battery systems in the research, development, and demonstration phase discussed include: aqueous mobile batteries (near term) - lead-acid, iron/nickel-oxide, zinc/nickel-oxide; advanced batteries - aluminum/air, iron/air, zinc/bromine, zinc/ferricyanide, chromous/ferric, lithium/metal sulfide, sodium/sulfur; and exploratory batteries - lithium organic electrolyte, lithium/polymer electrolyte, sodium/sulfur (IV) chloroaluminate, calcium/iron disulfide, lithium/solid electrolyte. Supporting research on electrode reactions, cell performance modeling, new battery materials, ionic conducting solid electrolytes, and electrocatalysis is reviewed. Potential energy saving processes for the electrowinning of aluminum and zinc, and for the electrosynthesis of inorganic and organic compounds are included

  10. Research progresses of metal/air batteries%金属/空气电池的研究进展

    Institute of Scientific and Technical Information of China (English)

    朱明骏; 袁振善; 桑林; 丁飞; 刘浩杰

    2012-01-01

    The metal/air battery use the light metal as negative active material and the oxygen in the air as positive active material, and the oxygen reacts with metal to produce electric energy when oxygen gets to gas-liquid-solid interface through gas diffusion electrode. There are many advantages in the metal/air battery, such as high specific energy, steady discharge voltage, low cost, non-toxic, little pollute, simple structure and so on, so it is believed to be the promising battery. According to the different metals, metal/air batteries are divided into four kinds: Zn/air battery, Al/ air battery,Mg air battery and Li air battery.The research progress of metal/air batteries was described in this paper.%金属/空气电池是以轻质金属作为负极活性物质,以空气中的氧气作为正极活性物质,氧气通过气体扩散电极到达气-液-固三相界面与金属负极反应而放出电能.它具有高比能量、放电电压平稳、低成本、无毒、污染小、结构简单等优点,被认为是未来很有发展和应用前景的新能源.按金属负极种类的不同,目前金属空气电池大致分为4类:锌/空气电池、铝/空气电池、镁/空气电池、锂/空气电池,介绍了这4种电池的研究进展.

  11. Catalytic properties of Co3O4 nanoparticles for rechargeable Li/air batteries

    OpenAIRE

    Kim, Kwan Su; Park, Yong Joon

    2012-01-01

    Three types of Co3O4 nanoparticles are synthesized and characterized as a catalyst for the air electrode of a Li/air battery. The shape and size of the nanoparticles are observed using scanning electron microscopy and transmission electron microscopy analyses. The formation of the Co3O4 phase is confirmed by X-ray diffraction. The electrochemical property of the air electrodes containing Co3O4 nanoparticles is significantly associated with the shape and size of the nanoparticles. It appears t...

  12. A nanostructured bifunctional Pd/C gas-diffusion electrode for metal-air batteries

    International Nuclear Information System (INIS)

    Graphical Abstract: Images showing (a) a scanning electrode microscope cross section of the Pd/C air electrode, (b) a TEM micrograph of the Pd/C catalyst, and (c) charge–discharge cycling of the air electrode in 6 mol dm−3 KOH at 20 mA cm−2 under 100 ml min−1 oxygen flow. - Highlights: • The Pd/C air electrode shows consistent good performance at modest current densities (20–80 mA cm−2), and is stable for 1000 cycles at room temperature. • The Pd/C air electrode has a potential difference of 0.53 V between oxygen evolution and oxygen reduction. • The air electrode makes efficient use of a small precious metal loading (0.5 mg cm−2), and is mainly made from lightweight carbon materials. • The air electrode has better stability than a commercial 2 mg cm−2 Pt/C electrode on repeated charge–discharge cycling, despite having a lower (and therefore less expensive) loading of catalyst. - Abstract: Designing a bifunctional air electrode which catalyses both the oxygen reduction and oxygen evolution reactions is an essential part of progress towards fully rechargeable metal-air batteries, such as the iron-air battery which is environmentally friendly, low cost, and does not suffer risk of thermal runaway like lithium-ion batteries. This paper reports the development of a lightweight carbon-based bifunctional air electrode, catalysed by a small (0.5 mg cm−2) loading of 30 wt.% palladium on carbon. The Pd-catalysed air electrode showed good bifunctional activity, with 0.53 V potential difference between oxygen reduction and evolution. The Pd/C air electrode showed improved catalytic activity at high current densities (≥ 50 mA cm−2) and enhanced durability compared with two commercial Pt/C air electrodes produced by Gaskatel GmbH and Johnson Matthey. A stable oxygen evolution potential was maintained over 1,000 charge-discharge cycles

  13. Improved Accuracy of Density Functional Theory Calculations for CO2 Reduction and Metal-Air Batteries

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs

    2015-01-01

    .e. the electrocatalytic reduction of CO2 and metal-air batteries. In theoretical studies of electrocatalytic CO2 reduction, calculated DFT-level enthalpies of reaction for CO2reduction to various products are significantly different from experimental values[1-3]. In theoretical studies of metal-air battery reactions...... errors in DFT-level computational electrocatalytic CO2reduction is hence identified. The new insight adds increased accuracy e.g., for reaction to formic acid, where the experimental enthalpy of reaction is 0.15 eV. Previously, this enthalpy has been calculated without and with correctional approaches......, Nano Lett., 14, 1016 (2014) [6] J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B, 85, 235149 (2012) Figure 1: Calculated enthalpies of reaction from CO2 to CH3OH (x axis) and HCOOH (y axis). Functional variations...

  14. Electrochemical evaluation of carbon nanotubes and carbon black for the cathode of Li-air batteries

    Science.gov (United States)

    Fuentes, Roderick E.; Colón-Mercado, Héctor R.; Fox, Elise B.

    2014-06-01

    Cyclic Voltammetry (CV) was used to screen carbon catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance as electrodes for the Li-air battery. Lithium bis(trifluoromethylsulfonyl)imide (LiTF2N) in tetraethylene glycol dimethyl ether (TEGDME) was used as the electrolyte during testing. The effect of manganese/manganese oxide addition on the performance of the carbons was compared to that of the bare carbons in a cycling study. From CV results, it was found that single walled carbon nanotubes (SWCNT) had the highest peak current density per gram for ORR and OER than the other types of carbon studied. The SWCNT ORR peak decreased 49% after 100 cycles and only 36% when manganese/manganese oxide was added. The high activity of SWCNT with manganese/manganese oxide spheres make it a desirable material to use as the cathode for Li-air batteries.

  15. First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteries

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Tripkovic, Vladimir; Lundgård, Keld Troen;

    2013-01-01

    the fundamental mechanisms still remain to be fully understood. Here, we present a density functional theory investigation of the zinc dissolution (oxidation) on the anode side in the zinc-air battery. Two models are envisaged, the most stable (0001) surface and a kink surface. The kink model proves to be more...... accurate as it brings about some important features of bulk dissolution and yields results in good agreement with experiments. From the adsorption energies of hydroxyl species and experimental values, we construct a free energy diagram and confirm there is a small overpotential associated with the reaction....... The applied methodology provides new insight into computational modelling and design of secondary metal-air batteries....

  16. Underwater shock response of air-backed thin aluminum alloy plates: An experimental and numerical study

    Science.gov (United States)

    Ren, Peng; Zhang, Wei

    2014-05-01

    Studies on dynamic response of structures subjected to underwater explosion shock loading are of interest to ship designers. Understanding the deformation and failure mechanism of simple structures plays an important role in designing of a reliable structure under this kind of loading. The objective of this combined experimental and numerical study is to analyze the deformation and failure characteristics of 5A06 aluminum alloy plates under underwater shock loading. Some non-explosive underwater blast loading experiments were carried out on air backed circular plates of 2 mm thickness. The deformation history of the clamped circular plate was recorded using a high speed camera and the deflections of specimens at different radii were measured in order to identify deformation and failure modes. In the finite element simulations, the strength model of 5A06 aluminum alloy is considered using the slightly modified Johnson-cook mode to describe structure deformation. Good agreement between the numerical simulations and the experimental results is found. Detailed computational results of each scenario are offered to understand the deformation and failure mechanism.

  17. Effect of open air annealing on spin coated aluminum doped ZnO nanostructure

    International Nuclear Information System (INIS)

    Aluminum doped ZnO thin film nanostructures were prepared by spin coating deposition on glass and silicon substrates. Electrical, optical and structural properties of these films were analyzed in order to investigate their dependence on post annealing temperature and number of coating cycles. Ultraviolet–Visible spectrophotometry and X-Ray diffraction (XRD) analysis confirmed that the films are optically transparent and polycrystalline in nature. Scanning electron microscopy (SEM) reveals worm like homogeneous morphology. Chemical analysis was carried out by Fourier transform infrared spectroscopy (FTIR). Atomic force microscopy (AFM) showed mountain and valley like nanostructure. Optimized films with a low resistivity of 2.11 × 10−1 Ω cm were obtained at open air annealing temperature of 375 °C. - Highlights: • Aluminum doped ZnO thin film nanostructures were prepared by sol–gel deposition. • Optimized film nanostructures with a low resistivity of 2.11 × 10−1 Ω-cm were obtained. • Atomic force microscopy (AFM) shows mountain and valley like nanostructure

  18. Elaboration and characterization of hybrid lithium-ion conducting membranes for aqueous lithium-air batteries

    OpenAIRE

    Lancel, Gilles

    2016-01-01

    Aqueous lithium-air batteries could be a revolution in energy storage, but the main limitation is the use of a thick glass-ceramic lithium ionic conductor to isolate the metallic lithium from the aqueous electrolyte. This makes the system more fragile, limits its cyclability and increases ohmic resistance. The aim of this work is to replace the glass-ceramic by a hybrid membrane made by electrospinning, which combines water tightness, flexibility and lithium-ions conductivity. The ionic condu...

  19. Rapid air film continuous casting of aluminum alloy using static magnetic field

    Institute of Scientific and Technical Information of China (English)

    Fu QU; Huixue JIANG; Gaosong WANG; Qingfeng ZHU; Xiangjie WANG; Jianzhong CUI

    2009-01-01

    The influences of the cooling style and static magnetic field on the air film casting process were investigated. Ingots of 6063 aluminum alloy were produced by AIRSOL VEIL casting with double-layer cooling water and static magnetic field. Surface segregation, hot crack and variation of solute content along the radius direction of ingot were examined. The results showed that double-layer cooling water can improve the surface quality and avoid of hot crack, which created conditions to increase the casting speed. The electromagnetic casting process can effectively improve the surface quality in high speed casting process, and static magnetic field has a great influence on solute distribution along the radius direction of ingot.

  20. Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kitaura, Hirokazu; Zhou, Haoshen [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba (Japan)

    2012-07-15

    Solid-state lithium-air cells using lithium anode, a polymer electrolyte, Li{sub 1+x+y}Al{sub x}(Ti, Ge){sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} inorganic solid electrolyte, and an air electrode composed of carbon nanotubes and an inorganic solid electrolyte are constructed and their electrochemical properties investigated. The cells show a reversible capacity of about 400 mA h g{sup -1} during the first few cycles. The rate performance and impedance measurements are also examined. The large cell resistance, which mainly comes from the interfacial resistance between Li and the polymer electrolyte, limits the rate performance. The results indicate that such all-solid-state lithium-air batteries without polymer electrolytes have good potential for development. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies

    International Nuclear Information System (INIS)

    Highlights: • Three-dimensional CFD model with forced air cooling are developed for battery modules. • Impact of different air cooling strategies on module thermal characteristics are investigated. • Impact of different model structures on module thermal responses are investigated. • Effect of inter-cell spacing on cell thermal characteristics are also studied. • The optimal battery module structure and air cooling strategy is recommended. - Abstract: Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended

  2. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Park, Seh Kyu; Xiao, Jie; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2012-05-04

    Li-air battery has recently emerged as a potentially transformational energy storage technology for both transportation and stationary energy storage applications due to its very high specific energy. However, its practical application is currently limited by the poor power capability, poor cyclability and low energy efficiency, all of which are largely determined by interfacial reactions on oxygen electrocatalysts in air electrode. In this article, we review the fundamental understanding of oxygen electrocatalysis in nonaqueous electrolytes, the status and challenges of oxygen electrocatalysts, and provide a perspective on new electrocatalysts design and development.

  3. Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack

    OpenAIRE

    Hongyun Ma; Baoguo Wang; Yongsheng Fan; Weichen Hong

    2014-01-01

    An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO 2 and LaNiO 3 severed as the catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D) current densities indicating a uniform voltage profile for each single cell. One hu...

  4. Remarkable impact of water on the discharge performance of a silicon-air battery.

    Science.gov (United States)

    Cohn, Gil; Macdonald, Digby D; Ein-Eli, Yair

    2011-08-22

    Here, we report on a Si-air/ionic liquid electrolyte battery whose performance improves with small amounts of water in the electrolyte. The shift of the generation zone of the SiO(2) discharge product from the air cathode surface into the bulk region of the liquid electrolyte, caused by water addition, is demonstrated through various means. Addition of 15 vol% water leads to an increase of 40% in the discharge capacity as compared to the capacity obtained using a pure ionic liquid electrolyte. If the water content increases above 20 vol%, the Si-air cell capacity dramatically decreases. The water-ionic liquid electrolyte mixture shows a maximum in the ionic conductivity with a water content of 10 vol%. In-depth studies indicate a reduced amount of discharge product at the air electrode using 15 vol% H(2)O electrolyte. The morphology of the anode surface, as well as the developed surface film in the presence of water-containing ionic liquid, is reported. This study shows that exposing a Si-air battery to a humid environment does not result in capacity losses, but rather improves cell performance.

  5. A Novel Inorganic Low Melting Electrolyte for Secondary-Aluminum-Nickel Sulfide Batteries

    DEFF Research Database (Denmark)

    Hjuler, H.A.; Winbrush, S. von; Berg, Rolf W.;

    1989-01-01

    A new, inorganic low melting electrolyte with the composition LiAlCl4-NaAlCl4-NaAlBr4-KAlCl4 (3:2:3:2) [or equivalentlyLiAlBr4-NaAlCl4-KAlCl4 (3:5:2)] has been developed. The melting point for this neutral melt is 86°C; the decompositionpotential is approximately 2.0V; the ionic conductivity...... is measured in the range 97°–401°C and is 0.142s cm–1 at100°C, and the density is 2.07g cm–3. The conductivity seems to be an almost linear combination of the conductivities ofthe four individual halo salts which form the melt. Other examined higher melting mixtures exhibit conductivities deviatingless than...... ±10% from their combination expectations. The low melting electrolyte is employed in the rechargeable batterysystem Al/electrolyte/Ni3S2 at 100°C. The open-circuit voltage of this system is from 0.82 to 1.0V. Dendrite-free aluminumdeposits are obtained. The cycling behavior of the battery system...

  6. Review on Lithium-Air Batteries%锂空气电池研究述评

    Institute of Scientific and Technical Information of China (English)

    张栋; 张存中; 穆道斌; 吴伯荣; 吴锋

    2012-01-01

    由于锂空气电池具有很高的理论能量密度因而引起了广泛关注和研究。本文较为全面地论述了各种电解质体系中的锂空气电池的进展,包括:有机体系、水体系、离子液体体系、有机.水双电解质体系和全固态体系的锂空气电池;详细阐述和归纳了它们的工作原理和最新研究现状。对最新提出的锂一空气.超级电容电池的原理和特点进行了较详细的论述。结合氧气在有机电解质中的电化学还原行为指出单一有机电解质锂空气电池存在的问题以及可能的解决办法;同时展示了这类电池中空气电极催化剂的发展现状。结合双电解质锂空气电池、固态电解质锂空气电池、锂-空气一超级电容电池的结构阐述了它们各自的优缺点。本文还展示了一些可望用于单一有机电解质锂空电池、有机.水双电解质体系锂空电池的新型碳材料。最后对锂空气电池的研究发展进行了总结与展望,提出新型电解液、催化剂以及改进锂空气电池构造将会成为今后的发展趋势。%Lithium-air battery has been a focus of study for the past two decades extensively because of its excellent properties of energy and power densities. The performance, operation mechanism and state-of-the-art of Li-air batteries, operated in all of electrolytes, such as non-aqueous electrolytes, aqueous electrolytes, ionic liquids electrolytes, aqueous-nonaqueous dual-electrolytes and all solid electrolytes, are collected and discussed in detail in this paper. In special, the performance, principle and potential practical possibility of lithium-air-super-capacitor battery, which was just mentioned last year, is also reviewed in detail. Combined with the electrochemical behavior and research results of oxygen reduction reaction on different electrodes in different non-aqueous electrolytes, the defect and problem of nonaqueous electrolyte lithium-air

  7. Cobalt-Lead-Manganese oxides combined cathode catalyst for air electrode in Zinc –air battery

    International Nuclear Information System (INIS)

    Highlights: • Bi and trimetallic oxides based on Mn, Pb and Co were prepared and characterized. • Introduction of Pb and Co in MnOx catalyst promote four electron ORR. • Zinc air battery with Mn2Pb2CoOx catalyst displays much smaller charge transfer resistance in contrast to the pure MnOx. • Mn2Pb2CoOx catalyst has lower loss of performance after 500C-D cycles than the rest of the catalysts. • Zinc air battery containing Mn2Pb2CoOx has promising current and power density and also discharge capacity. - Abstract: Bi and tri metalic oxides based on Mn, Pb and Co composite catalysts were prepared by oxidation of metal acetates with KMnO4. The structure of the catalysts was characterized by X-ray diffraction (XRD). It is found that the Mn2Pb2CoOx catalyst has amorphous structure and contains various oxides of Mn, Pb and Co. Electrocatalytic activity of catalysts in 6 M KOH was studied using Cyclic Voltammetry (CV) and polarization. Cyclic Voltammetry plot of Mn2Pb2CoOx catalyst showed higher electrocatalytic activity towards the Oxygen Reduction Reaction (ORR) compared to other tri and bimetallic composite catalysts. The kinetics of ORR on the catalysts was investigated using the rotating disk electrode technique in 6 M KOH solution. From the slope of Koutecky–Levich plots, it is evident that the ORR on Mn2Pb2CoOx is a 4-electron transfer process. With these inherent features, the zinc–air battery was fabricated using various catalysts and their performance was examined for practical applications

  8. Friction and wear of titanium alloys and copper alloys sliding against titanium 6-percent-aluminum - 4-percent-vanadium alloy in air at 430 C

    Science.gov (United States)

    Wisander, D. W.

    1976-01-01

    Experiments were conducted to determine the friction and wear characteristics of aluminum bronzes and copper-tin, titanium-tin, and copper-silver alloys sliding against a titanium-6% aluminum-4% vanadium alloy (Ti-6Al-4V). Hemispherically tipped riders of aluminum bronze and the titanium and copper alloys were run against Ti-6Al-4V disks in air at 430 C. The sliding velocity was 13 cm/sec, and the load was 250 g. Results revealed that high tin content titanium and copper alloys underwent significantly less wear and galling than commonly used aluminum bronzes. Also friction force was less erratic than with the aluminum bronzes.

  9. Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow

    Institute of Scientific and Technical Information of China (English)

    刘燕平; 欧阳陈志; 江清柏; 梁波

    2015-01-01

    Single cell temperature difference of lithium-ion battery (LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics (CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.

  10. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries

    Science.gov (United States)

    Pino, M.; Chacón, J.; Fatás, E.; Ocón, P.

    2015-12-01

    The evaluation of commercial aluminium alloys, namely, Al2024, Al7475 and Al1085, for Al-air batteries is performed. Pure Al cladded Al2024 and Al7475 are also evaluated. Current rates from 0.8 mA cm-2 to 8.6 mA cm-2 are measured in a gel Al-air cell composed of the commercial alloy sample, a commercial air-cathode and an easily synthesizable gelled alkaline electrolyte. The influence of the alloying elements and the addition to the electrolyte of ZnO and ZnCl2, as corrosion inhibitors is studied and analysed via EDX/SEM. Specific capacities of up to 426 mAh/g are obtained with notably flat potential discharges of 1.3-1.4 V. The competition between self-corrosion and oxidation reactions is also discussed, as well as the influence of the current applied on that process. Al7475 is determined to have the best behaviour as anode in Al-air primary batteries, and cladding process is found to be an extra protection against corrosion at low current discharges. Conversely, Al1085 provided worse results because of an unfavourable metallic composition.

  11. Status of the DOE Battery and Electrochemical Technology Program V

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  12. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte

    Science.gov (United States)

    Pino, M.; Herranz, D.; Chacón, J.; Fatás, E.; Ocón, P.

    2016-09-01

    An easy treatment based in carbon layer deposition into aluminium alloys is presented to enhance the performance of Al-air primary batteries with neutral pH electrolyte. The jellification of aluminate in the anode surface is described and avoided by the carbon covering. Treated commercial Al alloys namely Al1085 and Al7475 are tested as anodes achieving specific capacities above 1.2 Ah g-1vs 0.5 Ah g-1 without carbon covering. The influence of the binder proportion in the treatment as well as different carbonaceous materials, Carbon Black, Graphene and Pyrolytic Graphite are evaluated as candidates for the covering. Current densities of 1-10 mA cm-2 are measured and the influence of the alloy explored. A final battery design of 4 cells in series is presented for discharges with a voltage plateau of 2 V and 1 Wh g-1 energy density.

  13. Tapioca binder for porous zinc anodes electrode in zinc–air batteries

    Directory of Open Access Journals (Sweden)

    Mohamad Najmi Masri

    2015-07-01

    Full Text Available Tapioca was used as a binder for porous Zn anodes in an electrochemical zinc-air (Zn-air battery system. The tapioca binder concentrations varied to find the optimum composition. The effect of the discharge rate at 100 mA on the constant current, current–potential and current density–power density of the Zn-air battery was measured and analyzed. At concentrations of 60–80 mg cm−3, the tapioca binder exhibited the optimum discharge capability, with a specific capacity of approximately 500 mA h g−1 and a power density of 17 mW cm−2. A morphological analysis proved that at this concentration, the binder is able to provide excellent binding between the Zn powders. Moreover, the structure of Zn as the active material was not affected by the addition of tapioca as the binder, as shown by the X-ray diffraction analysis. Furthermore, the conversion of Zn into ZnO represents the full utilization of the active material, which is a good indication that tapioca can be used as the binder.

  14. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    Science.gov (United States)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  15. Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy

    OpenAIRE

    Leskes, Michal; Moore, Amy J.; Goward, Gillian R.; Grey, Clare P.

    2013-01-01

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ss...

  16. Modeling of the lithium-air battery cathodes with broad pore size distribution

    Science.gov (United States)

    Sergeev, Artem V.; Chertovich, Alexander V.; Itkis, Daniil M.

    2016-09-01

    Achieving theoretical promises of 1000 W h/kg specific energy for lithium-air batteries is quite challenging due to limited transport in the cathode along with electrode passivation. Transport can be enhanced in the electrodes with complex hierarchical pore architecture. Here, using computer simulations we analyze the effects of cathode pore size distribution (PSD) on capacity and discharge curve shape. Calculations considering a broad PSD revealed that even small discharge product resistivity prevents larger pores from accumulating the discharge product and thus turning them into non-clogging oxygen supply channels. Thus optimization of cathode architecture by adding of large-scale cavities enables cell capacity enhancement.

  17. CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

    OpenAIRE

    Yuan, Jinliang; Yu, Jong-Sung; Sundén, Bengt

    2015-01-01

    A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electroc...

  18. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana, E-mail: dnrsp@uohyd.ac.in, E-mail: dnr-laserlab@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Deepak, K. L. N. [Department of Physics and Center for Research in Photonics, University of Ottawa, 150 Louis Pasteur, Ottawa K1N6N5, Ontario (Canada)

    2014-09-21

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C₂H₅OH) and water (H₂O) using linearly polarized Ti:sapphire fs laser pulses of ~110 fs pulse duration and ~800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  19. Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, G.A. [Dalhousie University, Department of Process Engineering and Applied Science, 1360 Barrington Street, Halifax, Nova Scotia, Canada B3J 1Z1 (Canada); Brochu, M. [McGill University, Mining and Materials Engineering Department, 3610 University Street, Montreal, Quebec, Canada H3A 0C5 (Canada); Hexemer, R.L.; Donaldson, I.W. [GKN Sinter Metals LLC, 3300 University Drive, Auburn Hills 48326 (United States); Bishop, D.P., E-mail: Paul.Bishop@dal.ca [Dalhousie University, Department of Process Engineering and Applied Science, 1360 Barrington Street, Halifax, Nova Scotia, Canada B3J 1Z1 (Canada)

    2014-07-01

    Two air atomized aluminum powders, one of commercial purity and the other magnesium-doped (0.4 wt%), were processed by SPS and conventional PM means. An investigation of SPS processing parameters and their effect on sinter quality were investigated. A comparison with conventionally processed PM counterparts was also conducted. Applied pressure and ultimate processing temperature bore the greatest influence on processing, while heating rate and hold time showed a minor effect. Full density specimens were achieved for both powders under select processing conditions. To compliment this, large (80 mm) and small (20 mm) diameter samples were made to observe possible up-scaling effects, as well as tensile properties. Large samples were successfully processed, albeit with somewhat inferior densities to the smaller counterparts presumably due to the temperature inhomogeneity during processing. An investigation of tensile properties for SPS samples exhibited extensive ductility (∼30%) at high sintering temperatures, while lower temperature SPS samples as well as all PM processed samples exhibited a brittle nature. The measurement of residual oxygen and hydrogen contents showed a significant elimination of both species in SPS samples under certain processing parameters when compared to conventional PM equivalents.

  20. The role of transition metal interfaces on the electronic transport in lithium–air batteries

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Hummelshøj, Jens S.; Thygesen, Kristian Sommer;

    2011-01-01

    at the top of the anti bonding peroxide π*(2px) and π*(2py) levels in the Li2O2 valence band. Under an applied bias, this can result in a reduced transmission, since the anti bonding σ*(2pz) level in the Li2O2 conduction band is found to couple strongly to the metal substrate and create localized interface......Low electronic conduction is expected to be a main limiting factor in the performance of reversible lithium–air, Li–O2, batteries. Here, we apply density functional theory and non-equilibrium Green's function calculations to determine the electronic transport through lithium peroxide, Li2O2, formed...... at the cathode during battery discharge. We find the transport to depend on the orientation and lattice matching of the insulator–metal interface in the presence of Au and Pt catalysts. Bulk lithium vacancies are found to be available and mobile under battery charging conditions, and found to pin the Fermi level...

  1. A Lithium-Air Battery with a High Energy Air Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will advance an efficient and lightweight energy storage device for Oxygen Concentrators by developing a high specific energy lithium-air cell....

  2. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries.

    Science.gov (United States)

    Lu, Yi-Chun; Gasteiger, Hubert A; Shao-Horn, Yang

    2011-11-30

    We report the intrinsic oxygen reduction reaction (ORR) activity of polycrystalline palladium, platinum, ruthenium, gold, and glassy carbon surfaces in 0.1 M LiClO(4) 1,2-dimethoxyethane via rotating disk electrode measurements. The nonaqueous Li(+)-ORR activity of these surfaces primarily correlates to oxygen adsorption energy, forming a "volcano-type" trend. The activity trend found on the polycrystalline surfaces was in good agreement with the trend in the discharge voltage of Li-O(2) cells catalyzed by nanoparticle catalysts. Our findings provide insights into Li(+)-ORR mechanisms in nonaqueous media and design of efficient air electrodes for Li-air battery applications. PMID:22044022

  3. Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries.

    Science.gov (United States)

    Li, Ge; Wang, Xiaolei; Fu, Jing; Li, Jingde; Park, Moon Gyu; Zhang, Yining; Lui, Gregory; Chen, Zhongwei

    2016-04-11

    Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal-air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen-doped, partially graphitized carbon framework. Benefiting from the unique pomegranate-like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3 O4 -based composite electrocatalyst exhibited a high half-wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm(-2) for OER. A single-cell zinc-air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal-air batteries. PMID:26970076

  4. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    Science.gov (United States)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  5. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling

    International Nuclear Information System (INIS)

    Highlights: • Heat accumulation in PCM causes failures of passive thermal management systems. • The introduction of forced air convection improves the reliability of PCMs. • Temperature distribution in the hybrid system remains uniform. • Active cooling and PCMs play separate roles in battery thermal management. • Numerical results agree with experiment data and give theoretic insights. - Abstract: Passive thermal management systems using phase change materials (PCMs) provides an effective solution to the overheating of lithium ion batteries. But this study shows heat accumulation in PCMs caused by the inefficient cooling of air natural convection leads to thermal management system failures: The temperature in a battery pack operating continuously outranges the safety limit of 60 °C after two cycles with discharge rate of 1.5 C and 2 C. Here a hybrid system that integrates PCMs with forced air convection is presented. This combined system successfully prevents heat accumulation and maintains the maximum temperature under 50 °C in all cycles. Study on airspeed effects reveals that thermo-physical properties of PCMs dictate the maximum temperature rise and temperature uniformity in the battery pack, while forced air convection plays a critical role in recovering thermal energy storage capacity of PCMs. A numerical study is also carried out and validated with experiment data, which gives theoretic insights on thermo-physical changes in this hybrid battery thermal management system

  6. Progress in lithium-air battery%锂燃料电池的研究进展

    Institute of Scientific and Technical Information of China (English)

    纪明中

    2011-01-01

    Battery with high capacity is always a hotspot in technology researches. Lithium-air batteries probably will breakthrough the bottleneck of energy capacity of cells. Theoretically, Lithium-air batteries have a specific energy capacity of 11 140 Wh/kg, which is much higher than commercial cells with 1-2 orders. According to the electrolyte used in lithium-air battery, lithium-air battery is classified into three types: aqueous solution, organic electrolyte (non-aqueous) and multiphase electrolytes.Their merits and demerits were discussed, and the problems necessary to be disposed were also analyzed. The developments on lithium air battery were reviewed.%高容量电池一直是研究的热点,锂燃料电池可能会突破电池体系的能量瓶颈.理论上,锂燃料电池的比能量高达11140 Wh/kg,高出现有商品电池体系1~2个数量级.但目前仍有不少问题需要解决,如寻找适用的电解质和空气电极.根据所用电解质的不同,将锂燃料电池分为三类:水溶性电解质电池、有机电解质电池和多相电解质电池.分别讨论了它们的优缺点和需要解决的难题,并综述了其研究进展.

  7. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Science.gov (United States)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  8. Performance and cycle life of carbon- and conductive-based air electrodes for rechargeable Zn-air battery applications

    Science.gov (United States)

    Chellapandi Velraj, Samgopiraj

    The development of high-performance, cyclically stable bifunctional air electrodes are critical to the commercial deployment of rechargeable Zn-air batteries. The carbon material predominantly used as support material in the air electrodes due to its higher surface area and good electrical conductivity suffers from corrosion at high oxygen evolution overpotentials. This study addresses the carbon corrosion issues and suggests alternate materials to replace the carbon as support in the air electrode. In this study, Sm0.5Sr0.5CoO3-delta with good electrochemical performance and cyclic lifetime was identified as an alternative catalyst material to the commonly used La0.4Ca 0.6CoO3 catalyst for the carbon-based bifunctional electrodes. Also, a comprehensive study on the effects of catalyst morphology, testing conditions on the cycle life as well as the relevant degradation mechanism for the carbon-based electrode was conducted in this dissertation. The cyclic life of the carbon-based electrodes was strongly dependent on the carbon support material, while the degradation mechanisms were entirely controlled by the catalyst particle size/morphology. Some testing conditions like resting time and electrolyte concentration did not change the cyclic life or degradation mechanism of the carbon-based electrode. The current density used for cyclic testing was found to dictate the degradation mechanism leading to the electrode failure. An alternate way to circumvent the carbon corrosion is to replace the carbon support with a suitable electrically-conductive ceramic material. In this dissertation, LaNi0.9Mn0.1O3, LaNi 0.8Co0.2O3, and NiCo2O4 were synthesized and evaluated as prospective support materials due to their good electrical conductivity and their ability to act as the catalyst needed for the bifunctional electrode. The carbon-free electrodes had remarkably higher catalytic activity for oxygen evolution reaction (OER) when compared to the carbon-based electrode. However

  9. Charting the known chemical space for non-aqueous Lithium-air battery electrolyte solvents

    CERN Document Server

    Husch, Tamara

    2015-01-01

    The Li-Air battery is a very promising candidate for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-Air electrolyte solvents. It is shown that the problem of finding better Li-Air electrolyte solvents is not only - as previously suggested - about maximizing Li+ and O2- solubilities, but about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compoun...

  10. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Das, Trishna

    2016-05-01

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24 bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.

  11. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    Science.gov (United States)

    O'Laoire, Cormac Micheal

    Unlocking the true energy capabilities of the lithium metal negative electrode in a lithium battery has until now been limited by the low capacity intercalation and conversion reactions at the positive electrodes. This is overcome by removing these electrodes and allowing lithium to react directly with oxygen in the atmosphere forming the Li-air battery. Chapter 2 discusses the intimate role of electrolyte, in particular the role of ion conducting salts on the mechanism and kinetics of oxygen reduction in non-aqueous electrolytes designed for such applications and in determining the reversibility of the electrode reactions. Such fundamental understanding of this high energy density battery is crucial to harnessing its full energy potential. The kinetics and mechanisms of O2 reduction in solutions of hexafluorophosphate salts of the general formula X+ PF6-, where, X = tetra butyl ammonium (TBA), K, Na and Li, in acetonitrile have been studied on glassy carbon electrodes using cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. Our results show that cation choice strongly influences the reduction mechanism of O2. Electrochemical data supports the view that alkali metal oxides formed via electrochemical and chemical reactions passivate the electrode surface inhibiting the kinetics and reversibility of the processes. The O2 reduction mechanisms in the presence of the different cations have been supplemented by kinetic parameters determined from detailed analyses of the CV and RDE data. The organic solvent present in the Li+-conducting electrolyte has a major role on the reversibility of each of the O2 reduction products as found from the work discussed in the next chapter. A fundamental study of the influence of solvents on the oxygen reduction reaction (ORR) in a variety of non-aqueous electrolytes was conducted in chapter 4. In this work special attention was paid to elucidate the mechanism of the oxygen electrode processes in the rechargeable Li-air

  12. Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc–air battery

    International Nuclear Information System (INIS)

    In this paper, we report the synthesis, characterization and application of an inexpensive yet efficient bifunctional catalyst composed of Ag nanocrystals (∼11 nm) anchored on α-MnO2 nanorods. The nanostructured Ag–MnO2 catalysts exhibit improved oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance in aqueous alkaline media, in terms of onset potential, generated current density and Tafel slopes. Rotating disk electrode results show that near-four electrons per oxygen molecule were transferred during ORR of Ag–MnO2. A zinc–air battery prototype employing Ag–MnO2 in the air electrode was successfully operated for 270 cycles under light discharge–charge condition. Ag–MnO2 is an efficient bifunctional catalyst for electrochemical devices such as metal–air batteries and alkaline fuel cells

  13. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries

    Science.gov (United States)

    Li, Bing; Ge, Xiaoming; Goh, F. W. Thomas; Hor, T. S. Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun

    2015-01-01

    An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization

  14. Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2014-10-01

    Full Text Available An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO2 and LaNiO3 severed as the catalysts for the oxygen reduction reaction (ORR and oxygen evolution reaction (OER. The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D current densities indicating a uniform voltage profile for each single cell. One hundred C-D cycles were carried out for the stack. The results showed that, over the initial 10 cycles, the average C-D voltage gap was about 0.94 V and the average energy efficiency reached 89.28% with current density charging at 15 mA·cm−2 and discharging at 25 mA·cm−2. The total increase in charging voltage over the 100 C-D cycles was ~1.56% demonstrating excellent stability performance. The stack performance degradation was analyzed by galvanostatic electrochemical impedance spectroscopy. The charge transfer resistance of ORR increased from 1.57 to 2.21 Ω and that of Zn/Zn2+ reaction increased from 0.21 to 0.34 Ω after 100 C-D cycles. The quantitative analysis guided the potential for the optimization of both positive and negative electrodes to improve the cycle life of the cell stack.

  15. Synthesis and characterization of different MnO2 morphologies for lithium-air batteries

    Science.gov (United States)

    Choi, Hyun-A.; Jang, Hyuk; Hwang, Hyein; Choi, Mincheol; Lim, Dongwook; Shim, Sang Eun; Baeck, Sung-Hyeon

    2014-09-01

    Manganese dioxide (MnO2) was synthesized in the forms of nanorods, nanoparticles, and mesoporous structures and the characteristics of these materials were investigated. Crystallinities were studied by x-ray diffraction and morphologies by scanning and transmission electron microscopy. Average pore sizes and specific surface areas were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. Samples were also studied by cyclic voltammetry using 1M aqueous KOH solution saturated with either O2 or N2 as electrolytes to investigate their ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) activities. Of the samples produced, mesoporous MnO2 exhibited the highest ORR and OER catalytic activities. Mesoporous MnO2 supported on a gas diffusion layer was also used as a catalyst on the air electrode (cathode) of a lithium-air battery in organic electrolyte. The charge-discharge behavior of mesoporous MnO2 was investigated at a current density 0.2 mAcm-2 in a pure oxygen environment. Mesoporous MnO2 electrodes showed stable cycleability up to 65 cycles at a cell capacity of 700 mAhg-1.

  16. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements

    International Nuclear Information System (INIS)

    An appropriate cell arrangement plays significant role to design a highly efficient cooling system for the lithium-ion battery pack. This paper performs a comparative analysis of thermal performances on different arrangements of cylindrical cells for a LiFePO4 battery pack. A thermal model for the battery pack is developed and is solved in couple with the governing equations of fluid flow in the numerical simulations. The experiments for model validation are conducted on a single cell of the battery pack with forced-air cooling system. The effects of longitudinal and transverse spacing on the cooling performances are analyzed for the battery pack with the aligned and the staggered arrays. Under a specified flow rate of cooling air, the maximum temperature rise is proportional to the longitudinal interval for the staggered arrays, while it is in inverse for the aligned arrangement. Increasing the transverse interval leads to the increase of the battery temperature rise for both aligned and staggered arrangements. By trade-off the design requirements (maximum temperature rise, temperature uniformity, power requirement and cooling index), an appropriate solution in term of the optimal combination of the longitudinal interval, transverse interval, and air inlet width is obtained for the aligned arrangement. - Highlights: • Forced air-cooling performance for cylindrical lithium-ion battery is evaluated. • Thermal performances for aligned and staggered cell arrangements are compared. • Geometric optimization is investigated for the battery air-cooling system

  17. Research progress of air electrodes for lithium-air batteries%锂空气电池空气电极研究进展

    Institute of Scientific and Technical Information of China (English)

    麻微; 陈何; 王红; 阳炳检; 廖小珍

    2013-01-01

    锂空气电池作为理想的高比能量化学电源,成为近年来的研究热点.综述了近年来锂-空气电池空气电极催化剂和碳载体的最新研究进展,比较了过渡金属氧化物催化剂和贵金属催化剂在空气电极上的电催化行为,总结了碳载体的孔容利用率及其比表面积和孔径大小的关系.此外,还介绍了新型碳泡沫材料的制备方法及掺氮碳载体的研究.%Lithium-air battery, with high theoretical specific energy, has become a research hotspot in recent years. The latest research progress on air electrode catalysts as well as carbon cathode in lithium-air batteries was reviewed. The characterization and electrochemical performance of transition metal oxide catalysts as well as noble metal catalysts were introduced. The efficiency of carbon pore volume, the relationship between the specific surface area and pore volume were summarized. The recent researches on novel carbon foam preparation and nitrogen-doped carbon as cathode for lithium-air batteries were also discussed.

  18. Decomposition kinetics of AgO cathode material for silver oxide/aluminum battery%铝氧化银电池正极材料AgO的分解动力学研究

    Institute of Scientific and Technical Information of China (English)

    吕霖娜; 林沛; 韩雪荣

    2011-01-01

    The instability of silver (Ⅱ). Oxide electrodes used in silver oxide/aluminum reserve batteries is the well-known cause of capacity loss and the delayed activation in reserve batteries after stored in the dry and inactivated state for the extended periods of time. The decomposition kinetics of the thermodynamically unstable AgO component of silver oxide cathodes used in silver/aluminum reverse batteries was determined by a rapid and accelerated-aging thermogravimetry (TG) technique. The calculated decomposition rates of AgO could be used to predict the storage life time of primary, and reserve silver oxide/aluminum reserve batteries.%氧化银的不稳定性是导致铝氧化银贮备电池在于态、未激活的状态下长期储存容量减少、激活时间延长的主要原因.通过加速老化实验测得电化学方法制备的氧化银的分解动力学参数,并通过建立模型计算氧化银的分解速率,以此来预测铝氧化银贮备电池中氧化银电极的储存寿命.

  19. Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study

    Science.gov (United States)

    Bai, Xueshi; Cao, Fan; Motto-Ros, Vincent; Ma, Qianli; Chen, Yanping; Yu, Jin

    2015-11-01

    In laser-induced breakdown spectroscopy (LIBS), ablation takes place in general in an ambient gas of the atmospheric pressure, often in air but also in noble gas such as argon or helium. The use of noble gas is known to significantly improve the performance of the technique. We investigate in this work the morphology and the characteristics of induced plasma in argon and in air. The purpose is to understand the mechanism of the analytical performance improvement by the use of argon ambient with respective to air ambient and the dependence on the other experimental parameters such as the laser fluence. The observation of plasma morphology in different ambient gases provides also information for better design of the detection system which optimizes the signal collection according to the used ambient gases. More specifically, the expansion of the plasma induced on an aluminum target with nanosecond infrared (1064 nm) laser pulse in two ambient gases, argon and the atmospheric air, has been studied with spectroscopic imaging at short delays and with emission spectroscopy at longer delays. With relatively low ablation laser fluence (65 J/cm2), similar morphologies have been observed in argon and in air over the early stage of plasma expansion, while diagnostics at longer delay shows stronger emission, higher electron density and temperature for plasma induced in argon. With higher ablation laser fluence (160 J/cm2) however, different expansion behaviors have been observed, with a stagnating aluminum vapor near the target surface in air while a propagating plume away from the target in argon. The craters left on the target surface show as well corresponding difference: in air, the crater is very shallow with a target surface chaotically affected by the laser pulse, indicating an effective re-deposition of the ablated material back to the crater; while in Ar a deeper crater is observed, indicating an efficient mass removal by laser ablation. At longer delays, a brighter

  20. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries

    Science.gov (United States)

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-01-01

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m−1·K−1 with a bulk density of 453 kg·m−3 at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m−1·K−1) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g−1 at a current density of 100 mA·g−1, and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes. PMID:27671848

  1. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  2. Preparation of nano-sized hydrophilic aluminum fins coating materials for air conditioner

    Institute of Scientific and Technical Information of China (English)

    陈志明; 韩峰; 邵利

    2002-01-01

    Semicontinuous seeded emulsion copolymerization of acrylic acid, acrylamide and divinylbenzene was carried out at 80℃ with ammonium persulphate as the initiator and the polyether with comb configuration as the emulsifier to prepare approximately mono-dispersed nano-sized polymer particles with average diameter 90nm. The particles were used to combine with special polyether and de-ionized water was added to obtain nano-sized hydrophilic aluminum fins coating materials with solid content of 10%. The aluminum fins were coated with the materials to get the film showing self-assembly properties in some degree. The obtained hydrophilic fins have contact angles <5° with de-ionized water, minimum value 0°, after 4 cycles of wet and dry, contact angles <10° with de-ionized water.

  3. A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability

    Science.gov (United States)

    Li, Faqiang; Gong, Yan; Jia, Guofeng; Wang, Qinglei; Peng, Zhengjun; Fan, Wei; Bai, Bing

    2015-11-01

    The strong corrosion behavior at the Al current collector restricts the application range of lithium bis (trifluoromethanesulfonylimide) (LiTFSI), despite its high stability against water and thermal. SEM, LSV and Tafel curves proved that adding LiODFB into LiTFSI-based electrolytes could suppress aluminum corrosion caused by LiTFSI-based electrolytes. The cycling stability and rate capability of LiFePO4-based batteries using LiTFSI0.6-LiODFB0.4-based electrolytes is excellent as compared to LiFePO4-based batteries using LiPF6-based electrolytes.

  4. Research progress in lithium-air battery%锂-空气电池的研究进展

    Institute of Scientific and Technical Information of China (English)

    高勇; 王诚; 蒲薇华; 邓长生

    2011-01-01

    Research status quo of lithium-air battery was summarized. The advantages and disadvantages of nonaqueous and aqueous electrolyte were compared. The research progress in negative electrode,positive electrode,electrolyte and other components was introduced. Some problems in the research of lithium-air battery and the propositions for future research were pointed out.%总结了锂-空气电池的研究现状;比较了非水性和水性电解质的优缺点;介绍了负极、正极、电解质及其他部件的研究进展;提出了目前锂-空气电池研究中存在的问题及对后续研究的建议.

  5. Synergistically enhanced activity of graphene quantum dots/graphene hydrogel composites: a novel all-carbon hybrid electrocatalyst for metal/air batteries

    Science.gov (United States)

    Wang, Mengran; Fang, Zhao; Zhang, Kai; Fang, Jing; Qin, Furong; Zhang, Zhian; Li, Jie; Liu, Yexiang; Lai, Yanqing

    2016-06-01

    Primary zinc/air batteries could be the next generation of energy storage devices because of their high power density and high safety. Graphene quantum dots nested in the graphene hydrogel have been proposed as excellent all-carbon hybrid oxygen reduction reaction (ORR) catalysts, indicative of their great potential in primary zinc/air batteries.Primary zinc/air batteries could be the next generation of energy storage devices because of their high power density and high safety. Graphene quantum dots nested in the graphene hydrogel have been proposed as excellent all-carbon hybrid oxygen reduction reaction (ORR) catalysts, indicative of their great potential in primary zinc/air batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02622b

  6. Effect of Amount of Aluminum on the Performance of Si-Al Codeposited Anodes for Lithium Batteries.

    Science.gov (United States)

    Patil, Vaishali; Patil, Arun; Yoon, Seok-Jin; Choi, Ji-Won

    2015-11-01

    Silicon is considered one of the most promising anode materials for high-performance Li-ion batteries due to its 4000 mAh/g theoretical specific capacity, relative abundance, low cost, and environmental benignity. However, silicon experiences a dramatic volume change (-300%) during full charge/discharge cycling, leading to severe capacity decay and poor cycling stability. Here, we report Si-Al codeposited anode material for Li-ion batteries. The Si-Al thin films were deposited by co-deposition from Si and Al target on nickel substrate. The composition of Si and Al in the film is estimated by energy-dispersive spectroscopy. The XRD and SEM analysis revealed that the Si-Al thin films were amorphous in structure. The electrochemical performance of the Si-Al thin film as anode material for lithium ion battery was investigated by the charge/discharge tests. Galvanostatic half-cell electrochemical measurements were conducted in between 0 mV to 2 V using a Li counter electrode, demonstrating that the Al rich Si-Al thin film achieved a good cycleability up to 100 cycles with a high capacity retention. Si-Al sample having 11.04% Al shows capacity 825 mAh/g over the 100 cycles.

  7. Carbon-free bifunctional cathodes for the use in Lithium - Air Batteries with an aqueous alkaline electrolyte

    OpenAIRE

    Wittmaier, Dennis; Wagner, Norbert; Friedrich, K. Andreas

    2014-01-01

    Carbon materials are widely used in gas diffusion electrodes due to their high electronic conductivity, relatively low costs and catalytic activity towards oxygen reduction reaction (ORR), the cathodic reaction during discharging. During charging a lithium-air battery the cathode is operated in oxygen evolution reaction (OER) mode. Carbon materials corrode in OER mode, this leads to degradation and a power loss of the electrode. To improve long-term stability and reduce side reactions as H2 a...

  8. New insights into the electrode mechanism of lithium sulfur batteries via air-free post-test analysis.

    Science.gov (United States)

    Chen, Lin; Dietz Rago, Nancy L; Bloom, Ira D; Shaw, Leon L

    2016-08-01

    Effects of the volume expansion and shrinkage of Li2S cathodes on electrochemical cycle life are investigated via post-test analysis without exposure to air. The engineered electrodes that confine volume changes within micro-reactors have significantly longer life than the electrodes without the micro-reactor structure, providing the first unambiguous evidence of the importance of confining volume changes for improved battery performance. PMID:27430393

  9. Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery

    Science.gov (United States)

    grosse Austing, Jan; Nunes Kirchner, Carolina; Komsiyska, Lidiya; Wittstock, Gunther

    2016-02-01

    In this paper the losses in coulombic efficiency are investigated for a vanadium/air redox flow battery (VARFB) comprising a two-layered positive electrode. Ultraviolet/visible (UV/Vis) spectroscopy is used to monitor the concentrations cV2+ and cV3+ during operation. The most likely cause for the largest part of the coulombic losses is the permeation of oxygen from the positive to the negative electrode followed by an oxidation of V2+ to V3+. The total vanadium crossover is followed by inductively coupled plasma mass spectroscopy (ICP-MS) analysis of the positive electrolyte after one VARFB cycle. During one cycle 6% of the vanadium species initially present in the negative electrolyte are transferred to the positive electrolyte, which can account at most for 20% of the coulombic losses. The diffusion coefficients of V2+ and V3+ through Nafion® 117 are determined as DV2+ ,N 117 = 9.05 ·10-6 cm2 min-1 and DV3+ ,N 117 = 4.35 ·10-6 cm2 min-1 and are used to calculate vanadium crossover due to diffusion which allows differentiation between vanadium crossover due to diffusion and migration/electroosmotic convection. In order to optimize coulombic efficiency of VARFB, membranes need to be designed with reduced oxygen permeation and vanadium crossover.

  10. Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng; Lu, Jun; Assary, Rajeev S.; Du, Peng; Wang, Hsien-Hau; Sun, Yang-Kook; Qin, Yan; Lau, Kah Chun; Greeley, Jeffrey P.; Redfern, Paul C.; Iddir, Hakim; Curtiss, Larry A.; Amine, Khalil

    2011-12-29

    The successful development of Li-air batteries would significantly increase the possibility of extending the range of electric vehicles. There is much evidence that typical organic carbonate based electrolytes used in lithium ion batteries form lithium carbonates from reaction with oxygen reduction products during discharge in lithium-air cells so more stable electrolytes need to be found. This combined experimental and computational study of an electrolyte based on a tri(ethylene glycol)-substituted trimethylsilane (1NM3) provides evidence that the ethers are more stable toward oxygen reduction discharge species. X-ray photoelectron spectroscopy (XPS) and FTIR experiments show that only lithium oxides and no carbonates are formed when 1NM3 electrolyte is used. In contrast XPS shows that propylene carbonate (PC) in the same cell configuration decomposes to form lithium carbonates during discharge. Density functional calculations of probable decomposition reaction pathways involving solvated oxygen reduction species confirm that oligoether substituted silanes, as well as other ethers, are more stable to the oxygen reduction products than propylene carbonate. These results indicate that the choice of electrolyte plays a key role in the performance of Li-air batteries.

  11. The air quality and human health effects of integrating utility-scale batteries into the New York State electricity grid

    Science.gov (United States)

    Gilmore, Elisabeth A.; Apt, Jay; Walawalkar, Rahul; Adams, Peter J.; Lave, Lester B.

    In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5) result in a benefit of 4.5 ¢ kWh -1 and 17 ¢ kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3) concentrations increase due to decreases in nitrogen oxide (NO x) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At 20 per tonne of CO 2, the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated strategy from a

  12. The Refuelable Zinc-air Battery: Alternative Techniques for Zinc and Electrolyte Regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J F; Krueger, R

    2006-01-19

    An investigation was conducted into alternative techniques for zinc and electrolyte regeneration and reuse in the refuelable zinc/air battery that was developed by LLNL and previously tested on a moving electric bus using cut wire. Mossy zinc was electrodeposited onto a bipolar array of inclined Ni plates with an energy consumption of 1.8 kWh/kg. Using a H{sub 2}-depolarized anode, zinc was deposited at 0.6 V (0.8 kA/m{sup 2}); the open circuit voltage was 0.45 V. Three types of fuel pellets were tested and compared with results for 0.75 mm cut wire: spheres produced in a spouted bed (UCB); coarse powder produced by gas-atomization (Noranda); and irregular pellets produced by chopping 1-mm plates of compacted zinc fines (Eagle-Picher, Inc.). All three types transported within the cell. The coarse powder fed continuously from hopper to cell, as did the compacted pellets (< 0.83 mm). Large particles (> 0.83 mm; Eagle-Picher and UCB) failed to feed from hopper into cell, being held up in the 2.5 mm wide channel connecting hopper to cell. Increasing channel width to {approx}3.5 mm should allow all three types to be used. Energy losses were determined for shorting of cells during refueling. The shorting currents between adjacent hoppers through zinc particle bridges were determined using both coarse powder and chopped compressed zinc plates. A physical model was developed allowing scaling our results for electrode polarization and bed resistance Shorting was found to consume < 0.02% of the capacity of the cell and to dissipate {approx}0.2 W/cell of heat. Corrosion rates were determined for cut wire in contact with current collector materials and battery-produced ZnO-saturated electrolyte. The rates were 1.7% of cell capacity per month at ambient temperatures; and 0.08% of capacity for 12 hours at 57 C. The total energy conversion efficiency for zinc recovery using the hydrogen was estimated at 34% (natural gas to battery terminals)--comparable to fuel cells. Producing

  13. Development status of zinc air power battery for electric vehicles%汽车用锌空气动力电池研究现状

    Institute of Scientific and Technical Information of China (English)

    景义军; 郭际; 孟宪玲; 武彩霞

    2011-01-01

    锌空气电池具有高比能量、低成本、无污染、不燃爆、可循环利用等优势,适宜用作城市电动汽车的动力电源.目前国内外电动汽车用锌空气动力电池主要采用机械充电式锌空气电池和锌膏循环式锌空气电池两种结构,这两种结构都是通过更换锌负极使电池连续工作.论述了锌空气动力电池还需要解决一些问题,并分析了其发展前景.%Zinc air battery can be an alternative power source for urban electric vehicles due to its high specific energy, low cost, non-pollution, non-explosion and recycle. Now, zinc air battery structures for electric vehicles mainly include mechanically rechargeable zinc air battery and zinc air battery with zinc slurry cycle system. The batteries with both structures continuously work by replacing the discharged zinc electrode with the new zinc electrode or the zinc slurry. The problems of zinc air power battery needed to be solved further were discussed, and its development prospect was analyzed.

  14. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries: Effects of the crystalline structure of manganese oxides

    Science.gov (United States)

    Li, Po-Chieh; Hu, Chi-Chang; Noda, Hiroyuki; Habazaki, Hiroki

    2015-12-01

    Manganese oxides (MnOx) in α-, β-, γ-, δ-MnO2 phases, Mn3O4, Mn2O3, and MnOOH are synthesized for systematically comparing their electrocatalytic activity of the oxygen reduction reaction (ORR) in the Zn-air battery application. The optimal MnOx/XC-72 mass ratio for the ORR is equal to 1 and the oxide crystalline structure effect on the ORR is compared. The order of composites with respect to decreasing the ORR activity is: α-MnO2/XC-72 > γ-MnO2/XC-72 > β-MnO2/XC-72 > δ-MnO2/XC-72 > Mn2O3/XC-72 > Mn3O4/XC-72 > MnOOH/XC-72. The textural properties of MnOx are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption isotherms with Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Electrochemical studies include linear sweep voltammetry (LSV), rotating ring-disk electrode (RRDE) voltammetry, and the full-cell discharge test. The discharge peak power density of Zn-air batteries varies from 61.5 mW cm-2 (α-MnO2/XC-72) to 47.1 mW cm-2 (Mn3O4/XC-72). The maximum peak power density is 102 mW cm-2 for the Zn-air battery with an air cathode containing α-MnO2/XC-72 under an oxygen atmosphere when the carbon paper is 10AA. The specific capacity of all full-cell tests is higher than 750 mAh g-1 at all discharge current densities.

  15. 锂空气电池的研究进展%Research Progress of Lithium-air Battery

    Institute of Scientific and Technical Information of China (English)

    王芳; 梁春生; 徐大亮; 曹慧群; 孙宏元; 罗仲宽

    2012-01-01

    随着动力电池和电网储能等对高性能电池需求的增大,具有超高比能量的锂空气电池受到了越来越多的关注.为了开发出循环性能好、安全实用的锂空气电池,各国研究者对相应的正极材料、电解质、催化剂和防水透氧膜等都做了大量的探索性工作,并取得了一系列的进展.其中,找到稳定的电解质、设法减小放电产物的钝化,对锂空气电池的真正可逆循环最为关键.本文以惰性有机电解质体系的锂空气电池为主,总结了近年来在空气正极、催化剂、电解质和防水透氧膜等方面的最新研究成果,同时简单介绍了其它体系的锂空气电池,并提出了对锂空气电池未来的努力和发展方向.%With the increasing demand for high-performance battery by electric vehicle and the energy storage of power grid, the lithium-air battery with ultra-high specific energy has received more and more attention. To develop safe and practical lithium-air battery with good cycle performance, researchers have done plenty of exploratory work on the corresponding cathode materials, electrolyte, catalyst and waterproof oxygen permeation membrane, etc. Among all the work, finding stable electrolyte and minimizing discharge products' passivation are the most critical issues. In this paper, based on the aprotic electrolyte architecture, the latest researches on the mentioned respects of the lithium-air battery are reviewed. In addition, the general development of other three architectures is introduced. At last, the future challenges in development of lithium-air battery are proposed.

  16. Nickel based alloys as electrocatalysts for oxygen evolution from alkaline solutions. [Metal--air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.W.T.; Srinivasan, S.

    1977-01-01

    The slowness of the oxygen evolution reaction is one of the main reasons for significant energy losses in water electrolysis cells and secondary air--metal batteries. To date, data on the kinetics of this reaction on alloys and intermetallic compounds are sparse. In this work, mechanically polished alloys of nickel with Ir, Ru or W and Ni--Ti intermetallic compounds were studied as oxygen electrodes. Since the oxygen evolution reaction always takes place on oxide-film covered surfaces, the nature of oxide films formed on these alloys were investigated using cyclic voltametric techniques. Steady-state potentiostatic and slow potentiodynamic (at 0.1 mV/s) methods were employed to obtain the electrode kinetic parameters for the oxygen evolution reaction in 30 wt. percent KOH at 80/sup 0/C, the conditions normally used in water electrolysis cells. The peaks for the formation or reduction of oxygen-containing layers appearing on the pure metals are not always found on the alloys. The maximum decreases in oxygen overpotential at an apparent current density of 20 mA cm/sup -2/ (as compared with that on Ni) were found for the alloys of 50Ni--50Ir and 75Ni--25Ru and the intermetallic compound Ni/sub 3/Ti, these decreases being about 40, 30, and 20 mV, respectively. On the long-term polarization in the potential region of oxygen evolution, the oxygen-containing layers on Ni--Ir or Ni--Ru alloys are essentially composed of nickel oxides instead of true mixed oxide films of two components. The present work confirms that, possibly because of coverage by oxide films, there is no direct dependence of the electrocatalytic activities of the alloys on their electronic properties. 11 figures, 1 table.

  17. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery

    Directory of Open Access Journals (Sweden)

    Kah Chun Lau

    2015-01-01

    Full Text Available We describe a series of metastable Li2O2 crystal structures involving different orientations and displacements of the O22− peroxy ions based on the known Li2O2 crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li2O2 crystal structure (i.e., Föppl structure, all of these newly found metastable Li2O2 crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O22− O-O vibration mode (ω ~ 799–865 cm−1, which is in the range of that commonly observed in Li-air battery experiments, regardless of the random O22− orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li2O2 powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li2O2 compounds that are grown electrochemically under the environment of Li-O2 cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li2O2 crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O22− vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li2O2 crystal structures, as all of them similarly share the similar O22− vibration mode. However considering that the discharge voltage in most Li-O2 cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li2O2 crystal structures appears to be thermodynamically feasible.

  18. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures.

    Science.gov (United States)

    Liu, Xueling; Zhang, Qi

    2015-12-15

    The environmental turbulence intensity has a significant influence on the explosion parameters of both micro- and nano-Al at the time of ignition. However, explosion research on turbulence intensity with respect to micro- and nano-Al powders is still insufficient. In this work, micro- and nano-aluminum powders were investigated via scanning electron microscopy (SEM), and their particle size distributions were measured using a laser diffraction analyzer under dispersing air pressures of 0.4, 0.6, and 0.8 MPa in a 20 L cylindrical, strong plexiglass vessel. The particle size distributions in three different mass ratio mixtures of micro- and nano-Al powders (micro-Al:nano-Al[massratio]=95:5, 90:10, and 85:15) were also measured. The results show that the agglomerate size of nano-Al powder is an order of magnitude larger than the nanoparticles' actual size. Furthermore, the turbulence intensity ranges (Urms) of the Al powder-air mixtures were measured using particle image velocimetry (PIV) under dispersing air pressures of 0.4, 0.6, and 0.8 MPa. The effect of turbulence intensity on the explosion characteristics of the micro- and nano-Al powders was investigated using a 20 L cylindrical explosion vessel. The results of micro-Al and nano-Al powder-air mixtures with a stoichiometric concentration of 337.00 g·m(-3) were discussed for the maximum explosion pressure, the maximum rate of pressure increase and the maximum effective burning velocity under the different turbulence intensity.

  19. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures.

    Science.gov (United States)

    Liu, Xueling; Zhang, Qi

    2015-12-15

    The environmental turbulence intensity has a significant influence on the explosion parameters of both micro- and nano-Al at the time of ignition. However, explosion research on turbulence intensity with respect to micro- and nano-Al powders is still insufficient. In this work, micro- and nano-aluminum powders were investigated via scanning electron microscopy (SEM), and their particle size distributions were measured using a laser diffraction analyzer under dispersing air pressures of 0.4, 0.6, and 0.8 MPa in a 20 L cylindrical, strong plexiglass vessel. The particle size distributions in three different mass ratio mixtures of micro- and nano-Al powders (micro-Al:nano-Al[massratio]=95:5, 90:10, and 85:15) were also measured. The results show that the agglomerate size of nano-Al powder is an order of magnitude larger than the nanoparticles' actual size. Furthermore, the turbulence intensity ranges (Urms) of the Al powder-air mixtures were measured using particle image velocimetry (PIV) under dispersing air pressures of 0.4, 0.6, and 0.8 MPa. The effect of turbulence intensity on the explosion characteristics of the micro- and nano-Al powders was investigated using a 20 L cylindrical explosion vessel. The results of micro-Al and nano-Al powder-air mixtures with a stoichiometric concentration of 337.00 g·m(-3) were discussed for the maximum explosion pressure, the maximum rate of pressure increase and the maximum effective burning velocity under the different turbulence intensity. PMID:26276701

  20. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery

    Science.gov (United States)

    Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand

    2011-11-01

    The lithium-air chemistry is an interesting candidate for the next-generation batteries with high specific energy. However, this new battery technology is facing substantial challenges, such as a high overpotential upon charging, poor reversibility, and low power density. Using first-principles calculations, we study the oxygen evolution reaction (OER) on the low-index surfaces of lithium peroxide. The elementary reaction steps and the energy profile of the OER are identified on the low-index surfaces of lithium peroxide. We find that the OER processes are kinetically limited by the high energy barrier for the evolution of oxygen molecules and that the rate of the OER processes is highly dependent on the surface orientation.

  1. Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Koichi; Maruyama, Ryo [Department of Aerospace Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan); Shimamura, Kohei [Department of Engineering Mechanics and Energy, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-08-21

    Energy conversion and momentum coupling using nano-second 1-μm-wavelength pulse laser irradiation on an aluminum target were measured in air and nitrogen gas atmospheres over a wide range of laser pulse energies from sub-J to sub-kJ. From the expansion rate of the shock wave, the blast-wave energy conversion efficiency, η{sub bw}, was deduced as 0.59 ± 0.02 in the air atmosphere at an ambient pressure from 30 to 101 kPa for a constant laser fluence at 115 J/cm{sup 2}. Moreover, the momentum coupling of a circular disk target was formulated uniquely as a function of the dimensionless shock-wave radius and the ratio of the laser spot radius to the disk radius, while η{sub bw} could be approximated as constant for the laser fluence from 4.7 to 4.1 kJ/cm{sup 2}, and the ambient pressure from 0.1 to 101 kPa.

  2. Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere

    International Nuclear Information System (INIS)

    Energy conversion and momentum coupling using nano-second 1-μm-wavelength pulse laser irradiation on an aluminum target were measured in air and nitrogen gas atmospheres over a wide range of laser pulse energies from sub-J to sub-kJ. From the expansion rate of the shock wave, the blast-wave energy conversion efficiency, ηbw, was deduced as 0.59 ± 0.02 in the air atmosphere at an ambient pressure from 30 to 101 kPa for a constant laser fluence at 115 J/cm2. Moreover, the momentum coupling of a circular disk target was formulated uniquely as a function of the dimensionless shock-wave radius and the ratio of the laser spot radius to the disk radius, while ηbw could be approximated as constant for the laser fluence from 4.7 to 4.1 kJ/cm2, and the ambient pressure from 0.1 to 101 kPa

  3. A source of electrical energy using an air-aluminum element (AAE)

    Energy Technology Data Exchange (ETDEWEB)

    Anisin, A.V.; Borisenok, V.A.; Potemkin, G.A. [and others

    1996-04-01

    An air-aluminium element (AAE) is a chemical current source (CCS) with an aluminium anode and an oxygen gas-diffusion cathode. An AAE may be relegated to intermediate types of CCS, occupying a position between primary and fuel cells. The consumable material is aluminium, and the oxidizer is oxygen in the air coming from the external environment. The electrolyte is an aqueous solution of sodium chloride. Sea water may be used in this capacity. The end product of AAE operation is aluminium hydroxide, which can be regenerated into the initial anode aluminium, and is a non-toxic product.

  4. 76 FR 76259 - National Emissions Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants

    Science.gov (United States)

    2011-12-06

    ... facilities are carbonyl sulfide (COS), hydrogen fluoride (HF), and polycyclic organic matter (POM... unregulated emissions (i.e., carbonyl sulfide (COS) emissions from new and existing potlines and polycyclic... acute exposure guideline levels AERMOD air dispersion model used by the HEM-3 model AMOS ample margin...

  5. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  6. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK Membranes for a Vanadium/Air Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Géraldine Merle

    2013-12-01

    Full Text Available Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone (cSPEEK membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a crosslinking on the sulfonic acid groups; and (b crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  7. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  8. Novel Flower-like Nickel Sulfide as an Efficient Electrocatalyst for Non-aqueous Lithium-Air Batteries

    OpenAIRE

    Zhong Ma; Xianxia Yuan; Zhenlin Zhang; Delong Mei; Lin Li; Zi-Feng Ma; Lei Zhang; Jun Yang; Jiujun Zhang

    2015-01-01

    In this paper, metal sulfide materials have been explored for the first time as a new choice of bifunctional cathode electrocatalyst materials for non-aqueous lithium-air batteries (LABs). Nickel sulfides with two different morphologies of flower-like (f-NiS) and rod-like (r-NiS) are successfully synthesized using a hydrothermal method with and without the assistance of cetyltrimethyl ammonium bromide. As LAB cathode catalysts, both f-NiS and r-NiS demonstrate excellent catalytic activities t...

  9. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries

    OpenAIRE

    Zhao, Yunlong; Xu, Lin; Mai, Liqiang; Han, Chunhua; An, Qinyou; Xu, Xu; Liu, Xue; Zhang, Qingjie

    2012-01-01

    Lithium-air batteries have captured worldwide attention due to their highest energy density among the chemical batteries. To provide continuous oxygen channels, here, we synthesized hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 (LSCO) nanowires. We tested the intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity in both aqueous electrolytes and nonaqueous electrolytes via rotating disk electrode (RDE) measurements and demonstrated that the hierarchical ...

  10. Bifunctional, Carbon-Free Nickel/Cobalt-Oxide Cathodes for Lithium-Air Batteries with an Aqueous Alkaline Electrolyte

    International Nuclear Information System (INIS)

    Highlights: • High activity bi-functional catalyst combination for ORR and OER . • An optimum ratio of high active bi-functional catalysts was found. • Novel electrodes without carbon to avoid carbon corrosion during OER mode. • EIS model for OER describes influence of a growing oxide layers. • Long-term test exhibited an excellent long-term stability over 1200 cycles. - Abstract: Lithium-air batteries with an aqueous alkaline electrolyte promise a very high practical energy density and capacity. These batteries are mainly limited by high overpotentials on the bifunctional cathode during charge and discharge. To reduce overpotentials the bifunctional cathode of such batteries must be improved significantly. Nickel is relatively inexpensive and has a good catalytic activity in alkaline media. Co3O4 was found to be a promising metal oxide catalyst for oxygen evolution in alkaline media but it has a low electronic conductivity. On the other hand since nickel has a good electronic conductivity Co3O4 can be added to pure nickel electrodes to enhance performance due to a synergetic effect. Due to the poor stability of carbon materials at high anodic potentials, gas diffusion electrodes were prepared without carbon to improve especially long-term stability. Gas diffusion electrodes were electrochemically investigated in a half cell. In addition, cyclic voltammogrametry (CV) and electrochemical impedance spectroscopy (EIS) were carried out. SEM was used for the physical and morphological investigations. Investigations showed that electrodes containing 20 wt.% Co3O4 exhibited the highest performance

  11. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.

    Science.gov (United States)

    Dunn, Jennifer B; Gaines, Linda; Sullivan, John; Wang, Michael Q

    2012-11-20

    This paper addresses the environmental burdens (energy consumption and air emissions, including greenhouse gases, GHGs) of the material production, assembly, and recycling of automotive lithium-ion batteries in hybrid electric, plug-in hybrid electric, and battery electric vehicles (BEV) that use LiMn(2)O(4) cathode material. In this analysis, we calculated the energy consumed and air emissions generated when recovering LiMn(2)O(4), aluminum, and copper in three recycling processes (hydrometallurgical, intermediate physical, and direct physical recycling) and examined the effect(s) of closed-loop recycling on environmental impacts of battery production. We aimed to develop a U.S.-specific analysis of lithium-ion battery production and in particular sought to resolve literature discrepancies concerning energy consumed during battery assembly. Our analysis takes a process-level (versus a top-down) approach. For a battery used in a BEV, we estimated cradle-to-gate energy and GHG emissions of 75 MJ/kg battery and 5.1 kg CO(2)e/kg battery, respectively. Battery assembly consumes only 6% of this total energy. These results are significantly less than reported in studies that take a top-down approach. We further estimate that direct physical recycling of LiMn(2)O(4), aluminum, and copper in a closed-loop scenario can reduce energy consumption during material production by up to 48%.

  12. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.

    Science.gov (United States)

    Dunn, Jennifer B; Gaines, Linda; Sullivan, John; Wang, Michael Q

    2012-11-20

    This paper addresses the environmental burdens (energy consumption and air emissions, including greenhouse gases, GHGs) of the material production, assembly, and recycling of automotive lithium-ion batteries in hybrid electric, plug-in hybrid electric, and battery electric vehicles (BEV) that use LiMn(2)O(4) cathode material. In this analysis, we calculated the energy consumed and air emissions generated when recovering LiMn(2)O(4), aluminum, and copper in three recycling processes (hydrometallurgical, intermediate physical, and direct physical recycling) and examined the effect(s) of closed-loop recycling on environmental impacts of battery production. We aimed to develop a U.S.-specific analysis of lithium-ion battery production and in particular sought to resolve literature discrepancies concerning energy consumed during battery assembly. Our analysis takes a process-level (versus a top-down) approach. For a battery used in a BEV, we estimated cradle-to-gate energy and GHG emissions of 75 MJ/kg battery and 5.1 kg CO(2)e/kg battery, respectively. Battery assembly consumes only 6% of this total energy. These results are significantly less than reported in studies that take a top-down approach. We further estimate that direct physical recycling of LiMn(2)O(4), aluminum, and copper in a closed-loop scenario can reduce energy consumption during material production by up to 48%. PMID:23075406

  13. Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery

    Science.gov (United States)

    Zhang, Sheng S.; Read, Jeffrey

    2011-03-01

    In this work we study methyl nonafluorobutyl ether (MFE) and tris(2,2,2-trifluoroethyl) phosphite (TTFP), respectively, as a co-solvent for the non-aqueous electrolyte of Li-air battery. Results show that in certain solvent ratios, both solvents are able to increase the specific capacity of carbon in Li/O2 and Li/air cells. More interestingly, the improvement in discharge performance of the Li/air cells increases with discharge current density. These results cannot be explained by the ionic conductivity and viscosity data of the electrolytes since the participation of fluorinated co-solvents hardly changes viscosity of the solvent blends while reversely reduces ionic conductivity of the electrolyte. In particular, we find that a 30 wt.% (vs. solvent) addition of TTFP into a 0.2 m (molality) LiSO3CF3 PC electrolyte can significantly improve the discharge performance of Li/air cells, and that the resultant electrolyte is able to support long-term operation of Li/air cells in dry ambient environments due to its low volatility. We believe that the observed performance improvement is associated with the increased dissolution kinetics and solubility of oxygen in fluorinated solvent containing electrolyte.

  14. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  15. Computational Analysis and Design of New Materials for Metal-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Hummelshøj, Jens Strabo

    gravimetric energy. In the case of Li-O2, it is comparable to that of gasoline. Thus, Li-O2 batteries could be attractive for electric vehicle manufacturers since the energy storage capacity accessible by commercially available Li-ion technology is too low to solve increasing capacity demands. However...

  16. Air and blood lead levels in lead acid battery recycling and manufacturing plants in Kenya.

    Science.gov (United States)

    Were, Faridah H; Kamau, Geoffrey N; Shiundu, Paul M; Wafula, Godfrey A; Moturi, Charles M

    2012-01-01

    The concentration of airborne and blood lead (Pb) was assessed in a Pb acid battery recycling plant and in a Pb acid battery manufacturing plant in Kenya. In the recycling plant, full-shift area samples taken across 5 days in several production sections showed a mean value ± standard deviation (SD) of 427 ± 124 μg/m(3), while area samples in the office area had a mean ± SD of 59.2 ± 22.7 μg/m(3). In the battery manufacturing plant, full-shift area samples taken across 5 days in several production areas showed a mean value ± SD of 349 ± 107 μg/m(3), while area samples in the office area had a mean ± SD of 55.2 ± 33.2 μg/m(3). All these mean values exceed the U.S. Occupational Safety and Health Administration's permissible exposure limit of 50 μg/m(3) as an 8-hr time-weighted average. In the battery recycling plant, production workers had a mean blood Pb level ± SD of 62.2 ± 12.7 μg/dL, and office workers had a mean blood Pb level ± SD of 43.4 ± 6.6 μg/dL. In the battery manufacturing plant, production workers had a mean blood Pb level ± SD of 59.5 ± 10.1 μg/dL, and office workers had a mean blood Pb level ± SD of 41.6 ± 7.4 μg/dL. All the measured blood Pb levels exceeded 30 μg/dL, which is the maximum blood Pb level recommended by the ACGIH(®). Observations made in these facilities revealed numerous sources of Pb exposure due to inadequacies in engineering controls, work practices, respirator use, and personal hygiene.

  17. Al/Cl2 molten salt battery

    Science.gov (United States)

    Giner, J.

    1972-01-01

    Molten salt battery has been developed with theoretical energy density of 5.2 j/kg (650 W-h/lb). Battery, which operates at 150 C, can be used in primary mode or as rechargeable battery. Battery has aluminum anode and chlorine cathode. Electrolyte is mixture of AlCl3, NaCl, and some alkali metal halide such as KCl.

  18. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application.

    Science.gov (United States)

    Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar

    2015-09-30

    The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries.

  19. Cluster size matters: Size-driven performance of subnanometer clusters in catalysis, electrocatalysis and Li-air batteries

    Science.gov (United States)

    Vajda, Stefan

    2015-03-01

    This paper discusses the strongly size-dependent performance of subnanometer cluster based catalysts in 1) heterogeneous catalysis, 2) electrocatalysis and 3) Li-air batteries. The experimental studies are based on I. fabrication of ultrasmall clusters with atomic precision control of particle size and their deposition on oxide and carbon based supports; II. test of performance, III. in situand ex situ X-ray characterization of cluster size, shape and oxidation state; and IV.electron microscopies. Heterogeneous catalysis. The pronounced effect of cluster size and support on the performance of the catalyst (catalyst activity and the yield of Cn products) will be illustrated on the example of nickel and cobalt clusters in Fischer-Tropsch reaction. Electrocatalysis. The study of the oxygen evolution reaction (OER) on size-selected palladium clusters supported on ultrananocrystalline diamond show pronounced size effects. While Pd4 clusters show no reaction, Pd6 and Pd17 clusters are among the most active catalysts known (in in terms of turnover rate per Pd atom). The system (soft-landed Pd4, Pd6, or Pd17 clusters on an UNCD Si coated electrode) shows stable electrochemical potentials over several cycles, and the characterization of the electrodes show no evidence for evolution or dissolution of either the support Theoretical calculations suggest that this striking difference may be a demonstration that bridging Pd-Pd sites, which are only present in three-dimensional clusters, are active for the oxygen evolution reaction in Pd6O6. Li-air batteries. The studies show that sub-nm silver clusters have dramatic size-dependent effect on the lowering of the overpotential, charge capacity, morphology of the discharge products, as well as on the morphology of the nm size building blocks of the discharge products. The results suggest that by precise control of the active surface sites on the cathode, the performance of Li-air cells can be significantly improved

  20. 有机电解液型锂空气电池空气电极研究进展%Research progress on air electrode in organic electrolyte lithium-air battery

    Institute of Scientific and Technical Information of China (English)

    罗仲宽; 尹春丽; 吴其兴; 王芳; 黄洋; 李豪君; 魏蒙蒙

    2015-01-01

    Due to the advantages of ultra-high energy density, lithium-air batteries based on organic electrolyte system have received widespread concern. To seek after a high-performance, safety and applicable lithium-air battery, a lot of scholars have conducted numerous research works on cathode materials, catalysts, electrolyte, and lithium cathode. Air electrode optimization and electrolyte stability are the keys to obtaining high performance lithium-air batteries. We review some of the latest research progress on air electrode reaction mechanisms, influence factors of air electrode, materials for air cathode and catalysts in organic electrolyte lithium-air batteries. Meanwhile, advantages and disadvantages of all kinds of porous materials and catalysts, as well as impact on the electrochemical performance of batteries, were analysed. Based on these studies, we put forward the future direction for air electrodes of lithium-air batteries is to build a unique porous electrode structure with new composite oxide catalysts, to achieve high-capacity, long-life lithium-air batteries.%有机电解液体系的锂空气电池因其超高能量密度受到广泛关注。为寻求高性能、安全实用的锂空气电池,国内外就正极材料、催化剂、电解液和锂负极等开展了大量研究,其中空气电极的优化、电解液的稳定性是锂空气电池高性能发挥的关键。介绍了近年有机电解液锂空气电池空气电极上的反应机理、空气电极影响因素、正极材料和催化剂等最新研究进展,分析了各类多孔材料和催化剂的优缺点,及其对电池电化学性能的影响,结合本课题组研究成果,指出了锂空气电池空气电极的发展方向,即结合新型复合氧化物催化剂,构筑独特的多孔电极结构,以实现高容量、长寿命的锂空气电池。

  1. High Energy Density aluminum/oxygen cell

    Science.gov (United States)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  2. 锂电池航空运输安全风险管理研究%On the security risk management of the lithium batteries in air transportation

    Institute of Scientific and Technical Information of China (English)

    杜珺; 梁晓瑜

    2012-01-01

    This paper intends to come up with our analysis of the recently occurring accidents involving the air transportation of lithium batteries in hoping to heighten the aviation transportation safety level of such batteries. To put it in a theoretical way, the trouble involves two kinds of transportation modes of lithium batteries, that is, the passenger transport and freight transport of such batteries. According to the provisions of civil air transport both in China and abroad, it is necessary to identify the main risk factors in safety aviation transportation of such batteries. To be exact, in accordance with the "man-machine-environment-management" theory, it is necessary to establish the safety risk evaluation indicators' system for air transportation of such batteries. While considering the weight factor evaluation method, it would be easy to apply to high accuracy, and, therefore, we would like to adopt the weight factor evaluation method to determine the weight factor. And, then, we have to work out the weight value of each index, and put all the final sequences of the importance of all the indexes or factors. This analysis may help to find whish factors are bigger or greater and which are smaller and minor, so as to properly identify the right kind of lithium batteries, supervise and manage the shipment as well as the surrounding temperatures. In doing so, we have brought about our suggestions based on our analysis of the study results. In the first place, in accord with the Standard for air-transportation of lithium batteries, it is necessary to differentiate strictly lithium batteries and lithium metal batteries by putting clear marks with Watt-hour rating on the case-cover. All the lithium content should be made to meet the transportation demands. In the second place, great quantities of lithium batteries are to be air-transported specifically in conformity with air-traffic rules and done by the highly qualified shipping companies and shipping personnel, who

  3. New highly active oxygen reduction electrode for PEM fuel cell and Zn/air battery applications (NORA). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, D.; Zuettel, A.

    2008-04-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning a new, highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications. The goal of this project was, according to the authors, to increase the efficiency of the oxygen reduction reaction by lowering the activation polarisation through the right choice of catalyst and by lowering the concentration polarisation. In this work, carbon nanotubes are used as support material. The use of these nanotubes grown on perovskites is discussed. Theoretical considerations regarding activation polarisation are discussed and alternatives to the use of platinum are examined. The results of experiments carried out are presented in graphical and tabular form. The paper is completed with a comprehensive list of references.

  4. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    Science.gov (United States)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  5. The Importance of Nanometric Passivating Films on Cathodes forLi - Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Brian D.; Black, Robert; Radtke, Claudio; Williams, Zach; Mehdi, Beata L.; Browning, Nigel D.; Nazar, Linda F.

    2014-12-23

    Recently, there has been a transition from fully carbonaceous positive electrodes for the aprotic lithium oxygen battery to alternative materials and the use of redox mediator additives, in an attempt to lower the large electrochemical overpotentials associated with the charge reaction. However, the stabilizing or catalytic effect of these materials can become complicated due to the presence of major side-reactions observed during dis(charge). Here, we isolate the charge reaction from the discharge by utilizing electrodes prefilled with commercial lithium peroxide with a crystallite size of about 200-800 nm. Using a combination of S/TEM, online mass spectrometry, XPS, and electrochemical methods to probe the nature of surface films on carbon and conductive Ti-based nanoparticles, we show that oxygen evolution from lithium peroxide is strongly dependent on their surface properties. Insulating TiO2 surface layers on TiC and TiN - even as thin as 3 nm*can completely inhibit the charge reaction under these conditions. On the other hand, TiC, which lacks this oxide film, readily facilitates oxidation of the bulk Li2O2 crystallites, at a much lower overpotential relative to carbon. Since oxidation of lithium oxygen battery cathodes is inevitable in these systems, precise control of the surface chemistry at the nanoscale becomes of upmost importance.

  6. Rechargeable Metal–Air Proton‐Exchange Membrane Batteries for Renewable Energy Storage

    Science.gov (United States)

    Nagao, Masahiro; Kobayashi, Kazuyo; Yamamoto, Yuta; Yamaguchi, Togo; Oogushi, Akihide

    2015-01-01

    Abstract Rechargeable proton‐exchange membrane batteries that employ organic chemical hydrides as hydrogen‐storage media have the potential to serve as next‐generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen‐storage capacity. Here, we address this challenge through the use of metal‐ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn0.9In0.1P2O7‐based electrolyte membrane allowed no crossover of vanadium ions through the membrane. The V4+/V3+, V3+/V2+, and Sn4+/Sn2+ redox reactions took place at a more positive potential than that for hydrogen reduction, so that undesired hydrogen production could be avoided. The resulting electrical capacity reached 306 and 258 mAh g−1 for VOSO4 and SnSO4, respectively, and remained at 76 and 91 % of their respective initial values after 50 cycles.

  7. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    Science.gov (United States)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  8. Relationship between Air Traffic Selection and Training (AT-SAT)) Battery Test Scores and Composite Scores in the Initial en Route Air Traffic Control Qualification Training Course at the Federal Aviation Administration (FAA) Academy

    Science.gov (United States)

    Kelley, Ronald Scott

    2012-01-01

    Scope and Method of Study: This study focused on the development and use of the AT-SAT test battery and the Initial En Route Qualification training course for the selection, training, and evaluation of air traffic controller candidates. The Pearson product moment correlation coefficient was used to measure the linear relationship between the…

  9. 非水体系锂空气电池研究进展%Progress of non-aqueous lithium-air battery

    Institute of Scientific and Technical Information of China (English)

    张明; 徐强; 桑林; 杜军

    2012-01-01

    In recent years,lithium-air battery has attracted more and more attention due to its high theoretical specific energy.If exclude cathode oxidant,O2 that comes from the surrounding environment,the theoretical specific energy of lithium-air battery can achieve 11 140 Wh/kg,far exceeding that of any other current conventional batteries.The latest research progress of non-aqueous lithium-air battery in reaction mechanism,porous carbon electrode,oxygen reduction catalyst and electrolyte were reviewed.Finally,the future development was prospected.%近年来,锂空气电池由于其超高的理论比能量而得到了越来越多的关注.若不考虑来自于空气中的正极活性物质O2的质量,其理论比能量可以达到11 140 Wh/kg,远远高于目前常用的传统电池.介绍了非水体系锂空气电池的反应机理、多孔碳电极、氧还原反应催化剂以及电解质等四个方面的最新研究现状,并对其未来发展作了展望.

  10. Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries

    Science.gov (United States)

    Yuan, Jinliang; Yu, Jong-Sung; Sundén, Bengt

    2015-03-01

    During recent years intensive research activities involving both experimental and modeling approaches have appeared for different aspects of Lithium-air (Li-air) battery. Multi-phase transport phenomena including dissolved oxygen and lithium ions (Li+) in the liquid electrolyte, as well as electrons in the solid materials, are strongly coupled with the porous structures and various reactions, particularly the solid product grown in the porous cathode during battery discharge. Understanding the mechanisms of transport phenomena and accurate evaluation of effective transport properties are significant for improving the battery capacities and design, especially at high rate conditions. In this paper, the transport governing equations commonly used for macroscopic continuum models at porous-average level are outlined and highlighted, with a purpose to provide a general overview of the validity and the limitation of these approaches. The most often used models in the open literature are reviewed and discussed focusing on the effective properties involving tortuosity factors, solid product morphologies, as well as effects on the void space clogging, surface area reduction and passivation. Comments and suggestions are also provided for better understanding of multi-phase transport phenomena and implementation of the detailed models for solid product generation and morphology growth in Li-air battery cathodes.

  11. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries.

    Science.gov (United States)

    Prabu, Moni; Ketpang, Kriangsak; Shanmugam, Sangaraju

    2014-03-21

    A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a remarkable electrocatalytic activity towards oxygen reduction and evolution in an aqueous alkaline medium. The extraordinary bi-functional catalytic activity towards both ORR and OER was observed by the low over potential (0.84 V), which is better than that of noble metal catalysts [Pt/C (1.16 V), Ru/C (1.01 V) and Ir/C (0.92 V)], making them promising cathode materials for metal-air batteries. Furthermore, the rechargeable zinc-air battery with NCO-A1 as a bifunctional electrocatalyst displays high activity and stability during battery discharge, charge, and cycling processes. PMID:24496578

  12. Production and Characterization of Carbon-Free Bi-Functional Cathodes for the use in Lithium-Air Batteries with an Aqueous Alkaline Electrolyte

    OpenAIRE

    Wagner, Norbert; Wittmaier, Dennis; Friedrich, K. Andreas

    2014-01-01

    Lithium-Air Batteries (LAB) are one of the most promising upcoming energy storage devices. With a theoretical energy density of 11680 Wh/kg and a practical energy density around 1700 Wh/kg a LAB has similar energy densities to gasoline. Furthermore a practical energy density of 1700 Wh/kg would mean a 5-10 fold increase over todays Li-Ion Batteries (LIB) with 100-200 Wh/kg. Carbon materials are widely used in gas diffusion electrodes due to their high electronic conductivity, relatively lo...

  13. Implications of the Formation of Small Polarons in Li2O2 for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J.; Jung, Y. S.; Wei, S. H.; Dillon, A. C.

    2012-01-15

    Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of {approx}11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li{sub 2}O{sub 2} in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li{sub 2}O{sub 2} limits electron transport. Consequently, the low electron mobility {mu} = 10{sup -10}-10{sup -9} cm{sup 2}/V s contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li{sub 2}O{sub 2} and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li{sub 2}O{sub 2} suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.

  14. Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries

    International Nuclear Information System (INIS)

    In this paper, Magneli phase Ti4O7 was successfully synthesized using a TiO2 reduction method, and characterized using X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrode coated with this Ti4O7 material showed activities for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). For the ORR, several parameters, including overall electron transfer number, kinetic constants, electron transfer coefficient, and percentage H2O2 production, were obtained using the rotating ring-disk electrode (RRDE) technique and the Koutecky-Levich theory. The overall electron transfer number was found to be between 2.3 and 2.9 in 1, 4, and 6 M KOH electrolytes, suggesting that the ORR process on the Ti4O7 electrode was a mixed process of 2- and 4-electron transfer pathways. Electrochemical durability tests, carried out in highly concentrated KOH electrolyte, confirmed that this Ti4O7 is a stable electrode material, suggesting that it should be a feasible candidate for the air-cathodes of zinc-air batteries. To understand the stability of this material, Raman and XPS spectra were also collected for the Ti4O7 samples before and after the stability tests. The results and analysis revealed that a thin layer of TiO2 formed on the Ti4O7 surface, which may have prevented further oxidation into the bulk of the Ti4O7 electrode.

  15. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  16. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery. part I: Bridging mass transport and charge transfer with redox cycle kinetics

    Science.gov (United States)

    Jin, Xinfang; Zhao, Xuan; Huang, Kevin

    2015-04-01

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JMAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H2/H2O-concentration across various components of the battery are also systematically investigated.

  17. In operando monitoring of the state of charge and species distribution in zinc air batteries using X-ray tomography and model-based simulations.

    Science.gov (United States)

    Arlt, Tobias; Schröder, Daniel; Krewer, Ulrike; Manke, Ingo

    2014-10-28

    A novel combination of in operando X-ray tomography and model-based analysis of zinc air batteries is introduced. Using this approach the correlation between the three-dimensional morphological properties of the electrode - on the one hand - and the electrochemical properties of the battery - on the other hand is revealed. In detail, chemical dissolution of zinc particles and the electrode volume were investigated non-destructively during battery operation by X-ray tomography (applying a spatial resolution of 9 μm), while simulation yielded cell potentials of each electrode and allows for the prediction of long-term operation behavior. Furthermore, the analysis of individual zinc particles revealed an electrochemical dissolution process that can be explained using an adapted shrinking-core model. PMID:25220061

  18. Mechanistic Evaluation of LixOy Formation on δ-MnO2 in Nonaqueous Li-Air Batteries.

    Science.gov (United States)

    Liu, Zhixiao; De Jesus, Luis R; Banerjee, Sarbajit; Mukherjee, Partha P

    2016-09-01

    Transition metal oxides are usually used as catalysts in the air cathode of lithium-air (Li-air) batteries. This study elucidates the mechanistic origin of the oxygen reduction reaction catalyzed by δ-MnO2 monolayers and maps the conditions for Li2O2 growth using a combination of first-principles calculations and mesoscale modeling. The MnO2 monolayer, in the absence of an applied potential, preferentially reacts with a Li atom instead of an O2 molecule to initiate the formation of LiO2. The oxygen reduction products (LiO2, Li2O2, and Li2O molecules) strongly interact with the MnO2 monolayer via the stabilization of Li-O chemical bonds with lattice oxygen atoms. As compared to the disproportionation reaction, direct lithiation reactions are the primary contributors to the stabilization of Li2O2 on the MnO2 monolayer. The energy profiles of (Li2O2)2 and (Li2O)2 nucleation on δ-MnO2 monolayer during the discharge process demonstrate that Li2O2 is the predominant discharge product and that further reduction to Li2O is inhibited by the high overpotential of 1.21 V. Interface structures have been examined to study the interaction between the Li2O2 and MnO2 layers. This study demonstrates that a Li2O2 film can be homogeneously deposited onto δ-MnO2 and that the Li2O2/MnO2 interface acts as an electrical conductor. A mesoscale model, developed based on findings from the first-principles calculations, further shows that Li2O2 is the primary product of electrochemical reactions when the applied potential is smaller than 2.4 V. PMID:27532334

  19. Experimental analysis of lead-in-air sources in lead-acid battery manufacture.

    Science.gov (United States)

    Caplan, K J; Knutson, G W

    1979-07-01

    Plant-scale experimental sampling programs were carried out to determine the contribution to the lead-in-air exposure from (a) fork-truck transport of pasted plates in racks and (b) manual loading and unloading of plates from racks. Fork-truck transport was found not significant under "clean" conditions. Manual loading and unloading was found significant.

  20. Research progress on the cathode catalysts for Li-air batteries%锂-空气电池正极催化剂研究进展

    Institute of Scientific and Technical Information of China (English)

    李月艳; 王莉; 何向明; 金云学; 李建军

    2014-01-01

    具有超高比能量的锂-空气电池是近年来的研究热点,电解质和空气电极催化剂是锂-空气电池的重要研究内容。介绍了有机体系锂-空气电池空气电极催化剂的研究进展,分析了碳、贵金属、氧化物三类催化剂材料的特征及性能,进而提出了新型、高效、兼具催化氧还原/氧析出功能的纳米催化剂的发展方向。%Lithium-air battery becomes a research hotspot in recent years due to its ultra-high ener-gy density.To develop lithium-air batteries of practical value,plenty of investigation on corre-sponding electrolytes and cathode catalysts have been explored.Air electrode catalysts in lithium-air batteries of aprotic electrolyte architecture are reviewed in this paper.In addition,the charac-teristics and electrochemical performances of carbon material,transition metal oxide catalysts,as well as noble metal based catalysts were introduced,along with a perspective of future research for efficient oxygen reduction/evolution bifunctional cathode nanocatalysts.

  1. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  2. Technical development and application of primary battery for air defense missile%防空导弹弹上电池技术的发展及应用

    Institute of Scientific and Technical Information of China (English)

    蔡绍伟

    2012-01-01

    防空导弹普遍采用弹上电池作为弹上主电源,经历了铅酸电池、锌银电池到热电池三个发展阶段.介绍了锌银电池,钙-铬酸钙体系、锂及锂合金-二硫化铁体系热电池技术的发展、性能特点及国内外发展现状.论述了锌银储备电池及热电池的组成、工作原理和技术优势.指出了防空导弹弹上电池技术的发展方向.%The technical development,performance and developing status of Zn/AgO battery both in China and abroad,calcium/calcium chromate system,and lithium (lithium alloy)/iron disultide system thermal batteries were introduced.The structure,principle and technical advantages of Zn/AgO battery and thermal battery were discussed.Finally,some development directions of the primary battery for air defense missile were also forecasted.

  3. Spherical nitrogen-doped hollow mesoporous carbon as an efficient bifunctional electrocatalyst for Zn-air batteries

    Science.gov (United States)

    Hadidi, Lida; Davari, Elaheh; Iqbal, Muhammad; Purkait, Tapas K.; Ivey, Douglas G.; Veinot, Jonathan G. C.

    2015-12-01

    Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling.Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural

  4. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application.

    Science.gov (United States)

    Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar

    2015-09-30

    The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries. PMID:26376490

  5. The Progress of Studies of Lithium-air Batteries%锂-空气电池研究进展

    Institute of Scientific and Technical Information of China (English)

    郑明波; 邱旦峰; 庞欢; 潘力佳; 濮林; 施毅; 郑有炓

    2011-01-01

    锂-空气电池是通过金属锂与空气中的O2反应产生电能,它的理论比容量高达3828mAh/g,在电动汽车等领域展现出重要的应用前景.本文综述了近年来锂-空气电池领域的最新研究进展,对有机体系、有机-水混合体系与固态体系三类锂-空气电池的结构与原理进行了分析.总结了有机体系的多孔碳空气电极、催化剂、电解液等方面的研究工作.多孔碳的孔容是决定空气电极比容量最重要的结构参数,具有高孔容的多孔碳可以为放电过程中生成的氧化锂提供更多的储存空间,从而表现出高的比容量,多孔碳的比表面积与平均孔径对比容量也有重要的影响;合适的电催化剂可以有效的降低氧还原反应与析氧反应的过电压,从而提高能量效率;具有高极性、低黏度、低吸湿性、高溶解氧的电解液有利于改善电池的相关性能.总结了有机-水混合体系的隔膜、电解液等方面的研究工作.对有机相与水相电解液均具有良好抗化学腐蚀性的超级锂离子导通玻璃膜是目前有机-水混合体系研究的关键.总结了固态体系最新的研究进展.此外,展望了锂-空气电池领域今后的发展方向.%Lithium-air batteries,based on the reaction of lithium with oxygen from air,have very high theoreticl specific capacit of3828 mAh/g and have important potential applications for electric vehicles.This paper reviews the new progress of studies of lithium-air batteries.The structure and operation mechanism of the aprotic system,hybrid aprotic-aqueous system,and slid state system are analzed.The air electrode,catalyst,and electrolyte of the aprotic system are discussed in detail.The pore volume of the porous carbon is an important structural parameter for the specific capacity of the air electrode.The porous carbon with a larfe pore volume would possess a high specific capacity because it can provide a large space for lithium oxides formed

  6. Electrochemical characteristic of based on carbon mixed with organic metal complex (Co(mqph)) in alkaline media Li-air battery

    Science.gov (United States)

    Ahn, Chang-ho; Okada, Tatsuhiro; Ishida, Masayoshi; Yoo, Eunjoo; Zhou, Haoshen

    2016-03-01

    The electrochemical performance of RGO-Co(mqph) electrocatalyst for Li-air batteries with hybrid electrolyte was investigated. The RGO-Co(mqph) showed high onset potential (-0.09 V vs. Ag/AgCl) under oxygen condition in the rotating disk electrode system for oxygen reduction reaction, which was higher than that of RGO (-0.17 V vs. Ag/AgCl). Furthermore, the ORR mechanism of RGO-Co(mqph) showed 3.52 electron pathway. On the other hand, the RGO only exhibited the electron transfer number of 2.22 for ORR. Moreover, the electrochemical performance of Li-air batteries with hybrid electrolyte showed that the RGO-Co(mqph) provided good discharge performance and cycle performance. It was thus considered that the Co(mqph) strongly affected ORR activity for cathode electrode. This was ascribed to synergic effect due to combination between RGO and Co(mqph).

  7. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rashvand avei, M. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Jafarian, M., E-mail: mjafarian@kntu.ac.ir [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Moghanni Bavil Olyaei, H. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-8516, Tehran (Iran, Islamic Republic of); Hosseini, S.M. [Jahad Organization – Science and Technology Center, Tehran (Iran, Islamic Republic of); Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)

    2013-12-16

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm{sup −2}. • High inhibitor efficiency about 97% for AA6060.

  8. 条形MH/Ni电池模块风冷散热结构的优化%Optimization of air cooling heat dissipation structure for Ni/MH battery strip module

    Institute of Scientific and Technical Information of China (English)

    崔威; 王文; 娄豫皖; 夏保佳

    2009-01-01

    A heat dissipation structure for Ni/MH battery was proposed. An aluminum sheath with the finned ratio of 4.2 was covered on the outside of the battery module,the heat was dissipated through the aluminum sheath. The structure was analyzed. After installing the aluminum sheath, the temperature on the surface of batteries could be lower 2 ~ 4 ℃ than that without the alu-minum sheath when charging at 1 C,3 C ,4 C and 5 C(discharging at 5 C).%提出了一种MH/Ni电池散热结构,在电池模块外表面加上翅化比为4.2的铝套,通过铝套将热量散走,并对该结构进行了分析.加装铝套后,以1 C、3 C、4 C及5 C充电(均为5 C放电),电池表面温度比加装铝套前降低了2~4 ℃.

  9. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    OpenAIRE

    Taku Tsuneishi; Hisatoshi Sakamoto; Kazushi Hayashi; Go Kawamura; Hiroyuki Muto; Atsunori Matsuda

    2014-01-01

    Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH) were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as...

  10. Zn/gelled 6 M KOH/O 2 zinc-air battery

    Science.gov (United States)

    Mohamad, A. A.

    The gel electrolyte for the zinc-air cell was prepared by mixing hydroponics gel with a 6 M potassium hydroxide aqueous solution. The self-discharge of cells was characterized by measuring the open-circuit voltage. The effect of a discharge rate of 50 mA constant current on cell voltage and plateau hour, as well as the voltage-current and current density-power density were measured and analysed. The electrode degradation after discharge cycling was characterized by structural and surface methods. The oxidation of the electrode surface further blocked the utilization of the Zn anode and was identified as a cause for the failure of the cell.

  11. Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling

    Science.gov (United States)

    Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano

    2014-01-01

    In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li–air cells. PMID:24815072

  12. Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling

    Directory of Open Access Journals (Sweden)

    Lorenzo Grande

    2014-05-01

    Full Text Available In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonylimide (Pyr14TFSI are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI, showing that TFSI-based ionic liquids (ILs rank among the best candidates for long-lasting Li–air cells.

  13. Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode

    Science.gov (United States)

    grosse Austing, Jan; Nunes Kirchner, Carolina; Hammer, Eva-Maria; Komsiyska, Lidiya; Wittstock, Gunther

    2015-01-01

    The performance of a unitised bidirectional vanadium/air redox flow battery (VARFB) is described. It contains a two-layered cathode consisting of a gas diffusion electrode (GDE) with Pt/C catalyst for discharging and of an IrO2 modified graphite felt for charging. A simple routine is shown for the modification of a graphite felt with IrO2. A maximum energy efficiency of 41.7% at a current density of 20 mA cm-2 as well as an average discharge power density of 34.6 mW cm-2 at 40 mA cm-2 were obtained for VARFB operation at room temperature with the novel cathode setup. A dynamic hydrogen electrode was used to monitor half cell potentials during operation allowing to quantify the contribution of the cathode to the overall performance of the VARFB. Four consecutive cycles revealed that crossover of vanadium ions took place and irreversible degradation processes within the reaction unit lead to a performance decrease.

  14. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    Science.gov (United States)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  15. Microporous La0.8Sr0.2MnO3 perovskite nanorods as efficient electrocatalysts for lithium-air battery

    Science.gov (United States)

    Lu, Fanliang; Wang, Yarong; Jin, Chao; Li, Fan; Yang, Ruizhi; Chen, Fanglin

    2015-10-01

    Efficient electrocatalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the most critical factor to influence the performance of lithium-air batteries. We present La0.8Sr0.2MnO3 (LSM) perovskite nanorods as high active electrocatalyst fabricated via a soft template method for lithium-air batteries. The as-prepared LSM nanorods are microporous with numerous defects and large surface area (20.6 m2 g-1), beneficial to the ORR and OER in the discharge and charge processes, respectively. Lithium-air batteries based on the microporous LSM nanorods electrocatalysts show enhanced electrochemical performances, including high first discharge specific capacity (6890 mAh g-1(electrode) at 200 mA g-1), low overpotential, good rate capability (up to 400 mA g-1), and cycle stability (only 1.1% voltage loss after 30 circles of specific capacity limit of 1000 mAh g-1 tested at 200 mA g-1). The improved performance might be due to the synergistic effect of the unique microporous and one-dimensional structure and numerous defects of the prepared LSM catalyst.

  16. Carbon-based material for a lithium-air battery%锂空气电池中的碳基材料:优势与挑战

    Institute of Scientific and Technical Information of China (English)

    魏伟; 王大伟; 杨全红

    2014-01-01

    碳基材料具有丰富多元的形态和优异的性能,是目前储能材料的重要组成部分。简要评述碳基材料作为锂空气电池阴极时结构与性能的关系,讨论碳基材料的结构设计与功能调控的重要性,指明碳基材料在锂空气电池中的研究重点,并对其在锂空气电池中的应用进行了展望。%Carbon-based materials are important in energy storage and conversion materials, because of their different possible morphologies and superior performance. We discuss relationships between the structure and properties of carbon-based materials as the cathode of the lithium-air battery, discuss the importance of structure design and performance control, specify the research priori-ties for carbon-based materials for lithium-air batteries, and explore the potential applications of carbon-based materials in lithium-air batteries.

  17. Dry Pressed Holey Graphene Composites for Li-air Battery Cathodes

    Science.gov (United States)

    Lacey, Steven; Lin, Yi; Hu, Liangbing

    Graphene is considered an ``omnipotent'' material due to its unique structural characteristics and chemical properties. By heating graphene powder in an open-ended tube furnace, a novel compressible carbon material, holey graphene (hG), can be created with controlled porosity and be further decorated with nanosized catalysts to increase electrocatalytic activity. All hG-based materials were characterized using various microscopic and spectroscopic techniques to obtain morphological, topographical, and chemical information as well as to identify any disordered/crystalline phases. In this work, an additive-free dry press method was employed to press the hG composite materials into high mass loading mixed, sandwich, and double-decker Li-air cathode architectures using a hydraulic press. The sandwich and double-decker (i.e. Big Mac) cathode architectures are the first of its kind and can be discharged for more than 200 hours at a current density of 0.2 mA/cm2. The scalable, binderless, and solventless dry press method and unique Li-air cathode architectures presented here greatly advance electrode fabrication possibilities and could promote future energy storage advancements. Support appreciated from the NASA Internships Fellowships Scholarships (NIFS) Program.

  18. Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet

    Science.gov (United States)

    Pei, X.; Lu, X.; Liu, J.; Liu, D.; Yang, Y.; Ostrikov, K.; Chu, Paul K.; Pan, Y.

    2012-04-01

    Effective biofilm inactivation using a handheld, mobile plasma jet powered by a 12 V dc battery and operated in open air without any external gas supply is reported. This cold, room-temperature plasma is produced in self-repetitive nanosecond discharges with current pulses of ˜100 ns duration, current peak amplitude of ˜6 mA and repetition rate of ˜20 kHz. It is shown that the reactive plasma species penetrate to the bottom layer of a 25.5 µm-thick Enterococcus faecalis biofilm and produce a strong bactericidal effect. This is the thickest reported biofilm inactivated using room-temperature air plasmas.

  19. Zn/gelled 6M KOH/O{sub 2} zinc-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, A.A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2006-09-13

    The gel electrolyte for the zinc-air cell was prepared by mixing hydroponics gel with a 6M potassium hydroxide aqueous solution. The self-discharge of cells was characterized by measuring the open-circuit voltage. The effect of a discharge rate of 50mA constant current on cell voltage and plateau hour, as well as the voltage-current and current density-power density were measured and analysed. The electrode degradation after discharge cycling was characterized by structural and surface methods. The oxidation of the electrode surface further blocked the utilization of the Zn anode and was identified as a cause for the failure of the cell. (author)

  20. New Development of Key Materials for High-Performance Lithium-Air Batteries%高性能锂-空气电池材料的研究

    Institute of Scientific and Technical Information of China (English)

    黄征; 池波; 蒲健; 李箭

    2013-01-01

    以锂为负极,空气为正极的锂-空气二次电池,由于其较高的理论能量密度(5 210 Wh.kg-1)而成为最具发展潜力的新型高能化学电源体系.通过近几年的研究和开发,人们对这一体系的了解不断深入.虽然对其电化学过程中的复杂反应机理尚没有完整系统的理论描述,但是在氧还原催化剂、空气电极材料及电解质材料等方面已开展了一些研究工作.本文综述了锂-空气电池的最新研究进展,对电池的正极材料、电解质和负极材料三个方面的研究进行了介绍,分析了该体系的缺陷及存在的问题,并展望了锂-空气电池的发展方向和前景.%Electrochemical power sources based on configuration have the highest energy density because the cathode active material ( oxygen) is not stored in the battery, but can be accessed from the environment. Rechargeable lithium-air battery has been receiving more attention due to its high theoretical energy density of 5 210 Wh·kg-1, and it is considered as the next generation portable energy supply device for electronic vehicle (EV) and hybrid vehicle ( HEV) . This system has been understood by people in recent years. Although there are many unknown mechanisms in the electrochemical process of charge/discharge of the lithium-air battery, some achievements have been made on the development of oxygen reduction catalyst, air electrode materials and electrolyte materials. This paper reviews the achievements on lithium-air battery in the past few years from the respects of lithium-air battery system, cathode materials, electrolytes and lithium anode. The weaknesses are revealed and the future is prospected.

  1. Battery cell module

    Energy Technology Data Exchange (ETDEWEB)

    Shambaugh, J.S.

    1981-11-23

    A modular lithium battery having a plurality of cells, having electrical connecting means connecting the cells to output terminals, and venting means for releasing discharge byproducts to a chemical scrubber is disclosed. Stainless steel cell casings are potted in an aluminum modular case with syntactic foam and epoxy. The wall thickness resulting is about 0.5 inches.

  2. Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries

    Science.gov (United States)

    Yu, Ruimin; Fan, Wugang; Guo, Xiangxin; Dong, Shaoming

    2016-02-01

    Carbonaceous air cathodes with rational architecture are vital for the nonaqueous Li-O2 batteries to achieve large energy density, high energy efficiency and long cycle life. In this work, we report the cathodes made of highly ordered and vertically aligned carbon nanotubes grown on permeable Ta foil substrates (VACNTs-Ta) via thermal chemical vapour deposition. The VACNTs-Ta, composed of uniform carbon nanotubes with approximately 240 μm in superficial height, has the super large surface area. Meanwhile, the oriented carbon nanotubes provide extremely outstanding passageways for Li ions and oxygen species. Electrochemistry tests of VACNTs-Ta air cathodes show enhancement in discharge capacity and cycle life compared to those made from short-range oriented and disordered carbon nanotubes. By further combining with the LiI redox mediator that is dissolved in the tetraethylene dimethyl glycol based electrolytes, the batteries exhibit more than 200 cycles at the current density of 200 mA g-1 with a cut-off discharge capacity of 1000 mAh g-1, and their energy efficiencies increase from 50% to 82%. The results here demonstrate the importance of cathode construction for high-energy-efficiency and long-life Li-O2 batteries.

  3. Influence of high past lead-in-air exposures on the lead-in-blood levels of lead-acid battery workers with continuing exposure.

    Science.gov (United States)

    Hodgkins, D G; Hinkamp, D L; Robins, T G; Schork, M A; Krebs, W H

    1991-07-01

    We investigated the relationship between air lead levels and blood lead levels in 132 lead-acid battery workers in two plants who were followed for 30 months between 1983 and 1985 with frequent air lead and blood lead determinations. Both plants converted to more modern, expanded-metal battery manufacturing technologies around 1978 with associated reductions in mean air lead exposures from greater than 100 to less than 30 micrograms/m3. In multiple regression analyses including consideration of job category, seniority, age, ethnicity, gender, and smoking habit as covariates, there was a highly significant association of blood lead in micrograms/dL with air lead in micrograms/m3 (partial R2 = .20, P less than .0001) among the 68 workers in plant B but no association (P = .91) in plant A. Restriction of the regression analysis to those 44 workers in plant B with less than or equal to 22 years of seniority yielded the most significant air lead-blood lead association (partial R2 = .36, P less than .0001). Among the remaining 24 plant B workers, seniority, but not air lead, had a significant positive association with blood lead. Despite very stable air lead levels over the 30-month study, the 51 workers in plant A with more than 20 years' seniority had a mean decline of 0.04 microgram/dL in mean blood lead over the study period, whereas the 13 workers in plant A with less than or equal to 20 years' seniority had a mean increase of 7.6 microgram/dL.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Properties and electrochemical behaviors of AuPt alloys prepared by direct-current electrodeposition for lithium air batteries

    International Nuclear Information System (INIS)

    AuPt catalyst has a prospective application in a lithium air battery because of its bi-function on catalyzing Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER). Electrodeposition is an in-situ convenient technology for catalyst preparation without chemical residue. In an acid electrolyte, AuPt alloy catalysts were electrodeposited on carbon paper. The effect of main salt concentration, electrodeposition time and current density were studied by deposit micromorphology observation, structure analyses and composition testing. Catalytic abilities of AuPt alloys were measured by cyclic voltammetry (CV) in an ionic liquid of EMI-TFSI/Li-TFSI [1- Ethyl - 3- methylimidazolium–bis (trifluoromethanesulphonyl) imide/lithium–bis (trifluoromethanesulphonyl) imide]. The electrochemical behaviors of Au, Pt and AuPt deposits were also measured. An optimized direct-current electrodeposition process of getting high active AuPt catalyst is concluded, which is an aqueous solution containing 6.7∼10 mmol · L−1 HAuCl4, 10∼13.3 mmol · L−1 H2PtCl6 and 0.5 mol · L−1 H2SO4 as the electrolyte, current density of 20mA · cm−2 and electrodeposition time of 8∼34 s. The co-deposition of AuPt alloy is an irregular co-deposition controlled by diffusion, while gold atoms enter the platinum’s crystal lattice in the structure of AuPt alloy. The increase of the concentration of H2PtCl6 in the electrolyte, the extension of the electrodeposition time or the raise of the current density can improve the content of Pt in the deposit. The clusters’ diameters of AuPt catalysts decrease to 150∼250 nm by adjusting current densities during electrodeposition

  5. Life-cycle energy analyses of electric vehicle storage batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

    1980-12-01

    The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

  6. Research Progress and the Limiting Factors that Affect Performance of the Lithium Air Batteries%锂-空气电池性能的影响因素及研究进展

    Institute of Scientific and Technical Information of China (English)

    顾大明; 张传明; 顾硕; 张音; 王余; 强亮生

    2012-01-01

    锂-空气电池理论比能量高达3622 Wh·kg^-1(设阴极还原产物为Li2O2), 远超过目前已有的任何电池, 有希望成为新一代的二次电池。 然而, 目前其实用化研究还处于探索阶段, 在其商用之前还有许多工作要做。 对影响锂-空气电池性能的因素以及近期的研究进展进行综述, 总结了阴极材料的组成和微观结构、电解质的种类及组成、阴极疏水膜、电池结构设计、电池的组装及充、放电的工艺过程等对电池比能量、比容量以及循环性能等的影响, 概述了锂-空气电池的表征手段, 并对锂-空气电池的应用前景进行了展望。%Lithium air battery has attracted extensive attention due to its potential in achieving much higher practical specific energy than existing batteries, and it may become one of the most promising next generation battery technologies. Lithium air battery has the compelling advantage of theoretical specific energy, i.e. 3622 Wh·kg^-1 (assuming Li2O2 is the product), which is attributed to the use of a lithium metal anode and the ready availability of the cathode oxidant, i.e. oxygen, from the surrounding air. Other advantages include stable potentials, high safety, low cost, friendly to environment. However, before Lithium air batteries can be commercialized, the following challenges still need to be overcome: optimization of the cathode materials structure and the electrolyte composition, enhancement of the actual discharge special capacity, and improvement of the cycle performance and elucidating the reaction mechanism that occurs during charge and discharge. In this paper, we presented the current research progress and the limiting factors that affect performance of the batteries, such as microcomposition and microstructure of the cathode materials, constitution of the electrolytes, oxygen selective membranes, the structure design for the lithium air batteries, charge and discharge mechanism; compared

  7. Mechanism of Reaction in NaAlCl4 Molten Salt Batteries with Nickel Felt Cathodes and Aluminum Anodes. Part II: Experimental Results and Comparison with Model Calculations

    DEFF Research Database (Denmark)

    Knutz, B.C.; Berg, Rolf W.; Hjuler, Hans Aage;

    1993-01-01

    The battery systems: Al/NaCl-AlCl3-Al(2)X(3)/Ni-felt (X = S, Se, Te) and the corresponding system without chalcogen have been studied experimentally at 175 degrees C. Charge/discharge experimental performed on cells with NaCl saturated melts, show that advantages with regard to rate capability an...... is formed during charging. Reduction of the formed compound to Ni takes place via consumption of sodium chloride. For acidic melts, sulfide at the cathode was found to be present as...

  8. The double perovskite oxide Sr2CrMoO(6-δ) as an efficient electrocatalyst for rechargeable lithium air batteries.

    Science.gov (United States)

    Ma, Zhong; Yuan, Xianxia; Li, Lin; Ma, Zi-Feng

    2014-12-01

    A double perovskite oxide Sr2CrMoO6-δ (SCM), synthesized using the sol-gel and annealing method with the assistance of citric acid and ethylene diamine tetraacetic acid, was investigated for the first time as an efficient catalyst for rechargeable lithium air batteries. The SCM cathode enables higher specific capacity, lower overpotential and a much better cyclability compared to the pure Super P electrode owing to its excellent electrocatalytic activity towards the formation/decomposition of Li2O2. PMID:25325080

  9. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    Science.gov (United States)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  10. A critical review of zinc air battery:present status and perspective%锌空气电池关键问题与发展趋势

    Institute of Scientific and Technical Information of China (English)

    洪为臣; 马洪运; 赵宏博; 王保国

    2016-01-01

    With the advantages of high energy density,safe and reliable aqueous electrolyte and low cost,zinc-air batteries show important potential as well as challenge for electrical energy conversion and storage. These batteries used in pure electric vehicles,mobile tools and electricity storage for new energy power generations,have promising market and applications. However,some issues related to electrode structure and electrocatalyst in cathode and zinc dendrite growth in anode restrict its further development and application. This paper analyzes the critical scientific issues in zinc air batteries, especially for the electrocatalyst of air electrode,electrode configuration,dendritic growth in zinc negative electrode,discusses the battery performance in details,and points out the main barriers in developing advanced battery technology. In summary the development of novel electrocatalyst,air electrode,manufacturing technology for long-term cycle life and low cost zinc air batteries are urgent problems to be settled at present.%电化学可充的锌-空气电池具有能量密度高、水系电解液安全和成本低等特点,是电能高效转换和储存的重要技术方向,无论作为动力电池用于纯电动汽车等移动交通工具,还是用于新能源发电过程储能,都具有广阔发展前景。但正极存在电极结构设计和催化剂开发问题,负极存在抑制枝晶、控制析氢和提高锌循环性能等挑战,严重阻碍了锌空气电池的商业化进程。本文详细分析了锌-空气电池的关键科学问题,尤其是关于空气电极的催化剂、电极结构、锌枝晶等问题,结合电池性能进行详尽讨论。归纳现有研究后认为:开发新型电催化剂和空气电极,发展循环寿命长、成本低的锌负极制造技术与工艺,是锌空气电池所面临的亟需解决问题和未来的发展趋势。

  11. The Electrocatalytic Study of LiCoO2 in Air Electrode for Lithium-Air Battery%锂空气电池空气电极LiCoO2电催化性能研究

    Institute of Scientific and Technical Information of China (English)

    高军; 武巍; 田艳艳; 杨勇

    2012-01-01

    自设计建立锂空气电池实验装置,研究以掺入LiCoO2作为电催化剂的空气正极的电化学性能及其放电前后催化剂结构的变化.循环伏安、XRD及充放电测试等表明,LiCoO2能够很大程度地改善空气电极的放电性能.尤其是在放电前,将掺有LiCoO2的空气正极充电至4.1 V,此时LiCoO2的Co元素呈现较高的价态(Co3+/Co4+),催化作用因此更加显著.%The LiCoO2 has been investigated as a new electrocatalyst for air electrodes using homemade lithium-air battery. The electrochemical performance and structural changes of the LiCoO2 based composite air electrodes have been studied. The results of CV, XRD and charge-discharge tests show that the composite air electrodes composed of LiCoO2 can greatly improve the discharge performance of lithium-air batteries. In particular when the composite air electrodes are charged to 4.1 V before further discharging, the obvious catalytic effects of LiCoO2 are attributed to higher valence state of the Co element in LiCoO2, especially at charged state.

  12. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  13. Ruthenium oxide modified titanium dioxide nanotube arrays as carbon and binder free lithium-air battery cathode catalyst

    Science.gov (United States)

    Zhao, Guangyu; Niu, Yanning; Zhang, Li; Sun, Kening

    2014-12-01

    RuO2 modified TiO2 nanotube arrays, growing on Ti foams, are used as carbon and binder free cathodes for Li-O2 batteries. The micrometer pores in Ti foams and nanometer pores in TiO2 nanotubes supply facilitated transport channels for oxygen diffusing into/out of the catalysts in discharge and charge processes. The RuO2 catalyst exhibits outstanding catalytic active toward oxygen evolution reaction (OER), which leads the charge voltage maintaining around 3.7 V all through the battery cycling. The stability of TiO2/Ti support, abundant oxygen transport path and favorable catalytic activity of RuO2 toward OER enable the Li-O2 batteries exhibiting 130 cycle discharge/charge.

  14. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Directory of Open Access Journals (Sweden)

    Philipp Adelhelm

    2015-04-01

    Full Text Available Research devoted to room temperature lithium–sulfur (Li/S8 and lithium–oxygen (Li/O2 batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.

  15. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH 4-air battery

    Science.gov (United States)

    Liu, B. H.; Li, Z. P.; Chen, L. L.

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH 4 gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH 4 concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl 2 catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH 4 gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH 4 solution. The NaBH 4 gel also successfully powered a NaBH 4-air battery.

  16. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH{sub 4}-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.H. [Department of Materials and Engineering, Zhejiang University (China); Li, Z.P.; Chen, L.L. [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-05-15

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH{sub 4} gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH{sub 4} concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl{sub 2} catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH{sub 4} gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH{sub 4} solution. The NaBH{sub 4} gel also successfully powered a NaBH{sub 4}-air battery. (author)

  17. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Brahim Mebarki

    2013-01-01

    Full Text Available The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.

  18. Electrochemical Activity of a La0.9Ca0.1Co1−xFexO3 Catalyst for a Zinc Air Battery Electrode

    Directory of Open Access Journals (Sweden)

    Seungwook Eom

    2015-01-01

    Full Text Available The optimum composition of cathode catalyst has been studied for rechargeable zinc air battery application. La0.9Ca0.1Co1−xFexO3  (x=0–0.4 perovskite powders were prepared using the citrate method. The substitution ratio of Co2+ with Fe3+ cations was controlled in the range of 0–0.4. The optimum substitution ratio of Fe3+ cations was determined by electrochemical measurement of the air cathode composed of the catalyst, polytetrafluoroethylene (PTFE binder, and Vulcan XC-72 carbon. The substitution by Fe enhanced the electrochemical performances of the catalysts. Considering oxygen reduction/evolution reactions and cyclability, we achieved optimum substitution level of x=0.1 in La0.9Ca0.1Co1−xFexO3.

  19. Electrocatalytic performances of LaNi1-xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries

    Science.gov (United States)

    Du, Zhenzhen; Yang, Peng; Wang, Long; Lu, Yuhao; Goodenough, J. B.; Zhang, Jian; Zhang, Dawei

    2014-11-01

    Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) electrocatalysts are synthesized by a sol-gel method using citric acid as complex agent and ethylene glycol as thickening agent. The intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity of as-prepared perovskite oxides in aqueous electrolyte are examined on a rotating disk electrode (RDE) set up. Li-air primary batteries on the basis of Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) and nonaqueous electrolyte are also fabricated and tested. In terms of the ORR current densities and OER current densities, the performance is enhanced in the order of LaNiO3, LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3. Most notably, partially substituting nickel with magnesium suppresses formation of Ni2+ and ensures high concentration of both OER and ORR reaction energy favorable Ni3+ (eg = 1) on the surface of perovskite catalysts. Nonaqueous Li-air primary battery using LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3 as the cathode catalysts exhibit improved performances compared with LaNiO3 catalyst, which are consistent with the ORR current densities.

  20. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium–Oxygen Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Bhattacharya, Priyanka; Cao, Ruiguo; Bowden, Mark E.; Engelhard, Mark H.; Wang, Chong M.; Zhang, Jiguang

    2015-10-12

    Although lithium-oxygen (Li-O2) batteries have great potential to be used as one of the next generation energy storage systems due to their ultrahigh theoretical specific energy, there are still many significant barriers before their practical applications. These barriers include electrolyte and electrode instability, poor ORR/OER efficiency and cycling capability, etc. Development of a highly efficient catalyst will not only enhance ORR/OER efficiency, it may also improve the stability of electrolyte because the reduced charge voltage. Here we report the synthesis of nano-sheet-assembled ZnCo2O4 spheres/single walled carbon nanotubes (ZCO/SWCNTs) composites as high performance air electrode materials for Li-O2 batteries. The ZCO catalyzed SWCNTs electrodes delivered high discharge capacities, decreased the onset of oxygen evolution reaction by 0.9 V during charge processes, and led to more stable cycling stability. These results indicate that ZCO/SWCNTs composite can be used as highly efficient air electrode for oxygen reduction and evolution reactions. The highly enhanced catalytic activity by uniformly dispersed ZnCo2O4 catalyst on nanostructured electrodes is expected to inspire

  1. Mechanism of Reaction in NaAlCl4 Molten Salt Batteries with Nickel Felt Cathodes and Aluminum Anodes. Part I: Modelling of the Battery Properties at Thermodynamic Equilibrium

    DEFF Research Database (Denmark)

    Knutz, B.C.; Hjuler, Hans Aage; Berg, Rolf W.;

    1993-01-01

    A theoretical description of the thermodynamic properties of the battery systems: Al/NaCl-AlCl3-Al(2)X(3)/Ni-felt (X = S, Se, Te) and the corresponding system without chalcogen has been provided for cells with basic to slightly acidic NaCl-AlCl3 melts containing small amounts of chalcogen....... The model developed describes the equilibrium concentrations of constituent species in the electrolyte and equilibrium potentials of the electrodes vs. number of coulombs passed through the cells. For cells without chalcogen curves were calculated under the assumption of NiCl2 formation showing...... corresponding Variation of anode potential, cathode potential, and cell voltage as a function of electrolyte composition. For sulfide containing cells the plateau of lowest potential has been found to be associated with essentially pure nickel sulfide, NiySz. A procedure for model fitting to the cathode...

  2. Electric-vehicle batteries

    Science.gov (United States)

    Oman, Henry; Gross, Sid

    1995-02-01

    Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour.

  3. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al{sub 2}O{sub 3} on Li ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kashish [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States); Routkevitch, Dmitri; Varaksa, Natalia [InRedox, Longmont, Colorado 80544 (United States); George, Steven M., E-mail: Steven.George@Colorado.Edu [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-01-15

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the pores of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability. This S

  4. Simulation and Experiment on Air-Cooled Thermal Energy Management of Lithium-Ion Power Batteries%锂电池热管理中空气冷却效果的实验与模拟

    Institute of Scientific and Technical Information of China (English)

    张江云; 张国庆; 张磊; 饶中浩

    2011-01-01

    把空冷方法用于商业磷酸铁锂电池以分析强化传热效果。对商用磷酸铁锂电池进行15~35A的放电测试,并根据实验数据对单一电池的温度分布进行了数值模拟。分析和模拟了空气横掠2个和3个电池情况下的冷却效果。实验和模拟的结果表明:在0~30A电流放电的情况下,空气冷却对电池热管理具有积极作用。在放电电流小于30A的情况下时,电池的最大温度低于50℃,但是电池间的温差仍然高于5℃。在放电电流大于30A的情况,仅仅通过空气冷却不能使电池和电池组内温度均匀分布,即不能满足电池散热的需求。%The air-cooled methods were used for cooling commercial LiFePO4 batteries to illustrate the effect of heat transfer enhancement. The commercial LiFePO4 batteries were tested at 15-35 A. The temperature distribution in a single battery was numerical ly simulated according to the experiment al data. Air flow across two and three batteries was simulated to illustrate the air-cooled effect. Experiment al and simulation results show that air-coola has a positive significance for the battery thermal management at discharging currents of 0-30 A. For discharging currents less than 30 A, the peak temperature in batteries is less than 50 ℃, while the temperature difference between batteries is still more than 5 ℃. When the discharging current is higher than 30 A, air-cooling for batteries and battery packs can not guarantee evenly temperature distribution, not being able to meet the regui re ment of batteriy heat dissipation.

  5. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    OpenAIRE

    Philipp Adelhelm; Pascal Hartmann; Bender, Conrad L; Martin Busche; Christine Eufinger; Juergen Janek

    2015-01-01

    Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite su...

  6. Co3O4-Pt/graphene as air cathode catalyst for lithium-air battery%四氧化三钴-铂/石墨烯锂空气电池阴极材料

    Institute of Scientific and Technical Information of China (English)

    顾大明; 杨丹丹; 李加展; 王余; 于晨涛

    2015-01-01

    It is reported that the preparation of Co3 O4-Pt/graphene hybrid and its use as air cathode catalyst for enhanced specific capacity in Lithium-air battery. Co3O4-Pt/graphene was synthesized by a two-step method. More specifically, Pt/graphene was prepared by microwave-assisted polyol process, and then it was mixed with Co3 O4 uniformly to get highly efficient Co3O4-Pt/graphene as air-cathode catalyst. Micromorphology, composition and compositional dispersion of the obtained hybrid catalyst were then characterized by X-ray diffraction ( XRD ) , scanning electron microscopy ( SEM ) , X-ray energy dispersive spectroscopy ( XEDS ) , transmission electron microscopy (TEM),Raman Spectroscopy(Ram). Co3O4-Pt/graphene air cathode catalyst was assembled with metal lithium anode, LiPF6/EC-DMC-EMC electrolyte, and PP/PE/PP to construct a lithium-air battery. The constant current charge-discharge tests of the lithium-air battery exhibit enhanced specific capacity: the discharge specific capacity reaches up to 8 000 mAh/g and the voltage is above 2. 6 V, which is superior to alternative cathode catalysts. The enhanced performance of lithium-air battery is attributed to the joint effect of preparation process, composition, and compositional dispersion.%为提高锂空气电池的比容量,采用微波辅助乙二醇还原法将H2 PtCl6 ·6H2 O及氧化石墨还原为Pt/石墨烯,再将其与Co3 O4混合均匀,得到高效Co3 O4-Pt/石墨烯锂空气电池复合阴极材料,作为对比,同时制备了Co3 O4-石墨、Co3 O4-石墨烯等阴极材料,用其与金属锂阳极、LiPF6/EC-DMC-EMC电解液、PP/PE/PP隔膜组装锂空气电池.用X射线衍射( XRD)、扫描电子显微镜( SEM)、透射电子显微镜( TEM)、X射线能量散射能谱( XEDS)、拉曼光谱( Ram)等方法对材料的微观形貌、组成及各组分在材料中的分散程度进行了表征,对电池进行恒流充放电测试,结果显示,Co3 O4-Pt/石墨烯阴极材料的比容量可超过8 000 m

  7. Élaboration de membranes échangeuses d’anions à architecture réseaux interpénétrés de polymères pour des batteries lithium-air

    OpenAIRE

    Bertolotti, Bruno

    2013-01-01

    This work focuses on the synthesis and characterization of polymer membranes to be used as anion exchange membranes for protection on an air electrode in a new lithium–air battery for electric vehicle. In these materials showing interpenetrating polymer networks (IPN) architecture, a hydrogenated cationic polyelectrolyte network, the poly(epichlorohydrin) (PECH), is associated with a neutral network, which can be either hydrogenated or fluorinated. First, the synthesis of the polyelectrolyte ...

  8. Comparatively Analysis of Characteristics of Aluminum or Magnesium Alloy Air Intake Manifold by Tilted Casting%铝、镁合金进气歧管倾转铸造的特点

    Institute of Scientific and Technical Information of China (English)

    陈红兵; 罗书强; 赵建华

    2011-01-01

    Flow behavior and heat release of aluminum alloy or magnesium alloy air intake manifolds during permanent mold tilting casting process were simulated by the Anycasting software. The results show that both magnesium alloy and aluminum alloy melt fully exhibit laminar flow during filling process. Cooling curves exhibit similar change shape for aluminum alloy and magnesium alloy manifold, however, solidification time of magnesium alloy melt is longer than that of aluminum alloy melt.%采用AnyCasting铸造模拟软件,分别模拟了金属型倾转铸造铝合金和镁合金进气歧管工艺,并对其流动模式和释放热量进行了比较.镁合金熔液在整个充型过程中完全属于层流流动,铝合金熔液也属于层流流动.模拟结果显示铝合金与镁合金进气歧管的冷却曲线变化趋势基本一致,但镁合金熔液比铝合金熔液冷却时间更长.

  9. Research progress in cathode materials for lithium-air battery%锂空气电池正极材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    娄永兵; 刘艳; 朱林

    2012-01-01

    综述了目前国内外锂空气电池研究领域的进展,尤其是正极材料的研究进展;分析了目前研究的局限和问题的集中所在,如过电位、循环稳定性和安全性等;展望了锂空气电池的发展方向及应用趋势.%The progress in lithium-air battery research was reviewed,specifically the progress in cathode materials. The current research limitations and existing problems were discussed,such as over potential, cycle stability and safety, the development direction and application trend were forecasted.

  10. Aluminum Hydroxide

    Science.gov (United States)

    ... penicillamine (Cuprimine, Depen), prednisone (Deltasone, Orasone), products containing iron, tetracycline (Sumycin, Tetracap, and others), ticlopidine (Ticlid), and vitamins.be aware that aluminum hydroxide may interfere with other medicines, making them less ...

  11. The design of Fe, N-doped hierarchically porous carbons as highly active and durable electrocatalysts for a Zn-air battery.

    Science.gov (United States)

    Wu, Mingjie; Tang, Qiaowei; Dong, Fang; Wang, Yongzhen; Li, Donghui; Guo, Qinping; Liu, Yuyu; Qiao, Jinli

    2016-07-28

    A new type of Fe, N-doped hierarchically porous carbons (N-Fe-HPCs) has been synthesized via a cost-effective synthetic route, derived from nitrogen-enriched polyquaternium networks by combining a simple silicate templated two-step graphitization of the impregnated carbon. The as-prepared N-Fe-HPCs present a high catalytic activity for the oxygen reduction reaction (ORR) with onset and half-wave potentials of 0.99 and 0.86 V in 0.1 M KOH, respectively, which are superior to commercially available Pt/C catalyst (half-wave potential 0.86 V vs. RHE). Surprisingly, the diffusion-limited current density of N-S-HPCs approaches ∼7.5 mA cm(-2), much higher than that of Pt/C (∼5.5 mA cm(-2)). As a cathode electrode material used in Zn-air batteries, the unique configuration of the N-Fe-HPCs delivers a high discharge peak power density reaching up to 540 mW cm(-2) with a current density of 319 mA cm(-2) at 1.0 V of cell voltage and an energy density >800 Wh kg(-1). Additionally, outstanding ORR durability of the N-Fe-HPCs is demonstrated, as evaluated by the transient cell-voltage behavior of the Zn-air battery retaining an open circuit voltage of 1.48 V over 10 hours with a discharge current density of 100 mA cm(-2). PMID:27350564

  12. 动力蓄电池风冷热管理系统的研究%A Study on the Air Cooling Thermal Management System of Power Battery Package

    Institute of Scientific and Technical Information of China (English)

    常国峰; 陈磊涛; 许思传

    2011-01-01

    The structural design is performed for the thermal management system of power battery package containing 120 6A · h nickel-hydrogen cells. Based on the theory of balanced ventilation, the evenness of air flow velocity in thermal management system is analyzed in-depth. The effects of structural parameters, such as the incline angle of battery pack, air mass flow and duct openings, etc. On air flow velocity are studied. According to the conclusion of the study, the reliability and durability of battery and the volumetric specific power of battery pack are all enhanced.%对120节6A·h镍氢电池进行热管理系统的结构设计.利用均匀送风理论,对热管理系统中空气流速的均匀性做了深入分析.研究了电池组倾角、空气流量和风道开孔等结构参数对空气流速的影响.根据研究结论,通过改变电池包的结构和调节电池周围空气的流速,提高了蓄电池的可靠性、耐久性和电池成组后的体积比功率.

  13. Effect of pore distribution of carbon on performance of air electrode for lithium air batteries%碳的孔分布对锂空气电池空气电极性能影响

    Institute of Scientific and Technical Information of China (English)

    王凌岩; 谢凯; 王珲; 韩喻

    2012-01-01

    Microstructural parameter of carbon is an important factor that restricts the performance of lithium oxygen batteries. In this paper, five kinds of carbon, which had different microstructural parameter were chosen to prepare the air electrode and the discharge capacity of these electrodes were tested, the monograph of these air electrodes before and after discharge were observed by SEM. The effect of pore distribution of carbon on the performance of air electrode also was discussed. The results show that the pore distribution of carbon has important influences on the performance of air electrode and air electrode made of carbon that has relative optimal pore distribution behave relative best.%碳的微观结构是限制锂空气电池空气电极性能的重要因素.选用五种具有不同微观结构参数的碳材料分别制备了空气电极,并测试了相应电池的放电比容量,采用扫描电镜对放电前后空气电极的表理形貌进行了观察,研究探讨了碳的微观结构对于空气电极放电性能的影响.结果表明,碳的孔分布是影响空气电极的重要因素,由具有相对最优孔径分布的碳材料制备的空气电极表现出相对最佳的电性能.

  14. In Situ Coupling of Strung Co4N and Intertwined N-C Fibers toward Free-Standing Bifunctional Cathode for Robust, Efficient, and Flexible Zn-Air Batteries.

    Science.gov (United States)

    Meng, Fanlu; Zhong, Haixia; Bao, Di; Yan, Junmin; Zhang, Xinbo

    2016-08-17

    Flexible power sources with high energy density are crucial for the realization of next-generation flexible electronics. Theoretically, rechargeable flexible zinc-air (Zn-air) batteries could provide high specific energy, while their large-scale applications are still greatly hindered by high cost and resources scarcity of noble-metal-based oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) electrocatalysts as well as inferior mechanical properties of the air cathode. Combining metallic Co4N with superior OER activity and Co-N-C with perfect ORR activity on a free-standing and flexible electrode could be a good step for flexible Zn-air batteries, while lots of difficulties need to be overcome. Herein, as a proof-of-concept experiment, we first propose a strategy for in situ coupling of strung Co4N and intertwined N-C fibers, by pyrolyzation of the novel pearl-like ZIF-67/polypyrrole nanofibers network rooted on carbon cloth. Originating from the synergistic effect of Co4N and Co-N-C and the stable 3D interconnected conductive network structure, the obtained free-standing and highly flexible bifunctional oxygen electrode exhibits excellent electrocatalytic activity and stability for both OER and ORR in terms of low overpotential (310 mV at 10 mA cm(-2)) for OER, a positive half-wave potential (0.8 V) for ORR, and a stable current density retention for at least 20 h, and especially, the obtained Zn-air batteries exhibit a low discharge-charge voltage gap (1.09 V at 50 mA cm(-2)) and long cycle life (up to 408 cycles). Furthermore, the perfect bendable and twistable and rechargeable properties of the flexible Zn-air battery particularly make it a potentially power portable and wearable electronic device. PMID:27463122

  15. 锂/空气电池非贵金属催化剂研究进展%Recent progress in non-precious metal catalysts for lithium-air batteries

    Institute of Scientific and Technical Information of China (English)

    李妍慧; 银凤翔; 何小波; 王昊

    2015-01-01

    Lithium-air battery has been considered as one of the most promising secondary batteries due to its high theoretical energy density,small volume,light weight,low cost and environment compatibility. In this review,the structures,principles and types of lithium-air battery were discussed first. Then the recent developments of non-precious metal catalysts for lithium-air batteries were overviewed,including transition metal oxides,metal nitrides,carbon materials,and transition metal macrocycles. In the end,it was proposed that the development of materials chemistry and nanotechnology as well as the clarification of catalytic reaction mechanism is crucial to obtain high-performance non-precious metal catalysts for lithium-air batteries.%锂/空气电池理论能量密度高、体积小、质量轻、价格低、无污染,是极具应用前景的二次电池。本文首先简要介绍了锂/空气电池的基本结构、原理和种类,随后重点讨论了近年来用于锂/空气电池的非贵金属催化剂的研究进展。这些催化剂主要包括过渡金属氧化物、过渡金属氮化物、碳材料以及过渡金属大环化合物等。最后认为,材料化学、纳米技术等学科的发展以及催化机理的阐明对发展高性能的锂/空气电池非贵金属催化剂起至关重要的作用。

  16. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    Science.gov (United States)

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-01-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter. PMID:27333815

  17. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    Science.gov (United States)

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-06-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.

  18. Battery Modeling

    OpenAIRE

    Jongerden, M.R.; Haverkort, B.R.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However, with these models one can only compute lifetimes for specific discharge profiles, and not for workloads in general. In this paper, we give an overview of the different battery models that are availabl...

  19. A Research on Safety Design of 18650 Power Battery System Based on Air Cooling Mode%基于风冷模式的18650动力电池系统安全性设计研究

    Institute of Scientific and Technical Information of China (English)

    裴锋; 符兴锋

    2015-01-01

    18650 power battery system based on air cooling internal circulation structure is designed in accordance with operating requirement of an electric passenger vehicle, and structural safety, thermal management safety, flame retardant and insulation safety are studied and analyzed. Based on test data, and also in combination with theoretical calculation formula, 18650 power battery heat generation calculation model is built, and flow field of battery air cooling internal circulation system is analyzed and calculated, design of battery pack internal flow field is optimized according to simulation results. Safety of 18650 power battery system based on air cooling mode is proved by vehicle test and low temperature heating equilibrium test.%针对某纯电动乘用车的使用要求,设计了基于风冷内循环结构的18650动力电池系统,研究和分析了18650动力电池的结构安全性、热管理安全性和阻燃与绝缘安全性.以该18650动力电池的试验数据为基础,结合理论计算公式,建立了18650动力电池的生热仿真计算模型,对电池风冷内循环系统的流场进行了分析计算,根据仿真计算结果优化了电池箱内部流场设计.通过实车试验和低温加热均衡试验,验证了基于风冷模式的18650动力电池系统的安全性.

  20. DFT Study On Effects of CO2 Contamination in Non-Aqueous Li-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2013-01-01

    Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials...... are investigated with and without CO2 at different nucleation sites such as steps, kinks and terraces of valley and ridge of the stable (1-100) Li2O2 surface. Though their corresponding binding energies show that CO2 binds weakly at the surface, it binds preferentially at steps and kinks of the vally (1-100) Li2O2...... surfaces, forming a type of Lithium coordinated carbonate species (LinCO3), which reduces the effective equilibrium potential by 0.2 V. Small amounts of CO2 can also affects the morphological growth directions of Li2O2 due to blocking of nucleation centers; why may enhance the electronic conduction...

  1. 往复流散热方式的锂离子电池热管理%Thermal Management of Lithium-ion Battery with Reciprocating Air-flow Cooling Mode

    Institute of Scientific and Technical Information of China (English)

    梁波; 欧阳陈志; 刘燕平; 毛聪; 唐思绮; 江清柏

    2014-01-01

    For solving the problem of the temperature unevenness among individual cells in battery module affecting service performance and lifespan of battery, a reciprocating air-flow cooling mode is adopted in this paper, with which the direction of cooling air flow is reversed periodically to reduce the temperature gradient in battery a-long air-flow direction in conventional cooling mode with unidirectional air flow. The results show that with recipro-cating flow cooling mode, the temperature evenness of battery increases by 12. 1% and 62. 4% respectively under 1C and 13. 33 C discharge current rates, so the service performance and safety of battery greatly improved with its service life extended. In addition, an optimization is also carried out on three parameters affecting heat dissipation performance, i. e. the velocity and temperature of air flow at inlet and reversal frequency, with the law of their in-fluence on the highest temperature and temperature difference of battery revealed.%为解决电池模块内部单体电池间的温度不均匀性而影响电池的使用性能和寿命的问题,本文中采用了一种往复流冷却方式,使冷却空气流动方向周期性逆转,以降低单向流空气冷却方式时单体电池沿空气流方向的温度梯度。结果表明,采用往复流冷却方式后,在1C和13.33C放电倍率下,电池温度均匀性分别提高了12.1%和62.4%,电池模块的使用性能和安全性得到改善,电池使用寿命得以提高。同时,文中还利用计算流体动力学虚拟试验与正交优化相结合,对影响往复流散热性能的往复流入口的速度与温度和往复周期3个参数进行了优化,并揭示了它们对电池最高温度和温差的影响规律。

  2. Controlled electrochemical etching of nanoporous Si anodes and its discharge behavior in alkaline Si-air batteries.

    Science.gov (United States)

    Park, Dong-Won; Kim, Soeun; Ocon, Joey D; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2015-02-11

    We report the fabrication of nanoporous silicon (nPSi) electrodes via electrochemical etching to form a porous Si layer with controllable thickness and pore size. Varying the etching time and ethanolic HF concentration results in different surface morphologies, with various degrees of electrolyte access depending on the pore characteristics. Optimizing the etching condition leads to well-developed nPSi electrodes, which have thick porous layers and smaller pore diameter and exhibit improved discharge behavior as anodes in alkaline Si-air cells in contrast to flat Si anode. Although electrochemical etching is effective in improving the interfacial characteristics of Si in terms of high surface area, we observed that mild anodization occurs and produces an oxide overlayer. We then show that this oxide layer in nPSi anodes can be effectively removed to produce an nPSi anode with good discharge behavior in an actual alkaline Si-air cell. In the future, the combination of high surface area nPSi anodes with nonaqueous electrolytes (e.g., room-temperature ionic liquid electrolyte) to minimize the strong passivation behavior and self-discharge in Si could lead to Si-air cells with a stable voltage profile and high anode utilization. PMID:25594400

  3. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Science.gov (United States)

    2010-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of...

  4. ZEBRA battery meets USABC goals

    Science.gov (United States)

    Dustmann, Cord-H.

    In 1990, the California Air Resources Board has established a mandate to introduce electric vehicles in order to improve air quality in Los Angeles and other capitals. The United States Advanced Battery Consortium has been formed by the big car companies, Electric Power Research Institute (EPRI) and the Department of Energy in order to establish the requirements on EV-batteries and to support battery development. The ZEBRA battery system is a candidate to power future electric vehicles. Not only because its energy density is three-fold that of lead acid batteries (50% more than NiMH) but also because of all the other EV requirements such as power density, no maintenance, summer and winter operation, safety, failure tolerance and low cost potential are fulfilled. The electrode material is plain salt and nickel in combination with a ceramic electrolyte. The cell voltage is 2.58 V and the capacity of a standard cell is 32 Ah. Some hundred cells are connected in series and parallel to form a battery with about 300 V OCV. The battery system including battery controller, main circuit-breaker and cooling system is engineered for vehicle integration and ready to be mounted in a vehicle [J. Gaub, A. van Zyl, Mercedes-Benz Electric Vehicles with ZEBRA Batteries, EVS-14, Orlando, FL, Dec. 1997]. The background of these features are described.

  5. Modified carbon-free silver electrodes for the use as cathodes in lithium-air batteries with an aqueous alkaline electrolyte

    Science.gov (United States)

    Wittmaier, Dennis; Wagner, Norbert; Friedrich, K. Andreas; Amin, Hatem M. A.; Baltruschat, Helmut

    2014-11-01

    Gas diffusion electrodes with silver catalysts show a high activity towards oxygen reduction reaction in alkaline media but a rather poor activity towards oxygen evolution reaction. For the use in future lithium-air batteries with an aqueous alkaline electrolyte the activity of such electrodes must be improved significantly. As Co3O4 is a promising metal oxide catalyst for oxygen evolution in alkaline media, silver electrodes were modified with Co3O4. For comparison silver electrodes were also modified with IrO2. Due to the poor stability of carbon materials at high anodic potentials these gas diffusion electrodes were prepared without carbon support to improve especially the long-term stability. Gas diffusion electrodes were electrochemically investigated in an electrochemical half-cell arrangement. In addition to cyclic voltammograms electrochemical impedance spectroscopy (EIS) was carried out. SEM and XRD were used for the physical and morphological investigations. Investigations showed that silver electrodes containing 20 wt.% Co3O4 exhibited the highest performance and highest long-term stability. For comparison, rotating - ring - disc - electrode experiments have been performed using model electrodes with thin catalyst layers, showing that the amount of hydrogen peroxide evolved is negligible.

  6. Air

    Science.gov (United States)

    ... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...

  7. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery.

    Science.gov (United States)

    Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun

    2016-01-01

    α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm(-2). At 1.0 V of cell voltage, a current density of 324 mA cm(-2) is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm(-2), and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte. PMID:27646032

  8. Paintable Battery

    OpenAIRE

    Singh, Neelam; Galande, Charudatta; Miranda, Andrea; Mathkar, Akshay; Gao, Wei; Reddy, Arava Leela Mohana; Vlad, Alexandru; Ajayan, Pulickel M.

    2012-01-01

    If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary surface, it would have significant impact on the design, implementation and integration of energy storage devices. Here, we establish a paradigm change in battery assembly by fabricating rechargeable Li-ion batteries solely by multi-step spray painting of its components on a variety of materials...

  9. Air

    International Nuclear Information System (INIS)

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  10. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  11. Different optimisation routes for the soldiers battery burden. The D2S2 (Dutch Dismounted Soldier System) and the 11 AMB (Air Manoeuvre Brigade) approach

    NARCIS (Netherlands)

    Raadschelders, J.W.; Bospoort, E.D. van de; Wendrich, H.

    2005-01-01

    During the recent years it has become more and more clear that one of the major burdens to soldiers are batteries. Each electronic device has its own battery. And none of these are interchangeable. And they all have a different runtime. So in everyday practice he is continuously on the wake for syst

  12. Determination of Total Dissolved Aluminum in Seta River Water by Flow Injection Fluorometry with Aluminum-Lumogallion Complex after Acid Digestion

    OpenAIRE

    Hara, Hirokazu; Ohkuni, Sakura; Koebisu, Yosuke; Nishikawa, Naomichi

    2012-01-01

    The total dissolved aluminum in the Seta River water was determined by flow-injection fluorometryusing the aluminum-lumogallion complex after its digestion by a mixture of nitric acid and hydrofluoric acid. The sample decomposition system, which was hard to be contaminated by aluminum from the air, was constructed and used successfully to produce reproducible values. By subtractingthe concentration of dissolved reactive aluminum, the concentration of the non-reactive aluminum was estimated. T...

  13. NANO-BATTERY TECHNOLOGY FOR EV-HEV PANEL: A PIONEERING STUDY

    Directory of Open Access Journals (Sweden)

    Ataur Rahman

    2015-11-01

    Full Text Available Global trends toward CO2 reduction and resource efficiency have significantly increased the importance of lightweight materials for automobile original equipment manufacturers (OEM. CO2 reduction is a fundamental driver for a more lightweight automobile. The introduction of Electrical Vehicles (EVs is one initiative towards this end. However EVs are currently facing several weaknesses: limited driving range, battery pack heaviness, lack of safety and thermal control, high cost, and overall limited efficiency. This study presents a panel-style nano-battery technology built into an EV with CuO filler solid polymer electrolyte (SPE sandwiched by carbon fiber (CF and lithium (Li plate. In addition to this, an aluminum laminated polypropylene film is used as the electromagnetic compatibility (EMC shield. The proposed battery body panel of the EV would reduce the car weight by about 20%, with a charge and discharge capacity of 1.5 kWh (10% of car total power requirement, and provide the heat insulation for the car which would save about 10% power consumption of the air conditioning system. Therefore, the EV would be benefited by 30% in terms of energy reduction by using the proposed body. Furthermore, the proposed body is considered environmental-friendly since it is recyclable for use in a new product. However, the main limiting factors of the SPE are its thermal behavior and moderate ionic conductivity at low temperatures. The SPE temperature is maintained by controlling the battery panel charging/discharge rate. It is expected that the proposed panel-style nano-battery use in an EV would save up to 6.00 kWh in battery energy, equivalent to 2.81 liters of petrol and prevent 3.081 kg of CO2 emission for a travel distance of 100 km. KEYWORDS: epoxy resin; carbon fiber; lithium thin plate; energy generation; solid electrolyte battery

  14. Status of life cycle inventories for batteries

    International Nuclear Information System (INIS)

    Highlights: ► Cradle-to-gate (ctg) energy and emissions compared among five battery systems. ► Calculate material production values fall well within observed ranges. ► Values based on recycled materials in poor agreement with observed ranges. ► Material production data needed for recycled and some virgin battery materials. ► Battery manufacturing data range widely and hence also need updating. - Abstract: This study reviews existing life-cycle inventory (LCI) results for cradle-to-gate (ctg) environmental assessments of lead-acid (PbA), nickel–cadmium (NiCd), nickel-metal hydride (NiMH), sodium-sulfur (Na/S), and lithium-ion (Li-ion) batteries. LCI data are evaluated for the two stages of cradle-to-gate performance: battery material production and component fabrication and assembly into purchase ready batteries. Using existing production data on battery constituent materials, overall battery material production values were calculated and contrasted with published values for the five battery technologies. The comparison reveals a more prevalent absence of material production data for lithium ion batteries, though such data are also missing or dated for a few important constituent materials in nickel metal hydride, nickel cadmium, and sodium sulfur batteries (mischmetal hydrides, cadmium, β-alumina). Despite the overall availability of material production data for lead acid batteries, updated results for lead and lead peroxide are also needed. On the other hand, LCI data for the commodity materials common to most batteries (steel, aluminum, plastics) are up to date and of high quality, though there is a need for comparable quality data for copper. Further, there is an almost total absence of published LCI data on recycled battery materials, an unfortunate state of affairs given the potential benefit of battery recycling. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and

  15. Porous LaCo1-xNixO3-δ Nanostructures as an Efficient Electrocatalyst for Water Oxidation and for a Zinc-Air Battery.

    Science.gov (United States)

    Vignesh, Ahilan; Prabu, Moni; Shanmugam, Sangaraju

    2016-03-01

    Perovskites have emerged as promising earth-abundant alternatives to precious metals for catalyzing the oxygen evolution reaction (OER). Herein, we report the synthesis of a series of porous perovskite nanostructures, LaCo0.97O3-δ, with systematic Ni substitution in Co octahedral sites. Their electrocatalytic activity during the water oxidation reaction was studied in alkaline electrolytes. The electrocatalytic OER activity and stability of the perovskite nanostructure was evaluated using the rotating disk electrode technique. We show that the progressive replacement of Co by Ni in the LaCo0.97O3-δ perovskite structure greatly altered the electrocatalytic activity and that the La(Co0.71Ni0.25)0.96O3-δ composition exhibited the lowest OER overpotential of 324 and 265 mV at 10 mA cm(-2) in 0.1 M KOH and 1 M KOH, respectively. This value was much lower than that of the noble metal catalysts, IrO2, Ru/C, and Pt/C. Furthermore, the La(Co0.71Ni0.25)0.96O3-δ nanostructure showed outstanding electrode stability, with no observable decrease in performance up to 114th cycle in the auxiliary linear sweep voltammetry that lasted for 10 h in chronoamperometry studies. The excellent oxygen evolution activity of the La(Co0.71Ni0.25)0.96O3-δ perovskite nanostructure can be attributed to its intrinsic structure, interconnected particle arrangement, and unique redox characteristics. The enhanced intrinsic electrocatalytic activity of the La(Co0.71Ni0.25)0.96O3-δ catalyst was correlated with several parameters, such as the electrochemical surface area, the roughness factor, and the turnover frequency, with respect to variation in the transition metals of the perovskite structure. Subsequently, La(Co0.71Ni0.25)0.96O3-δ was utilized as the air cathode in a zinc-air battery application. PMID:26887571

  16. Advances in development and application of aluminium batteries

    DEFF Research Database (Denmark)

    Qingfeng, Li; Zhuxian, Qiu

    2001-01-01

    Aluminium has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer at aluminium surface is however detrimental to its performance to achieve its reversible potential, and also causing the delayed activation o...... aluminium batteres, especially aluminium-air batteries, and a wide range of their applications from emergency power supplies, reserve batteries field portable batteries, to batteries for electric vehicles and underwater propulsion....

  17. The battery as a thermal storage. Impacts on the air conditioning of interior spaces, the thermal architecture and the operation strategy of electric-powered vehicles; Die Batterie als thermischer Speicher. Auswirkungen auf die Innenraumklimatisierung, die thermische Architektur und die Betriebsstrategie von Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Bouvy, Claude [Forschungsgesellschaft Kraftfahrwesen mbH, Aachen (Germany); Jeck, Peter; Gissing, Joerg; Lichius, Thomas; Baltzer, Sidney; Eckstein, Lutz [RWTH Aachen Univ. (Germany). Inst. fuer Kraftfahrzeuge

    2012-11-01

    In this paper the use of the electric traction battery as a thermal storage unit is analysed by means of simulations. The stored thermal energy is exclusively used in this work to heat the passenger cabin. For this scenario two alternative concepts are being compared to a conventional operational mode, without the use of the battery as a thermal storage. On the one hand the stored heat is directly used for cabin heating with an liquid/air heat exchanger. On the other hand a heat pump raises the temperature level. First the holistic modeling approach and the detailed architectures are presented. Then these models are simulated for a winter scenario and the results are discussed. (orig.)

  18. Co(II)1-xCo(0)x/3Mn(III)2x/3S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries.

    Science.gov (United States)

    Wang, Zilong; Xiao, Shuang; An, Yiming; Long, Xia; Zheng, Xiaoli; Lu, Xihong; Tong, Yexiang; Yang, Shihe

    2016-06-01

    Rechargeable Zn-air battery is an ideal type of energy storage device due to its high energy and power density, high safety, and economic viability. Its large-scale application rests upon the availability of active, durable, low-cost electrocatalysts for the oxygen reduction reaction (ORR) in the discharge process and oxygen evolution reaction (OER) in the charge process. Herein we developed a novel ORR/OER bifunctional electrocatalyst for rechargeable Zn-air batteries based on the codoping and hybridization strategies. The B/N-codoped mesoporous nanocarbon supported Co(II)1-xCo(0)x/3Mn(III)2x/3S nanoparticles exhibit a superior OER performance compared to that of IrO2 catalyst and comparable Zn-air battery performance to that of the Pt-based battery. The rechargeable Zn-air battery shows high discharge peak power density (over 250 mW cm(-2)) and current density (180 mA cm(-2) at 1 V), specific capacity (∼550 mAh g(-1)), small charge-discharge voltage gap of ∼0.72 V at 20 mA cm(-2) and even higher stability than the Pt-based battery. The advanced performance of the bifunctional catalysts highlights the beneficial role of the simultaneous formation of Mn(III) and Co(0) as well as the dispersed hybridization with the codoped nanocarbon support. PMID:27163673

  19. 碳材料在锂空气电池中的应用及研究进展%Application of carbon materials in lithium-air battery and its development

    Institute of Scientific and Technical Information of China (English)

    武巍; 田艳艳; 高军; 杨勇

    2012-01-01

    The different types and physical properties of carbon materials used in lithium-air battery field were summarized, and the influence of the various physical parameters of carbon materials on the performance of lithium air battery were discussed, such as specific surface area, pore volume, particle size and conductivity. The research progress in the modifications of carbon materials was also simply summarized. It is concluded that carbon with good electrical conductivity, large surface area, appropriate pore volume and particle size are necessary, which governs the electrochemical performance of oxygen cathode. These physical parameters can be the basic criteria for selection of carbon material as cathode material in lithium air batteries.%综述了有关锂空气电池所应用的碳材料的种类及其性能,总结了不同种类碳材料的物理参数,如比表面积、孔体积、粒子尺度以及电导性等对锂空气电池性能的影响规律;以及碳材料改性对锂空气电池氧电极的性能改善.已有的文献数据表明用于锂空气电池的碳材料必须具有较好的导电性、较大的比表面积、合适的孔体积和粒子尺度等.这些物理化学参数为应用于锂空气电池的碳材料的选择提供了依据.

  20. Hazards, Safety and Design Considerations for Commercial Lithium-ion Cells and Batteries

    Science.gov (United States)

    Jeevarajan, Judith

    2007-01-01

    This viewgraph presentation reviews the features of the Lithium-ion batteries, particularly in reference to the hazards and safety of the battery. Some of the characteristics of the Lithium-ion cell are: Highest Energy Density of Rechargeable Battery Chemistries, No metallic lithium, Leading edge technology, Contains flammable electrolyte, Charge cut-off voltage is critical (overcharge can result in fire), Open circuit voltage higher than metallic lithium anode types with similar organic electrolytes. Intercalation is a process that places small ions in crystal lattice. Small ions (such as lithium, sodium, and the other alkali metals) can fit in the interstitial spaces in a graphite lattice. These metallic ions can go farther and force the graphitic planes apart to fit two, three, or more layers of metallic ions between the carbon sheets. Other features of the battery/cell are: The graphite is conductive, Very high energy density compared to NiMH or NiCd, Corrosion of aluminum occurs very quickly in the presence of air and electrolyte due to the formation of HF from LiPF6 and HF is highly corrosive. Slides showing the Intercalation/Deintercalation and the chemical reactions are shown along with the typical charge/discharge for a cylindrical cell. There are several graphs that review the hazards of the cells.

  1. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  2. Research status quo of heat treatment to aluminum alloy electrode for battery%电池用铝合金负极的热处理研究现状

    Institute of Scientific and Technical Information of China (English)

    刘小锋; 鲁火清; 唐有根

    2012-01-01

    The effects of heat treatment on aluminum anode polarization properties, anti corrosion performance, and alloying elements distribution and microstructure were introduced.It was pointed out that the effect of heat treatment differs from alloying agents and their contents in aluminum anodes. With appropriate heat treatment by controlling treatment conditions, the electrochemical performance of aluminum anodes could be improved, the polarization and self-corrosion could be reduced.%介绍了热处理对铝负极极化性能、耐腐蚀性能、合金元素分布及微观结构的影响,指出随着合金元素种类及用量的变化,热处理效果将有所差异;对铝合金采用适当的热处理方法及控制条件,可改善电化学性能,减轻极化与自腐蚀.

  3. Lithium Air Batteries: Non-Aqueous and Hybrid Systems%基于有机和组合电解液的锂空气电池研究进展

    Institute of Scientific and Technical Information of China (English)

    童圣富; 何平; 张雪苹; 赵世勇; 周豪慎

    2015-01-01

    Developing energy storage devices and new materials,which match the requirements in electric vehicles (EVs) and hybrid electric vehicles (HEVs),is an effective way to balance the contradiction between the social development and the shortage of fossil energy and environment pollution.Rechargeable lithium-air (Li-air) batteries consisting of Li and oxygen as the anodic and cathodic reactants,respectively,have attracted much attention during the past decade due to their high theoretical specific energy.According to work conditions,the most studied types of Li-air batteries are non-aqueous,hybrid,and solid state electrolyte Li-air batteries.Challenges still exist in cathodes,anodes,electrolytes and performances (life time),though efforts have been dedicated during the past years.Based on the achievements in non-aqueous and hybrid Li-air batteries fiom our group,the history,research progress and future developing trend of Li-air batteries will be briefly introduced in this review.%发展纯电动汽车与混合动力汽车是解决能源危机与环境问题的有效途径,这对新能源材料及储能设备提出了更高的要求.其中以金属锂作为负极、以空气中的氧气作为正极活性物质组成的锂-空气二次电池具有很高的理论比能量,因在纯电动汽车、混合动力汽车方面有很好的应用前景而受到人们的广泛关注.根据工作环境及介质条件,目前研究最多的锂-空气电池主要包括有机电解液、有机一水组合电解液及全固态电解质三种类型.由于锂-空气电池的发展历史较短,目前仍处于起步阶段,在电池的正极、负极、电解液(质)及综合性能等方面均存在诸多的困难与挑战.本文从作者课题组对有机电解液及组合电解液型锂一空气电池方面的研究出发,向读者简单介绍锂一空气电池的发展历史,研究现状及未来努力的方向.

  4. Effect of carbon black on the performance of gas diffusion electrode of lithium-air battery%炭黑对锂空气电池气体扩散电极性能的影响

    Institute of Scientific and Technical Information of China (English)

    马玉林; 于海滨; 刘元贵; 尹鸽平

    2012-01-01

    Effects of 3 kinds of carbon black, such as BP2000,XC-72 and acetylene black on electrochemical performance of gas diffusion electrodes for lithium-air battery were studied. The discharge performance of lithium-air battery was tested, acetylene black was determined to be superior to others for electrode. Acetylene black content and load were optimized and it delivered a specific capacity of 2 531 mAh/g at 0.2 mA/cm2 by discharging to 2.0 V when the content and load reached to 80% and 1.0 mg in electrode.SEM test result showed that the battery failure was mainly due to the accumulation of reaction products in electrode.%研究了BP2000、XC-72及乙炔黑等3种炭黑对锂空气电池气体扩散电极的电化学性能影响,测试了锂空气电池的放电性能,确定了电极用的最佳炭黑为乙炔黑.对电极上乙炔黑的含量及载量进行优化,当乙炔黑含量为80%、载量为1.0 mg时,以0.2 mA/cm2的电流放电至2.0V,炭黑的比容量可达2 531 mAh/g.SEM测试结果表明:反应产物在电极上的堆积是电池失效的主要原因.

  5. Aircraft-and-Engine Mechanic (aircraft mfg; air trans.) 621.281 -- Technical Report on Development of USTES Aptitude Test Battery.

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.

    The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…

  6. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  7. Canadian consumer battery baseline study : final report

    International Nuclear Information System (INIS)

    This report provided information about the estimated number of consumer and household batteries sold, re-used, stored, recycled, and disposed each year in Canada. The report discussed the ways in which different batteries posed risks to human health and the environment, and legislative trends were also reviewed. Data used in the report were obtained from a literature review as well as through a series of interviews. The study showed that alkaline batteries are the most common primary batteries used by Canadians, followed by zinc carbon batteries. However, lithium primary batteries are gaining in popularity, and silver oxide and zinc air button cell batteries are also used in applications requiring a flat voltage and high energy. Secondary batteries used in laptop computers, and cell phones are often made of nickel-cadmium, nickel-metal-hydroxide, and lithium ion. Small sealed lead batteries are also commonly used in emergency lighting and alarm systems. Annual consumption statistics for all types of batteries were provided. Results of the study showed that the primary battery market is expected to decline. Total units of secondary batteries are expected to increase to 38.6 million units by 2010. The report also used a spreadsheet model to estimate the flow of consumer batteries through the Canadian waste management system. An estimated 347 million consumer batteries were discarded in 2004. By 2010, it is expected that an estimated 494 million units will be discarded by consumers. The study also considered issues related to lead, cadmium, mercury, and nickel disposal and the potential for groundwater contamination. It was concluded that neither Canada nor its provinces or territories have initiated legislative or producer responsibility programs targeting primary or secondary consumer batteries. 79 refs., 37 tabs., 1 fig

  8. Novel routes to metalloorganics containing aluminum from minerals

    Science.gov (United States)

    Narayanan, Ramasubramanian

    Novel pathways for synthesizing Al metalloorganics directly from widely available oxides and oxo-hydroxides of aluminum are developed. The Al metalloorganics are then used to produce low-cost precursors for ceramics and polymers containing Al. Alumatrane, an unique, air-stable, aluminum alkoxide is prepared in one step from aluminum hydroxide in quantitative yields. Subsequently, alumatrane was used to prepare and characterize all group II dialuminate ceramics (MAlsb2Osb4, M = Mg, Ca, Sr, Ba). Similarly, an air-stable alkoxide of silicon was synthesized directly from SiOsb2, and is used in conjunction with alumatrane to produce precursors for aluminosilicate ceramics (MAlSiOsb4, M = K, Li, Na). Aluminum formate is synthesized, in differing efficiencies, from different crystalline minerals of Al, by direct dissolution in formic acid. A few other aluminum carboxylates are also synthesized, either directly from minerals or from aluminum formates, thus expanding the scope of the acid dissolution of aluminum hydroxides. Aluminum allyloxypropanoate (AAP) (Al(Osb2CCHsb2CHsb2OCH{=}CHsb2)sb2(OH)), an aluminum carboxylate with a polymerizable group has been synthesized from aluminum formate. This, has been incorporated into methyl methacrylate (MMA) polymers to impart fire retardancy. The increase in char yields as a result of AAP incorporation, indicate improved fire retardancy. Fire retardant characteristics of alumatrane has also been investigated, in MMA polymers and in a polyurethane polymer, taking char yields as a measure of fire retardance efficiency.

  9. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  10. Cooperation behavior between heterogeneous cations in hybrid batteries.

    Science.gov (United States)

    Zhang, Hanping; Wu, Xin; Yang, Tao; Liang, Shanshan; Yang, Xiaojian

    2013-11-01

    A cooperative behavior of Zn(2+) and Li(+) to conduct charges in a Zn-LiFePO4 battery is disclosed. When Li(+) dissolves into the electrolyte, Zn(2+) would deposit, and vice versa. In light of this cooperative behavior, the battery can be viewed as a super hybrid system, which combines the strong points of Zn-air battery, lithium-ion battery and redox-flow cell. PMID:24042332

  11. Progress in batteries and solar cells. Volume 5

    International Nuclear Information System (INIS)

    The 89 articles in this book are on research in batteries, solar cells and fuel cells. Topics include uses of batteries in electric powered vehicles, load management in power plants, batteries for miniature electronic devices, electrochemical processes, and various electrode and electrolyte materials, including organic compounds. Types of batteries discussed are lithium, lead-acid, manganese dioxide, Silver cells, Air cells, Nickel cells and solar cells. Problems of recharging and life cycle are also discussed

  12. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Science.gov (United States)

    2010-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of...

  13. 过渡金属氧化物用作锂空气电池催化剂%Using transition metal oxide as catalyst of lithium-air battery

    Institute of Scientific and Technical Information of China (English)

    任现平; 刘桂成; 徐国峰; 李建玲

    2014-01-01

    比较了MnO2、V2 O5、Sb2 O3及CeO2等4种不同过渡金属氧化物用作锂空气电池催化剂的催化效果;研究MnO2晶型对锂空气电池性能的影响。多孔纳米球Birnessite-type MnO2(Bir-MnO2)的催化性能最好。当电极中Bir-MnO2、Super P石墨和聚偏氟乙烯的质量比为1∶3∶1时,以0.05 mA/cm2的电流密度在2.0~4.5 V循环,制备的锂空气电池的放电比容量可达832.60 mAh/g,第5次循环的容量保持率高于52%。%The catalytic performance of 4 kinds of transition metal oxides such as MnO2 ,V2 O5 ,Sb2 O3 and CeO2 used as catalyst of lithium-air battery was compared;effect of crystal type of MnO2 to the performance of lithium-air battery was studied. Porous nano-spheres birnessite-type manganese dioxide(Bir-MnO2 )had the best catalytic performance. While the mass ratio of Bir-MnO2 ,Super P graphite and poly(vinylidene fluoride)in the electrode was 1∶3∶1 ,when cycled in 2.0~4.5 V with the current density of 0.05 mA/cm2 ,the specific discharge capacity of the prepared lithium-air battery could reach to 832.60 mAh/g,the capacity retention rate was higher than 52% in the 5th cycle.

  14. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  15. Graphene-aluminum nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bartolucci, Stephen F., E-mail: stephen.bartolucci@us.army.mil [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Paras, Joseph [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Rafiee, Mohammad A. [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Rafiee, Javad [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina; Kapoor, Deepak [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Koratkar, Nikhil, E-mail: koratn@rpi.edu [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-10-15

    Highlights: {yields} We investigated the mechanical properties of aluminum and aluminum nanocomposites. {yields} Graphene composite had lower strength and hardness compared to nanotube reinforcement. {yields} Processing causes aluminum carbide formation at graphene defects. {yields} The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  16. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-01-01

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  17. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-12-31

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  18. Organic electrolytes for sodium batteries

    Science.gov (United States)

    Vestergaard, B.

    1992-09-01

    A summary of earlier given status reports in connection with the project on organic electrolytes for sodium batteries is presented. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  19. Metal pad instabilities in liquid metal batteries

    CERN Document Server

    Zikanov, Oleg

    2015-01-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current and deformation of interfaces in liquid metal batteries. It is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known for aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  20. Coefficient of excess air influence on nitrogen oxides generation during battery heating%焦炉加热时过量空气系数对氮氧化物生成量的影响

    Institute of Scientific and Technical Information of China (English)

    杨俊峰; 康婷; 关岚; 薛占强

    2014-01-01

    对某6m焦炉燃烧室单对立火道进行数值计算,计算结果与设计值基本吻合,在此基础上模拟6种不同工况下立火道内的燃烧状况,讨论了过量空气系数对氮氧化物生成的影响。%By calculating single-pair vertical flue of6m battery, the result is almost consistent with the design value .Accordingly ,this paper has simulated six different heating modes in vertical flue as different work state and discussed the coefficient of excess air influence on nitrogen oxides genera -tion.

  1. Memel's Batteries

    Directory of Open Access Journals (Sweden)

    Alexander F. Mitrofanov

    2015-12-01

    Full Text Available The article describes the history and equipment of the coastal and antiaircraft artillery batteries of German Navy (Kriegsmarine constructed in Memel area before and during the World War. There is given the brief description of the Soviet Navy stationed in the area in the postwar years.

  2. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Science.gov (United States)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R. K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-04-01

    Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  3. Oxidation kinetics of aluminum diboride

    Science.gov (United States)

    Whittaker, Michael L.; Sohn, H. Y.; Cutler, Raymond A.

    2013-11-01

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3-B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments.

  4. Aspects of aluminum toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, C.D.; Savory, J.; Wills, M.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  5. Determination of the operating point and the enthalpy per unit surface of a cold battery with icy water and a double heat exchanger

    Directory of Open Access Journals (Sweden)

    B. Dieng1 ,

    2015-11-01

    Full Text Available The cold battery is a heat exchanger between two fluids, air (secondary fluid and iced water (primary fluid.The cold battery is composed of two heat exchangers in series, one of which is made up of flat-plate in galvanized steel serving as a reservoir for the iced water and the other one a copper shelland-tube exchanger with aluminum cooling blades. The two heat exchangers are connected to a pipe of the same diameter. These pipes will permit the transit of the icy water coming from the flat-plate heat exchanger by gravitation towards the tubes of the second exchanger [1]. The good operation of this cold battery depends on the knowledge of its operating point. We are proposing a technique of determination of the operating point by using one of the two fluids (water or air and the efficiencies [2, 3].The Knowledge of that operating point will enable us, through experimental means, determine the mean surface temperatureand then determine the mean surface enthalpy from the specific heat capacity at saturation obtained from the linearization of the entrance and exit air temperatures on the saturation curves.

  6. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  7. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  8. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  9. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  10. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    system is integrated with the vehicle cabin air conditioning system. The reason why we were not able to achieve the 20% reduction target is because of the natural decay of the battery cell due to the number of cycles. Perhaps newer battery chemistries that are not so sensitive to cycling would have more potential for reducing the battery size due to thermal issues.

  11. Technical basis of compressed-air energy storage as a substitute for lead batteries; Techn. Grundlagen der Druckluftspeicherung und deren Einsatz als Ersatz fuer Bleibatterien

    Energy Technology Data Exchange (ETDEWEB)

    Cyphelly, I.; Brueckmann, Ph.; Menhardt, W.

    2004-07-01

    Stand-alone electrical grids need storage systems, as consumption and generation usually do not fit in time and magnitude; this paper shows typical rural revenue-generating dairy applications in the multi-kW-range: this allows for a detailed analysis of the lay-out, and also of the needed elements and of the types of voltages involved (230 V AC, 24 and 315 V DC), but also of the characteristics of the storage system. A list of wishful storage qualities is extracted from these experiences and used to evaluate a possible pneumatic substitute to the lead-acid battery (BOP = Batteries w. Oilhydraulics and Pneumatics) and to imagine an extension towards a higher power range (like grid quality enhancement in the MW-range). According to the state-of-the-art and the commercial availability of components which would be inserted in this storage chain, an overview of the two existing systems (BOP-A with compression/expansion directly in the storage vessel volume and BOP-B with external thermodynamics) is presented with formulae and graphics yielding main parameters (efficiency, specific energies etc) and sizing basics. This data compilation also helps to insert BOP technologies in the latest storage debate, where future distribution technology is at stake. (author)

  12. 空调铝箔用高耐水性含氟丙烯酸疏水涂料的研制%Preparation of highly water-resistant fluoroacrylic hydrophobic coating for aluminum foils for air conditioner

    Institute of Scientific and Technical Information of China (English)

    聂建华; 周志盛; 霍泽荣

    2014-01-01

    A fluoroacrylic resin solution was synthesized by radical polymerization based on methyl methacrylate (MMA), butyl acrylate (BA), and stearyl acrylate (SA) as materials with 2-hydroxyethyl methacrylate (HEMA) as hydroxy functional monomer and fluorinated acrylate monomer as organic fluorine modifier, and then blended with curing agent to prepare a hydrophobic coating with high water resistance. The effects of different fluoroacrylate monomers on water contact angle and water dissolution rate of the coating were studied. The influence of the dosages of perfluoroalkyl ethyl methacrylate (PFMA) and HEMA on hydrophobicity and water resistance of the coating was discussed. The optimal reaction formulation was determined as follows: MMA 57%, BA 12%, SA 4%, PFMA 20%, and HEMA 7%. The coating prepared with the optimal formulation was characterized by Fourier transform infrared spectrometry,and tested for comparison of the comprehensive performance with a commercially available product. The results indicated that the coating has a water contact angle 132.7° and a water dissolution rate of 4.1%, being matchable to the comprehensive performance of the superhydrophobic coating formed from the Ultra AC series transparent vanish (a product of the Ultratech Ltd., USA, used for aluminum foils of air conditioner). The coating meets the requirement of surface treatment of aluminum foils for air conditioner.%以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)以及丙烯酸十八酯(SA)为原料,甲基丙烯酸-β-羟乙酯(HEMA)为羟基功能单体,含氟丙烯酸酯单体为有机氟改性剂,通过溶液自由基聚合反应制备了含氟丙烯酸树脂溶液,再与固化剂配合使用制得高耐水性疏水涂膜。研究了不同含氟丙烯酸酯单体对涂膜的水接触角和水溶率的影响,讨论了甲基丙烯酸全氟烷基乙酯(PFMA)与HEMA不同用量对涂膜的疏水性和耐水性的影响,获得了最佳反应配方:MMA 57%,BA 12%,SA 4%

  13. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  14. Battery Safety Basics

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  15. Is the Aluminum Hypothesis Dead?

    OpenAIRE

    Lidsky, Theodore I.

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  16. Brazed aluminum, Plate-fin heat exchangers for OTEC

    Energy Technology Data Exchange (ETDEWEB)

    Foust, H.D.

    1980-12-01

    Brazed aluminum plate-fin heat exchangers have been available for special applications for over thirty years. The performance, compactness, versatility, and low cost of these heat exchangers has been unequaled by other heat exchanger configuration. The application of brazed aluminum has been highly limited because of necessary restrictions for clean non-corrosive atmospheres. Air and gas separation have provided ideal conditions for accepting brazed aluminum and in turn have benefited by the salient features of these plate-fin heat exchangers. In fact, brazed aluminum and cryogenic gas and air separation have become nearly synonymous. Brazed aluminum in its historic form could not be considered for a seawater atmosphere. However, technology presents a new look of significant importance to OTEC in terms of compactness and cost. The significant technological variation made was to include one-piece hollow extensions for the seawater passages. Crevice corrosion sites are thereby entirely eliminated and pitting corrosion attack will be controlled by an integral and sacrificial layer of a zinc-aluminum alloy. This paper on brazed aluminum plate-fin heat exchangers for OTEC will aquaint the reader with the state-of-art and variations suggested to qualify this form of aluminum for seawater use. In order to verify the desirable cost potential for OTEC, Trane teamed with Westinghouse to perform an OTEC system analysis with this heat exchanger. These results are very promising and reported in detail elsewhere.

  17. Lithium-ion battery electrode prepared by confining carbon nanotubes/V2O5 nanoribbons suspension in model air-liquid foams

    Science.gov (United States)

    Carn, Florent; Morcrette, Mathieu; Desport, Barthélemy; Backov, Rénal

    2013-03-01

    Well-defined macroporous V2O5-CNTs hybrid solid foams are synthesized in the form of monolith by a controlled bubbling process. For the first time, the solid phase results from the co-assembly of two different anisotropic nano-building blocks in the continuous phase of model foams whose bubble size and liquid fraction could be tuned. Their electrochemical properties were examined in view of their application as cathode for Li-ion battery. This first investigation revealed that capacity up to 250 mAh g-1 (i.e. 2 Li per V2O5) can be attain with a good retention under cycles when CNTs are present making these new cellular materials interesting candidate for systems which require the penetration of viscous ionic-liquid/polymer electrolytes.

  18. LIFE CYCLE DESIGN OF AIR INTAKE MANIFOLDS; PHASE I: 2.0 L FORD CONTOUR AIR INTAKE MANIFOLD

    Science.gov (United States)

    The project team applied the life cycle design methodology to the design analysis of three alternative air intake manifolds: a sand cast aluminum, brazed aluminum tubular, and nylon composite. The design analysis included a life cycle inventory analysis, environmental regulatory...

  19. Characterization of aluminum nanopowders after long-term storage

    International Nuclear Information System (INIS)

    Highlights: • The aluminum nanopowders produced by electrical explosion of wires after long-term storage (27 and 10 years) under natural conditions are characterized. • The phase composition and thermal stability of aluminum nanopowders after long-term storage are determined. • The surface chemical changes in the aged aluminum nanopowders are examined. • The high reactivity of aluminum nanopowder is due to the presence of the protective oxide–hydroxide layer on the particles surface. - Abstract: The characteristics of aluminum nanopowders obtained by electrical explosion of wires, passivated by air and stored for a long time under natural conditions are analyzed. The aluminum nanopowder produced in hydrogen had been stored for 27 years; the nanopowders produced in argon and nitrogen had been stored for 10 years. The powders were studied using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG) and Fourier transform infrared spectrometry (FTIR). The influence of the obtaining conditions and storage period of nanopowders on their thermal stability under heating in air is shown. The aluminum nanopowders after long-term storage in air under ambient conditions are found to be extremely active

  20. Catalytic effect of heat-treated iron and copper phthalocyanines in non-aqueous electrolyte Li/air batteries. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sheng S.; Ren, Xiaoming; Tran, Dat T.; Read, Jeffrey [U.S. Army Research Laboratory, RDRL-SED-C, Adelphi, MD (United States)

    2012-07-01

    In this review, we summarize our research on the characterization of FeCu/C catalyst and its effect in non-aqueous electrolyte Li/air cells. The catalyst is synthesized by impregnating metal phthalocyanine complex into a high surface area carbon, followed by pyrolyzing the complex-loaded carbon under argon atmosphere. High resolution X-ray photoelectron spectroscopy (HR-XPS) results indicate that the metals in the catalyst are present in the form of a mixture of metal-nitrogen complexes (MN) and metal oxides (MO). Using coin-type Li/air cells as the testing vehicle, the FeCu/C is determined to affect the Li/air cells in three manners: (1) It catalyzes two-electron oxygen reduction reaction (ORR) to form Li{sub 2}O{sub 2}, which reduces discharge polarization of the Li/air cells, (2) It promotes chemical disproportionation of Li{sub 2}O{sub 2}, which leads to an apparent four-electron ORR, and (3) It induces reduction of electrolyte solvents, which adds a second lower discharge voltage plateau at {proportional_to} 1.7 V. In addition, the FeCu/C catalyst increases the open circle voltage (OCV) recovery rate of the Li/air cells as a result of the chemical disproportionation of Li{sub 2}O{sub 2}, which releases oxygen and the resulting oxygen participates in OCV recovery. (orig.)

  1. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  2. Flexible fiber batteries for applications in smart textiles

    International Nuclear Information System (INIS)

    In this paper, we demonstrate flexible fiber-based Al–NaOCl galvanic cells fabricated using fiber drawing process. Aluminum and copper wires are used as electrodes, and they are introduced into the fiber structure during drawing of the low-density polyethylene microstructured jacket. NaOCl solution is used as electrolyte, and it is introduced into the battery after the drawing process. The capacity of a 1 m long fiber battery is measured to be ∼10 mAh. We also detail assembly and optimization of the electrical circuitry in the energy-storing fiber battery textiles. Several examples of their applications are presented including lighting up an LED, driving a wireless mouse and actuating a screen with an integrated shape-memory nitinol wire. The principal advantages of the presented fiber batteries include: ease of fabrication, high flexibility, simple electrochemistry and use of widely available materials in the battery design. (paper)

  3. Flexible fiber batteries for applications in smart textiles

    Science.gov (United States)

    Qu, Hang; Semenikhin, Oleg; Skorobogatiy, Maksim

    2015-02-01

    In this paper, we demonstrate flexible fiber-based Al-NaOCl galvanic cells fabricated using fiber drawing process. Aluminum and copper wires are used as electrodes, and they are introduced into the fiber structure during drawing of the low-density polyethylene microstructured jacket. NaOCl solution is used as electrolyte, and it is introduced into the battery after the drawing process. The capacity of a 1 m long fiber battery is measured to be ˜10 mAh. We also detail assembly and optimization of the electrical circuitry in the energy-storing fiber battery textiles. Several examples of their applications are presented including lighting up an LED, driving a wireless mouse and actuating a screen with an integrated shape-memory nitinol wire. The principal advantages of the presented fiber batteries include: ease of fabrication, high flexibility, simple electrochemistry and use of widely available materials in the battery design.

  4. Inner-city driving - with battery-powered or hybrid cars only? - A comparison from the viewpoint of air pollution control

    International Nuclear Information System (INIS)

    The California Air Resources Board (CARB) saw 'the need for introducing a major number of Zero-emission Vehicles (ZEV) in severe non-attainment areas, e.g. the South Coast region, to achieve sound air quality'. This involved the low-emission vehicle program to stipulate a 2% permit rate for ZEV's for the model year 1998 to rise to 10% by the model year 2003. The eight NESCAUM states in the North East of the USA discuss comparable measures. (orig./HW)

  5. Oxidation kinetics of aluminum diboride

    International Nuclear Information System (INIS)

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3–B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB2 in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time–temperature plots, (b) conversion as a function of time, (c) Arrhenius plots used to calculate activation energies, and (d) activation energy

  6. Lead batteries. 1977-June 1980 (citations from the Engineering Index Data Base). Report for 1977-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-07-01

    Worldwide research on lead battery components, charging, corrosion, and testing is cited. The majority of studies concern battery use in electric vehicles. Studies on lead recovery from battery scrap and air pollution at battery factories are also included. (This updated bibliography contains 155 citations, 40 of which are new entries to the previous edition.)

  7. Effect of aluminum metal surface on oxidation of iodide under gamma irradiation conditions

    International Nuclear Information System (INIS)

    The effects of aluminum surface on I- oxidation under gamma irradiation were investigated. Without irradiation, only O2 oxidized I- at pH < 2, and aluminum expedited the oxidation reaction. With irradiation, the radiolysis products from water and air oxidized I- into I3-. At pH < 2, O2 generated by water radiolysis additionally oxidized I-. However, at pH > 6, the H2O2 radiolysis product reduced I3- into I-. A smaller amount of I3- was observed in pH 1.9 and 3.3 solutions in contact with aluminum under irradiation because oxidants preferentially oxidize aluminum rather than I-. Moreover, for pH < 6.0, even less I3- was formed by aluminum exposed to air because air radiolysis products also preferentially oxidized aluminum. (author)

  8. Clinical biochemistry of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  9. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  10. Burning characteristics of individual aluminum/aluminum oxide particles

    OpenAIRE

    Ruttenberg, Eric C.

    1996-01-01

    Approved for public release; distribution is unlimited An experimental investigation was conducted in which the burning characteristics of individual aluminum/aluminum oxide particles were measured using a windowed combustion bomb at atmospheric pressure and under gravity-fall conditions. A scanning electron microscope (SEM) was used to measure the size distribution of the initial aluminum particles and the aluminum oxide residue. Analysis of the residue indicated that the mass of aluminum...

  11. Collecting battery data with Open Battery

    OpenAIRE

    Jones, Gareth L.; Harrison, Peter G.

    2012-01-01

    In this paper we present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have collected so far and make some observations. We then introduce the fluid queue model which we hope may prove a useful tool in future work to describe mobile phone battery traces.

  12. Purifying Aluminum by Vacuum Distillation

    Science.gov (United States)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  13. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    OpenAIRE

    Brahim Mebarki; Belkacem Draoui; Boumediène Allaou; Lakhdar Rahmani; Elhadj Benachour

    2013-01-01

    The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC) system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric ...

  14. Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N-C) as efficient oxygen catalysts for Zn-air batteries

    Science.gov (United States)

    Li, Bing; Chen, Ye; Ge, Xiaoming; Chai, Jianwei; Zhang, Xiao; Hor, T. S. Andy; Du, Guojun; Liu, Zhaolin; Zhang, Hua; Zong, Yun

    2016-02-01

    Transition metal and nitrogen co-doping into carbon is an effective approach to promote the catalytic activities towards the oxygen reduction reaction (ORR) and/or oxygen evolution reaction (OER) in the resultant electrocatalysts, M/N-C. The preparation of such catalysts, however, is often complicated and in low yield. Herein we report a robust approach for easy synthesis of M/N-C hybrids in high yield, which includes a mussel-inspired polymerization reaction at room temperature and a subsequent carbonization process. With the introduction of selected transition metal salts into an aqueous solution of dopamine (DA), the obtained mixture self-polymerizes to form metal-containing polydopamine (M-PDA) composites, e.g. Co-PDA, Ni-PDA and Fe-PDA. Upon carbonization at elevated temperatures, these metal-containing composites were converted into M/N-C, i.e. Co-PDA-C, Ni-PDA-C and Fe-PDA-C, respectively, whose morphologies, chemical compositions, and electrochemical performances were fully studied. Enhanced ORR activities were found in all the obtained hybrids, with Co-PDA-C standing out as the most promising catalyst with excellent stability and catalytic activities towards both ORR and OER. This was further proven in Zn-air batteries (ZnABs) in terms of discharge voltage stability and cycling performance. At a discharge-charge current density of 2 mA cm-2 and 1 h per cycle, the Co-PDA-C based ZnABs were able to steadily cycle up to 500 cycles with only a small increase in the discharge-charge voltage gap which notably outperformed Pt/C; at a discharge current density of 5 mA cm-2, the battery continuously discharged for more than 540 h with the discharge voltage above 1 V and a voltage drop rate of merely 0.37 mV h-1. With the simplicity and scalability of the synthetic approach and remarkable battery performances, the Co-PDA-C hybrid catalyst is anticipated to play an important role in practical ZnABs.Transition metal and nitrogen co-doping into carbon is an effective

  15. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  16. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  17. Composite hydrophilic coating for conditioner aluminum fins

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    To solve the so-called "white rust" and 'water bridge" problems of the aluminum fins for heat exchanger of automobile air conditioner, aimed at nationalizing the art of hydrophilic coating technology, the choice of coating forming and curing materials was investigated. By measuring the water contact angle, SEM surface scanning and ingredients analysis of the coating, optimal parameters and composition are acquired. The coating forming mechanisms of the composition was also expatiated. The coating obtained has good hydrophilic and other properties.

  18. Alkaline battery operational methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  19. Lithium Ion Batteries

    Science.gov (United States)

    1997-01-01

    Lithium ion batteries, which use a new battery chemistry, are being developed under cooperative agreements between Lockheed Martin, Ultralife Battery, and the NASA Lewis Research Center. The unit cells are made in flat (prismatic) shapes that can be connected in series and parallel to achieve desired voltages and capacities. These batteries will soon be marketed to commercial original-equipment manufacturers and thereafter will be available for military and space use. Current NiCd batteries offer about 35 W-hr/kg compared with 110 W-hr/kg for current lithium ion batteries. Our ultimate target for these batteries is 200 W-hr/kg.

  20. 75 FR 9147 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-03-01

    ... equipment (HM-224F; 75 FR 1302). The proposed changes are intended to enhance safety by ensuring that all...-AE44 Hazardous Materials: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials... associated with the air transport of lithium cells and batteries. PHMSA and FAA will hold a public meeting...

  1. Aluminum, parathyroid hormone, and osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  2. Maintenance-free lead acid battery for inertial navigation systems aircraft

    Science.gov (United States)

    Johnson, William R.; Vutetakis, David G.

    1995-05-01

    Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66 percent of the systems sold.

  3. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  4. 5 KV low-induction capactitor battery

    International Nuclear Information System (INIS)

    A 1.2 MJ capacitor battery is developed and constructed for creating strong magnetic fields for thermonuclear facilities, pumping of laser active media. The capacitor battery is assembled of 512 IMU5-150 and 128 IS5-200 capacitors. The design is based on division of the capacitor battery in 40 sections. The energy commutation is performed by air spark gaps of the trigatron type with 24 to 60 nH inductance. Electromagnetic switches are made on the base of the EP 41V-33 relay. A low-induction generator is developed for spark gap ignition. The capacitor sections, each of them comprising 16 capacitors, and loadings are switched-in either by means of cables or flat lines. Accidents were not observed during operation of 20 sections of the capacitor battery (capacitors break-down, break of polyethylene isolation, deformation of tyre-wires)

  5. Regulatory trends in the battery industry

    International Nuclear Information System (INIS)

    The scope of regulations in the battery industry is extensive and also complex. In the future, regulations will become more demanding and will encompass issues not currently considered. Increased focus on environmental issues by government bodies, environmental groups, local communities will result in more strict compliance standards. The USA is currently leading the world's battery industries in the scope and compliance level of regulations. By studying trends in the USA, the rest of the battery industry can prepare itself for the future operating environment. This paper reviews the most critical areas of air pollution, blood-lead levels and recycling. The paper concludes that the battery industry must adopt a culture of exceeding current compliance standards. (orig.)

  6. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  7. Resource recovery of scrap silicon solar battery cell.

    Science.gov (United States)

    Lee, Ching-Hwa; Hung, Chi-En; Tsai, Shang-Lin; Popuri, Srinivasa R; Liao, Ching-Hua

    2013-05-01

    In order to minimize pollution problems and to conserve limited natural resources, a hydrometallurgical procedure was developed in this study to recover the valuable resources of silicon (Si), silver (Ag) and aluminum (Al) from scrap silicon solar battery cells. In this study, several methods of leaching, crystallization, precipitation, electrolysis and replacement were employed to investigate the recovery efficiency of Ag and Al from defective monocrystalline silicon solar battery cells. The defective solar battery cells were ground into powder followed by composition analysis with inductively coupled plasma-atomic emission spectrometry. The target metals Ag and Al weight percentage were found to be 1.67 and 7.68 respectively. A leaching process was adopted with nitric acid (HNO3), hydrochloric acid, sulfuric acid (H2SO4) and sodium hydroxide as leaching reagent to recover Ag and Al from a ground solar battery cell. Aluminum was leached 100% with 18N H2SO4 at 70°C and Ag was leached 100% with 6N HNO3. Pure Si of 100% was achieved from the leaching solution after the recovery of Ag and Al, and was analyzed by scanning electron microscope-energy dispersive spectroscopy. Aluminum was recovered by crystallization process and silver was recovered by precipitation, electrolysis and replacement processes. These processes were applied successfully in the recovery of valuable metal Ag of 98-100%.

  8. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  9. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  10. Lead exposure among lead-acid battery workers in Jamaica.

    Science.gov (United States)

    Matte, T D; Figueroa, J P; Burr, G; Flesch, J P; Keenlyside, R A; Baker, E L

    1989-01-01

    To assess lead exposure in the Jamaican lead-acid battery industry, we surveyed three battery manufacturers (including 46 production workers) and 10 battery repair shops (including 23 battery repair workers). Engineering controls and respiratory protection were judged to be inadequate at battery manufacturers and battery repair shops. At manufacturers, 38 of 42 air samples for lead exceeded a work-shift time-weighted average concentration of 0.050 mg/m3 (range 0.030-5.3 mg/m3), and nine samples exceeded 0.50 mg/m3. Only one of seven air samples at repair shops exceeded 0.050 mg/m3 (range 0.003-0.066 mg/m3). Repair shop workers, however, had higher blood lead levels than manufacturing workers (65% vs. 28% with blood lead levels above 60 micrograms/dl, respectively). Manufacturing workers had a higher prevalence of safe hygienic practices and a recent interval of minimal production had occurred at one of the battery manufacturers. Workers with blood lead levels above 60 micrograms/dl tended to have higher prevalences of most symptoms of lead toxicity than did workers with lower blood lead levels, but this finding was not consistent or statistically significant. The relationship between zinc protoporphyrin concentrations and increasing blood lead concentrations was consistent with that described among workers in developed countries. The high risk of lead toxicity among Jamaican battery workers is consistent with studies of battery workers in other developing countries.

  11. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  12. Graphene-based battery electrodes having continuous flow paths

    Science.gov (United States)

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  13. China’s Aluminum Resources

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The aluminum industry makes one of the keyindustries in China’s industrial and agriculturalmodernization and features a high degree ofrelevance with all industries.Of all the 124existing industries in China,113 use aluminum,representing an industrial relevance rate of91%.The consumption of aluminum is also ofhigh relevance with China’s GDP.

  14. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  15. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  16. Battery Review Board

    Science.gov (United States)

    Vaughn, Chester

    1993-01-01

    The topics covered are presented in viewgraph form: NASA Battery Review Board Charter; membership, board chronology; background; statement of problem; summary of problems with 50 AH standard Ni-Cd; activities for near term programs utilizing conventional Ni-Cd; present projects scheduled to use NASA standard Ni-Cd; other near-term NASA programs requiring secondary batteries; recommended direction for future programs; future cell/battery procurement strategy; and the NASA Battery Program.

  17. Pingguo Aluminum Faces Dilemma

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Chinalco Guangxi Pinggjuo Branch is an exemplary company of Chinalco. Many of its indicators including technology, management standard, and profit rank in leading position in the industry, but such a pace-setter company is also facing the dilemma of overstock of Alumina products, and loss in electrolytic aluminum business.

  18. Applied Electrochemistry of Aluminum

    DEFF Research Database (Denmark)

    Li, Qingfeng; Qiu, Zhuxian

    Electrochemistry of aluminum is of special importance from both theoretical and technological point of view. It covers a wide range of electrolyte systems from molten fluoride melts at around 1000oC to room temperature molten salts, from aqueous to various organic media and from liquid to solid...

  19. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  20. Alkaline quinone flow battery.

    Science.gov (United States)

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  1. 29 CFR 1926.441 - Batteries and battery charging.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1... areas. (2) Ventilation shall be provided to ensure diffusion of the gases from the battery and...

  2. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  3. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Haverkort, Boudewijn R.; Schmitt, Jens B.

    2012-01-01

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  4. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2011-01-01

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to t

  5. Atmospheric pressure plasma treatment of flat aluminum surface

    International Nuclear Information System (INIS)

    Highlights: • DCSBD plasma is applicable for activation and cleaning of flat aluminum surfaces. • Decrease in the value of the contact angle after 1 s plasma treatment was 93%. • EDX measurements confirmed removal of oil contamination by 50% decreasing of carbon. • XPS analyze shown decrease of carbon content and increase of aluminum hydroxide and oxyhydroxide. - Abstract: The atmospheric pressure ambient air and oxygen plasma treatment of flat aluminum sheets using the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD) were investigated. The main objective of this study is to show the possibility of using DCSBD plasma source to activate and clean aluminum surface. Surface free energy measurements, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM/EDX) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used for the characterization of the aluminum surface chemistry and changes induced by plasma treatment. Short plasma exposure times (several seconds) led to a significant increase in the surface free energy due to changes of its polar components. Various ageing effects, depending on the storage conditions were observed and discussed. Effects of air and oxygen plasmas on the removal of varying degrees of artificial hydrocarbon contamination of aluminum surfaces were investigated by the means of EDX, ATR-FTIR and XPS methods. A significant decrease in the carbon surface content after the plasma treatment indicates a strong plasma cleaning effect, which together with high energy efficiency of the DCSBD plasma source points to potential benefits of DCSBD application in processing of the flat aluminum surfaces

  6. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  7. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  8. Application of Electrochemical Impedance Spectroscopy for Characterization of Post Li-Ion Batteries

    OpenAIRE

    Wagner, Norbert; Wittmaier, Dennis; Friedrich, K. Andreas

    2016-01-01

    In the last decades, the investigation of new secondary cells has been increased considerably. Very promising battery systems are the so called “Post Li-ion batteries” with metal anodes: metal-sulfur and metal-air (oxygen) batteries, in particular Li-sulfur and Li-air batteries. Li-sulfur battery is a promising system, due to its high theoretical capacity (1675 mAh/gsulfur), energy density (2500 Wh/kg), the low cost and non-toxicity of sulfur. Nevertheless, some of the drawbacks of lithium...

  9. Lithium ion battery production

    International Nuclear Information System (INIS)

    Highlights: ► Sustainable battery manufacturing focus on more efficient methods and recycling. ► Temperature control and battery management system increase battery lifetime. ► Focus on increasing battery performance at low- and high temperatures. ► Production capacity of 100 MWh equals the need of 3000 full-electric cars. - Abstract: Recently, new materials and chemistry for lithium ion batteries have been developed. There is a great emphasis on electrification in the transport sector replacing part of motor powered engines with battery powered applications. There are plans both to increase energy efficiency and to reduce the overall need for consumption of non-renewable liquid fuels. Even more significant applications are dependent on energy storage. Materials needed for battery applications require specially made high quality products. Diminishing amounts of easily minable metal ores increase the consumption of separation and purification energy and chemicals. The metals are likely to be increasingly difficult to process. Iron, manganese, lead, zinc, lithium, aluminium, and nickel are still relatively abundant but many metals like cobalt and rare earths are becoming limited resources more rapidly. The global capacity of industrial-scale production of larger lithium ion battery cells may become a limiting factor in the near future if plans for even partial electrification of vehicles or energy storage visions are realized. The energy capacity needed is huge and one has to be reminded that in terms of cars for example production of 100 MWh equals the need of 3000 full-electric cars. Consequently annual production capacity of 106 cars requires 100 factories each with a 300 MWh capacity. Present day lithium ion batteries have limitations but significant improvements have been achieved recently . The main challenges of lithium ion batteries are related to material deterioration, operating temperatures, energy and power output, and lifetime. Increased lifetime

  10. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  11. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  12. Nanotubes for Battery Applications

    OpenAIRE

    Nordlinder, Sara

    2005-01-01

    Nanomaterials have attracted great interest in recent years, and are now also being considered for battery applications. Reducing the particle size of some electrode materials can increase battery performance considerably, especially with regard to capacity, power and rate capability. This thesis presents a study focused on the performance of such a material, vanadium oxide nanotubes, as cathode material for rechargeable lithium batteries. These nanotubes were synthesized by a sol-gel process...

  13. Nanocomposite anode materials for sodium-ion batteries

    Science.gov (United States)

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  14. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  15. Nickel-Hydrogen and Lithium Ion Space Batteries

    Science.gov (United States)

    Reid, Robert O., II

    2004-01-01

    nickel-hydrogen cell in a calorimeter to test its performance under various conditions. 1 used a program called Arbin to study my data. The Arbin allows me to look at different parameters such as pressure and time and how they affect the changing temperature of the electrolyte that is being tested. In addition, I had the responsibility of taking apart and modifying battery coolers that would be used. My mentors told me that the batteries kept shutting down, so it was my responsibility to remove excess fan grilles, rotate the fans, and then switch the aluminum standoffs with nylon ones so that the coolers could operate without problems. My last task is to collect all the battery test data and organize them into charts using Microsoft Excel, before the Branch is able to conduct its research on lithium ion batteries. Therefore, during my tenure, it is my responsibility to take down final test data

  16. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  17. Neurofibrillary pathology and aluminum in Alzheimer's disease

    OpenAIRE

    Shin, R. W.; Lee, V. M. Y; Trojanowski, J Q

    1995-01-01

    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  18. Advances in nickel hydrogen technology at Yardney Battery Division

    Science.gov (United States)

    Bentley, J. G.; Hall, A. M.

    1987-01-01

    The current major activites in nickel hydrogen technology being addressed at Yardney Battery Division are outlined. Five basic topics are covered: an update on life cycle testing of ManTech 50 AH NiH2 cells in the LEO regime; an overview of the Air Force/industry briefing; nickel electrode process upgrading; 4.5 inch cell development; and bipolar NiH2 battery development.

  19. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  20. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications t

  1. Batteries: Charging ahead rationally

    Science.gov (United States)

    Freunberger, Stefan A.

    2016-06-01

    Redox mediators facilitate the oxidation of the highly insulating discharge product in metal–oxygen batteries during recharge and offer opportunities to achieve high reversible capacities. Now a design principle for selecting redox mediators that can recharge the batteries more efficiently is suggested.

  2. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, Lucia; Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2007-01-01

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  3. Parametric design of air powered car

    Energy Technology Data Exchange (ETDEWEB)

    Sundar, T.M.; Kumar, B.P.; Suresh, R. [Tamilnadu College of Engineering, Coimbatore (India). Dept. of Mechanical Engineering

    2006-07-01

    An air-powered car was described with particular reference to its thermodynamic properties. The car was based on an external combustion engine. Air suction occurred in a piston and cylinder assembly through an air vent, where it was then compressed to higher pressures. The compressed air then entered a multi-stage reciprocating single-acting air compressor where the air was further compressed. Power for the compressor was provided by a double-battery system and a relay circuit to trigger the battery connection. Compressed air was stored in a compressed air tank and controlled by valves. The valves were controlled by a contour profile of an overhead camshift. Design specifications were included for the cylinder and cylinder liner; the pistons; the connecting rod; crank; valve gear mechanism; and the compressor. Results of the thermodynamic analysis indicated that the air-powered car is technologically feasible. 7 refs., 3 tabs., 1 fig.

  4. Thermal Stress Behavior of Aluminum Nanofilms under Heat Cycling

    International Nuclear Information System (INIS)

    In-situ thermal stress in aluminum nanofilms with silicon oxide glass (SOG) passivation was investigated by using synchrotron radiation at the SPring-8. Aluminum films of varying thickness (10, 20, 50 nm) were deposited on thermally oxidized silicon wafers by RF magnetron sputtering. Each specimen was heated in air over two cycles between room temperature and 300 deg. C. The following results were obtained: (1) {111} planes of aluminum nanofilm crystals were oriented parallel to the substrate normal; (2) the intensity of 111 diffraction was almost independent of temperature except in the case of the 50-nm-thick film; (3) the FWHM of 111 diffraction was almost independent of temperature at any given film thickness; and (4) for all films, the thermal stress varied linearly with heating temperature, and the hysteresis between the heating and cooling steps disappeared

  5. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  6. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  7. A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte.

    Science.gov (United States)

    Gao, Tao; Li, Xiaogang; Wang, Xiwen; Hu, Junkai; Han, Fudong; Fan, Xiulin; Suo, Liumin; Pearse, Alex J; Lee, Sang Bok; Rubloff, Gary W; Gaskell, Karen J; Noked, Malachi; Wang, Chunsheng

    2016-08-16

    Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite-free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg(-1) ) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx . Herein, we demonstrate the first reversible Al/S battery in ionic-liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid-state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid-state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system. PMID:27417442

  8. Preparation and Characterization of Cathode Materials for Lithium-Oxygen Batteries

    DEFF Research Database (Denmark)

    Storm, Mie Møller

    A possible future battery type is the Li-air battery which theoretically has the potential of reaching gravimetric energy densities close to those of gasoline. The Li-airbattery is discharged by the reaction of Li-ions and oxygen, drawn from the air, reacting at the battery cathode to form Li2O2....... The type of cathode material affects the battery discharge capacity and charging potential and with a carbon based cathode many questions are still unanswered. The focus of this Ph.D. project has been the synthesis of reduced graphene oxide as well as the investigation of the effect of reduced graphene...... the discharge capacity of the battery as well as the charging potential. In situ X-ray diffraction studies on carbon black cathodes in a capillary battery showed the formation of crystalline Li2O2 on the first discharge cycle, the intensity of Li2O2 on the second discharge cycle was however diminished...

  9. Lithium-Air Cell Development

    Science.gov (United States)

    Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.

    2014-01-01

    Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.

  10. Hualu Aluminum Will Construct Large Coal-Power-Aluminum Aluminum Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The reporter learned from relevant departments of Baiyin City that in order to further push forward industrial upgrading,fulfill expansion and consolidation of the enterprise,Gansu Hualu Aluminum Co.,Ltd(Hualu Aluminum)will implement Out-Of-City-Into-Park project,

  11. Aluminum Zintl anion moieties within sodium aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  12. Heat Transfer and Acoustic Properties of Open Cell Aluminum Foams

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The aluminum open cell foams have been prepared by the conventional precision casting method to investigate the thermal and acoustic properties. A water heating system and silencers were organized as a first step for its applications. The temperature increase between the top and bottom of the foam became larger as the cell size increased in the heat transfer measurement. Sound absorption ratio of the close cell foams was 60%-100%,whereas the open cell aluminum foam showed only 10%-20% of sound absorption at low frequency. When the prototype electric water heater manufactured by combining aluminum open cell foam with a heater was heated to 100-400℃, the highest temperature of water was in the range of 16-46℃. This suggests that there could be potential for this type of heater to be used as a commercial electric water heater. Sound silencer made with the aluminum open cell foam was applied to exit of exhaustion side at air pressure line. Sound silencing effect of open-celled aluminum foam showed that the noise level went down by introducing smaller cell size foam.

  13. Temperature Field Analysis and Thermal Dissipation Structure Optimization of Lithium-ion Battery Pack in PEVs

    OpenAIRE

    Hu Jianjun; Li Tao; Li Jing

    2014-01-01

    Aimed to achieve good thermal stability of lithium batteries in electric vehicles under the conditions of high-power. This study established a three-dimensional, transient heat dissipation model for Lithium-ion battery package in the three-dimensional Cartesian coordinate system based on theoretical knowledge of thermodynamics and heat transfer. With the help of the numerical simulation theoretical of CFD, the flow and temperature field of force air cooling Lithium-ion battery pack was simula...

  14. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  15. Ultrahigh vacuum system with aluminum

    International Nuclear Information System (INIS)

    A bakeable vacuum chamber (1500C continuous) consists of aluminum alloy beam pipe (6063-T6) and bellows (5052-F) with an aluminum alloy flange (2219-T87) and a metal seal [Helicoflex-HN: pure aluminum (1050) O-ring with an elastic core (Ni base super alloy Inconel 750) which supplies the sealing force] has been constructed. The beam pipe and the flange (6063-T6/2219-T87), and the bellows and the flange (5052-F/2219-T87) were welded by an alternate current (50 Hz) TIG process using an aluminum alloy filler wire (4043). The mechanical properties of the aluminum alloy (2219-T87) is suitable for using the Helicoflex O-ring but the groove surface for the gasket is weak for scratching. Cromium-nitride coating by ion plating method was carried out on the aluminum surface of the gasket groove [thickness: 16 μm, micro Vickers hardness: 1800]. Ordinary stainless steel vacuum system can be replaced by the aluminum vacuum system in an accelerator. (author)

  16. Toward a Lithium−“Air” Battery: The Effect of CO_2 on the Chemistry of a Lithium−Oxygen Cell

    OpenAIRE

    Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young; Seo, Dong-Hwa; Gwon, Hyeokjo; Hong, JiHyun; Goddard, William A.; Kim, Hyungjun; Kang, Kisuk

    2013-01-01

    Lithium–oxygen chemistry offers the highest energy density for a rechargeable system as a “lithium–air battery”. Most studies of lithium–air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a “lithium–dioxygen battery”. Consequently, the next step for the lithium–“air” battery is to understand how the reaction chemistry is affected by the constituents of ambient air. Among the components of air, CO_2 is of ...

  17. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  18. Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li−Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; García Lastra, Juan Maria; Hummelshøj, Jens S.;

    2015-01-01

    vacancies accumulate at the peroxide part of the interface during charge, reducing the coherent electron transport by two to three orders of magnitude compared with pristine Li2O2. During discharge, Li2O2@Li2CO3 interfaces may, however, provide an alternative in-plane channel for fast electron polaron...... battery. Here we apply density functional theory with the Hubbard U correction (DFT+U) and nonequilibrium Green’s function (NEGF) methods to investigate the role of Li2O2@Li2CO3 interface layers on the ionic and electronic transport properties at the oxygen electrode. We show that, for example, lithium...... hopping that could improve the electronic conductivity and ultimately increase the practical capacity in nonaqueous Li−O2 batteries....

  19. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  20. Nonlinear Dynamics Traction Battery Modeling

    OpenAIRE

    Szumanowski, Antoni

    2010-01-01

    The assumed method and effective model are very accurate according to error checking results of the NiMH and Li-Ion batteries. The modeling method is valid for different types of batteries. The model can be conveniently used for vehicle simulation because the battery model is accurately approximated by mathematical equations. The model provides the methodology for designing a battery management system and calculating the SOC. The influence of temperature on battery performance is analyzed acc...

  1. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  2. Bipolar battery construction

    Science.gov (United States)

    Rippel, Wally E. (Inventor); Edwards, Dean B. (Inventor)

    1981-01-01

    A lightweight, bipolar battery construction for lead acid batteries in which a plurality of thin, rigid, biplates each comprise a graphite fiber thermoplastic composition in conductive relation to lead stripes plated on opposite flat surfaces of the plates, and wherein a plurality of nonconductive thermoplastic separator plates support resilient yieldable porous glass mats in which active material is carried, the biplates and separator plates with active material being contained and maintained in stacked assembly by axial compression of the stacked assembly. A method of assembling such a bipolar battery construction.

  3. Gating of Permanent Molds for Aluminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-01-01

    sprue-wells should be evaluated. In order for a runner extension to operate efficiently, it must have a small squared cross-section. If it is tapered, the first metal to enter the first metal to enter the system is not effectively trapped. If the cross section is large, there is less turbulence when the aluminum enters the mold cavity in comparison to the smaller cross sectioned, squared runner. However, a large runner reduces yield. In bottom-feeding gating systems, a filter can significantly improve the filling of the casting. The filter helps to slow the metal flow rate enough to reduce jetting into the mold cavity. In top feeding gating systems, a filter can initially slow the metal flow rate, but because the metal drops after passing the filter, high velocities are achieved during free fall when a filter is in place. Side feeding gating systems provide less turbulent flow into the mold cavity. The flow is comparable to a bottom-feeding gating system with a filter. Using properly designed side-gating system instead of a bottom-feeding system with a filter can potentially save the cost of the filter. Rough coatings promote better fill than smooth coatings. This conclusion seems at first counter intuitive. One tends to assume a rough coating creates more friction resistance to the flow of molten metal. In actuality the molten aluminum stream flows inside an oxide film envelope. When this film rests on top of the ridges of a rough coating the microscopic air pockets between the coating and the oxide film provide more thermal insulation than in a smooth coating. This insulation promotes longer feeding distances in the mold as demonstrated in the experiments. Much of this work is applicable to vertically parted sand molds as well, although the heat transfer conditions do vary from a metal mold generally used in permanent molding of aluminum. The flow measurements were conducted using graphite molds and real time X-Ray radiography recorded at a rate of 30 images per

  4. Theoretical Limiting Potentials in Mg/O2 Batteries

    DEFF Research Database (Denmark)

    Smith, Jeffrey G.; Naruse, Junichi; Hiramatsu, Hidehiko;

    2016-01-01

    A rechargeable battery based on a multivalent Mg/O2 couple is an attractive chemistry due to its high theoretical energy density and potential for low cost. Nevertheless, metal-air batteries based on alkaline earth anodes have received limited attention and generally exhibit modest performance. I...

  5. Laser-initiated ordnance for air-to-air missiles

    Science.gov (United States)

    Sumpter, David R.

    1993-01-01

    McDonnell Douglas Missile Systems Company (MDMSC) has developed a laser ignition subsystem (LIS) for air-to-air missile applications. The MDMSC subsystem is designed to activate batteries, unlock fins, and sequence propulsion system events. The subsystem includes Pyro Zirconium Pump (PZP) lasers, mechanical Safe & Arm, fiber-optic distribution system, and optically activated pyrotechnic devices (initiators, detonators, and thermal batteries). The LIS design has incorporated testability features for the laser modules, drive electronics, fiber-optics, and pyrotechnics. Several of the LIS have been fabricated and have supported thermal battery testing, integral rocket ramjet testing, and have been integrated into integral rocket ramjet flight test vehicles as part of the flight control subsystem.

  6. Performance comparison of four lithium–ion battery technologies under calendar aging

    International Nuclear Information System (INIS)

    This work depicts the calendar aging results of four Li-ion battery technologies. The differences in the chemistry of Li-ion batteries was studied and revealed that cathodes containing manganese are more sensitive to state-of-charge and temperature increase than lithium–iron-phosphate or lithium–nickel–cobalt–aluminum batteries. The first step in presenting the differences in technology of the Li-ion battery is through the study of the battery voltage evolution versus the amount of charge at various states of health. This study revealed a significant increase in resistance on lithium–nickel–manganese–cobalt and lithium–manganese-oxide cells; a result which was confirmed through impedance spectroscopy measurements. Finally, a study of the comparison of the different types of Li-ion batteries was undertaken, based on the analysis of the evolution of energy efficiency with respect to aging. - Highlights: • Calendar aging results of four Li-ion battery technologies are presented. • High temperature and/or the increased state-of-charge accelerated battery aging. • We analyzed the evolution of energy efficiency with respect to aging. • Cathodes with manganese are more sensitive to SOC and temperature increase

  7. Thermal battery degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  8. Chrome - Free Aluminum Coating System

    Science.gov (United States)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  9. Battery packaging - Technology review

    Energy Technology Data Exchange (ETDEWEB)

    Maiser, Eric [The German Engineering Federation (VDMA), Battery Production Industry Group, Lyoner Str. 18, 60528 Frankfurt am Main (Germany)

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  10. Battery packaging - Technology review

    International Nuclear Information System (INIS)

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production

  11. A Virtual Aluminum Reduction Cell

    Science.gov (United States)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  12. Nanowire Electrodes for Advanced Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Lei eHuang

    2014-10-01

    Full Text Available Since the commercialization of lithium ion batteries (LIBs in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism needs to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reactions which limit the cycling performance of LIBs. Based on the in situ observations, some feasible structure architecture strategies, including prelithiation, coaxial structure, nanowire arrays and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some beyond Li-ion batteries, such as Li-S and Li-air battery, are also described.

  13. Metallography of Battery Resistance Spot Welds

    Science.gov (United States)

    Martinez, J. E.; Johannes, L. B.; Gonzalez, D.; Yayathi, S.; Figuered, J. M.; Darcy, E. C.; Bilc, Z. M.

    2015-01-01

    Li-ion cells provide an energy dense solution for systems that require rechargeable electrical power. However, these cells can undergo thermal runaway, the point at which the cell becomes thermally unstable and results in hot gas, flame, electrolyte leakage, and in some cases explosion. The heat and fire associated with this type of event is generally violent and can subsequently cause damage to the surrounding system or present a dangerous risk to the personnel nearby. The space flight environment is especially sensitive to risks particularly when it involves potential for fire within the habitable volume of the International Space Station (ISS). In larger battery packs such as Robonaut 2 (R2), numerous Li-ion cells are placed in parallel-series configurations to obtain the required stack voltage and desired run-time or to meet specific power requirements. This raises a second and less obvious concern for batteries that undergo certification for space flight use: the joining quality at the resistance spot weld of battery cells to component wires/leads and battery tabs, bus bars or other electronic components and assemblies. Resistance spot welds undergo materials evaluation, visual inspection, conductivity (resistivity) testing, destructive peel testing, and metallurgical examination in accordance with applicable NASA Process Specifications. Welded components are cross-sectioned to ensure they are free of cracks or voids open to any exterior surface. Pore and voids contained within the weld zone but not open to an exterior surface, and are not determined to have sharp notch like characteristics, shall be acceptable. Depending on requirements, some battery cells are constructed of aluminum canisters while others are constructed of steel. Process specific weld schedules must be developed and certified for each possible joining combination. The aluminum canisters' positive terminals were particularly difficult to weld due to a bi-metal strip that comes ultrasonically

  14. Electric car batteries: Avoiding the environmental drawbacks via alternative technologies

    Science.gov (United States)

    Warlimont, Hans; Olper, Marco

    1996-07-01

    In this article, we address the question of whether air pollution resulting from the pyrometallurgical winning, recycling, and casting of lead for car batteries is a serious threat to the environmental acceptability of introducing electric cars. Specifically, we describe an alternative to pyrometallurgical processes—an electrochemical process called CX-EWS that can be used for the winning and recycling of lead. Also presented is a new manufacturing route for battery grids; it employs a combination of electroforming, the codeposition of dispersoids, and the electrowinning of spent batteries. The technology cannot only eliminate the casting of conventional or expanded metal grids but can also serve to reduce battery weight and, thus, increase energy density.

  15. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  16. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  17. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  18. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  19. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  20. Used batteries - REMINDER

    CERN Multimedia

    2006-01-01

    With colder weather drawing in, it is quite likely that older car batteries will fail. On this subject, the Safety Commission wishes to remind everyone that CERN is not responsible for the disposal of used batteries from private vehicles. So please refrain from abandoning them on pavements or around or inside buildings. Used batteries can be disposed of safely, free-of-charge and without any damage to the environment at waste disposal sites (déchetteries) close to CERN in both France (Ain and Haute-Savoie) and in the Canton of Geneva in Switzerland (Cheneviers). Since the average car battery lasts a number of years, this only represents a small effort on your part over the whole lifetime of your vehicle. Most people don't need reminding that car batteries contain concentrated sulphuric acid, which can cause severe burns. Despite this, we frequently find them casually dumped in scrap metal bins! For more information, please contact R. Magnier/SC-GS 160879 We all have a responsibility for safety and th...

  1. The development of a new type of rechargeable batteries based on hybrid electrolytes.

    Science.gov (United States)

    Zhou, Haoshen; Wang, Yonggang; Li, Huiqiao; He, Ping

    2010-09-24

    Lithium ion batteries (LIBs), which have the highest energy density among all currently available rechargeable batteries, have recently been considered for use in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and pure electric vehicles (PEV). A major challenge in this effort is to increase the energy density of LIBs to satisfy the industrial needs of HEVs, PHEVs, and PEVs. Recently, new types of lithium-air and lithium-copper batteries that employ hybrid electrolytes have attracted significant attention; these batteries are expected to succeed lithium ion batteries as next-generation power sources. Herein, we review the concept of hybrid electrolytes, as well as their advantages and disadvantages. In addition, we examine new battery types that use hybrid electrolytes. PMID:20677207

  2. Apparatuses for making cathodes for high-temperature, rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Meinhardt, Kerry D.; Sprenkle, Vincent L.; Coffey, Gregory W.

    2016-09-13

    The approaches and apparatuses for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  3. Mesoporous Block Copolymer Battery Separators

    OpenAIRE

    Wong, David Tunmin

    2012-01-01

    In the past two decades, lithium-ion batteries have emerged as an increasingly important technology. They are used almost ubiquitously in laptops and cell phones because of their relatively high energy densities when compared to other battery chemistries. More recently, lithium-ion batteries have been employed in the automotive sector in both pure electric vehicles and hybrid electric vehicles. However, one of the major barriers in the widespread adoption of lithium-ion batteries in electric ...

  4. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  5. Developments in redox flow batteries

    OpenAIRE

    Tangirala, Ravichandra

    2011-01-01

    This thesis describes the investigation of the electrochemistry principles, technology, construction and composition of the electrode materials, electrolyte and additives used in redox flow batteries. The aim was to study a flow battery system with an appreciable working performance. The study explores and compares mainly three different redox flow battery technologies; all-vanadium, soluble lead-acid and a novel copper-lead dioxide flow batteries. The first system is based in sulfuric acid e...

  6. Safe battery solvents

    Science.gov (United States)

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  7. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-01

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications. PMID:23712370

  8. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-01

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  9. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles

    International Nuclear Information System (INIS)

    Thermal management especially cooling plays an important role in power battery modules for electric vehicles. In order to comprehensively understand the heat transfer characteristics of air cooling system, the air cooling numerical simulation battery models for cylindrical lithium-ion power battery pack were established in this paper, and a detailed parametric investigation was undertaken to study effects of different ventilation types and velocities, gap spacing between neighbor batteries, temperatures of environment and entrance air, amount of single row cells and battery diameter on the thermal management performance of battery pack. The results showed that the local temperature difference increased firstly and then decreased with the increase of wind speed. Reversing the air flow direction between adjacent rows is not necessarily appropriate and the gap spacing should not be too small and too large. It is prone to thermal runaway when the ambient temperature is too high, and the most suitable value of S/D (the ratio of spacing distance between neighbor cells and cell diameter) is gradually reduced along with the increase of cell diameter. - Highlights: • Air cooling models were established for cylindrical lithium-ion power battery pack. • Local temperature difference increased firstly and then decreased with wind speed. • The gap spacing size of battery pack should not be too small and too large. • It is prone to thermal runaway when the ambient temperature is too high. • The ratio of S/D is gradually reduced with the increase of cell diameter

  10. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  11. Batteries, from Cradle to Grave

    Science.gov (United States)

    Smith, Michael J.; Gray, Fiona M.

    2010-01-01

    As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…

  12. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  13. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  14. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely... additive, expressed as niacin, shall appear on the label of the food additive container or on that of...

  15. Baise to Build Ecological Aluminum Industry Base

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>The government of Baise announced the construction of an ecological aluminum industry base over the next few years,pledging to turn the city into a major aluminum industry base in China and the rest of Asia.

  16. Environmental Control over the Primary Aluminum Industry

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> To strengthen environmental control over theprimary aluminum industry,the State Environ-mental Protection Administration of China hasrecently issued a notice addressing the follow-ing points:Strengthening environmental control over theexisting primary aluminum companies

  17. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义

    2004-01-01

    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  18. OPTIMIZING AN ALUMINUM EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Mohammed Ali Hajeeh

    2013-01-01

    Full Text Available Minimizing the amount of scrap generated in an aluminum extrusion process. An optimizing model is constructed in order to select the best cutting patterns of aluminum logs and billets of various sizes and shapes. The model applied to real data obtained from an existing extrusion factory in Kuwait. Results from using the suggested model provided substantial reductions in the amount of scrap generated. Using sound mathematical approaches contribute significantly in reducing waste and savings when compared to the existing non scientific techniques.

  19. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... in the Federal Register on November 17, 2009 (74 FR 59254). At the request of the State agency and a... Employment and Training Administration Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood... Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division, including on- site...

  20. Evaluation of Aluminum in Iranian Consumed Tea

    OpenAIRE

    Alireza Asgari; Mahdi Ahmadi Moghaddam; Amirhossein Mahvi; Masoud Yonesian

    2008-01-01

    Introduction: Black tea leaf is one of the most important sources of Aluminum in dietary. Therefore this research was conducted to assess the amount of Aluminum in Iranian tea infusion. Methods: To assess Aluminum in Iranian consumed tea, 27 tea samples were analyzed for Al concentration for 10 and 60 min infusion, aluminum concentration was measured with atomic absorption and the results were analyzed by SPSS.13 version. Results: The results showed that minimum and maximum concentration of A...

  1. Mineral resource of the month: aluminum

    Science.gov (United States)

    Bray, E. Lee

    2012-01-01

    The article offers information on aluminum, a mineral resource which is described as the third-most abundant element in Earth's crust. According to the article, aluminum is the second-most used metal. Hans Christian Oersted, a Danish chemist, was the first to isolate aluminum in the laboratory. Aluminum is described as lightweight, corrosion-resistant and an excellent conductor of electricity and heat.

  2. Electrochemical Behavior of Aluminum in Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hui; ZHU; Li-yang; LIN; Ru-shan; TAN; Hong-bin; HE; Hui

    2013-01-01

    Aluminum is one of cladding materials for nuclear fuel,it is important to investigate the electrolytic dissolution of aluminum in nitric acid.The electrochemical impedance spectroscopy,polarization curve and cyclic voltammetry cure of anodic aluminum electrode in nitric acid under various conditions were collected(Fig.1).It turns out,under steady state,the thickness of the passivated film of aluminum

  3. Rechargeable lead-acid batteries.

    Science.gov (United States)

    1990-09-01

    Batteries used in medical equipment, like their counterparts in consumer products, attract little attention until they fail to function effectively. In some applications, such as in emergency medical devices, battery failure can have fatal consequences. While modern batteries are usually quite reliable, ECRI has received 53 written problem reports and countless verbal reports or questions related to battery problems in hospitals during the past five years. This large number of reports is due, at least in part, to the enormous quality of batteries used to operate or provide backup power in contemporary hospital equipment. As part of an ongoing evaluation of rehabilitation assistive equipment, ECRI has been studying the performance of 12 V rechargeable deep-cycle lead-acid batteries used in powered wheelchairs. During the course of this evaluation, it has become apparent that many professionals, both clinical and industrial, regard batteries as "black box" devices and know little about proper care and maintenance--and even less about battery selection and purchase. Because equipment performance and reliability can be strongly influenced by different battery models, an understanding of battery characteristics and how they affect performance is essential when selecting and purchasing batteries. The types of rechargeable batteries used most commonly in hospitals are lead-acid and nickel-cadmium (nicad), which we compare below; however, the guidance we provide in this article focuses on lead-acid batteries. While the examples given are for high-capacity 12 V deep-cycle batteries, similar analyses can be applied to smaller lead-acid batteries of different voltages.

  4. Guangxi Aluminum Giant Made Investment in Changfeng

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>A aluminum processing and supporting project (450,000 tons) of Hefei Guangyin Aluminum Company kicked off in Xiatang Town of Changfeng County recently. It is a project jointly invested by Guangxi Investment Group and Guangxi Baise Guangyin Aluminum in Xiatang Town of Changfeng County.

  5. 21 CFR 73.2645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements...

  6. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  7. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  8. Battery testing for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Hund, T.

    1996-11-01

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  9. Bipolar lead acid battery development

    Science.gov (United States)

    Eskra, Michael; Vidas, Robin; Miles, Ronald; Halpert, Gerald; Attia, Alan; Perrone, David

    1991-01-01

    A modular bipolar battery configuration is under development at Johnson Control, Inc. (JCI) and the Jet Propulsion Laboratory (JPL). The battery design, incorporating proven lead acid electrochemistry, yields a rechargeable, high-power source that is light weight and compact. This configuration offers advantages in power capability, weight, and volume over conventional monopolar batteries and other battery chemistries. The lead acid bipolar battery operates in a sealed, maintenance-free mode allowing for maximum application flexibility. It is ideal for high-voltage and high-power applications.

  10. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    OpenAIRE

    Burke, Andy; Zhao, Hengbing

    2010-01-01

    The use of ultracapacitors in plug-in hybrid vehicles (PHEVs) with high energy density lithium-ion and zinc-air batteries is studied. Simulations were performed for various driving cycles with the PHEVs operating in the charge depleting and charge sustaining modes. The effects of the load leveling of the power demand from the batteries using the ultracapacitors are evident. The average and the peak currents from the batteries are lower by a factor of 2-3.

  11. Preparation of Chromium Oxide Coatings on Aluminum Borate Whiskers by a Hydrothermal Deposition Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Aluminum borate whiskers (9Al2O32B2O3) can be used to reinforce aluminum alloys to produce light and strong composites. However, the adverse interfacial reactions between the whiskers and the aluminum alloys inhibit their practical uses; therefore, a protective coating is needed on whiskers. In this work, aluminum borate whiskers were coated with chromium-coating deposits in a hydrothermal solution containing CrCl3, Na2C4H4O6, NaPH2O2, and H3BO3. The presence of the impurity P in the hydrothermal deposits can be avoided by reducing the amount of NaPH2O2 in the coating solution. Thermodynamic analysis was used to discuss the behavior of ions in the coating process. The subsequent heating of the hydrothermal products in air at 800 ℃ yielded smooth Cr2O3 films with a thickness of 0.060.07 μm.

  12. 金属骨架有机多孔碳的制备及其在锂空气电池中的应用∗%Preparation of Porous Carbon Based on Metal Organic Framework and Its Application for Lithium-Air Battery

    Institute of Scientific and Technical Information of China (English)

    王先友; 宋云峰; 白艳松; 江兰兰; 舒洪波; 杨秀康; 王灏; 赵青蓝; 易兰花

    2014-01-01

    A metal organic framework porous carbon (MOF-PC)has been prepared by terephthalic acid-zinc complex (MOF-5)and employed in lithium oxygen batteries for the first time.The physical and elec-trochemical properties of the as-prepared carbon sample are investigated by powder X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM),N2 adsorption-desorption isotherm and galvanostatic charge/discharge.The results show that the as-prepared MOF-PC is amorphous structure with a specific surface area of 654 m2 ·g-1 .The lithium oxygen battery using the MOF-PC carbon black as air electrode shows a higher capacity of 3 183 mAh·g-1 at a current density of 0.1 mA·cm-2 ,it increased about 90% capacity compared to traditional Super P carbon black.%以苯二甲酸-锌配位化合物(MOF-5)为原料合成金属骨架有机多孔碳MOF-PC,并首次应用于锂空气电池.采用XRD、SEM、TEM、氮气脱吸附和恒流充放电测试研究了MOF-PC的物理及电化学性能.结果表明,样品MOF-PC为无定型碳,比表面积为654 m2·g-1.以MOF-PC为空气电极的锂空气电池在0.1 mA·cm-2电流密度下放电比容量高达3183 mAh·g-1,比传统碳材料(Super P)在相同电流密度下的容量高90%.

  13. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin

    Science.gov (United States)

    Kwon, Young-Soon; Gromov, Alexander A.; Strokova, Julia I.

    2007-04-01

    The results of investigation and analysis of electro-exploded aluminum nanopowders, whose surface were passivated with the following substances: liquids - nitrocellulose (NC), oleic acid (C 17H 33COOH) and stearic acid (C 17H 35COOH), suspended in kerosene and ethanol, fluoropolymer; solids - boron and nickel; gases - N 2, CO 2 and air (for a comparison) are discussed. The surface protection for the aluminum nanopowders by coatings of different chemical origins leads to the some advantages of the powders properties for an application in energetic systems, e.g. solid propellants and "green" propellants (Al-H 2O). Aluminum nanopowders with a protected surface showed the increased stability to oxidation in air during the storage period and higher reactivity by heating. The TEM-visual diagram of the formation and stabilization of the coatings on the particles has been proposed on the basis of experimental results. The kinetics of the interaction of aluminum nanopowders with air has been discussed. The recommendations concerning an efficiency of the protective "non-Al 2O 3" layers on aluminum nanoparticles were proposed.

  14. Extending battery life: A low-cost practical diagnostic technique for lithium-ion batteries

    Science.gov (United States)

    Merla, Yu; Wu, Billy; Yufit, Vladimir; Brandon, Nigel P.; Martinez-Botas, Ricardo F.; Offer, Gregory J.

    2016-11-01

    Modern applications of lithium-ion batteries such as smartphones, hybrid & electric vehicles and grid scale electricity storage demand long lifetime and high performance which typically makes them the limiting factor in a system. Understanding the state-of-health during operation is important in order to optimise for long term durability and performance. However, this requires accurate in-operando diagnostic techniques that are cost effective and practical. We present a novel diagnosis method based upon differential thermal voltammetry demonstrated on a battery pack made from commercial lithium-ion cells where one cell was deliberately aged prior to experiment. The cells were in parallel whilst being thermally managed with forced air convection. We show for the first time, a diagnosis method capable of quantitatively determining the state-of-health of four cells simultaneously by only using temperature and voltage readings for both charge and discharge. Measurements are achieved using low-cost thermocouples and a single voltage measurement at a frequency of 1 Hz, demonstrating the feasibility of implementing this approach on real world battery management systems. The technique could be particularly useful under charge when constant current or constant power is common, this therefore should be of significant interest to all lithium-ion battery users.

  15. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  16. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  17. Investigation of Impedance-Based Parameters in Metal-O2 Batteries for Next Generation of Battery Management Systems

    DEFF Research Database (Denmark)

    Christensen, Andreas Elkjær; Højberg, Jonathan

    2015-01-01

    , thus maintaining a high level of accuracy for the SOC estimation and state of degradation. [1] Christensen, J., Albertus, P., Sánchez-Carrera, R. S., Lohmann, T., Kozinsky, B., Liedtke, R., et al. (2012). A Critical Review of Li/Air Batteries. Journal of the Electrochemical Society, 159(2), R1. doi:10......-of-health of lithium-ion batteries. Applied Energy, 86(9), 1506–1511. doi:10.1016/j.apenergy.2008.11.021 [4] McCloskey, B. D., Garcia, J. M., & Luntz, A. C. (2014). Chemical and Electrochemical Differences in Nonaqueous Li–O 2and Na–O2 Batteries. The Journal of Physical Chemistry Letters, 5(7), 1230–1235. doi:10.......1021/jz500494s [5] Shiga, T., Hase, Y., Kato, Y., Inoue, M., & Takechi, K. (2013). A rechargeable non-aqueous Mg–O2 battery. Chemical Communications, 49(80), 9152–9154. doi:10.1039/c3cc43477j [6] Revel, R., Audichon, T., & Gonzalez, S. (2014). Non-aqueous aluminium-air battery based on ionic liquid...

  18. Cathode architectures for alkali metal / oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  19. Ballistic Experiments with Titanium and Aluminum Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gogolewski, R.; Morgan, B.R.

    1999-11-23

    During the course of the project we conducted two sets of fundamental experiments in penetration mechanics in the LLNL Terminal Ballistics Laboratory of the Physics Directorate. The first set of full-scale experiments was conducted with a 14.5mm air propelled launcher. The object of the experiments was to determine the ballistic limit speed of 6Al-4V-alloy titanium, low fineness ratio projectiles centrally impacting 2024-T3 alloy aluminum flat plates and the failure modes of the projectiles and the targets. The second set of one-third scale experiments was conducted with a 14.5mm powder launcher. The object of these experiments was to determine the ballistic limit speed of 6Al-4V alloy titanium high fineness ratio projectiles centrally impacting 6Al-4V alloy titanium flat plates and the failure modes of the projectiles and the target. We employed radiography to observe a projectile just before and after interaction with a target plate. Early on, we employed a non-damaging ''soft-catch'' technique to capture projectiles after they perforated targets. Once we realized that a projectile was not damaged during interaction with a target, we used a 4-inch thick 6061-T6-alloy aluminum witness block with a 6.0-inch x 6.0-inch cross-section to measure projectile residual penetration. We have recorded and tabulated below projectile impact speed, projectile residual (post-impact) speed, projectile failure mode, target failure mode, and pertinent comments for the experiments. The ballistic techniques employed for the experiments are similar to those employed in an earlier study.

  20. Behaviour of aluminum foam under fire conditions

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2008-07-01

    Full Text Available Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1. Figure 1 presents the relationship graphically. Boundary values of the vs content resulting from the above relationship is too low, taking into account the data obtained from the technology of suspension composites [4]. Therefore, based on the structure assumed for the suspension shown in Figure 2 these authors proposed another way of determining the contents, the value of which is determined by the relationship (3 [5].For purposes of the experimental study presented in the paper two foams have been molten: a commercially available one, made by aluminum foaming with titanium hydride, and a foam manufactured in the Marine Materials Plant of the Maritime University of Szczecin by blowing the AlSi7 +20% SiC composite with argon. Macrophotographs of foam cross-sections are shown in Figure 3. The foams have been molten in the atmosphere of air at a temperature of 750ºC. The products of melting are presented in Figure 4. It appears that molten aluminum foam may have no liquid consistency, being unable to flow, which is a desired property from the point of view of fire-protection. The above feature of the molten foam results from the fact that it may be a discontinuous suspension of solid particles in a liquid metal. The suspended particles may be solid particles of the composite that served for making the foam or oxide membranes formed on extended metal surface of the bubbles included in the foam. The desired foam ability to form a discontinuous suspension after melting may be

  1. Graphene supported heterogeneous catalysts for Li-O2 batteries

    Science.gov (United States)

    Alaf, M.; Tocoglu, U.; Kartal, M.; Akbulut, H.

    2016-09-01

    In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO2/graphene, (iii) Pt/graphene (iv) α-MnO2/Pt/graphene composite cathodes for Li-air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N2 adsorption-desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li-air batteries.

  2. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    Energy Technology Data Exchange (ETDEWEB)

    Andrew W. Wang

    2002-01-01

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is shown below: 2H{sub 2} + CO = CH{sub 3}OH; 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O; H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a

  3. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    Energy Technology Data Exchange (ETDEWEB)

    Andrew W. Wang

    2002-05-15

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is: 2H{sub 2} + CO = CH{sub 3}OH 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a scaleup project

  4. Modular Battery Charge Controller

    Science.gov (United States)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell

  5. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.

    Science.gov (United States)

    Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Andrew, Michael E

    2006-03-01

    Personal and area samples for airborne lead were taken at a lead mine concentrator mill, and at a lead-acid battery recycler. Lead is mined as its sulfidic ore, galena, which is often associated with zinc and silver. The ore typically is concentrated, and partially separated, on site by crushing and differential froth flotation of the ore minerals before being sent to a primary smelter. Besides lead, zinc and iron are also present in the airborne dusts, together with insignificant levels of copper and silver, and, in one area, manganese. The disposal of used lead-acid batteries presents environmental issues, and is also a waste of recoverable materials. Recycling operations allow for the recovery of lead, which can then be sold back to battery manufacturers to form a closed loop. At the recycling facility lead is the chief airborne metal, together with minor antimony and tin, but several other metals are generally present in much smaller quantities, including copper, chromium, manganese and cadmium. Samplers used in these studies included the closed-face 37 mm filter cassette (the current US standard method for lead sampling), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. The filters were analyzed after sampling for their content of the various metals, particularly lead, that could be analyzed by the specific portable X-ray fluorescence (XRF) analyzer under study, and then were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 25 mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37 mm filters. For lead at the mine concentrate mill, all five samplers gave good correlations (r2 > 0.96) between the two analytical methods over the entire range of found lead mass

  6. Electrodeposition of aluminum on aluminum surface from molten salt

    Institute of Scientific and Technical Information of China (English)

    Wenmao HUANG; Xiangyu XIA; Bin LIU; Yu LIU; Haowei WANG; Naiheng MA

    2011-01-01

    The surface morphology,microstructure and composition of the aluminum coating of the electrodeposition plates in AlC13-NaC1-KC1 molten salt with a mass ratio of 8:1:1 were investigated by SEM and EDS.The binding force was measured by splat-cooling method and bending method.The results indicate that the coatings with average thicknesses of 12 and 9 μm for both plates treated by simple grinding and phosphating are compacted,continuous and well adhered respectively. Tetramethylammonium chloride (TMAC) can effectively prevent the growth of dendritic crystal,and the anode activation may improve the adhesion of the coating. Binding force analysis shows that both aluminum coatings are strongly adhered to the substrates.

  7. A battery element

    Energy Technology Data Exchange (ETDEWEB)

    Vatanabe, U.; Aoki, K.; Ito, K.; Ogava, K.; Okadzaki, R.

    1983-07-29

    An anode made of a light metal is used in the element, along with an anhydrous liquid electrolyte and a cathode made of CuC12(CFn)x or another material. The current tap of the anode is made from aluminum, gold, silver or another metal of the platinum group and the current tap may be coated with this metal. The thickness of the coating is 0.1 to 1 micrometer. The element has a long storage life.

  8. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  9. Efficiently photo-charging lithium-ion battery by perovskite solar cell.

    Science.gov (United States)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-27

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  10. Efficiently photo-charging lithium-ion battery by perovskite solar cell.

    Science.gov (United States)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  11. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to... Battery and Battery Systems--Small and Medium Size DATES: The meeting will be held October 1-3, 2013,...

  12. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    identified as the primary factor that accelerates dross formation specifically in the transition from two phases to three phase growth. Limiting magnesium oxidation on the surface of molten aluminum therefore becomes the key to minimizing melt loss, and technology was developed to prevent magnesium oxidation on the aluminum surface. This resulted in a lot of the work being focused on the control of Mg oxidation. Two potential molten metal covering agents that could inhibit dross formation during melting and holding consisting of boric acid and boron nitride were identified. The latter was discounted by industry as it resulted in Boron pick up by the melt beyond that allowed by specifications during plant trials. The understanding of the kinetics of dross formation by the industry partners helped them understand how temperature, alloy chemistry and furnace atmosphere (burner controls--e.g. excess air) effected dross formation. This enables them to introduce in their plant process changes that reduced unnecessary holding at high temperatures, control burner configurations, reduce door openings to avoid ingress of air and optimize charge mixes to ensure rapid melting and avoid excess oxidation.

  13. Versatile and Rapid Plasma Heating Device for Steel and Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, G.S.

    2006-03-14

    The main objective of the research was to enhance steel and aluminum manufacturing with the development of a new plasma RPD device. During the project (1) plasma devices were manufactured (2) testing for the two metals were carried out and (3) market development strategies were explored. Bayzi Corporation has invented a Rapid Plasma Device (RPD) which produces plasma, comprising of a mixture of ionized gas and free electrons. The ions, when they hit a conducting surface, deposit heat in addition to the convective heat. Two generic models called the RPD-Al and RPD-S have been developed for the aluminum market and the steel market. Aluminum melting rates increased to as high as 12.7 g/s compared to 3 g/s of the current industrial practice. The RPD melting furnace operated at higher energy efficiency of 65% unlike most industrial processes operating in the range of 13 to 50%. The RPD aluminum melting furnace produced environment friendly cleaner melts with less than 1% dross. Dross is the residue in the furnace after the melt is poured out. Cast ingots were extremely clean and shining. Current practices produce dross in the range of 3 to 12%. The RPD furnace uses very low power ~0.2 kWh/Lb to melt aluminum. RPDs operate in one atmosphere using ambient air to produce plasma while the conventional systems use expensive gases like argon, or helium in air-tight chambers. RPDs are easy to operate and do not need intensive capital investment. Narrow beam, as well as wide area plasma have been developed for different applications. An RPD was developed for thermal treatments of steels. Two different applications have been pursued. Industrial air hardening steel knife edges were subjected to plasma beam hardening. Hardness, as measured, indicated uniform distribution without any distortion. The biggest advantage with this method is that the whole part need not be heated in a furnace which will lead to oxidation and distortion. No conventional process will offer localized

  14. Rapid hardening induced by electric pulse annealing in nanostructured pure aluminum

    DEFF Research Database (Denmark)

    Zeng, Wei; Shen, Yao; Zhang, Ning;

    2012-01-01

    Nanostructured pure aluminum was fabricated by heavy cold-rolling and then subjected to recovery annealing either by applying electric pulse annealing or by traditional air furnace annealing. Both annealing treatments resulted in an increase in yield strength due to the occurrence of a “dislocation...

  15. New developments in the Electric Fuel Ltd. zinc/air system

    Science.gov (United States)

    Goldstein, Jonathan; Brown, Ian; Koretz, Binyamin

    Electric Fuel Ltd. is engaged in the design, development and commercialization of its proprietary zinc/air battery technology for electric vehicles, consumer electronic products and defence applications. To meet the challenging requirements for propelling an all-electric bus, the Vehicle Division sought a unique solution: an all electric battery-battery hybrid propulsion system. The high energy zinc/air battery is coupled with a high-power auxiliary battery. The combined system offers zero emission, high power and long range in an economically viable package. The consumer battery group has developed a high power primary zinc/air cell aimed at cellular phone users, offering extended use, convenience and low cost.

  16. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, ...

  17. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    Science.gov (United States)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  18. Battery charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  19. The nuclear battery

    Science.gov (United States)

    Kozier, K. S.; Rosinger, H. E.

    The evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery is reviewed. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work.

  20. Composite battery separator

    Science.gov (United States)

    Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)

    1987-01-01

    A composite battery separator comprises a support element (10) having an open pore structure such as a ribbed lattice and at least one liquid permeable sheet (20,22) to distribute the compressive force evenly onto the surfaces of the layers (24, 26) of negative active material and positive active material. In a non-flooded battery cell the compressible, porous material (18), such as a glass mat which absorbs the electrolyte, is compressed into a major portion of the pores or openings (16) in the support element. The unfilled pores in the material (18) form a gas diffusion path as the channels (41) formed between adjacent ribs in the lattice element (30,36). Facing two lattice elements (30, 31) with acute angled cross-ribs (34, 38) facing each other prevents the elements from interlocking and distorting a porous, separator (42) disposed between the lattice elements.