WorldWideScience

Sample records for aluminosilicates nox reduction

  1. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and O2. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNOx by addition of NOx storage compounds to the electrodes. Two different composite electrodes, La0.85Sr0.15MnO3-δ-Ce0.9Gd0.1O1.95 (LSM15-CGO10) and La0.85Sr0.15FeO3-δ-Ce0.9Gd0.1O......1.95 (LSF15-CGO10), have been investigated in combination with three different NOx storage compounds: BaO, K2O and MnOx. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy...

  2. Sustained Low Temperature NOx Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Yuhui

    2017-04-05

    Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oC range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to

  3. Nox reduction in the sintering process

    Institute of Scientific and Technical Information of China (English)

    Yan-guang Chen; Zhan-cheng Guo; Zhi Wang; Gen-sheng Feng

    2009-01-01

    A new process, NOx reduction with recycling flue gas and modifying coke breeze, was proposed. The effects of modified coke breeze and recycled flue gas on NOx reduction were investigated by sinter pot tests. The results show that the NOx reduction rate is over 10wt% in the sintering of modified coke breeze, the effects of the additives on NOx reduction are: CeO2CaOK2CO3.The NOx reduction rate increases with the amount of recycled flue gas, and is 22.35wt% in the sintering with recycling 30vo1% of the flue gas. When 30vo1% of the flue gas is recycled into the sintering of CeO2, CaO, and K2CO3 modified coke breeze, the NOx reduc-tion rates are 36.10wt%, 32.56wt%, and 32.17wt%, respectively.

  4. Full-scale NOx reduction experiments at Norcem Brevik

    OpenAIRE

    Bregge, Christine

    2015-01-01

    The NOx reduction system installed at Norcem Brevik is based on the SNCR technology. It was installed in 2012 and substantial reduction of NOx has been achieved. However, it has never been performed experiments or optimizations of the system. SNCR technology is based on injection of a nitrogen-containing reduction agent, in this case ammonium hydroxide, to reduce the NOx concentration within the required temperature range, 1100-1400K (827-1127oC). The developed experiments were based on fi...

  5. NOx reduction by ozone injection and direct plasma treatment

    DEFF Research Database (Denmark)

    Stamate, Eugen; Salewski, Mirko

    2012-01-01

    NOx reduction by ozone injection and direct plasma treatment is investigated for different process parameters in a 6 m long serpentine reactor. Several aspects including the role of mixing scheme, water vapours, steep temperature gradient and time dependet NOx levels are taken into consideration....... The process chemistry is monitored by FTIR, chemiluminiscence and absorbtion spectroscopy. The kinetic mechanism is also investigated in 3D simulations....

  6. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    Science.gov (United States)

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  7. Low-cost carbon pellets for NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Soriano-Mora; A. Bueno-Lopez; A. Garcia-Garcia; R. Perry; C.E. Snape [University of Alicante (Spain). Department of Inorganic Chemistry

    2005-07-01

    Carbonaceous materials have been proposed as potential inexpensive reducing agents for NOx reduction under suitable operating conditions. Potassium has been found to be an effective catalyst in the C-NOx reaction at sufficiently high concentration. In the current work it was decided to explore low-cost carbon precursors for their suitability for NOx reduction, and to incorporate them in pellets rather than briquettes. The much greater surface area afforded by pellets should allow them to be used to better effect in removing NOx from flue gases passing through a fixed bed. The feedstocks selected included bituminous coal, high- and medium-temperature cokes, petroleum coke, anthracite, scrap tyre pyrolysis char and power station PFA. Cashew nut shell liquid (CNSL) was used as a binder, as it can be heat-cured per se at ca. 275{sup o}C, with little loss in volatile matter. To test their propensity to reduce NOx in flue gas, 10g samples of pellets were heated in a reactor at 325 - 350{sup o}C in a 2 dm{sup 3}/min flow of gas comprising 2000 ppmv NO, 5% oxygen with nitrogen as the balance. A selectivity factor was then calculated for each pellet sample and test condition, which defines the proportion of carbon consumed in reducing NOx relative to its combustion with oxygen. The results show that constant levels of NOx reduction are kept after 2 hours of reaction, being the consumption of O{sub 2} hardly appreciable, leading to satisfactory values of selectivity factor. This parameter is highly dependent on potassium content of the samples following all stages of heat treatment. The highest selectivity of ca. 0.4 was obtained for the carbonised bituminous coal and this was comparable to that achieved for briquettes from earlier studies. (Abstract only).

  8. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  9. Electrochemical NOx reduction on an LSM/CGO symmetric cell modified by NOx adsorbents

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    nitrate reduction. The cell with the BaO/Pt/Al2O3 layer exhibited a preferable performance at low temperatures (350 and 400 °C) and low voltages (1.5 to 2 V) due to the NO oxidation ability of the Pt catalyst, although its performance was relatively poor at elevated temperatures and voltages due......This study investigated the effect of modifying a (La0.85Sr0.15)0.99MnO3 (LSM)/Ce0.9Gd0.1O1.95 (CGO) symmetric cell by NOx adsorbents on the electrochemical reduction of NOx under O2-rich conditions. The modification was based on a full ceramic cell structure without any noble metals. Three cells...... were prepared and tested: a blank cell, a cell impregnated with BaO, and a cell coated with a BaO/Pt/Al2O3 layer. The electrochemical reduction of NOx on the three cells was studied by conversion measurement, degradation testing, and microstructure characterization. The modification, either...

  10. Direct plasma NOx reduction using single surface dielectric barrier discharge

    DEFF Research Database (Denmark)

    Kroushawi, Feisal; Stamate, Eugen

    2014-01-01

    NOx reduction using direct atmospheric barrier discharge in air-NO mixture at different voltages and flow rates is inversigated. Reduction rate of 80% is achieved at 3.18 W/cm2 power density and gas mixture of 20 slm air and 0.006 slm NO. The ozone for NO reduction is produced by a honeycomb stru...... structured DBD with a total surface of 12.56 cm2. The reduction process is investigated by FTIR spectroscopy, chemiluminsecence, mass spectrometry and optical emission spectroscopy....

  11. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  12. Low-cost carbon pellets for NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Mora, J.M.; Bueno-Lopez, A.; Garcia-Garcia, A.; Perry, R.; Snape, C.E. [University of Alicante, Alicante (Spain)

    2005-07-01

    Various low-cost carbon precursors were examined for their suitability and selectivity towards NOx reduction. The carbon feedstocks selected included bituminous coal, high- and medium-temperature cokes, petroleum coke, anthracite, scrap tyre pyrolysis char and power station PFA. Cashew nut shell liquid (CNSL) was the binder. Pellets were prepared from a solid mixture containing 65 mass % of air-dried carbon feedstock crushed to {lt} 0.5 mm, 30% potassium hydroxide milled to {lt}0.2 mm and 5% CNSL. To test their propensity to reduce NOx in flue gas, 10 g samples of pellets were heated in a reactor at 325-350{sup o}C in a 2 dm{sup 3}/min flow of gas comprising 2000 ppmv NO, 5% oxygen with nitrogen as the balance. The reduction in NOx and O{sub 2} conversion were measured on-line together with CO{sub 2} and CO evolution. A selectivity factor was then calculated for each pellet sample and test condition, which defines the proportion of carbon consumed in reducing NOx relative to its combustion with oxygen. The results show that constant values of NOx reduction are kept after 2 hours of reaction leading to satisfactory values of selectivity factor. This parameter is highly dependent on potassium content of the samples following all stages of heat treatment. Final potassium content is itself obviously dependent on the loss in mass experienced by the pellets during heat treatment, but measured potassium contents were without exception higher than those attributable to volatile losses alone, suggesting that there was alkali-induced activation occurring resulting in some of the carbon being consumed during carbonisation. The highest selectivity of around 0.4 was obtained for the carbonised bituminous coal. 3 refs., 1 fig., 1 tab.

  13. Chemically enhanced biological NOx removal from flue gases : nitric oxide and ferric EDTA reduction in BioDeNox reactors

    NARCIS (Netherlands)

    Maas, van der P.M.F.

    2005-01-01

    The emission of nitrogen oxides (NOx) to the atmosphere is a major environmental problem. To abate NOx emissions from industrial flue gases, to date, mainly chemical processes like selective catalytic reduction (SCR) are applied. All these processes require high temperatures (>300 °C) and expensi

  14. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  15. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  16. SSZ-52, a zeolite with an 18-layer aluminosilicate framework structure related to that of the DeNOx catalyst Cu-SSZ-13.

    Science.gov (United States)

    Xie, Dan; McCusker, Lynne B; Baerlocher, Christian; Zones, Stacey I; Wan, Wei; Zou, Xiaodong

    2013-07-17

    A new zeolite (SSZ-52, |(C14H28N)6Na6(H2O)18|[Al12Si96O216]), related to the DeNOx catalyst Cu-SSZ-13 (CHA framework type), has been synthesized using an unusual polycyclic quaternary ammonium cation as the structure-directing agent. By combining X-ray powder diffraction (XPD), high-resolution transmission electron microscopy (HRTEM) and molecular modeling techniques, its porous aluminosilicate framework structure (R3m, a = 13.6373(1) Å, c = 44.7311(4) Å), which can be viewed as an 18-layer stacking sequence of hexagonally arranged (Si,Al)6O6 rings (6-rings), has been elucidated. The structure has a three-dimensional 8-ring channel system and is a member of the ABC-6 family of zeolites (those that can be described in terms of 6-ring stacking sequences) like SSZ-13, but it has cavities that are twice as large. The code SFW has been assigned to this new framework type. The large cavities contain pairs of the bulky organic cations. HRTEM and XPD simulations show that stacking faults do occur, but only at the 5-10% level. SSZ-52 has considerable potential as a catalyst in the areas of gas conversion and sequestration.

  17. NOx from cement production - reduction by primary measures

    DEFF Research Database (Denmark)

    Jensen, Lars Skaarup

    1999-01-01

    cement production processes cement is typically produced by thermally treating a mixture of limestone and clay minerals in kiln systems consisting of a rotary kiln and a calciner. Clinker burning at a temperature of about 1450 °C takes place in the internally fired rotary kiln and calcination, which...... is the most energy demanding process, takes place at lower temperature in the calciner. When dealing with NOx from solid fuel combustion it is important to consider reactions of volatile contents and char separately.Chapter 4 presents an overview of NOx from cement production. Thermal NOx dominates from......, calciner operation, fuel properties and on the NOx level from the rotary kiln. The low-NOx calciner types presently marketed are based on combinations of reburning, air staging and temperature control and seem equivalent in their ability to restrict NOx formation. If fuels with a significant volatile...

  18. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    Science.gov (United States)

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications.

  19. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    It is challenging to reduce the nitrogen oxides (NOx) in diesel engine exhaust due to the inhibiting effect of excess oxygen. In this study, a novel electrochemical deNOx system was developed, which eliminated the need for additional reducing materials or a sophisticated controlling system as used...... in current diesel after-treatment techniques. The electrochemical system consisted of an electrochemical cell modified with NOx adsorbents and a diesel oxidation catalyst placed upstream of the cell. The system offers highly selective NOx reduction and a strong resistance to oxygen interference with almost...

  20. Mechanistic Investigation of the Reduction of NOx over Pt- and Rh-Based LNT Catalysts

    Directory of Open Access Journals (Sweden)

    Lukasz Kubiak

    2016-03-01

    Full Text Available The influence of the noble metals (Pt vs. Rh on the NOx storage reduction performances of lean NOx trap catalysts is here investigated by transient micro-reactor flow experiments. The study indicates a different behavior during the storage in that the Rh-based catalyst showed higher storage capacity at high temperature as compared to the Pt-containing sample, while the opposite is seen at low temperatures. It is suggested that the higher storage capacity of the Rh-containing sample at high temperature is related to the higher dispersion of Rh as compared to Pt, while the lower storage capacity of Rh-Ba/Al2O3 at low temperature is related to its poor oxidizing properties. The noble metals also affect the catalyst behavior upon reduction of the stored NOx, by decreasing the threshold temperature for the reduction of the stored NOx. The Pt-based catalyst promotes the reduction of the adsorbed NOx at lower temperatures if compared to the Rh-containing sample, due to its superior reducibility. However, Rh-based material shows higher reactivity in the NH3 decomposition significantly enhancing N2 selectivity. Moreover, formation of small amounts of N2O is observed on both Pt- and Rh-based catalyst samples only during the reduction of highly reactive NOx stored at 150 °C, where NOx is likely in the form of nitrites.

  1. Simultaneous reduction of particulate matter and NO(x) emissions using 4-way catalyzed filtration systems.

    Science.gov (United States)

    Swanson, Jacob J; Watts, Winthrop F; Newman, Robert A; Ziebarth, Robin R; Kittelson, David B

    2013-05-07

    The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device.

  2. Fundamental limits on gas-phase chemical reduction of NOx in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    In the plasma, the electrons do not react directly with the NOx molecules. The electrons collide mainly with the background gas molecules like N{sub 2}, O{sub 2} and H{sub 2}O. Electron impact on these molecules result partly in dissociation reactions that produce reactive species like N, O and OH. The NOx in the engine exhaust gas initially consist mostly of NO. The ground state nitrogen atom, N, is the only species that could lead to the chemical reduction of NO to N{sub 2}. The O radical oxidizes NO to NO{sub 2} leaving the same amount of NOx. The OH radical converts NO{sub 2} to nitric acid. Acid products in the plasma can easily get adsorbed on surfaces in the plasma reactor and in the pipes. When undetected, the absence of these oxidation products can often be mistaken for chemical reduction of NOx. In this paper the authors will examine the gas-phase chemical reduction of NOx. They will show that under the best conditions, the plasma can chemically reduce 1.6 grams of NOx per brake-horsepower-hour [g(NOx)/bhp-hr] when 5% of the engine output energy is delivered to the plasma.

  3. Combining nonthermal plasma with perovskite-like catalyst for NOx storage and reduction.

    Science.gov (United States)

    Peng, Han Hsuan; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2016-10-01

    A new NOx storage and reduction (NSR) system is developed for NOx removal by combining perovskite-like catalyst with nonthermal plasma technology. In this hybrid system, catalyst is mainly used for oxidizing NO to NO2 and storing them, while nonthermal plasma is applied as a desorption-reduction step for converting NOx into N2. An innovative catalyst with a high NOx storage capacity and good reduction performance is developed by successive impregnation. The catalysts prepared with various metal oxides were investigated for NOx storage capacity (NSC) and NOx conversion. Characterization of the catalysts prepared reveals that addition of cobalt (Co) and potassium (K) considerably increases the performance for NSC. Results also show that SrKMn0.8Co0.2O4 supported on BaO/Al2O3 has good NSC (209 μmol/gcatalyst) for the gas stream containing 500 ppm NO and 5 % O2 with N2 as carrier gas. For plasma reduction process, NOx conversion achieved with SrKMn0.8Co0.2O4/BaO/Al2O3 reaches 81 % with the applied voltage of 12 kV and frequency of 6 kHz in the absence of reducing agents. The results indicate that performance of plasma reduction process (81 %) is better than that of thermal reduction (64 %). Additionally, mixed gases including 1 % CO, 1 % H2 and 1 % CH4, and 2 % H2O(g) are simultaneously introduced into the system to investigate the effect on NSR with plasma system and results indicate that performance of NSR with plasma can be enhanced. Overall, the hybrid system is promising to be applied for removing NOx from gas streams. Graphical abstract ᅟ.

  4. Importance of NOx control for peak ozone reduction in the Pearl River Delta region

    Science.gov (United States)

    Li, Ying; Lau, Alexis K. H.; Fung, Jimmy C. H.; Zheng, Junyu; Liu, Shawchen

    2013-08-01

    As major air pollutants and key precursors of several secondary air pollutants, nitrogen oxide (NOx) emissions are regulated in many countries. However, NOx control increases ozone concentrations when the ozone formation regime is volatile organic compound (VOC) limited. Although many studies have shown that NOx regulation reduces ozone levels over the long term, it is still of concern that NOx regulation increases short-term ozone levels in metropolitan regions, where ozone formation is found to be predominantly VOC-limited. The Pearl River Delta (PRD) in China is such a region. Our modeling sensitivity study shows that while NOx reduction in the PRD region may raise the mean ozone concentration, it can also decrease peak ozone levels. Similar changes are observed in the NOx and ozone data of the PRD regional air quality monitoring network (2006-2012), lending further credence to our results. In the model, this NOx control effect is a result of the complicated spatial and diurnal variations of the ozone formation regime. In most of the PRD region, the formation regime is VOC-limited in the morning and becomes NOx-limited during peak ozone hours. Although some areas are always VOC-limited, their ozone concentrations are relatively low, and the ozone increases caused by NOx reduction generally do not cause higher ozone levels than the region's original ozone maxima. Several control scenarios are simulated to evaluate the effects of various possible control regulations. Our results show that in addition to VOC control, NOx control can be effective for reducing peak ozone concentrations in the PRD region.

  5. Cofiring coal-water slurry fuel with pulverized coal as a NOx reduction strategy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1997-12-31

    A low solids, low viscosity coal-water slurry fuel (CWSF) was formulated and produced from impounded bituminous coal fines and burned in a utility-scale boiler to investigate NOx emissions reduction during the cofiring of CWSF with pulverized coal. Tests were conducted at the Pennsylvania Electric Company (Penelec) Seward Station, located near Seward, Pennsylvania in a Babcock and Wilcox (B and W), front-wall fired, pulverized coal boiler (34 MWe). Two B and W pulverizers feed coal to six burners (two burner levels each containing three low-NOx burners). Approximately 20% of the thermal input was provided by CWSF, the balance by pulverized coal. There was a significant reduction of NOx emissions when cofiring CWSF and pulverized coal as compared to firing 100% pulverized coal. The level of reduction was dependent upon the cofiring configuration (i.e., cofiring in the upper three, lower three, or all six burners), with NOx emissions being reduced by as much as 26.5%. The reduction in NOx emissions was not due to the tempering effect of the water in the CWSF, because a greater reduction in NOx occurred when cofiring CWSF than when injecting the same quantity of water at the same boiler firing rate. This paper discusses the tests in detail and the proposed reburn mechanism for the NOx reduction. In addition, combustion test results from the front-wall fired unit at the Seward Station will be compared to CWSF cofire tests that have been conducted at cyclone-fired units at Tennessee Valley Authority`s (TVA) Paradise Station (704 MWe), Drakesboro, Kentucky and Southern Illinois Power Cooperative`s (SIPC) Marion, Illinois Station (33 MWe).

  6. Kinetic Study of Co-β-Zeolite for Selective Catalytic Reduction of NOx with Propane

    Institute of Scientific and Technical Information of China (English)

    毛树红; 王润平; 池永庆; 王艳; 张清华; 丛燕青

    2011-01-01

    The effects of grain size, space velocity, temperature and reactant concentration on the kinetics of NOx reduction with propane over Co-β-zeolite catalyst were investigated. The external mass transfer phenomenon was examined by varying the space velocity. The results show that the transfer can be negligible when the space velocity is greater than 60000 h-1 in low temperature range. However, the transfer exists at high temperatures even when the space velocity reaches a high level.Variation of the catalyst grain size from 0.05 to 0.125 mm does not change the conversion rate of NOx. The concentrations of components, NOx, C3H8 and O2, were also investigated to have a better understanding of mechanism. Based on the experimental data, the selectivity formula was proposed. The results shows that lower temperature is helpful to get higher selectivity as the activation energy of hydrocarbon oxidation, Ea,2, is greater than that of NOx reduction, Ea,1, (Ea,2>Ea,l). High NOx concentration and low C3H8 concentration are beneficial to high selectivity. However in order to maintain high activity simultaneously, the temperature and C3H8 concentration should be high enough to promote NOx reduction. 10%(φ) H2O and 75×i0-6(φ) SO2 were introduced into the reaction system, and Co-β-zeolite shows strong resistance to water and SO2.

  7. Low-temperature NOx reduction processes using combined systems of pulsed corona discharge and catalysts

    Science.gov (United States)

    Kim, H. H.; Takashima, K.; Katsura, S.; Mizuno, A.

    2001-02-01

    In this paper, we will report NOx removal via reduction processes using two types of combined system of pulse corona discharge and catalysts: the single-stage plasma-driven catalyst (PDC) system, and the two-stage plasma-enhanced selective catalytic reduction (PE-SCR) system. Several catalysts, such as γ-alumina catalysts, mechanically mixed catalysts of γ-alumina with BaTiO3 or TiO2, and Co-ZSM-5 were tested. In the PDC system, which is directly activated by the discharge plasma, it was found that the use of additives was necessary to achieve NOx removal by reduction. Removal rates of NO and NOx were linearly increased as the molar ratio of additive to NOx increased. The dependence of NO and NOx removal on the gas hourly space velocity (GHSV) at a fixed specific input energy (SIE) indicates that plasma-induced surface reaction on the catalyst plays an important role in the PDC system. It was found that the optimal GHSV of the PDC system with the γ-alumina catalyst was smaller than 6000 h-1. Mechanical mixing of γ-alumina with BaTiO3 or TiO2 did not enhance NO and NOx removal and γ-alumina alone was found to be the most suitable catalyst. The dielectric constant of the catalyst only influenced the plasma intensity, not the NOx removal. In the PE-SCR system, plasma-treated NOx (mostly NO2) was reduced effectively with NH3 over the Co-ZSM-5 catalyst at a relatively low temperature of 150 °C. Under optimal conditions the energy cost and energy yield were 25 eV/molecule and 21 g-N (kWh)-1, respectively.

  8. A Novel Cu-Mo/ZSM-5 Catalyst for NOx Catalytic Reduction with Ammonia

    Institute of Scientific and Technical Information of China (English)

    Zhe Li; Dang Li; Wei Huang; Kechang Xie

    2005-01-01

    The Cu-Mo/ZSM-5 catalysts with different Cu/Mo ratios were prepared by wet impregnation method, and their catalytic performance for selective catalytic reduction of NOx was studied. The results showed that Cu-Mo/ZSM-5 is a very effective catalyst for NOx catalytic reduction with ammonia, especially when Cu/Mo molar ratio is about 1.5. It not only exhibited the extremely high catalytic activity, but also showed good stability for O2. The bulk phase structure of Cu-Mo/ZSM-5 catalysts was determined by XRD technique, and the results indicated that there is a maximum dispersion for Cu species when Cu/Mo molar ratio is 1.5, and an interaction between Cu and Mo along with HZSM-5 may be present in Cu-Mo/ZSM-5, which may possibly result in a special structure favorable for the catalytic reduction of NOx over Cu-Mo/ZSM-5 catalyst.

  9. Novel fluidized bed reactor for integrated NO(x) adsorption-reduction with hydrocarbons.

    Science.gov (United States)

    Yang, Terris T; Bi, Hsiaotao T

    2009-07-01

    In order to avoid the negative impact of excessive oxygen in the combustion flue gases on the selectivity of most hydrocarbon selective catalytic reduction (HC-SCR) catalysts, an integrated NO(x) adsorption-reduction process has been proposed in this study for the treatment of flue gases under lean burn conditions by decoupling the adsorption and reduction into two different zones. The hypothesis has been validated in a novel internal circulating fluidized bed (ICFB) reactor using Fe/ZSM-5 as the catalyst and propylene as the reducing agent. Effects of propylene to the NO(x) molar ratio, flue gas oxygen concentration, and gas velocity on NO(x) conversion were studied using simulated flue gases. The results showed that increasing the ratio of HC:NO improved the reduction performance of Fe/ZSM-5 in the ICFB reactor. NO(x) conversion decreased with an increasing flue gas flow velocity in the annulus U(A) but increased with an increasing reductant gas flow velocity in the draft tube U(D). The NO(x) adsorption ratio decreased with increasing U(A). In most cases, NO(x) conversion was higher than the adsorption ratio due to the relatively poor adsorption performance of the catalyst. Fe/ZSM-5 showed a promising reduction performance and a strong inhibiting ability on the negative impact of excessive O2 in the ICFB reactor, proving that such an ICFB reactor possessed the ability to overcome the negative impact of excessive O2 in the flue gas using Fe/ZSM-5 as the deNO(x) catalyst.

  10. Zeolite catalysts and their use in selective catalytic reduction of NOx

    NARCIS (Netherlands)

    Seijger, G.B.F.; Van den Bleek, C.M.; Calis, H.P.A.

    2003-01-01

    The invention is directed to catalyst compositions comprising a zeolite, as well as to processes for the reduction of nitrogen oxides (NOx) employing these catalyst compositions. The catalyst compositions of the invention comprise a zeolite of the ferrierite type (FER), which zeolite is ion exchange

  11. INVESTIGATION OF SELECTIVE CATALYTIC REDUCTION IMPACT ON MERCURY SPECIATION UNDER SIMULATED NOX EMISSION CONTROL CONDITIONS

    Science.gov (United States)

    Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...

  12. Numerical analysis of NOx reduction for compact design in marine urea-SCR system

    Directory of Open Access Journals (Sweden)

    Choi Cheolyong

    2015-11-01

    Full Text Available In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea-water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. NH3 conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of NOx reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of NOx reduction efficiency.

  13. Numerical analysis of NOx reduction for compact design in marine urea-SCR system

    Science.gov (United States)

    Choi, Cheolyong; Sung, Yonmo; Choi, Gyung Min; Kim, Duck Jool

    2015-11-01

    In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea-water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. NH3 conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of NOx reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of NOx reduction efficiency.

  14. Effect of alternative fuel properties on NOx reduction

    OpenAIRE

    Axelsen, Ernst Petter; Tokheim, Lars-André; Bjerketvedt, Dag

    2002-01-01

    Today we see a substantial increase in the use of alternative fuels in the cement industry. The prospect of reduction in fuel costs and the environmental benefits of waste to energy conversion are the driving forces. For several years Norcem have steadily increased their use of alternative fuels such as refuse derived fuel (RDF), liquid hazardous waste (LHW), solid hazardous waste (SHW), animal meal (AM) and waste oil (WO). Alternative fuels behave differently compared to e.g. coa...

  15. Key parameters influencing the NOx reduction process by low-cost char pellets: An overview

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Soriano-Mora; A. Bueno-Lopez; A. Garcia-Garcia; R. Perry; C.E. Snape [University of Alicante, Alicante (Spain). Dept. of Inorganic Chemistry

    2007-07-01

    High potassium content char briquettes prepared from a bituminous coal have shown to be remarkably selective towards NOx reduction by the carbon contained within them. For the present work, it was decided to pursue the preparation of a number of pelletised formulations as well as testing reaction temperatures and lifetime tests. Low-cost carbon feedstocks were selected for pellet preparation (a metallurgical coke breeze, petroleum coke fines and a medium temperature domestic coke), two coals (an anthracite and a high volatile bituminous coal), a scrap tyre pyrolysis char and a carbon concentrate from PFA. Pellets were prepared from a solid mixture containing 65% of air-dried carbon, 30% potassium hydroxide and 5% of cashew nut shell liquid as binder. The results show that good and constant values of NOx reduction are kept after 2 hours of reaction as well as satisfactory selectivity factors (up to 0.45). This parameter is highly dependent on potassium content of the samples and on reaction temperature. The most efficient pellets in terms of high selectivity and high amount of NOx reduced were analysed under lifetime tests at 400{sup o}C. Very encouraging results were obtained showing that high values of NOx conversions (well above O{sub 2} conversions), long lifetimes, no uncontrolled increase in sample temperature and very low CO emissions, (leading to an optimum sample efficiency) were observed throughout lifetime tests. 4 refs., 4 figs., 5 tabs.

  16. Selective catalytic reduction of NOx by hydrocarbons over Fe/ZSM5 prepared by sublimation of FeCl3

    NARCIS (Netherlands)

    Battiston, A.A.

    2003-01-01

    Selective Catalytic Reduction of NOx by Hydrocarbons over Fe/ZSM5 Prepared by Sublimation of FeCl3. Characterization and Catalysis Nitrogen oxides (NOx) are unwanted by-products of combustion. They are generated primarily from motor vehicles and stationary sources, like power stations and indust

  17. Emission reduction of NOx, PM, PM-carbon, and PAHs from a generator fuelled by biodieselhols.

    Science.gov (United States)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Wen-Yinn; Lee, Wen-Jhy; Chao, How-Ran; Lin, Chih-Chung; Hsieh, Lien-Te

    2014-06-15

    This investigation examines the particulate matter (PM), particulate carbon, polycyclic aromatic hydrocarbons (PAHs), and nitrogen oxides (NOx) emitted from a generator fueled by petroleum diesel blended with waste-edible-oil-biodiesel and water-containing acetone. Experimental results show that using biodieselhols with water-containing (or pure) acetone as the fuel of generator, in comparison to using petroleum diesel, significantly reduces PM emission; roughly, this reduction increased as percentage of water-containing acetone increased. When the percentages of waste-edible-oil-biodiesel were ≤ 5 vol%, adding pure or water-containing acetone (1-3 vol%) to biodieselhols generated emission reductions of NOx, PM, particle-bound organic carbon (OC), total-PAHs, and total-BaPeq. Consequently, using water-containing acetone biodieselhols as an alternative generator fuel is feasible and helps recycle and reuse waste solvents containing water-containing acetone.

  18. Catalytic Reduction of NO and NOx Content in Tobacco Smoke

    Directory of Open Access Journals (Sweden)

    Cvetkovic N

    2014-12-01

    Full Text Available In order to reduce the nitric oxide (NO and nitrogen oxides (NO content in mainstream tobacco smoke, a new class of catalyst based on Cu-ZSM-5 zeolite has been synthesized. The effectiveness of the new catalyst (degree of reduction and specific catalytic ability was tested both by adding Cu-ZSM-5 zeolite directly to the tobacco blend and by addition to the filter. We have determined that adding the catalyst to the tobacco blend does not cause any changes in the physical, chemical or organoleptic properties of the cigarette blend. But, the addition reduces the yield of nitrogen oxides while having no influence on nicotine and “tar” content in the tobacco smoke of the modified blend. The catalyst addition increases the static burning rate (SBR. The changes in the quantity of NO and NOmay be explained by changes in burning conditions due to the increase of Oobtained from catalytic degradation of NO and NO, and adsorptive and diffusive properties of the catalyst. The changes in mainstream smoke analytes are also given on a puff-by-puff basis.

  19. The mechanism of selective catalytic reduction of NOx on Cu-SSZ-13 - a computational study.

    Science.gov (United States)

    Crandell, Douglas W; Zhu, Haiyang; Yang, Xiaofan; Hochmuth, John; Baik, Mu-Hyun

    2017-01-03

    The copper-exchanged aluminosilicate zeolite SSZ-13 is a leading catalyst for the selective catalytic reduction of NO. Density functional theory calculations are used to construct a complete catalytic cycle of this process paying special attention to the coordination geometries and redox states of copper. N2 can be produced in the reduction half-cycle via a nitrosamine intermediate generated from the reaction of the additive reductant NH3 with a NO(+) intermediate stabilized by the zeolite lattice. The decomposition of this nitrosamine species can be assisted by incipient Brønsted acid sites generated during catalysis. Our calculations also suggest that the reoxidation of Cu(i) to Cu(ii) requires the addition of both NO and O2. The production of a second equivalent of N2 during the oxidation half-cycle proceeds through a peroxynitrite intermediate to form a Cu-nitrite intermediate, which may react with an acid, either HNO2 or NH4(+) to close the catalytic cycle. Models of copper neutralized by an external hydroxide ligand are also examined. These calculations form a key basis for understanding the mechanism of NO reduction in Cu-SSZ-13 in order to develop strategies for rationally optimizing the performance in future experiments.

  20. Experimental Investigation on NOx Reduction by Primary Measures in Biomass Combustion: Straw, Peat, Sewage Sludge, Forest Residues and Wood Pellets

    Directory of Open Access Journals (Sweden)

    Øyvind Skreiberg

    2012-02-01

    Full Text Available An experimental investigation was carried out to study the NOx formation and reduction by primary measures for five types of biomass (straw, peat, sewage sludge, forest residues/Grot, and wood pellets and their mixtures. To minimize the NOx level in biomass-fired boilers, combustion experiments were performed in a laboratory scale multifuel fixed grate reactor using staged air combustion. Flue gas was extracted to measure final levels of CO, CO2, CxHy, O2, NO, NO2, N2O, and other species. The fuel gas compositions between the first and second stage were also monitored. The experiments showed good combustion quality with very low concentrations of unburnt species in the flue gas. Under optimum conditions, a NOx reduction of 50–80% was achieved, where the highest reduction represents the case with the highest fuel-N content. The NOx emission levels were very sensitive to the primary excess air ratio and an optimum value for primary excess air ratio was seen at about 0.9. Conversion of fuel nitrogen to NOx showed great dependency on the initial fuel-N content, where the blend with the highest nitrogen content had lowest conversion rate. Between 1–25% of the fuel-N content is converted to NOx depending on the fuel blend and excess air ratio. Sewage sludge is suggested as a favorable fuel to be blended with straw. It resulted in a higher NOx reduction and low fuel-N conversion to NOx. Tops and branches did not show desirable NOx reduction and made the combustion also more unstable. N2O emissions were very low, typically below 5 ppm at 11% O2 in the dry flue gas, except for mixtures with high nitrogen content, where values up to 20 ppm were observed. The presented results are part of a larger study on problematic fuels, also considering ash content and corrosive compounds which have been discussed elsewhere.

  1. Storage-Reduction of NOx over Combined Catalysts of Pt/Ba/Al2O3-Mn/Ba/Al2O3: Carbon Monoxide as Reductant

    Institute of Scientific and Technical Information of China (English)

    Sha Deng; Xuehui Li; Jianhua Xiao; Furong Wang; Lefu Wang

    2007-01-01

    Storage-reduction of NOx by carbon monoxide was investigated over combined catalysts of Mn/Ba/Al2O3-Pt/Ba/Al2O3. Combination of Mn/Ba/Al2O3 and Pt/Ba/Al2O3 catalysts in different ways showed excellent NOx storage-reduction performance and the content of Pt could be reduced by 50%.Not only the addition of 5Mn/15Ba/Al2O3 to 1Pt/15Ba/Al2O3 could improve its storage ability, but also enhance the NOx conversion consequently. NOx conversion over the combined catalysts (the combined catalysts Ⅰ and Ⅱ) was increased under dynamic lean-rich burn conditions, the maximum NOx conversion increased from 69.4% to respectively 78.8% and 75.7% over two combined catalysts.

  2. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    Science.gov (United States)

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  3. Diesel NO(x) aftertreatment by combined process using temperature swing adsorption, NO(x) reduction by nonthermal plasma, and NO(x) recirculation: improvement of the recirculation process.

    Science.gov (United States)

    Yoshida, Keiichiro; Kuwahara, Takuya; Kuroki, Tomoyuki; Okubo, Masaaki

    2012-09-15

    NO(x) emitted from a stationary diesel engine generator was treated with a hybrid system comprising NO(x) reduction by nonthermal plasma (NTP) and temperature swing adsorption (TSA) driven by engine waste heat. TSA produces a low-volume gas mixture of N(2) and highly concentrated NO(x), which is effectively reduced by NTP treatment. Improved treatment performance and efficiency are achieved by re-injecting the NTP-treated gas mixture into the engine intake. The system comprises two switchable adsorption chambers; the operation of this system was simulated by using a one-chamber system. The maximum energy efficiency for NO(x) treatment is 200 g(NO(2))/kWh. The respective contributions of NTP and injection of N(2) and NO(x) to the performance were theoretically analyzed. The analysis predicts that high energy efficiency and high NO(x)-removal efficiency can be simultaneously achieved with this system but miniaturization of the adsorption chambers will be a challenge.

  4. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  5. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ja Hun; Tonkyn, Russell G.; Kim, Do Heui; Szanyi, Janos; Peden, Charles HF

    2010-10-21

    Superior activity and selectivity of a Cu ion-exchanged SSZ-13 zeolite in the selective catalytic reduction (SCR) of NOx with NH3 were observed, in comparison to Cu-beta and Cu-ZSM-5 zeolites. Cu-SSZ-13 was not only more active in the NOx SCR reaction over the entire temperature range studied (up to 550 °C), but also more selective toward nitrogen formation, resulting in significantly lower amounts of NOx by-products (i.e., NO2 and N2O) than the other two zeolites. In addition, Cu-SSZ-13 demonstrated the highest activity and N2 formation selectivity in the oxidation of NH3. The results of this study strongly suggest that Cu-SSZ-13 is a promising candidate as a catalyst for NOx SCR with great potential in after-treatment systems for either mobile or stationary sources.

  6. Effect of manufacturing methods of AgCl/Al2O3 catalyst on selective catalytic reduction of NOx

    Institute of Scientific and Technical Information of China (English)

    Satoshi Kishida; Dong-Ying Ju; Hirofumi Aritani

    2011-01-01

    The AgCl/Al2O3 catalyst has potential for use in the selective catalytic reduction (SCR) of NOx. A compound hydrocarbon, following oxygenation is used as a type of reducing agent. In this experiment, the AgCl/Al2O3 catalyst was produced by four different methods,and the differences among their reduction catalysis of NOx were compared. Ethanol was used as a type of reducing agent. X-ray diffraction analysis was performed to study the crystalline structure and scanning electron microscope and transmission electron microscope (TEM) were applied to determine the microindentation. The results indicated that, in the range of 350-400℃, there was no significant difference on the NOx reduction rate; however, there was dispersion at high and low temperature ranges. The size of the AgCl particles was about 20-100 nm.

  7. Reductions in particulate and NO(x) emissions by diesel engine parameter adjustments with HVO fuel.

    Science.gov (United States)

    Happonen, Matti; Heikkilä, Juha; Murtonen, Timo; Lehto, Kalle; Sarjovaara, Teemu; Larmi, Martti; Keskinen, Jorma; Virtanen, Annele

    2012-06-01

    Hydrotreated vegetable oil (HVO) diesel fuel is a promising biofuel candidate that can complement or substitute traditional diesel fuel in engines. It has been already reported that by changing the fuel from conventional EN590 diesel to HVO decreases exhaust emissions. However, as the fuels have certain chemical and physical differences, it is clear that the full advantage of HVO cannot be realized unless the engine is optimized for the new fuel. In this article, we studied how much exhaust emissions can be reduced by adjusting engine parameters for HVO. The results indicate that, with all the studied loads (50%, 75%, and 100%), particulate mass and NO(x) can both be reduced over 25% by engine parameter adjustments. Further, the emission reduction was even higher when the target for adjusting engine parameters was to exclusively reduce either particulates or NO(x). In addition to particulate mass, different indicators of particulate emissions were also compared. These indicators included filter smoke number (FSN), total particle number, total particle surface area, and geometric mean diameter of the emitted particle size distribution. As a result of this comparison, a linear correlation between FSN and total particulate surface area at low FSN region was found.

  8. Experiment and mechanism investigation on advanced reburning for NOx reduction: influence of CO and temperature

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-hua; ZHOU Jun-hu; ZHANG Yan-wei; LU Zhi-min; FAN Jian-ren; CEN Ke-fa

    2005-01-01

    Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were investigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15%~25% reburn heat input, temperature range from 1100 ℃ to 1400 ℃ and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 ℃ and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 ℃~1100 ℃. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NOx Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures.

  9. NO(x) decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds.

    Science.gov (United States)

    Yu, Jun Jie; Cheng, Jie; Ma, Chun Yan; Wang, Hai Lin; Li, Lan Dong; Hao, Zheng Ping; Xu, Zhi Ping

    2009-05-15

    Effective control and removal of nitrogen oxides (NO(x)) emission from vehicles exhausts under lean-burn condition is one of the most important targets in scientific research of environmental protection. A comprehensive introduction of NO(x) storage and reduction (NSR), the most promising lean-NO(x) control technology, is given including the sum-up of NSR materials, catalytic activity and related reaction mechanisms. Emphasis is put on the novel multifunctional NSR catalysts, derived from hydrotalcite-like compounds, with characteristic of simultaneous NO(x) strorage-decomposition-reduction. Finally, future research directions in the area of lean-NO(x) control based on mixed oxide catalysts derived from hydrotalcite-like materials is also proposed.

  10. NOx reduction on ag electrochemical cells with a K-Pt-Al 2O3 adsorption layer

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    Ag electrochemical cells with andwithout aK-Pt-Al2O3 adsorption layer were tested forNOx reduction under oxygen-rich conditions. The effect of the addition of the adsorption layer on the electrochemical reduction of NOx was investigated by a conversion measurement, an impedance analysis.......25 V and 500°C. An impedance analysis revealed that the adsorption layer promoted the adsorption and the surface diffusion of the NOx species at or near the triple phase boundaries (TPBs) and the formation of NO2. A severe degradation was also observed on the cell with the adsorption layer, which...... was caused by the corrosion of the Ag cathode and the subsequent migration of the Ag into the adsorption layer during the operation. © 2013 The Electrochemical Society....

  11. NOx storage, desorption and reduction over Pd-K/MgAlO catalyst%Pd-K/MgAlO催化剂上的NOx 存储、脱附和还原过程

    Institute of Scientific and Technical Information of China (English)

    张业新; 王晓; 王力; 王仲鹏; 李倩; 张昭良

    2013-01-01

    The processes of NOx storage, desorption and reduction over Pd-K/MgAlO were investigated using temperature-programmed desorption ( TPD ) , temperature-programmed surface reduction ( TPSR ) and in situ IR. It was found that NOx storage on Pd-K/MgAlO was in the forms of ionic nitrites and ionic nitrates. In the presence of Pd, the nitrites were partically oxidized into nitrates with stronger acid strength, which were prone to be stored on the basic sites. As a result, the storage capacity of Pd-K/MgAlO reached 890. 4 μmol·g-1 from NOx-TPD results. Furthermore, the Pd-catalyzed disproportionation decomposition of nitrites was found in both NOx desorption and reduction with H2 , which proceeded via the spillover of the nitrites to the Pd sites. In this process, Pd was confirmed to promote NOx desorption at low temperatures and accelerate NOx reduction with H2 . These findings provide strong evidence for NOx ad-species spillover mechanism.%利用程序升温脱附( TPD)、程序升温表面反应( TPSR)和原位红外光谱( in situ IR)等技术研究了Pd-K/MgAlO催化剂上的NOx 存储、脱附和还原过程.结果表明,NOx 在Pd-K/MgAlO上主要以硝酸根和亚硝酸根的形式存储.在Pd的催化作用下,部分亚硝酸根被氧化为强酸性的硝酸根,变得更容易存储.由NOx-TPD计算得到Pd-K/MgAlO的NOx 存储容量高达890.4μmol·g-1.此外,在NOx 脱附及H2还原的实验中均发现了Pd催化的亚硝酸盐歧化分解反应,该反应通过亚硝酸盐溢流至Pd位实现.亚硝酸盐的溢流产生了两个作用:促进NOx 低温脱附及促进H2对存储NOx 的还原.此发现为NOx 存储物种的溢流机理提供了一个有力的证据.

  12. Efficiency Analysis of Technological Methods for Reduction of NOx Emissions while Burning Hydrocarbon Fuels in Heat and Power Plants

    Directory of Open Access Journals (Sweden)

    S. Kabishov

    2013-01-01

    Full Text Available The paper contains a comparative efficiency analysis pertaining to application of existing technological methods for suppression of nitric oxide formation in heating boilers of heat generators. A special attention has been given to investigation of NOx  emission reduction while burning hydrocarbon fuel with the help of oxygen-enriched air. The calculations have demonstrated that while enriching oxidizer with the help of oxygen up to 50 % (by volume it is possible to reduce volume of NOx formation (while burning fuel unit by 21 %.

  13. Low-Temperature Plasma-Catalytic Reduction of Nox by C2H2 in the Presence of Excess Oxygen

    Institute of Scientific and Technical Information of China (English)

    NIU Jinhai; ZHANG Zhihui; LIU Dongping; WANG Qi

    2008-01-01

    Synergistic effects of pulsed DC dielectric barrier discharge (DBD) plasma and In-dium modified HZSM-5 (In/HZSM-5) catalyst for C2H2 selective reduction of Nox at 200℃, in the presence of enriched oxygen by using a one-stage plasma-over-catalyst (POC) reactor, are reported. With a reactant gas mixture of 480 ppm NO, 500 ppm C2H2, 13.0% O2 in N2 and gas hourly space velocity (GHSV) = 10000 h-1, pure catalytic, pure plasma-induced (discharges over fused silica pellets) and plasma-catalytic Nox conversion percentages are 45.0%, 4.0% and 92.2%, respectively. Nox conversion rates and energy costs were also compared for pulsed DC DBD and AC DBD reactors.

  14. Activity Enhancement of Pt/Ba/Al2O3 Mixed with Mn/Ba/Al2O3 for NOx Storage-reduction by Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Jian Hua XIAO; Xue Hui LI; Sha DENG; Fu Rong WANG; Le Fu WANG

    2006-01-01

    Mn/Ba/Al2O3 catalyst for NO oxidation-storage and Pt/Ba/Al2O3 catalyst mixed with Mn/Ba/Al2O3 for NOx storage-reduction by hydrogen were investigated. The results showed that Mn/Ba/Al2O3 had large nitrogen oxides storage capacity (397.9 μmolg-1) under lean bum condition.When Pt/Ba/Al2O3 catalyst was mixed with Mn/Ba/Al2O3 in equal weight proportion, the NOx conversion increased between 250 ℃ and 500 ℃ under the dynamic lean-rich bum conditions, and the maximum NOx conversion increased from 95.4% to 98.2%. Mn/Ba/Al2O3 has promoted NOx storing in the lean stage and improved NOx reduction efficiency in the rich stage, these might result in higher NOx conversion over the low Pt loading content catalyst.

  15. In situ FT-IR studies on the mechanism of selective catalytic reduction of NOx by propene over SnO2/Al2O3 catalyst.

    Science.gov (United States)

    Liu, Zhiming; Woo, Seong Ihl; Lee, Won Su

    2006-12-28

    The mechanism of the selective catalytic reduction (SCR) of NOx by propene over SnO2/Al2O3 catalyst in the presence of oxygen has been investigated using in situ Fourier transform infrared (FT-IR) spectroscopy. In situ IR measurements indicate that acetate and formate, which are the derivatives of the partial oxidation of propene, play a crucial role in the formation of NCO by reacting with the reactive monodentate nitrate species. The resulting NCO species subsequently reacts with NOx to form N2. The presence of oxygen substantially contributes to the partial oxidation of propene and thus shows a promoting effect for the NOx reduction.

  16. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3

    Science.gov (United States)

    Pourkhalil, Mahnaz; Moghaddam, Abdolsamad Zarringhalam; Rashidi, Alimorad; Towfighi, Jafar; Mortazavi, Yadollah

    2013-08-01

    Manganese oxide catalysts (MnOx) supported on functionalized multi-walled carbon nanotubes (FMWNTs) for low temperature selective catalytic reduction (LTSCR) of nitrogen oxides (NOx) with NH3 in the presence of excess O2 were prepared by the incipient wetness impregnation method. These catalysts were characterized by N2 adsorption, Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and H2-temperature programmed reduction (H2-TPR) methods. The effects of reaction temperature, MnOx loading, calcination temperature and calcination time were investigated. The presence of surface nitrate species under moderate calcination conditions may play a favorable role in the LTSCR of NOx with NH3. Under the reaction conditions of 200 °C, 1 bar, NO = NH3 = 900 ppm, O2 = 5 vol%, GHSV = 30,000 h-1 and 12 wt% MnOx, NOx conversion and N2 selectivity were 97% and 99.5%, respectively. The SCR activity was reduced in the presence of 100 ppm SO2 and 2.5 vol% H2O from 97% to 92% within 6 h at 200 °C, however such an effect was shown to be reversible by exposing the catalyst to a helium flow for 2 h at 350 °C due to thermal decomposition of ammonium sulphate salts.

  17. SLCP co-control approach in East Asia: Tropospheric ozone reduction strategy by simultaneous reduction of NOx/NMVOC and methane

    Science.gov (United States)

    Akimoto, Hajime; Kurokawa, Jun`ichi; Sudo, Kengo; Nagashima, Tatsuya; Takemura, Toshihiko; Klimont, Zbigniew; Amann, Markus; Suzuki, Katsunori

    2015-12-01

    The emissions of NOx and CO2 in East Asia (Northeast and Southeast Asia) contribute more than 30% of the global total since 2008, and consequently the control of air pollutants and CO2 alleviating regional air pollution and global climate change is of great concern of not only in this region but also worldwide. In order to arrive at a rational view of the short-lived climate pollutants (SLCPs) co-control approach in East Asia, the effectiveness of the reduction of NOx/NMVOC and CH4 emissions for the reduction of tropospheric O3 has been evaluated by individual and simultaneous 50%-reduction of the emissions in Northeast Asia (NEA) using both a global chemical climate model (CHASER/SPRINTARS-MIROC), and a regional chemical transport model (WRF-CMAQ). The simultaneous reduction of NOx/NMVOC and CH4 emissions was found to reduce the regional concentration of surface O3 in NEA, and globally averaged net radiative forcing most effectively. Global mean RF and regional air quality change were also evaluated for the climate stabilization scenario ("450-ppm"), and climate stabilization with additional air pollution mitigation strengthened scenario ("450-ppm-cntr") developed in IIASA with the aid of GAINS model. In the 450 ppm-cntr scenario, emissions of NOx NMVOC, BC and OC were further reduced respectively, for East Asia from the emissions in 450 ppm. The improvement of air quality as well as the mitigation of climate change would grant to the basis of the SLCP co-control approach in East Asia.

  18. Experimental study on the inhibition of biological reduction of Fe(Ⅲ)EDTA in NOx absorption solution

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Scrubbing of NOx from the gas phase with Fe(Ⅱ)EDTA has been shown to be highly effective. A new biological method can be used to convert NO to N2 and regenerate the chelating agent Fe(Ⅱ)EDTA for continuous NO absorption. The core of this biological regeneration is how to effectively simultaneous reduce Fe(Ⅲ)EDTA and Fe(Ⅱ)EDTA-NO, two mainly products in the ferrous chelate absorption solution. The biological reduction rate of Fe(Ⅲ)EDTA plays a main role for the NOx removal efficiency. In this paper, a bacterial strain identified as Klebsiella Trevisan sp. was used to demonstrate an inhibition of Fe(Ⅲ)EDTA reduction in the presence of Fe(Ⅱ)EDTA-NO. The competitive inhibition experiments indicted that Fe(Ⅱ)EDTA-NO inhibited not only the growth rate of the iron-reduction bacterial strain but also the Fe(Ⅲ)EDTA reduction rate. Cell growth rate and Fe(Ⅲ)EDTA reduction rate decreased with increasing Fe(Ⅱ)EDTA-NO concentration in the solution.

  19. Bauxite-supported Transition Metal Oxides: Promising Low-temperature and SO2-tolerant Catalysts for Selective Catalytic Reduction of NOx.

    Science.gov (United States)

    Wang, Xiuyun; Wu, Wen; Chen, Zhilin; Wang, Ruihu

    2015-05-19

    In order to develop low-temperature (below 200 °C) and SO2-tolerant catalysts for selective catalytic reduction (SCR) of NOx, a series of cheap M/bauxite (M = Mn, Ni and Cu) catalysts were prepared using bauxite as a support. Their SCR performances are much superior to typical V2O5/TiO2, the addition of M into bauxite results in significant promotion of NOx removal efficiency, especially at low temperature. Among the catalysts, Cu/bauxite exhibits wide temperature window over 50-400 °C, strong resistance against SO2 and H2O as well as good regeneration ability in SCR of NOx. NOx conversion is more than 80% at 50-200 °C, and N2 selectivity is more than 98%. Cu/bauxite can serve as a promising catalyst in SCR of NOx.

  20. Elementary steps of NOx adsorption and surface reaction on a commercial storage–reduction catalyst

    NARCIS (Netherlands)

    Sedlmair, Ch.; Seshan, K.; Jentys, A.; Lercher, J.A.

    2003-01-01

    The surface species formed during adsorption of NOx on a commercial NSR catalyst (containing barium oxide, Pt, and alumina as the main components) were investigated by in situ IR spectroscopy. During adsorption of NO, mainly linear and bridged bonded nitrites of Ba- O- N- O- Ba type were formed on A

  1. Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review

    Directory of Open Access Journals (Sweden)

    TsungYu Lee

    2016-05-01

    Full Text Available The removals of NOx by catalytic technology at low temperatures (100–300 °C for industrial flue gas treatment have received increasing attention. However, the development of low temperature catalysts for selective catalytic reduction (SCR of NOx with ammonia is still a challenge especially in the presence of SO2. The current status of using Mn-based catalysts for low temperature SCR of NOx with ammonia (NH3-SCR is reviewed. Reaction mechanisms and effects of operating factors on low temperature NH3-SCR are addressed, and the SCR efficiencies of Mn-based metal oxides with and without SO2 poisoning have also been discussed with different supports and co-metals. The key factors for enhancing low temperature NH3-SCR efficiency and SO2 resistance with Mn-based catalysts are identified to be (1 high specific surface area; (2 high surface acidity; (3 oxidation states of manganese; (4 well dispersion of manganese oxide metals; (5 more surface adsorbed oxygen; (6 more absorbed NO3− on the catalyst surface; (7 easier decomposition of ammonium sulfates. Moreover, the regenerative methods such as water washing, acid and/or alkali washing and heat treatment to the poisoned catalysts could help to recover the low temperature SCR efficiency to its initial level.

  2. HC-SCR: NOx Reduction using Mn and Cu Catalysts Impregnated in Coconut and Palm Kernel Shell Activated Carbon

    Directory of Open Access Journals (Sweden)

    Barrabas Sherra Bellina

    2017-01-01

    Full Text Available The characteristics of catalysts impregnated in coconut shell (CS and palm kernel shell (PKS activated carbon were determined as potential precursors of catalysts used in a flue gas denitrification system at low temperature. In this study, Manganese (Mn and Copper (Cu with metal loading of 8% were impregnated in the activated carbon (AC before undergoing low temperature calcination process. The morphological properties of samples was analysed using Scanning Electron Microscopy (SEM and Brunauer, Emmett and Teller (BET was used to determine the surface area and pore size of samples. The exhaust gas from a diesel engine at a constant flow rate of 4L/min was passed through in a fixed-bed catalytic reactor containing the catalyst, and the concentration of NOx was measured for temperatures ranging from 150°C to 250°C. It was found that the CS catalysts (CS-Mn and CS-Cu and PKS catalysts (PKS-Mn and PKS-Cu have the potential to reduce NOx concentration, and results showed that the metal loading of 8% resulted NOx reduction ranging from ~48% to 64%.

  3. SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

    2003-08-24

    The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of

  4. Reduction on NOx emissions on urban areas by changing specific vehicle fleets: effects on NO2 and O3 concentration

    Science.gov (United States)

    Goncalves, M.; Jimenez, P.; Baldasano, J.

    2007-12-01

    The largest amount of NOx emissions in urban areas comes from on-road traffic, which is the largest contributor to urban air pollution (Colvile et al., 2001). Currently different strategies are being tested in order to reduce its effects; many of them oriented to the reduction of the unitary vehicles emissions, by alternative fuels use (such as biofuels, natural gas or hydrogen) or introduction of new technologies (such as hybrid electric vehicles or fuel cells). Atmospheric modelling permits to predict their consequences on tropospheric chemistry (Vautard et al., 2007). Hence, this work assesses the changes on NO2 and O3 concentrations when substituting a 10 per cent of the urban private cars fleets by petrol hybrid electric cars (HEC) or by natural gas cars (NGC) in Madrid and Barcelona urban areas (Spain). These two cities are selected in order to highlight the different patterns of pollutants transport (inland vs. coastal city) and the different responses to emissions reductions. The results focus on a typical summertime episode of air pollution, by means of the Eulerian air quality model ARW- WRF/HERMES/CMAQ, applied with high resolution (1-hr, 1km2) since of the complexity of both areas under study. The detailed emissions scenarios are implemented in the HERMES traffic emissions module, based on the Copert III-EEA/EMEP-CORINAIR (Nztiachristos and Samaras, 2000) methodology. The HEC introduction reduces NOx emissions from on-road traffic in a 10.8 per cent and 8.2 per cent; and the NGC introduction in a 10.3 per cent and 7.8 per cent, for Madrid and Barcelona areas, respectively. The scenarios also affect the NMVOCs reduction (ranging from -3.1 to -6.9 per cent), influencing the tropospheric photochemistry through the NOx/NMVOCs ratio. The abatement of the NO photooxidation but also to the reduction on primary NO2 involves a decrease on NO2 levels centred on urban areas. For example, the NO2 24-hr average concentration in downtown areas reduces up to 8 per

  5. Development of a pilot fluidized bed combustion to NOx reduction using natural gas: characterization and dimensioning; Desenvolvimento de um combustor piloto a leito fluidizado para reducao de NOx usando gas natural: caracterizacao e dimensionamento

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas A.; Lucena, Sergio [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    At the present time, the operation of combustion systems and the design of combustors continue being important problems in the Engineering, and don't involve just the size increase of combustors, but also changes of characteristics in the details of projects. The combustors applications are directly related to the needs, like: material transformation for heating, drying or incineration; and all have the inconvenience of emanating of pollutant gaseous (such like NOx). In combustion systems of gases, NOx is basically created in the reaction between nitrogen and oxygen to high temperatures ({approx} 1200 deg C). Below such conditions, the contribution of thermal NOx is recognisably small. The efficient reduction, safe control and economical elimination of pollutant emissions in the systems of burning are the main focuses of environmental legislation and concern to several industrialized countries, besides Brazil. Furthermore, in appeal at the Environmental Laws and at the rising consumption of combustible gases (Natural Gas), new technologies more attractive and economically viable have been studied, for example the combustion systems in fluidized bed. In this kind of system is possible to obtain high combustion efficiency at low temperatures ({approx} 900 deg C) with NOx reduction. In this work is intended of characterizing and dimensioning an industrial fluidized bed combustor that uses Natural Gas like feedstock in the combustion system, with smaller amounts of emitted NOx. (author)

  6. Application of reburn techniques for NOx reduction to cogeneration prime movers. Volume 1. Rich-burn engine application. Final report, June 1984 to July 1988

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.A.; Lips, H.; Kuby, W.C.

    1989-03-01

    The report describes the results of a design and experimental program to develop a post-combustion NOx control technique for gas-fired I.C. engines and gas turbines as applied to cogeneration. Emissions and performance data of both rich-burn and lean-burn engines were used to develop a conceptual reburner design to be placed between an engine and a waste heat boiler. This reburner design was then modeled for testing in a 100,000 Btu/hr subscale test facility. Parametric testing achieved 50 percent NOx reduction at a fuel fraction of 30 percent for rich-burn and mid-O2 range engine exhausts. Lean-burn NOx reductions were limited to 35 percent at the same fuel fraction. With the addition of a NiO catalyst in the rich zone, NOx reductions of up to 90 percent were achieved in the subscale testing. A full-scale system was designed, fabricated, and tested on a 150 kW Caterpillar engine. NOx reductions of 40 to 50 percent were achieved without a catalyst; reductions of up to 75 percent were achieved with a NiO catalyst.

  7. A Synthetic Pseudo-Rh: NOx Reduction Activity and Electronic Structure of Pd–Ru Solid-solution Alloy Nanoparticles

    Science.gov (United States)

    Sato, Katsutoshi; Tomonaga, Hiroyuki; Yamamoto, Tomokazu; Matsumura, Syo; Zulkifli, Nor Diana Binti; Ishimoto, Takayoshi; Koyama, Michihisa; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Nagaoka, Katsutoshi

    2016-06-01

    Rh is one of the most important noble metals for industrial applications. A major fraction of Rh is used as a catalyst for emission control in automotive catalytic converters because of its unparalleled activity toward NOx reduction. However, Rh is a rare and extremely expensive element; thus, the development of Rh alternative composed of abundant elements is desirable. Pd and Ru are located at the right and left of Rh in the periodic table, respectively, nevertheless this combination of elements is immiscible in the bulk state. Here, we report a Pd–Ru solid-solution-alloy nanoparticle (PdxRu1-x NP) catalyst exhibiting better NOx reduction activity than Rh. Theoretical calculations show that the electronic structure of Pd0.5Ru0.5 is similar to that of Rh, indicating that Pd0.5Ru0.5 can be regarded as a pseudo-Rh. Pd0.5Ru0.5 exhibits better activity than natural Rh, which implies promising applications not only for exhaust-gas cleaning but also for various chemical reactions.

  8. A Synthetic Pseudo-Rh: NOx Reduction Activity and Electronic Structure of Pd-Ru Solid-solution Alloy Nanoparticles.

    Science.gov (United States)

    Sato, Katsutoshi; Tomonaga, Hiroyuki; Yamamoto, Tomokazu; Matsumura, Syo; Zulkifli, Nor Diana Binti; Ishimoto, Takayoshi; Koyama, Michihisa; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Nagaoka, Katsutoshi

    2016-06-24

    Rh is one of the most important noble metals for industrial applications. A major fraction of Rh is used as a catalyst for emission control in automotive catalytic converters because of its unparalleled activity toward NOx reduction. However, Rh is a rare and extremely expensive element; thus, the development of Rh alternative composed of abundant elements is desirable. Pd and Ru are located at the right and left of Rh in the periodic table, respectively, nevertheless this combination of elements is immiscible in the bulk state. Here, we report a Pd-Ru solid-solution-alloy nanoparticle (PdxRu1-x NP) catalyst exhibiting better NOx reduction activity than Rh. Theoretical calculations show that the electronic structure of Pd0.5Ru0.5 is similar to that of Rh, indicating that Pd0.5Ru0.5 can be regarded as a pseudo-Rh. Pd0.5Ru0.5 exhibits better activity than natural Rh, which implies promising applications not only for exhaust-gas cleaning but also for various chemical reactions.

  9. Functionalized Amorphous Aluminosilicates

    Science.gov (United States)

    Mesgar, Milad

    Alkali treated aluminosilicate (geopolymer) was functionalized by surfactant to increase the hydrophobicity for making Pickering emulsion for the first part of this work. In the first part of this study, alkali treated metakaolin was functionalized with cetyltrimethylammonium bromide ((C16H33)N(CH 3)3Br, CTAB). The electrostatic interaction between this quaternary ammonium and the surface of the aluminosilicate which has negative charge has taken place. The particles then were used to prepare Pickering emulsion. The resulting stable dispersions, obtained very fast at very simple conditions with low ratio of aluminosilicate to liquid phase. In the second part, the interaction between geopolymer and glycerol was studied to see the covalent grafting of the geopolymer for making geopolymer composite. The composite material would be the basis material to be used as support catalyst, thin coating reagent and flame retardant material and so on, Variety of techniques, Thermogravimetric (TGA), Particle-induced X-ray emission (PIXE), FTIR, Solid state NMR, Powder X-ray diffraction (PXRD), BET surface area, Elemental analysis (CHN), TEM, SEM and Optical microscopy were used to characterize the functionalized geopolymer.

  10. NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture

    DEFF Research Database (Denmark)

    Botheju, Deshai; Glarborg, Peter; Tokheim, Lars-Andre

    2012-01-01

    Amine reclaimer wastes (ARW) generated in CO2 capture processes demand suitable disposal means. Such wastes contain remaining amine, NH3 and other degradation compounds. This study investigated the potential of using ARW as a NOx reducing agent, under laboratory conditions in a flow reactor....... A simulated flue gas containing about 500 ppm of NO and 5% O2 was injected with liquid ARW under different stoichiometric ratios (TN/NO – total N to nitric oxide ratio) and temperatures. The ARW was obtained from a distillation monoethanolamine reclaimer in an industrial CO2 capture facility with a coal fired...

  11. Multifunctional catalyst for maximizing NOx oxidation/storage/reduction: The role of the different active sites

    OpenAIRE

    Palomares Gimeno, Antonio Eduardo; UZCATEGUI PAREDES, ALVARO; Franch Martí, Cristina; Corma Canós, Avelino

    2013-01-01

    A multifunctional catalyst/storage material has been prepared to maximize NOx removal. This material is based on mixed oxides derived from modified layered double hydrotalcites (LDH). A cobalt catalytic function oxidizes the NO to NO2. The NO2 is stored as nitrate in the basic sites of the material. The basic properties of the Co/Mg/Al mixed oxide derived from LDH were enhanced by doping with sodium, improving the storage capacity of the catalyst. Finally, the introduction of vanadium sites, ...

  12. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3.

    Science.gov (United States)

    Jiang, Haoxi; Wang, Qianyun; Wang, Huiqin; Chen, Yifei; Zhang, Minhua

    2016-10-12

    In this work, Mn-MOF-74 with hollow spherical structure and Co-MOF-74 with petal-like shape have been prepared successfully via the hydrothermal method. The catalysts were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry-mass spectrum analysis (TG-MS), N2 adsorption/desorption, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It is found that MOF-74(Mn, Co) exhibits the capability for selective catalytic reduction (SCR) of NOx at low temperatures. Both experimental (temperature-programmed desorption, TPD) and computational methods have shown that Co-MOF-74 and Mn-MOF-74 owned high adsorption and activation abilities for NO and NH3. The catalytic activities of Mn-MOF-74 and Co-MOF-74 for low-temperature denitrification (deNOx) in the presence of NH3 were 99% at 220 °C and 70% at 210 °C, respectively. It is found that the coordinatively unsaturated metal sites (CUSs) in M-MOF-74 (M = Mn and Co) played important roles in SCR reaction. M-MOF-74 (M = Mn and Co), especially Mn-MOF-74, showed excellent catalytic performance for low-temperature SCR. In addition, in the reaction process, NO conversion on Mn-MOF-74 decreased with the introduction of H2O and SO2 and almost recovered when gas was cut off. However, for Co-MOF-74, SO2 almost has no effect on the catalytic activity. This work showed that MOF-74 could be used prospectively as deNOx catalyst.

  13. A new process for NOx reduction in combustion systems for the generation of energy from waste.

    Science.gov (United States)

    Gohlke, Oliver; Weber, Toralf; Seguin, Philippe; Laborel, Yann

    2010-07-01

    In the EU, emissions from energy from waste plants are largely reduced by applying the Waste Incineration Directive with its limit of 200 mg/m3(s) for NO(x) emissions. The need for further improvement is reflected by new German legislation effective as of 27 January 2009, requiring 100 mg/m3(s). Other countries are expected to follow this example due to the national emission ceilings of the Gothenburg protocol and the concluding EU directive 2001/81/EC. On the other hand, an increase in energy efficiency will be encouraged by the EU Waste Framework Directive. This is why there is a need for new technologies that make it possible to reconcile both requirements: reduced emissions and increased energy efficiency. A new process combining the internal recirculation of flue gas with ammonia or urea injection in order to achieve less then 80 mg/m3(s) of NO(x) is described. Important additional features of the process are an R1 efficiency above the required 0.65 of the EU Waste Framework Directive even with standard steam parameters of 40 bar/380 degrees C as well as low ammonia slip in the flue gas at the boiler outlet of below 10 mg/m3(s).

  14. Sulfation and Desulfation Behavior of Pt-BaO/MgO-Al2O3 NOx Storage Reduction Catalyst.

    Science.gov (United States)

    Jeong, Soyeon; Kim, Do Heui

    2016-05-01

    The comparative study between Pt-BaO/Al2O3 and Pt-BaO/MgO-Al2O3 gives the information about the effect of MgO addition to Al2O3 support on the sulfation and desulfation behavior of Pt-BaO/MgO-Al2O3 NOx storage reduction catalyst. The sulfated two samples were analyzed by using element analysis (EA), X-ray diffraction (XRD), H2 temperature programmed reaction (H2 TPRX) and NOx uptake measurement. The amount of sulfur uptake on 2 wt% Pt-20 wt% BaO/Al2O3 and 2 wt% Pt-20 wt% BaO/MgO-Al2O3 are almost identical as 0.45 and 0.40 of S/Ba, respectively, which yields the drastic decrease in NOx uptake for both sulfated samples. However, after desulfa- tion with H2 at 600 degrees C, the residual sulfur amount on MgO-Al2O3 supported catalyst is three times larger than that on Al2O3 supported one, indicating that sulfur species formed on the former are more stable than those on the latter. It is also well corresponding to the H2 TPRX results where the main H2S peak from MgO-Al2O3 supported sample is observed at higher temperature than Al2O3 supported one, resulting in the lower NOx uptake activity of former sample than the latter one. Meanwhile, after desulfation of MgO-Al2O3 supported sample at 700 degrees C and 800 degrees C, the activity is recovered more significantly due to the removal of the large amount of sulfur while Al2O3 supported one decreases monotonically due to the sintering of Pt crystallite and the formation of BaAl2O4 phase. It is summarized that MgO-Al2O3 supported catalyst enhances the thermal stability of the catalyst, however, forms the stable sulfate species, which needs to be improved to develop the more sulfur resistant NSR catalyst system.

  15. Novel Ce-W-Sb mixed oxide catalyst for selective catalytic reduction of NOx with NH3

    Science.gov (United States)

    Liu, Jun; Li, Guo-qiang; Zhang, Yong-fa; Liu, Xiao-qing; Wang, Ying; Li, Yuan

    2017-04-01

    A novel Ce3W2SbOx catalyst prepared by the co-precipitation method have been investigated for the selective catalysis reduction (SCR) of NOx with NH3. It was found that the Ce-W-Sb oxide catalyst exhibited an excellent conversion ratio of NOx and a high tolerance to H2O and SO2 in a wide operation temperature window. The catalysts were characterized by N2-adsorption, XRD, Raman, H2-TPR, NH3-TPD, XPS and DRIFTS. The results suggest that the strong interaction between Sb, W and Ce species not only enhances the redox property of the catalyst but also increases the surface acidity, thus promoting the adsorption and activation of NH3 species, which is favorable for high NH3-SCR performance. Based on in situ DRIFTS results, it was concluded that the Langmuir-Hinshelwood (L-H) mechanism existed at the temperature of below 300 °C, while at above 300 °C the Eley-Rideal (E-R) mechanism dominate the NH3-SCR reaction over the Ce3W2SbOx catalyst. Overall, these findings indicate that Ce3W2SbOx is promising for industrial applications.

  16. Results of Aluminosilicate Inhibitor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, W.R.

    2001-06-27

    The aluminosilicate scale in the 2H Evaporator has precluded operation since late 1999. The chemistry of scale formation is known but the mechanism(s) for deposition are not well understood. Tests have been conducted to determine if chemical agents could prevent aluminosilicate formation under conditions similar to Tank 43H. Additionally, particle growth inhibition is also tested.

  17. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    Science.gov (United States)

    Viola, Michael B.; Schmieg, Steven J.; Sloane, Thompson M.; Hilden, David L.; Mulawa, Patricia A.; Lee, Jong H.; Cheng, Shi-Wai S.

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  18. 低NOx燃烧器技术减少玻璃窑炉中NOx排放%Reduction of NOx from Glass Furnace by Low-NOx Burner

    Institute of Scientific and Technical Information of China (English)

    吕雷; 童树庭

    2006-01-01

    氮氧化物(NOx)是玻璃工业中污染排放物的主要来源之一.低NOx燃烧器技术是减少NOx排放的方法之一,在玻璃窑炉中广泛应用.针对它进行的技术改进可以使减少NOx排放的效果更加明显.

  19. Bauxite-supported Transition Metal Oxides: Promising Low-temperature and SO2-tolerant Catalysts for Selective Catalytic Reduction of NOx

    OpenAIRE

    Xiuyun Wang; Wen Wu; Zhilin Chen; Ruihu Wang

    2015-01-01

    In order to develop low-temperature (below 200 °C) and SO2-tolerant catalysts for selective catalytic reduction (SCR) of NOx, a series of cheap M/bauxite (M = Mn, Ni and Cu) catalysts were prepared using bauxite as a support. Their SCR performances are much superior to typical V2O5/TiO2, the addition of M into bauxite results in significant promotion of NOx removal efficiency, especially at low temperature. Among the catalysts, Cu/bauxite exhibits wide temperature window over 50–400 °C, stron...

  20. Influence of BaO in perovskite electrodes for the electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Simonsen, Vibe Louise Ernlund; Johnsen, M.M.; Kammer Hansen, Kent

    2007-01-01

    Using the point electrode method, the effect of BaO on electrochemical reduction of NO (x) was investigated using the perovskites La0.85Sr0.15MnO3 (LSM15) and La0.85Sr0.15CoO3 (LSCo15) as electrode materials. The experiments were carried out in the temperature range 400-600 degrees C in 1% NO and...... favored oxygen reduction compared to reduction of nitric oxide. The LSCO15 electrode containing BaO reacted to form a K2NiF4-structure and was not tested further....

  1. Control and reduction of NOx emissions on light hydrocarbons combustion in fluidized bed combustors: a technological prospection surveys; Controle e reducao de emissoes de NOx durante queima de hidrocarbonetos leves em combustores a leito fluidizado: um estudo de prospeccao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas Alves; Winter, Eduardo [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The present paper aims a technological prospecting study of the main technological agents involved in industrial light hydrocarbons combustion process. More specifically, the work approaches technologies applied to nitrogen oxides emissions control and reduction. Nitrogen oxides are typically known as 'NOx' (NO, N{sub 2}O, NO{sub 2}). 'NOx' are byproducts from fuel burning in combustion systems, including also in fluidized bed combustion systems. The technological prospecting study employed 'technology foresight' as tool for evaluating the technological perspectives of the thermal generation, basis on environment protection. Such technological perspectives of the thermal generation were evaluated through invention patent documents. The query methodology for obtaining of patent documents employed a free patent base, known as ESPACENET. Additionally, the documents obtained were evaluated, considering beyond the countries and the publication dates, technological perspectives employed to 'NOx' emissions control and reduction. It is very important to highlight around 70% of the industrial technological information are just found in invention patent documents. (author)

  2. DRIFT study of CuO-CeO₂-TiO₂ mixed oxides for NOx reduction with NH₃ at low temperatures.

    Science.gov (United States)

    Chen, Lei; Si, Zhichun; Wu, Xiaodong; Weng, Duan

    2014-06-11

    A CuO-CeO2-TiO2 catalyst for selective catalytic reduction of NOx with NH3 (NH3-SCR) at low temperatures was prepared by a sol-gel method and characterized by X-ray diffraction, Brunner-Emmett-Teller surface area, ultraviolet-visible spectroscopy, H2 temperature-programmed reduction, scanning electron microscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS). The CuO-CeO2-TiO2 ternary oxide catalyst shows excellent NH3-SCR activity in a low-temperature range of 150-250 °C. Lewis acid sites generated from Cu(2+) are the main active sites for ammonia activation at low temperature, which is crucial for low temperature NH3-SCR activity. The introduction of ceria results in increased reducibility of CuO species and strong interactions between CuO particles with the matrix. The interactions between copper, cerium and titanium oxides lead to high dispersion of metal oxides with increased active oxygen and enhanced catalyst acidity. Homogeneously mixed metal oxides facilitate the "fast SCR" reaction among Cu(2+)-NO, nitrate (coordinated on cerium sites) and ammonia (on titanium sites) on the CuO-CeO2-TiO2 catalyst at low temperatures.

  3. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States); Wan, C.Z.; Rice, G.W.; Voss, K.E. [Engelhard Corp., Iselin, NJ (United States)

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  4. COMPUTATIONAL MODELING AND EXPERIMENTAL STUDIES ON NOx REDUCTION UNDER PULVERIZED COAL COMBUSTION CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Subha K. Kumpaty; Kannikeswaran Subramanian; Victor P. Nokku; Tyrus L. Hodges; Adel Hassouneh; Ansumana Darboe; Sravan K. Kumpati

    1998-06-01

    In this work, both computer simulation and experimental studies were conducted to investigate several strategies for NO{sub x} reduction under pulverized coal combustion conditions with an aim to meet the stringent environmental standards for NO{sub x} control. Both computer predictions and reburning experiments yielded favorable results in terms of NO{sub x} control by reburning with a combination of methane and acetylene as well as non-selective catalytic reduction of NO{sub x} with ammonia following reburning with methane. The greatest reduction was achieved at the reburning stoichiometric ratio of 0.9; the reduction was very significant, as clearly shown in Chapters III and V. Both the experimental and computational results favored mixing gases: methane and acetylene (90% and 10% respectively) and methane and ammonia (98% and 2%) in order to get optimum reduction levels which can not be achieved by individual gases at any amounts. Also, the above gaseous compositions as reburning fuels seemed to have a larger window of stoichiometric ratio (SR2 < 0.9) as opposed to just methane (SR2=0.9) so as to reduce and keep NO{sub x} at low ppm levels. From the various computational runs, it has been observed that although there are several pathways that contribute to NO{sub x} reduction, the key pathway is NO {r_arrow} HCN {r_arrow} NH{sub 3} {r_arrow} N{sub 2} + H{sub 2}. With the trends established in this work, it is possible to scale the experimental results to real time industrial applications using computational calculations.

  5. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  6. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-07-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4+ generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process.

  7. Surface Tuning of La0.5Sr0.5CoO3 Perovskite Catalysts by Acetic Acid for NOx Storage and Reduction.

    Science.gov (United States)

    Peng, Yue; Si, Wenzhe; Luo, Jinming; Su, Wenkang; Chang, Huazhen; Li, Junhua; Hao, Jiming; Crittenden, John

    2016-06-21

    Selective dissolution of perovskite A site (A of ABO3 structure) was performed on the La1 - xSrxCoO3 catalysts for the NOx storage and reduction (NSR) reaction. The surface area of the catalysts were enhanced using dilute HNO3 impregnation to dissolve Sr. Inactive SrCO3 was removed effectively within 6 h, and the catalyst preserved the perovskite framework after 24 h of treatment. The tuned catalysts exhibited higher NSR performance (both NOx storage and NO-to-NO2 oxidation) under lean-burn and fuel-rich cycles at 250 °C. Large amounts of NOx adsorption were due to the increase of nitrate/nitrite species bonding to the A site and the growth of newly formed monodentate nitrate species. Nitrate species were stored stably on the partial exposed Sr(2+) cations. These exposed Sr(2+) cations played an important role on the NOx reduction by C3H6. High NO-to-NO2 oxidation ability was due to the generation of oxygen defects and Co(2+)-Co(3+) redox couples, which resulted from B-site exsolution induced by A-site dissolution. Hence, our method is facile to modify the surface structures of perovskite catalysts and provides a new strategy to obtain highly active catalysts for the NSR reaction.

  8. Observations of the Temperature Dependent Response of Ozone to NOx Reductions in an Urban Plume

    Energy Technology Data Exchange (ETDEWEB)

    LaFranchi, B W; Goldstein, A H; Cohen, R C

    2011-01-25

    Observations of NO{sub x} in the Sacramento, CA region show that mixing ratios decreased by 30% between 2001 and 2008. Here we use an observation-based method to quantify net ozone production rates in the outflow from the Sacramento metropolitan region and examine the O{sub 3} decrease resulting from reductions in NO{sub x} emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NO{sub x} dependence for O{sub x} (O{sub x} = O{sub 3}+NO{sub 2}) production is strongly coupled with temperature, suggesting that temperature dependent biogenic VOC emissions can drive O{sub x} production between NO{sub x}-limited and NO{sub x}-suppressed regimes. As a result, NO{sub x} reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-hour O{sub 3} standard (90 ppb) in the region have been decreasing linearly with decreases in NO{sub x} (at a given temperature) and predict that reductions of NO{sub x} concentrations (and presumably emissions) by an additional 30% (relative to 2007 levels) will eliminate violations of the state 1 hour standard in the region. If current trends continue, a 30% decrease in NO{sub x} is expected by 2012, and an end to violations of the 1 hour standard in the Sacramento region appears to be imminent.

  9. Synthesis of Pt/K2CO3/MgAlOx–reduced graphene oxide hybrids as promising NOx storage–reduction catalysts with superior catalytic performance

    Science.gov (United States)

    Mei, Xueyi; Yan, Qinghua; Lu, Peng; Wang, Junya; Cui, Yuhan; Nie, Yu; Umar, Ahmad; Wang, Qiang

    2017-01-01

    Pt/K2CO3/MgAlOx–reduced graphene oxide (Pt/K/MgAlOx–rGO) hybrids were synthesized, characterized and tested as a promising NOx storage and reduction (NSR) catalyst. Mg–Al layered double hydroxides (LDHs) were grown on rGO via in situ hydrothermal crystallization. The structure and morphology of samples were thoroughly characterized using various techniques. Isothermal NOx adsorption tests indicated that MgAlOx–rGO hybrid exhibited better NOx trapping performance than MgAlOx, from 0.44 to 0.61 mmol · g−1, which can be attributed to the enhanced particle dispersion and stabilization. In addition, a series of MgAlOx–rGO loaded with 2 wt% Pt and different loadings (5, 10, 15, and 20 wt%) of K2CO3 (denoted as Pt/K/MgAlOx–rGO) were obtained by sequential impregnation. The influence of 5% H2O on the NOx storage capacity of MgAlOx–rGO loaded with 2 wt% Pt and 10% K2CO3 (2Pt/10 K/MgAlOx–rGO) catalyst was also evaluated. In all, the 2Pt/10 K/MgAlOx–rGO catalyst not only exhibited high thermal stability and NOx storage capacity of 1.12 mmol · g−1, but also possessed excellent H2O resistance and lean–rich cycling performance, with an overall 78.4% of NOx removal. This work provided a new scheme for the preparation of highly dispersed MgAlOx–rGO hybrid based NSR catalysts. PMID:28205630

  10. Synthesis of Pt/K2CO3/MgAlOx–reduced graphene oxide hybrids as promising NOx storage–reduction catalysts with superior catalytic performance

    Science.gov (United States)

    Mei, Xueyi; Yan, Qinghua; Lu, Peng; Wang, Junya; Cui, Yuhan; Nie, Yu; Umar, Ahmad; Wang, Qiang

    2017-02-01

    Pt/K2CO3/MgAlOx–reduced graphene oxide (Pt/K/MgAlOx–rGO) hybrids were synthesized, characterized and tested as a promising NOx storage and reduction (NSR) catalyst. Mg–Al layered double hydroxides (LDHs) were grown on rGO via in situ hydrothermal crystallization. The structure and morphology of samples were thoroughly characterized using various techniques. Isothermal NOx adsorption tests indicated that MgAlOx–rGO hybrid exhibited better NOx trapping performance than MgAlOx, from 0.44 to 0.61 mmol · g‑1, which can be attributed to the enhanced particle dispersion and stabilization. In addition, a series of MgAlOx–rGO loaded with 2 wt% Pt and different loadings (5, 10, 15, and 20 wt%) of K2CO3 (denoted as Pt/K/MgAlOx–rGO) were obtained by sequential impregnation. The influence of 5% H2O on the NOx storage capacity of MgAlOx–rGO loaded with 2 wt% Pt and 10% K2CO3 (2Pt/10 K/MgAlOx–rGO) catalyst was also evaluated. In all, the 2Pt/10 K/MgAlOx–rGO catalyst not only exhibited high thermal stability and NOx storage capacity of 1.12 mmol · g‑1, but also possessed excellent H2O resistance and lean–rich cycling performance, with an overall 78.4% of NOx removal. This work provided a new scheme for the preparation of highly dispersed MgAlOx–rGO hybrid based NSR catalysts.

  11. [Deactivation by SO2 of transition metal oxides modified low-temperature SCR catalyst for NOx reduction with NH3].

    Science.gov (United States)

    Shen, Bo-xiong; Liu, Ting; Yang, Ting-ting; Xiong, Li-xian; Wang, Jing

    2009-08-15

    MnOx-CeOx/ACF catalyst was prepared by impregnation method, which exhibited high activity for low-temperature selective catalytic reduction of NOx over the temperature range 110-230 degrees C. Experiments results indicated that the catalyst yielded 80% NO conversion at 150 degrees C and 90% at 230 degrees C. The Oxides of Fe,Cu and V were added to the catalysts based on MnOx-CeOx/ACF. The additions of these transition metal oxides had a negative effect on the activity of the catalysts. Compared with MnOx-CeOx/ACF and Cu and V modified catalysts, NO conversion for Fe-MnOx-CeOx/ACF catalyst leveled off at nearly 75% in the first 6 h in the presence of SO2. Two mechanisms of catalyst deactivation by SO2 were discovered by the methods of X-ray photoelectron spectrum (XPS) and Fourier transform infrared spectra (FTIR), indicating that the catalysts were covered by ammonium sulfates and the metal oxides, acting as active components, were also sulfated by SO2 to form metal sulfates.

  12. OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    SAROFIM, A F; LISAUSKAS, R; RILEY, D; EDDINGS, E G; BROUWER, J; KLEWICKI, J P; DAVIS, K A; BOCKELIE, M J; HEAP, M P; PERSHING, D

    1998-01-01

    Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers,"in-furnace NOx control," which includes: staged low-NOx burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of "in-furnace" NOx control, processes. 2) To devise new, or improve existing, approaches for maximum "in-furnace" NOx control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NOx burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NOx burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NOx burners. 3 Determine the limits on NO control by in-furnace NOx control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NOx burners and coal reburning systems. 6 Modify the char burnout model in REI's coal

  13. DEVELOPMENT OF HIGH ACTIVITY, COAL DERIVED, PROMOTED CATALYTIC SYSTEMS FOR NOx REDUCTION AT LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Calo

    1998-12-31

    This project is directed at an investigation of catalytic NO{sub x} reduction mechanisms on coal-derived, activated carbon supports at low temperatures. Promoted carbon systems offer some potentially significant advantages for heterogeneous NO{sub x} reduction. These include: low cost; high activity at low temperatures, which minimizes carbon loss; oxygen resistance; and a support material which can be engineered with respect to porosity, transport and catalyst dispersion characteristics. During the reporting period, the following has been accomplished: (1) A MS-TGA (mass spectrometric-thermogravimetric analysis) apparatus, which is one of the primary instruments that will be used in these studies, has been refurbished and modified to meet the requirements of this project. A NO{sub x} chemiluminescence analyzer (ThermoElectron, Model 10) has been added to the instrument to monitor NO{sub x} concentrations in the feed and product streams. Computer control and data acquisition system has been updated and modified to accommodate the requirements of the specific types of experiments planned. The diffusion pumps used to maintain vacuum for the mass spectrometer system have been replaced with turbomolecular pumps (Varian 300 HT). (2) A packed bed reactor/gas flow system has been assembled for performing reactivity studies. This system employs a Kin-Tek gas calibration/mixing system for varying NO and CO concentrations in the feed gas to the packed bed, a NO{sub x} chemiluminescence analyzer (ThermoElectron, Model 10), and a quadrupole mass spectrometer (Dycor). This system is required for steady-state reactivity studies, as well as mechanistic studies on the effects of NO and CO in the gas phase on intermediate oxygen surface complex populations on the carbon substrates. (3) Work has continued on the application of contrast matching, small angle neutron scattering to the characterization and development of char porosity. Contrast matching with perdeuterated toluene has

  14. Opportunity NOx

    Energy Technology Data Exchange (ETDEWEB)

    Karrs, M.; Albano, J.V. [ABB Lummus Global Inc., (United States)

    2002-03-01

    Legislation on the emission of oxides of nitrogen (NO{sub x}) from stationery fired sources is becoming ever more stringent. The only proven technology for reducing NOx to below 10 ppm in flue gas is selective catalytic reduction (SCR) at temperatures of 400 - 700 Fahrenheit. But, since modern refinery and petrochemical heater stack temperatures are below this range, retrofitting a catalytic reducer to an existing heater was difficult and expensive. ABB Lummus Heat Transfer took up this problem and have developed a low impact solution for SCR retrofits. The system developed is compact and the modular design facilitates fabrication almost anywhere in the world. The modular design keeps downtime to a minimum. The investment costs are site specific but the system has marked advantages over the retrofitting of low NO{sub x} burners.

  15. Potentials and limits of the internal engine reduction of NO{sub x} for great diesel engines; Potentiale und Grenzen der innermotorischen NOx-Reduktion bei Grossdieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Jochen; Sankhla, Harsh; Ruhkamp, Ludger; Maassen, Franz [FEV Motorentechnik GmbH, Aachen (Germany); Rajamani, Vinod [RWTH Aachen (Germany). VKA

    2011-07-01

    With the introduction of stringent emissions legislations in large bore engine sector, the reduction of NOx emissions are particularly gaining significance. New concepts are necessary in this engine class to achieve the low NOx targets. Exhaust gas recirculation and Miller valve timing are engine measures that come into consideration. Based on the 1-D engine process simulations using GT-Power, the potential and limits of both approaches shall be discussed and compared in this article. The emissions, system efficiency and the mechanical limits of the engine shall be brought under the purview of the analysis. After selection of the best approach or combination of approaches from a viewpoint of NOx reduction, an engine system layout will be determined with the aid of GT-Power simulations. Next, 3-D CFD simulations (KIVA 3V) shall be employed to gain a phenomenological understanding of the in-cylinder processes. The engine system shall be optimised in a further step using DoE (Design of Experiments). The optimisation of the chosen parameters will be performed through a coupling of 3-D CFD with the model-based optimisation tool, Pro-Cal. The simulations shall be validated at the engine test bench after the optimisation step. (orig.)

  16. Effects of WOx modification on the activity, adsorption and redox properties of CeO2 catalyst for NOx reduction with ammonia

    Institute of Scientific and Technical Information of China (English)

    Ziran Ma; Duan Weng; Xiaodong WU; Zhichun Si

    2012-01-01

    A series of WO3/CeO2 (WOx/CeO2) catalysts were synthesized by wet impregnation of ammonium metatungstate on a CeO2 support.The resulting solid acid catalysts were characterized by X-ray diffraction (XRD),UV-Vis spectroscopy (UV-Vis),Raman spectroscopy (Raman),in-situ Fourier transform infrared spectroscopy (in-situ FT-IR) of ammonia adsorption,NH3-TPD,H2 temperatureprogrammed reduction (H2-TPR),NH3/NO oxidation and activity measurements for NOx reduction by NH3 (NH3-SCR).The results show that polytungstate (WOx) species are the main species of tungsten oxide on the surface of ceria.The addition of tungsten oxide enhances the Br(ō)nsted acidity of ceria catalysts remarkably and decreases the amount of surface oxygen on ceria,with strong interaction between CeO2 and WOx.As a result,the N2 selectivity of NH3 oxidation and NH3-SCR at high temperatures (> 300℃) is enhanced.Therefore,a wide working temperature window in which NOx conversion exceeds 80% (NOx conversion > 80%) from 200 to 450℃,is achieved over 10 wt.% WOx/CeO2 catalyst.A tentative model of the NH3-SCR reaction route on WOx/CeO2 catalysts is presented.

  17. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Harold, Michael; Crocker, Mark; Balakotaiah, Vemuri; Luss, Dan; Choi, Jae-Soon; Dearth, Mark; McCabe, Bob; Theis, Joe

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) commonly referred to as NO{sub x}, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NO{sub x} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NO{sub x} in the presence of excess O{sub 2}. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NO{sub x}. Two catalytic technologies that have emerged as effective for NO{sub x} abatement are NO{sub x} storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NO{sub x}. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and alternative reductants such as propylene, representing the

  18. Selective Photocatalytic Reduction of NOx with Fe-doped TiO2: A New Approach Towards Photocatalyst Design

    NARCIS (Netherlands)

    Wu, Q.

    2012-01-01

    Conventional TiO2 based photocatalysts oxidize NOx to nitrates which do not automatically desorb and have to be washed away from the catalyst surface. To avoid this, the research described in this thesis aims to design new photocatalysts that can photo-reduce NO into N2 and O2. Previous efforts in t

  19. Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx

    NARCIS (Netherlands)

    Deka, U.; Lezcano-Gonzalez, I.; Weckhuysen, B.M.; Beale, A.M.

    2013-01-01

    Cu-exchanged zeolites have demonstrated widespread use as catalyst materials in the abatement of NOx, especially from mobile sources. Recent studies focusing on Cu-exchanged zeolites with the CHA structure have demonstrated them to be excellent catalysts in the ammonia-assisted selective catalytic r

  20. Experimental and Modeling Study on de-NOx Characteristics of Selective Non-catalytic Reduction in O2/CO2 Atmosphere

    Institute of Scientific and Technical Information of China (English)

    Hui Li; Kuihua Han⁎; Hongtao Liu; Chunmei Lu

    2014-01-01

    An experimental study of thermal de-NOx using NH3 as reductant in O2/CO2 atmosphere with the effect of SO2 and different additives was performed in a drop tube furnace. Results show that the optimum temperature win-dow is 841-1184 °C, and the optimum reaction temperature is about 900 °C with a de-NOx efficiency of 95.4%. A certain amount of SO2 has an inhibiting effect on NO reduction. The effect of additives, including Na2CO3, C2H5OH and FeCl3, on NO reduction by NH3 is also explored. The addition of Na2CO3 and FeCl3 is useful to widen the tem-perature window and shift the reaction to lower temperature for the efficiency is increased from 30.5%to 74.0%and 67.4%respectively at 800 °C. Qualitatively, the modeling results using a detailed kinetic modeling mecha-nism represent well most of the process features. The effect of Na2CO3, C2H5OH and FeCl3 addition can be reproduced well by the Na2CO3, C2H5OH and Fe(CO)5 sub-mechanism respectively. The reaction mechanism analysis shows that the effects of these additives on NO reduction are achieved mainly by promoting the produc-tion of OH radicals at lower temperature.

  1. Effect of SO2 on the performance of Ag-Pd/Al2O3 for the selective catalytic reduction of NOx with C2H5OH

    Institute of Scientific and Technical Information of China (English)

    XIE Shu-xia; YU Yun-bo; WANG Jin; HE Hong

    2006-01-01

    The influence of SO2 on the performance of Ag-Pd/Al2O3 for the selective catalytic reduction (SCR) of NOx with C2H5OH was investigated experimentally. The activity test results suggest that Ag-Pd/Al2O3 shows a small activity loss in the presence of SO2 when using C2H5OH as a reductant. In situ DRIFTS spectra show that the activity loss originates from the formation of surface sulphate species on the Ag-Pd/Al2O3. The surface sulphate species formation inhibits the formation of nitrate, whereas hardly changes the partial oxidation of C2H5OH. Compared with the NOx reduction by C3H6, an obvious suppression of the surface sulphate species formation was observed by DRIFTS experiment when using C2H5OH as a reductant. This phenomenon reveals the better catalytic performance and strong SO2 tolerance of Ag-Pd/Al2O3-C2H5OH system.

  2. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-11-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  3. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process.

    Science.gov (United States)

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency.

  4. Identification of the arsenic resistance on MoO3 doped CeO2/TiO2 catalyst for selective catalytic reduction of NOx with ammonia.

    Science.gov (United States)

    Li, Xiang; Li, Xiansheng; Li, Junhua; Hao, Jiming

    2016-11-15

    Arsenic resistance on MoO3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 (NH3-SCR) is investigated. It is found that the activity loss of CeO2-MoO3/TiO2 caused by As oxide is obvious less than that of CeO2/TiO2 catalysts. The fresh and poisoned catalysts are compared and analyzed using XRD, Raman, XPS, H2-TPR and in situ DRIFTS. The results manifest that the introduction of arsenic oxide to CeO2/TiO2 catalyst not only weakens BET surface area, surface acid sites and adsorbed NOx species, but also destroy the redox circle of Ce(4+) to Ce(3+) because of interaction between Ce and As. When MoO3 is added into CeO2/TiO2 system, the main SCR reaction path are found to be changed from the reaction between coordinated NH3 and ad-NOx species to that between an amide and gaseous NO. Additionally, for CeO2-MoO3/TiO2 catalyst, As toxic effect on active sites CeO2 can be released because of stronger As-Mo interaction. Moreover, not only are the reactable Brønsted and Lewis acid sites partly restored, but the cycle of Ce(4+) to Ce(3+) can also be free to some extent.

  5. Structural and kinetic changes to small-pore Cu-zeolites after hydrothermal aging treatments and selective catalytic reduction of NO_x with ammonia

    OpenAIRE

    Albarracin-Caballero, Jonatan D.; Khurana, Ishant; Di Iorio, John R.; Shih, Arthur J.; Schmidt, Joel E.; Dusselier, Michiel; Davis, Mark E.; Yezerets, Aleksey; Miller, Jeffrey T.; Ribeiro, Fabio H.; Gounder, Rajamani

    2016-01-01

    Three small-pore, eight-membered ring (8-MR) zeolites of different cage-based topology (CHA, AEI, RTH), in their proton- and copper-exchanged forms, were first exposed to high temperature hydrothermal aging treatments (1073 K, 16 h, 10% (v/v) H_2O) and then to reaction conditions for low temperature (473 K) standard selective catalytic reduction (SCR) of NO_x with ammonia, in order to study the effect of zeolite topology on the structural and kinetic changes that occur to Cu-zeolites used in ...

  6. Fe(II)EDTA-NO reduction by a newly isolated thermophilic Anoxybacillus sp. HA from a rotating drum biofilter for NOx removal.

    Science.gov (United States)

    Chen, Jun; Li, Yan; Hao, Hong-hong; Zheng, Ji; Chen, Jian-meng

    2015-02-01

    The reduction of Fe(II)EDTA-NO is one of the core processes in BioDeNOx, an integrated physicochemical and biological technique for NOx removal from industrial flue gases. A newly isolated thermophilic Anoxybacillus sp. HA, identified by 16S rRNA sequence analysis, could simultaneously reduce Fe(II)EDTA-NO and Fe(III)EDTA. A maximum NO removal efficiency of 98.7% was achieved when 3mM Fe(II)EDTA-NO was used in the nutrient solution at 55°C. Results of this study strongly indicated that the biological oxidation of Fe(II)EDTA played an important role in the formation of Fe(III)EDTA in the anaerobic system. Fe(II)EDTA-NO was more competitive than Fe(III)EDTA as an electron acceptor, and the presence of Fe(III)EDTA slightly affected the reduction rate of Fe(II)EDTA-NO. At 55°C, the maximum microbial specific growth rate μmax reached the peak value of 0.022h(-1). The maximum NO removal efficiency was also measured (95.4%) under this temperature. Anoxybacillus sp. HA, which grew well at 50°C-60°C, is a potential microbial resource for Fe(II)EDTA-NO reduction at thermophilic temperatures.

  7. Selective catalytic NOx reduction on Antimony promoted V2O5-Sb/TiO2 catalyst

    Institute of Scientific and Technical Information of China (English)

    HA Heon Phil; CHUNG Soon Hyo; OH Young Joo

    2006-01-01

    Quantum chemical calculation was carried out to choose a promoter which can reduce the poisoning of V2O5/TiO2 catalysts by SO2.Several atoms were chosen as candidates and new catalysts were synthesized by impregnation method.The NOx conversion rate was measured at temperatures between 100 and 400 ℃ and poisoning effect was investigated.The most promising candidate promoter, Se, was excluded because of its high vapor pressure.On the other hand, Sb shows best promoting properties.Sb promoted catalyst reaches the maximum NOx conversion rate at 250 ℃.It also shows considerably enhanced resistance to poisoning of V2O5/TiO2 catalysts by SO2.

  8. In situ DRIFTS studies on MnOx nanowires supported by activated semi-coke for low temperature selective catalytic reduction of NOx with NH3

    Science.gov (United States)

    Chen, Yan; Zhang, Zuotai; Liu, Lili; Mi, Liang; Wang, Xidong

    2016-03-01

    To mitigate the threat of NOx on the environment, MnOx nanowires were fabricated on activated semi-coke (MnOx NW/ASC) for the first time. The prepared MnOx NW/ASC was used for the low temperature selective catalytic reduction (SCR) of NOx with NH3, which achieved an efficiency of over 90% with a low loading content of 1.64 wt% at 150-210 °C. This high performance could be ascribed to synergistic effect between MnOx and ASC. Specifically, the large specific surface area and reducible property of ASC facilitated the dispersion of MnOx and the formation of Mn3+, respectively. Meanwhile, MnOx nanowires provided more redox sites and lattice oxygen species due to the coexistence of Mn3+ and Mn4+, which accelerated the catalytic cycle. The in situ DRIFTS studies revealed that ASC was conducive to the adsorption of NO and NH3. Most importantly, the existence of Mn3+ favored the formation of amide species and the subsequent reduction reaction. Furthermore, the Langmuir-Hinshelwood (L-H) route between coordinated NH3 and bidentate nitrate was predominating in the SCR process and responsible for the high catalytic activity at low temperature.

  9. A novel co-precipitation method for preparation of Mn--Ce/TiO2 composites for NOx reduction with NH3 at low temperature.

    Science.gov (United States)

    Sheng, Zhongyi; Hu, Yufeng; Xue, Jianming; Wang, Xiaoming; Liao, Weiping

    2012-01-01

    Mn--Ce/TiO2 catalyst prepared by a novel co-precipitation method was used in this study for low-temperature selective catalytic reduction (SCR) of NOx with ammonia. The catalyst showed high activity and good SO2 resistance. The NO conversion on the catalyst increased to 100% when 700 ppm of SO2 flowed in, and reached 60.8% in 2.5 h. The characterized results indicated that the catalyst prepared by the new method had good dispersion of the active phase, uniform micro-size particles and large Brunauer-Emmett-Teller surface. The temperature programmed reduction and temperature programmed desorption experiments showed that the improvement in SCR activity on the Mn--Ce/TiO2 catalyst might be due to the increase of active oxygen species and the enhancement of NH3 chemisorption, both of which were conducive to NH3 activation.

  10. 分解炉NOx生成还原计算机辅助试验平台的开发%Development of Computer Aided Test Platform for Simulation of Production and Reduction of NOx in Precalciner

    Institute of Scientific and Technical Information of China (English)

    谢新华; 陆继东; 吕刚; 胡芝娟; 唐新宇; 蔡吕清

    2013-01-01

    The process of NOX formation and reduction in cement precalciner was analyzed, and the mathematical models (fuel nitrogen emission dynamics, volatile-NOx formation dynamics, Char- NOX formation dynamics, homogeneous deoxidize dynamics and heterogeneous deoxidize dynamics) were used to simulate the process of NOX formation and reduction in precalciner. Based on these works, the numerical simulation method was combined to develop the Computer Aided Test Platform for NOX Simulation in Precalciner, which could provide an experimental platform for design and development oflow-NOx precalciner.%以水泥分解炉为对象,分析了分解炉内NOx产生与分解机制,采用数值模拟方法对分解炉内NOx生成还原过程(燃料N析出、挥发份NOx生成、焦炭NOx生成、NOx同相还原、NOx异相还原)进行了模拟研究,并开发了分解炉NOx生成与还原模拟计算机辅助试验平台,为低NOx分解炉的设计开发及运行调整提供了理论分析工具.

  11. Satellite NO2 retrievals suggest China has exceeded its NOx reduction goals from the twelfth Five-Year Plan

    Science.gov (United States)

    de Foy, Benjamin; Lu, Zifeng; Streets, David G.

    2016-01-01

    China’s twelfth Five-Year Plan included pollution control measures with a goal of reducing national emissions of nitrogen oxides (NOx) by 10% by 2015 compared with 2010. Multiple linear regression analysis was used on 11-year time series of all nitrogen dioxide (NO2) pixels from the Ozone Monitoring Instrument (OMI) over 18 NO2 hotspots in China. The regression analysis accounted for variations in meteorology, pixel resolution, seasonal effects, weekday variability and year-to-year variability. The NO2 trends suggested that there was an increase in NO2 columns in most areas from 2005 to around 2011 which was followed by a strong decrease continuing through 2015. The satellite results were in good agreement with the annual official NOx emission inventories which were available up until 2014. This shows the value of evaluating trends in emission inventories using satellite retrievals. It further shows that recent control strategies were effective in reducing emissions and that recent economic transformations in China may be having an effect on NO2 columns. Satellite information for 2015 suggests that emissions have continued to decrease since the latest inventories available and have surpassed the goals of the twelfth Five-Year Plan. PMID:27786278

  12. Water behaviour in nanoporous aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Konstantin S; Bougeard, Daniel, E-mail: Konstantin.Smirnov@univ-lille1.f [Laboratoire de Spectrochimie Infrarouge et Raman, Universite Lille 1, Sciences et Technologie, CNRS, Batiment C5, 59655 Villeneuve d' Ascq (France)

    2010-07-21

    This paper briefly reviews results of molecular dynamics simulation studies of water confined in nanoporous aluminosilicates. The behaviour of confined molecules is shown to be influenced by the nature of the host structure, and the size and the topology of the voids. For some of the systems discussed the ambiguity in results of different modelling studies call for the use of extended potential and structural models. Thus, the use of polarizable force fields was shown to be necessary to take into account the variation of the molecular dipole of confined molecules in different environments.

  13. 稳态实验考察经模拟道路老化的全配方稀燃Nox捕集催化剂上的Nox还原%NOx Reduction on Fully Formulated Lean NOx Trap Catalysts Subjected to Simulated Road Aging: Insights from Steady-State Experiments

    Institute of Scientific and Technical Information of China (English)

    Jin WANG; Yaying JI; Uschi GRAHAM; Caio CESAR SPINDOLA DE OLIVEIRA; Mark CROCKER

    2011-01-01

    Fully formulated lean NOx trap (LNT) catalysts of the type Pt/Rh/BaO/Al203 were prepared with and without incorporation of CeO2-ZrO2 in the washcoat, and their NOx reduction behavior was evaluated in steady-state, continuous flow experiments. In the fresh state, the CeO2-ZrO2 addition was found to exert little effect on NOx reduction activity using H2, CO, and NH3 as the reductants. However, after simulated road aging, NOx reduction activity was significantly impaired for the CeO2-ZrO2-free catalyst, whereas the performance of the CeO2-ZrO2-containing analog was affected to only a minor degree. These differences are explained on the basis of high-resolution transmission electron microscopy measurements showing that Pt supported on CeO2-ZrO2 remained highly dispersed after aging, whereas Pt supported on BaO/Al203 underwent significant sintering. In addition, the Pt/CeO2-ZrO2 component did not accumulate sulfur during aging, unlike Pt/BaO/Al203 for which significant sulfation of the Ba phase occurred. For both catalysts, selectivity to NH3 in NO and NO2 reduction by H2 increased after the catalyst aging, indicative of a change in the relative surface coverages of N and H ad-atoms on the precious metal sites.

  14. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  15. Effect of reduction treatment on copper modified activated carbons on NO(x) adsorption at room temperature.

    Science.gov (United States)

    Levasseur, Benoit; Gonzalez-Lopez, Eugene; Rossin, Joseph A; Bandosz, Teresa J

    2011-05-01

    Activated carbon was impregnated with copper salt and then exposed to reductive environment using hydrazine hydrate or heat treatment under nitrogen at 925 °C. On the obtained samples, adsorption of NO(2) was carried out at dynamic conditions at ambient temperature. The adsorbents before and after exposure to nitrogen dioxide were characterized by X-ray diffraction (XRD), thermal analysis, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), N(2)-sorption at -196 °C, and potentiometric titration. Copper loading improved the adsorption capacity of NO(2) as well as the retention of NO formed in the process of NO(2) reduction on the carbon surface. That improvement is linked to the presence of copper metal and its high dispersion on the surface. Even though both reduction methods lead to the reduction of copper, different reactions with the carbon surface take place. Heat treatment results in a significant percentage of metallic copper and a reduction of oxygen functional groups of the carbon matrix, whereas hydrazine, besides reduction of copper, leads to an incorporation of nitrogen. The results suggest that NO(2) mainly is converted to copper nitrates although the possibility to its reduction to N(2) is not ruled out. A high capacity on hydrazine treated samples is linked to the high dispersion of metallic copper on the surface of this carbon.

  16. A Comparative Study of N2O Formation during the Selective Catalytic Reduction of NOx with NH3 on Zeolite Supported Cu Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2015-09-01

    A comparative study was carried out on a small-pore CHA.Cu and a large-pore BEA.Cu zeolite catalyst to understand the lower N2O formation on small-pore zeolite supported Cu catalysts in the selective catalytic reduction (SCR) of NOx with NH3. On both catalysts, the N2O yield increases with an increase in the NO2/NOx ratios of the feed gas, suggesting N2O formation via the decomposition of NH4NO3. Temperature-programmed desorption experiments reveal that NH4NO3 is more stable on CHA.Cu than on BEA.Cu. In situ FTIR spectra following stepwise (NO2 + O2) and (15NO + NH3 + O2) adsorption and reaction, and product distribution analysis using isotope-labelled reactants, unambiguously prove that surface nitrate groups are essential for the formation of NH4NO3. Furthermore, CHA.Cu is shown to be considerably less active than BEA.Cu in catalyzing NO oxidation and the subsequent formation of surface nitrate groups. Both factors, i.e., (1) the higher thermal stability of NH4NO3 on CHA.Cu, and (2) the lower activity for this catalyst to catalyze NO oxidation and the subsequent formation of surface nitrates, likely contribute to the higher SCR selectivity with less N2O formation on this catalyst as compared to BEA.Cu. The latter is determined as the primary reason since surface nitrates are the source that leads to the formation of NH4NO3 on the catalysts.

  17. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2005-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  18. SO2 poisoning and regeneration of Mn-Ce/TiO2 catalyst for low temperature NOx reduction with NH3

    Institute of Scientific and Technical Information of China (English)

    SHENG Zhongyi; HU Yufeng; XUE Jiaoming; WANG Xiaoming; LIAO Weiping

    2012-01-01

    SO2 poisoning and regeneration of Mn-Ce/TiO2 catalyst prepared by a novel co-precipitation method for low temperature selective catalytic reduction (SCR) of NOx with ammonia were investigated in this study.When 700 ppm SO2 was fed in,the Mn-Ce/TiO2 catalyst had good resistance to SO2,but the deactivation of Mn-Ce/TiO2 poisoned by SO2 still occurred.The NO conversion of Mn-Ce/TiO2 (the molar ratio of Ce to Ti is 0.075) catalyst decreased from 92.5% to 34.6% in 13 h.Characterizations of fresh and SO2-poisoned Mn-Ce/TiO2 catalysts were carried out by Brunauer-Emmett-Teller method (BET),ion chromatography (IC),X-ray photoelectron spectroscopy (XPS),and X-ray diffraction (XRD).The characterized results indicated that the deposition of sulfates and nitrates on the surface made the catalyst deactivated.Water washing,thermal regeneration and reductive regeneration were used to regenerate the deactivated Mn-Ce/TiO2.And water washing showed best performance on the regeneration of poisoned catalysts,especially with ultrasonic vibration.The Mn-Ce/TiO2 catalyst showed high stability under a series of deactivation-regeneration experiments for ten cycles.

  19. Viscosity model for aluminosilicate melt

    Directory of Open Access Journals (Sweden)

    Zhang G.H.

    2012-01-01

    Full Text Available The structurally based viscosity model proposed in our previous study is extended to include more components, e.g. SiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O and K2O. A simple method is proposed to calculate the numbers of different types of oxygen ions classified by the different cations they bonded with, which is used to characterize the influence of composition on viscosity. When dealing with the aluminosilicate melts containing several basic oxides, the priority order is established for different cations for charge compensating Al3+ ions, according to the coulombic force between cation and oxygen anion. It is indicated that basic oxides have two paradox influences on viscosity: basic oxide with a higher basicity decreases viscosity more greatly by forming weaker non-bridging oxygen bond; while it increases viscosity more greatly by forming stronger bridging oxygen bond in tetrahedron after charge compensating Al3+ ion. The present model can extrapolate its application range to the system without SiO2. Furthermore, it could also give a satisfy interpretation to the abnormal phenomenon that viscosity increases when adding K2O to CaO-Al2O3-SiO2 melt within a certain composition range.

  20. Task 2.6 - Catalyst for Utilization of Methane in Selective Catalytic Reduction of NOx: Topical report, July 1, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Selective catalytic reduction (SCR) of nitrogen oxides (NO{sub x}) in flue gas or engine exhaust gas with hydrocarbons as the reductant has great potential for less expense, less pollution, and easier operation than SCR with ammonia. Methane is the preferred reducing gas because of its low cost and low toxicity. Stable, low-cost catalysts for SCR with methane are required to demonstrate this technology for controlling NO{sub x} emissions. Several cobalt and nickel catalysts on synthetic clay and uranium oxide supports were investigated for their activities in reducing NO{sub x} with methane in the presence of air. The efficiency of the synthetic clay-supported nickel and cobalt catalysts for nitric oxide (NO) reduction with methane as the reducing gas was poor. The nickel oxide-uranium oxide catalyst, which was chosen for its high stability, was also ineffective. Results from the two-step experiments conducted at two temperatures produced some interesting information on the reactions of methane with the catalysts and the reactivity of the carbonaceous intermediate. The carbonaceous material formed from methane dissociation at 450{degrees}C not only reduces NO to N{sub 2}O at lower temperatures, but also prevents oxidation of NO to NO{sub 2}. Unfortunately, the carbonaceous forms that reduce the NO are not available for reactions at 400{degrees}C in the presence of oxygen. A two-step process employing this chemistry would be difficult because the catalyst would have to be cycled between the two temperatures. Also the desired reduction to nitrogen is not very efficient.

  1. Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, J.N.; Gangadharan, P.; Patwardhan, A.V.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2009-01-15

    Ammonia is a highly volatile noxious material with adverse physiological effects, which become intolerable even at very low concentrations and present substantial environmental and operating hazards and risk. Yet ammonia has long been known to be used for feedstock of flue gas conditioning and NOx reduction. Urea as the source of ammonia for the production of ammonia has the obvious advantages that no ammonia shipping, handling, and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage, and use of anhydrous and aqueous ammonia. Yet no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a batch reactor. The catalyst used in this study is fly ash, a waste material originating in great amounts in combustion processes. A number of experiments were carried out in a batch reactor at different catalytic doses, temperatures, times, and at a constant concentration of urea solution 10% by weight, and equilibrium and kinetic studies have been made.

  2. Hydrothermal stability of MOx-Ce0.75Zr0.25O2 catalysts for NOx reduction by ammonia

    Institute of Scientific and Technical Information of China (English)

    王敏; 司知蠢; 陈磊; 吴晓东; 於俊

    2013-01-01

    Various acidic components (MOx:phosphate, sulfate, tungstate and niobate) were loaded on Ce0.75Zr0.25O2 powders by an impregnation method. The as-prepared catalysts were hydrothermally treated at 760 ºC for 48 h in air containing 10 vol.%H2O to ob-tain the aged catalysts. The catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, H2 pro-grammed-reduction, NH3 adsorption and deNOx activity measurements. The results showed that, among the catalysts investigated, the phosphated Ce0.75Zr0.25O2 catalyst showed the highest hydrothermal stability. The remained high acidity of the phosphated catalyst with moderate redox property helped to maintain the excellent NH3-SCR activity of hydrothermally aged catalyst. Cerium tungstate led to the poor redox property of the tungstated catalyst although the acidity of catalyst was still high. The decomposition of sulfates at temperatures higher than 600 °C restrained the usage of sulfated catalysts in high temperature conditions. The overall dehydration of niobate to niobium oxides led to the low acidity of hydrothermally aged Nb2O5-Ce0.75Zr0.25O2 catalyst.

  3. WO3/CeO2/TiO2 Catalysts for Selective Catalytic Reduction of NO(x) by NH3: Effect of the Synthesis Method.

    Science.gov (United States)

    Michalow-Mauke, Katarzyna A; Lu, Ye; Ferri, Davide; Graule, Thomas; Kowalski, Kazimierz; Elsener, Martin; Kröcher, Oliver

    2015-01-01

    WO3/CeO2/TiO2, CeO2/TiO2 and WO3/TiO2 catalysts were prepared by wet impregnation. CeO2/TiO2 and WO3/TiO2 showed activity towards the selective catalytic reduction (SCR) of NO(x) by NH3, which was significantly improved by subsequent impregnation of CeO/TiO2 with WO3. Catalytic performance, NH3 oxidation and NH3 temperature programmed desorption of wet-impregnated WO3/CeO2/TiO2 were compared to those of a flame-made counterpart. The flame-made catalyst exhibits a peculiar arrangement of W-Ce-Ti-oxides that makes it very active for NH3-SCR. Catalysts prepared by wet impregnation with the aim to mimic the structure of the flame-made catalyst were not able to fully reproduce its activity. The differences in the catalytic performance between the investigated catalysts were related to their structural properties and the different interaction of the catalyst components.

  4. Mechanistic Investigation into the Effect of Sulfuration on the FeW Catalysts for the Selective Catalytic Reduction of NOx with NH3.

    Science.gov (United States)

    Wang, Hui; Qu, Zhenping; Dong, Shicheng; Tang, Chen

    2017-03-01

    Iron tungsten (FeW) catalyst is a potential candidate for the selective catalytic reduction (SCR) of NOx with ammonia because of its excellent performance in a wide operating window. Sulfur poisoning effects in SCR catalysts have long been recognized as a challenge in development of efficient catalysts for applications. In this paper, the impact of sulfuration on catalyst structure, NH3-SCR reaction performance and mechanism was systematically investigated through spectroscopic and temperature-programmed approaches. The sulfuration inhibited the SCR activity at low temperatures (catalyst, the organic-like with covalent S═O bonds sulfate species were mainly formed over the FeW catalysts. Combining TPD with in situ DRIFTS results, it was found that the Lewis and the Brønsted acidity were enhanced by the interaction between metal species and sulfate species due to the strong electron withdrawing effect of the S═O double bonds. The in situ DRIFTS study showed that the formation of NO2 was hindered, leading to the "fast-SCR" pathway was partly cut off by the sulfuration process and thereby the loss of SCR activity at low temperatures. However, the Langmuir-Hinshelwood reaction pathway between adsorbed NH3/NH4(+) species and nitrate species was facilitated and dominated at high temperatures, making the as-synthesized FeW catalysts resistant to SO2 poisoning.

  5. Laboratory test reactor for the investigation of liquid reducing agents in the selective catalytic reduction of NOx

    Science.gov (United States)

    Peitz, D.; Bernhard, A.; Elsener, M.; Kröcher, O.

    2011-08-01

    A test reactor was designed and built for investigating liquid reducing agents in the selective catalytic reduction (SCR) process in the laboratory. The design of the experimental setup is described in detail and its performance was evaluated. Using a glass nebulizer, liquid reducing agents were sprayed directly onto a catalyst positioned in a heated glass reactor with a length of 250 mm and an internal diameter of 20.4 mm or 40 mm. Model exhaust gases were mixed from individual gas components and were heated up to 450 °C in a heat exchanger before entering the reactor. The off-gas was analyzed using two complimentary techniques, a multi-component online FTIR gas analysis and a liquid quench gas absorption setup, to detect higher molecular compounds and aerosols. Due to the versatility of construction, processes not related to SCR, but involving three-phase reactions with gases, liquids and a catalyst, can also be investigated.

  6. Promotional Effect on Selective Catalytic Reduction of NOx with NH3 over Overloaded W and Ce on V2O5/TiO2 Catalysts

    Directory of Open Access Journals (Sweden)

    Seunghee Youn

    2015-01-01

    Full Text Available W and Ce are known to be a good promoters to improve selective catalytic reduction (SCR activity for V2O5/TiO2 catalysts. This work aimed at finding the optimum ratio and loading of promoters (W and Ce on V2O5/TiO2 catalyst in order to improve SCR reactivity in low temperature region and to minimize N2O formation in high temperature region. In addition, we changed the order of impregnation between W and Ce precursors on V2O5/TiO2 catalyst during the preparation and observed its effect on SCR activity and N2 selectivity. We utilized various analytical techniques, such as N2 adsorption-desorption, X-ray diffraction (XRD, and temperature-programmed reduction with hydrogen (H2 TPR to investigate the physicochemical properties of catalysts. It was found that W- and Ce-overloaded V2O5/TiO2 catalyst such as W/Ce/V/TiO2 (15 : 15 : 1 wt% showed the most remarkable DeNOx properties over the wide temperature region. Additionally, this catalyst significantly suppressed N2O formation during SCR reaction, especially in high temperature region (350–400°C. Based on the characterization results, it was found that such superior activity originated from the improved reducibility and morphology of W and Ce species on V2O5/TiO2 catalyst when they are incorporated together at high loading.

  7. Simulación Numérica del Proceso de Requemado de Gases para la Reducción de Óxidos de Nitrógeno (NOx Numerical Simulation of the Reburning Technology for Nitrogen Oxides (NOx Reduction

    Directory of Open Access Journals (Sweden)

    Meliton Estrada

    2006-01-01

    Full Text Available El presente trabajo tiene como objetivo desarrollar capacidades de modelado que simulen el proceso de reducción de NOx por la tecnología del requemado de gases. En el modelo cinético construido solo se consideraron algunos de los factores que determinan la producción de óxidos de nitrógeno. La emisión de NOx procedente de la combustión del carbón mineral en generadores de vapor, es un problema ambiental importante, ya que se ha demostrado que contribuye a la formación de la lluvia ácida y del esmog troposférico. El requemado de gases proporciona una buena opción para reducir las emisiones de NOx en instalaciones donde usan calderas a carbón. Los gases de NOx emitidos por la caldera, entran a la zona de requemado y se combinan con gas natural que es inyectado para que actúe como un agente reductor. El análisis se hace para un tiempo de residencia de 0.1 y 0.2 seg., y temperaturas de gases 1,000 a 2,000 K, con concentración de gas natural de 7.5 a 35 %. Los resultados muestran una buena equivalencia de reducción de NOx comparados con el modelo de Braun aunque se puede mejorar el modelo presentado integrándolo con un modelo detallado de la mecánica de fluidos turbulenta.The aim of this work was to develop modeling capabilities which could be used to simulate the processes of reduction of NOx in reburn technology. The kinetic model developed in this work considers only some of the factors that contribute to nitrogen oxide production. Emission of NOx from the combustion of coal is an important environmental problem, since it has been demonstrated that it contributes to the formation of the acid rain and of tropospheric smog. Gas reburning is a useful option for the reduction of emissions of NOx in installations equipped with coal-fired boilers. Gases from the boiler containing NOx, enter a reburning zone and are combined with natural gas that is injected in order to act as a reducing agent, which transforms the NOx into N2

  8. Heteroanionic Materials Based on Copper Clusters, Bisphosphonates, and Polyoxometalates: Magnetic Properties and Comparative Electrocatalytic NO(x) Reduction Studies.

    Science.gov (United States)

    Oms, Olivier; Yang, Shu; Salomon, William; Marrot, Jérôme; Dolbecq, Anne; Rivière, Eric; Bonnefont, Antoine; Ruhlmann, Laurent; Mialane, Pierre

    2016-02-15

    Three compounds associating for the first time polyoxotungstates, bisphosphonates, and copper ions were structurally characterized. They consist in heteropolyanionic monodimensional materials where [Cu6(Ale)4(H2O)4](4-) (Ale = alendronate = [O3PC(O)(C3H6NH3)PO3](4-)) complexes alternate with polyoxometalate (POM) units. In Na12[{SiW9O34Cu3(Ale)(H2O)}{Cu6(Ale)4(H2O)4}]·50H2O (SiW9CuAle), the polyoxometalate core consists in a {SiW9Cu3} monomer capped by a pentacoordinated Ale ligand, while sandwich-type Keggin {(SbW9O33)2Cu3(H2O)(2.5)Cl(0.5)} and Dawson {(P2W15O56)2Cu4(H2O)2} complexes are found in Na8Li29[{(SbW9O33)2Cu3(H2O)(2.5)Cl(0.5)}2{Cu6(Ale)4(H2O)4}3]·163H2O (SbW9CuAle) and Na20[{(P2W15O56)2Cu4(H2O)2}{Cu6(Ale)4(H2O)4}]·50H2O (P2W15CuAle), respectively. A comparative magnetic study of the SiW9CuAle and SbW9CuAle compounds enabled full quantification of the Cu(II) superexchange interactions both for the POM and non-POM subunits, evidencing that, while the paramagnetic centers are anti-ferromagnetically coupled in the polyoxometalate units, both anti-ferromagnetic and ferromagnetic interactions coexist in the {Cu6(Ale)4(H2O)4} cluster. All the studied compounds present a good efficiency upon the reduction of HNO2 or NO2(-), the POM acting as a catalyst. However, it has been found that SbW9CuAle is inactive toward the reduction of nitrates, highlighting that both the {(SbW9O33)2Cu3} unit and the {Cu6(Ale)4(H2O)4} cluster do not act as electrocatalysts for this reaction. In contrast, SiW9CuAle and P2W15CuAle have shown a significant activity upon the reduction of NO3(-) and thus both at pH 1 and pH 5, evidencing that the chemical nature of the polyoxometalate is a crucial parameter even if it acts as precatalyst. Moreover, comparison of the activities of P2W15CuAle and [(P2W15O56)2Cu4(H2O)2](16-) evidenced that if the [Cu6(Ale)4(H2O)4](4-) cluster does not act as electrocatalyst, it acts as a cofactor, significantly enhancing the catalytic efficiency of the

  9. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

    Energy Technology Data Exchange (ETDEWEB)

    Jerry B. Urbas

    1999-05-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification

  10. TiO2-Supported Binary Metal Oxide Catalysts for Low-temperature Selective Catalytic Reduction of NOx with NH3

    Institute of Scientific and Technical Information of China (English)

    WU Bi-jun; LIU Xiao-qin; XIAO Ping; WANG Shu-gang

    2008-01-01

    Binary metal oxide(MnOx-A/TiO2) catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2>Mn-Fe/TiO2>Mn-Cr/TiO2>Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2>Mn-W/TiO2>Mn-Mo/TiO2>Mn-Cr/TiO2.In the presence of 0.01% SO2 and 6% H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8% and 94.2%,respectively,after 8 h at 120 ℃ at GHSV 12600 h-1.As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR) spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.

  11. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  12. PVN adenovirus-siRNA injections silencing either NOX2 or NOX4 attenuate aldosterone/NaCl-induced hypertension in mice.

    Science.gov (United States)

    Xue, Baojian; Beltz, Terry G; Johnson, Ralph F; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2012-02-01

    Mineralocorticoid excess increases superoxide production by activating NADPH oxidase (NOX), and intracerebroventricular infusions of NADPH oxidase inhibitors attenuate aldosterone (Aldo)/salt-induced hypertension. It has been hypothesized that increased reactive oxygen species (ROS) in the brain may be a key mechanism in the development of hypertension. The present study investigated the brain regional specificity of NADPH oxidase and the role of NOX2 and NOX4 NADPH oxidase subunits in the hypothalamic paraventricular nucleus (PVN) in Aldo/salt-induced hypertension. PVN injections of adenoviral vectors expressing small interfering (si)RNA targeting NOX2 (AdsiRNA-NOX2) or NOX4 (AdsiRNA-NOX4) mRNAs were used to knock down NOX2 and NOX4 proteins. Three days later, delivery of Aldo (0.2 mg·kg(-1)·day(-1) sc) via osmotic pump commenced and 1% NaCl was provided in place of water. PVN injections of either AdsiRNA-NOX2 or AdsiRNA-NOX4 significantly attenuated the development of Aldo/NaCl-induced hypertension. In an additional study, Aldo/salt-induced hypertension was also significantly attenuated in NOX2 (genomic) knockout mice compared with wild-type controls. When animals from both functional studies underwent ganglionic blockade, there was a reduced fall in blood pressure in the NOX2 and NOX4 knockdown/knockout mice. Western blot analyses of the PVN of siRNA-NOX2- or siRNA-NOX4-injected mice confirmed a marked reduction in the expression of NOX2 or NOX4 protein. In cultured PVN neurons, silencing either NOX2 or NOX4 protein production by culturing PVN cells with siRNA-NOX2 or siRNA-NOX4 attenuated Aldo-induced ROS. These data indicate that both NOX2 and NOX4 in the PVN contribute to elevated sympathetic activity and the hypertensivogenic actions induced by mineralocorticoid excess.

  13. Commercial introduction of the Advanced NOxTECH system

    Energy Technology Data Exchange (ETDEWEB)

    Sudduth, B.C. [NOxTECH, Inc., Irvine, CA (United States)

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  14. Low absorption vitreous carbon reactors for operando XAS: a case study on Cu/Zeolites for selective catalytic reduction of NO(x) by NH3.

    Science.gov (United States)

    Kispersky, Vincent F; Kropf, A Jeremy; Ribeiro, Fabio H; Miller, Jeffrey T

    2012-02-21

    We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NO(x) by NH(3) on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH(3), 5% O(2), 5% H(2)O, 5% CO(2) and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states. XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situ SCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO(2) catalyst, reduced in H(2) at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO(2) catalyst to be in a partially reduced Cu metal-Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance.

  15. Reduction of NO{sub x} from a pellet burner - a parametric study; Reduktion av NOx fraan en pelletsbraennare - en parameterstudie

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Roennbaeck, Marie; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Leckner, Bo [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    2000-05-01

    NO{sub x} emissions from small-scale combustion of pellets derive mainly from the fuel nitrogen. A conversion from combustion of oil to pellets will probably lead to increasing NO{sub x}-emissions. Today, pellets are produced mainly from sawdust and wood shavings which consist of pure wood with a low nitrogen content. The expected increase in pellet utilisation will probably lead to that other raw materials with higher nitrogen content will be used. This means that NOx-emissions from small-scale BAKE combustion of pellets can increase dramatically if not 'low-NO{sub x} burners' are developed. This report can be used as a support in the development of new design and automatic control strategies for pellet burners. NH{sub 3} and HCN dominate the nitrogen compounds in the volatiles leaving the pellet during the devolatilisation. The fuel properties, the residence time and the devolatilisation conditions affect the ratio between these two compounds. The transformation of NH{sub 3} to N{sub 2} takes place through a short and relatively uncomplicated reaction path while the reduction of HCN has a much more complex reaction path with a slower chemical kinetics which leads to longer reaction times. The optimal stoichiometry depends on the residence time, mixing and the composition of the devolatilisation gas in the primary zone. The objective with this study has been to, with a modified pellet burner, minimise NOx in practical experiments with a small literature study as background. In the experiments reported in this project, the performance of a modified pellet burner and the emissions have been studied while the ratio between primary- and secondary air and the addition of primary air have been varied. During the experiments, the air flow, the different emissions, the boiler effect and the temperature in the burner have been measured continuously. A few parameters have been identified as crucial for the NO{sub x}-emissions: Addition of primary air: The primary

  16. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3.

    Science.gov (United States)

    Xie, Lijuan; Liu, Fudong; Ren, Limin; Shi, Xiaoyan; Xiao, Feng-Shou; He, Hong

    2014-01-01

    Cu-SSZ-13 samples prepared by a novel one-pot synthesis method achieved excellent NH3-SCR performance and high N2 selectivity from 150 to 550 °C after ion exchange treatments. The selected Cu3.8-SSZ-13 catalyst was highly resistant to large space velocity (800 000 h(-1)) and also maintained high NOx conversion in the presence of CO2, H2O, and C3H6 in the simulated diesel exhaust. Isolated Cu(2+) ions located in three different sites were responsible for its excellent NH3-SCR activity. Primary results suggest that the one-pot synthesized Cu-SSZ-13 catalyst is a promising candidate as an NH3-SCR catalyst for the NOx abatement from diesel vehicles.

  17. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    S. Wu; Z. Fan; R. Herman

    2004-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the January 1 to March 31, 2004 time period.

  18. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    S. Wu

    2003-12-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the October 1 to December 31, 2003 time period.

  19. Research advance in non-thermal plasma induced selective catalytic reduction NOx with low hydrocarbon compounds%低温等离子体诱导低碳烃选择性催化还原NOx研究进展

    Institute of Scientific and Technical Information of China (English)

    苏清发; 刘亚敏; 陈杰; 潘华; 施耀

    2009-01-01

    The emission of nitrogen oxides (NOx) from stationary sources, primarily from power stations, industrial heaters and cogeneration plants, represents a major environmental problem. This paper intends to give a general review over the advances in non-thermal plasma assisted selective catalytic reduction (SCR) of NOx with lower hydrocarbon compounds. In the last decade, the non-thermal plasma induced SCR of nitrogen oxide with low hydrocarbon compounds has received much attention. The different hydrocarbons (≤C3) used in the research are discussed. As we know,methane is more difficultly activated than non-methane hydrocarbons, such as ethylene and propylene etc. The reduction mechanism is also discussed. In addition, aiming at the difficulties existed, the direction for future research is prospected.%综述了近年来低温等离子体诱导低碳烃选择性催化还原NOx的研究进展,详细介绍了难活化的甲烷及较易活化的非甲烷低碳烃气体如乙烯、丙烯及丙烷等的研究现状,探讨了低温等离子体诱导低碳烃选择性催化还原NOx的反应机理,并展望了低温等离子体诱导低碳烃选择性催化还原NOx今后研究方向.

  20. Novel Fe‐W‐Ce Mixed Oxide for the Selective  Catalytic Reduction of NOx with NH3 at Low  Temperatures

    Directory of Open Access Journals (Sweden)

    Anna Stahl

    2017-02-01

    Full Text Available A set of novel iron doped cerium‐tungsten catalysts were prepared by sol‐gel method with a view to their application for low temperature selective catalytic reduction (SCR of NOx with NH3 in power plants. With a molar ratio Fe/W/Ce of 0.5:1:1, a NOx reduction of >90% at 200 °C was achieved. In Fe-W-Ce catalysts with low iron oxide content, it was found that the iron compounds were highly dispersed and formed a solid solution within the cerium oxide lattice, which promoted the SCR activity. Large amounts of iron in the catalysts might form a layer of Fe2O3 on the catalyst surface, which induced the synergistic inhibition effect among Fe, Ce and W species. Moreover, the Fe‐W‐Ce catalysts possessed a high resistance to changed operation parameters as well as to deactivation by SO2 and/or H2O. The novel catalyst showed to be competitive among recently developed low‐temperature SCR catalysts.

  1. NOx emissions in China: historical trends and future perspectives

    Science.gov (United States)

    Zhao, B.; Wang, S. X.; Liu, H.; Xu, J. Y.; Fu, K.; Klimont, Z.; Hao, J. M.; He, K. B.; Cofala, J.; Amann, M.

    2013-10-01

    Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995-2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4%, 34.0%, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64% and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector, and more than half is distributed equally between industry and transportation sectors. Selective catalytic reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy-duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020 and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to

  2. NOx emissions in China: historical trends and future perspectives

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2013-06-01

    Full Text Available Nitrogen oxides (NOx are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995–2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4, 34.0, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU and an alternative policy scenario (PC, were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64 and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010 by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector and more than half is distributed equally between industry and transportation sectors. Selective Catalytic Reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020, and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was

  3. Adsorptive desulfurization of diesel with mesoporous aluminosilicates

    Institute of Scientific and Technical Information of China (English)

    TANG Huang; LI Wang-Liang; LIU Qing-Fen; GUAN Li-Li; SONG Jia-Qing; XING dian-Min; LIU Hui-Zhou

    2009-01-01

    Mesoporous aluminosilicates (MAS) bearing microporous zeolite units and mesoporous structures were synthesized by the hydrothermal method. Adsorptive desulfurization ability of model oil and hy-drotreated diesel was studied. The effects of template concentration, crystalization time and calcination time were investigated. The desulfurization ability of adsorbents was improved by transitional metal ion-exchanging. The adsorptive desulfurization of diesel was carried out on a fixed-bed system. The results show that the adsorptive capacity is MASMCM-41NaY. The improvement of desulfurization ability of MAS by Cu+ is more significant than that of Ag+.

  4. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  5. Promotional effect of Si-doped V2O5/TiO2 for selective catalytic reduction of NOx by NH3

    Institute of Scientific and Technical Information of China (English)

    Yanxiao Pan; Wei Zhao; Qin Zhong; Wei Cai; Hongyu Li

    2013-01-01

    TiO2 supports doped with different amounts of Si were prepared by a sol-gel method,and 1 wt% vanadia (V2O5) loaded on Si-doped TiO2 was obtained by an impregnation method.The mole ratio of Si/Ti was 0.2,NOx conversion exceeds 94% at 300℃ and GHSV of 41,324 hr-1,which is about 20% higher than pure V2O5/TiO2.The catalysts were characterized by XRD,BET,TEM,FT-IR,NH3-TPD,XPS,H2-TPR,Raman and in situ DRIFTS.The results of FT-IR and XPS indicated that Si was doped into the TiO2 lattice successfully and a solid solution was obtained.V2O5 active component could be dispersed well on the support with the increasing of surface area of the catalyst,which was confirmed by Raman and XRD results.Above all,the numbers of acid sites (especially the Br(c)nsted-acid) and oxidation properties were enhanced for Si-doped V2O5/TiO2 catalysts,which improved the deNOx catalytic activity.

  6. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass....... However, this proportionality is only valid for comparison of the glasses in the same series of compositions. The eutectic composition of anorthite-wollastonite-tridymite is found to exhibit the highest GFA of the melts under investigation....

  7. Nanostructure of gel-derived aluminosilicate materials.

    Science.gov (United States)

    Sinkó, Katalin; Hüsing, Nicola; Goerigk, Günter; Peterlik, Herwig

    2008-02-01

    In the present work, aluminosilicate aerogels prepared under various conditions were compared with respect to their nanostructures and porosity. The purpose of this investigation was to find a suitable way to predict the final product structure and to tailor a required texture. Several Al and Si precursors (Al nitrate, Al isopropoxide, Al acetate, tetraethoxysilane (TEOS), and sodium silicate) were used in our examinations; the solvent content (water and alcohols), surfactants, as well as the catalysts were varied. In addition, the aerogels were subjected to various heat treatments. Hybrid aerogels were synthesized by the addition of different polymers (poly(acrylic acid), polyvinyl acetate, and polydimethylsiloxane). Aluminosilicate and hybrid aerogel structures were investigated by 27Al MAS NMR, SAXS, SEM, and porosity measurements. Loose fractal structures with a good porosity and high Al incorporation can be achieved from TEOS and Al nitrate or isopropoxide via a sol-gel preparation route. The use of Al acetate led to compact aerogel structures independently of the Si precursor, the pH, and the catalyst.

  8. NOx Emission Calculation and Cost-Benefit Analysis of Emission Reduction in Shanghai based on Energy Consumption%基于能源消费的上海NOx排放源与减排费用效果分析

    Institute of Scientific and Technical Information of China (English)

    朱环

    2012-01-01

    基于能源消费计算得到2009年上海市NOx排放总量为571 141 t,其中燃煤电厂、机动车、黑色金属冶炼及压延加工企业排放量共占总排放量的65.1%.燃煤电厂通过采用LNB(低氮燃烧)技术和SCR(选择性氧化还原)技术,可削减总排放量的12.4%;钢铁企业的烧结机采用分步脱硫脱硝法、活性炭/焦法、循环流化床法等技术可削减3.7%/4.4%;高排放机动车改造基本不可行,建议加速和提前淘汰,可削减2.5%.费用效果分析表明,“十二五”期间完成燃煤电厂、烧结烟气脱硝和高污染机动车淘汰的减排费用效果比分别为4.7×104、7.9×104~10.6×104、12.4×104元/t.燃煤电厂脱硝改造费用效果比低、技术成熟,建议作为首要减排措施.%Based on energy consumption,the total NOx emissions of Shanghai in 2009 were estimated to be 571 ,141 tons. The emissions from coal-burning power plants,motor vehicles,ferrous metal smelting and rolling processing enterprises accounted for 65. 1% of the total emissions. About 12. 4% of NO, emissions from coal-burning power plants could be reduced through application of low-nitrogen oxide combustion (LNB) and selective catalytic reduction (SCR) techniques. The integrated iron and steel enterprises could reduce 3.7%-4. 4% of NOx emissions through application of the WFGD + SCR,PAFP-FGD,or CFB-FGD techniques to the sintering machines. Though accelerating the phase-out of high-emission vehicles,the NOx emissions could be reduced by 2. 5% . Cost-benefit analysis of NOx emission reductions shows that the benefits of coal-burning power plant denitration, sintering flue gas denitrification and phase-out of high-pollution vehicles were 4. 7 × 104,7. 9 × 104-10. 6 × 104 and 12.4 × 104 RMB/t, respectively, during the Twelfth Five-Year Plan period. Since the cost of coal-burning power plant denitrification is low, and the technique is already mature, it should be given priority among NOx

  9. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  10. Technical and economic comparison of the SCR De NOx reductant in thermal power plants%火电厂 SCR 脱硝还原剂技术经济比较

    Institute of Scientific and Technical Information of China (English)

    姜艳靓; 朱林; 王可辉; 王娴娜

    2014-01-01

    对液氨和尿素两种 SCR 脱硝还原剂进行了技术、安全和经济比较。结果表明,液氨法和尿素法制氨技术均较成熟;尿素法安全性更高;液氨法有较大经济优势,还原剂占总运行成本的10%~20%,单位千瓦脱硝投资与机组容量大小呈反比。%Liquid ammonia is compared with urea as two SCR DeNOx reductants in three aspects of technology, security and economy. lt turns out that the liquid ammonia method and the urea treatment to produce ammonia are both mature,while the urea treatment is more safely. The liquid ammonia has a great advantage in econo-my. The cost of materials occupies 10 to 20 percent of the total cost. And the DeNOx investment of per kW is negative correlated with the size of unit capacity.

  11. Experimental Study on NOx Reduction in a Coal-fired Boiler by Reburning Biomass Syngas with Tar%含焦油生物质气再燃还原燃煤锅炉NOx的试验研究

    Institute of Scientific and Technical Information of China (English)

    殷仁豪; 罗永浩; 刘春元; 张睿智; 曹阳

    2012-01-01

    A test rig, consisting of a 10 kW updraft biomass gasifier and a 20 kW pulverized-coal drop tube furnace, was established to investigate the technology of NOx reduction in a coal-fired boiler by reburning biomass syngas with tar under different reburning conditions. Results show that the tar produced in gasification process will crack into hydrocarbon radicals with high heat value, which have a positive effect on NOx reduction. Higher efficiency of NO, reduction may be obtained at lower excess air coefficients and higher reburning temperatures, and in the experiment, the data may get above 80%. The application of bi omass syngas reburning technology may help to handle the tough problem of tar disposal, raise conversion rate of biomass energy, and simultaneously reduce NOx emission from coal-fired boilers.%搭建了10kW上吸式生物质气化炉和20kW煤粉沉降炉组成的生物质气化再燃试验系统,分析了不同再燃条件下含焦油生物质气再燃还原燃煤锅炉NOx的特性.结果表明:气化过程中产生的焦油在再燃过程中会裂解生成高热值的烃类气体,这些烃类气体还原NOx的效果明显;当过量空气系数较小、再燃温度较高时,NOx的还原效率较高,试验中最高还原效率超过80%;采用生物质气化再燃的方式既可以解决焦油难处理的问题,又可以提高生物质能量的转化效率,同时可高效降低燃煤锅炉NOx的排放量.

  12. NOx processing on Solar gas turbines; Turbines, traitement des nox sur les turbines a gaz solar

    Energy Technology Data Exchange (ETDEWEB)

    Chausse, X. [Spie Trindel, 95 - Cergy (France). Service TAG

    1997-12-31

    The Solar Company, in cooperation with Tuma Turbomach, has developed the SoLoNOx combustion system with a dry, lean, premixed compound, allowing for reduced NOx and CO emission levels (respectively 42 ppmv and 50 ppmv at 15 pc O{sub 2}). The combustor size is larger than a conventional combustor in order to maintain combustion efficiency and reduce carbon monoxide levels. Leaner combustion occurs at lower temperatures which produce less nitrogen oxides but require more volume to complete the combustion process. New developments should allow for a further reduction of NOx level at 25 ppmv

  13. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia.

    Science.gov (United States)

    Chen, Biaohua; Xu, Ruinian; Zhang, Runduo; Liu, Ning

    2014-12-02

    In this study, an economical way for SSZ-13 preparation with the essentially cheap choline chloride as template has been attempted. The as-synthesized SSZ-13 zeolite after ion exchange by copper nitrate solution exhibited a superior SCR performance (over 95% NOx conversion across a broad range from 150 to 400 °C) to the traditional zeolite-based catalysts of Cu-Beta and Cu-ZSM-5. Furthermore, the opportune size of pore opening (∼3.8 Å) made Cu-SSZ-13 exhibiting the best selectivity to N2 as well as satisfactory tolerance toward SO2 and C3H6 poisonings. The characterization (XRD, XPS, XRF, and H2-TPR) of samples confirmed that Cu-SSZ-13 possessed the most abundant Cu cations among three investigated Cu-zeolites; furthermore, either on the surface or in the bulk the ratio of Cu(+)/Cu(2+) ions for Cu-SSZ-13 is also the highest. New finding was announced that CHA-type topology is in favor of the formation of copper cations, especially generating much more Cu(+) ions than the others, rather than CuO. The activity test of Cu(CuCl)-ZSM-5 (prepared by a solid-state ion-exchange method) clearly indicated that Cu(+) ions could make a major contribution to the low-temperature deNOx activity. The activity of protonic zeolites (H-SSZ-13, H-Beta, H-ZSM-5) revealed the topology effect on SCR performances.

  14. NOx reduction measures at the Nippon Mitsubishi refinery of Negishi in Yokohama, Japan; Le traitement des oxydes d'azote a la raffinerie NIppon Mitsubishi de Negishi a Yokohama, Japon

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, B. [BR Consultant, 40 - Ondres (France)

    2001-07-01

    The Negishi refinery is the largest and most advanced oil refinery in Japan: 385,000 barrels per day (15 Mt/year). The refinery is located in Yokohama where it is surrounded by natural scenery (sea and parkland) and a residential area. The environmental constraints and regulations concerning pollutant emissions are very ambitious. There are different levels of regulations: National, Regional and Municipal. To reduce NOx emissions from furnaces and boilers in the refinery, various measures are taken, including DeNOx technologies such as DeNOx catalytic reactors which directly remove NOx from the flue gas and low NOx burners which improve combustion. (authors)

  15. Structure-property relationships of mullite-SiC-Al{sub 2}O{sub 3}–ZrO{sub 2} composites developed during carbothermal reduction of aluminosilicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Seifollahzadeh, P., E-mail: Pseifollahzadeh.mat@stu.yazd.ac.ir; Kalantar, M.; Ghasemi, S.S.

    2015-10-25

    Evolution of SiC and ZrO{sub 2} in the matrix of Al{sub 2}O{sub 3} or mullite have been reported to enhance a higher toughness, good thermal shock resistance (lowering thermal expansion and improving thermal conductivity) and improved creep resistance of composite materials. In this study, the structure-property relationships of mullite-Al{sub 2}O{sub 3} matrix composites have been investigated in conjunction with the evolution of reinforcing phases such as SiC–ZrO{sub 2} by an economical heat treatment process called carbothermal reduction of inorganic minerals (Kaolinite, Andalusite, Zircon). The influence of starting materials in relation with the variation in molar ratio of C/SiO{sub 2} on the phase composition, microstructures, physical and mechanical properties have been studied. Light microscopy has been supplemented with scanning electron microscopy, XRD analysis, differential thermal and thermal gravity analysis to follow the structure-property relationships. The experimental results show that with increasing of C/SiO{sub 2} ratio in starting materials, very fine SiC whiskers have been formed in the microstructures. Moreover, the densification and strength are considerable higher for ZrO{sub 2} + SiC containing composites in comparison to that of only SiC added ones. Furthermore, it has been found that the appropriate ratio of C/SiO{sub 2} with the associated firing temperature to develop a higher densification and SiC crystallization have been related to the 3.5, 1550 °C for kaolinite, 3.5, 1450 °C for zircon and 5.5, 1600 °C for andalusite containing composite samples, respectively. - Highlights: • In-situ formation of SiC whiskers in matrix of alumina + mullite composites. • Advantage of availability, abundance and economical for starting materials. • Lack of environmental problems in comparable of utilization of whiskers directly. • A mixture of coke and alumina as a protective layer instead of inert atmosphere. • Fabrication of advanced

  16. Characterisation of Kapiri Mposhi Aluminosilicate Minerals

    Directory of Open Access Journals (Sweden)

    MARINA G. XAVIER

    2014-01-01

    Full Text Available Zeolites have become recognized as the most important authigenic silicates in sedimentary rocks of volcanic origin. Along with smectites and other clay minerals, they are sensitive indicators of geochemical reactions on rocks. However, there have been few investigations on the chemistry, origin, and applications of zeolites. This study aims to characterize the zeolite group of minerals with respect to composition, crystal structure and physical properties. X-ray diffraction, scanning electron microscopy and wet chemical analysis have been used to characterize the Kapiri Mposhi aluminosilicate minerals. The characterization indicates that the major component in the mineral is calcium aluminium oxide. Loss on ignition was found to be 0.22%. Thermal analysis revealed the existence of an endothermic peak at 100-300oC due to dehydroxylation and this was accompanied by 30% mass loss.

  17. 40 CFR 91.319 - NOX converter check.

    Science.gov (United States)

    2010-07-01

    ... following the manufacturer's specifications using zero and span gas (the NO content of which must amount to... of the NO concentration). The NOX analyzer must be in the NO mode so that the span gas does not pass... analyzer in the most common range the NOX converter cannot give a reduction from 80 percent to 20...

  18. Pilot test and optimization of plasma based deNOx

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Michelsen, Poul

    The NOx reduction of flue gas by plasma generated ozone was investigated in pilot test experiments at two industrial power plants running on natural gas (Ringsted) and biomass (Haslev). Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx of 1.56. Fourier transform infrared....... Experiments are in good agreement with numerical simulations. An optimized oxidation scheme for NOx reduction processes with time dependent combustion, such as the biomass power plants, was developed. Ozone production by micro-hollow and capillary discharges at atmospheric pressures was investigated...

  19. The deactivation mechanism of Pb on the Ce/TiO2 catalyst for the selective catalytic reduction of NOx with NH3: TPD and DRIFT studies.

    Science.gov (United States)

    Wang, Shu-Xian; Guo, Rui-Tang; Pan, Wei-Guo; Li, Ming-Yuan; Sun, Peng; Liu, Shu-Ming; Liu, Shuai-Wei; Sun, Xiao; Liu, Jian

    2017-02-15

    It was well recognized that Pb had a poisoning effect on a SCR catalyst. In this study, the deactivation mechanism of Pb on the Ce/TiO2 catalyst was investigated based on the characterization results of TPD and in situ DRIFT studies. It was found that the addition of Pb on the Ce/TiO2 catalyst not only inhibited the adsorption and activation of NH3 species, but also led to the decrease of the activity of adsorbed NH3 species in the SCR reaction. The adsorption of NOx species and the oxidation of NO by O2 over the Ce/TiO2 catalyst were also suppressed by the addition of Pb, while the reactivity of adsorbed NO2 species did not decrease. Moreover, the results revealed that the NH3-SCR reaction over the Ce/TiO2 catalyst followed both the E-R and L-H mechanisms, while the NH3-SCR reaction over Ce/TiO2-Pb was mainly controlled by the L-H mechanism. The contributions of the L-H mechanism to the SCR reactions over Ce/TiO2 and Ce/TiO2-Pb decreased with increasing reaction temperature. The deactivation of Ce/TiO2-Pb was mainly attributed to the suppressed NH3 adsorption and activation, accompanied by the inhibited NO oxidation and the decrease of Brønsted acid sites.

  20. Computational Modeling and Experimental Studies on NO(x) Reduction Under Pulveerized Coal Combustion Conditions. Quarterly technical progress report, July 1 - September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kumpaty, S.K.; Subramanian, K.; Darboe, A.; Kumpati, S.K.

    1997-12-31

    Several experiments were conducted during this quarter to study the NO{sub x} reduction effectiveness of lignite coal, activated carbon and catalytic sites such as calcium sulfide and calcium carbide. While some of the coals/chemicals could be fed easily, some needed the mixing with silica gel to result in a uniform flow through the feeder. Several trial runs were performed to ensure proper feeding of the material before conducting the actual experiment to record NO{sub x} reduction. The experimental approach has been the same as presented in the past two quarterly reports with the coal reburning experiments. Partial reduction is achieved through methane addition for SR2=0.95 conditions and then coal or the catalyst is introduced to see if there is further reduction. Presented below are the results of the experiments conducted during this quarter.

  1. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies

    Science.gov (United States)

    Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei

    2016-04-01

    Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.

  2. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

  3. Effect of synthesis methods on activity of V2O5/CeO2/WO3-TiO2 catalyst for selective catalytic reduction of NOx with NH3

    Institute of Scientific and Technical Information of China (English)

    SHEN Meiqing; XU Lili; WANG Jianqiang; LI Chenxu; WANG Wulin; WANG Jun; ZHAI Yanping

    2016-01-01

    The effect of synthesis methods on the activity of V/Ce/WTi catalysts was investigated for the selective catalytic reduction (SCR) of NOx by NH3. V/Ce/WTi-DP (deposition precipitation) catalyst showed excellent NH3-SCR performance, especially the bet-ter medium-temperature activity and the less N2O formation than V/Ce/WTi-IMP (impregnation). These catalysts were characterized by X-ray diffraction (XRD), Brumauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (H2-TPR), andin situ DRIFTS techniques. The XPS and H2-TPR results revealed that V/Ce/WTi-DP exhibited more sur-face Ce species, higher level of Oα and higher reducibility of Ce species. Reflected byin situDRIFTS results, the deposition precipi-tation method (DP) contributed to a greater amount of weakly adsorbed NO2, monodentate nitrate and NH3 species with better reac-tive activity. Meanwhile, the cis-N2O22– species, an intermediate for N2O formation, was very limited. As a result, these advantages brought about the superior SCR activity and N2selectivity for V/Ce/WTi-DP.

  4. Effect of active component addition and support modification on catalytic activity of Ag/Al2O3 for the selective catalytic reduction of NOx by hydrocarbon - A review.

    Science.gov (United States)

    More, Pavan M

    2017-03-01

    The effect of active component addition and support modification of Ag/Al2O3 has been reviewed to examine their contribution to HC-SCR of NOx. This review has depicted the possible mechanisms of reduction of NO by hydrocarbon using metal/metal oxide doped Ag/Al2O3. The addition of second metal results in the maximum formation of well dispersed Agn(δ+) clusters. Specifically, addition of Au improves the low-temperature activity of the catalyst. However, the role of second metal also depends on the pretreatment to the catalyst and nature of the reductants. The support modification of Ag/Al2O3 by the addition of different metal oxides has also been reviewed. Modification by MgO showed improvement in activity besides sulfur tolerance. In situ DRIFT study demonstrates that the modification by MgO leads to the inhibition of sulfate formation of Ag and Al2O3. Enhancement in activity after second metal addition and support modification attributed to the synergistic effect and improved surface properties of Ag/Al2O3 catalyst.

  5. Insight into the mechanism of selective catalytic reduction of NO(x) by propene over the Cu/Ti(0.7)Zr(0.3)O2 catalyst by Fourier transform infrared spectroscopy and density functional theory calculations.

    Science.gov (United States)

    Liu, Jie; Li, Xinyong; Zhao, Qidong; Hao, Ce; Zhang, Dongke

    2013-05-07

    The mechanism of selective catalytic reduction of NOx by propene (C3H6-SCR) over the Cu/Ti0.7Zr0.3O2 catalyst was studied by in situ Fourier transform infrared (FTIR) spectroscopy and density functional theory (DFT) calculations. Especially, the formation and transformation of cyanide (-CN species) during the reaction was discussed. According to FTIR results, the excellent performance of the Cu/Ti0.7Zr0.3O2 catalyst in C3H6-SCR was attributed to the coexistence of two parallel pathways to produce N2 by the isocyanate (-NCO species) and -CN species intermediates. Besides the hydrolysis of the -NCO species, the reaction between the -CN species and nitrates and/or NO2 was also a crucial pathway for the NO reduction. On the basis of the DFT calculations on the energy of possible intermediates and transition states at the B3LYP/6-311 G (d, p) level of theory, the reaction channel of -CN species in the SCR reaction was identified and the role of -CN species as a crucial intermediate to generate N2 was also confirmed from the thermodynamics view. In combination of the FTIR and DFT results, a modified mechanism with two parallel pathways to produce N2 by the reaction of -NCO and -CN species over the Cu/Ti0.7Zr0.3O2 catalyst was proposed.

  6. Research Progress of Ceria-Based Catalysts in the Selective Catalytic Reduction of NOx by NH3%铈基催化剂用于NH3选择性催化还原NOx的研究进展

    Institute of Scientific and Technical Information of China (English)

    姚小江; 贡营涛; 李红丽; 杨复沫

    2015-01-01

    源自固定源(如燃煤电厂烟气)和移动源(如机动车尾气)排放的氮氧化物(NOx)造成了严重的大气污染,对其进行减排控制已迫在眉睫。研究表明,氨选择性催化还原(NH3-SCR)技术是消除NOx的最有效手段之一。铈基催化剂因其良好的氧化还原性能、适当的表面酸性、较高的储/释氧容量以及丰富的资源储备而被广泛用于NH3-SCR反应。探讨铈基组分在该反应中发挥的具体作用,有助于了解相关催化过程的本质,为现有催化剂的优化和新型催化剂的设计提供科学参考。基于CeO2在NH3-SCR催化剂中扮演的不同角色,本文从CeO2作为载体、铈基复合氧化物、表面负载组分(助剂和活性组分)以及特殊结构的铈基催化剂等方面系统地介绍了近年来铈基催化剂在NH3-SCR反应中的最新研究进展,并对该领域未来可能的发展方向进行了展望。%Nitrogen oxides (NOx), which are emitted from stationary sources (such as coal-fired power plant flue gases) and mobile sources (such as motor vehicle exhausts), cause serious atmospheric pol ution. As a result, it is very important to control the emissions of NOx. Some studies have suggested that NH3-selective catalytic reduction (NH3-SCR) of NOx is one of the best techniques for this purpose. Ceria-based catalysts are widely used in the NH3-SCR reaction because of their good redox ability, suitable surface acidity, high oxygen storage or release capacity, and rich resource reserves. Investigating the role of ceria component in this reaction is important to understand the nature of the related catalytic process, and provides a valuable scientific reference for the optimization of existing catalysts and the design of novel catalysts. Based on the different roles of ceria in NH3-SCR catalysts, we have performed a systematic review of the latest research progress of ceria-based catalysts in the NH3-SCR reaction for the fol owing aspects:CeO2

  7. Properties of Nanocrystals-formulated Aluminosilicate Bricks

    Directory of Open Access Journals (Sweden)

    Francesca Conciauro

    2015-10-01

    insulating and/or mechanical properties. The nanocrystals- modified refractories showed variations in properties, with respect to the untreated aluminosilicate reference in heat- insulating performances (thermal diffusivities were measured by the “hot disk” technique. In general, they also showed improvements in mechanical compression resist‐ ance for all of the samples at 2 wt. %. The best heat insula‐ tion was obtained with the addition of nano-aluminium hydroxide at 2 wt. %, while the highest mechanical compres‐ sion breaking resistance was found with nano-CaCO3 at 2 wt. %. These outcomes were investigated with complemen‐ tary techniques, like mercury porosimetry for porosity, and Archimedes methods to measure physical properties like the bulk and apparent densities, apparent porosities and water absorption. The results show that the nano-alumini‐ um hydroxide modified bricks were the most porous, which could explain the best heat-insulating performances. There is a less straightforward explanation for the mechanical resistance results, as they may have relations with the characteristics of the pores. Furthermore, the nanoparti‐ cles may have possible reactions with the matrix during the heat treatments.

  8. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    Science.gov (United States)

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  9. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  10. Characterization of LSM/CGO Symmetric Cells Modified by NOx Adsorbents for Electrochemical NOx Removal with Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    /CGO electrode by selectively trapping NO2 in the form of nitrate over the BaO sites and provided availability for a direct reduction of the stored nitrate. The BaO-Pt-Al2O3 layer enhanced the NOx adsorption and promoted the formation of NO2 due to the NO oxidation ability of the Pt catalyst, but hindered......This study uses electrochemical impedance spectroscopy (EIS) to characterize an LSM/CGO symmetric cell modified by NOx adsorbents for the application of electrochemical NOx reduction. Three cells were prepared and tested: a blank cell, a cell impregnated with BaO, and a cell coated with a Ba...

  11. Possibility of Reducing Formations of NOx and SO2 Simultaneously during Coal Combustion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Comparing with other NOx and SO2 control technologies, in-bed reducing NOx and SO2 simultaneously during coal combustion may lower the investment and operation cost. However, there are several possible contradictions between the reduction of NOx and the capture of SO2 during combustion: 1) CO rich atmosphere is favorable for the reduction of NOx, whereas O2 rich favorable for the capture of SO2; 2) higher preheating temperature of coal is favorable for reducing NOx, but unfavorable for reducing SO2; 3) sulphation of some minerals may deactivate their catalytic effect on the reduction of NOx. The attempts to eliminate such contradictions by coating coal granules with thin layer of monometallic oxides and mixed oxides were proposed. Ni2O3 and Fe2O3 showed high activity on NOx reduction and CaO and Cr2O3 showed good effect on sulfur capture. The mixed metallic oxides, e.g., Fe2O3NiO, etc., showed effective for both NOx reduction and SO2 retention. It is possible to in-bed reduce NOx and SO2 simultaneously if the adhering materials are properly chosen to be difunctional materials of both active catalysts for NOx reduction reactions and better sorbents for SO2 retention.

  12. Promotional Effect on Selective Catalytic Reduction of NOx with NH3 over Overloaded W and Ce on V2O5/TiO2 Catalysts

    OpenAIRE

    Seunghee Youn; Inhak Song; Do Heui Kim

    2015-01-01

    W and Ce are known to be a good promoters to improve selective catalytic reduction (SCR) activity for V2O5/TiO2 catalysts. This work aimed at finding the optimum ratio and loading of promoters (W and Ce) on V2O5/TiO2 catalyst in order to improve SCR reactivity in low temperature region and to minimize N2O formation in high temperature region. In addition, we changed the order of impregnation between W and Ce precursors on V2O5/TiO2 catalyst during the preparation and observed its effect on SC...

  13. Influence of the addition of transition metals (Cr, Zr, Mo) on the properties of MnOx-FeOx catalysts for low-temperature selective catalytic reduction of NOx by Ammonia.

    Science.gov (United States)

    Zhou, Changcheng; Zhang, Yaping; Wang, Xiaolei; Xu, Haitao; Sun, Keqin; Shen, Kai

    2013-02-15

    The co-precipitation and citric acid methods were employed to prepare MnO(x)-FeO(x) catalysts for the low-temperature selective catalytic reduction (SCR) of NO(x) by ammonia. It was found that the Mn-Fe (CP) sample obtained from the co-precipitation method, which exhibited low crystalline of manganese oxides on the surface, high specific surface area and abundant acid sites at the surface, had better catalytic activity. The effects of doping different transition metals (Mo, Zr, Cr) in the Mn-Fe (CP) catalysts were further investigated. The study suggested that the addition of Cr can obviously reduce the take-off temperature of Mn-Fe catalyst to 90°C, while the impregnation of Zr and Mo raised that remarkably. The texture and micro-structure analysis revealed that for the Cr-doped Mn-Fe catalysts, the active components had better dispersion with less agglomeration and sintering and the largest BET surface specific area. In situ FTIR study indicated that the addition of Cr can increase significantly the surface acidity, especially, the Lewis acid sites, and promote the formation of the intermediate -NH(3)(+). H(2)-TPR results confirmed the better low-temperature redox properties of Mn-Fe-Cr.

  14. In situ DRIFTs investigation of the reaction mechanism over MnOx-MOy/Ce0.75Zr0.25O2 (M = Fe, Co, Ni, Cu) for the selective catalytic reduction of NOx with NH3

    Science.gov (United States)

    Hu, Hang; Zha, Kaiwen; Li, Hongrui; Shi, Liyi; Zhang, Dengsong

    2016-11-01

    A series of MnOx-MOy/Ce0.75Zr0.25O2 (M = Fe, Co, Ni, Cu) catalysts were synthesized by an impregnation method and used for selective catalytic reduction (SCR) of NOx with NH3. The catalytic performances of various MnOx-MOy/Ce0.75Zr0.25O2 catalysts were studied. It was found that MnOx-FeOy/Ce0.75Zr0.25O2 catalyst showed excellent low-temperature activity and a broad temperature window. The catalysts were characterized by N2 adsorption/desorption, X-ray diffraction, X-ray photoelectron spectroscopy and in situ diffuse reflectance infrared transform spectroscopy (DRIFTS). Characterization of the catalyst confirmed the addition of iron oxide can enhance the NO oxidation ability of the catalyst which results in the outstanding low-temperature SCR activity. Meanwhile, iron oxides were well dispersed on catalyst surface which could avoid the agglomeration of active species, contributing to the strong interaction between active species and the support. More importantly, in situ DRIFTS results confirmed that bidentate nitrates are general active species on these catalysts, whereas the reactivity of gaseous NO2 and bridged nitrates got improved because of the addition of Fe.

  15. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  16. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  17. XPS analysis of aluminosilicate microspheres bioactivity tested in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Todea, M.; Vanea, E. [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania); Bran, S. [University of Medicine and Pharmacy “Iuliu Haţieganu”, Department of Cranio-Maxillofacial Surgery, 400029 Cluj-Napoca (Romania); Berce, P. [Technical University of Cluj-Napoca, Faculty of Machine Building and National Centre of Rapid Prototyping, 400641 Cluj-Napoca (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania)

    2013-04-01

    The study aims to characterize surface properties of aluminosilicate microspheres incorporating yttrium, with potential biomedical applications. Micrometric particles of spherical shape were obtained by spray drying method. The behavior of aluminosilicate microspheres without yttrium and with yttrium was investigated under in vitro conditions, by seven days incubation in simulated body fluid (SBF). The surface elemental composition and the atomic environments on outermost layer of the microspheres, prior to and after incubation in SBF were evaluated by X-ray photoelectron spectroscopy (XPS) in order to investigate their bioactivity. The results were analyzed to underline the effect of yttrium addition on surface properties of the aluminosilicate microspheres and implicitly on the behavior of the samples in simulated body environments.

  18. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Science.gov (United States)

    Carlier, Thibault; Saitzek, Sébastien; Méar, François O.; Blach, Jean-François; Ferri, Anthony; Huvé, Marielle; Montagne, Lionel

    2017-03-01

    In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  19. 选择性降低卷烟烟气中CO和NOx的钙钛矿型催化剂研究%Novel Perovskite Oxide Catalyst for Selective Reduction of CO and NOx in Cigarette Smoke

    Institute of Scientific and Technical Information of China (English)

    谢国勇; 银董红; 刘建福; 钱晓春

    2012-01-01

    采用柠檬酸络合溶胶-凝胶法制备了纳米级La1-xLnxFe1-yMyO3钙钛矿型复合氧化物烟用催化剂(其中Ln为稀土金属,M为过渡金属).应用TG-DTG、XRD、氮吸附、SEM和TEM等手段研究了制备条件及催化剂性质对催化剂性能的影响;并将催化剂添加于烟草薄片中试制卷烟,考察了催化剂薄片对烟气中CO和NOx等有害物质的脱除效果.结果表明,在700℃焙烧2h所得样品平均粒径为50 nm,BET比表面积为17.36 m2·g-1;当LaFeO3型钙钛矿的La3+(A位)和Fe3+(B位)分别被某稀土元素Ln和过渡元素M部分取代后,La0.7Ln0.3Fe1-yMyO3具有最高的CO催化氧化和NO催化还原活性.将质量分数2%的La0.7Ce0.3Fe1-yMyO3钙钛矿复合氧化物添加于卷烟中,可选择性降低卷烟烟气中CO和NOx的质量,其降幅分别为16.0%和15.9%,而总粒相物的降幅较小.%A perovskite oxide ( La1-x LnxFe1-y MyO3 ) nanoparticle was synthesized through citrate sol-gel method, and used as catalyst to remove CO and NO, from mainstream cigarette smoke. The effect of preparation parameters and active metals on the physical structure and activity of the catalysts were investigated using thermal gravity (TG-DTG) 、X-ray diffraction (XRD) , nitrogen absorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM). Also, the removal of CO and NOx was examined by mixing nano-size La0.7Ln0.3 Fe1-yMyO3 into cigarette cut filler. The results indicate that the catalysts show a size of 50 nra and BET surface area of 17. 36 m2 · g-1 after calcined at 700 ℃ for 2 h; Partial substitution of La3+ and Fe3+ with ions that have different valence state, such as LnIV and MII , could be effective to enhance activity of the catalysts; The nano-size La0.7 Ln0.3Fe1-yMyO3 catalysts display high oxidation activity for CO and reduction activity for NOx; When 2wt% of La0.7 Ln0.3Fe1-yM O3 catalyst was added to the cigarette's cut filler, the CO and NOx content in mainstream

  20. Stable Tetrahedral Aluminum Sites in Hexagonal Mesoporous Aluminosilicates

    Institute of Scientific and Technical Information of China (English)

    HAN,Yu(韩宇); YU,Yi(于沂); XU,Xian-Zhu(许宪祝); XIAO,Feng-Shou(肖丰收); LIU,Xian-Chun(刘宪春); HAN,Xiu-Wen(韩秀文); BAO,Xin-He(包信和)

    2002-01-01

    A unique templating approach for the synthesis of hexagonal mesoporous aluminosilicates via self-assembly of pre-formed aluminosilcate nanoclusters with the templating micella formed by cetyltrimethylammonium bromide (CTAB) is described.The obtained materials of MAS-5 are hydrothermally stable,which is shown by X-ray diffraction (XRD) analysis. Furthermore, as characterized by NMR technique, MAS-5 has stable tetrahedral aluminum sites that is the major contributions to the acidity of aluminosilicate molecular sieve, and on non-framework aluminium species in the samples was observed.

  1. Recycling of aluminosilicate waste: Impact onto geopolymer formation

    Science.gov (United States)

    Essaidi, N.; Gharzouni, A.; Vidal, L.; Gouny, F.; Joussein, E.; Rossignol, S.

    2015-07-01

    Geopolymers are innovative ecomaterials resulting from the activation of an aluminosilicate source by an alkaline solution. Their properties depend on the used raw materials. This paper focuses on the possibility to obtain geopolymer materials with aluminosilicate laboratory waste. The effect of these additions on the geopolymer properties was studied by FTIR spectroscopy and mechanical test. It was evidenced a slowdown of the polycondensation reaction as well as the compressive strength due to the addition of laboratory waste which decreases the Si/K ratio of mixture.

  2. Stable Tetrahedral Aluminum Sites in Hexagonal Mesoporous Aluminosilicates

    Institute of Scientific and Technical Information of China (English)

    韩宇; 刘宪春; 等

    2002-01-01

    A unique templating approach for the synthesis of hexagonal mesoporous aluminosilicates via self-assembly of pre-formed aluminosilcate nacoclusters with the templating micella formed by cetyltrimethylammonium bromide (CTAB) is described ,The obtained materials of MAS-5 are hydrothermally stable,which is shown by X-ray diffraction (XRD) analysis,Further-more,as charaacterized by NMR technique ,MAS-5 has taable tetrahedral aluminum sites that is the major contributions to the acidity of aluminosilicate molecular sieve ,and on non-frame-work aluminium species in the saples was observed.

  3. Advances in catalytic removal of NOx under lean-burn conditions

    Institute of Scientific and Technical Information of China (English)

    LIU Zhiming; HAO Jiming; FU Lixin; LI Junhua; CUI Xiangyu

    2004-01-01

    The catalytic removal of NOx under lean conditions is one of the most important targets in catalysis research. The activities of metal oxides, zeolite-based catalysts and noble metal catalysts together with the factors are influencing the selective reduction of NOx with hydrocarbons are reviewed. The reaction mechanisms for the three types of catalysts are briefly discussed. Recent progress in combined catalyst and NOx storage reduction catalysts is also introduced. Finally, future research directions are forecasted.

  4. The Cu-CHA deNOx Catalyst in Action: Temperature-Dependent NH3-Assisted Selective Catalytic Reduction Monitored by Operando XAS and XES.

    Science.gov (United States)

    Lomachenko, Kirill A; Borfecchia, Elisa; Negri, Chiara; Berlier, Gloria; Lamberti, Carlo; Beato, Pablo; Falsig, Hanne; Bordiga, Silvia

    2016-09-21

    The small-pore Cu-CHA zeolite is today the object of intensive research efforts to rationalize its outstanding performance in the NH3-assisted selective catalytic reduction (SCR) of harmful nitrogen oxides and to unveil the SCR mechanism. Herein we exploit operando X-ray spectroscopies to monitor the Cu-CHA catalyst in action during NH3-SCR in the 150-400 °C range, targeting Cu oxidation state, mobility, and preferential N or O ligation as a function of reaction temperature. By combining operando XANES, EXAFS, and vtc-XES, we unambiguously identify two distinct regimes for the atomic-scale behavior of Cu active-sites. Low-temperature SCR, up to ∼200 °C, is characterized by balanced populations of Cu(I)/Cu(II) sites and dominated by mobile NH3-solvated Cu-species. From 250 °C upward, in correspondence to the steep increase in catalytic activity, the largely dominant Cu-species are framework-coordinated Cu(II) sites, likely representing the active sites for high-temperature SCR.

  5. Influence of calcination temperature on selective catalytic reduction of NOx with NH3 over CeO2-ZrO2-WO3 catalyst

    Institute of Scientific and Technical Information of China (English)

    李军燕; 宋忠贤; 宁平; 张秋林; 刘昕; 李昊; 黄真真

    2015-01-01

    A series of CeO2-ZrO2-WO3 catalysts for the selective catalytic reduction (SCR) of NO with NH3 were prepared by hydro-thermal method. The influence of calcination temperature on the catalytic activity, microstructure, surface acidity and redox behavior of CeO2-ZrO2-WO3 catalyst was investigated using various characterization methods. It was found that the CeO2-ZrO2-WO3 catalyst calcined at 600 ºC showed the best catalytic performance and excellent N2 selectivity, and yielded more than 90% NO conversion in a wide temperature range of 250–500 ºC with a space velocity (GHSV) of 60000 h–1. As the calcination temperature was increased from 400 to 600 ºC, the NO conversion obviously increased, but decreased at higher calcination temperature. The results implied that the higher surface area, the strongest synergistic interaction, the superior redox property and the highly dispersed or amorphous WO3 species contributed to the excellent SCR activity of the CeO2-ZrO2-WO3 catalyst calcined at 600 ºC.

  6. Heteropoly acid promoted catalyst for SCR of NOx with ammonia

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases...... comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen...

  7. Low Absorption Vitreous Carbon Reactors for Operando XAS: A Case Study on Cu/Zeolites for Selective Catalytic Reduction of NOx by NH3

    Energy Technology Data Exchange (ETDEWEB)

    Kispersky, Vincent F.; Kropf, Jeremy; Ribeiro, Fabio H; Miller, Jeffrey T

    2012-01-01

    We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NOx by NH₃ on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH₃, 5% O₂, 5% H₂O, 5% CO₂ and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states. XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situSCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO₂ catalyst, reduced in H₂ at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO₂ catalyst to be in a partially reduced Cu metal–Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance.

  8. Heterostructured layered aluminosilicate-itraconazole nanohybrid for drug delivery system.

    Science.gov (United States)

    Yang, Jae-Hun; Jung, Hyun; Kim, Su Yeon; Yo, Chul Hyun; Choy, Jin-Ho

    2013-11-01

    A nanohybrid, consisting of layered aluminosilicate as a host material and itraconazole as a guest molecule, was successfully synthesized through the interfacial intercalation reaction across the boundary between water and water-immiscible liquid at the various pH. According to the powder X-ray diffraction pattern, the basal spacing of the intraconazole-layered aluminosilicate nanohybrid increased from 14.7 to 22.7 A depending on the pH of the aqueous suspension. The total amounts of itraconazole in the hybrids were determined to be 2.3-25.4 wt% by HPLC analysis. The in vivo pharmacokinetics study was performed in rats in order to compare the absorptions of itraconazole for the itraconazole-layered aluminosilicate nanohybrid and a commercial product, Sporanox. The pharmacokinetic data for the nanohybrid and Sporanox showed that the mean area under the plasma concentration-time curve (AUC, 2477 +/- 898 ng x hr/mL and 2630 +/- 953 ng x hr/mL, respectively) and maximum concentration (Cmax, 225.4 +/- 77.4 ng x hr/mL and 223.6 +/- 51.9 ng x hr/mL, respectively), were within the bioequivalence (BE) range. Therefore, we concluded that this drug-layered aluminosilicate nanohybrid system has a great potential for its application in formulation of poorly soluble drugs.

  9. Mechanical Properties of Densified Tectosilicate Calcium-Aluminosilicate Glasses

    DEFF Research Database (Denmark)

    Johnson, Nicole; Lamberson, Lisa; Smedskjær, Morten Mattrup;

    Aluminosilicate glasses are widely used in applications such as LCD glass, touchscreens for hand held devices and car windows. We have shown that the tectosilicate compositions exhibit an interesting non-monotonic variation in hardness with increasing SiO2 content. From 40% to 85 mol% SiO2...

  10. Development of a Composite Non-Electrostatic Surface Complexation Model Describing Plutonium Sorption to Aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Powell, B A; Kersting, A; Zavarin, M; Zhao, P

    2008-10-28

    Due to their ubiquity in nature and chemical reactivity, aluminosilicate minerals play an important role in retarding actinide subsurface migration. However, very few studies have examined Pu interaction with clay minerals in sufficient detail to produce a credible mechanistic model of its behavior. In this work, Pu(IV) and Pu(V) interactions with silica, gibbsite (Aloxide), and Na-montmorillonite (smectite clay) were examined as a function of time and pH. Sorption of Pu(IV) and Pu(V) to gibbsite and silica increased with pH (4 to 10). The Pu(V) sorption edge shifted to lower pH values over time and approached that of Pu(IV). This behavior is apparently due to surface mediated reduction of Pu(V) to Pu(IV). Surface complexation constants describing Pu(IV)/Pu(V) sorption to aluminol and silanol groups were developed from the silica and gibbsite sorption experiments and applied to the montmorillonite dataset. The model provided an acceptable fit to the montmorillonite sorption data for Pu(V). In order to accurately predict Pu(IV) sorption to montmorillonite, the model required inclusion of ion exchange. The objective of this work is to measure the sorption of Pu(IV) and Pu(V) to silica, gibbsite, and smectite (montmorillonite). Aluminosilicate minerals are ubiquitous at the Nevada National Security Site and improving our understanding of Pu sorption to aluminosilicates (smectite clays in particular) is essential to the accurate prediction of Pu transport rates. These data will improve the mechanistic approach for modeling the hydrologic source term (HST) and provide sorption Kd parameters for use in CAU models. In both alluvium and tuff, aluminosilicates have been found to play a dominant role in the radionuclide retardation because their abundance is typically more than an order of magnitude greater than other potential sorbing minerals such as iron and manganese oxides (e.g. Vaniman et al., 1996). The sorption database used in recent HST models (Carle et al., 2006

  11. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    , but also concerning the metal particle formation, and the broadband near infrared luminescence. Both the inward diffusion and the infrared luminescence depend on the bismuth oxidation state. The latter can be varied by adjusting the parameters of the heat-treatment, e.g., time, temperature, and partial......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses....

  12. AMMONIA-FREE NOx CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2006-06-01

    This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

  13. NOx Emission Reduction by Oscillating combustion

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.

  14. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.

  15. KINETICS AND MECHANISMS OF NOx - CHAR REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Suuberg, E.M.

    1998-06-19

    This study was undertaken in order to improve understanding of several aspects of the NO-carbon reaction. This reaction is of practical importance in combustion systems, but its close examination also provides some fundamental insight into oxidizing gas-carbon reactions. As part of this study, a comprehensive literature review of earlier work on this reaction has been published (Aarna and Suuberg, Fuel, 1997, 76, 475-491). It has been thought for some time that the kinetics of the NO-carbon reaction are unusual, in that they often show a two-regime Arrhenius behavior. It has, however, turned out during this work that NO is not alone in this regard. In this laboratory, we also uncovered evidence of two kinetic regime behavior in CO{sub 2} gasification. In another laboratory, a former colleague has identified the same behavior in N{sub 2}O. The low temperature reaction regime always shows an activation energy which is lower than that in the high temperature regime, leaving little doubt that a shift in mechanism, as opposed to transport limitations, dictates the behavior. The activation energy of the low temperature regime of these reactions is typically less than 100 kJ/mol, and the activation energy of the high temperature regime is generally considerably in excess of this value. In this study, we have resolved some apparent inconsistencies in the explanation of the low temperature regime, whose rate has generally been ascribed to desorption-controlled processes. Part of the problem in characterization of the different temperature regimes is that they overlap to a high degree. It is difficult to probe the low temperature regime experimentally, because of slow relaxation of the surface oxides in that regime. Using careful experimental techniques, we were able to demonstrate that the low temperature regime is indeed characterized by zero order in NO, as it must be. A separate study is being carried out to model the behavior in this regime in NO and in other gases, and the results will be presented shortly.

  16. Update on microkinetic modeling of lean NOx trap chemistry.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S.; Daw, C. Stuart (Oak Ridge National Laboratory, Oak Ridge, TN); Pihl, Josh A. (Oak Ridge National Laboratory, Oak Ridge, TN); Choi, Jae-Soon (Oak Ridge National Laboratory, Oak Ridge, TN); Chakravarthy, V, Kalyana (Oak Ridge National Laboratory, Oak Ridge, TN)

    2010-04-01

    Our previously developed microkinetic model for lean NOx trap (LNT) storage and regeneration has been updated to address some longstanding issues, in particular the formation of N2O during the regeneration phase at low temperatures. To this finalized mechanism has been added a relatively simple (12-step) scheme that accounts semi-quantitatively for the main features observed during sulfation and desulfation experiments, namely (a) the essentially complete trapping of SO2 at normal LNT operating temperatures, (b) the plug-like sulfation of both barium oxide (NOx storage) and cerium oxide (oxygen storage) sites, (c) the degradation of NOx storage behavior arising from sulfation, (d) the evolution of H2S and SO2 during high temperature desulfation (temperature programmed reduction) under H2, and (e) the complete restoration of NOx storage capacity achievable through the chosen desulfation procedure.

  17. Effect of sulfate aerosol on tropospheric NOx and ozone budgets: Model simulations and TOPSE evidence

    Science.gov (United States)

    Tie, Xuexi; Emmons, Louisa; Horowitz, Larry; Brasseur, Guy; Ridley, Brian; Atlas, Elliot; Stround, Craig; Hess, Peter; Klonecki, Andrzej; Madronich, Sasha; Talbot, Robert; Dibb, Jack

    2003-02-01

    The distributions of NOx and O3 are analyzed during TOPSE (Tropospheric Ozone Production about the Spring Equinox). In this study these data are compared with the calculations of a global chemical/transport model (Model for OZone And Related chemical Tracers (MOZART)). Specifically, the effect that hydrolysis of N2O5 on sulfate aerosols has on tropospheric NOx and O3 budgets is studied. The results show that without this heterogeneous reaction, the model significantly overestimates NOx concentrations at high latitudes of the Northern Hemisphere (NH) in winter and spring in comparison to the observations during TOPSE; with this reaction, modeled NOx concentrations are close to the measured values. This comparison provides evidence that the hydrolysis of N2O5 on sulfate aerosol plays an important role in controlling the tropospheric NOx and O3 budgets. The calculated reduction of NOx attributed to this reaction is 80 to 90% in winter at high latitudes over North America. Because of the reduction of NOx, O3 concentrations are also decreased. The maximum O3 reduction occurs in spring although the maximum NOx reduction occurs in winter when photochemical O3 production is relatively low. The uncertainties related to uptake coefficient and aerosol loading in the model is analyzed. The analysis indicates that the changes in NOx due to these uncertainties are much smaller than the impact of hydrolysis of N2O5 on sulfate aerosol. The effect that hydrolysis of N2O5 on global NOx and O3 budgets are also assessed by the model. The results suggest that in the Northern Hemisphere, the average NOx budget decreases 50% due to this reaction in winter and 5% in summer. The average O3 budget is reduced by 8% in winter and 6% in summer. In the Southern Hemisphere (SH), the sulfate aerosol loading is significantly smaller than in the Northern Hemisphere. As a result, sulfate aerosol has little impact on NOx and O3 budgets of the Southern Hemisphere.

  18. XPS study of protein adsorption onto nanocrystalline aluminosilicate microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vanea, E. [Babes-Bolyai University, Faculty of Physics and Institute of Interdisciplinary Research in Bio-Nano-Sciences, M. Kogalniceanu 1, Cluj-Napoca (Romania); Simon, V., E-mail: viosimon@phys.ubbcluj.ro [Babes-Bolyai University, Faculty of Physics and Institute of Interdisciplinary Research in Bio-Nano-Sciences, M. Kogalniceanu 1, Cluj-Napoca (Romania)

    2011-01-01

    X-ray photoelectron spectroscopy (XPS) was used to study the interaction of two different sized proteins, bovine serum albumin (BSA) and fibrinogen, with an aluminosilicate system containing yttrium and iron that is a potential biomaterial. Serum albumin and fibrinogen are two major plasma proteins and the most relevant proteins adsorbed on the surface of biomaterials in blood contact. The aluminosilicate samples were incubated for several exposure times, up to 24 h, in simulated body fluid enriched with BSA, and in buffered fibrinogen solution. Time dependence of proteins adsorption onto surface of the investigated samples is reflected by the evolution of the new N 1s photoelectron peak and by the modification of C 1s core-level spectra recorded from the samples immersed in protein solution.

  19. Development of methane reformer from calcium aluminosilicate coated with nickel

    Energy Technology Data Exchange (ETDEWEB)

    Silvano, W.F.; Silva, L. da; Bernardin, A.M. [Universidade Estadual de Santa Catarina (UNESC), Criciuma, SC (Brazil); Huertas, C.S. [Instituto de Infectologia Emilio Ribas (IIER), Sao Paulo, SP (Brazil)

    2009-07-01

    Full text: This work deals with the development of a reformer from alkali metal aluminosilicate coated with nickel for the generation of hydrogen from biogas (methane). The catalysts were prepared by sintering the aluminosilicate (Al2O3.SiO2) with CaO (5%, 10% and 20%wt) and subsequent coating them with Ni (nitrate). The CaO was incorporated as carbonate, with PSD control. The reformers were characterized (XRF, XRD, PSD, DTA, SEM and diametral compression resistance). The reformer impregnation with the metal catalyst (Ni) occurred by immersing the ceramics into nitrate, with subsequent drying and analysis of catalytic activity at atmospheric pressure using methane gas as reagent (chromatography). The preliminary results show that the catalysts have good catalytic activity, and the route used has shown to be economically and technically feasible. (author)

  20. Amorphous and nanostructured silica and aluminosilicate spray-dried microspheres

    Science.gov (United States)

    Todea, M.; Turcu, R. V. F.; Frentiu, B.; Tamasan, M.; Mocuta, H.; Ponta, O.; Simon, S.

    2011-08-01

    Amorphous silica and aluminosilicate microspheres with diameters in the 0.1-20 μm range were produced by spray drying method. SEM, TEM and AFM images showed the spherical shape of the obtained particles. Based on thermal analysis data, several heat treatments have been applied on the as-prepared samples in order to check the amorphous state stability of the microspheres and to develop nanosized crystalline phases. As-prepared microspheres remain amorphous up to 1400 °C. By calcination at 1400 °C, cristobalite type nanocrystals are developed on silica sample, while in aluminosilicate sample first are developed mullite type nanocrystals and only after prolonged treatment are developed also cristobalite type nanocrystals. 29Si and 27Al MAS NMR results show that the local order around aluminum and silicon atoms strongly depend on the thermal history of the microspheres.

  1. Mechanical properties of gangue-containing aluminosilicate based cementitious materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials.The gangue was calcined at 500℃.The main constituent was calcined gangue, fly ash and slag, while alkali-silicate solutions were used as the diagenetic agent.The structure of gangue-containing aluminosilicate based cementitious materials was studied by the methods of IR, NMR and SEM.The results show that the mechanical properties are affected by the mass ratio between the gangue, slag and fly ash, the kind of activator and additional salt.For 28-day curing time, the compressive strength of the sample with a mass proportion of 2:1:1 (gangue: slag: fly ash) is 58.9 MPa, while the compressive strength of the sample containing 80wt%gangue can still be up to 52.3 MPa.The larger K+ favors the formation of large silicate oligomers with which Al(OH)4- prefers to bind.Therefore, in Na-K compounding activator solutions more oligomers exist which result in a stronger compressive strength of aluminosilicate-based cementitious materials than in the case of Na-containing activator.The reasons for this were found through IR and NMR analysis.Glauber's salt reduces the 3-day compressive strength of the paste, but increases its 7-day and 28-day compressive strengths.

  2. Investigation on the Stability of Aluminosilicate Colloids by Various Analytical Tools

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Y.; Lee, D. H.; Yun, J. I. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2010-05-15

    Colloids are ubiquitous in natural aquatic systems. Aquatic colloids may play a significant carrier role for radionuclide migration in aquifer systems. Being omnipresent in natural aquatic systems, aluminosilicate colloids are considered as a kernel for various aquatic colloids. Characterization of aluminosilicate colloids formed under various geochemical conditions is of importance to understand their chemical behavior in natural aquatic systems. In this work, a preliminary study on the formation of aluminosilicate colloids with a help of colorimetry and other colloid detection techniques is presented

  3. Prospects and challenges of iron pyroelectrolysis in magnesium aluminosilicate melts near minimum liquidus temperature.

    Science.gov (United States)

    Ferreira, N M; Kovalevsky, A V; Mikhalev, S M; Costa, F M; Frade, J R

    2015-04-14

    Although steel production by molten oxide electrolysis offers potential economic and environmental advantages over classic extractive metallurgy, its feasibility is far from being convincingly demonstrated, mainly due to inherent experimental difficulties exerted by harsh conditions and lack of knowledge regarding relevant mechanisms and physico-chemical processes in the melts. The present work was intended to demonstrate the concept of pyroelectrolysis at very high temperature near the minimum liquidus point of magnesium aluminosilicate, being conducted under electron-blocking conditions using yttria-stabilized zirconia cells, and to provide a new insight into electrochemistry behind this process. Significant current yields are possible for pyroelectrolysis performed in electron-blocking mode using a solid electrolyte membrane to separate the anode and the molten electrolyte. Parasitic electrochemical processes rise gradually as the concentration of iron oxide dissolved in the molten electrolytes is depleted, impairing faradaic efficiency. Reduction of silica to metallic silicon was identified as a significant contribution to those parasitic currents, among other plausible processes. Direct pyroelectrolysis without electron blocking was found much less plausible, due to major limitations on faradaic efficiency imposed by electronic leakage and insufficient ionic conductivity of the aluminosilicate melt. Ohmic losses may consume an excessive fraction of the applied voltage, thus failing to sustain the Nernst potential required for reduction to metallic iron. The results suggest the need for further optimization of the molten electrolyte composition to promote ionic conductivity and to suppress electronic transport contribution, possibly, by tuning the Al/Si ratio and altering the network-forming/modifying behaviour of the iron cations.

  4. Formation and stability of aluminosilicate colloids by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Yuniati

    2011-02-15

    Colloids are ubiquitous in natural waters. Colloid-facilitated migration is of importance in safety assessment of a nuclear waste disposal. Aluminosilicate colloids are considered to be the kernel of aquatic colloids. Their stability is affected by a number of geochemical parameters. This work aims to study qualitatively and quantitatively the stability of aluminosilicate colloids formed by coprecipitation under various geochemical conditions, i.e. pH, concentration of Al and Si metal ions, ionic strength, and omnipresent cations (Na{sup +}, Ca{sup 2+}, and Mg{sup 2+}). The work is performed by colorimetric method and laser-induced breakdown detection (LIBD). Two consecutive phase separations at 450 nm and 1 kDa are applied to separate the precipitates and colloids from the ionic species. By means of colorimetry, Si and Al can be detected down to 5.8 x10{sup -8} M and 7.4x10{sup -7} M, respectively. On the other hand, LIBD is able to quantify the colloidal size and its number density down to several ppt. Depending on the concentration of Al and Si metal ions, the formation trend of aluminosilicate colloid changes following its solubility curve. The lower the concentration, the higher the pH range in which the colloids start to emerge. Furthermore, the colloids are stable at higher Al and Si concentration and at low ionic strength. In the low pH range, cations provide different effects at low and high ionic strengths. At high ionic strength, the colloids are stable in the presence of a larger cation, while all cations exhibit similar effects at low ionic strength. However, in the high pH range, valence seems to have a stronger effect than ionic radius; colloids are more stable in the presence of monovalent cations than divalent ones. Meanwhile, XRD shows non- and/or poor crystalline structure of the aluminosilicate species. Nevertheless, results from XPS may suggest that the chemical composition (Si/Al ∼ 0.6) of the aluminosilicate precipitates is sillimanite or

  5. Simultaneously catalytic removal of NOx and particulate matter on diesel particulate filter

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The simultaneous removal of NOx and particulate matter (PM) exhausted from diesel engine was studied with a diesel particulate filter (DPF) on which a mixed metal oxide catalyst, Cu0.95K0.05Fe2O4 was loaded. The NOx reduction was observed in the same temperature range of the CO2 formation, implying the occurrence of the simultaneous removal of NOx and PM in an oxidizing atmosphere. It was shown that SOF and soot in PM are attributed to the reduction of NOx at lower and higher temperatures, respectively. The oxidation of PM was enhanced by the coexistence of NO and O2. The ignition and exhaustion temperatures of PM decrease as the order NO>O2>NO+O2. This is a combined process of PM trapping as well as the catalytic reactions of soot oxidation and NOx reduction, promising the most desirable after-treatment of diesel exhausts.

  6. Influence of Al content on textural properties and catalytic activity of hierarchical porous aluminosilicate materials

    Indian Academy of Sciences (India)

    Ling Xu; Limei Duan; Zongrui Liu; Jingqi Guan; Qiubin Kan

    2013-12-01

    A series of hierarchical porous aluminosilicate materials were prepared using hydrothermal treatment of the composite formed by polystyrene colloidal spheres and aluminosilicate gel. Influence of Al content on the textural properties, acidic properties and catalytic activity of the hierarchical porous aluminosilicate materials was studied. The results showed that textural and acidic properties of the hierarchical porous aluminosilicate materials were strongly related to Al content. As Al content is increased (Si/Al = 25), the hierarchical porous catalysts exhibited higher catalytic activity and major product selectivity for alkylation of phenol with tert-butanol than the catalysts with a lower Al content (Si/Al = 50).

  7. SEMS operating as a proven system for screening real-world NOx and NH3 emissions

    NARCIS (Netherlands)

    Vermeulen, R.J.; Goethem, S. van; Baarbe, H.L.; Zuidgeest, L.W.M.; Spreen, J.S.; Vonk, W.A.

    2014-01-01

    NOx emissions of heavy-duty and light-duty diesel vehicles depend strongly on the driving conditions. The introduction of combined emission reduction technologies in Euro VI vehicles have demonstrated that NOx emissions become less predictable when the data is based on relatively short test cycles.

  8. NOx emission from incineration of organic hazardous liquid waste containing hexamethylendiamine in fluidized bed

    Institute of Scientific and Technical Information of China (English)

    别如山; 李季; 杨励丹

    2002-01-01

    Experiments have been conducted to investigate NOx concentration profiles along bed height and influences of temperature and excess air on NOx emission in the range from 700 ℃ to 900 ℃, when waste water containing 5% Hexamethylenediamine incinerated in a bench scale hot fluidized bed. The testing results indicate that the concentration of NO2 is larger than that of NO along bed height except in the freeboard at 900 ℃, where NO, NO2 concentrations are zero. Temperature and excess air play significant role on NOx emission. With increasing in temperature the NOx emission decreases very rapidly in the range from 700 ℃ to 900 ℃. With increasing in excess air, NOx emission increases considerably at 700 ℃, but it is almost independent of excess air at 800 ℃,and at 900 ℃ NOx emission is zero indicating that NH2 from NH2(CH2)6NH2 has strong effect on de-NOx with increasing in temperature and excess air. NOx concentration profiles decrease progressively with bed height because of reduction of NOx by NH2. The mechanism of NOx formation and destruction is presented in the paper.

  9. Source apportionment and health effect of NOx over the Pearl River Delta region in southern China.

    Science.gov (United States)

    Lu, Xingcheng; Yao, Teng; Li, Ying; Fung, Jimmy C H; Lau, Alexis K H

    2016-05-01

    As one of the most notorious atmospheric pollutants, NOx not only promotes the formation of ozone but also has adverse health effects on humans. It is therefore of great importance to study the sources of NOx and its effects on human health. The Comprehensive Air Quality Model (CAMx) modeling system and ozone source apportionment technology (OSAT) were used to study the contribution of NOx from different emission sources over southern China. The results indicate that heavy duty diesel vehicles (HDDVs) and industrial point sources are the two major local NOx sources, accounting for 30.8% and 18.5% of local NOx sources, respectively. In Hong Kong, marine emissions contributed around 43.4% of local NOx in 2011. Regional transport is another important source of this pollutant, especially in February and November, and it can contribute over 30% of ambient NOx on average. Power plant point emission is an significant regional source in Zhuhai, Zhongshan and Foshan. The total emission sources are estimated to cause 2119 (0-4405) respiratory deaths and 991 (0-2281) lung cancer deaths due to long-term exposure to NOx in the Pearl River Delta region. Our results suggest that local governments should combine their efforts and vigorously promote further reduction of NOx emissions, especially for those sources that make a substantial contribution to NOx emissions and affect human health: HDDV, LDGV, industrial point sources and marine sources.

  10. N+2 Advanced Low NOx Combustor Technology Final Report

    Science.gov (United States)

    Herbon, John; Aicholtz, John; Hsieh, Shih-Yang; Viars, Philip; Birmaher, Shai; Brown, Dan; Patel, Nayan; Carper, Doug; Cooper, Clay; Fitzgerald, Russell

    2017-01-01

    In accordance with NASAs technology goals for future subsonic vehicles, this contract identified and developed new combustor concepts toward meeting N+2 generation (2020) LTO (landing and take-off) NOx emissions reduction goal of 75 from the standard adopted at Committee on Aviation Environmental Protection 6 (CAEP6). Based on flame tube emissions, operability, and autoignition testing, one concept was down selected for sector testing at NASA. The N+2 combustor sector successfully demonstrated 75 reduction for LTO NOx (vs. CAEP6) and cruise NOx (vs. 2005 B777-200 reference) while maintaining 99.9 cruise efficiency and no increase in CO and HC emissions.The program also developed enabling technologies for the combustion system including ceramic matrix composites (CMC) liner materials, active combustion control concepts, and laser ignition for improved altitude relight.

  11. 40 CFR 52.2237 - NOX RACT and NOX conformity exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false NOX RACT and NOX conformity exemption... RACT and NOX conformity exemption. Approval. EPA is approving the section 182(f) oxides of nitrogen (NOX) reasonably available control technology (RACT) and NOX conformity exemption request submitted...

  12. New nanocomposites based on layered aluminosilicate and guanidine containing polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Khashirov, Azamat A.; Zhansitov, Azamat A.; Khashirova, Svetlana Yu. [Kabardino-Balkarian State University a. Kh.M. Berbekov, 173 Chernyshevskogo st., 360004, Nalchik (Russian Federation); Zaikov, Genadiy E. [N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygin St., 119991, Moscow (Russian Federation)

    2014-05-15

    The new functional nanomaterials based on layered aluminosilicate and guanidine containing polyelectrolytes combining high bactericidal activity with an increased ability to bind to heavy metals and organic pollutants were received. To prove the chemical structure of the model compounds (zwitterionic delocalized resonance structures AG/MAG and PAG/PMAG), as well as the presence of such structures in nanocomposites received on their basis and the MMT, IR, {sup 1}H NMR spectroscopy, X-ray diffraction studies and nanoindentation/sclerometry followed by scanning the surface in the area of the indentation were used.

  13. State Estimation in the Automotive SCR DeNOx Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe;

    2012-01-01

    Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...... on exhaust gas emissions. For advanced control, e.g. Model Predictive Control (MPC), of the SCR process, accurate state estimates are needed. We investigate the performance of the ordinary and the extended Kalman filters based on a simple first principle system model. The performance is tested through...

  14. Application of the NOx Reaction Model for Development of Low-NOx Combustion Technology for Pulverized Coals by Using the Gas Phase Stoichiometric Ratio Index

    Directory of Open Access Journals (Sweden)

    Kenji Yamamoto

    2011-03-01

    Full Text Available We previously proposed the gas phase stoichiometric ratio (SRgas as an index to evaluate NOx concentration in fuel-rich flames. The SRgas index was defined as the amount of fuel required for stoichiometric combustion/amount of gasified fuel, where the amount of gasified fuel was the amount of fuel which had been released to the gas phase by pyrolysis, oxidation and gasification reactions. In the present study we found that SRgas was a good index to consider the gas phase reaction mechanism in fuel-rich pulverized coal flames. When SRgas < 1.0, NOx concentration was strongly influenced by the SRgas value. NOx concentration was also calculated by using a reaction model. The model was verified for various coals, particle diameters, reaction times, and initial oxygen concentrations. The most important reactions were gas phase NOx reduction reactions by hydrocarbons. The hydrocarbon concentration was estimated based on SRgas. We also investigated the ratio as an index to develop a new low-NOx combustion technology for pulverized coals. We examined the relation between local SRgas distribution in the fuel-rich region in the low-NOx flame and NOx emissions at the furnace exit, by varying burner structures. The relationship between local SRgas value and local NOx concentration was also examined. When a low-NOx type burner was used, the value of SRgas in the flame was readily decreased. When the local SRgas value was the same, it was difficult to influence the local NOx concentration by changing the burner structure. For staged combustion, the most important item was to design the burner structure and arrangement so that SRgas could be lowered as much as possible just before mixing with staged air.

  15. Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Arthur

    2001-09-01

    Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344°F.

  16. Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats.

    Science.gov (United States)

    Cowley, Allen W; Yang, Chun; Zheleznova, Nadezhda N; Staruschenko, Alexander; Kurth, Theresa; Rein, Lisa; Kumar, Vikash; Sadovnikov, Katherine; Dayton, Alex; Hoffman, Matthew; Ryan, Robert P; Skelton, Meredith M; Salehpour, Fahimeh; Ranji, Mahsa; Geurts, Aron

    2016-02-01

    This study reports the consequences of knocking out NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4) on the development of hypertension and kidney injury in the Dahl salt-sensitive (SS) rat. Zinc finger nuclease injection of single-cell SS embryos was used to create an 8 base-pair frame-shift deletion of Nox4, resulting in a loss of the ≈68 kDa band in Western blot analysis of renal cortical tissue of the knock out of Nox4 in the SS rat (SS(Nox4-/-)) rats. SS(Nox4-/-) rats exhibited a significant reduction of salt-induced hypertension compared with SS rats after 21 days of 4.0% NaCl diet (134±5 versus 151±3 mm Hg in SS) and a significant reduction of albuminuria, tubular casts, and glomerular injury. Optical fluorescence 3-dimensional cryoimaging revealed significantly higher redox ratios (NADH/FAD [reduced nicotinamide adenine dinucleotide/flavin adenine dinucleotide]) in the kidneys of SS(Nox4-/-) rats even when fed the 0.4% NaCl diet, indicating greater levels of mitochondrial electron transport chain metabolic activity and reduced oxidative stress compared with SS rats. Before the development of hypertension, RNA expression levels of Nox subunits Nox2, p67(phox), and p22(phox) were found to be significantly lower (P<0.05) in SS(Nox4-/-) compared with SS rats in the renal cortex. Thus, the mutation of Nox4 seems to modify transcription of several genes in ways that contribute to the protective effects observed in the SS(Nox4-/-) rats. We conclude that the reduced renal injury and attenuated blood pressure response to high salt in the SS(Nox4-/-) rat could be the result of multiple pathways, including gene transcription, mitochondrial energetics, oxidative stress, and protein matrix production impacted by the knock out of Nox4.

  17. Tailor and Control of Acidic Strength in Ordered Mesoporous Aluminosilicates by Using Preformed Zeolite Precursors

    Institute of Scientific and Technical Information of China (English)

    LIN,Sen(林森); WANG,Li-Feng(王利丰); HAN,Yu(韩宇); YU,Yi(于沂); DI,Yan(邸岩); WANG,Run-Wei(王润伟); JIANG,Da-Zhen(蒋大振); XIAO,Feng-Shou(肖丰收)

    2004-01-01

    The acidic strength of ordered mesoporous aluminosilicates of MAS-2, MAS-3, MAS-7 and MAS-9 and microporous crystals of Y, L, beta, and ZSM-5 zeolites was systemically investigated by temperature-programmed desorption of ammonia (NH3-TPD). Due to the use of preformed zeolite precursors of Y, L, beta and ZSM-5, the ordered mesoporous aluminosilicates with distinguished acidic strength were obtained, being dependent on the type of preformed zeolite precursors. Therefore, the acidic strength of these mesoporous aluminosilicates could be tailored and controlled.

  18. Hydroxyl vacancies in single-walled aluminosilicate and aluminogermanate nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Teobaldi, Gilberto; Hofer, Werner A [Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX (United Kingdom); Beglitis, Nikolaos S; Fisher, Andrew J [London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AK (United Kingdom); Zerbetto, Francesco [Dipartimento di Chimica ' G Ciamician' , Universita degli Studi di Bologna, via Selmi 2, 40126 Bologna (Italy)

    2009-05-13

    We report a theoretical study of hydroxyl vacancies in aluminosilicate and aluminogermanate single-walled metal-oxide nanotubes. Defects are introduced on both sides of the tube walls and lead to occupied and empty states in the band gap which are highly localized both in energy and in real space. Different magnetization states are found depending on both the chemical composition and the specific side with respect to the tube cavity. The defect-induced perturbations to the pristine electronic structure are related to the electrostatic polarization across the tube walls and the ensuing change in Lewis acid-base reactivity. A general approach towards a quantitative evaluation of both the polarization across the tube walls and the tube excluded volume is also proposed and discussed on an electrostatic basis.

  19. Sorption of cesium ions by nanostructured calcium aluminosilicates

    Science.gov (United States)

    Gordienko, P. S.; Shabalin, I. A.; Yarusova, S. B.; Suponina, A. P.; Zhevtun, I. G.

    2016-10-01

    Data on the sorption properties of synthetic calcium aluminosilicates (CASes) with Al: Si ratios of 2: 2, 2: 6, and 2: 10, fabricated within the multicomponent system CaCl2-AlCl3-KOM-SiO2-H2O, are presented. Isotherms of the sorption of Cs+ ions from aqueous solutions with Cs+ concentrations of 0.2 to 6.0 mmol L-1 are analyzed. The CAS maximum sorption capacity and the Langmuir constants are determined. Kinetic data are obtained, and the energy of cation-exchange activation upon the sorption of Cs+ ions is determined. The effect of a salt background (1% KCl + 6% NaCl) has on the values of distribution coefficient ( K d) and the degree of Cs+ ion removal is established.

  20. Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass

    Science.gov (United States)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.

  1. Selective laser densification of lithium aluminosilicate glass ceramic tapes

    Science.gov (United States)

    Zocca, Andrea; Colombo, Paolo; Günster, Jens; Mühler, Thomas; Heinrich, Jürgen G.

    2013-01-01

    Tapes, cast by blade deposition of a lithium aluminosilicate glass slurry, were sintered using a YAG-fiber laser, with the aim of finding suitable parameters for an additive manufacturing process based on layer-wise slurry deposition and selective laser densification. The influence of the laser parameters (output power and scan velocity) on the sintering was evaluated, by scanning electron microscopy and by X-ray diffraction, on the basis of the quality of the processed layer. Well densified samples could be obtained only in a small window of values for the output power and the scan velocity. The measurement of the width of a set of single scanned lines allowed also to estimate the minimum resolution of the system along the layer plane.

  2. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  3. Potential synergic effect between MOR and BEA zeolites in NOx SCR with methane: A dual bed design approach

    OpenAIRE

    Mendes, Acácio Nobre; Matynia, Alexis; Toullec, Alain; Capela, Sandra; Ribeiro, M.Filipa; Henriques, Carlos; Costa, Patrick Da

    2015-01-01

    International audience; The selective catalytic reduction of NOx with methane (NOx CH4-SCR) under lean conditions was investigated with catalysts based on two different zeolite structures (MOR and BEA) containing Pd and Ce. The catalytic performance for NO oxidation to NO2 reaction, considered an important first key step in the NOx CH4-SCR mechanism, was also assessed.Pd(0.3)Ce(2)-HBEA was found to be very active for NO oxidation but exhibits poor activity for NOx CH4-SCR. Conversely, Pd(0.3)...

  4. NOx Change over China and Its Influences

    Institute of Scientific and Technical Information of China (English)

    LIU Yu(刘煜); I. S. A. ISAKSEN; J. K. SUNDET; HE Jinhai(何金海); YAN Peng(颜鹏)

    2004-01-01

    A 3-D chemical transport model (OSLO CTM2) is used to investigate the impact of the increase of NOx emission over China.The model is capable to reproduce basically the seasonal variation of surface NOx and ozone over eastern China.NOx emission data and observations reveal that NOx over easternChina increases quite quickly with the economic development of China.Model results indicate that NOxconcentration over eastern China increasingly rises with the increase of NOx emission over China,and accelerates to increase in winter.When the NOx emission increases from 1995 to its double,the ratio of NO2/NOx abruptly drops in winter over northern China.Ozone at the surface decreases in winter with the continual enhancement of the NOx level over eastern China,but increases over southern China in summertime.It is noticeable that peak ozone over northern China increases in summer although mean ozone changes little.In summer,ozone increases in the free troposphere dominantly below 500 hPa.Moreover,the increases of total ozone over eastern China are proportional to the increases of NOx emission.In a word,the model results suggest that the relationship between NOx and ozone at the surface would change with NOx increase.

  5. Occurrence mechanism of silicate and aluminosilicate minerals in Sarcheshmeh copper flotation concentrate

    Institute of Scientific and Technical Information of China (English)

    H.R. Barkhordari; E. Jorjani; A. Eslami; M. Noaparast

    2009-01-01

    The Sarcheshmeh copper flotation circuit is producing 5×10~4 t copper concentrate per month with an averaging grade of 28% Cu in rougher, cleaner and reeleaner stages. In recent years, with the increase in the open pit depth, the content of aluminosili- cate minerals increased in plant feed and subsequently in flotation concentrate. It can motivate some problems, such as unwanted consumption of reagents, decreasing of the copper concentrate grade, increasing of Al_2O_3 and SiO_2 in the copper concentrate, and needing a higher temperature in the smelting process. The evaluation of the composite samples related to the most critical working period of the plant shows that quartz, illite, biotite, chlorite, orthoclase, albeit, muscovite, and kaolinite are the major Al_2O_3 and SiO_2 beating minerals that accompany chalcopyrite, chalcoeite, and covellite minerals in the plant feed. The severe alteration to clay min-erals was a general rule in all thin sections that were prepared from the plant feed. Sieve analysis of the flotation concentrate shows that Al_2O_3 and SiO_2 bearing minerals in the flotation concentrate can be decreased by promoting the size reduction from 53 to 38 μm. Interlocking of the Al_2O_3 and SiO_2 beating minerals with ehalcopyrite and ehalcocite is the occurrence mechanism of silicate and aluminosilicate minerals in the flotation concentrate. The dispersed form of interlocking is predominant.

  6. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  7. Study on Selective Catalytic Reduction Reaction Properties of LaCoO3 Perovskite Catalyst for Diesel NOx Emission Removal%LaCoO3钙钛矿型催化剂对柴油机NOx净化性能研究

    Institute of Scientific and Technical Information of China (English)

    郝斌; 杨铁皂; 吕刚; 宋崇林; 宾峰

    2012-01-01

    LaCoO3 perovskite catalyst was prepared by citric acid complex method and characterized for its physic - chemical properties. Catalytic performance in the SCR of NO, by NH3 was studied and results showed that: pure LaCoO3 granule has a certain ability of catalytic reduction of NOx, especially between 250 to 45℃. However, the undesired catalytic activity for the oxidation of NH3 was too high and could be even largely promoted by a higher temperature. When LaCoO3 was used as SCR catalyst, it showed a certain degree of purification ability of NOx, below 400℃ , but if the temperature was higher than 400℃ , NOx elimination is deteriorated. Moreover, LaCo03 perovskite catalyst was highly capable of enhancing the oxidation of HC and CO regardless of their gas compositions.%采用柠檬酸络合法制备了LaCoO3钙钛矿型催化剂.对其理化特性及NH3-选择性催化还原催化性能的研究结果表明:纯LaCoO3颗粒具有一定的NOx催化还原能力,在250~450℃活性较高;但该催化剂对NH3具有较高的氧化活性,且催化活性随反应温度的升高而提高;在SCR反应中,在400℃以下时,该催化剂显示出一定的NOx净化能力,但当温度超过400℃以后,还原剂的加入反而恶化了NOx排放.不管反应气组成如何,LaCoO3钙钛矿型催化剂对HC和CO都具有良好的催化性能.

  8. MoO{sub 3} incorporation in magnesium aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-03-15

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO{sub 3}) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO{sub 3} can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO{sub 3} increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO{sub 4}{sup 2−} units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO{sub 4}.

  9. Structural and redox effects in iron-doped magnesium aluminosilicates

    Science.gov (United States)

    Ferreira, N. M.; Kovalevsky, A. V.; Valente, M. A.; Waerenborgh, J. C.; Frade, J. R.; Costa, F. M.

    2017-01-01

    Magnesium aluminosilicates (MAS) represent a great importance for many electrical and catalytic applications. Recently, MAS-based glasses were considered as prospective for use as an electrolyte in steel making by molten oxide electrolysis process, an alternative electrometallurgical technique which offers prospects for environmental and economic advantages over traditional steelmaking. In the present work, low-iron content MAS glasses were processed by an unconventional method: the laser floating zone (LFZ), to simulate the strongly-nonequilibrium high-temperature conditions which may arise during pyroelectrolysis process. The work focuses on the effect of pulling rate on crystallization kinetics, taking into account structural, electrical and magnetic properties of the as-grown material. The results revealed that faster pulling rates promote formation of isolated iron cations in the glass forming network. The crystallization process is strongly affected by lower pulling rates. LFZ method shows good prospects for studying the crystallization mechanisms in silicate-based glasses with additions of redox-active cations, by providing flexibility in tuning their oxidation state and crystalline/amorphous conditions.

  10. Synthesis, characterization and gas sensing performance of aluminosilicate azide cancrinite

    Indian Academy of Sciences (India)

    A V BORHADE; T A KSHIRSAGAR; S G WAKCHAURE; A G DHOLI

    2016-10-01

    The present investigation deals with synthesis and gas sensing performance of Na$_8$[AlSiO$_4$]$_6$(N$_3$)$_{2.4}$(H$_2$O)$_{4.6}$ cancrinite-based thick film. The product obtained was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, thermogravimetric analysis and magic-angle spin nuclear magneticresonance (MAS NMR). The crystal structure of the product was determined from X-ray powder diffraction data by applying Rietveld refinement. Refinement showed that azide cancrinite crystallize in the space group P6$_3$. Alternate arrangement of Si and Al atoms was confirmed by single intense peak of MAS NMR analysis. For the first time, this study reports the gas sensing performance of aluminosilicate azide cancrinite. The effect of annealing andoperating temperature on gas sensing characteristic of azide cancrinite thick film is investigated systematically for various gases at different operating temperatures. This sensor was observed to be highly sensitive and selective toammonia gas.

  11. Blue thermoluminescence emission of annealed lithium rich aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Correcher, V.; Rodriguez-Lazcano, Y., E-mail: v.correcher@ciemat.e [CIEMAT, Madrid (Spain); Garcia-Guinea, J.; Crespo-Feo, E. [Museo Nacional de Ciencias Naturales, Madrid (Spain)

    2010-09-15

    The blue thermoluminescence (TL) emission of different thermally annealed {beta}-eucryptite (LiAlSiO{sub 4}), virgilite-petalite (LiAlSi{sub 5}O{sub 12}) and virgilite-petalite-bikitaite (LiAlSi{sub 10}O{sub 22}) mixed crystals have been studied. The observed changes in the TL glow curves could be linked to simultaneous processes taking place in the lithium aluminosilicate lattice structure (phase transitions, consecutive breaking linking of bonds, alkali self-diffusion, redox reactions, etc). The stability of the TL signal after four months of storage performed at RT under red light, shows big differences between annealed (12 hours at 1200 deg C) and non-annealed samples. The fading process in non-annealed samples can be fitted to a first-order decay mathematical expression; however preheated samples could not be reasonably fitted due to the highly dispersion detected. The changes observed in the X-ray diffractograms are in the intensity of the peaks that denote modifications in the degree of crystallinity and, in addition, there are some differences in the appearance of new peaks that could suppose new phases (e.g. b-spodumene). (author)

  12. Surface functionalization of aluminosilicate nanotubes with organic molecules

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2012-02-01

    Full Text Available The surface functionalization of inorganic nanostructures is an effective approach for enriching the potential applications of existing nanomaterials. Inorganic nanotubes attract great research interest due to their one-dimensional structure and reactive surfaces. In this review paper, recent developments in surface functionalization of an aluminosilicate nanotube, “imogolite”, are introduced. The functionalization processes are based on the robust affinity between phosphate groups of organic molecules and the aluminol (AlOH surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared through surface-initiated polymerization. In addition, the assembly of conjugated molecules, 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid (HT3P and 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid 1,1-dioxide (HT3OP, on the imogolite nanotube surface was achieved by introducing a phosphonic acid group to the corresponding molecules. The optical and photophysical properties of these conjugated-molecule-decorated imogolite nanotubes were characterized. Moreover, poly(3-hexylthiophene (P3HT chains were further hybridized with HT3P modified imogolite to form a nanofiber hybrid.

  13. Effect of oxygen on NOx removal in corona discharge field: NOx behavior without a reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    M. Arai; M. Saito; S. Yoshinaga [Gunma University, Gunma (Japan). Department of Mechanical System Engineering

    2004-10-01

    A DeNOx process using a DC corona discharge was investigated experimentally. A mixture system of N{sub 2}/O{sub 2}/NO was used as a test gas. The compositions such as NO, NO{sub 2}, N{sub 2}O and so on were analyzed with Fourier transform infrared spectroscopy and an NOx meter. It was found that the characteristics of NO removal by corona discharge differed remarkably whether or not oxygen exists in the mixture. In regard to the spectrum of light emission from the corona discharge in N{sub 2} atmosphere or N{sub 2}/O{sub 2} mixture, some N{sub 2} bands were detected. N{sub 2} dissociation into atomic N and N{sub 2} radical in the corona discharge field was conjectured. Furthermore, ozone was yielded by the corona discharge in the case of the N{sub 2}/O{sub 2} mixture. Ozone gas from an ozonizer was added into the N{sub 2}/O{sub 2} mixture without corona discharge to investigate the effect of O{sub 3} on the characteristics of NOx removal by corona discharge. In the case of the N{sub 2}/NO mixture, the process of NO reduction was mainly controlled by N{sub 2} radicals excited by the corona discharge. On the other hand, in the case of the N{sub 2}/O{sub 2}/NO mixture, NO was oxidized by ozone generated from the corona discharge and converted to NO{sub 2} and N{sub 2}O{sub 5}.

  14. Effects of biogenic nitrate chemistry on the NOx lifetime in remote continental regions

    Science.gov (United States)

    Browne, E. C.; Cohen, R. C.

    2012-12-01

    We present an analysis of the NOx budget in conditions of low NOx (NOx = NO + NO2) and high biogenic volatile organic compound (BVOC) concentrations that are characteristic of most continental boundary layers. Using a steady-state model, we show that below 500 pptv of NOx, the NOx lifetime is extremely sensitive to organic nitrate (RONO2) formation rates. We find that even for RONO2 formation values that are an order of magnitude smaller than is typical for continental conditions significant reductions in NOx lifetime, and consequently ozone production efficiency, are caused by nitrate forming reactions. Comparison of the steady-state box model to a 3-D chemical transport model (CTM) confirms that the concepts illustrated by the simpler model are a useful approximation of predictions provided by the full CTM. This implies that the regional and global budgets of NOx, OH, and ozone will be sensitive to assumptions regarding organic nitrate chemistry. Changes in the budgets of these species affect the representation of processes important to air quality and climate. Consequently, CTMs must include an accurate representation of organic nitrate chemistry in order to provide accurate assessments of past, present, and future air quality and climate. These findings suggest the need for further experimental constraints on the formation and fate of biogenic RONO2.

  15. Evaluating NOx Emissions Using Satellite Observations

    Science.gov (United States)

    Frost, G. J.; Kim, S.; Brioude, J.; McKeen, S. A.; Trainer, M.; Heckel, A.; Hilboll, A.; Richter, A.; Burrows, J. P.; Gleason, J. F.; Boersma, K. F.; Hsie, E.; Lee, S.; Angevine, W. M.; Granier, C.; Peischl, J.; Ryerson, T. B.; Fehsenfeld, F. C.

    2012-12-01

    Atmospheric NO2 columns retrieved from satellites can provide a useful top-down assessment of bottom-up NOx emissions inventories. We present three case studies of an approach to evaluate NOx emissions at a sector level by comparing satellite retrievals to regional chemical-transport model calculations of NO2 columns. In the first example, the atmospheric impact of implementing NOx controls at eastern US power plants is demonstrated. In the second study, we use NOx monitors at western US power plants to calibrate our satellite-model comparisons. We then apply our approach to evaluate bottom-up estimates of NOx emissions from western US cities. In the third example, we validate our satellite-model approach using in-situ aircraft measurements and assess NOx emissions from power plants, cities, industrial facilities, and ports in eastern Texas. We conclude with some general insights on the usefulness of this approach and suggestions for future areas of research.

  16. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  17. Impact of Aircraft NOx Emission on NOx and Ozone over China

    Institute of Scientific and Technical Information of China (English)

    刘煜; I.S.A.ISAKSEN; J.K.SUNDET; 周秀骥; 马建中

    2003-01-01

    A three-dimensional global chemistry transport model (OSLO CTM2) is used to investigate the impact of subsonic aircraft NOx emission on NOz and ozone over China in terms of a year 2000 scenario of subsonic aircraft NOx emission. The results show that subsonic aircraft NOx emission significantly affects northern China, which makes NOx at 250 hPa increase by about 50 pptv with the highest percentage of 60% in January, and leading to an ozone increase of 8 ppbv with 5% relative change in April. The NOx increase is mainly attributed to the transport process, but ozone increase is produced by the chemical process. The NOx increases by less than 10 pptv by virtue of subsonic aircraft NOx emission over China,and ozone changes less than 0.4 ppbv. When subsonic aircraft NOx emission over China is doubled, its influence is still relatively small.

  18. Sulfate Promoted Zirconia as Promising Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Kustov, Arkadii; Christensen, Claus H.;

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant...

  19. Sulfated Zirconia as Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant...

  20. Performance and kinetic study on selective catalytic reduction of NOx with NH3 of MnOx-WO3/TiO2 catalyst%MnOx-WO3/TiO2NH3选择性还原NOx的催化性能与动力学

    Institute of Scientific and Technical Information of China (English)

    吴碧君; 肖萍; 刘晓勤

    2011-01-01

    研究了Mn-W/TiO2用于NH3选择性催化还原NOx体系的催化反应性能,在很宽的温度范围和各种气体条件下,该催化剂显示了较高的催化活性.在GHSV 18900 h-1、100~350℃条件下,NOx转化率高达80.3%~99.6%,Nz选择性达98.7%~100%;当反应气体中有0.01%SO2(分压比,下同)和6%H2O,120℃转化率可维持在98.5%;SO2浓度高达0.07%,300℃转化率可长期稳定在99%,达到了商用V-W/TiO2催化剂的水平.稳态动力学实验发现,O2对Mn-W/TiO2NH3-SCR NOx催化体系起促进作用,O2含量在1.5%以下时转化率随O2浓度的增加而显著提高;当有过量O2和过量H2O存在时,反应为关于NO浓度的一级反应,关于NH3浓度的零级反应.由各温度下的动力学实验结果推导出Mn-W/TiO2催化反应的活化能为6.24 kJ·mol-1,较文献报道的其他催化剂的活化能低得多,为NH3选择性还原NOx较好的催化剂.%The catalytic activities of MnOx-WO3/TiO2 catalyst in a wide temperature range were investigated for selective catalytic reduction (SCR) of NO with NH3.It yields 80.3%-99.6% NOx conversion and 98.7%-100% selectivity for N2 product from 100℃ to 350℃ at GHSV 18900 h-1. In the presence of 0. 01% SO2 and 6% H2O at 120℃, the NOx conversion maintains at 98. 5%. At 300℃ and with 0.07% SO2 in the reactant stream, the NOx conversion is 99%, as high as that of the commercial V-W/ TiO2 catalyst. The steady-state kinetic study shows that O2 plays a promoting role. When O2 content is less than 1.5%, the NOx conversion increases sharply with O2 concentration. The reaction order is zero with respect to NH3 and first with respect to NO with excess O2 and H2O. The active energy of Mn-W/TiO2 calculated is 6.24 kJ · mol-1 according to the kinetic experiments at various temperatures, much lower than other catalysts reported in the literatures. Thus Mn-W/TiO2 is an excellent catalyst for SCR NO with NH3.

  1. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  2. DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg

    Energy Technology Data Exchange (ETDEWEB)

    Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

    2004-03-01

    Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

  3. Aqueous dissolution of sodium aluminosilicate geopolymers derived from metakaolin

    Science.gov (United States)

    Aly, Z.; Vance, E. R.; Perera, D. S.

    2012-05-01

    In dilute aqueous solutions, the elemental releases of Na, Al and Si from a metakaolin-based sodium aluminosilicate geopolymer were not very sensitive to pH in the range of 4-10 but increased outside this range, particularly on the acidic side. To minimise pH drifts, experiments were carried out using small amounts of graded powders in relatively large volumes of water. In deionised water, the Na dissolution rate in 7 days was dominant and increased by at least a factor of ˜4 on heating from 18 to 90 °C, with greater increases in the extractions of Al and Si. At 18 °C the elemental extractions in deionised water increased approximately linearly with time over the 1-7 days period. Further exposure led to a slower extraction into solution for Na and Si, with a decrease in extraction of Al. It was deduced that framework dissolution was important in significantly acidic or alkaline solutions, but that contributions from water transfer from pores to elemental extractions were present, even at low temperatures in neutral solutions. It was also deduced from the Na release data that the Na leaching kinetics of geopolymer in deionised water (dilute solutions) followed the pseudo-second-order kinetic model and the pseudo-second-order rate constant evaluated. Contact with KCl, KHCO3, and pH ˜6 and 10 potassium phthalate buffer solutions gave rise to a high degree of Na+ ↔ K+ exchange and rendered the framework ions less leachable in water.

  4. Urea-SCR Temperature Investigation for NOx Control of Diesel Engine

    Directory of Open Access Journals (Sweden)

    Asif Muhammad

    2015-01-01

    Full Text Available SCR (selective catalytic reduction system is continuously being analyzed by many researchers worldwide on various concerns due to the stringent nitrogen oxides (NOx emissions legislation for heavy-duty diesel engines. Urea-SCR includes AdBlue as urea source, which subsequently decomposes to NH3 (ammonia being the reducing agent. Reaction temperature is a key factor for the performance of urea-SCR system, as urea decomposition rate is sensitive to a specific temperature range. This particular study was directed to investigate the temperature of the SCR system in diesel engine with the objective to confirm that whether the appropriate temperature is attained for occurrence of urea based catalytic reduction or otherwise and how the system performs on the prescribed temperature range. Diesel engine fitted with urea-SCR exhaust system has been operated on European standard cycle for emission testing to monitor the temperature and corresponding nitrogen oxides (NOx values on specified points. Moreover, mathematical expressions for approximation of reaction temperature are also proposed which are derived by applying energy conservation principal and gas laws. Results of the investigation have shown that during the whole testing cycle system temperature has remained in the range where urea-SCR can take place with best optimum rate and the system performance on account of NOx reduction was exemplary as excellent NOx conversion rate is achieved. It has also been confirmed that selective catalytic reduction (SCR is the best suitable technology for automotive engine-out NOx control.

  5. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.

    Science.gov (United States)

    Beale, A M; Gao, F; Lezcano-Gonzalez, I; Peden, C H F; Szanyi, J

    2015-10-21

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3-SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptionally high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ∼5 years that led to the introduction of these catalysts into practical applications. This review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetic studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that still need to be addressed in automotive exhaust control catalysis.

  6. Effective NOx remediation from a surrogate flue gas using the US NRL Electra electron beam facility

    Science.gov (United States)

    Petrova, Tz. B.; Petrov, G. M.; Wolford, M. F.; Giuliani, J. L.; Ladouceur, H. D.; Hegeler, F.; Myers, M. C.; Sethian, J. D.

    2017-02-01

    Nitric oxide (NOx) emission is under restrictive federal regulations because of its negative impact on atmosphere, biosphere, and human health. Therefore, its removal has been a subject of extensive research to develop new efficient and cost effective techniques that can be applied on an industrial scale. In this work, we study both experimentally and theoretically an effective removal of NOx pollutants from a surrogate flue gas (SFG) using high power electron beam (e-beam) pulses. SFG is a simulant for exhaust from coal combustion power plants (82% N2, 6% O2, 12% CO2, and ˜100 ppm of NOx). The pulsed electron beam is generated using the United States Naval Research Laboratory Electra facility, which delivers e-beams with energies of ˜500 keV and a power pulse duration of ˜140 ns. During the e-beam irradiation, the energetic electrons generate a non-equilibrium plasma containing chemically active species, which then react with NOx to form harmless substances. A non-equilibrium time-dependent model is developed to describe NOx remediation from SFG. The model combines e-beam deposition rates obtained by solving the electron Boltzmann equation and extensive plasma chemistry modeling, which follows the species on a time scale from sub-nanoseconds to a few seconds. NOx decomposition as a function of electron beam parameters is studied. It is demonstrated experimentally that short (ns) pulses are the most efficient for NOx removal. A sharp reduction of NOx was measured with e-beam power deposition increasing, following the trend predicted by the model, achieving a 20 fold reduction to ˜5 ppm at energy deposition ˜20 J/l.

  7. The effects of ochratoxin/aluminosilicate interaction on the tissues and humoral immune response of broilers.

    Science.gov (United States)

    Santin, Elizabeth; Paulillo, Antonio C; Maiorka, Paulo C; Alessi, Antonio C; Krabbe, Everton L; Maiorka, Alex

    2002-02-01

    This study aimed to evaluate the effect of dietary ochratoxin, in the presence or absence of aluminosilicate, on the histology of the bursa of Fabricius, liver and kidneys, and on the humoral immune response of broilers vaccinated against Newcastle disease virus. The exposure of birds to 2 p.p.m. ochratoxin, in the presence or absence of aluminosilicate, reduced their humoral immune response and the number of mitotic cells in the bursa. The relative weight of the livers of the birds exposed to this toxin was increased and, microscopically, there was hepatocyte vacuolation and megalocytosis with accompanying hyperplasia of the biliary epithelium. The kidneys showed hypertrophy of the renal proximal tubular epithelium, with thickening of the glomerular basement membrane. Aluminosilicate did not ameliorate the deleterious effects of the ochratoxin.

  8. Synthesis and immobilization of silver nanoparticles on aluminosilicate nanotubes and their antibacterial properties

    Science.gov (United States)

    Ipek Yucelen, G.; Connell, Rachel E.; Terbush, Jessica R.; Westenberg, David J.; Dogan, Fatih

    2016-04-01

    A novel colloidal method is presented to synthesize silver nanoparticles on aluminosilicate nanotubes. The technique involves decomposition of AgNO3 solution to Ag nanoparticles in the presence of aluminosilicate nanotubes at room temperature without utilizing of reducing agents or any organic additives. Aluminosilicate nanotubes are shown to be capable of providing a unique chemical environment, not only for in situ conversion of Ag+ into Ag0, but also for stabilization and immobilization of Ag nanoparticles. The synthesis strategy described here could be implemented to obtain self-assembled nanoparticles on other single-walled metal oxide nanotubes for unique applications. Finally, we demonstrated that nanotube/nanoparticle hybrid show strong antibacterial activity toward Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli.

  9. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  10. Discovery of Novel NOx Catalysts for CIDI Applications by High-throughput Methods

    Energy Technology Data Exchange (ETDEWEB)

    Blint, Richard J. [General Motors Corporation, Warren, MI (United States)

    2007-12-31

    DOE project DE-PS26-00NT40758 has developed very active, lean exhaust, NOx reduction catalysts that have been tested on the discovery system, laboratory reactors and engine dynamometer systems. The goal of this project is the development of effective, affordable NOx reduction catalysts for lean combustion engines in the US light duty vehicle market which can meet Tier II emission standards with hydrocarbons based reductants for reducing NOx. General Motors (prime contractor) along with subcontractors BASF (Engelhard) (a catalytic converter developer) and ACCELRYS (an informatics supplier) carried out this project which began in August of 2002. BASF (Engelhard) has run over 16,000 tests of 6100 possible catalytic materials on a high throughput discovery system suitable for automotive catalytic materials. Accelrys developed a new database informatics system which allowed material tracking and data mining. A program catalyst was identified and evaluated at all levels of the program. Dynamometer evaluations of the program catalyst both with and without additives show 92% NOx conversions on the HWFET, 76% on the US06, 60% on the cold FTP and 65% on the Set 13 heavy duty test using diesel fuel. Conversions of over 92% on the heavy duty FTP using ethanol as a second fluid reductant have been measured. These can be competitive with both of the alternative lean NOx reduction technologies presently in the market. Conversions of about 80% were measured on the EUDC for lean gasoline applications without using active dosing to adjust the C:N ratio for optimum NOx reduction at all points in the certification cycle. A feasibility analysis has been completed and demonstrates the advantages and disadvantages of the technology using these materials compared with other potential technologies. The teaming agreements among the partners contain no obstacles to commercialization of new technologies to any potential catalyst customers.

  11. Removal of NOx by radical injection

    Institute of Scientific and Technical Information of China (English)

    LIN He; GAO Xiang; LUO Zhongyang; CEN Kefa; PEI Meixiang; HUANG Zhen

    2004-01-01

    Removal of NOx ( DeNOx, NOx is the total of NO and NO2) from flue gas by radical injection has been investigated . The discharge characteristics were examined and the steady streamer corona was acquired by adjusting the nozzle gases properly. It was found that an increase in the voltage resulted in a decrease in the NO concentration and the concentration of the NO2 increased at low voltages but decreased as the voltage rose to a certain level. The DeNOx efficiency increased as the applied voltage rose and reached a maximum of 70% when the voltage approached the breakdown voltage. The hypothetical mechanism of NOx removal suggested that the radicals formed in the discharge process converted the NO and NO2 into acidic species. The Monte Carlo method was used to calculate the rate coefficients and the productivity of the radicals, and then the concentrations of both NO and NO2 and the DeNOx efficiencies were calculated with chemical kinetics. The calculated DeNOx efficiencies were comparable with the experimental DeNOx efficiencies at low voltages, but were lower at high voltages.

  12. Effect of Steam Addition on the Flow Field and NOx Emissions for Jet-A in an Aircraft Combustor

    Science.gov (United States)

    Xue, Rui; Hu, Chunbo; Nikolaidis, Theoklis; Pilidis, Pericle

    2016-12-01

    The steam injection technology for aircraft engines is gaining rising importance because of the strong limitations imposed by the legislation for NOx reduction in airports. In order to investigate the impact of steam addition on combustion and NOx emissions, an integrated performance-CFD-chemical reactor network (CRN) methodology was developed. The CFD results showed steam addition reduced the high temperature size and the radical pool moved downstream. Then different post-processing techniques are employed and CRN is generated to predict NOx emissions. This network consists of 14 chemical reactor elements and the results were in close agreement with the ICAO databank. The established CRN model was then used for steam addition study and the results showed under air/steam mixture atmosphere, high steam content could push the NOx formation region to the post-flame zone and a large amount of the NOx emission could be reduced when the steam mass fraction is quite high.

  13. Simulation of Air Quality over Beijing, Tianjin, and Hebei Province of China with Application of Catalysts for Selective Catalytic Reduction of NOx to Diesel Exhaust and Natural Gas Boilers%脱硝技术与天然气应用情景下京津冀地区空气质量模拟评估

    Institute of Scientific and Technical Information of China (English)

    李健; 安俊岭; 陈勇; 屈玉

    2013-01-01

    Three scenarios were designed in which catalysts for selective catalytic reduction (SCR) of NOx were applied to diesel exhaust (Scenario 1), catalysts for SCR were applied to both diesel exhaust and natural gas boilers according to the Chinese energy plan for 2015 (Scenario 2), and the catalysts were applied as in Scenario 2 but the Chinese energy plan for 2030 was used (Scenario 3). Simulations were performed with the WRF-CAMx model in Beijing, Tianjin, and Hebei Province in China (the BTH region) for January, April, July, and October of 2007, representing winter, spring, summer, and autumn, respectively. The results indicate that Scenario 1 can reduce the surface NOx concentrations by 20% in Beijing and Tianjin and by 5%in Hebei Province, and decrease the PM2.5 (particulate matter with diameters less than or equal to 2.5μm) concentrations by 10%in the BTH region. Scenarios 2 and 3 lead to decreases of more than 20%and more than 30%, respectively, in the surface concentrations of NOx and PM2.5 over the BTH region. This suggests that decreases in the surface concentrations of NOx and PM2.5 depend significantly on the amount of the catalyst used for SCR in diesel exhaust and natural gas boilers over the BTH region. The chemical process plays a key role in the formation of nitrates, sulfates, and ammonium salts, which are major components of PM2.5 over the BTH region. The surface concentrations of nitrates, sulfates, and ammonium salts contribute more than 60%in winter, spring, and autumn, more than 70% in summer and autumn, and approximately 25% in all four seasons, respectively, to the surface PM2.5 concentration. This implies that a large reduction in the emissions of major precursors of PM2.5, e.g., NOx, SO2, NH3, volatile organic compounds, and CO, can effectively reduce surface concentrations of PM2.5.%  针对京津冀地区主要大气污染物NOx(氮氧化物)和PM2.5(大气中粒径小于或等于2.5μm的颗粒物),应用柴油车尾气净

  14. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, M; Poulsen, Søren Lundsted; Herfort, D;

    2012-01-01

    M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012).......M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012)....

  15. Preparation and photochromic properties of dye-doped aluminosilicate ORMOCER gels and coatings

    OpenAIRE

    Hou, Lisong; Hoffmann, Bernd; Mennig, Martin; Schmidt, Helmut K.

    1994-01-01

    Aluminosilicate and ORMOCER gels and coatings containing photochromic dyes, 1, 3-dihydro-1, 3, 3-trimethylspiro-[2H-indole-2, 3'-[3H]-naphth-[2, 1-b][1, 4]-oxazine] (SO) and 1', 8a'-dihydro-2', 3'-dimethoxycarbonyl-spiro [fluorene-9, 1'-indolizine] (DHI), were prepared by the sol-gel method and the photochromic activity was monitored in the course of the sol-wetgel-xerogel transformation. The photochromic activity of the aluminosilicate gels decreases rapidly and even vanishes in the wetgel-x...

  16. Calculation of the Aluminosilicate Half-Life Formation Time in the 2H Evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.F.

    2000-09-21

    The 2H Evaporator contains large quantities of aluminosilicate solids deposited on internal fixtures. The proposed cleaning operations will dissolve the solids in nitric acid. Operations will then neutralize the waste prior to transfer to a waste tank. Combining recent calculations of heat transfer for the 2H Evaporator cleaning operations and laboratory experiments for dissolution of solid samples from the pot, the authors estimated the re-formation rate for aluminosilicates during cooling. The results indicate a half-life formation of 17 hours when evaporator solution cools from 60 degrees C and 9 hours when cooled from 90 degrees C.

  17. Equipment Design for Oxidation of 1BP/2BP Using NO_x

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Xian-ming; CHANG; Shang-wen; LI; Gao-liang; LAN; Tian; LIU; Jin-ping; TANG; Hong-bin; HE; Hui

    2013-01-01

    NOx can Oxidize the reductants in 1BP and 2BP feed of Purex process,and can adjust the oxidation state of plutonium as Pu(Ⅳ)to meet the need of 2AF feed.Using NOx in Purex process can reduce the volumn of solid waste effectively,and attract more and more interest of researchers.In this work the oxidation of reductants in 1BP/2BP feed were investigated in glass column as the same-current mode,in

  18. Hydrotalcite-derived MnxMg3-xAlO catalysts used for soot combustion, NOx storage and simultaneous soot-NOx removal.

    Science.gov (United States)

    Li, Qian; Meng, Ming; Xian, Hui; Tsubaki, Noritatsu; Li, Xingang; Xie, Yaning; Hu, Tiandou; Zhang, Jing

    2010-06-15

    The hydrotalcite-based Mn(x)Mg(3-x)AlO catalysts with different Mn:Mg atomic ratios were synthesized by coprecipitation, and employed for soot combustion, NOx storage and simultaneous soot-NO(x) removal. It is shown that with the increase of Mn content in the hydrotalcite-based Mn(x)Mg(3-x)AlO catalysts the major Mn-related species vary from MnAl(2)O(4) and Mg(2)MnO(4) to Mn(3)O(4) and Mn(2)O(3). The catalyst Mn(1.5)Mg(1.5)AlO displays the highest soot combustion activity with the temperature for maximal soot combustion rate decreased by 210 degrees C, as compared with the Mn-free catalyst. The highly reducible Mn(4+) ions in Mg(2)MnO(4) are identified as the most active species for soot combustion. For NO(x) storage, introduction of Mn greatly influences bulk NO(x) storage, with the adsorbed NO(x) species varying from linear nitrites to ionic and chelating bidentate nitrates gradually. The coexistence of highly oxidative Mn(4+) and highly reductive Mn(2+) in Mn(1.0)Mg(2.0)AlO is favorable to the simultaneous soot-NO(x) removal, giving a NO(x) reduction percentage of 24%. In situ DRIFTS reveals that the ionic nitrate species are more reactive with soot than nitrites and chelating bidentate nitrates, showing higher NO(x) reduction efficiency.

  19. Aqueous dissolution of sodium aluminosilicate geopolymers derived from metakaolin

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Z., E-mail: zaynab.aly@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Vance, E.R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Perera, D.S. [School of Materials Science, University of NSW, Kensington, NSW 2052 (Australia)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer In dilute solutions, Na, Al and Si releases were not sensitive to pH in range 4-10. Black-Right-Pointing-Pointer On heating from 18 to 90 Degree-Sign C in DIW, Na dissolution rate increased by a factor of {approx}4. Black-Right-Pointing-Pointer Elemental extractions in DIW at 18 Degree-Sign C increased linearly with time over 1-7 days. Black-Right-Pointing-Pointer Na release kinetics in DIW followed a pseudo-second-order kinetic model. Black-Right-Pointing-Pointer Contact with KCl, KHCO{sub 3} and phthalate buffers (pH6 and 10) resulted in Na{sup +} {r_reversible} K{sup +} exchange. - Abstract: In dilute aqueous solutions, the elemental releases of Na, Al and Si from a metakaolin-based sodium aluminosilicate geopolymer were not very sensitive to pH in the range of 4-10 but increased outside this range, particularly on the acidic side. To minimise pH drifts, experiments were carried out using small amounts of graded powders in relatively large volumes of water. In deionised water, the Na dissolution rate in 7 days was dominant and increased by at least a factor of {approx}4 on heating from 18 to 90 Degree-Sign C, with greater increases in the extractions of Al and Si. At 18 Degree-Sign C the elemental extractions in deionised water increased approximately linearly with time over the 1-7 days period. Further exposure led to a slower extraction into solution for Na and Si, with a decrease in extraction of Al. It was deduced that framework dissolution was important in significantly acidic or alkaline solutions, but that contributions from water transfer from pores to elemental extractions were present, even at low temperatures in neutral solutions. It was also deduced from the Na release data that the Na leaching kinetics of geopolymer in deionised water (dilute solutions) followed the pseudo-second-order kinetic model and the pseudo-second-order rate constant evaluated. Contact with KCl, KHCO{sub 3}, and pH {approx}6 and 10

  20. Technetium (VII) Co-precipitation with Framework Aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Harsh, James B. [Washington State Univ., Pullman, WA (United States); Dickson, Johnbull Otah [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Eric M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bargar, John [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-07-13

    Technetium-99 (99Tc), a long-lived radionuclide, is one of the most widespread contaminants within the Hanford subsurface. At some depths, it is only extractable with strong acids, suggesting incorporation into a solid phase. We hypothesized that Tc may have coprecipitated with feldspathoid aluminosilicates under waste tanks that had leaked caustic solutions into the vadose zone. Our objectives were to determine if Tc could be incorporated into the feldspathoids cancrinite and sodalite and under what conditions coprecipitation could occur. Our hypothesis was that sodalite was more likely to incorporate and retain Tc. Our approach was to use known methods of feldspathoid formation in solutions resembling those in Hanford waste tanks contacting sediments in terms of major ion (Na, NO3, OH, Al(OH)4, and Si(OH)4 concentrations. In some cases, Al and Si were supplied from zeolite. We used perrhenate (ReO4) as a surrogate for pertechnetate (TcO4) to avoid the radioactivity. The major findings of this study were 1) ReO4 could be incorporated into either sodalite or cancrinite but the concentration in the solid was < 1% of the competing ion Cl, NO3, or NO2. 2) The small amount of ReO4 incorporated was not exchangeable with NO3 or NO2. 3) In sodalite, NO3 was highly preferred over ReO4 but significant Re-sodalite was formed when the mole fraction in solution (Re/Re+N) exceeded 0.8. 4) A nonlinear relation between the unit cell parameter and amount of Re incorporated suggested that a separate Re-sodalite phase was formed rather than a solid solution. 5) We determined that sodalite preference for sodalite in the presence of different anions increased with the ionic size of the competing anion: Cl < CO3 < NO3 < SO4 < MnO4 < WO4 and significant incorporation did not occur unless the difference in anion radii was less than 12%. 6) Re(VII) was not significantly reduced to Re(IV) under the conditions of this experiment and Re appeared to be a good surrogate for Tc under oxidizing

  1. Evaluation of the impacts of biodiesel and second generation biofuels on NO(x) emissions for CARB diesel fuels.

    Science.gov (United States)

    Hajbabaei, Maryam; Johnson, Kent C; Okamoto, Robert A; Mitchell, Alexander; Pullman, Marcie; Durbin, Thomas D

    2012-08-21

    The impact of biodiesel and second generation biofuels on nitrogen oxides (NO(x)) emissions from heavy-duty engines was investigated using a California Air Resources Board (CARB) certified diesel fuel. Two heavy-duty engines, a 2006 engine with no exhaust aftertreatment, and a 2007 engine with a diesel particle filter (DPF), were tested on an engine dynamometer over four different test cycles. Emissions from soy- and animal-based biodiesels, a hydrotreated renewable diesel, and a gas to liquid (GTL) fuel were evaluated at blend levels from 5 to 100%. NO(x) emissions consistently increased with increasing biodiesel blend level, while increasing renewable diesel and GTL blends showed NO(x) emissions reductions with blend level. NO(x) increases ranged from 1.5% to 6.9% for B20, 6.4% to 18.2% for B50, and 14.1% to 47.1% for B100. The soy-biodiesel showed higher NO(x) emissions increases compared to the animal-biodiesel. NO(x) emissions neutrality with the CARB diesel was achieved by blending GTL or renewable diesel fuels with various levels of biodiesel or by using di-tert-butyl peroxide (DTBP). It appears that the impact of biodiesel on NO(x) emissions might be a more important consideration when blended with CARB diesel or similar fuels, and that some form of NO(x) mitigation might be needed for biodiesel blends with such fuels.

  2. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  3. 微波加热技术在催化 NOx 脱除中的应用%Application of microwave heating technology in catalytic removal of NOx

    Institute of Scientific and Technical Information of China (English)

    刘艳春; 郭亚琴; 曾令可; 王慧; 任雪谭

    2014-01-01

    The types,harm and removal methods of nitrogen oxides in the air were summarized. Nitrogen oxides mainly consisted of NO,N2 O and NO2 ,which were produced by the combustion of fossil fuel and plants,and the conversion of nitrogen compounds in animal waste and the soil. NOx was one of major for-mation causes of acid rain and the smog,which had a serious influence on the health of human beings. Selective catalytic reduction technology based on the interaction of reducing agents such as ammonia and catalysts could make NOx into N2 and H2 O,while non-selective catalytic reduction technology achieved the removal of NOx with reducing agents such as ammonia at high temperature. However,the traditional techniques for removing NOx had shortcomings of low removal efficiency and easy production of secondary pollution. Microwave discharge technology could directly decompose NOx to N2 by producing high-energy electrons,and microwave carbon thermal reduction technology could significantly improve NOx removal ability by utilizeing thermal effects of microwave irradiation on active charcoal. The removal efficiency of NO was more than 96% . The application researches on microwave relating to de-NOx technology in com-mercial catalytic denitrification field showed that the combination of catalysts,microwave and other tech-niques was an ideal way of removing the nitrogen oxides,which had a good application prospect.%综述了空气中氮氧化物的类型、危害及脱除方法。空气中氮氧化物主要为 NO、N2 O 和NO2,化石燃料和植物体的燃烧以及土壤和动物排泄物中含氮化合物的转化是其主要来源,NOx 是酸雨和雾霾天气形成的主要原因之一,严重影响人类健康。选择性催化还原技术通过氨等还原剂和催化剂的共同作用将 NOx 还原成 N2和 H2 O,选择性非催化还原技术利用氨等还原剂在高温环境下的还原能力实现 NOx 的脱除。传统 NOx 脱除技术存在脱除效率不高和

  4. Capability of molecular sieve-supported FeSO4 catalyst for selective catalytic reduction of Nox%NaY分子筛担载FeSO4催化剂用于氨气还原NOx的性能

    Institute of Scientific and Technical Information of China (English)

    任雯; 赵博; 禚玉群; 陈昌和

    2011-01-01

    This paper focuses on the NO reduction by ammonia via FeSO4 catalyst supported by molecular sieve in a fixed bed reactor at 400℃ . The experimental results indicate that the catalyst has immediate catalytic effect on NO reduction. Due to its improved physical structure, the catalyst improves the NO reduction rate by 20% compared with pure FeSO4.The effects of preparation conditions on catalytic activity, including the mix ratio, impregnation agent and impregnation time etc. , are investigated. Mossbauer spectroscopy is used for the study. It is found that Fe2+ is oxidized to Fe3+ during the preparation and most FeSO4 is transferred to Fe(OH)SO4 and Fe2O(SO4)2. Fe(OH)SO4 is better than the other speices in NO reduction and the ratio of different species is related to the water and oxygen content in atmosphere. The results of in-situ FTIR indicate that Fe is the reaction centre. NH3 is absorbed on the catalyst and reacts with NO, which can be explained by Eley-Rideal mechanism. Compared with other commercial catalysts, FeSO4 demonstrates great industrial potentials because of its low cost and excellent catalytic effect at high space velocity.%研究了分子筛担载FeSO4催化剂在SCR脱硝反应中的催化性能和反应机理.实验结果表明,在同等工况下分子筛担载FeSOt后的催化剂具有更好的物理结构,与纯FeSO4相比脱硝率可提高将近20%.经Mossbauer谱分析,催化剂制备过程中Fe2+转化为Fe3+,其具体存在形式为Fe(OH)SO4与Fe2O(SO4)2,前者催化脱硝效果优于后者.原位红外分析结果表明,吸附在分子筛担载催化剂表面的氨与气相中的NO反应,Fe离子是吸附及发生催化氧化还原反应的活性中心.与钒、钛系SCR催化剂相比,所制备的催化剂不但具有廉价、高效的优点,而且能适应更高的反应空速,具有良好的工业应用前景.

  5. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William

    2014-08-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  6. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William [Univ. of Notre Dame, IN (United States)

    2014-12-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  7. Real world NOx emissions of Euro V vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Verbeek, R.; Vonk, W.A.; Verbeek, R.P.; Dekker, H. [TNO Science and Industry, Delft (Netherlands)

    2010-11-15

    In the past decade, vehicle emissions have been reduced substantially as a result of the European emission legislation. Air quality problems are still present, however, in particular in urban areas where local authorities have difficulty meeting European limits regarding air quality (mainly NO2). Therefore, the emission performance of vehicles under urban conditions is of increasing importance for air quality improvement in cities. In this context, TNO was commissioned by the Dutch Ministry of Environment (VROM) to investigate the real-world NOx emissions of Euro V trucks and buses during the past two years. The investigation has shown that, in general, there is a large variety in real-world emissions between different vehicles, in particular under urban conditions. Some vehicles demonstrate the possibility of achieving low emissions under urban conditions, but the results also clearly show that this is not the case for most of the trucks. This outcome is based on two lines of research. Firstly, the real world emissions of eleven trucks and one bus were measured on-road using a Portable Emission Measurement System (PEMS), under conditions typical of everyday use. Secondly, AdBlue consumption data for a number of Dutch vehicle fleets were analysed. AdBlue is the reagent that is used for NOx emission reduction in SCR systems (catalytic after treatment systems), and the amount of reagent used in daily practice is related to the real-world NOx emissions. Both lines of research support the general outcome.

  8. 新型铬钴复合氧化物中低温选择性催化NOx还原及原位机理研究%A novel Cr-Co mixed-oxide catalyst for selective catalytic reduction of NOx with NH3 at medium-low temperature and in situ DRlFTS research on its reaction mechanism

    Institute of Scientific and Technical Information of China (English)

    薛隆毅; 邓志毅; 陈定盛; 唐志雄; 陈雄波; 方平; 岑超平; 陈志航

    2015-01-01

    采用固相法合成系列铬钴复合氧化物催化剂,该催化体系在中低温[( 180~300 )℃]下具有优异的氨选择性催化氮氧化物还原活性,其中,Cr(0. 5)-CrOx 催化剂在空速50 000 h-1、反应温度200 ℃和220 ℃条件下,NOx转化率达100%.采用原位DRIFIS研究催化剂表面吸附物种以及催化机理,在反应温度220 ℃考察 Cr(0. 5)-CoOx 催化剂表面 NH3 与 NO 的吸附态形式和NH3 -SCR反应过程中中间态及其反应机理.结果表明,Cr(0. 5)-CrOx 催化剂上NH3 吸附在L酸位,也能吸附在B酸位,但只与气态的NOx反应,生成中间体NH2 NO,再进一步反应,最终生成N2 与H2 O.吸附态的NOx不参与SCR反应,反应遵循Eley-Rideal机理.%A series of Cr-Co mixed oxide catalysts was prepared by solid states reaction method,which were used for selective catalytic reduction( SCR)of NOx with NH3 in the presence of excess oxygen at medium-low temperature[(180~300)℃]. The experimental results showed that under the condition of space velocity 50 000 h-1 and reaction temperature 200℃ and 220℃,NOx conversion reached 100% on Cr(0. 5)-CoOx catalyst. In situ diffuse reflectance infrared transform(DRIFT)spectroscopy was em-ployed for investigating the adsorption species on Cr(0. 5)-CoOx catalyst surface and revealing the reac-tion mechanism under reaction temperature 220 ℃. Based on the in situ DRIFTS results,it was found that NH3 was adsorbed on Lewis and Br?nsted acid sites of Cr(0. 5)-CrOx catalyst,and then decomposed into -NH2 . The gas phase NO could bond with -NH2 and form an intermediate NH2 NO,which could further decompose into N2 and H2 O. The adsorbed NOx didn't participate in the SCR reaction. NH3-SCR reaction on Cr(0. 5)-CoOx catalyst mainly followed the Eley-Rideal mechanism.

  9. 磁性铁钛催化剂的制备及其 NH3选择性催化还原 NO 性能%Selective Catalytic Reduction of NOx with NH3 over Magnetic Iron-Titanium Mixed Oxide Catalysts

    Institute of Scientific and Technical Information of China (English)

    武超; 熊志波; 周飞; 白鹏; 金晶; 丁旭春

    2016-01-01

    Magnetic iron-titanium mixed oxide catalysts were prepared through the co-precipitation assisted by microwave-pyrolysis.The influence of Ti doping on the selective catalytic reduction of NOx over iron oxide was investigated,and the crystal phases and microscopic pore structure of iron oxides after the doping of titanium were also studied by XRD (X-ray diffraction)and N2 adsorption-desorption test.The results indicate that a strong crystal phase of α-Fe2 O3 appears within iron oxides prepared through the co-precipitation assisted by microwave-pyrolysis.The addition of titanium can increase the thermal stability of iron oxide,meanwhile,iron-titanium mixed oxide catalysts show the crystal phase of γ-Fe2 O3 and α-Fe2 O3 when the molar ratio of Ti is 0.25.The pore size of iron oxides can be refined,and its Brunauer-Emmett-Teller surface and pore volume are increased after the doping of titanium oxide.Thereby its NH3-SCR activity is improved,and the optimum molar ratio of titanium oxide is 0.25 .Under the condition of 60 000/h gas hourly space velocity,more than 90% of NOx conversion can be achieved over Fe0.75 Ti0.25 Oz at the temperature of 275~400 ℃.%利用微波热解辅助共沉淀方法制备磁性铁钛复合氧化物催化剂,探讨了钛掺杂对铁氧化物SCR(选择性催化还原)脱硝活性的影响规律,并借助 XRD(X 射线衍射)、N2吸附研究钛掺杂前后铁氧化物晶相和微观孔隙结构的变化趋势.结果表明:微波热解辅助共沉淀方法制备的单一铁氧化物表现出强烈的α-Fe2 O3晶相,掺杂钛会提高铁氧化物的稳定性;当钛掺杂物质的量比为0.25时,铁钛复合氧化物存在γ-Fe2 O3和α-Fe2 O3两种晶相;钛掺杂可细化铁氧化物孔径,增大其比表面积和比孔容,从而提高其中低温 NH3-SCR 脱硝性能,合适的钛掺杂物质的量比为0.25;在空速比为60000/h 条件下,275~400℃区间 Fe0.75 Ti0.25 Oz

  10. PHOTOCATALYTIC OXIDATION FOR NOx ABATEMENT: DEVELOPMENT OF A KINETIC EXPRESSION AND DESIGN TOOLS

    Energy Technology Data Exchange (ETDEWEB)

    Rajiv Srivastava; M. A. Ebadian

    2000-09-15

    The ''Nitrogen Oxides Emission Reduction Program'' and ''Ozone Non-Attainment Program'' in the 1990 Clean Air Act provide guidelines for controlling NOx (NO and NO{sub 2}) emissions in new and existing stationary sources. NOx emissions have local (air quality), regional (acid rain), and global (ozone production) consequences. This study aids in developing the photocatalyst technology that has potential for use in abatement of NOx. The objective of the proposed project is to apply the principles of chemical engineering fundamentals--reaction kinetics, transport phenomena and thermodynamics--in the process design for a system that will utilize a photocatalytic reactor to oxidize NOx to nitric acid (HNO{sub 3}). HNO{sub 3} can be more easily trapped than NOx on adsorbent surfaces or in water. The project dealt with the engineering aspect of the gas-solid heterogeneous oxidation of NOx. The experiments were conducted in a photocatalyst wash-coated glass flow tube reactor. A mathematical model was developed based on a rigorous description of the physical and chemical processes occurring in the reactor. The mathematical model took into account (1) intrinsic reaction kinetics (i.e., true reaction rates), (2) transport phenomena that deal with the mass transfer effects in the reactor, and (3) the geometry of the reactor. The experimental results were used for validation of the mathematical model that provides the basis for a versatile and reliable method for the purpose of design, scale-up and process control. The NOx abatement was successfully carried out in a flow tube reactor surrounded by black lights under the exploratory grant. Due to lack of funds, a comprehensive kinetic analysis for the photocatalytic reaction scheme could not be carried out. The initial experiments look very promising for use of photocatalysis for NOx abatement.

  11. NOX2-dependent regulation of inflammation.

    Science.gov (United States)

    Singel, Kelly L; Segal, Brahm H

    2016-04-01

    NADPH oxidase (NOX) isoforms together have multiple functions that are important for normal physiology and have been implicated in the pathogenesis of a broad range of diseases, including atherosclerosis, cancer and neurodegenerative diseases. The phagocyte NADPH oxidase (NOX2) is critical for antimicrobial host defence. Chronic granulomatous disease (CGD) is an inherited disorder of NOX2 characterized by severe life-threatening bacterial and fungal infections and by excessive inflammation, including Crohn's-like inflammatory bowel disease (IBD). NOX2 defends against microbes through the direct antimicrobial activity of reactive oxidants and through activation of granular proteases and generation of neutrophil extracellular traps (NETs). NETosis involves the breakdown of cell membranes and extracellular release of chromatin and neutrophil granular constituents that target extracellular pathogens. Although the immediate effects of oxidant generation and NETosis are predicted to be injurious, NOX2, in several contexts, limits inflammation and injury by modulation of key signalling pathways that affect neutrophil accumulation and clearance. NOX2 also plays a role in antigen presentation and regulation of adaptive immunity. Specific NOX2-activated pathways such as nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that induces antioxidative and cytoprotective responses, may be important therapeutic targets for CGD and, more broadly, diseases associated with excessive inflammation and injury.

  12. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Xiang, Ye; Du, Jincheng; Smedskjær, Morten Mattrup;

    2013-01-01

    the recent Corning® Gorilla® Glass. In this paper, the structures of sodium aluminosilicate glasses with a wide range of Al/Na ratios (from 1.5 to 0.6) have been studied using classical molecular dynamics simulations in a system containing around 3000 atoms, with the aim to understand the structural role...

  13. Hydrate sodium calcium aluminosilicate does not reduce rumen lipopolysacharide concentrations in cows

    NARCIS (Netherlands)

    Pilachai, R.; Schonewille, J.T.; Thamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakorn, C.; Everts, H.; Vlaeminck, B.; Doekes, G.; Hendriks, W.H.

    2014-01-01

    The efficacy of hydrate sodium calcium aluminosilicate (HSCAS) to reduce the concentrations of free lipopolysaccharide (LPS) in rumen fluid of cows was investigated. Six, rumen-fistulated crossbred Holstein, non-pregnant, dry cows were randomly assigned to three experimental rations in a study with

  14. Assessment of the reduction methods used to develop chemical schemes: building of a new chemical scheme for VOC oxidation suited to three-dimensional multiscale HOx-NOx-VOC chemistry simulations

    Directory of Open Access Journals (Sweden)

    S. Szopa

    2005-01-01

    Full Text Available The objective of this work was to develop and assess an automatic procedure to generate reduced chemical schemes for the atmospheric photooxidation of volatile organic carbon (VOC compounds. The procedure is based on (i the development of a tool for writing the fully explicit schemes for VOC oxidation (see companion paper Aumont et al., 2005, (ii the application of several commonly used reduction methods to the fully explicit scheme, and (iii the assessment of resulting errors based on direct comparison between the reduced and full schemes. The reference scheme included seventy emitted VOCs chosen to be representative of both anthropogenic and biogenic emissions, and their atmospheric degradation chemistry required more than two million reactions among 350000 species. Three methods were applied to reduce the size of the reference chemical scheme: (i use of operators, based on the redundancy of the reaction sequences involved in the VOC oxidation, (ii grouping of primary species having similar reactivities into surrogate species and (iii grouping of some secondary products into surrogate species. The number of species in the final reduced scheme is 147, this being small enough for practical inclusion in current three-dimensional models. Comparisons between the fully explicit and reduced schemes, carried out with a box model for several typical tropospheric conditions, showed that the reduced chemical scheme accurately predicts ozone concentrations and some other aspects of oxidant chemistry for both polluted and clean tropospheric conditions.

  15. Simultaneous catalytic removal of NOx and diesel soot particulate over perovskite-type oxides and supported Ag catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of perovskite-type oxides and supported Ag catalysts were prepared,and characterized by X-ray diffraction (XRD) and Xray photoelectron spectroscopy (XPS).The catalytic activities of the catalysts as well as influencing factors on catalytic activity have been investigated for the simultaneous removal of NOx and diesel soot particulate.An increase in catalytic activity for the selective reduction of NOx was observed with Ag addition in these perovskite oxides,especially with 5% Ag loading.This catalyst could be a promising candidate of catalytic material for the simultaneous elimination of NOx and diesel soot.

  16. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  17. Hydrophobic Catalysts For Removal Of NOx From Flue Gases

    Science.gov (United States)

    Sharma, Pramod K.; Hickey, Gregory S.; Voecks, Gerald E.

    1995-01-01

    Improved catalysts for removal of nitrogen oxides (NO and NO2) from combustion flue gases formulated as composites of vanadium pentoxide in carbon molecular sieves. Promotes highly efficient selective catalytic reduction of NOx at relatively low temperatures while not being adversely affected by presence of water vapor and sulfur oxide gases in flue gas. Apparatus utilizing catalyst of this type easily integrated into exhaust stream of power plant to remove nitrogen oxides, generated in combustion of fossil fuels and contribute to formation of acid rain and photochemical smog.

  18. Emission tunability and local environment in europium-doped OH{sup −}-free calcium aluminosilicate glasses for artificial lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Aline M.; Sandrini, Marcelo; Viana, José Renato M.; Baesso, Mauro L.; Bento, Antônio C.; Rohling, Jurandir H. [Departamento de Física, Universidade Estadual de Maringá, Av Colombo, 5790, 87020-900, Maringá, PR (Brazil); Guyot, Yannick [Laboratoire de Physico–Chimie des Matériaux Luminescents, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, UMR 5620 CNRS 69622 (France); De Ligny, Dominique [Department of Materials Science and Engineering, University of Erlangen Nürnberg, Martens str. 5, 91058, Erlangen (Germany); Nunes, Luiz Antônio O. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense400, 13566-590, São Carlos, SP (Brazil); Gandra, Flávio G. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Sampaio, Juraci A. [Lab Ciências Físicas, Universidade Estadual Norte Fluminense, 28013-602, Campos Dos Goytacazes, RJ (Brazil); Lima, Sandro M.; Andrade, Luis Humberto C. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul-UEMS, Dourados, MS, C. P. 351, CEP 79804-970 (Brazil); and others

    2015-04-15

    The relationship between emission tunability and the local environment of europium ions in OH{sup −}-free calcium aluminosilicate glasses was investigated, focusing on the development of devices for artificial lighting. Significant conversion of Eu{sup 3+} to Eu{sup 2+} was obtained by means of melting the glasses under a vacuum atmosphere and controlling the silica content, resulting in broad, intense, and tunable luminescence ranging from blue to red. Electron spin resonance and X-ray absorption near edge structure measurements enabled correlation of the luminescence behavior of the material with the Eu{sup 2+}/Eu{sup 3+} concentration ratio and changes in the surrounding ions' crystal field. The coordinates of the CIE 1931 chromaticity diagram were calculated from the spectra, and the contour maps showed that the light emitted from Eu{sup 2+} presented broad bands and enhanced color tuning, ranging from reddish-orange to blue. The results showed that these Eu doped glasses can be used for tunable white lighting by combining matrix composition and the adjustment of the pumping wavelength. - Highlights: • Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass as a new source for white lighting. • Correlation between emission tunability and local environment of europium ions. • Significant reduction of Eu{sup 3+} to Eu{sup 2+} by melting the glasses under vacuum atmosphere. • Broad, intense and tunable luminescence ranging from blue to red.

  19. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber suitable for a given engine. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passes over fresh sorbent material. This aspect of the research will continue into 2006, and the benefits and challenges of SNR will be compared with those of competing systems, such as Selective Catalytic Reduction. Chemical kinetic modeling using the CHEMKIN software package was extended in 2005 to the case of slightly rich burn with EGR. Simulations were performed at 10%, 20%, 30% and 40% of the intake air replaced with EGR. NOx decomposition efficiency was calculated at the point in time where 98% of fuel was consumed, which is believed to be a conservative approach. The modeling data show that reductions of over 70% are possible using the ''98% fuel burned'' assumption.

  20. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Science.gov (United States)

    2010-07-01

    ... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection...

  1. Correlating Engine NOx Emission with Biodiesel Composition

    Science.gov (United States)

    Jeyaseelan, Thangaraja; Mehta, Pramod Shankar

    2016-06-01

    Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.

  2. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    NARCIS (Netherlands)

    Ntziachristos, L.; Papadimitriou, G.; Ligterink, N.; Hausberger, S.

    2016-01-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro

  3. SORBENT/UREA SLURRY INJECTION FOR SIMULTANEOUS SO2/NOX REMOVAL

    Science.gov (United States)

    The combination of sorbent injection and selective noncatalytic reduction (SNCR) technologies has been investigated for simulataneous SO2/NOx removal. A slurry composed of a urea-based solution and various Ca-based sorbents was injected at a range of tempera...

  4. Modelling the spatial distribution of SO2 and NO(x) emissions in Ireland

    NARCIS (Netherlands)

    Kluizenaar, Y.de; Aherne, J.; Farrell, E.P.

    2001-01-01

    The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NO(x)) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach. High-resoluti

  5. Study on SCR De NOx mechanism through in situ electrical conductivity measurements on V2O5-WO3/TiO2 catalysts

    Institute of Scientific and Technical Information of China (English)

    HA Heon Phil; JUNG Soon Hyo; LEE Jun Yub; HONG Sung Ho

    2006-01-01

    V2O5-WO3/TiO2 catalysts were prepared by impregnation method and in situ electrical conductivity measurements were carried out to investigate the reaction mechanism for ammonia SCR (selective catalytic reduction) of NOx.The electrical conductivity change with ammonia supply and the increase of electrical conductivity were mainly caused by reduction of the labile surface oxygen.The electrical conductivity change of catalysts shows close relationship with the conversion rate of NOx.Variation of conversion rate in atmosphere without gaseous oxygen also supports that the labile lattice oxygen is indispensable in the initial stage of the de NOx reaction.These results suggest that the liable lattice oxygen acts decisive role in the de NOx mechanism.They also support that De NOx reaction occurs through the Eley-Rideal type mechanism.The amount of labile oxygen can be estimated from the measurement of electrical conductivity change for catalysts with ammonia supply.

  6. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  7. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  8. Mathematical modeling of an in-line low-NOx calciner

    DEFF Research Database (Denmark)

    Iliuta, Ion; Dam-Johansen, Kim; Jensen, Lars Skaarup

    2002-01-01

    The reduction of the NOx content in in-line-calciner-type kiln systems can be made by optimization of the primary filing in the rotary kiln and of the secondary firing in the calciner. Because the optimization of calciner offers greater opportunities the mathematical modeling of this reactor...... is very important. A heterogeneous, dynamic mathematical model for an in-line low-NOx calciner based on non-isothermal diffusion reaction models for char combustion and limestone calcination has been developed. The importance of the rate at which preheated combustion air was mixed into the main flow...

  9. State of the art coal fired steam generators for low emission of CO{sub 2}, SO{sub 2}, and NOx

    Energy Technology Data Exchange (ETDEWEB)

    Busekrus, K.; Tigges, K.; Klauke, F. [Hitachi Power Europe GmbH (Germany)

    2008-07-01

    Some methods of improving efficiency of coal-fired power plants in order to reduce CO{sub 2} emissions is described, followed by carbon capture and storage technologies. NOx and SOx reduction technologies are then discussed. 26 refs.

  10. 40 CFR 60.4340 - How do I demonstrate continuous compliance for NOX if I do not use water or steam injection?

    Science.gov (United States)

    2010-07-01

    ... without add-on selective catalytic reduction (SCR) controls, you must define parameters indicative of the... determine whether the unit is operating in low-NOX mode. (iii) For any turbine that uses SCR to reduce...

  11. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of

  12. 基于钛锡载体的SCR低温脱硝催化剂的表面性质研究%Study on the surface properties of TiO2-SnO2 supported catalysts for low temperature selective catalytic reduction of NOx

    Institute of Scientific and Technical Information of China (English)

    郭婉秋; 张亚平; 王文选; 赵明; 王俊杰; 沈凯; 王龙飞; 杨林军

    2015-01-01

    TiO2-SnO2 mixed oxide was prepared by a co-precipitation method and xCeO2/TiO2-SnO2 catalysts were prepared using the impregnation method. The physicochemical properties were investigated by X-ray diffraction ( XRD) , BET specific surface area measurement, H2 temperature-programmed reduction ( H2-TPR) , NH3 temperature-programmed desorption ( NH3-TPD ) , high-resolution transmission electron microscopy ( HRTEM ) , and in situ diffuse reflectance infrared spectroscopy ( DRIFTS ) . Meanwhile, their catalytic performance for the selective catalytic reduction of NOx with NH3 ( NH3-SCR) was tested. It was found that 0. 1Ce/TiO2-SnO2 had higher NOx conversion and wider temperature range of 250 ~350℃. Excess loading of CeO2 could lead to the decrease of specific surface area, redox ability and adsorption capacity of ammonia as well as the shrink of effective catalytic temperature range. NH3-TPD result showed that the adsorption of NH3 in weak acid and medium acid sites were significantly enhanced by CeO2 , which was related to the decrease of NH3-SCR reaction temperature. In situ DRIFTS indicated that the strength of Lewis acid sites and Brφnsted acid Sites were markedly enhanced for xCeO2/TiO2-SnO2 catalyst. Besides, new Brφnsted acid Sites appeared at 1 657 ~1 666 cm-1 and NH+4 played the dominant role in the SCR reaction.%采用共沉淀法制备TiO2-SnO2固溶体,浸渍法负载CeO2得到一系列xCeO2/TiO2-SnO2负载型催化剂,在模拟NH3选择性催化还原NOx( NH3-SCR)反应条件下考察催化剂低温脱硝活性。通过X射线衍射( XRD)、比表面积测定( BET)、程序升温还原(H2-TPR)、程序升温脱附(NH3-TPD)、高分辨率透射电子显微镜(HRTEM)、原位漫反射傅里叶变换红外光谱(in situ DRIFTS)等表征技术,研究了氧化铈负载后催化剂的微观结构、表面物种的存在状态、表面酸位等表面性质及NH3吸附特性。结果表明,Ce:Ti 物质的量比为0.1时,催化剂催化脱硝反应活性最

  13. Effects of bluff-body burner and coal particle size on NOx emissions and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.S.; Cheng, J.F.; Zeng, H.C. [Huazhong University of Science and Technology, Wuhan (China). National Coal Combustion Lab.

    1999-12-01

    Investigations on air staging have been carried out using various coals with different degrees of fineness and a variety of burners with a 92.9 kw h{sup -1} tunnel furnace burning pulverized coal. It has been observed that using the bluff-body burner can reduce both the unburned carbon in fly ash and NOx emissions in the case of air staging. The experimental results show that air-staging combustion has a more remarkable effect on NOx reduction for higher-volatile coal than for lower-volatile coal. The results also show that there is a strong influence of coal particle size on NOx emissions and unburned carbon in the fly ash in the case of air staging. 13 refs., 12 figs., 2 tabs.

  14. Integration of the Smart NOx-Sensor in the exhaust line of a gasoline high pressure direct injection system; Integration eines Smart NOx-Sensors im Abgasstrang fuer die Benzindirekteinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hong; Pfleger, C.; Lemire, B. [Siemens AG Automobiltechnik, Regensburg (Germany)

    2000-07-01

    For further reduction of fuel consumption of Gasoline engines the High Pressure Direct Injection is the most suitable way. For the exhaust gas aftertreatment NOx storage catalysts are used, which stores the NOx emission in lean burn phases and reduce it in short phases with rich mixture. To trigger the start of the regeneration phases suitable models can be used. The optimum start of the regeneration phase concerning emission and consumption is only possible with the use of a NOx-Sensor, so that further stringent emission regulation and OBD II requirements will force the use of the NOx-Sensor. Siemens Automotive in cooperation with NGK Insulators are developping in cooperation the 'Smart' NOx-Sensor, which can be integrated in the ECU. With this configuration all requirements concerning emission, fuel consumption and diagnosis can be fulfilled. (orig.) [German] Die Benzindirekteinspritzung bietet ein hohes Potential fuer die Reduzierung des Kraftstoffverbrauchs. Fuer die Abgasnachbehandlung werden NOx-Speicherkatalysatoren eingesetzt, die in den mageren Motorbetriebsphasen die entstehenden Stickoxide speichern und in kurzen Motorbetriebsphasen mit fettem Gemisch diese regenerieren. Fuer die Einleitung der Regenerationsphasen bieten sich geeignete Modelle an. Die sowohl emissions- wie auch verbrauchsoptimale Einleitung der Regenerationsphase ist jedoch nur mit dem Einsatz eines NOx-Sensors moeglich, wobei die zunehmend strenger werdenden Emissions- und Diagnosevorschriften der emissionsbeeinflussenden Bauteile den Einsatz des NOx-Sensors erfordern werden. Siemens Automobiltechnik entwickelt in Zusammenarbeit mit NGK Insulator einen NOx-Sensor, der in die Motorsteuerung eingebunden werden kann. Mit dieser Konfiguration lassen sich alle Anforderungen an das Motorsteuergeraet und die Abgasnachbehandlung bezueglich Kraftstoffverbrauch, Emissionen und Diagnose erfuellen. (orig.)

  15. The Mechanisms of Flame Stabilization and Low NOx Emission in an Eccentric Jet Pulverized Coal Combustor

    Institute of Scientific and Technical Information of China (English)

    SunWenchao; SunYezhu; 等

    1992-01-01

    The mechanisms of flame stabilization and low NOx emission features of an accentric jet pulverzed coal combustor were studied through numerical modelling and experimental investigation.The results show that the formation of the unique flowfield structure is closely related to the interaction among combustor configuration.the primary jet and the control Jet.and that certain rules should be follwed in orber to obtain the optimum condition for flame stabilization.The distributions of temperature and concentration of NO,O2,CO and CO2 inside the combustor were experimentally measured.The effects of strustural and operational parameters on combustion and NO formation were studied.It was found that reduction of primary air,suitable use of control jet and reasonable uptilt angle of the primary jet all contributed to the reduction of NOx at the combustor exit.A new hypothesis,that reasonable separation of oxygen and fuel within the fuel-rich zone is beneficial to further reduction of NOx emission,is given,The study showed that good compatibility existed between the capability of flame stabilization and low NOX emission for this type of combustor.

  16. Kinetics and Mechanisms of NO(x) - Char Reduction.

    Energy Technology Data Exchange (ETDEWEB)

    Suurerg, E.M.; Lilly, W.D.; Aarna, I.

    1997-12-31

    Most industrially important carbons are produced from naturally occurring materials such as coal, oil, peat or wood by some form of thermal process. Chars are obtained from those natural materials as a residue after removal of the volatile matter. Chars (prepared from coal or other organic precursors) are non-graphitizable carbons, meaning that they cannot be transformed into graphitic carbon. Chars are comprised of elementary crystallites in parallel layers which are randomly oriented with respect to each other and are crosslinked together through weak bonds. Voids between crystallites determine the porosity of the char, and this plays an important role in char gasification behavior. Chars usually contain a pore size distribution, in which the larger macro- and mesopores play an important role in transport of reactants into the much smaller micropores, in which most gasification and combustion take place. Therefore, the effectiveness of micropores in gasification depends heavily on the numbers of meso- and macropores.

  17. The Reduction of NOx Using Pulsed Electron Beams

    Science.gov (United States)

    2015-12-30

    instantly with oxygen to form the brown gas NO2. Nitrogen dioxide is toxic. Dinitrogen trioxide (N2O3) exists as a deep blue solid (-21°C), but is...equilibrium constant for this reaction is plotted in Figure 2 (solid blue line) as a function of temperature in degrees Centigrade. The temperature range on...Swanekamp, D. Weidenheimer, D. Welch, D.V. Rose , and S. Searles, “Electron Beam Pumped KrF Lasers for Fusion Energy,” Phys. Plasmas 10, 2142 (2003

  18. Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation.

    Science.gov (United States)

    Sihvonen, Sarah K; Schill, Gregory P; Lyktey, Nicholas A; Veghte, Daniel P; Tolbert, Margaret A; Freedman, Miriam Arak

    2014-09-25

    Mineral dust aerosol is one of the largest contributors to global ice nuclei, but physical and chemical processing of dust during atmospheric transport can alter its ice nucleation activity. In particular, several recent studies have noted that sulfuric and nitric acids inhibit heterogeneous ice nucleation in the regime below liquid water saturation in aluminosilicate clay minerals. We have exposed kaolinite, KGa-1b and KGa-2, and montmorillonite, STx-1b and SWy-2, to aqueous sulfuric and nitric acid to determine the physical and chemical changes that are responsible for the observed deactivation. To characterize the changes to the samples upon acid treatment, we use X-ray diffraction, transmission electron microscopy, and inductively coupled plasma-atomic emission spectroscopy. We find that the reaction of kaolinite and montmorillonite with aqueous sulfuric acid results in the formation of hydrated aluminum sulfate. In addition, sulfuric and nitric acids induce large structural changes in montmorillonite. We additionally report the supersaturation with respect to ice required for the onset of ice nucleation for these acid-treated species. On the basis of lattice spacing arguments, we explain how the chemical and physical changes observed upon acid treatment could lead to the observed reduction in ice nucleation activity.

  19. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    DEFF Research Database (Denmark)

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup;

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are comp......The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K......) are compared in order to determine the influence of the thermal history on these properties. Vickers hardness is found to be essentially unaffected by the environmental conditions, while the stress intensity factor (fracture toughness) and the crack resistance decrease significantly with increasing humidity...

  20. Broadband Near-Infrared Emission from Transparent Ni2+-Doped Sodium Aluminosilicate Glass Ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shi-Feng; FENG Gao-Feng; XU Shi-Qing; WU Bo-Tao; QIU Jian-Rong

    2006-01-01

    @@ Broadband near-infrared emission from transparent Ni2+-doped sodium aluminosilicate glass-ceramics is observed.The broad emission is centred at 1290nm and covers the whole telecommunication wavelength region (1100-1700nm) with full width at half maximum of about 340nm. The observed infrared emission could be attributed to the 3T2(F) → 3A2(F) transition of octahedral Ni2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15 × 10-24 cm2s. It is suggested that Ni2+-doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.

  1. [Assessment of carcinogenic effect of aluminosilicate ceramic fibers produced in Poland. Animal experiments].

    Science.gov (United States)

    Krajnow, A; Lao, I

    2000-01-01

    The effect of aluminosilicate ceramic fibres produced in Poland was assessed. The experiment was performed on two animal species: Wistar rats and BALB/C mice. The animals were administered intraperitoneally the studied fibres and krokidolit UICC--in doses of 25 and 5 mg and left for survival. All dead and sacrificed animals were examined histopathologically. Carcinogenic properties of ceramic aluminosilicate fibres were found to be rather weak. Only in 1 (2.5%) of 39 rats under study benign mesothelioma of tunica vagiualis testis was diagnosed. Peritoneal mesothelioma was found in none of 50 mice studied. For comparison the effect of krokidolit UICC was assessed. Krokidolit UICC is characterised by strong carcinogenic properties. It induced peritoneal mesothelioma in 43 mice (44.2%) and in 29 (80.5%) of 36 rats under study.

  2. The influence of high pressure on the properties of natural alumino-silicates

    Directory of Open Access Journals (Sweden)

    Šušić N.

    2002-01-01

    Full Text Available The effect of the application of high-pressure (up to 12 GPa on natural alumino-silicates has been studied. Chemical and mineral compositions and thermal behaviour have been analyzed of two samples of alumino-silicates. Results obtained indicate that the application of high pressure causes notable changes. A particularly significant one is the formation of amorphous phases on account of crystalline phases. An amorphous layer formed on particle surfaces with its diverse physical, mechanical, chemical, and other properties, especially over a long period of time, can influence the processes provoking or activating land slides or soil settlements. This enables derivation of many new materials with entirely new properties important for use in the ceramic and brick industries.

  3. Catalysis of aluminosilicate clay minerals to the formation of the transitional zone gas

    Institute of Scientific and Technical Information of China (English)

    雷怀彦; 师育新; 关平; 房玄

    1997-01-01

    It has been shown that the major clay minerals of the biothermocatalytic transitional zone source rock are montmorillonite, illite/montmorillonite (I/M) interlayer mineral, illite, kaolinite and chlorite. Within the depth of the transitional zone, montmorillonite could convert to the I/M ordered interlayer mineral via the I/M disordered one, i.e. in the intercrystalline layer of montmorillonite, Al3+ replaces Si4+ abundantly, resulting in a surface charge imbalance and the occurrence of a surface acidity. By means of the pyridine analytic method, the surface acidity of these aluminosilicate clay minerals is measured. The catalysis of aluminosilicate clay minerals, such as montmorillonite, illite and kaolinite to the thermo-degraded gas formation of the transitional zone is simulated in the differential thermal analysis-gas chromatography system and the alcohol dehydration catalyzed by clay minerals is employed to discuss this catalytic mechanism. Experiments have shown that montmorillonite is the major

  4. Terbium-activated lithium lanthanum aluminosilicate oxyfluoride scintillating glass and glass-ceramic

    Science.gov (United States)

    Pan, Z.; James, K.; Cui, Y.; Burger, A.; Cherepy, N.; Payne, S. A.; Mu, R.; Morgan, S. H.

    2008-09-01

    Terbium-activated lithium-lanthanum-aluminosilicate oxyfluoride scintillating glasses, 55SiO 2·6Al 2O 3·28Li 2O·11LaF 3 doped with different TbF 3 concentrations, have been fabricated and investigated. By appropriate heat treatment of the as-prepared glasses above, transparent glass-ceramics were obtained. Differential scanning calorimetry, X-ray diffraction, optical absorption, and luminescence under both UV and beta-particle excitation have been investigated on as-prepared glasses and glass-ceramics. It has been found that these terbium-activated lithium-lanthanum-aluminosilicate oxyfluoride scintillating glasses exhibit good UV-excited luminescence and radioluminescence. The luminescence yield increases for glass-ceramics. The efficiency of beta-induced luminescence is comparable or nearly equal to that of the Schott IQI-301 product.

  5. Effect of NOx emission controls from world regions on the long-range transport of ozone air pollution and human mortality

    Science.gov (United States)

    West, J.; Naik, V.; Horowitz, L. W.

    2007-12-01

    We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions on surface ozone air quality in that region and all other regions, using the MOZART-2 model of tropospheric chemistry and transport. In doing so, we quantify the relative importance of long-range transport between different world regions for ozone. We find that the strongest inter-regional influences are for Europe to the Former Soviet Union (FSU), East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for tropical source regions, due to greater sensitivity of ozone production to NOx emissions. Results show, for example, that NOx reductions in North America are about 20% as effective per ton at reducing ozone in Europe, as NOx reductions from Europe itself. In estimating the changes in cases of premature mortality associated with ozone, we find that NOx reductions in North America, Europe, and FSU reduce more mortalities outside of the source regions than within. Among world regions, an average ton of NOx reduced in India causes the greatest number of avoided mortalities (mainly in India itself). We also assess the long-term increases in global ozone resulting from methane increases due to the regional NOx reductions. For many of the more distant source-receptor pairs, the long-term increase in ozone roughly negates the direct short-term ozone decrease. The increase in methane and long-term ozone per unit of NOx reduced is greatest in tropical source regions and varies among different regions by a factor of ten.

  6. Sodium sulfate corrosion of silicon carbide fiber-reinforced lithium aluminosilicate glass-ceramic matrix composites

    OpenAIRE

    1993-01-01

    Approved for public release; distribution is unlimited. Sodium sulfate hot corrosion of a SiC fiber-reinforced lithium aluminosilicate (LAS) glass-ceramic matrix composite was studied using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). Changes in the microstructural chemical composition of the specimens were investigated. The samples provided by Naval Air Warfare Center (NAWC), Warminster, PA were grouped as follows: (1) as-received, (2) Na2SO4 salt-coated and heat-treate...

  7. Methanol dehydration reaction to produce clean diesel alternative dimethylether over mesoporous aluminosilicate-based catalysts

    OpenAIRE

    ÇİFTÇİ, Ay&#; VARIŞLI, Dilek; TOKAY, Kenan Cem

    2009-01-01

    Due to its good burning characteristics and high cetane number, dimethylether (DME) is considered as a highly attractive and clean alternative to diesel fuel. This ether can be produced by methanol dehydration reaction over solid acid catalysts. In the present study, activities of mesoporous aluminosilicate catalysts prepared by the hydrothermal synthesis route and containing Al/Si atomic ratios ranging between 0.03 and 0.18 were tested in methanol dehydration. The optimum Al/Si ...

  8. Methanol dehydration reaction to produce clean diesel alternative dimethylether over mesoporous aluminosilicate-based catalysts

    OpenAIRE

    ÇİFTÇİ, Ay& VARIŞLI, Dilek; TOKAY, Kenan Cem

    2014-01-01

    Due to its good burning characteristics and high cetane number, dimethylether (DME) is considered as a highly attractive and clean alternative to diesel fuel. This ether can be produced by methanol dehydration reaction over solid acid catalysts. In the present study, activities of mesoporous aluminosilicate catalysts prepared by the hydrothermal synthesis route and containing Al/Si atomic ratios ranging between 0.03 and 0.18 were tested in methanol dehydration. The optimum Al/Si ...

  9. Features Of The Phase Transformations In Titanium-containing Zinc Aluminosilicate Glasses Doped With Cobalt Oxide

    OpenAIRE

    Alekseeva I.P.; Dymshits O.S.; Ermakov V.A.; Zhilin A.A.; Tsenter M.Ya.

    2013-01-01

    We demonstrated the efficiency of the Raman spectroscopy method in the study of the process of the formation of the amorphous zinc aluminotitanate (ZAT) phase during the phase decomposition of the titanium-containing zinc aluminosilicate glasses doped with cobalt oxide. The quantitative dependences of the variation of the intensity of the Raman bands characteristic for amorphous and crystalline phases on the temperature of the thermal treatment and the cobalt oxide concentration have been obt...

  10. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  11. Effect of sulfur compounds on biological reduction of nitric oxide in aqueous Fe(II)EDTA2- solutions

    NARCIS (Netherlands)

    Manconi, I.; Maas, van der P.M.F.; Lens, P.N.L.

    2006-01-01

    Biological reduction of nitric oxide (NO) in aqueous solutions of EDTA chelated Fe(II) is one of the main steps in the BioDeNOx process, a novel bioprocess for the removal of nitrogen oxides (NOx) from polluted gas streams. Since NOx contaminated gases usually also contain sulfurous pollutants, the

  12. Activities of aluminum forms of zeolites and zeolite-containing aluminosilicates in phenol arylalkylation by styrene

    Energy Technology Data Exchange (ETDEWEB)

    Kurashev, M.V.; Kolesnichenko, N.V.; Romanovskii, B.V.; Lokshin, B.V.

    1979-03-01

    The activities of aluminum forms of zeolites and zeolite-containing aluminosilicates in phenol arylalkylation by styrene were studied in a flow microreactor at 250/sup 0/C, 1 atm, 4:1 phenol-styrene, and 2.6 sec contact time. The aluminum-exchanged forms of a NaY zeolite and a zeolite-containing amorphous aluminosilicate (the Soviet commercial AShNTs-3 grade) were prepared by the K. M. Wang technique and some of the samples were pretreated by phenol at 250/sup 0/C and 2 atm for two hours. The AShNTs-3 and Al/AShNTs-3 catalysts showed maximum steady-state activities in terms of over-all styrene conversion (67.6 and 46.7Vertical Bar3<, respectively) and the combined yield of 2- and 4-(..cap alpha..-methylbenzyl)phenols (64.1 and 32.2Vertical Bar3<, respectively). The AlNaY zeolite rapidly and irreversibly deactivated, and pure amorphous aluminosilicate (AAS) showed relatively low activity. The pretreatment with phenol improved the activities of the aluiminum forms and increased the ortho-to-para isomer ratio of the alkylate from 2.74 to 4.33 for Al/AShNTs-3 and from 2.37 to 4.00 for AAS, probably because of the formation of active surface aluminum phenolate structures, but deteriorated the catalytic properties of AShNTs-3.

  13. Impact Of Sodium Oxalate, Sodium Aluminosilicate, and Gibbsite/Boehmite on ARP Filter Performance

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodium aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.

  14. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David

    2006-12-28

    -catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million

  15. NOsize: 12px;">X Reduction Using an Electrochemical Cell with NOX adsorbents

    DEFF Research Database (Denmark)

    Shao, Jing

    This thesis studied the electrochemical cells modified by NOx adsorbents for the NOx reduction under O2-rich conditions. The structure of a multilayer electrochemical cell with a NOx adsorption layer was optimized by removing a yttria-stabilized zirconia (YSZ) cover layer coated on a Pt/Ni/YSZ el......This thesis studied the electrochemical cells modified by NOx adsorbents for the NOx reduction under O2-rich conditions. The structure of a multilayer electrochemical cell with a NOx adsorption layer was optimized by removing a yttria-stabilized zirconia (YSZ) cover layer coated on a Pt....../Ni/YSZ electrode. It was found that the NOx removal properties of the electrochemical cell were dramatically enhanced through this optimization, which was attributed to the extensive release of selective reaction sites for NOx species and a strong promotion for NOx reduction from the interaction of the directly...... reduction on the LSM/CGO symmetric cell, by enhancing the adsorption and storage of NOx species, or by providing reaction sites for direct nitrate reduction. Cells with adsorption layers exhibited a superior performance at low temperatures (350 and 400 °C) and at low voltages (1.5 to 2 V) due...

  16. Experimental and Kinetic Investigation of the Influence of OH Groups on NOX Formation

    KAUST Repository

    Bohon, Myles

    2016-05-04

    This work investigates the influence of one or more OH groups present on the fuel molecule and the resultant formation of NOX emissions. Combustion of oxygenated fuels has been increasing globally and such fuels offer significant potential in the reduction of pollutant emissions. One such emission class is the oxides of nitrogen, which typically form through a combination of two regimes: the thermal and non-thermal mechanisms. While thermal NO formation can be reduced by lowering the combustion temperature, non-thermal NO formation is coupled to the fuel chemistry. An experimental and computational investigation of NOX formation in three different burner configurations and under a range of equivalence ratios and temperature regimes explored the differences in NO formation. Measurements of temperature profiles and in-flame species concentrations, utilizing both probed and non-intrusive laser based techniques, allowed for the investigation of NO formation through non-thermal pathways and the differences that exist between fuels with varying numbers of OH groups. The first burner configuration was composed of a high swirl liquid spray burner with insulted combustion chamber walls designed specifically for the combustion of low energy density fuels. In this system the combustion of alcohols and glycerol (the largest by-product of biodiesel production), along with other fuels with multiple hydroxyl groups, was studied. Measurements of the mean flame temperature and exhaust gas measurements of NOX showed significant reductions in non-thermal NO concentrations with increasing numbers of OH groups. An accompanying modeling study and detailed reaction path analysis showed that fuel decomposition pathways through formaldehyde were shown a preference due to the presence of the OH groups which resulted in reduced contributions to the hydrocarbon radical pools subsequent reductions to the Prompt NO mechanism. Two burner configurations with reduced dimensionality facilitated

  17. Simultaneous catalytic removal of NOx and diesel PM over La0.9 K0.1 CoO3 catalyst assisted by plasma

    Institute of Scientific and Technical Information of China (English)

    PEI Mei-xiang; LIN He; SHANGGUAN Wen-feng; HUANG Zhen

    2005-01-01

    The simultaneous removal of NOx and particulate matter(PM) from diesel exhaust is investigated over a mixed metal oxide catalyst of La0.9 K0.1 CoO3 loaded on γ-Al2O3 spherules with the assistant of plasma. It was found that NOx was reduced by PM in oxygen rich atmosphere, the CO2 and N2 were produced in the same temperature window without considering the N2 formed by plasma decomposition. As a result, the temperature for the PM combustion decreases and the reduction efficiency of NOx to N2 increases during the plasma process, which indicated that the activity of the catalyst can be improved by plasma. The NOx is decomposed by plasma at both low temperature and high temperature. Therefore, the whole efficiency of NOx conversion is enhanced.

  18. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge

  19. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Directory of Open Access Journals (Sweden)

    W. Tang

    2014-09-01

    Full Text Available Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3 regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 State Implementation Plan (SIP modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB and normalized mean error (NME by up to 0.1. A sector-based discrete Kalman filter (DKF inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx-Decoupled Direct Method (DDM model to adjust Texas NOx emissions using a high resolution Ozone Monitoring Instrument (OMI NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCD is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The sector-based DKF inversion tends to scale down area and non-road NOx emissions by 50%, leading to a 2–5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using inverted NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05 and increases the model correlation with ground measurement in O3 simulations and makes O3 more sensitive to NOx emissions in the O3 non-attainment areas.

  20. Overall evaluation of combustion and NO(x) emissions for a down-fired 600 MW(e) supercritical boiler with multiple injection and multiple staging.

    Science.gov (United States)

    Kuang, Min; Li, Zhengqi; Liu, Chunlong; Zhu, Qunyi

    2013-05-07

    To achieve significant reductions in NOx emissions and to eliminate strongly asymmetric combustion found in down-fired boilers, a deep-air-staging combustion technology was trialed in a down-fired 600 MWe supercritical utility boiler. By performing industrial-sized measurements taken of gas temperatures and species concentrations in the near wing-wall region, carbon in fly ash and NOx emissions at various settings, effects of overfire air (OFA) and staged-air damper openings on combustion characteristics, and NOx emissions within the furnace were experimentally determined. With increasing the OFA damper opening, both fluctuations in NOx emissions and carbon in fly ash were initially slightly over OFA damper openings of 0-40% but then lengthened dramatically in openings of 40-70% (i.e., NOx emissions reduced sharply accompanied by an apparent increase in carbon in fly ash). Decreasing the staged-air declination angle clearly increased the combustible loss but slightly influenced NOx emissions. In comparison with OFA, the staged-air influence on combustion and NOx emissions was clearly weaker. Only at a high OFA damper opening of 50%, the staged-air effect was relatively clear, i.e., enlarging the staged-air damper opening decreased carbon in fly ash and slightly raised NOx emissions. By sharply opening the OFA damper to deepen the air-staging conditions, although NOx emissions could finally reduce to 503 mg/m(3) at 6% O2 (i.e., an ultralow NOx level for down-fired furnaces), carbon in fly ash jumped sharply to 15.10%. For economical and environment-friendly boiler operations, an optimal damper opening combination (i.e., 60%, 50%, and 50% for secondary air, staged-air, and OFA damper openings, respectively) was recommended for the furnace, at which carbon in fly ash and NOx emissions attained levels of about 10% and 850 mg/m(3) at 6% O2, respectively.

  1. Experimental and modeling analysis of the NOxOUT process

    Energy Technology Data Exchange (ETDEWEB)

    Rota, R.; Antos, D.; Zanoelo, E.V.; Morbidelli, M. [Politecnico di Milano, Milano (Italy). Dipartimento di Chimica Fisica Applicata/CIIRCO

    2002-01-01

    The selective non-catalytic reduction of nitric oxide with urea has been investigated experimentally in a temperature range from 950 to 1450 K using a laboratory reactor that approximates well stirred conditions. From the experimental results it has been possible not only to deduce some generate trends of interest in the NOxOUT process, but also to validate a detailed kinetic mechanism. In particular, the experiments showed that the NOxOUT process is effective in a narrow temperature window. The effect of increasing the ratio of nitrogen in the reducing agent and in NO is to increase the efficiency of abatement, while that of increasing O{sub 2} concentration depends on the temperature considered. Moreover, the effect of increasing the CO/NO ratio up to one is not very pronounced. The detailed kinetic mechanism developed has been validated by comparison with several experimental findings, thus providing an effective tool for process simulation in a wide range of operating conditions.

  2. Combination of photocatalysis and HC/SCR for improved activity and durability of DeNOx catalysts.

    Science.gov (United States)

    Heo, Iljeong; Kim, Mun Kyu; Sung, Samkyung; Nam, In-Sik; Cho, Byong K; Olson, Keith L; Li, Wei

    2013-04-16

    A photocatalytic HC/SCR system has been developed and its high deNOx performance (54.0-98.6% NOx conversion) at low temperatures (150-250 °C) demonstrated by using a representative diesel fuel hydrocarbon (dodecane) as the reductant over a hybrid SCR system of a photocatalytic reactor (PCR) and a dual-bed HC/SCR reactor. The PCR generates highly active oxidants such as O3 and NO2 from O2 and NO in the feed stream, followed by the subsequent formation of highly efficient reductants such as oxygenated hydrocarbon (OHC), NH3, and organo-nitrogen compounds. These reductants are the key components for enhancing the low temperature deNOx performance of the dual-bed HC/SCR system containing Ag/Al2O3 and CuCoY in the front and rear bed of the reactor, respectively. The OHCs are particularly effective for both NOx reduction and NH3 formation over the Ag/Al2O3 catalyst, while NH3 and organo-nitrogen compounds are effective for NOx reduction over the CuCoY catalyst. The hybrid HC/SCR system assisted by photocatalysis has shown an overall deNOx performance comparable to that of the NH3/SCR, demonstrating its potential as a promising alternative to the current urea/SCR and LNT technologies. Superior durability of HC/SCR catalysts against coking by HCs has also been demonstrated by a PCR-assisted regeneration scheme for deactivating catalysts.

  3. SO2和H2 O对CeO2/TiO2/堇青石催化剂选择催化还原NOx性能的影响%Influence of SO2 and H2 O on the selective catalyit c reduction of NOx over CeO2/TiO2/cordierite cat alyst

    Institute of Scientific and Technical Information of China (English)

    束韫; 张凡; 王洪昌; 朱金伟

    2014-01-01

    采用浸渍法制备了以堇青石为基底、氧化铈为活性组分的整体式脱硝催化剂CeO2/TiO2/堇青石催化剂。通过与商业钒基催化剂( V2 O5-WO3/TiO 2/堇青石)的对比研究发现, CeO2/TiO2/堇青石催化剂表现出了优良的抗硫抗水性能,经过30 h抗硫抗水实验,CeO2/TiO2/堇青石催化剂的氮氧化物转化率仍能保持在70%以上,仅下降了5%。 BET、XRD、FT-IR和TG表征结果表明,在含硫含水气氛中反应时,CeO2/TiO2/堇青石和V2 O5-WO3/TiO2/堇青石催化剂表面均有硫酸铵盐的生成,且前者的生成量明显低于后者。N H3-DRIFT分析结果表明,在含硫含水气氛中两种催化剂表面Brønsted酸性都被增强,而Lewis酸性有所减弱。进一步的XPS分析结果表明,烟气中的SO2+H2O 会使催化剂表面Ce4+向Ce3+发生转化,从而导致化学吸附氧含量增加,这是CeO2/TiO2/堇青石催化剂具有优良抗硫抗水性能的重要原因。%A monolithic CeO2/TiO2/cordierite deNOx catalyst was prepared by an impregnation method, with cordierite as the substrate and CeO2 as the active component.The CeO2/TiO2/codr ierite catalyst exhibits exceleln t resistance against SO2 and H2 O in the selective catayl tic reduction ( SCR) of NOx with NH3 , compared with the commercial vanadium-based catalyst ( V2 O5-WO3/TiO2/cordierite);the CeO2/TiO2/cordierite catalyst gives a conversion of NOxa bove 70%after 30h rse istance test ga ainst SO2+H2 O,o nly declined by 5%.BET, XRD, FT-IR and TG reslu ts indicated that ammonium sulfate is formed on the surface of both CeO2/TiO2/c ordierite and V2 O5-WO3/TiO2/corid erti e caat yl stsdu ring the SCR reaction in the presence of SO2 and H2 O, but on the former, the amount of ammonui m sulfate deposited is much less.NH3-DR IFT results us ggested that the surface Brønsted acidity is strengthened, whereas the surface Lewis acidity is weakened during the SCR reaction in the presence of SO2 and H2 O

  4. NOX, NOX who is there?, The contribution of NADPH Oxidase to beta cell dysfunction.

    Directory of Open Access Journals (Sweden)

    David eTaylor-Fishwick

    2013-04-01

    Full Text Available Predictions of diabetes prevalence over the next decades warrant the aggressive discovery of new approaches to stop or reverse loss of functional beta cell mass. Beta cells are recognized to have a relatively high sensitivity to reactive oxygen species (ROS and become dysfunctional under oxidative stress conditions. New discoveries have identified NADPH oxidases in beta cells as contributors to elevated cellular ROS. Reviewed are recent reports that evidence a role for NADPH oxidase-1 (NOX-1 in beta cell dysfunction. NOX-1 is stimulated by inflammatory cytokines that are elevated in diabetes. First, regulation of cytokine-stimulated NOX-1 expression has been linked to inflammatory lipid mediators derived from 12-lipoxyganase activity. For the first time in beta cells these data integrate distinct pathways associated with beta cell dysfunction. Second, regulation of NOX-1 in beta cells involves feed-forward control linked to elevated ROS and Src-kinase activation. This potentially results in unbridled ROS generation and identifies candidate targets for pharmacologic intervention. Third, consideration is provided of new, first-in-class, selective inhibitors of NOX-1. These compounds could have an important role in assessing a disruption of NOX-1/ROS signaling as a new approach to preserve and protect beta cell mass in diabetes.

  5. Determination of intermediates and mechanism for soot combustion with NOx/O₂ on potassium-supported Mg-Al hydrotalcite mixed oxides by in situ FTIR.

    Science.gov (United States)

    Zhang, Zhaoliang; Zhang, Yexin; Su, Qingyun; Wang, Zhongpeng; Li, Qian; Gao, Xiyan

    2010-11-01

    The soot combustion with NO(x) and/or O(2) on potassium-supported Mg-Al hydrotalcite mixed oxides under tight contact condition was studied using temperature-programmed oxidation (TPO), isothermal reaction and in situ FTIR techniques. The presence of NO(x) in O(2) favors the soot combustion at lower temperatures (300 °C), which was accompanied by a substantial NO(x) reduction. The ketene (C═C═O) and isocyanate (NCO(-)) species were determined as the reaction intermediates. In NO(x) + O(2), NO(2) directly interacts with the free carbon sites (C═C*) through two parallel reactions: (1) NO(2) + C═C* → C═C═O + NO; (2) NO(2) + C═C* → NCO(-) + CO(2). The two reactions can proceed easily, which accounts for the promotion effect of NO(x) on soot combustion at lower temperatures. The further oxidation of NCO(-) by NO(2) or O(2) is responsible for the simultaneous reduction of NO(x). However, the reactions between NO(2) and C═C* are limited by the amount of free carbon sites, which can be provided by the oxidation of soot by O(2) at higher temperatures. The interaction of NO(x) and catalyst results in the formation of nitrates and nitrites, which poisoned the active K sites.

  6. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  7. Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates.

    Science.gov (United States)

    Loomba, Leena; Scarabelli, Tiziano

    2013-09-01

    Metallic miniaturization techniques have taken metals to nanoscale size where they can display fascinating properties and their potential applications in medicine. In recent years, metal nanoparticles such as aluminium, silicon, iron, cadmium, selenium, indium and calcium, which find their presence in aluminosilicates, nanobiomagnets, quantum dots (Q-dots) and cochleates, have caught attention of medical industries. The increasing impact of metallic nanoparticles in life sciences has significantly advanced the production techniques for these nanoparticles. In this Review, the various methods for the synthesis of nanoparticles are outlined, followed by their physicochemical properties, some recent applications in wound healing, diagnostic imaging, biosensing, assay labeling, antimicrobial activity, cancer therapy and drug delivery are listed, and finally their toxicological impacts are revised. The first half of this article describes the medicinal uses of two noble nanoparticles - gold and silver. This Review provides further information on the ability of aluminum, silicon, iron, selenium, indium, calcium and zinc to be used as nanoparticles in biomedical sciences. Aluminosilicates find their utility in wound healing and antibacterial growth. Iron-oxide nanoparticles enhance the properties of MRI contrast agents and are also used as biomagnets. Cadmium, selenium, tellurium and indium form the core nanostructures of tiny Q-dots used in cellular assay labeling, high-resolution cell imaging and biosensing. Cochleates have the bivalent nano ions calcium, magnesium or zinc imbedded in their structures and are considered to be highly effective agents for drug and gene delivery. The aluminosilicates, nanobiomagnets, Q-dots and cochleates are discussed in the light of their properties, synthesis and utility.

  8. Efficient adsorbents of nanoporous aluminosilicate monoliths for organic dyes from aqueous solution.

    Science.gov (United States)

    El-Safty, Sherif A; Shahat, Ahmed; Awual, Md Rabiul

    2011-07-01

    Growing public awareness on the potential risk to humans of toxic chemicals in the environment has generated demand for new and improved methods for toxicity assessment and removal, rational means for health risk estimation. With the aim of controlling nanoscale adsorbents for functionality in molecular sieving of organic pollutants, we fabricated cubic Im3m mesocages with uniform entrance and large cavity pores of aluminosilicates as highly promising candidates for the colorimetric monitoring of organic dyes in an aqueous solution. However, a feasible control over engineering of three-dimensional (3D) mesopore cage structures with uniform entrance (~5 nm) and large cavity (~10 nm) allowed the development of nanoadsorbent membranes as a powerful tool for large-quantity and high-speed (in minutes) adsorption/removal of bulk molecules such as organic dyes. Incorporation of high aluminum contents (Si/Al=1) into 3D cubic Im3m cage mesoporous silica monoliths resulted in small, easy-to-use optical adsorbent strips. In such adsorption systems, natural surfaces of active acid sites of aluminosilicate strips strongly induced both physical adsorption of chemically responsive dyes and intraparticle diffusion into cubic Im3m mesocage monoliths. Results likewise indicated that although aluminosilicate strips with low Si/Al ratios exhibit distortion in pore ordering and decrease in surface area and pore volume, enhancement of both molecular converges and intraparticle diffusion onto the network surfaces and into the pore architectures of adsorbent membranes was achieved. Moreover, 3D mesopore cage adsorbents are reversible, offering potential for multiple adsorption assays.

  9. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    TGFβ-induced expression of the NADPH oxidase Nox4 is essential for fibroblast-myofibroblast transition. Rho has been implicated in Nox4 regulation, but the underlying mechanisms are largely unknown. Myocardin-related transcription factor (MRTF), a Rho/actin polymerization-controlled coactivator...... translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application...... of contact uncoupling and TGFβ. Nox4 knockdown abrogates epithelial-myofibroblast transition-associated reactive oxygen species production. Laser capture microdissection reveals increased Nox4 expression in the tubular epithelium also during obstructive nephropathy. MRTF down-regulation/inhibition suppresses...

  10. Sulfur Management of NOx Adsorber Technology for Diesel Light-Duty Vehicle and Truck Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Howard L.; Wang, Jerry C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

    2003-10-01

    Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure. With the use of a disposable SOx trap to remove large portion of the sulfur poisons from the exhaust, the NOx adsorber catalyst can be protected and the numbers of de-sulfation events can be greatly reduced. Spectroscopic techniques, such as DRIFTS and Raman, have been used to monitor the underlying chemical reactions during NOx trapping/ regeneration and de-sulfation periods, and provide a fundamental understanding of NOx storage capacity and catalyst degradation mechanism using model catalysts. This paper examines the sulfur effect on two model NOx adsorber catalysts. The chemistry of SOx/base metal oxides and the sulfation product pathways and their corresponding spectroscopic data are discussed. SAE Paper SAE-2003-01-3245 {copyright} 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed

  11. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  12. Investigations into NOx emissions and burnout for coals with high ash content in a bench scale test facility

    Energy Technology Data Exchange (ETDEWEB)

    Greul, U.; Kluger, F.; Peter, G.; Spliethoff, H.; Hein, K.R.G. [University of Stuttgart, Stuttgart (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    2000-07-01

    At the Stuttgart University's Institute of Process Engineering and Power Plant Technology (IVD) investigations of in-furnace DeNOx technologies with regard to their NOx reduction efficiency are carried out using an electrically heated bench-scale test facility to evaluate the effect of different process parameters independently. The DeNOx technologies of air and fuel staging have been demonstrated to be effective control techniques to reduce NOx from stationary sources. For a wide range of brown and hard coals from Europe, South Africa and Australia test runs with air-staged combustion have been carried out. The ash content of the hard coals used was in the range between 8 and 28%. The investigated parameters were temperature (1000-1300{degree}C), stoichiometry (1.25-0.55), and residence time (1-6 s) in the fuel rich primary zone. With increasing temperatures and residence times in fuel-rich conditions in air-staged combustion NOx emissions below 300 mg/m{sup 3} can be achieved even with hard coals. For a few brown coals NOx values lower than 100 mg/m{sup 3} are possible. Dependent on the coal rank individual parameters are more important than others. For low and medium volatile hard coals the increasing of the residence time is more effective than higher temperature or lower air ratios in the primary zone. However, with high volatile hard coal or brown coal as primary fuel the influence of temperature and stoichiometry in the primary zone plays a key role for NOx reduction effectiveness. The burnout led to restrictions in large scale applications for air-staged combustion especially with hard coals as primary fuel. Investigations at different primary air ratios and temperatures show the effect of these parameters on the burnout values along the course of combustion. 7 refs., 14 figs., 2 tabs.

  13. Evidence of two erbium sites in standard aluminosilicate glass for EDFA.

    Science.gov (United States)

    Peretti, R; Jurdyc, A M; Jacquier, B; Burov, E; Pastouret, A

    2010-09-27

    Site distributions of Er(3+)-doped aluminosilicate preforms of standard EDFA were studied by the low temperature Resonant Fluorescence Line Narrowing (RFLN) spectroscopy. Two erbium concentration samples with the same glass base were investigated. At very low erbium concentration, two classes of sites were identified, related to the number of AlO(6) octahedral linked by two oxygen edge-sharing to Er(3+) in the coordination sphere. As erbium concentration is increased, the high AlO(6) coordinated class of sites is smeared out by the optical response of the one AlO(6) coordinated class of sites.

  14. Influence of Acid Etching on Wettability of Ion-exchanged Aluminosilicate Float Glass

    Directory of Open Access Journals (Sweden)

    LI Xiaoyu

    2016-12-01

    Full Text Available The influence of acid etching time on wettability of ion-exchanged aluminosilicate float glass was investigated. The contact angle, roughness and surface composition were measured. The results show that the contact angle increases to a maximum value in the first 7 min and then decreases with the corrosion time. The main reason that cause the change of the contact angle is the change of surface roughness and the content of fluorine atom. The contact angle on the tin side is always larger than that on the air side which is caused by the tin ions on the tin side.

  15. Non-bridging Oxygens in Calcium Aluminosilicate Glass From Per-calcic to Peraluminous Compositions

    Science.gov (United States)

    Thompson, L.; Stebbins, J.

    2008-12-01

    The role of non-bridging oxygen (NBO) and its effects on the thermodynamic and transport properties of aluminosilicate melts are not fully understood, although this species clearly must have a major influence on configurational entropy, viscosity, etc. Its existence along metaluminous joins in alkali- and alkaline-earth aluminosilicates was first postulated from viscosity measurements (Toplis et al., 1996, 2004) and then directly observed in several metaluminous calcium aluminosilicates by 17O nuclear magnetic resonance (NMR) spectroscopy. Much of the recent work has concentrated on glasses with an M+n/(M+nAl) ratio greater than or equal to 0.5 (metaluminous to peralkaline or per-alkaline earth); however, the observed viscosity maxima in several ternary systems occur when this ratio is less than 0.5 (peraluminous). Using NMR spectroscopy, this study investigates the effects of the Ca/Al ratio on the amount of NBO present in calcium aluminosilicate (CAS) glasses. 17O MAS NMR spectra of glasses with 60 mol% SiO2 show a decrease in NBO as the ratio R=Ca+2/(Ca+2Al) decreases, from 6.9% at R=0.56 to 1.0% at R=0.44. Measurable amounts of NBO thus persist well into the peraluminous region of the CAS system, but the species becomes undetectable (<0.5%) when R reaches 0.38 and 0.33. 27Al MAS NMR spectra of these glasses show an increase in the amount of five-coordinated aluminum as compositions become more peraluminous, as is well-known from previous studies (Neuville et al. 2006). Comparison with published viscosity measurements measured at both higher and lower mol % SiO2 (Toplis et al. 2004) suggests that the viscosity maximum does not correspond exactly with the disappearance of NBO from the glasses, but effects of temperature on speciation will need to be taken into account to accurately link glass structure with melt properties: recent work has shown, for example, that NBO content increases with temperature in CaAl2Si2O8 melt (Stebbins et al. 2008).

  16. Physical chemical studies of dispersed aluminosilicate wastes for obtaining the burned building materials

    Science.gov (United States)

    Iuriev, I. Y.; Skripnikova, N. K.; Volokitin, G. G.; Volokitin, O. G.; Lutsenko, A. V.; Kosmachev, P. V.

    2015-01-01

    This paper presents results of the studies that determined that grinding can be one of the ways to modify aluminosilicate wastes. The optimal grinding modes were defined in laboratory conditions. Physical and chemical studies of modified ashes were carried out by means of X-ray phase analysis, differential thermal analysis and microscopy. The results have shown that modified ashes of thermal power stations when being applied in production of ceramic brick influence positively the processing properties of raw materials and the ready products.

  17. Potential Sites for Ice Nucleation on Aluminosilicate Clay Minerals and Related Materials.

    Science.gov (United States)

    Freedman, Miriam Arak

    2015-10-01

    Few aerosol particles in clouds nucleate the formation of ice. The surface sites available for nucleus formation, which can include surface defects and functional groups, determine in part the activity of an aerosol particle toward ice formation. Although ice nucleation on particles has been widely studied, exploration of the specific sites at which the initial germ forms has been limited, but is important for predicting the microphysical properties of clouds, which impact climate. This Perspective focuses on what is currently known about surface sites for ice nucleation on aluminosilicate clay minerals, which are commonly found in ice residuals, as well as related materials.

  18. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  19. High temperature flow behaviour of SiC reinforced lithium aluminosilicate composites

    Indian Academy of Sciences (India)

    Santanu Das; V S R Murthy; G S Murty

    2001-04-01

    The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline phase. Further, with the addition of 40 vol.% SiC additions, the strain rate sensitivity of flow stress decreased. While the activation energy for flow in LAS was 300 kJ/mole, it increased to 995 kJ/mole with the addition of 40 vol.% SiC reinforcements.

  20. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    Science.gov (United States)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  1. Kinetic and Performance Studies of the Regeneration Phase of Model Pt/Ba/Rh NOx Traps for Design and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Michael Harold; Vemuri Balakotaiah

    2010-05-31

    In this project a combined experimental and theoretical approach was taken to advance our understanding of lean NOx trap (LNT) technology. Fundamental kinetics studies were carried out of model LNT catalysts containing variable loadings of precious metals (Pt, Rh), and storage components (BaO, CeO{sub 2}). The Temporal Analysis of Products (TAP) reactor provided transient data under well-characterized conditions for both powder and monolith catalysts, enabling the identification of key reaction pathways and estimation of the corresponding kinetic parameters. The performance of model NOx storage and reduction (NSR) monolith catalysts were evaluated in a bench scale NOx trap using synthetic exhaust, with attention placed on the effect of the pulse timing and composition on the instantaneous and cycle-averaged product distributions. From these experiments we formulated a global model that predicts the main spatio-temporal features of the LNT and a mechanistic-based microkinetic models that incorporates a detailed understanding of the chemistry and predicts more detailed selectivity features of the LNT. The NOx trap models were used to determine its ability to simulate bench-scale data and ultimately to evaluate alternative LNT designs and operating strategies. The four-year project led to the training of several doctoral students and the dissemination of the findings as 47 presentations in conferences, catalysis societies, and academic departments as well 23 manuscripts in peer-reviewed journals. A condensed review of NOx storage and reduction was published in an encyclopedia of technology.

  2. Environmental impact of the nox and results in Mexico of the technologies for its control; Impacto ambiental de los NOx y resultados en Mexico de tecnologias de control

    Energy Technology Data Exchange (ETDEWEB)

    Ribera Flores, Marco Antonio [Nissan Mexicana S. A. de C. V. Cuernavaca (Mexico)

    1994-12-31

    This paper presents the experience gained in the project development for the installation of three burners for industrial boilers with low nitrogen oxides emission technology. The paper begins with a short reference to the effects on the environment, derived from the generation of these gases in combustion equipment and the reasons why this thermal NOx and the associated NOx are generated. A revision is made of the existing regulations to limit the emissions of these pollutants in industrial equipment in different countries, including Mexico. Mention is made of the existing control technologies and in particular indicating the emission reduction method determined for the burners in functional tests, using propane gas and diesel, before and after installing the control technology, to demonstrate the important reductions obtained. The other results such as the thermal efficiency are also plotted as well as other important pollutant emissions such as CO and CO{sub 2} for the observation of their behavior. [Espanol] El presente trabajo expone la experiencia obtenida en el desarrollo del proyecto de instalacion de tres quemadores para calderas industriales con tecnologia de baja emision de oxidos de nitrogeno. Se inicia haciendo una breve mencion de las repercusiones al medio ambiente que se derivan de la generacion de estos gases en equipos de combustion y las razones por las cuales se generan los NOx termicos y los NOx asociados a los combustibles. Se hace una revision sobre las regulaciones existentes para limitar las emisiones de estos contaminantes en equipos industriales en diferentes paises incluyendo a Mexico. Se mencionan las tecnologias de control existentes y en particular indicando el metodo de reduccion de emisiones determinadas para los quemadores en pruebas funcionales utilizando como combustibles gas propano y diesel antes y despues de instalar la tecnologia de control para demostrar las fuertes reducciones obtenidas, se grafican tambien otros resultados

  3. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    Science.gov (United States)

    Ntziachristos, Leonidas; Papadimitriou, Giannis; Ligterink, Norbert; Hausberger, Stefan

    2016-09-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro 5 and Euro 6 ones. Mean NOx emission factor levels used in the most popular EU vehicle emission models (COPERT, HBEFA and VERSIT+) are compared with latest emission information collected in the laboratory over real-world driving cycles and on the road using portable emissions measurement systems (PEMS). The comparison shows that Euro 5 passenger car (PC) emission factors well reflect on road levels and that recently revealed emissions control failures do not call for any significant corrections. However Euro 5 light commercial vehicles (LCVs) and Euro 6 PCs in the 2014-2016 period exhibit on road emission levels twice as high as used in current models. Moreover, measured levels vary a lot for Euro 6 vehicles. Scenarios for future evolution of Euro 6 emission factors, reflecting different degree of effectiveness of emissions control regulations, show that total NOx emissions from diesel Euro 6 PC and LCV may correspond from 49% up to 83% of total road transport emissions in 2050. Unless upcoming and long term regulations make sure that light duty diesel NOx emissions are effectively addressed, this will have significant implications in meeting future air quality and national emissions ceilings targets.

  4. Catalytic Properties of Pd Modified Cu/SAPO-34 for NOx Removal from Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. C. Wang

    2013-01-01

    Full Text Available The Cu/SAPO-34 catalysts with different Cu contents were prepared by in situ hydrothermal synthesis. The selected Cu/SAPO-34 was modified by impregnating 1 wt% Pd(NO33. The morphology and structure of the samples were characterized via XRD and SEM techniques. The effects of Cu contents and the Pd modification on the de-NOx activity of the samples were investigated through the selective catalytic reduction by C3H6 and NH3. The Cu contents do not change the skeleton structure of the SAPO-34 crystalline and the Cu/SAPO-34 catalysts with Cu/Si ratios of 0.05, 0.1, and 0.2 have better de-NOx activity than other catalysts. The addition of Pd can improve the de-NOx activity of the Cu/SAPO-34 catalysts. The maximum of NO conversion of samples with Pd could reach 90%. Besides, the effect of aging treatment for Cu/SAPO-34 catalysts with and without Pd on the de-NOx activity was also investigated. The results indicated that the Cu/SAPO-34 catalysts modified by Pd have better antiaging performance than raw samples.

  5. Effects of NOx and SO2 in cathode stream on the performance of PEMFC

    Institute of Scientific and Technical Information of China (English)

    杨代军; 马建新; 周伟; 马晓伟; 邬敏忠; 徐麟; 万钢

    2006-01-01

    The effects of NOx(in a ratio of NO:NO2 = 9:1) and SO2 in cathode stream on the performance of a single proton exchange membrane fuel cell (PEMFC) were investigated. NOx with concentrations of 1×10-3% (in volume, the same as follows), 1.4×10-2% and 1×10-3% could cause significant detrimental effects on the cell performance. However, nearly complete recovery of the cell performance could be observed after NOx was shut off and purged with clean air. The electrochemical measurements suggested that the impacts of NOx resulted mainly from the superposition of the oxygen reduction reaction (ORR),NO and HNO2 oxidation reactions, and the increased cathodic impedance. Trace SO2 with concentrations of 5 × 10-6%, 5 ×10-3%, 2 × 10-4% and 3.2 × 10-4% influenced the cell much severer, which could be attributed to its strong adsorption on the surface of Pt atoms. The cell performance could not be completely recovered after purged with clean air and cyclic voltammetry (CV) tests, due to the changes of electrochemical impedance spectroscopy (ELS) and electrochemical active surface (EAS) caused by surface state change after SO2 exposure.

  6. Effect of quaternary ammonium salts on flotation behavior of aluminosilicate minerals

    Institute of Scientific and Technical Information of China (English)

    ZHAO Sheng-gui; ZHONG Hong; LIU Guang-yi

    2007-01-01

    The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of quaternary ammonium salts for the four minerals is in the order(from strong to weak) of octadecyl dimethyl benzyl ammonium chloride(ODBA), cetyl trimethyl ammonium bromide(CTAB), dodecyl trimethyl ammonium chloride(DTAC). Under the condition of alkalescence, it is possible to separate the diaspore from the silicate minerals such as kaolinite, illite and pyrophyllite using quaternary ammonium salts as collector. Isoelectric points (IEP) of diaspore, kaolinite, pyrophyllite and illite are pH=6.0, 3.4, 2.3 and 3.2, respectively. Quaternary ammonium salts can change ζ-potential of the aluminosilicate minerals obviously. The flotation mechanisms were explained by ζ-potential and Fourier transform infrared spectrum (FT-IR) measurements. The results demonstrate that only electrostatic interaction takes place between aluminosilicate minerals (diaspore, kaolinite, pyrophyllite and illite) and quaternary ammonium salts.

  7. Barrier properties of hydrogenated acrylonitrile-butadiene rubber composites containing modified layered aluminosilicates

    Science.gov (United States)

    Krzemińska, S.; Rzymski, W. M.

    2011-12-01

    The resistance to permeation by the selected solvents of flat membranes made of cured hydrogenated acrylonitrile-butadiene rubber (HNBR) materials without any fillers and containing 5 phr of layered aluminosilicate nanofiller (bentonite), modified with various types of ammonium salts or N330 type carbon black, was investigated. The barrier properties were assessed on the basis of the breakthrough time of a liquid with low (cyclohexane) or average (butyl acetate) thermodynamic affinity to HNBR, determined according to EN 6529:2001, through a cured elastomer sample. The addition of bentonite, irrespectively of the method of modification of its particles, was found to increase the cured HNBR breakthrough time by 20 - 35 % in the case of slowly permeating non-polar cyclohexane, and by 50 - 130 % in the case of polar butyl acetate permeating more rapidly, in comparison with the barrier material containing no filler. The layered aluminosilicate nanofillers increased the breakthrough time of the material sample for both the tested solvents. In particular, the breakthrough time for polar butyl acetate was even longer than for conventional carbon black. Additionally, the increase of the breakthrough time was observed to depend on the modifier of bentonite particle surface.

  8. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels.

    Science.gov (United States)

    Duxson, Peter; Provis, John L; Lukey, Grant C; Separovic, Frances; van Deventer, Jannie S J

    2005-03-29

    A systematic series of aluminosilicate geopolymer gels was synthesized and then analyzed using 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with Gaussian peak deconvolution to characterize the short-range ordering in terms of T-O-T bonds (where T is Al or Si). The effect of nominal Na2O/(Na2O + K2O) and Si/Al ratios on short-range network ordering was quantified by deconvolution of the 29Si MAS NMR spectra into individual Gaussian peaks representing different Q4(mAl) silicon centers. The deconvolution procedure developed in this work is applicable to other aluminosilicate gel systems. The short-range ordering observed here indicates that Loewenstein's Rule of perfect aluminum avoidance may not apply strictly to geopolymeric gels, although further analyses are required to quantify the degree of aluminum avoidance. Potassium geopolymers appeared to exhibit a more random Si/Al distribution compared to that of mixed-alkali and sodium systems. This work provides a quantitative account of the silicon and aluminum ordering in geopolymers, which is essential for extending our understanding of the mechanical strength, chemical and thermal stability, and fundamental structure of these systems.

  9. STRUCTURAL STABILITY OF ALUMINOSILICATE INORGANIC POLYMERS: INFLUENCE OF THE PREPARATION PROCEDURE

    Directory of Open Access Journals (Sweden)

    Libor Kobera

    2011-12-01

    Full Text Available The stability of amorphous aluminosilicate inorganic polymer (AIP systems with regard to the structural role of water molecules incorporated in inorganic matrix is discussed. Innovative approach to preparation of amorphous AIP systems with identical chemical composition but differing in structural and mechanical behavior is introduced. It is shown that even small changes in the manufacture dramatically affect mechanical properties and the overall structural stability of AIP systems. If the required quantity of water is admixed to the reaction mixture during the initial step of AIPs synthesis the resulting amorphous aluminosilicate matrix undergoes extensive crystallization (zeolitization. On the other hand, if the amount of water is added to the reaction mixture during the last step of the preparation procedure, the inorganic matrix exhibits long-term stability without any structural defects. To find the structural reasons of the observed behavior a combination of traditional solid state NMR (1H and 29Si MAS NMR, 29Si CP/MAS NMR, 29Si inverse-T1-filtered NMR, XRPD and TGA measurements were used. The applied experiments revealed that the structural stability of AIPs can be attributed to the tight binding of water molecules into the inorganic matrix. The structural stability of the prepared amorphous AIP systems thus seems to be affected by the extent of hydration i.e. the strength of binding water into the inorganic framework.

  10. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    Energy Technology Data Exchange (ETDEWEB)

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino [Institute of Composite and Biomedical Materials, National Research Council, Naples (Italy); Liguori, Barbara; Caputo, Domenico [Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Naples (Italy); Iannace, Salvatore [Institute of Composite and Biomedical Materials, National Research Council, Naples, Italy and IMAST SCRAL, Piazza Bovio 22 Napoli 80133 (Italy)

    2014-05-15

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a “meringue” type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (∼500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the “meringue” approach with the use of the chemical blowing agent based on Si.

  11. Thallium and manganese complexes involved in the luminescence emission of potassium-bearing aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, Miguel A., E-mail: miguel.gomez@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Garcia-Guinea, Javier, E-mail: guinea@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Garrido, Fernando, E-mail: fernando.garrido@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Townsend, Peter D., E-mail: pdtownsend@gmail.com [School of Science and Technology, University of Sussex, Brighton BN1 9QH (United Kingdom); Marco, Jose-Francisco, E-mail: jfmarco@iqfr.csic.es [Instituto de Química-Física Rocasolano, CSIC, Calle Serrano 119, Madrid E-28006 (Spain)

    2015-03-15

    The luminescence emission at 285 nm in natural K-feldspar has been studied by Russian groups and associated with thallium ions in structural positions of K{sup +} sites as artificially thallium-doped feldspars display the same emission band. Here attention is focussed on spectra of CL emission bands centered near 285 and 560 nm from paragenetic adularia, moscovite and quartz micro-inclusions. With accesorial thallium they show clear resemblances to each other. Associated sedimentary and hydrothermal aluminosilicate samples collected from Guadalix (Madrid, Spain) were analyzed with a wide range of experimental techniques including Environmental Scanning Electron Microscopy (ESEM) with an attached X-Ray Energy-Dispersive Spectrometer (EDS) and a cathodoluminescence probe (CL) and Electron Probe Microanalysis (EPMA), X-Ray Fluorescence Spectrometry (XRF), Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), Differential and Thermogravimetric Analyses (DTA-TG), radioluminescence (RL), Mössbauer spectroscopy and X-Ray Photoelectron Spectrometry (XPS). The luminescence emission bands at 285 and 560 nm seem to be associated with hydrous thallium–manganese complexes bonded to potassium-bearing aluminosilicates since various minerals such as K-feldspar, moscovite and quartz micro-inclusions display similar CL spectra, accesorial thallium and hydroxyl groups. The presence of iron introduces a brown color which is attributed to submicroscopic iron oxides detectable in the optical and chemical microanalysis, but this does not contribute to the luminescence emission. The XPS Mn 2p spectrum of the adularia sample at room temperature is composed of a spin–orbit doublet plus clear shake-up satellite structure ∼4 eV above the main photoemision lines and is consistent with Mn{sup 2+} in good agreement with the observed luminescence emission at 560 nm for aluminosilicates produced by a {sup 4}T1({sup 4}G)→{sup 6}A1({sup 6}S) transition in tetrahedrally

  12. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  13. Low NO/x/ combustion systems for burning heavy residual fuels and high-fuel-bound nitrogen fuels

    Science.gov (United States)

    White, D. J.; Batakis, A.; Lecren, R. T.; Yacobucci, H. G.

    1981-01-01

    Design concepts are presented for lean-lean and staged rich-lean combustors. The combustors are designed for the dry reduction of thermal NO(x), control of NO(x) from fuels containing high levels of organic nitrogen, and control of smoke from low hydrogen content fuels. The combustor concepts are tested with a wide variety of fuels including a middle distillate, a petroleum based heavy residual, a coal derived synthetic, and ratios of blends of these fuels. The configurations of the lean-lean and rich-lean combustion systems are provided along with a description of the test rig and test procedure.

  14. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  15. Development of chemical kinetic models for lean NOx traps.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S.

    2010-04-01

    Overall project goal: Obtain the fundamental surface chemistry knowledge needed for the design and optimal utilization of NOx trap catalysts, thereby helping to speed the widespread adoption of this technology. Relevance to VT Program goals: Effective, durable advanced aftertreatment systems for lean-burn engines must be available if the fuel economy advantages of these engines are to be realized. Specific current year objective: Identify and correct any deficiencies in the previously developed reaction mechanism describing normal storage/regeneration cycles, and complete development of a supplementary mechanism accounting for the effects of sulfation. A fundamental understanding of LNT chemistry is needed to realize the full potential of this aftertreatment technology, which could lead to greater use of fuel-efficient lean-burn engines. We have used a multi-tiered approach to developing an elementary chemical mechanism benchmarked against experimental data: (1) Simulate a set of steady flow experiments, with storage effects minimized, to infer a tentative mechanism for chemistry on precious metal sites (completed). (2) Simulate a set of long cycle experiments to infer a mechanism for NOx and oxygen storage sites while simultaneously finalizing precious metal chemistry (completed). (3) Simulate a simplified sulfation/desulfation protocol to obtain a supplementary set of reactions involving sulfur on all three kinds of sites (nearly completed). (4) Investigate the potential role of reductants other than CO and H{sub 2}. While simulation of isothermal experiments is the preferred way to extract kinetic parameters, simulation of realistic storage/regeneration cycles requires that exotherms be considered. Our ultimate goal is to facilitate improved designs for LNT-based aftertreatment systems and to assist in the development of improved catalysts.

  16. Potentiated clinoptilolite: artificially enhanced aluminosilicate reduces symptoms associated with endoscopically negative gastroesophageal reflux disease and nonsteroidal anti-inflammatory drug induced gastritis

    Directory of Open Access Journals (Sweden)

    Potgieter W

    2014-07-01

    Full Text Available Wilna Potgieter, Caroline Selma Samuels, Jacques Renè SnymanDepartment of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, South AfricaPurpose: The cation exchanger, a potentiated clinoptilolite (Absorbatox™ 2.4D, is a synthetically enhanced aluminosilicate. The aim of this study was to evaluate the possible benefits of a potentiated clinoptilolite as a gastroprotective agent in reducing the severity of clinical symptoms and signs associated with 1 endoscopically negative gastroesophageal reflux disease (ENGORD and 2 nonsteroidal anti-inflammatory drug (NSAID medication.Methods and patients: Two randomized, double-blind, placebo-controlled, pilot studies, the ENGORD and NSAID studies, were conducted. After initial negative gastroscopy, a total of 25 patients suffering from ENGORD were randomized to receive either placebo capsules or 750 mg Absorbatox twice daily for 14 days. The NSAID study recruited 23 healthy patients who received orally either 1,500 mg Absorbatox or placebo three times daily, plus 500 mg naproxen twice daily. Patients underwent gastroscopic evaluation of their stomach linings prior to and on day 14 of the study. Gastric biopsies were obtained and evaluated via the upgraded Sydney system, whereas visible gastric events and status of the gastric mucosa were evaluated via a 0–3 rating scale. During both studies, patients recorded gastric symptoms in a daily symptom diary.Results: In the ENGORD study, patients who received the potentiated clinoptilolite reported a significant reduction (P≤0.05 in severity of symptoms including reduction in heartburn (44%, discomfort (54%, and pain (56%. Symptom-free days improved by 41% compared to the group who received placebo (not significant. This was over and above the benefits seen with the proton pump inhibitor. In the NSAID study, the reduction in gastric symptom severity was echoed in the group who received the potentiated

  17. CFD Study of NOx Emissions in a Model Commercial Aircraft Engine Combustor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Man; FU Zhenbo; LIN Yuzhen; LI Jibao

    2012-01-01

    Air worthiness requirements of the aircraft engine emission bring new challenges to the combustor research and design.With the motivation to design high performance and clean combustor,computational fluid dynamics (CFD) is utilized as the powerful design approach.In this paper,Reynolds averaged Navier-Stokes (RANS) equations of reactive two-phase flow in an experimental low emission combustor is performed.The numerical approach uses an implicit compressible gas solver together with a Lagrangian liquid-phase tracking method and the extended coherent flamelet model for turbulence-combustion interaction.The NOx formation is modeled by the concept of post-processing,which resolves the NOx transport equation with the assumption of frozen temperature distribution.Both turbulence-combustion interaction model and NOx formation model are firstly evaluated by the comparison of experimental data published in open literature of a lean direct injection (LDI) combustor.The test rig studied in this paper is called low emission stirred swirl (LESS) combustor,which is a two-stage model combustor,fueled with liquid kerosene (RP-3) and designed by Beihang University (BUAA).The main stage of LESS combustor employs the principle of lean prevaporized and premixed (LPP) concept to reduce pollutant,and the pilot stage depends on a diffusion flame for flame stabilization.Detailed numerical results including species distribution,turbulence performance and burning performance are qualitatively and quantitatively evaluated.Numerical prediction of NOx emission shows a good agreement with test data at both idle condition and full power condition of LESS combustor.Preliminary results of the flame structure are shown in this paper.The flame stabilization mechanism and NOx reduction effort are also discussed with in-depth analysis.

  18. Experimental investigation on NOx emission characteristics of a new solid fuel made from sewage sludge mixed with coal in combustion.

    Science.gov (United States)

    Zhai, Yunbo; Zhu, Lu; Chen, Hongmei; Xu, Bibo; Li, Caiting; Zeng, Guangming

    2015-02-01

    In this article, a new briquette fuel (SC), which was produced by the mixture of coal fines (25.9%), sewage sludge (60.6%), lignin (4.5%), tannic acid (4.5%) and elemental silicon (4.5%), was provided. Then, in a high temperature electric resistance tubular furnace, the total emissions of NO2 and NO, effects of combustion temperature, air flow rate and heating rate on NOx (NO, NO2) emissions of SC were studied during the combustion of SC; furthermore, effects of additives on hardness were also analysed, and the X-ray photoelectron spectroscopy was applied to investigate the reduced NOx emission mechanism. The research results showed that, compared with the characteristics of briquette fuel (SC0) produced only by the mixture of coal and sewage sludge (the ratio of coal to sewage sludge was the same as that of SC), the Meyer hardness of SC was 12.6% higher than that of SC0 and the emissions of NOx were 27.83% less than that of SC0 under the same combustion conditions. The NOx emissions of SC decreased with the adding of heating rate and increased with the rise of air flow rate. When the temperature was below 1000 °C, the emissions of NOx increased with the elevated temperature, however, further temperature extension will result in a decreasing in emissions of NOx. Furthermore, the X-ray photoelectron spectroscopy results proposed that the possible mechanism for the reduction of NOx emissions was nitrogen and silicon in SC to form the compounds of silicon and nitrogen at high temperatures.

  19. NOx emissions from Euro IV busses with SCR systems associated with urban, suburban and freeway driving patterns.

    Science.gov (United States)

    Fu, Mingliang; Ge, Yunshan; Wang, Xin; Tan, Jianwei; Yu, Linxiao; Liang, Bin

    2013-05-01

    NOx and particulate matter (PM) emissions from heavy-duty diesel vehicles (HDVs) have become the most important sources of pollutants affecting urban air quality in China. In recent years, a series of emission control strategies and diesel engine polices have been introduced that require advanced emission control technology. China and Europe mostly have used Selective Catalytic Reduction (SCR) with urea to meet the Euro IV diesel engine emission standard. In this study, two Euro IV busses with SCR were tested by using potable emission measurement system (PEMS) to assess NOx emissions associated with urban, suburban and freeway driving patterns. The results indicated that with the SCR system, the urea injection time for the entire driving period increased with higher vehicle speed. For freeway driving, the urea injection time covered 71%-83% of the driving period; the NOx emission factors from freeway driving were lower than those associated with urban and suburban driving. Unfortunately, the NOx emission factors were 2.6-2.8-, 2.3-2.7- and 2.2-2.3-fold higher than the Euro IV standard limits for urban, suburban and freeway driving, respectively; NOx emission factors (in g/km and g/(kW·h)) from the original vehicles (without SCR) were higher than their corresponding vehicles with SCR for suburban and freeway driving. Compared with the IVE model results, the measured NOx emission factors were 1.60-1.16-, 1.77-1.27-, 2.49-2.44-fold higher than the NOx predicted by the IVE model for urban and suburban driving, respectively. Thus, an adjustment of emission factors is needed to improve the estimation of Euro IV vehicle emissions in China.

  20. Simultaneous Elimination of Soot and NOX through Silver-Barium Based Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Dhal

    2017-04-01

    Full Text Available In this research paper, the nanometric size effect, the effects of the intrinsic factors including structure, and the redox properties of three systems of nanometric of silver-based catalysts were summarized. In this work, these catalysts were investigated for the simultaneous removal of particulate matter (diesel soot, and NOX was compared with that of a model of Pt-Ba/Al2O3 catalyst. The Silver-Barium based catalytic materials of Ag (5 wt%-Ba(10 wt%/MO (MO=Al2O3, CeO2, ZrO2, and Ag (5 wt%-Sr (10 wt%/CeO2 catalysts have been prepared by wetness impregnation method and characterized by BET, XRD, HRTEM, XPS and TPR (temperature-programmed reduction experiments. The behavior of the catalyst in the soot combustion (under tight conditions and NOX elimination has been separately analyzed by means of temperature programmed oxidation and isothermal concentration step change experiments, respectively. The results showed that all the catalysts were active in soot combustion with an indicative decrease of oxidation onset temperature compared to uncatalyzed soot oxidation. The removal of NOX in the presence and in the absence of soot was investigated under cycling conditions, i.e. alternating lean-rich phases according to the LNT approach. It has been found that the Ag-based samples were able to simultaneously remove soot and NOX. In particular, studying the behavior of the prepared catalysts, the Ba-containing systems exhibited higher NOX storage capacity than Sr-catalyst; also, the nitrogen selectivity increased even if resulted lower than the traditional LNT Pt-based catalyst. An adverse effect of soot on the NOX storage activity has been also observed. Copyright © 2017 BCREC GROUP. All rights reserved Received: 18th August 2016; Revised: 19th October 2016; Accepted: 19th October 2016 How to Cite: Dhal, G.C., Dey, S., Prasad, R., Mohan, D. (2017. Simultaneous Elimination of Soot and NOX through Silver-Barium Based Catalytic Materials. Bulletin of

  1. METHANE de-NOX for Utility PC Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable

  2. Study on the Conversion of Fuel Nitrogen Into NOx

    Directory of Open Access Journals (Sweden)

    Raminta Plečkaitienė

    2011-12-01

    Full Text Available The aim of this work is to investigate NOx regularities combusting fuels having high concentration of nitrogen and to develop methods that will reduce the conversion of fuel nitrogen into NOx. There are three solutions to reducing NOx concentration: the combustion of fuel mixing it with other types of “clean” fuel containing small amounts of nitrogen, laundering fuel and the combustion of fuel using carbon additives. These solutions can help with reducing the amount of nitrogen in the wood waste of furniture by about 30% by washing fuel with water. Therefore, NOx value may decrease by about 35%.Article in Lithuanian

  3. FCC DeSOx and DeNOx additive technology

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The fluid catalytic cracking(FCC) is the principal gasoline-producing process in the refinery. Considerable amounts of harmful sulfur oxides and nitrogen oxides (SOx and NOx ) are generated with the FCC operation. Impacted by strengthening environmental regulations and the current global emphasis on environmental protection and pollution abatement, refiners have been meaning to look for effective ways to control and reduce SOx and NOx emissions. FCC DeSOx and DeNOx additives is the most promising measure. The present paper reviews the developments in FCC DeSOx and DeNOx additive technology based on the respective authors' works, the future directions of the technology are also discussed.

  4. Altered p53 and NOX1 activity cause bioenergetic defects in a SCA7 polyglutamine disease model.

    Science.gov (United States)

    Ajayi, Abiodun; Yu, Xin; Wahlo-Svedin, Carolina; Tsirigotaki, Galateia; Karlström, Victor; Ström, Anna-Lena

    2015-01-01

    Spinocerebellar ataxia type 7 (SCA7) is one of the nine neurodegenerative disorders caused by expanded polyglutamine (polyQ) domains. Common pathogenic mechanisms, including bioenergetics defects, have been suggested for these so called polyQ diseases. However, the exact molecular mechanism(s) behind the metabolic dysfunction is still unclear. In this study we identified a previously unreported mechanism, involving disruption of p53 and NADPH oxidase 1 (NOX1) activity, by which the expanded SCA7 disease protein ATXN7 causes metabolic dysregulation. The NOX1 protein is known to promote glycolytic activity, whereas the transcription factor p53 inhibits this process and instead promotes mitochondrial respiration. In a stable inducible PC12 model of SCA7, p53 and mutant ATXN7 co-aggregated and the transcriptional activity of p53 was reduced, resulting in a 50% decrease of key p53 target proteins, like AIF and TIGAR. In contrast, the expression of NOX1 was increased approximately 2 times in SCA7 cells. Together these alterations resulted in a decreased respiratory capacity, an increased reliance on glycolysis for energy production and a subsequent 20% reduction of ATP in SCA7 cells. Restoring p53 function, or suppressing NOX1 activity, both reversed the metabolic dysfunction and ameliorated mutant ATXN7 toxicity. These results hence not only enhance the understanding of the mechanisms causing metabolic dysfunction in SCA7 disease, but also identify NOX1 as a novel potential therapeutic target in SCA7 and possibly other polyQ diseases.

  5. Conversion of Fuel-N to N2O and NOx during Coal Combustion in Combustors of Different Scale

    Institute of Scientific and Technical Information of China (English)

    周昊; 黄燕; 莫桂源; 廖子昱; 岑可法

    2013-01-01

    With focus on investigating the effect of combustor scale on the conversion of fuel-N to NOx and N2O, experiments are carried out in three combustors, including single coal particle combustion test rig, laboratory scale circulating fluidized-bed boiler (CFB) and full scale CFB in this work. For single coal particle combustion, the ma-jority of fuel-N (65%-82%) is released as NOx, while only a little (less than 8%) fuel-N yields N2O. But in labora-tory scale CFB, the conversion of fuel-N to N2O is increases, but the conversion of fuel-N to NOx is quite less than that of single coal particle combustion. This is because much char in CFB can promote the NOx reduction by in-creasing N2O formation. In full scale CFB, both of the conversion of fuel-N to NOx and the conversion of fuel-N to N2O are smaller than laboratory scale CFB.

  6. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded /sup 137/Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500/sup 0/C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of /sup 137/Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded /sup 137/Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10/sup -10/ kg m/sup -2/s/sup -1/, while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10/sup -12/ kg m/sup -2/s/sup -1/. The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level /sup 137/Cs aluminosilicate pellets were 1.29 x 10/sup -16/m/sup 2/s/sup -1/, 6.88 x 10/sup -17/m/sup 2/s/sup -1/, and 1.35 x 10/sup -17/m/sup 2/s/sup -1

  7. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    Energy Technology Data Exchange (ETDEWEB)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  8. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.

    Science.gov (United States)

    Huang, Ta-Jen; Hsu, Sheng-Hsiang; Wu, Chung-Ying

    2012-02-21

    The high fuel efficiency of lean-burn engines is associated with high temperature and excess oxygen during combustion and thus is associated with high-concentration NO(x) emission. This work reveals that very high concentration of NO(x) in the exhaust can be reduced and hydrocarbons (HCs) can be simultaneously oxidized using a low-temperature solid oxide fuel cell (SOFC). An SOFC unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3) (LSC)-Ce(0.9)Gd(0.1)O(1.95) as the cathode, with or without adding vanadium to LSC. SOFC operation at 450 °C and open circuit can effectively treat NO(x) over the cathode at a very high concentration in the simulated exhaust. Higher NO(x) concentration up to 5000 ppm can result in a larger NO(x) to N(2) rate. Moreover, a higher oxygen concentration promotes NO conversion. Complete oxidation of HCs can be achieved by adding silver to the LSC current collecting layer. The SOFC-based emissions control system can treat NO(x) and HCs simultaneously, and can be operated without consuming the anode fuel (a reductant) at near the engine exhaust temperature to eliminate the need for reductant refilling and extra heating.

  9. Toward improved catalytic low-temperature NOx removal in diesel-powered vehicles.

    Science.gov (United States)

    Klingstedt, Fredrik; Arve, Kalle; Eränen, Kari; Murzin, Dmitry Yu

    2006-04-01

    The potential of different catalytic after treatment techniques to meet future diesel emission standards, which are strongly shifted toward urban driving conditions including cold start, are critically discussed in this Account and evaluated for their suitability for commercial applications. The dominating techniques in this field are NO(x) storage, urea-selective catalytic reduction (SCR), and HC-SCR. Each of these techniques have significant disadvantages such as sulfur sensitiveness and regeneration requirements of NO(x)-storage materials, infrastructure issues and formation of ammonium nitrate (at low temperatures) for urea-SCR, and low-temperature activity of HC-SCR catalysts. Ways to overcome these disadvantages in commercial applications may involve optimized regeneration strategies, reactor modifications, flow reversal, closed-loop NO(x) feedback systems, nonthermal plasma, and/or hydrogen-assisted catalyses, etc.

  10. Development of a microscale NOx- biosensor for the study of nitrogen cycling in marine sediment

    DEFF Research Database (Denmark)

    Marzocchi, Ugo

    -) microscale biosensor matches these requirements. In fact, it can be constructed with a tip diameter ranging between 25 and 100 µm. Its functioning is based on the reduction of NOx- to N2O by denitrifying bacteria and the subsequent detection of N2O by means of an amperometric microsensor. The sensitivity...... of the biosensor can be amplified by the electrophoretic sensitivity control system (ESC) which positively polarizes the inner side of the sensor against an external reference inserted into the analyzed medium, inducing the migration of NOx- anions into the bacterial chamber. However, nowadays the widespread...... application of this microscale biosensor is constrained mainly because of a short lifetime caused by the fragility of some of its components. Moreover a detailed study characterizing the ESC efficiency under different condition is still missing. The aims of this thesis are: (i) to contribute...

  11. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation.

    Directory of Open Access Journals (Sweden)

    Tian Lan

    Full Text Available Reactive oxygen species (ROS produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4 to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS, platelet-derived growth factor (PDGF, or sonic hedgehog (Shh in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days. Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC.

  12. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    Science.gov (United States)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  13. Tailoring of Boehmite-Derived Aluminosilicate Aerogel Structure and Properties: Influence of Ti Addition

    Science.gov (United States)

    Hurwitz, Frances I.; Guo, Haiquan; Sheets, Erik J.; Miller, Derek R.; Newlin, Katy N.

    2010-01-01

    Aluminosilicate aerogels offer potential for extremely low thermal conductivities at temperatures greater than 900 C, beyond where silica aerogels reach their upper temperature limits. Aerogels have been synthesized at various Al:Si ratios, including mullite compositions, using Boehmite (AlOOH) as the Al source, and tetraethoxy orthosilicate as the Si precursor. The Boehmite-derived aerogels are found to form by a self-assembly process of AlOOH crystallites, with Si-O groups on the surface of an alumina skeleton. Morphology, surface area and pore size varies with the crystallite size of the starting Boehmite powder, as well as with synthesis parameters. Ternary systems, including Al-Si-Ti aerogels incorporating a soluble Ti precursor, are possible with careful control of pH. The addition of Ti influences sol viscosity, gelation time pore structure and pore size distribution, as well as phase formation on heat treatment.

  14. Composites of Polyindole nanowires within Silicate and Aluminosilicate hosts with distinct conductive properties

    Science.gov (United States)

    Juárez, J. M.; Gómez Costa, M. B.; Anunziata, O. A.

    2016-07-01

    Nanostructured silicate SBA-15 and aluminosilicate AlSBA-15 were synthesized in order to prepare polyindole composites. The Silica mesoporous materials were prepared by sol- gel method and alumination using post-synthesis technique and analysed by different methods (XRD, BET, TEM, and FTIR). Polyindole/host composites were prepared by in situ oxidative polymerization of pre-adsorbed indole, employing Cl3Fe as oxidant. TG, FTIR, BET, XRD, SEM and TEM were used to characterize the resulting composites. These studies show that the porous structures of the materials are preserved after polymerization, and polyindole is found within the porous channels. The composites have an electrical conductivity range between values higher than those of the pure chemically synthesized polyindole, close to those of the pure electrochemically synthesized polymer and lower than those of the pure chemically synthesized polymer, in the order of 10-8 S/cm.

  15. n-Dodecane Hydroconversion over Nickel Supported on Different Mesoporous Aluminosilicates

    Institute of Scientific and Technical Information of China (English)

    FANG, Ke-Gong(房克功); REN, Jie(任杰); SUN, Yu-Han(孙予罕)

    2004-01-01

    Several 2.0 wt% nickel catalysts supported on nanometer bimodal mesoporous aluminosilicate (NBMAS),AlHMS and AlMCM-41 were prepared by means of the wetness impregnation method. The characterization techniques such as Py-FTIR and H2 chemisorption showed that the amount of Bronsted acid sites decreased in the order of Ni/AlHMS>Ni/AlMCM-41 >Ni/NBMAS, while the nickel dispersion differed a little. In the catalytic n-dodecane hydroconversion, the highest conversion was obtained over Ni/NBMAS, and the lowest isomerization selectivity occurred over Ni/AlHMS. For the cracked products, the symmetrical carbon number distribution centered at C6 was obtained on the Ni/AlMCM-41 catalyst due to the well balanced metal/acid functions, whereas the Ni/AlHMS and Ni/NBMAS catalysts led to more C3-C5 and C1 +C11 products, respectively.

  16. Investigation of Al–O–Al sites in an Na-aluminosilicate glass

    Indian Academy of Sciences (India)

    Erdem Yildirim; Ray Dupree

    2004-06-01

    This paper reports the presence of Al–O–Al linkages in an aluminosilicate glass where Si/Al = 1 by using 2D 17O triple quantum MAS NMR technique (3Q MASNMR). The experiments were performed at external magnetic fields of 8.4 and 14.4T. Despite 17OMAS NMR spectra of the sample in both fields do not give much information about the different kinds of linkages in the sample, 3Q MAS NMR spectrum shows clear evidence that there are some amounts of Al–O–Al linkages in the sample giving two completely resolved peaks. These two peaks were attributed to the Si–O–Al and Al–O–Al linkages on the basis of their chemical shifts and, quadrupolar coupling constants which are quite sensitive to the local structure.

  17. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease

    Science.gov (United States)

    Rastogi, Radhika; Geng, Xiaokun; Li, Fengwu; Ding, Yuchuan

    2017-01-01

    Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological diseases, including stroke, TBI, and neurodegenerative diseases. Pathologically, NOX produces an excessive amount of ROS that exceed the body’s antioxidant ability to neutralize them, leading to oxidative stress and aberrant signaling. This prevalence makes it an attractive therapeutic target and as such, NOX inhibitors have been studied and developed to counter NOX’s deleterious effects. However, recent studies of NOX have created a better understanding of the NOX complex. Comprised of independent cytosolic subunits, p47-phox, p67-phox, p40-phox and Rac, and membrane subunits, gp91-phox and p22-phox, the NOX complex requires a unique activation process through subunit interaction. Of these subunits, p47-phox plays the most important role in activation, binding and translocating the cytosolic subunits to the membrane and anchoring to p22-phox to organize the complex for NOX activation and function. Moreover, these interactions, particularly that between p47-phox and p22-phox, are dependent on phosphorylation initiated by upstream processes involving protein kinase C (PKC). This review will look at these interactions between subunits and with PKC. It will focus on the interaction involving p47-phox with p22-phox, key in bringing the cytosolic subunits to the membrane. Furthermore, the implication of these interactions as a target for NOX inhibitors such as apocynin will be discussed as a potential avenue for further investigation, in order to develop more specific NOX inhibitors based on the inhibition of NOX assembly and activation. PMID:28119569

  18. NOx abatement in the exhaust of lean-burn natural gas engines over Ag-supported γ-Al2O3 catalysts

    Science.gov (United States)

    Azizi, Y.; Kambolis, A.; Boréave, A.; Giroir-Fendler, A.; Retailleau-Mevel, L.; Guiot, B.; Marchand, O.; Walter, M.; Desse, M.-L.; Marchin, L.; Vernoux, P.

    2016-04-01

    A series of Ag catalysts supported on γ-Al2O3, including two different γ-Al2O3 supports and various Ag loadings (2-8 wt.%), was prepared, characterized (SEM, TEM, BET, physisorption, TPR, NH3-TPD) and tested for the selective catalytic reduction of NOx by CH4 for lean-burn natural gas engines exhausts. The catalysts containing 2 wt.% Ag supported on γ-Al2O3 were found to be most efficient for the NOx reduction into N2 with a maximal conversion of 23% at 650 °C. This activity was clearly linked with the ability of the catalyst to concomitantly produce CO, via the methane steam reforming, and NO2. The presence of small AgOx nanoparticles seems to be crucial for the methane activation and NOx reduction.

  19. Weekly patterns of México City's surface concentrations of CO, NOx, PM10 and O3 during 1986–2007

    Directory of Open Access Journals (Sweden)

    R. Muñoz

    2008-09-01

    Full Text Available Surface pollutant concentrations in México City show a distinct pattern of weekly variations similar to that observed in many other cities of the world. Measurements of the concentrations of carbon monoxide (CO, nitrogen oxides (NOx=NO+NO2, particulate matter smaller than 10 μm (PM10, and ozone (O3 collected hourly over 22 years (1986–2007 at 39 urban monitoring locations were analyzed. Morning concentrations of CO, NOx, and PM10 are lower on Saturdays and even more so on Sundays, compared to workdays (Monday–Friday, while afternoon O3 concentrations change minimally and are occasionally even higher. This weekend effect is empirical evidence that photochemical O3 production is NOx-inhibited, and to the extent that emissions of CO are proportional to those of reactive volatile organic compounds (VOCs, it is VOC-limited, at least in the urban areas for which the monitoring stations are representative. The VOC-limitation has increased in the past decade, due to decreases in the concentrations of CO (and presumably VOCs and consequent decreases in the CO/NOx and VOC/NOx ratios. Enhancements of photolysis frequencies resulting from smaller weekend aerosol burdens are not negligible, but fall short of being an alternate explanation for the observed weekend effect. The strength of the weekend effect indicates that local radical termination occurs primarily via formation of nitric acid and other NOx-related compounds, some of which (e.g. peroxy acyl nitrates can contribute to the regional NOx budget. While VOC emission reductions would be most effective in reducing local O3 production, NOx emission reduction may be more important for controlling regional oxidants.

  20. Weekly patterns of México City's surface concentrations of CO, NOx, PM10 and O3 during 1986–2007

    Directory of Open Access Journals (Sweden)

    A. Retama

    2008-05-01

    Full Text Available Surface pollutant concentrations in México City show a distinct pattern of weekly variations similar to that observed in many other cities of the world. Measurements of the concentrations of carbon monoxide (CO, nitrogen oxides (NOx=NO+NO2, particulate matter smaller than 10 μm (PM10, and ozone (O3 collected hourly over 22 years (1986–2007 at 32 urban monitoring locations were analyzed. Morning concentrations of CO, NOx, and PM10 are lower on Saturdays and even more so on Sundays, compared to workdays (Monday–Friday, while afternoon O3 concentrations change minimally and are occasionally even higher. This weekend effect is empirical evidence that photochemical O3 production is NOx-inhibited, and to the extent that emissions of CO are correlated with reactive volatile organic compounds (VOCs, it is VOC-limited, at least in the urban areas for which the monitoring stations are representative. The VOC-limitation has increased in the past decade, due to decreases in the concentrations of CO (and presumably VOCs and consequent decreases in the CO/NOx and VOC/NOx ratios. Enhancements of photolysis frequencies resulting from smaller weekend aerosol burdens are not negligible, but fall short of being an alternate explanation for the observed weekend effect. The strength of the weekend effect indicates that local radical termination occurs primarily via formation of nitric acid and other NOx-related compounds, some of which (e.g. peroxy acyl nitrates can contribute to the regional NOx budget. While VOC emission reductions would be most effective in reducing local O3 production, NOx emission reduction may be more important for controlling regional oxidants.

  1. Imprinting the surface of mesoporous aluminosilicates using organic structure-directing agents

    Science.gov (United States)

    Sawant, Kaveri R.

    Combining the positive structural features of mesoporous materials and microporous zeolite aluminosilicates can lead to the synthesis and application of new materials useful for catalytic processes involving large organic reactant molecules. We used organic structure-directing agents (SDAs), typically used for the synthesis of zeolites, to imprint the surface of existing mesoporous materials to create novel materials with enhanced structural properties towards this aim: materials with large well-ordered pores allowing access to large reactants with strong accessible acid sites on the surface of the pores leading to stable and active catalysts. We developed new protocols for incorporating tetrapropyl ammonium and N,N,N-trimethyl-1-adamantylammonium, SDAs used for the synthesis of the zeolites ZSM-5 (MFI) and MCM-22 (MWW) respectively, into the walls of the siliceous mesoporous material SBA-15 by using a combination of an organic solvent (glycerol) and water, to form novel porous materials. We studied the evolution of the modified pore structure of the materials by a battery of characterization techniques. Results indicate that the new materials have well-ordered pores with significantly larger mesopore diameters and structurally modified thinner, denser pore walls. We carried out similar treatments and characterization on the aluminum containing form of SBA-15, Al-SBA-15, with high and low amounts of aluminum. Pair distribution function analysis was used to analyze the structural differences in the materials and catalytic test reactions such as cumene and n-hexane cracking to detect the presence of strong acid sites like the ones in ZSM-5. Results similar to the treatments on the all-silica materials, although promising, led to novel meso-micro aluminosilicate materials with limited increase in or no catalytic activity with reference to the test reactions employed. This led to the conclusion that the aluminum in the materials was merely a spectator and did not

  2. Nanomaterials to Combat NO(x) Pollution.

    Science.gov (United States)

    Balbuena, J; Cruz-Yusta, M; Sánchez, L

    2015-09-01

    The presence of NO9x) gases (NO+NO2) in the atmosphere is a major concern of society because of their associated adverse and harmful effects. In order to remove the NO(x) gases from the air, photocatalysis arises as an innovative and promising technique. Through the use of photochemical oxidation processes the NO and NO2 gases are oxidised to NO3- form and thus removed from the air. In recent years new nanomaterials are being developed by researchers with the aim to enhance their photocatalytic activity to combat the NO(x) pollution. The main focus is devoted to preparing new TiO2 based compounds with the highest specific surface area (SSA), different morphology and chemical modifications. In order to increase the SSA, different substrates were used to disperse the TiO2 nanoparticles: organic and carbon fibres, mesoporous materials, clays composites and nanoporous microparticles. In the other hand, high photocatalytic performances were obtained with nanotubes, self-orderer nano-tubular films and nanoparticles with the lowest size. Conversely, when TiO2 is doped with ions the oxide exhibited a better photocatalytic performance under visible light, which is related to the creation of intermediate energy states between the conduction band and the valence band. Alternatively, visible light photocatalysts different from titanium oxide have been studied, which exhibit a good De-NO(x) efficiency working under λ > 400 nm visible light irradiation.

  3. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity.

    Science.gov (United States)

    Sipkens, Jessica A; Hahn, Nynke; van den Brand, Carlien S; Meischl, Christof; Cillessen, Saskia A G M; Smith, Desirée E C; Juffermans, Lynda J M; Musters, René J P; Roos, Dirk; Jakobs, Cornelis; Blom, Henk J; Smulders, Yvo M; Krijnen, Paul A J; Stehouwer, Coen D A; Rauwerda, Jan A; van Hinsbergh, Victor W M; Niessen, Hans W M

    2013-11-01

    Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01-2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47(phox) expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47(phox), and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47(phox) in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47(phox) was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.

  4. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of stea

  5. NOX Activity Is Increased in Mild Cognitive Impairment

    Science.gov (United States)

    Gupta, Sunita; Parrino, Taryn E.; Knight, Alecia G.; Ebenezer, Philip J.; Weidner, Adam M.; LeVine, Harry; Keller, Jeffrey N.; Markesbery, William R.

    2010-01-01

    Abstract This study was undertaken to investigate the profile of NADPH oxidase (NOX) in the clinical progression of Alzheimer's disease (AD). Specifically, NOX activity and expression of the regulatory subunit p47phox and the catalytic subunit gp91phox was evaluated in affected (superior and middle temporal gyri) and unaffected (cerebellum) brain regions from a longitudinally followed group of patients. This group included both control and late-stage AD subjects, and also subjects with preclinical AD and with amnestic mild cognitive impairment (MCI) to evaluate the profile of NOX in the earliest stages of dementia. Data show significant elevations in NOX activity and expression in the temporal gyri of MCI patients as compared with controls, but not in preclinical or late-stage AD samples, and not in the cerebellum. Immunohistochemical evaluations of NOX expression indicate that whereas microglia express high levels of gp91phox, moderate levels of gp91phox also are expressed in neurons. Finally, in vitro experiments showed that NOX inhibition blunted the ability of oligomeric amyloid beta peptides to injure cultured neurons. Collectively, these data show that NOX expression and activity are upregulated specifically in a vulnerable brain region of MCI patients, and suggest that increases in NOX-associated redox pathways in neurons might participate in the early pathogenesis of AD. Antioxid. Redox Signal. 12, 1371–1382. PMID:19929442

  6. ASCR{trademark}: lower NOx removal costs without sacrificing performance

    Energy Technology Data Exchange (ETDEWEB)

    Bible, S.; Rummenhohl, V.; Siebeking, M.; Thomas, R.; Triece, C. [Fuel Tech (United States)

    2011-05-15

    With recent regulatory initiatives, the new Industrial Emissions Directive in Europe, and new rules being proposed by EPA in the USA, the question for power plants is now whether they will be required to reduce NOx emissions in the future to stay in operation, but when. What is needed is a low-capital-cost but high-performance NOx removal technology. 7 figs.

  7. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas.

    Science.gov (United States)

    Zheng, Maosheng; Li, Can; Liu, Shufeng; Gui, Mengyao; Ni, Jinren

    2016-11-15

    Conventional biological removal of nitrogen oxides (NOx) from flue gas has been severely restricted by the presence of oxygen. This paper presents an efficient alternative for NOx removal at varying oxygen levels using the newly isolated bacterial strain Pseudomonas aeruginosa PCN-2 which was capable of aerobic and anoxic denitrification. Interestingly, nitric oxide (NO), as the obligatory intermediate, was negligibly accumulated during nitrate and nitrite reduction. Moreover, normal nitrate reduction with decreasing NO accumulation was realized under O2 concentration ranging from 0 to 100%. Reverse transcription and real-time quantitative polymerase chain reaction (RT-qPCR) analysis revealed that high efficient NO removal was attributed to the coordinate regulation of gene expressions including napA (for periplasmic nitrate reductase), nirS (for cytochrome cd1 nitrite reductase) and cnorB (for NO reductase). Further batch experiments demonstrated the immobilized strain PCN-2 possessed high capability of removing NO and nitrogen dioxide (NO2) at O2 concentration of 0-10%. A biotrickling filter established with present strain achieved high NOx removal efficiencies of 91.94-96.74% at inlet NO concentration of 100-500ppm and O2 concentration of 0-10%, which implied promising potential applications in purifying NOx contaminated flue gas.

  8. Modern firing technology with primary emission reduction

    Energy Technology Data Exchange (ETDEWEB)

    Juergen Willmann; Detlef Boese [Babcock Borsig Service GmbH (Germany)

    2004-07-01

    Cleaning of the flue gases of power station plants has increased enormously in the context of the environmental protection. Besides the cleaning of the flue gases of dust emissions by electrostatic precipitators the reduction of NOx emissions will become more and more important. The limit value of NOx emissions in Germany for boiler with a high steam capacity is 200mg/m{sup 3}n. Babcock has great experience of primary reduction of NOx emissions for different firing systems. For the choice of the firing system an exact knowledge about the coal and the ash composition is required. The significant properties of the coal are the calorific value and volatile matter content. The influence of firing systems and milling systems on combustion is discussed. 7 figs.

  9. Structural Role of Alkali Cations in Calcium Aluminosilicate Glasses as Examined Using Oxygen-17 Solid-State Nuclear Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Sukenaga, Sohei; Kanehashi, Koji; Shibata, Hiroyuki; Saito, Noritaka; Nakashima, Kunihiko

    2016-08-01

    The structural roles of alkali and calcium cations are important for understanding the physical and chemical properties of aluminosilicate melts and glasses. Recently, oxygen-17 nuclear magnetic resonance (17O NMR) studies of calcium-sodium aluminosilicate glasses showed that these structural roles are not randomly given, but rather each cation has its own preferential role. However, the relationship between cation type and role preference in calcium aluminosilicate glass is not completely understood. In the present study, the structural roles of lithium, sodium, and potassium cations in selected calcium aluminosilicate glasses are investigated using 17O solid-state NMR experiments. Data from these experiments clearly show that potassium cations have a notably stronger tendency to act as charge compensators within the network structure, compared to sodium and lithium cations. The result of 17O NMR experiment also showed that sodium and lithium cations in part act as network modifier alongside with calcium cations.

  10. A Novel Conversion Process for Waste Slag: The Preparation of Aluminosilicate Glass with Evaluation of the Dielectric Properties from Blast Furnace Slag

    Science.gov (United States)

    Li, Sheng; Huang, Sanxi; Liu, Hongting; Wu, Fengnian; Chang, Ziyuan; Yue, Yunlong

    2015-11-01

    In this paper, aluminosilicate glass was prepared from blast furnace slag and quartz sand. Fourier transform infrared, differential scanning calorimetry and density measurements were carried out to investigate the effects of SiO2 on the aluminosilicate glass network rigidity. The results indicate that glass structure would be enhanced if more SiO2 was introduced into the glass system. Meanwhile, both the glass transition temperature ( T g) and the glass crystallization temperature ( T c) increase slightly; the increase in density of the glass being further evidence of the enhancement in glass network rigidity. Dielectric measurements show that the dielectric constant and dielectric loss decrease with more SiO2. The properties of the prepared aluminosilicate glasses are comparable to those of E glass, indicating that blast furnace slags are suitable for producing aluminosilicate glass with low dielectric constant and dielectric loss.

  11. Constraining NOx emissions over East Asia using satellite NO2 column retrievals with emphasis on the role of NOx transport

    Science.gov (United States)

    Lee, H.; Kim, S.; Brioude, J. F.; Cooper, O. R.; Frost, G. J.; Kim, C.; Trainer, M.

    2013-12-01

    Satellite observations have provided a continuous view of significant changes in NOx emissions over the past two decades. In this study, tropospheric NO2 columns from the polar orbiting OMI, SCIAMACHY and GOME-2 instruments were used to diagnose the annual and seasonal variations and the spatial characteristic of NOx emissions over East Asia. As expected, we found substantial increases in both NO2 columns and bottom-up NOx emissions over China from 2005 to 2011, resulting from rapid economic growth. However, the year-to-year change in NO2 columns over Korea showed increasing trends, in contrast to decreasing inventoried NOx emissions. Both NO2 columns and bottom-up NOx emissions over Japan decreased during this period. Seasonally, maximum and minimum NO2 columns occur in winter and summer above China, Korea, and Japan, as NOx chemical lifetime changes. Above Korea and Japan, however, secondary peaks are found in spring. Numerical simulations using Lagrangian and Eulerian chemical transport models indicate that transport of NOx from China could explain the spring peaks of NO2 columns above Korea and Japan and the discrepancy between annual trends of satellite observations and bottom-up emissions downwind of China . The model results also quantify the contributions of emissions and transport to the local NOx budget over each country and sub-regions of China.

  12. The influence of temperature on ozone production under varying NOx conditions - a modelling study

    Science.gov (United States)

    Coates, Jane; Mar, Kathleen A.; Ojha, Narendra; Butler, Tim M.

    2016-09-01

    emitted VOCs. The box model simulations approximating stagnant conditions and the maximal ozone production chemical regime reproduced the 2 ppbv increase in ozone per degree Celsius from the observational and regional model data over central Europe. The simulated ozone-temperature relationship was more sensitive to mixing than the choice of chemical mechanism. Our analysis suggests that reductions in NOx emissions would be required to offset the additional ozone production due to an increase in temperature in the future.

  13. The effect of coal-fired power-plant SO2 and NOx control technologies on aerosol nucleation in the source plumes

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2012-12-01

    Full Text Available Nucleation in coal-fired power-plant plumes can greatly contribute to particle number concentrations near source regions. The changing emissions rates of SO2 and NOx due to pollution-control technologies over recent decades may have had a significant effect on aerosol formation and growth in the plumes with ultimate implications for climate and human health. We use the System for Atmospheric Modeling (SAM large-eddy simulation model with the TwO-Moment Aerosol Sectional (TOMAS microphysics algorithm to model the nucleation in plumes of coal-fired plants. We test a range of cases with varying emissions to simulate the implementation of emissions-control technologies between 1997 and 2010. We start by simulating the W. A. Parish power plant (near Houston, TX during this time period, when NOx emissions were reduced by ~90% and SO2 emissions decreased by ~30%. Increases in plume OH (due to the reduced NOx produced enhanced SO2 oxidation and an order-of-magnitude increase in particle nucleation in the plume despite the reduction in SO2 emissions. These results suggest that NOx emissions could strongly regulate particle nucleation and growth in power-plant plumes. Next, we test a range of cases with varying emissions to simulate the implementation of SO2 and NOx emissions-control technologies. Particle formation generally increases with SO2 emission, while NOx shows two different regimes: increasing particle formation with increasing NOx under low-NOx emissions and decreasing particle formation with increasing NOx under high-NOx emissions. Next, we compare model results with airborne measurements made in the W. A. Parish power-plant plume in 2000 and 2006, confirming the importance of NOx emissions on new particle formation and highlighting the substantial effect of background aerosol loadings on this process (the more polluted background of the 2006 case caused more than an order-of-magnitude reduction in particle formation in the plume compared to

  14. Association between NOx exposure and deaths caused by respiratory diseases in a medium-sized Brazilian city

    Directory of Open Access Journals (Sweden)

    A. C. G. César

    2015-12-01

    Full Text Available Exposure to nitrogen oxides (NOx emitted by burning fossil fuels has been associated with respiratory diseases. We aimed to estimate the effects of NOx exposure on mortality owing to respiratory diseases in residents of Taubaté, São Paulo, Brazil, of all ages and both sexes. This time-series ecological study from August 1, 2011 to July 31, 2012 used information on deaths caused by respiratory diseases obtained from the Health Department of Taubaté. Estimated daily levels of pollutants (NOx, particulate matter, ozone, carbon monoxide were obtained from the Centro de Previsão de Tempo e Estudos Climáticos Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System. These environmental variables were used to adjust the multipollutant model for apparent temperature. To estimate association between hospitalizations owing to asthma and air pollutants, generalized additive Poisson regression models were developed, with lags as much as 5 days. There were 385 deaths with a daily mean (±SD of 1.05±1.03 (range: 0-5. Exposure to NOx was significantly associated with mortality owing to respiratory diseases: relative risk (RR=1.035 (95% confidence interval [CI]: 1.008-1.063 for lag 2, RR=1.064 (95%CI: 1.017-1.112 lag 3, RR=1.055 (95%CI: 1.025-1.085 lag 4, and RR=1.042 (95%CI: 1.010-1.076 lag 5. A 3 µg/m3 reduction in NOx concentration resulted in a decrease of 10-18 percentage points in risk of death caused by respiratory diseases. Even at NOx concentrations below the acceptable standard, there is association with deaths caused by respiratory diseases.

  15. The impact of resolution on ship plume simulations with NOx chemistry

    Directory of Open Access Journals (Sweden)

    J. H. Marsham

    2009-03-01

    Full Text Available A high resolution chemical transport model of the marine boundary layer is designed in order to investigate the detailed chemical evolution of a ship plume. To estimate systematic errors due to finite model resolution, otherwise identical simulations are run at a range of model resolutions. Notably, to obtain comparable plumes in the different simulations, it is found necessary to use an advection scheme consistent with the Large Eddy Model representation of sub-grid winds for those simulations with degraded resolution. Our simulations show that OH concentration, NOx lifetime and ozone production efficiency of the model change by 8%, 32% and 31% respectively between the highest (200 mx200 mx40 m and lowest resolution (9600 mx9600 mx1920 m simulations. Interpolating to the resolution of a typical global composition transport model (CTM, 5°x5°, suggests that a CTM overestimates OH, NOx lifetime and ozone production efficiency by approximately 15%, 55% and 59% respectively. For the first time, it is shown explicitly that the reduction in model skill is due to the coarse resolution of these CTMs and the non-linear nature of atmospheric chemistry. These results are significant for the assessment and forecasting of the climate impact of ship NOx and indicate that for realistic representation of ship plume emissions in CTMs, some suitable parametrisation is necessary at current global model resolutions.

  16. New Insights into the Steen Solution Properties: Breakthrough in Antioxidant Effects via NOX2 Downregulation

    Directory of Open Access Journals (Sweden)

    Roberto Carnevale

    2014-01-01

    Full Text Available Ex vivo lung perfusion (EVLP allows perfusion and reconditioning of retrieved lungs for organ transplantation. The Steen solution is specifically designed for this procedure but the mechanism through which it elicits its activity is still to be fully clarified. We speculated that Steen solution may encompass antioxidant properties allowing a reestablishment of pulmonary tissue homeostasis. Blood samples from 10 healthy volunteers were recruited. Platelets and white cells were incubated with Steen solution or buffer solution as control and stimulated with suitable agonists. Reactive oxidant species (ROS, soluble NOX2 (sNOX2-derived peptide, a marker of NADPH oxidase activation, p47phox translocation to cell membrane and isoprostanes production, as marker of oxidative stress, and nitric oxide (NO, a powerful vasodilator and antioxidant molecule, were measured upon cell stimulation. The Steen solution significantly inhibited p47phox translocation and NOX2 activation in platelets and white cells. Consistent with this finding was the reduction of oxidative stress as documented by a significantly lowered formation of ROS and isoprostanes by both platelets and white cells. Finally, cell incubation with Steen solution resulted in enhanced generation of NO. Herewith, we provide the first evidence that Steen solution possesses antioxidant properties via downregulation of NADPH oxidase activity and enhanced production of NO.

  17. Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process

    Science.gov (United States)

    Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.

    2013-03-01

    A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.

  18. Eddy covariance fluxes and vertical concentration gradient measurements of NO and NO2 over a ponderosa pine ecosystem: observational evidence for within-canopy chemical removal of NOx

    Science.gov (United States)

    Min, K.-E.; Pusede, S. E.; Browne, E. C.; LaFranchi, B. W.; Cohen, R. C.

    2014-06-01

    Exchange of NOx (NO+NO2) between the atmosphere and biosphere is important for air quality, climate change, and ecosystem nutrient dynamics. There are few direct ecosystem-scale measurements of the direction and rate of atmosphere-biosphere exchange of NOx. As a result, a complete description of the processes affecting NOx following emission from soils and/or plants as they transit from within the plant/forest canopy to the free atmosphere remains poorly constrained and debated. Here, we describe measurements of NO and NO2 fluxes and vertical concentration gradients made during the Biosphere Effects on AeRosols and Photochemistry EXperiment 2009. In general, during daytime we observe upward fluxes of NO and NO2 with counter-gradient fluxes of NO. We find that NOx fluxes from the forest canopy are smaller than calculated using observed flux-gradient relationships for conserved tracers and also smaller than measured soil NO emissions. We interpret these differences as primarily due to chemistry converting NOx to higher nitrogen oxides within the forest canopy, which might be part of a mechanistic explanation for the "canopy reduction factor" applied to soil NOx emissions in large-scale models.

  19. Protonated nanostructured aluminosilicate (NSAS reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet

    Directory of Open Access Journals (Sweden)

    Constantinides Panayiotis P

    2009-07-01

    Full Text Available Abstract The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w, untreated control and 2% (w/w stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w and stigmastanol at 2% (w/w treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w NSAS and 2% (w/w stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model.

  20. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, K K; Rybaltovsky, A A; Vel' miskin, V V; Likhachev, M E; Bubnov, M M; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Umnikov, A A; Gur' yanov, A N; Vechkanov, N N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Shestakova, I A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicate glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)

  1. Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass: A phosphor for smart lighting

    Energy Technology Data Exchange (ETDEWEB)

    Lima, S.M., E-mail: smlima@uems.br [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C. P. 351, CEP 79804-970 Dourados, MS (Brazil); Andrade, L.H.C.; Rocha, A.C.P. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C. P. 351, CEP 79804-970 Dourados, MS (Brazil); Silva, J.R.; Farias, A.M.; Medina, A.N.; Baesso, M.L. [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR (Brazil); Nunes, L.A.O. [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP (Brazil); Guyot, Y.; Boulon, G. [Laboratoire de Physico-Chimie des Matériaux Luminescents, Université de Lyon 1, UMR 5620 CNRS, 69622 Villeurbanne (France)

    2013-11-15

    In this paper, a broad emission band from Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass is reported. By changing the excitation wavelengths, the results showed it is possible to tune the emission from green to orange, what combined with the scattered light from the same blue LED used for excitation, provided a color rendering index of 71 and a correlated color temperature of 6550 K. Our preliminary tests indicate this material as a promising phosphor towards the development of smart lighting devices. -- Highlights: • We report a broad emission band from Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass. • The maximum emission peak can be tune from green to orange region. • The test with a LED provided a color rendering index of 71 and a correlated color temperature of 6550 K.

  2. Carbonates-based noble metal-free lean NOx trap catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) with superior catalytic performance

    Science.gov (United States)

    Zhang, Yuxia; You, Rui; Liu, Dongsheng; Liu, Cheng; Li, Xingang; Tian, Ye; Jiang, Zheng; Zhang, Shuo; Huang, Yuying; Zha, Yuqing; Meng, Ming

    2015-12-01

    A series of base metal-based lean NOx trap (LNT) catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) were synthesized by successive impregnations and employed for the storage and reduction of NOx in the emissions of lean-burn engines at 350 °C. The XRD and XANES/EXAFS results reveal that the active phases in the corresponding catalysts exist as CeO2, Fe2O3, CuO and Co3O4, respectively. Among all the catalysts, CoOx-K2CO3/K2Ti8O17 exhibits the best performance, which cannot only trap the NOx quickly and completely at lean condition, giving the highest storage capacity (3.32 mmol/g) reported so far, but also reduce the NOx at rich condition, showing a NOx reduction percentage as high as 99.0%. Meanwhile, this catalyst displays an ultralow NOx to N2O selectivity (0.3%) during NOx reduction. The excellent performance of CoOx-K2CO3/K2Ti8O17 results from its largest amount of surface active oxygen species as revealed by XPS, O2-TPD and NO-TPD. HRTEM, FT-IR and CO2-TPD results illustrate that several kinds of K species such as sbnd OK groups, K2O, surface carbonates and bulk or bulk-like carbonates coexist in the catalysts. Based upon the in situ DRIFTS results, the participation of K2CO3 in NOx storage is confirmed, and the predominant NOx storage species is revealed as bidentate nitrites formed via multiple kinetic pathways. The low cost and high catalytic performance of the CoOx-based LNT catalyst make it most promising for the substitution of noble metal-based LNT catalysts.

  3. Building Selectivity for NO Sensing in a NOx Mixture with Sonochemically Prepared CuO Structures

    Directory of Open Access Journals (Sweden)

    Max R. Mullen

    2015-12-01

    Full Text Available Several technologies are available for decreasing nitrogen oxide (NOx emissions from combustion sources, including selective catalytic reduction methods. In this process, ammonia reacts with nitric oxide (NO and nitrogen dioxide (NO2. As the stoichiometry of the two reactions is different, electrochemical sensor systems that can distinguish between NO and NO2 in a mixture of these two gases are of interest. Since NO and NO2 can be brought to equilibrium, depending on the temperature and the surfaces that they are in contact with, the detection of NO and NO2 independently is a difficult problem and has not been solved to date. In this study, we explore a high surface area sonochemically prepared CuO as the resistive sensing medium. CuO is a poor catalyst for NOx equilibration, and requires temperatures of 500 C to bring about equilibration. Thus, at 300 C, NO and NO2 retain their levels after interaction with CuO surface. In addition, NO adsorbs more strongly on the CuO over NO2. Using these two concepts, we can detect NO with minimal interference from NO2, if the latter gas concentration does not exceed 20% in a NOx mixture over a range of 100–800 ppm. Since this range constitutes most of the range of total NOx concentrations in diesel and other lean burn engines, this sensor should find application in selective detection of NO in this combustion application. A limitation of this sensor is the interference with CO, but with combustion in excess air, this problem should be alleviated.

  4. Quantification of NOx emissions from NO2 hotspots over China: A satellite perspective

    Science.gov (United States)

    Liu, Fei; Beirle, Steffen; Zhang, Qiang; Wagner, Thomas; He, Kebin

    2014-05-01

    China is the primary contributor of global anthropogenic NOx emissions, owing to its massive energy demand driven by strong economic growth. Most of the emissions are emitted by power plants or/and from urban areas, from which have been placed considerable emphasis on promoting emission reduction by Chinese government. Better knowledge of their emissions could help to assess the achieved emission reductions and provide perspectives as to the future effectiveness, which is also a valuable aid for taking regulatory steps. Thus we have developed an unit-based emission inventory of China's coal-fired power plants with high spatial and temporal resolution for the period 1990-2010 in our previous work (Liu et al., in preparation), but developing an emission inventory for each city at the same resolution and accuracy is much more challenging. Strong power plants and large cities can be identified as NO2 "hotspots" using satellite-based instruments. It has been demonstrated in previous studies (Beirle et al., Science, 2011) that OMI products can be applied for the determination of megacity NOx emissions and their lifetime by analyzing the downwind decay of the NO2 plume. In addition, from the analysis of the OMI time-series, the construction of new, large power plants in China can clearly be identified (Zhang et al, GRL, 2009). We are working on determining Chinese hotspots emissions and lifetimes of NOx simultaneously from the observed downwind plume evolution and ECMWF wind fields using the latest OMI product (DOMINO V2.0). However, the method applied to isolated megacities like Riyadh needs to be modified in order to take interferences of several strong NOx sources within small distances into account.We will present and discuss different approaches to deal with this challenge. The derived power plant emission will be compared to the bottom-up unit-based emission inventory. The found relation between bottom-up and top-down emissions will be used for the evaluation of top

  5. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-04-30

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. A series of field tests for RRI at the Ameren Sioux Unit No.1 have demonstrated that RRI can provide up to 30% NOx reduction over the use of over fire air in large scale (480MW) cyclone fired utility boilers. The field tests and modeling results are in good agreement. Final data analysis has been completed for tests performed at Eastlake Power Station of a real-time waterwall corrosion monitoring system. The tests demonstrated that corrosion could be measured accurately in real-time in normal boiler operations, and an assessment of waterwall wastage could be made without impacting boiler availability. Detailed measurements of soot volume fraction have been performed for a coal burner in a pilot scale test furnace. The measured values are in good agreement with the expected trends for soot generation and destruction. Catalysts from four commercial manufacturers have been ordered and one of the samples was received this quarter. Several in situ analyses of vanadium-based SCR catalyst systems were completed at BYU. Results to date indicate that the system produces results that represent improvements compared to literature examples of similar experiments. Construction of the catalyst characterization system (CCS) reactor is nearly complete, with a few remaining details discussed in this report. A literature review originally commissioned from other parties is being updated and will be made available under separate cover as part of this investigation. Fabrication of the multi-catalyst slipstream

  6. Evidence for Al/Si tetrahedral network in aluminosilicate glasses from Al K-edge x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. [Laboratoire Pierre Sue, CEA-CNRS CE Saclay, Gif-sur Yvette (France)]|[INFN, Laboratori Nazionali di Frascati, Rome (Italy); Romano, C. [Rome, Univ. `Roma Tre` (Italy). Dip di Scienze Geologiche]|[Univ. Bayreuth (Germany). Bayerishes Geoinstitut; Marcelli, A.; Cibin, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Mottana, A.; Della Ventura, G. [Rome, Univ. `Roma Tre` (Italy). Dip di Scienze Geologiche]|[INFN, Laboratori Nazionali di Frascati, Rome (Italy); Giuli, G. [Florence Univ. (Italy). Dip. Scienze Mineralogiche; Courtial, P.; Dinwell, D.B. [Univ. Bayreuth (Germany). Bayerishes Geoinstitut

    1998-11-01

    The structure of aluminosilicate melts/glasses plays a key role in Earth Sciences for the understanding of rock-forming igneous processes, as well as in the Materials Sciences for their technical applications. In particular, the alkaline earth aluminosilicate glasses are an extremely important group of materials, with a wide range of commercial application, as well as serving as analogue for natural basaltic melts. However, definition of their structure and properties is still controversial, and in particular the role and effect of Al has long been a subject of debate. The paper reports a series of experimental x-ray absorption near-edge structure (XANES) spectra at the Al K edge on a series of synthetic glasses of peralkaline composition in the CaO-Al{sub 2}O{sub 3}-SiO{sub 2} system, together with a general theoretical framework for data analysis based on an ab initio full multiple scattering (MS) theory. It`s proposed an Al/Si tetrahedral network model for aluminosilicate glasses based on distorted polyhedra, with varying both the T-O (T=Al or Si) bond lengths and the T-O-T angles, and with different Al/Si composition. This model achieves a significant agreement between experiments and simulations. in these glasses, experimental data and theoretical results concur to support a model in which Al is network-former with a comparatively well ordered local medium-range order (up to 5 A).

  7. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  8. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  9. Preparation of carbon monoliths from orange peel for NOx retention

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2014-12-01

    Full Text Available A series of monoliths are prepared from orange peels and chemically activated with H3PO4, KOH, ZnCl2, and water vapor without a binder. The monoliths were characterized by N2 adsorption-desorption isotherms at 77 K, Boehm titrations and XPS. Thereafter, monoliths were tested for their ability to establish NOx retention. The results show that the retention capacities of NOx were a function of the textural properties and chemistries. The carbons synthesized with ZnCl2 and KOH retained similar amounts of NOx.

  10. Impact of Soot on NOx Adsorption over Cu-Modified Hydrotalcite-Derived Lean NOx Trap Catalyst.

    Science.gov (United States)

    Li, Bo; Song, Chonglin; Lv, Gang; Chen, Ke; Cao, Xiaofeng

    2017-03-28

    The impact of soot on NOx adsorption was studied over a Cu-modified hydrotalcite-derived lean NOx trap catalyst in a NO + O2 atmosphere. Powder X-ray diffraction, scanning electron microscopy, Raman scattering spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the surface properties of the pure catalyst and the soot/catalyst mixture. The adsorbed NOx species on the samples were evaluated by in situ diffuse reflectance Fourier transform spectroscopy. The soot coverage decreases the available adsorption sites on the surface of the catalyst, and a portion of active oxygen species are consumed by the soot oxidation during He pretreatment process. The NOx adsorption on two catalyst samples simultaneously undergoes two routes: the "nitrite route" and the "nitrate route". The "nitrite route" is more dominant than the "nitrate route". During NOx adsorption, the soot oxidation weakens the NO oxidation to NO2, and the released CO2 competes with NOx on the adsorption sites. Moreover, the temperature-programmed desorption tests indicate that the presence of soot reduces the NOx storage capacity of the catalyst and shifts the NO desorption peak to the lower temperature range by 50 °C.

  11. Impact of passenger car NOx emissions and NO2 fractions on urban NO2 pollution - Scenario analysis for the city of Antwerp, Belgium

    Science.gov (United States)

    Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn

    2016-02-01

    The annual NO2 concentrations in many European cities exceed the established air quality standard. This situation is mainly caused by Diesel cars whose NOx emissions are higher on the road than during type approval in the laboratory. Moreover, the fraction of NO2 in the NOx emissions of modern diesel cars appears to have increased as compared to previous models. In this paper, we assess 1) to which level the distance-specific NOx emissions of Diesel cars should be reduced to meet established air quality standards and 2) if it would be useful to introduce a complementary NO2 emissions limit. We develop a NO2 pollution model that accounts in an analysis of 9 emission scenarios for changes in both, the urban background NO2 concentrations and the local NO2 emissions at street level. We apply this model to the city of Antwerp, Belgium. The results suggest that a reduction in NOx emissions decreases the regional and urban NO2 background concentration; high NO2 fractions increase the ambient NO2 concentrations only in close spatial proximity to the emission source. In a busy access road to the city centre, the average NO2 concentration can be reduced by 23% if Diesel cars emitted 0.35 g NOx/km instead of the current 0.62 g NOx/km. Reductions of 45% are possible if the NOX emissions of Diesel cars decreased to the level of gasoline cars (0.03 g NOx/km). Our findings suggest that the Real-Driving Emissions (RDE) test procedure can solve the problem of NO2 exceedances in cities if it reduced the on-road NOx emissions of diesel cars to the permissible limit of 0.08 g/km. The implementation of a complementary NO2 emissions limit may then become superfluous. If Diesel cars continue to exceed by several factors their NOx emissions limit on the road, a shift of the vehicle fleet to gasoline cars may be necessary to solve persisting air quality problems.

  12. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    Science.gov (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  13. The Dutch Ministry of Housing, Spatial Planning and Environment (VROM) and the CO2 emission trade. NOx balancing method also useful for CO2; VROM klaar voor CO2-emissiehandel. NOx-verveningsmethode ook bruikbaar voor kooldioxide

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, A. [ed.

    2000-09-07

    Although officially the Dutch government has not yet decided to trade internal CO2 emissions, a representative of VROM presented an emission trading concept which at the moment is under development at VROM in cooperation with the US-based company ACE (Automated Credit Exchange). The concept aims at balancing cost for NOx reduction, but can also be applied as a solution to CO2 emission. The emission of Dutch electric power plants is used as an example for calculation.

  14. Removal of NO(x) at low temperature over mesoporous alpha-Mn2O3 catalyst.

    Science.gov (United States)

    Jeon, Mi-Jin; Park, Sung Hoon; Kim, Ji Man; Jeon, Jong-Ki; Kim, Sang Chai; Kim, Do Heui; Park, Young-Kwon

    2014-03-01

    Low-temperature selective catalytic reduction was carried out over various kinds of manganese oxide (MnOx) catalysts. Mesoporous alpha-Mn2O3, commercial bulk Mn2O3, and Mn/SBA-15 were used as the catalyst. The NOx removal performances of the catalysts were compared. Three different amounts of Mn (5, 10, and 15 wt%) were impregnated on SBA-15 to synthesize Mn/SBA-15. The physical and chemical properties of the catalysts were examined by Brunauer-Emmett-Teller, X-ray diffraction, X-ray photoelectron spectroscopy, and H2-temperature programmed reduction analyses. Of all catalysts examined, mesoporous alpha-Mn2O3 exhibited the highest low-temperature SCR de-NOx efficiency, reaching about 90% at 175 degrees C. This is attributed to strong reducing ability and high oxygen mobility of mesoporous alpha-Mn2O3 and well dispersed Mn2O3 in its mesoporous framework.

  15. 40 CFR 96.86 - Withdrawal from NOX Budget Trading Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from NOX Budget Trading... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.86 Withdrawal from NOX Budget Trading Program. (a)...

  16. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 96.186 Section 96.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual...

  17. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 97.186 Section 97.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as...

  18. 40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 97.386 Section 97.386 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading...

  19. 40 CFR 97.86 - Withdrawal from NOX Budget Trading Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from NOX Budget Trading... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins. § 97.86 Withdrawal from NOX Budget Trading Program. (a) Requesting withdrawal....

  20. Application of a Central Composite Design for the Study of NOx Emission Performance of a Low NOx Burner

    Directory of Open Access Journals (Sweden)

    Marcin Dutka

    2015-04-01

    Full Text Available In this study, the influence of various factors on nitrogen oxides (NOx emissions of a low NOx burner is investigated using a central composite design (CCD approach to an experimental matrix in order to show the applicability of design of experiments methodology to the combustion field. Four factors have been analyzed in terms of their impact on NOx formation: hydrogen fraction in the fuel (0%–15% mass fraction in hydrogen-enriched methane, amount of excess air (5%–30%, burner head position (20–25 mm from the burner throat and secondary fuel fraction provided to the burner (0%–6%. The measurements were performed at a constant thermal load equal to 25 kW (calculated based on lower heating value. Response surface methodology and CCD were used to develop a second-degree polynomial regression model of the burner NOx emissions. The significance of the tested factors over their respective ranges has been evaluated using the analysis of variance and by the consideration of the coefficients of the model equation. Results show that hydrogen addition to methane leads to increased NOx emissions in comparison to emissions from pure methane combustion. Hydrogen content in a fuel is the strongest factor affecting NOx emissions among all the factors tested. Lower NOx formation because of increased excess air was observed when the burner was fuelled by pure methane, but this effect diminished for hydrogen-rich fuel mixtures. NOx emissions were slightly reduced when the burner head was shifted closer to the burner outer tube, whereas a secondary fuel stream provided to the burner was found to have no impact on NOx emissions over the investigated range of factors.

  1. In situ structural analysis of calcium aluminosilicate glasses under high pressure

    Science.gov (United States)

    Muniz, R. F.; de Ligny, D.; Martinet, C.; Sandrini, M.; Medina, A. N.; Rohling, J. H.; Baesso, M. L.; Lima, S. M.; Andrade, L. H. C.; Guyot, Y.

    2016-08-01

    In situ micro-Raman spectroscopy was used to investigate the structural evolution of OH--free calcium aluminosilicate glasses, under high pressure and at room temperature. Evaluation was made of the role of the SiO2 concentration in percalcic join systems, for Al/(Al  +  Si) in the approximate range from 0.9 to 0.2. Under high pressure, the intensity of the main band related to the bending mode of bridging oxygen ({ν\\text{B}} [T-O-T], where T  =  Si or Al) decreased gradually, suggesting that the bonds were severely altered or even destroyed. In Si-rich glasses, compression induced a transformation of Q n species to Q n-1. In the case of Al-rich glass, the Al in the smallest Q n units evolved from tetrahedral to higher-coordinated Al ([5]Al and [6]Al). Permanent structural changes were observed in samples recovered from the highest pressure of around 15 GPa and, particularly for Si-rich samples, the recovered structure showed an increase of three-membered rings in the Si/Al tetrahedral network.

  2. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    Science.gov (United States)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  3. Chemical and mechanical consequences of environmental barrier coating exposure to calcium-magnesium-aluminosilicate.

    Energy Technology Data Exchange (ETDEWEB)

    Harder, B.; Ramirez-Rico, J.; Almer, J. D.; Kang, L.; Faber, K. (X-Ray Science Division); (NASA Glenn Research Center); (Univ. of Seville); (Rolls-Royce Corp.); (Northwestern Univ.)

    2011-06-01

    The success of Si-based ceramics as high-temperature structural materials for gas turbine applications relies on the use of environmental barrier coatings (EBCs) with low silica activity, such as Ba{sub 1-x}Sr{sub x}Al{sub 2}Si{sub 2}O{sub 8} (BSAS), which protect the underlying components from oxidation and corrosion in combustion environments containing water vapor. One of the current challenges concerning EBC lifetime is the effect of sandy deposits of calcium-magnesium-aluminosilicate (CMAS) glass that melt during engine operation and react with the EBC, changing both its composition and stress state. In this work, we study the effect of CMAS exposure at 1300 C on the residual stress state and composition in BSAS-mullite-Si-SiC multilayers. Residual stresses were measured in BSAS multilayers exposed to CMAS for different times using high-energy X-ray diffraction. Their microstructure was studied using a combination of scanning electron microscopy and transmission electron microscopy techniques. Our results show that CMAS dissolves the BSAS topcoat preferentially through the grain boundaries, dislodging the grains and changing the residual stress state in the topcoat to a nonuniform and increasingly compressive stress state with increasing exposure time. The presence of CMAS accelerates the hexacelsian-to-celsian phase transformation kinetics in BSAS, which reacts with the glass by a solution-reprecipitation mechanism. Precipitates have crystallographic structures consistent with Ca-doped celsian and Ba-doped anorthite.

  4. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials.

    Science.gov (United States)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-02-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (-150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  5. Atomic mobility in calcium and sodium aluminosilicate melts at 1200 °C

    Science.gov (United States)

    Claireaux, Corinne; Chopinet, Marie-Hélène; Burov, Ekaterina; Gouillart, Emmanuelle; Roskosz, Mathieu; Toplis, Michael J.

    2016-11-01

    Multicomponent chemical diffusion in liquids of the quaternary system CaO-Na2O-Al2O3-SiO2 has been studied. Diffusion-couple experiments were performed at 1200 °C and for different durations around a central composition of 64.5 wt%SiO2, 13.3 wt%Na2O, 10.8 wt%CaO, 11.4 wt%Al2O3, leading to an overconstrained system of equations that was used to determine the diffusion matrix of the system. The dominant eigenvector of the diffusion matrix was found to correspond to the exchange between sodium and calcium, consistent with the results of the ternary soda-lime silica system. On the other hand, neither of the other two eigenvectors of the diffusion matrix of the quaternary system involve sodium. Given a factor of 50 between the dominant and second eigenvalue, diffusion couples involving the exchange of sodium oxide and a network-forming oxide result in strong uphill diffusion of calcium. The second eigenvector, corresponding to the exchange of calcium with silicon and aluminum, is close to the dominant eigenvector found in previous studies of ternary alkaline-earth aluminosilicate systems. Our results therefore suggest that simple systems may be used to understand diffusive mechanisms in more complex systems.

  6. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    Science.gov (United States)

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  7. Effects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass

    Directory of Open Access Journals (Sweden)

    Mouritz N. Svenson

    2016-03-01

    Full Text Available Glasses can be chemically strengthened through the ion exchange process, wherein smaller ions in the glass (e.g., Na+ are replaced by larger ions from a salt bath (e.g., K+. This develops a compressive stress (CS on the glass surface, which, in turn, improves the damage resistance of the glass. The magnitude and depth of the generated CS depends on the thermal and pressure histories of the glass prior to ion exchange. In this study, we investigate the ion exchange-related properties (mutual diffusivity, CS, and hardness of a sodium aluminosilicate glass, which has been densified through annealing below the initial fictive temperature of the glass or through pressure-quenching from the glass transition temperature at 1 GPa prior to ion exchange. We show that the rate of alkali interdiffusivity depends only on the density of the glass, rather than on the applied densification method. However, we also demonstrate that for a given density, the increase in CS and increase in hardness induced by ion exchange strongly depends on the densification method. Specifically, at constant density, the CS and hardness values achieved through thermal annealing are larger than those achieved through pressure-quenching. These results are discussed in relation to the structural changes in the environment of the network-modifier and the overall network densification.

  8. The Influence of Base Concentration on the Surface Particle of Lithium Aluminosilicate System

    Science.gov (United States)

    Nazri, I. M.; Asliza, M. A. Sri; Othman, R.

    2008-03-01

    The study of base concentration effect toward surface particles of lithium aluminosilicate glass ceramic system has been done by using NaOH solution. The parent glass with composition of 60% SiO2, 31% Li2O, 6% Al2O3 and 3% TiO2 in wt% was prepared by melting process at 1250 °C prior to quenching rapidly to room temperature. Sintering and crystallization process on this parent glass were carefully examined by Differential thermal analysis (DTA) and X-Ray Diffraction (XRD). Based on these analyses, the selected crystal has been chosen as a precursor material. There are two controlling parameter involved in this study i.e. NaOH concentration and leaching period. The morphology of the glass ceramic particle was observed by Field Emission Scanning Electron Microscope (FESEM). The result shows that by increasing the basic concentration as well as increasing the soaking leaching period, the tendency of glass ceramic particle to leach out is relatively highs.

  9. Crystallinity and crystallization mechanism of lithium aluminosilicate glass by X-ray diffractometry

    Institute of Scientific and Technical Information of China (English)

    GUO Xing-zhong; YANG hui; CAO Ming; HAN Chen; SONG Fang-fang

    2006-01-01

    The crystallinity of lithium aluminosilicate(LAS) glass after crystallization were studied at different temperatures by X-ray diffractometry and the crystallinity of the standard glass ceramic with known crystal and glass phases was examined. The crystallization mechanism of LAS glass was analyzed by the crystallinity, with a formula relating the crystallinity (Ⅹ) and temperature (7). The results show that the calculated crystallinity of LAS glass by XRD increases with the crystallization temperature,in the range of 40% -50%, which is close to the calculated ones of standard samples with spodumene quartz ratio of 40%-70%. The activation energy of LAS glass is different within different temperature ranges; nEc is 125.44 kJ/mol at 710-810 ℃ and nEc is 17.42 kJ/mol at 810-980 ℃, which indicates different crystallization mechanisms. It has been proved that the required energy for crystallization of glass in the lower temperature range includes the interfacial energy between glass and crystalline phase and the free energy difference of atoms in structures of glass and crystal, and in the higher temperature ranges only the interfacial energy between glass and crystalline phase is considered.

  10. Effect of alkali-activation on aluminosilicate-based cementitious materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High-performance aluminosilieate-based eementitious materials were produced with fly ash from a coal power plant as one of the major raw materials.The structures of fly ash containing aluminosilicate-based cementitious materials were compared before and after treatment by the methods of nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM).During the 28 d curing time,the compressive strength of water glass and fly ash samples increased from 9.08 MPa to 26.75 MPa.The results show that most of the stiff shells are destroyed after mechanical grinding and chemical activation.Magic angle spinning (MAS)NMR of 27Al shows that the wide peak becomes narrow and the main peak shifts to the direction of low field,indicating the decrease of polymerization degree,the enhancing of activity,the decrease of six-coordination structure,and the increase of small and symmetrical four-coordination polyhedron structure within the aluminum-oxygen polyhedron network.Comparisons between MAS NMR of 29Si with different treatments suggest that Q0 disappears,the quantity of Q2 increases,and the quantity of Q4 decreases.The polym

  11. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash.

    Science.gov (United States)

    Liu, Minmin; Hou, Li-An; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and (29)Si and (27)Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  12. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Minmin [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Hou, Li-an, E-mail: 11liuminmin@tongji.edu.cn [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xi, Beidou; Zhao, Ying; Xia, Xunfeng [China Research Academy of Environmental Science, Beijing 200012 (China)

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and {sup 29}Si and {sup 27}Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  13. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    Science.gov (United States)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-02-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (-150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  14. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    Directory of Open Access Journals (Sweden)

    Amparo Borrell, Olga García-Moreno, Ramón Torrecillas, Victoria García-Rocha and Adolfo Fernández

    2012-01-01

    Full Text Available Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C. The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  15. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    Science.gov (United States)

    Liu, Minmin; Hou, Li-an; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-01

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  16. Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Kovarik, Libor; Zhu, Zihua; Varga, Tamas; Engelhard, Mark H.; Bowden, Mark E.; Nenoff, Tina M.; Garino, Terry

    2014-06-24

    Radionuclide 137Cs is one of the major fission products that dominate heat generation in spent fuels over the first 300 hundred years. A durable waste form for 137Cs that decays to 137Ba is needed to minimize its environmental impact. Aluminosilicate pollucite CsAlSi2O6 is selected as a model waste form to study the decay-induced structural effects. While Ba-containing precipitates are not present in charge-balanced Cs0.9Ba0.05AlSi2O6, they are found in Cs0.9Ba0.1AlSi2O6 and identified as monoclinic Ba2Si3O8. Pollucite is susceptible to electron irradiation induced amorphization. The threshold density of the electronic energy deposition for amorphization is determined to be ~235 keV/nm3. Pollucite can be readily amorphized under F+ ion irradiation at 673 K. A significant amount of Cs diffusion and release from the amorphized pollucite is observed during the irradiation. However, cesium is immobile in the crystalline structure under He+ ion irradiation at room temperature. The critical temperature for amorphization is not higher than 873 K under F+ ion irradiation. If kept at or above 873 K all the time, the pollucite structure is unlikely to be amorphized; Cs diffusion and release are improbable. A general discussion regarding pollucite as a potential waste form is provided in this report.

  17. Separation of aluminosilicates and diaspore from diasporic-bauxite by selective flocculation

    Institute of Scientific and Technical Information of China (English)

    HUANG Chuan-bing; ZHANG Lin; WANG Yu-hua; LAN Ye

    2008-01-01

    The flocculation tests of four pure minerals (diaspore, kaolinite, illite, pyrophyllite) and bauxite ore were investigated by the sedimentation. The dispersion behavior of the four pure minerals shows a very good consistency with the variation of zeta potential. The concentrate with the mass ratio of Al2O3 to SiO2 (m(Al2O3)/m(SiO2)) 8.90 and the recovery of Al2O3 86.98% is obtained from bauxite ore (m(Al2O3)/m(SiO2)=5.68) in pH range of 9.5-10.0 by using sodium carbonate (5 kg/t) and sodium polyacrylate (7 g/t) as dispersant and flocculant respectively. Sodium carbonate acts as both pH modifier and favorable dispersant for aluminosilicates. The high performance of sodium polyacrylate on flocculation for diaspore is contributed to the carboxyl of sodium polyacrylate that interacts with active Al sites on diaspore by chemical absorption, and the hydrogen bond effects between hydroxyl group of macromolecule and surface Al--OH on diaspore to accelerate the sedimentation of diaspore.

  18. Synthesis of hydrothermally stable, hierarchically mesoporous aluminosilicate Al-SBA-1 and their catalytic properties

    Science.gov (United States)

    Li, Na; Wang, Jin-Gui; Xu, Jian-Xiong; Liu, Jin-Yu; Zhou, Hui-Jing; Sun, Ping-Chuan; Chen, Tie-Hong

    2012-03-01

    Hydrothermally stable mesoporous aluminosilicates Al-SBA-1 with hierarchical pore structure have been successfully synthesized under alkaline condition at 120 °C by employing organic mesomorphous complexes of polyelectrolyte (poly(acrylic acid) (PAA)) and cationic surfactant (hexadecyl pyridinium chloride (CPC)) as template. The Si/Al ratio could be as high as 5 and the incorporation of Al into the silica framework did not disturb the well-ordered cubic Pm3&cmb.macr;n mesostructure. Meanwhile, the incorporation of Al could greatly increase the specific surface area and pore volume of the samples. The Al-SBA-1 materials exhibited a high hydrothermal stability and remained stable even after being treated in boiling water for 10 days. The catalytic activity of the Al-SBA-1 materials was investigated by employing the Friedel-Crafts alkylation of toluene with benzyl alcohol as a model reaction and they exhibited excellent catalytic property due to the incorporated acid sites and the hierarchically mesoporous structure.

  19. Modeling of in-line low-NOx calciners - a parametric study

    DEFF Research Database (Denmark)

    Iliuta, Ion; Dam-Johansen, Kim; Jensen, Anker;

    2002-01-01

    Simulations with a heterogeneous model of an in-line low-NOx calciner, based on non-isothermal diffusion-reaction models for char combustion and limestone calcination combined with a kinetic model for NO formation and reduction, are reported. The analysis shows that the most important hydrodynamic...... parameter is the mixing rate of preheated combustion air into the sub-stoichiometric suspension leaving the reducing zone and the most important combustion parameter is the char reactivity. Also, the calcination rate modifies very much the temperature in the calciner, char and limestone conversion...... and NO emission. Carbon monoxide is a key component for the reduction of NO and reliable data for the kinetics of NO reduction by CO over CaO are very important for the prediction of the NO emission. The internal surface area of char and limestone particles influences the combustion and calcination rates...

  20. Study on the NOx release rule along the boiler during pulverized coal combustion

    Institute of Scientific and Technical Information of China (English)

    JIN Jing; ZHANG Zhongxiao; LI Ruiyang

    2007-01-01

    Numerical simulation and experimental study on NOx release along the boiler during pulverized coal combustion have been conducted.With the increase of temperature the NOx emission increased and the peak value of NOx release moved forward.But when the temperature increased to a certain degree,NOx emission began to reduce.NOx emission increased with the increase of nitrogen content of coal.The peak value of NOx release moved backwards with the increase of coal rank.NOx emission increased obviously with the increase of stoichiometric ratio.There existed a critical average diameter of the pulverized coal (de).If d≤dc,NOx emission reduced with the decrease of pulverized coal size.If d>de,NOx emission reduced with the increase of the pulverized coal size.The results showed that the simulation results are in agreement with the experimental results for concentration distribution of NOx along the axis of the furnace.

  1. Modeling and Multi-Objective Optimization of NOx Conversion Efficiency and NH3 Slip for a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2016-05-01

    Full Text Available The objective of the study is to present the modeling and multi-objective optimization of NOx conversion efficiency and NH3 slip in the Selective Catalytic Reduction (SCR catalytic converter for a diesel engine. A novel ensemble method based on a support vector machine (SVM and genetic algorithm (GA is proposed to establish the models for the prediction of upstream and downstream NOx emissions and NH3 slip. The data for modeling were collected from a steady-state diesel engine bench calibration test. After obtaining the two conflicting objective functions concerned in this study, the non-dominated sorting genetic algorithm (NSGA-II was implemented to solve the multi-objective optimization problem of maximizing NOx conversion efficiency while minimizing NH3 slip under certain operating points. The optimized SVM models showed great accuracy for the estimation of actual outputs with the Root Mean Squared Error (RMSE of upstream and downstream NOx emissions and NH3 slip being 44.01 × 10−6, 21.87 × 10−6 and 2.22 × 10−6, respectively. The multi-objective optimization and subsequent decisions for optimal performance have also been presented.

  2. Cement plant gaseous pollutant emission reduction technologies

    Directory of Open Access Journals (Sweden)

    Andrés Emilio Hoyos Barreto

    2010-10-01

    Full Text Available A brief description of SOX, NOX and CO2 formation is presented, these being the main pollutants emitted in the cement industry gas stream Several technologies for reducing NOX, SOX and CO2 emissions in long wet kilns are introduced: primary measures preventing contaminant formation and secondary/tube end emission reduction measures. Strategies for preventing CO2 (green-house effect gas formation are also addressed, such as fuel and raw material substitution and CO2 capture technologies which are still being developed.

  3. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315

  4. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Directory of Open Access Journals (Sweden)

    Scott D. Wolter

    2009-05-01

    Full Text Available Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i Quantum cascade lasers (QCL based photoacoustic (PA systems; ii gold nanoparticles as catalytically active materials in field-effect transistor (FET sensors, and iii functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  5. Study on Control of Economic NOx Concentration at SCR Equipment Inlet%脱硝设备入口NOx浓度经济值的控制

    Institute of Scientific and Technical Information of China (English)

    王春昌

    2013-01-01

    The methods of computing the indirect running costs of the low NOx staged combustion technology and the direct running costs of the reducing agent of SCR equipment are introduced. An equation for calculating the total costs of NOx reduction with the two methods of NOx control used in boilers is established. According to the principle of minimizing the total costs of NOx reduction, the NOx concentration at the inlet of SCR equipment is taken as the variable and, a viewpoint on the existence of the economic inlet NOx concentration is put forward. The main conclusion is that the economic concentration is a critical value for equitably assigning the indirect costs of low NOx staged combustion technology and the direct costs of SCR equipment. Only when the NOx concentration is the economic value, are the total costs of NOx reduction the least.%介绍了应用最为广泛的低NOx空气分级燃烧技术的间接运行费用与锅炉尾部烟气脱硝设备(脱硝设备)消耗还原剂的直接运行费用的计算方法,建立了两者配套应用时锅炉NOx减排总费用的关系式;并按照NOx减排总费用最小的原则,将脱硝设备入口NOx浓度作为变量,提出了两者配套应用时脱硝设备入口必然存在NOx浓度经济值的观点.主要结论为:脱硝设备入口NOx浓度经济值是合理分配炉内空气分级燃烧技术的问接运行费用与脱硝没备直接运行费用的关键参数,NOx浓度只有在该经济值下,NOx减排的总费用才是最低的.

  6. Impact of FCC regenerator design in the NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Hugo Borges; Sandes, Emanuel Freire; Gilbert, William Richard; Roncolatto, Rodolfo Eugenio; Gobbo, Rodrigo; Casavechia, Luiz Carlos; Candido, William Victor Carlos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Bridi, Patricia Elaine [Possebon Engenharia, Sao Mateus do Sul, PR (Brazil)

    2012-07-01

    Fluid Catalytic Cracking (FCC) is the main point source of NOx in the refinery and it is responsible for at least 20% of the total NOx emissions from the refineries. The thermal NOx formation in the FCC regenerator is negligible. However, half of the feed nitrogen is converted to coke, and is burned in the regenerator. The majority of coke nitrogen is reduced to N2 and less than 10% is converted to NOx. This number may vary significantly with the oxygen excess in the flue gas and other operational conditions. With the purpose of evaluating the impact of different regenerator designs in NOx formation, several tests were carried out in the PETROBRAS FCC prototype unit. The test unit is equipped with adiabatic insulation and a CO boiler, allowing it to reproduce the heat balance of a commercial FCC and to operate either in full combustion or partial combustion. Two different designs of FCC regenerators were evaluated: single stage regenerator (the existing configuration) and two stage regenerator, with the catalyst bed divided into two sections by a structured packing baffle. It was observed in the tests that the combustion regime had a very strong effect on NOx formation. In full combustion, the effect of the FCC operating variables: excess oxygen, combustion promoter content in catalyst and regenerator design could be identified. The two stage configuration was capable of decreasing NOx emissions by 30%. In partial combustion, the effect of the CO-boiler variables on NOx emissions was overwhelming, but the use of the structured packing baffle was able to improve the catalyst regeneration.(author)

  7. Nitrogen oxide reduction strategies for compression ignition engines

    Science.gov (United States)

    Chapman, Elana M.

    2008-05-01

    The scope of this investigation is to explore strategies to reduce NOx emissions from compression ignition engines. Two methods are presented in this collection of studies: (1) NOx reduction accomplished through a change in fuel formulation, specifically through a change in the saturated fuel carbon chains of biodiesel; and (2) NOx reduction accomplished through a mixed mode combustion process utilizing a fumigated fuel and a pilot injection of diesel fuel. In the first study, a light duty diesel engine was used to investigate the change in saturation of a biodiesel fuel and its impact on NOx emissions. Previous studies have shown that a reduction in the iodine value of a biodiesel fuel produces a reduction in NOx emissions. The iodine value of the fuel is reduced through the saturation of the C18 molecules via hydrogenation of biodiesel fuel. Experiments were performed at several speeds and loads without exhaust gas recirculation (EGR), and a NOx reduction with the hydrogenated diesel fuel was observed. For all the modes studied, the NOx emission was higher for the biodiesel and lower for the hydrogenated biodiesel in comparison to the ultra low sulfur diesel (ULSD) fuel. Results from the calculation of the adiabatic flame temperature shows that the results could be explained by the difference in adiabatic flame temperature of the fuel, thus influencing the prompt NOx contribution in addition to the thermal contribution. Since the adiabatic flame temperatures are similar for the hydrogenated biodiesel and the ULSD, yet the NOx reduction with the hydrogenated biodiesel is much lower than the ULSD levels, another explanation for the reduction is suggested: the additional prompt NOx contribution from the change in fuel chemistry. The second study investigated the NOx reductions which could be achieved with a mixed mode combustion process utilizing a fumigated fuel and a pilot injection of diesel fuel. In this research, the fumigated fuel was dimethyl ether (DME) and

  8. Sulfur poisoning and regeneration of the Ag/γ-Al2O3 catalyst for H2-assisted SCR of NOx by ammonia

    DEFF Research Database (Denmark)

    Doronkin, Dmitry E.; Khan, Tuhin Suvra; Bligaard, Thomas

    2012-01-01

    Sulfur poisoning and regeneration mechanisms for a 2% Ag/γ-Al2O3 catalyst for the H2-assisted selective catalytic reduction of NOx by NH3 are investigated. The catalyst has medium sulfur tolerance at low temperatures, however a good capability of regeneration at 670°C under lean conditions when H...

  9. Reduction of Particulate Emissions in Turbine Engines Using the +100 Additive

    Science.gov (United States)

    2006-06-01

    element oscillating microbalance THC total unburned hydrocarbon UDRI University of Dayton Research Institute UHC unburned hydrocarbons UMR...all tests Primary Reduced gaseous pollutant emissions 20% reduction in CO, NOx and unburned hydrocarbons ( UHC ) emissions for all test conditions

  10. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes;

    2012-01-01

    Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared...... by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  11. NEC-2020 emission reduction scenarios

    DEFF Research Database (Denmark)

    Slentø, Erik; Nielsen, Ole-Kenneth; Hoffmann, Leif

    The upcoming NEC-2020 EU directive sets up emission ceilings for NOX, SO2, NH3, NMVOC and PM in order to meet the environmental exposure targets of the Thematic Strategy. This report contains an assessment of intermediary emission reduction scenarios for Denmark, computed by the GAINS model 2007......, which serves as the basis for the pending negotiations in EU. The assessment is brought up to date by including a brief evaluation of the new reduction scenarios published in 2008, founding the European Commission NEC-2020 directive proposal....

  12. Design and implementation of mixing chambers to improve thermal decomposition of urea for NOX abatement

    KAUST Repository

    Lee, Junggil

    2012-10-01

    Urea-selective catalytic reduction (SCR) has been reported as the most promising technique for adherence to NOX emissions regulations. In the urea-SCR process, NH3 is generated by urea thermal decomposition and hydrolysis and is then used as a reductant of NOX in the SCR catalyst. Therefore, improving the NOX conversion efficiency of urea-SCR requires enhancement of thermal decomposition upstream of the SCR catalyst. In the present work, two types of mixing chambers were designed and fabricated to improve urea thermal decomposition, and experiments with and without a mixing chamber were carried out to analyze thermal-decomposition characteristics of urea in the exhaust pipe with respect to inlet velocity (4-12μm/s) and temperature (350°C-500°C). Urea thermal decomposition is greatly enhanced at higher gas temperatures. At an inlet velocity of 6μm/s in the A-type mixing chamber, NH3 concentrations generated along the exhaust pipe were about 171% and 157% greater than those without the mixing chamber for inlet temperatures of 400°C and 500°C, respectively. In the case of the B-type mixing chamber, NH3 concentrations generated at inlet temperatures of 400°C and 500°C were about 147% and 179% greater than those without the mixing chamber, respectively. Note that the implementation of mixing chambers significantly enhanced conversion of urea to NH3 because it increased the residence time of urea in the exhaust pipe and improved mixing between urea and exhaust gas. © 2012, Mary Ann Liebert, Inc.

  13. Preparation of Cr-Mn Mixed Oxide by Coprecipitation and Its Performance for Low-Temperature Selective Catalytic Reduction of Nox%共沉淀法制备Cr-Mn复合氧化物及其低温催化还原NOx性能

    Institute of Scientific and Technical Information of China (English)

    李雪辉; 李华; 高翔; 陈志航; 杨青; 王芙蓉; 王乐夫

    2011-01-01

    采用共沉淀法制备了一系列具有CrMn1.5O4晶相的新型Cr-Mn复合氧化物催化剂并用于低温有氧条件下氨选择性催化还原(SCR)NOx.结果表明,NOx转化率随着Cr/(Cr+Mn)摩尔比从0.1到0.4的增加而升高.其中Cr(0.4)-MnOx具有较高的低温活性,在140℃,空速为30 000h-1的条件下,NOx转化率可高达90%.利用N2吸附法,X射线衍射及X射线光电子能谱对系列催化剂进行了表征,发现通过添加Cr元素,可形成新型CrMn1.5O4活性物相;由于Cr元素对催化剂表面电子性能具有调变作用,Mn元素主要以高氧化态形式Mn4+及Mn3+富集,不仅可以促进对NO的氧化,而且有利于对NH3的吸附和活化,从而使该催化剂具有较好的低温SCR活性.

  14. Nonlinear behavior on an ozone photochemical system in the stratosphere——Response to the emission strengths of Cl_x and NO_x

    Institute of Scientific and Technical Information of China (English)

    刘春红; 杨培才; 曾庆存

    1997-01-01

    A nonlinear box system describing ozone photochemistry in the stratosphere is presented. Influences of pollutants, such as odd chlorine (Clx) and odd nitrogen (NOx) discharged by human activities, on photochemical states of the system are investigated in detail. The results show that the solutions of the box system constitute a ’cusp’ catastrophe manifold in the state-parameter space. An increase of about 30% for Clx source strength or a decrease of about 30% for NOx source strength from their current level may lead to catastrophic transition and results in a reduction of ozone concentration about 50 times.

  15. NOx and N{sub 2}O emission characteristics from fluidised bed combustion of semi-dried municipal sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, M.; Werther, J.; Ogada, T. [Technical University Hamburg-Harburg, Hamburg (Germany). Chemical Engineering

    2001-01-01

    Incineration is one of the major methods for the disposal of sewage sludge. Currently, several plants are incinerating mechanically dewatered (wet) sludge (20-40 wt.% d.m.) or semi-dried sewage sludge (3-55 wt.% d.m.), although some plants burn dry sludge (with more than 80 wt.% d.m.). Whereas significant information is available on NOx and N{sub 2}O emissions characteristics of wet and dry sludge, not much has been reported on semi-dried sludge. This paper presents some of the results obtained from the combustion of semi-dried sludge in a semi-pilot scale fluidised bed combustor (150 mm in diameter and 9 m high) together with some measurements from a large-scale FBC incineration plant (7 m{sup 2} bed area, 9 m high and a capacity of 3 t/h dry sludge). The investigations have shown that semi-dried sludge exhibit emission characteristics which are similar to those of wet sludge. NOx decreases slightly whereas N{sub 2}O remains more or less the same with increase in oxygen concentrations. Just like wet sludge, staged combustion was not effective for the reduction of NOx and N{sub 2}O. However, increasing the freeboard temperature led to rapid reduction of N{sub 2}O and some NOx reduction was achieved using flue gas recycling technique. Comparison shows that the results from the test rig were more or less similar to those obtained from the large-scale plants. 28 refs., 14 figs., 2 tabs.

  16. Cleaning up the air: effectiveness of air quality policy for SO2 and NOx emissions in China

    Science.gov (United States)

    van der A, Ronald J.; Mijling, Bas; Ding, Jieying; Elissavet Koukouli, Maria; Liu, Fei; Li, Qing; Mao, Huiqin; Theys, Nicolas

    2017-02-01

    Air quality observations by satellite instruments are global and have a regular temporal resolution, which makes them very useful in studying long-term trends in atmospheric species. To monitor air quality trends in China for the period 2005-2015, we derive SO2 columns and NOx emissions on a provincial level with improved accuracy. To put these trends into perspective they are compared with public data on energy consumption and the environmental policies of China. We distinguish the effect of air quality regulations from economic growth by comparing them relatively to fossil fuel consumption. Pollutant levels, per unit of fossil fuel, are used to assess the effectiveness of air quality regulations. We note that the desulfurization regulations enforced in 2005-2006 only had a significant effect in the years 2008-2009, when a much stricter control of the actual use of the installations began. For national NOx emissions a distinct decreasing trend is only visible from 2012 onwards, but the emission peak year differs from province to province. Unlike SO2, emissions of NOx are highly related to traffic. Furthermore, regulations for NOx emissions are partly decided on a provincial level. The last 3 years show a reduction both in SO2 and NOx emissions per fossil fuel unit, since the authorities have implemented several new environmental regulations. Despite an increasing fossil fuel consumption and a growing transport sector, the effects of air quality policy in China are clearly visible. Without the air quality regulations the concentration of SO2 would be about 2.5 times higher and the NO2 concentrations would be at least 25 % higher than they are today in China.

  17. Limitations of ozone data assimilation with adjustment of NOx emissions: mixed effects on NO2 forecast over Beijing and surrounding areas

    Science.gov (United States)

    Tang, X.; Zhu, J.; Wang, Z. F.; Gbaguidi, A.; Lin, C. Y.; Xin, J. Y.; Song, T.; Hu, B.

    2015-12-01

    This study investigates a cross-variable ozone data assimilation (DA) method based on an ensemble Kalman filter (EnKF) that has been validated as an efficient approach for improving ozone forecasts. The main purpose is to delve into the impacts of the cross-variable adjustment of nitrogen oxides (NOx) emissions on the nitrogen dioxide (NO2) forecasts over Beijing and surrounding regions during the 2008 Beijing Olympic Games. A mixed effect on the NO2 forecasts was observed during the application of the cross-variable assimilation approach in real-data assimilation (RDA) experiments. The method improved the NO2 forecast over almost half of the urban sites with reductions of the root mean square errors (RMSEs) by 15-36 % in contrast to big increases of the RMSEs over other urban stations by 56-239 %. Over the urban stations with negative DA impacts, improvement of the NO2 forecasts with 7 % reduction of the RMSEs was noticed during the night and the morning vs. significant deterioration of the forecasts during daytime with 190 % increase of the RMSEs, suggesting the negative DA impacts mainly occurred during daytime. Ideal data assimilation (IDA) experiments with a box model and the same cross-variable assimilation method, as a further investigation, confirmed the mixed effects found in the RDA experiments. An improvement of the NOx emission estimation was obtained from the cross-variable assimilation under relatively small errors in the prior estimation of NOx emissions during daytime, while deterioration of the NOx emission estimation was found under large biases in the prior estimation of NOx emissions during daytime. However, the cross-variable assimilation improved the NOx emission estimations during the night and the morning even with large biases in the prior estimations. The mixed effects observed in the cross-variable assimilation, i.e., positive DA impacts on NO2 forecast over some urban sites, negative DA impacts over the other urban sites and weak DA

  18. 2000-2020年中国氮氧化物排放清单及排放趋势%Emission inventory and trends of NOx for China, 2000-2020

    Institute of Scientific and Technical Information of China (English)

    Yun SHI; Yin-feng XIA; Bi-hong LU; Nan LIU; Lei ZHANG; Su-jing LI; Wei LI

    2014-01-01

      重要结论:2010年中国氮氧化物的排放量约是2000年的两倍;自2009年起,中国氮氧化物总排放量超过了二氧化硫总排放量;主要由于产业结构和地区生产总值的不同,中国东部和西部氮氧化物排放量有明显差异;制造业、电力行业和交通运输业是中国氮氧化物的主要排放源,其中交通运输业氮氧化物排放量呈现逐年增长趋势;预计2020年中国氮氧化物排放量为19.7 Mt。%The rapid growth of NOx emissions in China is mainly due to intensive fossil fuel consumption. In order to control NOx emissions, a multiyear NOx emission inventory was established by a bottom-up approach for the period 2000-2010. The results showed that NOx emissions increased by 2.1 times from 11.81 million tons (Mt) in 2000 to 24.33 Mt in 2010. We found that NOx emissions had exceeded SO2 emissions in 2009 by comparison with their emission trends. We also found that the unbalanced NOx emissions in Eastern China and Western China are mainly due to the different gross regional product and industrial structure. Accounting for 70%of total energy consumption in China, coal is the largest NOx emission source among all the fossil fuels. In addition, the increased use of diesel and gasoline has spurred the increase of NOx emissions from the transportation sector. Man-ufacturing, electricity production, and transportation together composed about 90%of the national NOx emissions. Meanwhile, energy consumption and NOx emissions in China are predicted to be 3908.5 Mt standard coal equivalent (SCE) and 19.7 Mt in 2020 with this scenario analysis, respectively. To achieve a desired NOx reduction target, China should take strict measures to control NOx emissions, such as improvement in reduction technology, promulgation of new emission standards, and joint control by various Chinese provinces.

  19. Direct interaction between Tks proteins and the N-terminal proline-rich region (PRR) of NoxA1 mediates Nox1-dependent ROS generation.

    Science.gov (United States)

    Gianni, Davide; DerMardirossian, Céline; Bokoch, Gary M

    2011-01-01

    NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been implicated in several physiological and pathophysiological processes. To date seven members of this family have been reported, including Nox1-5 and Duox1 and 2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and requires two cytosolic regulators, the organizer subunit NoxO1 and the activator subunit NoxA1, as well as the binding of Rac1 GTPase, for its activity. Recently, we identified the c-Src substrate proteins Tks4 and Tks5 as functional members of a p47(phox)-related organizer superfamily. As a functional consequence of this interaction, Nox1 localizes to invadopodia, actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior. Here, we report that Tks4 and Tks5 directly bind to NoxA1. Moreover, the integrity of the N-terminal PRR of NoxA1 is essential for this direct interaction with the Tks proteins. When the PRR in NoxA1 is disrupted, Tks proteins cannot bind NoxA1 and lose their ability to support Nox1-dependent ROS generation. Consistent with this, Tks4 and Tks5 are unable to act as organizers for Nox2 because of their inability to interact with p67(phox), which lacks the N-terminal PRR, thus conferring a unique specificity to Tks4 and 5. Taken together, these results clarify the molecular basis for the interaction between NoxA1 and the Tks proteins and may provide new insights into the pharmacological design of a more effective anti-metastatic strategy.

  20. On the Effect of Preparation Methods of PdCe-MOR Catalysts as NOx CH4-SCR System for Natural Gas Vehicles Application

    Directory of Open Access Journals (Sweden)

    Acácio Nobre Mendes

    2015-10-01

    Full Text Available In the present work, the effect of several parameters involved in the preparation of PdCe-HMOR catalysts active for NOx selective catalytic reduction with methane (NOx CH4-SCR was studied. Results show that the catalytic performance of Pd-HMOR is better when palladium is introduced by ion-exchange, namely at room temperature. It was also shown that Pd loading does not influence the formation of cerium species, namely surface Ce4+ (CeO2 species and CeO2 species in interaction with Pd. However, when Ce is introduced before Pd, more surface CeO2 species are stabilized in the support and less CeO2 become in interaction with Pd, which results in a worse NOx CH4-SCR catalytic performance.

  1. Study of the "Fast SCR" -like mechanism of H2-assisted SCR of NOx with ammonia over Ag/Al2O3

    DEFF Research Database (Denmark)

    Doronkin, Dmitry E.; Fogel, Sebastian; Tamm, Stefanie;

    2012-01-01

    It is shown that Ag/Al2O3 is a unique catalytic system for H2-assisted selective catalytic reduction of NOx by NH3 (NH3-SCR) with both Ag and alumina being necessary components of the catalyst. The ability of Ag/Al2O3 and pure Al2O3 to catalyse SCR of mixtures of NO and NO2 by ammonia...... is demonstrated, the surface species occurring discussed, and a "Fast SCR" -like mechanism of the process is proposed. The possibility of catalyst surface blocking by adsorbed NOx and the influence of hydrogen on desorption of NOx were evaluated by FTIR and DFT calculations. © 2011 Elsevier B.V....

  2. Deactivation mechanism of potassium on the V₂O₅/CeO₂ catalysts for SCR reaction: acidity, reducibility and adsorbed-NOx.

    Science.gov (United States)

    Peng, Yue; Li, Junhua; Huang, Xu; Li, Xiang; Su, Wenkang; Sun, Xiaoxu; Wang, Dezhi; Hao, Jiming

    2014-04-15

    A series of V2O5/CeO2 catalysts with different potassium loadings were prepared to investigate alkali deactivations for selective catalytic reduction of NOx with NH3. An alkali poisoning mechanism could be attributed to surface acidity, reducibility, and NOx adsorption/desorption behaviors. The detailed factors are as follows: (1) decrease of surface acidity suppresses NH3 adsorption by strong bonding of alkali to vanadia (major factor); (2) low reducibility prohibits NH3 activation and NO oxidation by formation bonding of alkali to vanadia and ceria (important factor); (3) active NOx(-) species at low temperature diminish because of coverage of alkali on the surfaces (minor factor); and (4) stable, inactive nitrate species at high temperature increase by generating new basic sites (important factor).

  3. Inversion of CO and NOx emissions using the adjoint of the IMAGES model

    Directory of Open Access Journals (Sweden)

    T. Stavrakou

    2004-12-01

    decrease over Europe and Asia. Our inversion results have been evaluated against independent observations from aircraft campaigns. This comparison shows that the optimization of CO emissions constrained by both CO and NO2 observations leads to a better agreement between modelled and observed values, especially in the Tropics and the Southern Hemisphere, compared to the case where only CO observations are used. A posteriori estimation of errors on the control parameters shows that a significant error reduction is achieved for the majority of the anthropogenic source parameters, whereas biomass burning emissions are still subject to large errors after optimization. Nonetheless, the constraints provided by the GOME measurements allow to reduce the uncertainties on savanna burning emissions of both CO and NOx, suggesting thus that the incorporation of these data in the inversion yields more robust results for carbon monoxide.

  4. Aluminum Reduction and Nitridation of Bauxite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhikuan; ZHANG Dianwei; XU Enxia; HOU Xinmei; DONG Yanling

    2007-01-01

    The application of bauxite with low Al2O3 content has been studied in this paper and β-SiAlON has been obtained from two kinds of bauxites (Al203 content 68.08 mass% and 46.30 mass% respectively) by aluminum reduction and nitridation method.The sequence of reactions has been studied using thermal analysis (TG-DTA),X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) with EDS.Compared with carbon thermal reduction and nitridation of aluminosilicates employed presently,the reaction in the system of bauxite-Al-N2 occurs at lower temperature.β-SiAlON appears as one of the main products from 1573K and exists' stably in the range of the present experimental temperature.The microstructure of β-SiAlON obtained at 1773 K is short column with 5-10μm observed by SEM.

  5. Eddy covariance fluxes and vertical concentration gradient measurements of NO and NO2 over a ponderosa pine ecosystem: observational evidence for within canopy removal of NOx

    Science.gov (United States)

    Min, K.-E.; Pusede, S. E.; Browne, E. C.; LaFranchi, B. W.; Wooldridge, P. J.; Cohen, R. C.

    2013-05-01

    Exchange of NOx (NO+NO2) between the atmosphere and biosphere is important for air quality, climate change, and ecosystem nutrient dynamics. There are few direct ecosystem scale measurements of the direction and rate of atmosphere-biosphere exchange of NOx. As a result, a complete description of the processes affecting NOx following emission from soils and/or plants as they transit from within the plant/forest canopy to the free atmosphere remains poorly constrained and debated. Here, we describe measurements of NO and NO2 fluxes and vertical concentration gradients made during the Biosphere Effects on AeRosols and Photochemistry EXperiment 2009. In general, during daytime we observe upward fluxes of NO and NO2 with counter-gradient fluxes of NO. We find that NOx fluxes from the forest canopy are smaller than calculated using observed flux-gradient relationships for conserved tracers and also smaller than measured soil NO emissions. We interpret these differences as evidence for the existence of a "canopy reduction factor". We suggest that at this site it is primarily due to chemistry converting NOx to higher nitrogen oxides within the forest canopy.

  6. Nuclear Nox4-Derived Reactive Oxygen Species in Myelodysplastic Syndromes

    Directory of Open Access Journals (Sweden)

    Marianna Guida

    2014-01-01

    Full Text Available A role for intracellular ROS production has been recently implicated in the pathogenesis and progression of a wide variety of neoplasias. ROS sources, such as NAD(PH oxidase (Nox complexes, are frequently activated in AML (acute myeloid leukemia blasts and strongly contribute to their proliferation, survival, and drug resistance. Myelodysplastic syndromes (MDS comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop AML. The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is the genomic instability. NADPH oxidases are now recognized to have specific subcellular localizations, this targeting to specific compartments for localized ROS production. Local Nox-dependent ROS production in the nucleus may contribute to the regulation of redox-dependent cell growth, differentiation, senescence, DNA damage, and apoptosis. We observed that Nox1, 2, and 4 isoforms and p22phox and Rac1 subunits are expressed in MDS/AML cell lines and MDS samples, also in the nuclear fractions. Interestingly, Nox4 interacts with ERK and Akt1 within nuclear speckle domain, suggesting that Nox4 could be involved in regulating gene expression and splicing factor activity. These data contribute to the elucidation of the molecular mechanisms used by nuclear ROS to drive MDS evolution to AML.

  7. The assessment of the impact of aviation NOx on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately

    Science.gov (United States)

    Skowron, A.; Lee, D. S.; De León, R. R.

    2013-08-01

    Aviation emissions of NOx result in the formation of tropospheric ozone (warming) and destruction of a small amount of methane (cooling), positive and negative radiative forcing effects. In addition, the reduction of methane results in a small long-term reduction in tropospheric ozone (cooling) and, in addition, a long-term reduction in water vapour in the stratosphere (cooling) from reduced oxidation of methane, both negative radiative forcing impacts. Taking all these radiative effects together, aircraft NOx is still thought to result in a positive (warming) radiative effect under constant emissions assumptions. Previously, comparative modelling studies have focussed on the variability between models, using the same emissions database. In this study, we rather quantify the variability and uncertainty arising from different estimations of present-day aircraft NOx emissions. Six different aircraft NOx emissions inventories were used in the global chemical transport model, MOZART v3. The inventories were normalized to give the same global emission of NOx in order to remove one element of uncertainty. Emissions differed in the normalized cases by 23% at cruise altitudes (283-200 hPa, where the bulk of emission occurs, globally). However, the resultant short-term ozone chemical perturbation varied by 15% between the different inventories. Once all the effects that give rise to positive and negative radiative impacts were accounted for, the variability of net radiative forcing impacts was 94%. Using these radiative effects to formulate a net aviation NOx Global Warming Potential (GWP) for a 100-year time horizon resulted in GWPs ranging from 60 to 4, over an order of magnitude. It is concluded that the detailed placement of emissions at chemically sensitive cruise altitudes strongly affects the assessment of the total radiative impact, introducing a hitherto previously unidentified large fraction of the uncertainty of impacts between different modelling assessments. It

  8. Impacts of the abolition of NOx emission trade; Effecten van de afschaffing van NOx- emissiehandel

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, P. [ECN Beleidsstudies, Petten (Netherlands)

    2012-09-15

    The consequences of abolishing the NOx emission trade have been analyzed for the installations that are covered by BEMS legislation (Dutch decree on emission limits for medium-sized combustion plants). The following aspects have been analyzed: What are the enforcement costs if these installations need to comply with BEMS requirements as of 2014?; How are these costs distributed across the various sectors and in particular for the sectors of onshore/offshore gas and oil extraction, greenhouse horticulture and hospitals?; To what extent can costs be lowered by allowing a 2-,3- or 5-year delay of the implementation date for existing installations in BEMS? To answer the above questions, data were used from the NEA (Netherlands Emission Authority) at sector level. Model calculations were conducted to determine the costs and effects [Dutch] De gevolgen van de afschaffing van NOx-emissiehandel zijn geanalyseerd voor het installatiepark dat terugvalt op BEMS-wetgeving (Besluit emissie-eisen middelgrote stookinstallaties). De volgende zaken zijn geanalyseerd: Wat zijn de nalevingskosten indien vanaf 2014 deze installaties aan de BEMS-eisen moeten voldoen?; Hoe zijn deze kosten verdeeld over de verschillende sectoren en in het bijzonder voor de sectoren offshore/onshore gas- en oliewinning, de glastuinbouw en ziekenhuizen?; In hoeverre zijn de kosten te verlagen door 2, 3 of 5 jaar uitstel te geven ten opzichte van de implementatiedatum voor bestaande installaties in BEMS? Voor het beantwoorden van de bovenstaande vragen is gebruik gemaakt van gegevens van de NEa (Nederlandse Emissie autoriteit) op sectorniveau. Met modelberekeningen zijn hiermee kosten en effecten bepaald.

  9. NOx Emissions from Diesel Passenger Cars Worsen with Age

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuche; Borken-Kleefeld, Jens

    2016-04-05

    Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting for the observed deterioration, depending on the country and its share of diesel cars. We suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles.

  10. Expression of NADPH oxidase (NOX 5 in rabbit corneal stromal cells.

    Directory of Open Access Journals (Sweden)

    Farhan Rizvi

    Full Text Available PURPOSE: To determine whether NOX 5 is expressed in rabbit corneal stromal cells (RCSC. NADPH oxidases (NOXes are enzymes that preferentially use NADPH as a substrate and generate superoxide. Several isoforms of NOXes function as multi-protein complexes while NOX5 and DUOXs do not require the accessory proteins for their activity and possess calcium binding EF hands. METHODS: Human NOX5 primers were used to amplify the rabbit NOX5 by RT-PCR. Amplified product was sequenced to confirm its identity. The protein encoded by the NOX5 was identified by western blot analysis. NOX5 siRNA was used to reduce transcript, protein, and calcium stimulated activity. In silico analyses were performed to establish the putative structure, functions, and evolution of rabbit NOX5. RESULTS: NOX activity was measured in RCSC with NADPH rather than NADH as a substrate. RT-PCR with NOX5 primers amplified 288 bp product using RCSC cDNA, which, when sequenced, confirmed its identity to human NOX5 mRNA. This sequence was used to predict the rabbit (Oryctolagus cuniculus NOX5 gene. NOX5 siRNA reduced amounts of NOX5 mRNA in RCSC and reduced ionomycin stimulated superoxide production. A protein of about 65 to 70 kDa encoded by the NOX5 was detected by western blot analysis. In silico analysis predicted a putative rabbit NOX5 protein containing 801 amino acids. Motif searches predicted the presence of at least 3 putative EF-hands in N-terminus and a NOX domain in C terminal region. CONCLUSIONS: The data document that the NOX5 gene was expressed in cells of lagomorphs unlike rodents, making the rabbit an interesting model to study NOX5 functions. The activity of the rabbit NOX5 was calcium stimulated, a trait of NOX5 in general. NOX5 may also prove to be a useful genetic marker for studying the taxonomic position of lagomorphs and the Glires classification.

  11. Dietary aluminosilicate supplement enhances immune activity in mice and reinforces clearance of porcine circovirus type 2 in experimentally infected pigs.

    Science.gov (United States)

    Jung, Bock-Gie; Toan, Nguyen Tat; Cho, Sun-Ju; Ko, Jae-hyung; Jung, Yeon-Kwon; Lee, Bong-Joo

    2010-07-14

    Aluminosilicate is the major component of clay minerals such as zeolite, bentonite and clinoptilolite. The minerals possess a number of beneficial activities, especially in regulating the immune system. The aims of the present study were to evaluate immune enhancing effects of dietary aluminosilicate supplement (DAS) in mice, and to demonstrate clearance effects of DAS against porcine circovirus type 2 (PCV2) in experimentally infected pigs as an initial step towards the development of an antibiotic substitute for use in pigs. Relative messenger RNA expression levels of interferon-gamma, interleukin-4 and tumor necrosis factor-alpha, phagocytic activities of polymorphonuclear leucocytes, serum antibody production level and spleen B cell ratio were significantly increased in the DAS groups of mice compared with the control group (each feeding group had three replications with 5 mice each). The results indicated that general immune activity including cellular and humoral immunity could be enhanced by DAS in mice. In experimentally PCV2-infected pigs, the load of viral genome in nasal swab, serum and lung of the DAS group of pigs was significantly decreased compared with the control group at 28 days post-infection (each group three pigs). Corresponding histopathological analyses demonstrated that pigs in the DAS group displayed mild and less severe abnormal changes compared with the control group, indicating that DAS reinforces clearance of PCV2 in experimentally infected pigs. This may relate to general immune enhancing effects of DAS in mice. Therefore DAS will help the health of animal, especially in swine.

  12. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Daniela A., E-mail: daniela.geraldo@unab.cl [Universidad Andres Bello, Departamento de Ciencias Quimicas (Chile); Arancibia-Miranda, Nicolas [CEDENNA, Center for the Development of Nanoscience and Nanotechnology (Chile); Villagra, Nicolas A. [Universidad Andres Bello, Laboratorio de Microbiologia, Facultad de Ciencias Biologicas (Chile); Mora, Guido C. [Universidad Andres Bello, Unidad de Microbiologia, Facultad de Medicina (Chile); Arratia-Perez, Ramiro [Universidad Andres Bello, Departamento de Ciencias Quimicas (Chile)

    2012-12-15

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV-Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  13. Coordination properties and structural units distribution of QiT in calcium aluminosilicate melts from MD simulation

    Institute of Scientific and Technical Information of China (English)

    吴永全; 蒋国昌; 尤静林; 侯怀宇; 陈辉

    2004-01-01

    The distribution of Al(j) and the structural units distribution of QiT in calcium aluminosilicate melts were studied by means of molecular dynamics simulation. The results show that provided there exists lower-field strength cation relative to Al3+ , such as alkaline and alkaline earth metals, Al will be four-coordinated but not six-coordinated. Meanwhile, if there exist a large number of higher-field strength cations such as Si4+ and little lower-field strength cation, six-coordinated aluminum will be formed. The relation of structural units distribution of QiT with chemical composition shift was also extracted, showing that as Ca2+ exists, the distributions of QiSi, QiAl or QiT have the similar changing trend with the variation of component. Because of high-temperature effect, the Al-tetrahedral units in melts are greatly active and unstable and there exist dynamic transforming equilibria of Al(3)→←Al(4) and Al(5)→←Al(4). The three-coordinated oxygen and charge-compensated bridging oxygen are proposed to explain phe-nomena of the negative charge redundancy of AlO4 and location of network modifier with charge-compensated func-tion in aluminosilicate melts.

  14. The Adsorption of NOx on Magnesium Aluminium Hydrotalcite

    Institute of Scientific and Technical Information of China (English)

    Zhe Ming NI; Wei Hua YU; Shao Fen ZHAO; Zhong Hua GE

    2004-01-01

    Magnesium aluminium hydrotalcite (Mg-Al-HT) with molar ratio of Mg-to-Al of 3 to 1 was prepared and characterized by X-ray diffraction (XRD) and infrared spectra (IR).The performances of Mg-Al-HT for the adsorption and desorption of NOx were studied.The results indicated that the adsorption capacity of the hydrotalcite for NOx was 1398.2 mg/g, and it was higher than the acticarbon's.The adsorption capacities depended on adsorption time and temperature.Mg-Al-HT could be regenerated by thermal decomposition, and the adsorption efficiency had not changed markedly after three cycles.

  15. Analysis and Measurement of NOx Emissions in Port Auxiliary Vessels

    Directory of Open Access Journals (Sweden)

    German de Melo Rodriguez

    2013-09-01

    Full Text Available This paper is made NOx pollution emitted by port auxiliary vessels, specifically by harbour tugs, due to its unique operating characteristics of operation, require a large propulsion power changes discontinuously, also possess some peculiar technical characteristics, large tonnage and high propulsive power, that differentiate them from other auxiliary vessels of the port. Taking into account all the above features, there are no studies of the NOx emission engines caused by different working regimes of power because engine manufacturers have not measured these emissions across the range of operating power, but usually we only report the pollution produced by its engines to a maximum continuous power.

  16. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim;

    1996-01-01

    The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained a...... of Miller and Glarborg show satisfactory agreement. The implications of the results for application of thermal de-NOx in high-pressure systems, such as pressurized fluidized bed combustion and gas turbines, are discussed....

  17. Influence of fuel quality on vehicular NOx emissions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The quality of gasoline and diesel fuel affects pollutant emissions from vehicles. By applying the COMPLEX model, developed by the MUS EPA and industry to relate fuel composition to vehicle emissions, this paper estimates the influence of improvements in gasoline quality to lower vehicular NOx emissions. A case study is performed for Guangzhou City that has NOr concentrations significantly above the national ambient air quality standards(NAAQS).The paper discusses the potential for reducing NOx in Guangzhou by improving the quality of gasoline.

  18. THE CONTEMPORARY ARCHITECTURAL DESIGN METHOD: THE CASE OF GROUP NOX

    Directory of Open Access Journals (Sweden)

    Marcela ALMEIDA

    2008-11-01

    Full Text Available Nowadays, different groups of architects search for the possibilities of digital technology contribution to architecture. Among the various stances, this paper particularly highlights the Dutch architects group called NOX, which develops a design method that uses both digital and analogical techniques, as well as incorporates knowledge from other disciplines. The Dutch group’s work serves as a guideline, as it indicates the subjects to be examined. Also based on the studies of other authors, the present research analyses the modifications contemporary architecture is going through, such as matters related to form, design method and conceiving of space, time and reality. Keywords: Contemporary architecture; NOX group; design methodology; digital; analogical.

  19. Characterization of NOx emission in the suburbs of Tokyo based on simultaneous and real-time observations of atmospheric Ox and NOx

    Science.gov (United States)

    Matsumoto, J.

    2013-12-01

    Nitrogen oxides, NOx (NO, NO2), and volatile organic compounds, VOCs, are important as precursors of photochemical oxidants (tropospheric ozone, O3). To predict and control photochemical oxidants, NOx emission should be captured precisely. In addition, the ratio of NO2/NOx in the exhaust gas is also important as the initial balance between NO and NO2 in the atmosphere. Monitoring the NO2/NOx ratio in the exhaust gases is essential. Especially, the influence of the NOx emission on the real atmosphere should be explored. However, conversion reactions among NO, NO2 and O3 are typically in the time scale of minutes. The NO2/NOx ratio can change rapidly just after emission. Real-time observations of these compounds in the second time scale are essential. In view of photochemical oxidant, near emission sources of NO, ozone concentration can be easily perturbed by reaction with locally emitted NO. As an index of oxidant, the sum of O3 and NO2 (Ox = O3 + NO2) is useful. In this study, a simultaneous and real-time analyzer of atmospheric Ox and NOx has been developed utilizing the dual NO2 detectors based on laser-induced fluorescence technique (LIF), and characterization of NOx emission was explored through the observations of Ox and NOx in the suburbs of Tokyo. The dual LIF detectors consisted of one laser head, two LIF cells, and one common vacuum pump. As the Ox monitor, the excess NO was added to the sample and O3 was converted to NO2, and then the sum of O3 and NO2 in the sample was quantified at the 1st LIF cell. As the NOx monitor, the excess O3 was added to the sample and NO was converted to NO2, and then the sum of NO and NO2 in the sample was quantified at the 2nd LIF cell. Both the ';Ox' and ';NOx' channels in the dual LIF analyzer were simultaneously monitoring Ox and NOx in the sample air, respectively. The temporal resolution of observed data was 1 s. Typical conversion efficiencies of O3 and NO to NO2 were more than 0.98. The lower detection limits were 0

  20. NOx emission trends in megacities derived from satellite measurements

    Science.gov (United States)

    Konovalov, Igor; Beekmann, Matthias; Richter, Andreas

    2010-05-01

    The effects of air pollutant emissions on both local air quality in megacities and composition of the atmosphere on regional and global scales are currently an important issue of atmospheric researches. In order to properly evaluate these effects, atmospheric models should be provided with accurate information on emissions of major air pollutants. However, such information is frequently very uncertain, as it is documented in literature. The quantification of emissions and related effects is an especially difficult task in the case of developing countries. Recently, it has been demonstrated that satellite measurements of nitrogen dioxide (NO2) can be used as a source of independent information on NOx emissions. In particular, the satellite measurements were used in our earlier studies to improve spatial allocation of NOx emissions, to estimate multi-annual changes of NOx emissions on regional scales and to validate data of traditional emission inventories (see Ref. 1, 2). The goals of the present study are (1) developing an efficient method for estimation of NOx emissions trend in megacity regions by using satellite measurements and an inverse modeling technique and (2) obtaining independent estimates of NOx emission trends in several megacities in Europe and the Middle East in the period from 1996 to 2008. The study is based on the synergetic use of the data for tropospheric NO2 column amounts derived from the long-term GOME and SCIAMACHY measurements and simulations performed by the CHIMERE chemistry transport model. We performed the analysis involving methods of different complexity ranging from estimation of linear trends in the tropospheric NO2 columns retrieved from satellite measurements to evaluation of nonlinear trends in NOx emission estimates obtained with the inverse modeling approach, which, in the given case, involves only very simple and transparent formulations. The most challenging part of the study is the nonlinear trend estimation, which is

  1. Effect of CO, NOx and SO2 on ROS production, photosynthesis and ascorbate–glutathione pathway to induce Fragaria×annasa as a hyperaccumulator

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-01-01

    Full Text Available A study was conducted to determine the effect of carbon monoxide (CO, nitroxide (NOx and sulfur dioxide (SO2 on ROS production, photosynthesis and ascorbate–glutathione pathway in strawberry plants. The results showed that both singlet oxygen (O2−1 and hydrogen peroxide (H2O2 content increased in CO, NOx and SO2 treated strawberry leaves. A drastic reduction of primary metabolism of plants (photosynthesis, with the closure of stomata, resulted in a reduction of protein, carbohydrate and sucrose content due to production of reactive oxygen species (ROS under prolonged exposure of gas stress. The resulting antioxidant enzymes were increased under a low dose of gas stress, whereas they were decreased due to a high dose of gas stress. Our results indicate that increased ROS may act as a signal to induce defense responses to CO, NOx and SO2 gas stress. The increased level of antioxidant enzymes plays a significant role in plant protection due to which strawberry plants can be used as a hyperaccumulator to maintain environmental pollution, however, the defense capacity cannot sufficiently alleviate oxidative damage under prolonged exposure of CO, NOx and SO2 stress.

  2. Effect of CO, NOx and SO2 on ROS production, photosynthesis and ascorbate-glutathione pathway to induce Fragaria×annasa as a hyperaccumulator.

    Science.gov (United States)

    Muneer, Sowbiya; Kim, Tae Hwan; Choi, Byung Chul; Lee, Beom Seon; Lee, Jeong Hyun

    2014-01-01

    A study was conducted to determine the effect of carbon monoxide (CO), nitroxide (NOx) and sulfur dioxide (SO2) on ROS production, photosynthesis and ascorbate-glutathione pathway in strawberry plants. The results showed that both singlet oxygen (O2(-1)) and hydrogen peroxide (H2O2) content increased in CO, NOx and SO2 treated strawberry leaves. A drastic reduction of primary metabolism of plants (photosynthesis), with the closure of stomata, resulted in a reduction of protein, carbohydrate and sucrose content due to production of reactive oxygen species (ROS) under prolonged exposure of gas stress. The resulting antioxidant enzymes were increased under a low dose of gas stress, whereas they were decreased due to a high dose of gas stress. Our results indicate that increased ROS may act as a signal to induce defense responses to CO, NOx and SO2 gas stress. The increased level of antioxidant enzymes plays a significant role in plant protection due to which strawberry plants can be used as a hyperaccumulator to maintain environmental pollution, however, the defense capacity cannot sufficiently alleviate oxidative damage under prolonged exposure of CO, NOx and SO2 stress.

  3. NOx Emissions Characteristics and Correlation Equations of Two P and W's Axially Staged Sector Combustors Developed Under NASA Environmentally Responsible Aviation (ERA) Project

    Science.gov (United States)

    He, Zhuohui J.

    2017-01-01

    Two P&W (Pratt & Whitney)'s axially staged sector combustors have been developed under NASA's Environmentally Responsible Aviation (ERA) project. One combustor was developed under ERA Phase I, and the other was developed under ERA Phase II. Nitrogen oxides (NOx) emissions characteristics and correlation equations for these two sector combustors are reported in this article. The Phase I design was to optimize the NOx emissions reduction potential, while the Phase II design was more practical and robust. Multiple injection points and fuel staging strategies are used in the combustor design. Pilot-stage injectors are located on the front dome plate of the combustor, and main-stage injectors are positioned on the top and bottom (Phase I) or on the top only (Phase II) of the combustor liners downstream. Low power configuration uses only pilot-stage injectors. Main-stage injectors are added to high power configuration to help distribute fuel more evenly and achieve lean burn throughout the combustor yielding very low NOx emissions. The ICAO (International Civil Aviation Organization) landing-takeoff NOx emissions are verified to be 88 percent (Phase I) and 76 percent (Phase II) under the ICAO CAEP/6 (Committee on Aviation Environmental Protection 6th Meeting) standard, exceeding the ERA project goal of 75 percent reduction, and the combustors proved to have stable combustion with room to maneuver on fuel flow splits for operability.

  4. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  5. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Woo, L Y; Glass, R S

    2008-11-14

    % NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

  6. Factors Affecting the Relative Success of EPA’s NOx CAP-and-Trade Program.

    Science.gov (United States)

    1998-06-01

    concerns as the use of banked NOx allowances. 27. See Laurel J. Carlson, NESCAUM/ MARAMA NOx Budget Model Rule (prepared for the Northeast States for...Coordinated Air Use Management (NESCAUM) and the Mid-Atlantic Regional Air Management Association ( MARAMA ) NO, Budget Task Force’s NESCAUM/ MARAMA NOx...a two-for-one basis. See Laurel J. Carlson, NESCA UM/ MARAMA NOxBudget Model Rule (prepared for the Northeast States for Coordinated Air Use

  7. Electrochemical removal of NOx and hydrocarbons

    DEFF Research Database (Denmark)

    Friedberg, Anja Zarah

    This thesis comprise of investigations on an electrochemical cell for the reduction of NO by propene. The focus has been on the electrochemical enhancement of the selective reduction of NO by propene by using perovskites, which are known to be catalyst for this reaction in the composite electrodes......, or to contribute with entirely new properties to the system. The LSM was also tested with cobalt doping in the structure.Two types of electrochemical cells were tested. The simplest one being the symmetrical cell and the other a cell stack of porous alternating layers of electrode and electrolyte. To evaluate...... the systems, conversion measurements has been done where polarisations were applied to the cells during gas analysis. The characterisation of the different materials was done using electrochemical impedance spectroscopy and cyclic voltammetry.This project revealed that the propene acts as an inhibitor...

  8. Re-vision as Remediation : Hypermediacy and Translation in Anne Carson’s Nox

    NARCIS (Netherlands)

    Brillenburg Wurth, C.A.W.

    2013-01-01

    This article explores Anne Carson’s Nox (2010) in the light of remediation. Nox is a book about death and the recording of loss: lost time, a lost brother, and lost presence. It conveys this loss through the logic of hypermediacy and a word-for-word translation of Catullus 101. Nox reworks the mater

  9. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity and... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670... may correct NOX emissions for the effects of intake-air humidity or temperature. Use the NOX...

  10. 40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 96.386 Section 96.386 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR... Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone...

  11. The Influence on Exhaust Gas Components and Fuel Consumption of Injection of Concentrated NOx into Diesel Engine Intake

    Science.gov (United States)

    Yoshida, Keiichiro; Kuwahara, Takuya; Kuroki, Tomoyuki; Okubo, Masaaki

    The authors inject NO into a diesel engine intake and investigate the reduction of NOx generation at the combustion chamber at first. The result shows that 20 - 30% of the injected NO (0.225 ∼ 0.72 slm) is reduced. Discussion through the calculation of the extended Zeldovich mechanism suggests that the reduction is mainly attributed to the region where equivalence ratio ranges in 1.1 - 1.5 and that the reaction between NO and hydrocarbon species slightly contributes to the NO reduction. Moreover, another experimental result shows that the injection of NO slightly improves specific fuel consumption, e.g. 0.4% at NO injection of 0.72 slm for intake airflow of 285 slm. Calculation of reaction enthalpy of NO reduction and CO oxidation considerably meets the experimental results on the change in fuel consumption.

  12. Seasonal and diurnal variation of NOx-O3 in the troposphere of São Paulo State (Brazil)

    Science.gov (United States)

    Dias, C. D.; Cardoso, A. A.

    2006-05-01

    attributed to the higher emission of NOx and volatile organic compounds during biomass burning. These values are similar to the concentrations observed in huge urban cities such as São Paulo, and are close to the national standard of air quality of São Paulo State (Brazil). However, the reduction of O3 precursors emission in the region is expected with the minimization and elimination of burn procedure in the sugar cane plantations up to the year 2021.

  13. Low Temperature Performance of Selective Catalytic Reduction of NO with NH3 under a Concentrated CO2 Atmosphere

    OpenAIRE

    Xiang Gou; Chunfei Wu; Kai Zhang; Guoyou Xu; Meng Si; Yating Wang; Enyu Wang; Liansheng Liu; Jinxiang Wu

    2015-01-01

    Selective catalytic reduction of NOx with NH3 (NH3-SCR) has been widely investigated to reduce NOx emissions from combustion processes, which cause environmental challenges. However, most of the current work on NOx reduction has focused on using feed gas without CO2 or containing small amounts of CO2. In the future, oxy-fuel combustion will play an important role for power generation, and this process generates high concentrations of CO2 in flue gas. Therefore, studies on the SCR process unde...

  14. Assessment of the multi-mycotoxin-binding efficacy of a carbon/aluminosilicate-based product in an in vitro gastrointestinal model

    NARCIS (Netherlands)

    Avantaggiato, G.; Havenaar, R.; Visconti, A.

    2007-01-01

    A laboratory model, set to simulate the in vivo conditions of the porcine gastrointestinal tract, was used to study the small intestinal absorption of several mycotoxins and the effectiveness of Standard Q/FIS (a carbon/aluminosilicate-based product) in reducing mycotoxin absorption when added to mu

  15. Sulfur Deactivation of NOx Storage Catalysts: A Multiscale Modeling Approach

    Directory of Open Access Journals (Sweden)

    Rankovic N.

    2013-09-01

    Full Text Available Lean NOx Trap (LNT catalysts, a promising solution for reducing