WorldWideScience

Sample records for alumino-silicate optical ceramics

  1. Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions.

    Science.gov (United States)

    Shakeri, M S; Rezvani, M

    2011-09-01

    The effect of different amounts of Y2O3 dopant on lithium alumino silicate (LAS) glass has been studied in this work. Glasses having 14.8Li2O-20Al2O3-65.2SiO2 (wt%) composition accompanied with Y2O3 dopant were prepared by normal melting process. In order to calculate the absorption coefficient of samples, transmittance and reflectance spectra of polished samples were measured in the room temperature. Optical properties i.e. Fermi energy level, direct and indirect optical band gaps and Urbach energy were calculated using functionality of extinction coefficient from Fermi-Dirac distribution function, Tauc's plot and the exponential part of absorption coefficient diagram, respectively. It has been clarified that variation in mentioned optical parameters is associated with the changes in physical properties of samples i.e. density or molar mass. On the other hand, increasing of Y3+ ions in the glassy microstructure of samples provides a semiconducting character to LAS glass by reducing the direct and indirect optical band gaps of glass samples from 1.97 to 1.67 and 3.46 to 2.1 (eV), respectively. These changes could be attributed to the role of Y3+ ions as the network former in the track of SiO4 tetrahedrals. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  3. Visible and near infrared up-conversion luminescence in Yb3+/Tm3+ co-doped yttria-alumino-silicate glass based optical fibers

    International Nuclear Information System (INIS)

    Halder, Arindam; Chandra Paul, Mukul; Wadi Harun, Sulaiman; Kumar Bhadra, Shyamal; Bysakh, Sandip; Das, Shyamal; Pal, Mrinmay

    2013-01-01

    We report blue light up-conversion (UC) emission in Yb–Tm co-doped nano-phase separated yttria-alumino-silicate (YAS) glass based D-shaped with low-index cladding optical fibers. Y 2 O 3 creates an environment of nano structured YAS glass phases with Yb and Tm rich zone into the core glass which confirmed from TEM analyses. This kind of glass host assists in distributing of Yb and Tm rich zone uniformly throughout the core region. Yb and Tm doped regions exist mainly into nano YAS phases, defined as RE rich nano YAS-RE phases. All samples exhibit UC luminescence peaks at 483 nm, 650 nm and 817 nm for Tm 3+ and 1044 nm for Yb 3+ under excitation by 975 nm laser light. In such type of nano-engineered glass–ceramic based host, almost all the Yb ions transferred its energy to the nearer Tm ions. In particular 483 nm emission is attributed to 1 G 4 → 3 H 6 transition through a three step resonance energy transfer (ET) from excited Yb 3+ . The highest emission intensity is obtained with a concentration of 0.5 wt% Tm 3+ and 2.0 wt% Yb 3+ . The ET between Yb 3+ and Tm 3+ is increased with increase of Yb 3+ concentration with respect to Tm 3+ . The experimental fluorescence life-times of Tm 3+ upconversion emission at visible wavelengths into such kind of fiber is reported under 975 nm pump excitation. The present study is important for development of an efficient tunable 483 nm fluorescence light source. -- Highlights: • We report nano-phase separated YAS glass host based Yb–Tm co-doped optical fibers. • Almost all the Yb transferred its energy to the neighboring Tm ions. • We report strong UC luminescence peaks at 483 nm and 817 nm wavelengths. • We report third ET coefficient as 1.6723 Hz for such kind of Yb–Tm codoped fiber. • We report suitable fiber as an efficient tunable 483 nm fluorescence light source

  4. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  5. Temperature and Vibration Dependence of the Faraday Effect of Gd₂O₃ NPs-Doped Alumino-Silicate Glass Optical Fiber.

    Science.gov (United States)

    Ju, Seongmin; Kim, Jihun; Linganna, Kadathala; Watekar, Pramod R; Kang, Seong Gu; Kim, Bok Hyeon; Boo, Seongjae; Lee, Youjin; An, Yong Ho; Kim, Cheol Jin; Han, Won-Taek

    2018-03-27

    All-optical fiber magnetic field sensor based on the Gd₂O₃ nano-particles (NPs)-doped alumino-silicate glass optical fiber was developed, and its temperature and vibration dependence on the Faraday Effect were investigated. Uniformly embedded Gd₂O₃ NPs were identified to form in the core of the fiber, and the measured absorption peaks of the fiber appearing at 377 nm, 443 nm, and 551 nm were attributed to the Gd₂O₃ NPs incorporated in the fiber core. The Faraday rotation angle (FRA) of the linearly polarized light was measured at 650 nm with the induced magnetic field by the solenoid. The Faraday rotation angle was found to increase linearly with the magnetic field, and it was about 18.16° ± 0.048° at 0.142 Tesla (T) at temperatures of 25 °C-120 °C, by which the estimated Verdet constant was 3.19 rad/(T∙m) ± 0.01 rad/(T∙m). The variation of the FRA with time at 0.142 T and 120 °C was negligibly small (-9.78 × 10 -4 °/min). The variation of the FRA under the mechanical vibration with the acceleration below 10 g and the frequency above 50 Hz was within 0.5°.

  6. Development of alumino-silicate refractories in Ghana

    International Nuclear Information System (INIS)

    Kisiedu, A. K.; Tetteh, D.M.B.; Obiri, H. A.; Brenya, E. F.; Ayensu, A.

    2008-01-01

    Alumino-silicate (bauxite), andalusite, kaolin and clay were investigated for suitability in production of alumina, mullite and fireclay brick refractories. The raw materials were characterized by X-ray diffraction, differential thermal and silicate analyses. The x-ray diffraction analysis of alumina and mullite refractories fired at 1450 0 C, and fireclay bricks fired at 1350 0 C, indicated presence of corundum and alpha-alumina crystals. The values of thermal (fired) shrinkage, crushing, strength, porosity, water absorption and bulk density determined were 31.1%, 2.3 x 10 3 kg/m 3 , 4.86 x 10 6 N/m 2 and 13.2 % for mullite; 30.2%, 2.4 x 10 3 kg/m 3 , 3.20 x 10 6 N/m 2 and W = 12.8 % for alumina; and 25.2 %, 2.1 x 10 3 kg/m 3 , 2.61 x 10 6 N/m 2 and W = 11.8% for fireclay, respectively. Bauxite, andalusite and special kaolin were identified as potential raw materials for developing alumina and mullite refractories for construction of high temperature kilns and furnaces operating at 1350 0 C. The clay and kaolin minerals could be used to produce fireclay refractories for construction of incinerators operating at maximum temperatures of about 1000 0 C. The performance of the refractories was demonstrated by producing bricks to construct kilns and incinerators for the ceramic industry and hospitals. (au)

  7. Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers

    International Nuclear Information System (INIS)

    Charnovych, S.; Nemec, P.; Nazabal, V.; Csik, A.; Allix, M.; Matzen, G.; Kokenyesi, S.

    2011-01-01

    Highlights: → Amorphous chalcogenides were investigated in this work. → Photo-induced effects were investigated in the created thin films. → Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers have been studied. - Abstract: Photo induced changes in amorphous As 20 Se 80 /alumino-silicate nanomultilayers (NML) produced by pulsed laser deposition (PLD) method have been studied in this work. The aim was to investigate the photo induced optical and surface relief changes due to the band gap illumination under the size- and hard cover limited conditions. It was observed that the hard cover layer on the surface of the uniform film or alumino-silicate sub-layers in the NML structure influences the photo darkening and restricts surface relief formations in As 20 Se 80 film or in the related NML compared with this effect in a pure chalcogenide layer. The influence of hard layers is supposed to be connected with limiting the free volume formation at the initial stage of the transformation process, which in turn limits the atomic movement and so the surface relief formation.

  8. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    Science.gov (United States)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  9. Development of Li+ alumino-silicate ion source

    International Nuclear Information System (INIS)

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-01-01

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  10. Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Němec, P. [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Charrier, J. [FOTON, UMR CNRS 6082, Enssat, 6 rue de Kerampont, BP 80518, 22305 Lannion (France); Cathelinaud, M. [Missions des Ressources et Compétences Technologiques, UPS CNRS 2274, 92195 Meudon (France); Allix, M. [CEMHTI-CNRS, Site Haute Température, Orléans (France); Adam, J.-L.; Zhang, S. [Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France); Nazabal, V., E-mail: virginie.nazabal@univ-rennes1.fr [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France)

    2013-07-31

    Amorphous chalcogenide and alumino-silicate thin films were fabricated by the pulsed laser deposition technique. Prepared films were characterized in terms of their morphology, chemical composition, and optical properties. Multilayered thin film stacks for reflectors and vertical microcavities were designed for telecommunication wavelength and the window of atmosphere transparency (band II) at 1.54 μm and 4.65 μm, respectively. Bearing in mind the benefit coming from the opportunity of an efficient wavelength tuning or, conversely, to stabilize the photoinduced effects in chalcogenide films as well as to improve their mechanical properties and/or their chemical durability, several pairs of materials from pure chalcogenide layers to chalcogenide/oxide layers were investigated. Different layer stacks were fabricated in order to check the compatibility between dissimilar materials which can have a strong influence on the interface roughness, adhesion, density, and homogeneity, for instance. Three different reflector designs were formulated and tested including all-chalcogenide layers (As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70}) and mixed chalcogenide-oxide layers (As{sub 40}Se{sub 60}/alumino-silicate and Ga{sub 10}Ge{sub 15}Te{sub 75}/alumino-silicate). Prepared multilayers showed good compatibility between different material pairs deposited by laser ablation despite the diversity of chemical compositions. As{sub 40}Se{sub 60}/alumino-silicate reflector showed the best parameters; its stop band (R > 97% at 8° off-normal incidence) has a bandwidth of ∼ 100 nm and it is centered at 1490 nm. The quality of the different mirrors developed was good enough to try to obtain a microcavity structure for the 1.5 μm telecommunication wavelength made of chalcogenide layers. The microcavity structure consists of Ga{sub 5}Ge{sub 20}Sb{sub 10}S{sub 65} (doped with 5000 ppm of Er{sup 3+}) spacer surrounded by two 10-layer As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70

  11. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    International Nuclear Information System (INIS)

    Wurth, R.; Pascual, M.J.; Mather, G.C.; Pablos-Martín, A.; Muñoz, F.; Durán, A.; Cuello, G.J.; Rüssel, C.

    2012-01-01

    A base glass of composition 3.5 Li 2 O∙0.15 Na 2 O∙0.2 K 2 O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al 2 O 3 ∙67.2 SiO 2 ∙2.6 TiO 2 ∙1.7 ZrO 2 ∙1.2 As 2 O 3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi 2 O 6 with nanoscaled crystals forms at 750 °C. Quantitative Rietveld refinement of samples annealed at 750 °C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2 × 2 × 2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 ± 20 kJ mol −1 . - Highlights: ► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2 × 2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.

  12. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  13. Fabrication of large diameter alumino-silicate K+ sources

    International Nuclear Information System (INIS)

    Baca, D.; Chacon-Golcher, E.; Kwan, J.W.; Wu, J.K.

    2003-01-01

    Alumino-silicate K + sources have been used in HIF experiments for many years. For example the Neutralized Transport Expt. (NTX) and the High Current Transport Expt. (HCX) are now using this type of ion source with diameters of 2.54 cm and 10 cm respectively. These sources have demonstrated ion currents of 80 mA and 700 mA, for typical HIF pulse lengths of 5-10 (micro)s. The corresponding current density is ∼ 10-15 mA/cm 2 , but much higher current density has been observed using smaller size sources. Recently we have improved our fabrication techniques and, therefore, are able to reliably produce large diameter ion sources with high quality emitter surface without defects. This note provides a detailed description of the procedures employed in the fabrication process. The variables in the processing steps affecting surface quality, such as substrate porosity, powder size distribution, coating technique on large area concave surfaces, drying, and heat firing temperature have been investigated

  14. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  15. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    International Nuclear Information System (INIS)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-01-01

    We report results on lithium alumino-silicate ion source development in preparation for warm-dense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCX-II). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ∼1275 C, a space-charge-limited Li + beam current density of J ∼1 mA/cm 2 was obtained. The lifetime of the ion source was ∼50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 (micro) s.

  16. Effect of the addition of Na2O on the thermal stability of alumino silicated glasses rich in rare earths

    International Nuclear Information System (INIS)

    Lassalle-Herraud, Olivier; Matecki, Marc; Glorieux, Benoit; Sadiki, Najim; Montoullout, Valerie; Dussossoy, Jean-Luc

    2006-01-01

    Alumino silicated glasses rich in rare earths have been prepared by concentrated solar way. Their recrystallization, the structural and microstructural properties as well as the mechanical and thermal properties of these glasses have been studied. The results show the effect of sodium addition on the thermal stability of the materials, the vitreous transition temperature and the recrystallization temperature. A heat treatment has allowed to reveal the formation of sodium apatite micro-crystallites and of lanthanum silicate in the glasses. (O.M.)

  17. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  18. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  19. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    Science.gov (United States)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  20. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX-II)

    International Nuclear Information System (INIS)

    Roy, P.K.; Greenway, W.; Kwan, J.W.; Seidl, P.A.; Waldron, W.

    2011-01-01

    To heat targets to electron-volt temperatures for the study of warm dense matter with intense ion beams, low mass ions, such as lithium, have an energy loss peak (dE/dx) at a suitable kinetic energy. The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li + ion beam with energy 1.2-4 MeV in order to achieve uniform heating up to 0.1-1 eV. The accelerator physics design of Neutralized Drift Compression Experiment (NDCX-II) has a pulse length at the ion source of about 0.5 (micro)s. Thus for producing 50 nC of beam charge, the required beam current is about 100 mA. Focusability requires a normalized (edge) emittance ∼2 π-mm-mrad. Here, lithium aluminosilicate ion sources, of β-eucryptite, are being studied within the scope of NDCX-II construction. Several small (0.64 cm diameter) lithium aluminosilicate ion sources, on 70%-80% porous tungsten substrate, were operated in a pulsed mode. The distance between the source surface and the mid-plane of the extraction electrode (1 cm diameter aperture) was 1.48 cm. The source surface temperature was at 1220 C to 1300 C. A 5-6 (micro)s long beam pulsed was recorded by a Faraday cup (+300 V on the collector plate and -300 V on the suppressor ring). Figure 1 shows measured beam current density (J) vs. V 3/2 . A space-charge limited beam density of ∼1 mA/cm 2 was measured at 1275 C temperature, after allowing a conditioning time of about ∼ 12 hours. Maximum emission limited beam current density of (ge) 1.8mA/cm 2 was recorded at 1300 C with 10-kV extractions. Figure 2 shows the lifetime of two typical sources with space-charge limited beam current emission at a lower extraction voltage (1.75 kV) and at temperature of 1265 ± 7 C. These data demonstrate a constant, space-charge limited beam current for 20-50 hours. The lifetime of a source is determined by the loss of lithium from the alumino-silicate material either as ions or as neutral

  1. Hydrothermal synthesis, characterization, and thermal properties of alumino silicate azide sodalite, Na8[AlSiO4]6(N3)2

    Science.gov (United States)

    Borhade, A. V.; Wakchaure, S. G.; Dholi, A. G.; Kshirsagar, T. A.

    2017-07-01

    First time we report the synthesis, structural characterization and thermal behavior of an unusual N3 - containing alumino-silicate sodalite mineral. Azide sodalite, Na8[AlSiO4]6(N3)2 has been synthesized under hydrothermal conditions at 433 K in steel lined Teflon autoclave. The structural and microstructural properties of azide sodalite mineral was characterized by various methods including FT-IR, XRD, SEM, TGA, and MAS NMR. Crystal structure have been refined by Rietveld method in P\\bar 43n space group, indicating that the N3 - sodalite has cubic in lattice. High temperature study was carried out to see the effect of thermal expansion on cell dimension ( a o) of azide sodalite. Thermal behavior of sodalite was also assessed by thermogravimetric method.

  2. Rheological behaviour and thermal dilation effects of alumino-silicate adhesives intended for joining of high-temperature resistant sandwich structures

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Chlup, Zdeněk; Strachota, Adam; Schweigstillová, Jana; Svítilová, Jaroslava; Halasová, Martina

    2017-01-01

    Roč. 37, č. 5 (2017), s. 2209-2218 ISSN 0955-2219 R&D Projects: GA ČR GAP107/12/2445 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21538 Program:OPPK Institutional support: RVO:67985891 ; RVO:68081723 ; RVO:61389013 Keywords : Sandwich * Inorganic adhesive * Si-O-C ceramics * Ceramic foam * Ceramic fibre Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass; CD - Macromolecular Chemistry (UMCH-V); JH - Ceramics, Fire-Resistant Materials and Glass (UFM-A) OBOR OECD: Ceramics; Polymer science (UMCH-V); Ceramics (UFM-A) Impact factor: 3.411, year: 2016

  3. Studies on γ-ray induced structural changes in Nd{sup 3+} doped lead alumino silicate glasses by means of thermoluminescence for dosimetric applications in high dose ranges

    Energy Technology Data Exchange (ETDEWEB)

    Sundara Rao, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India); Gandhi, Y. [Department of Physics, Kakani Venkata Ratnam College, Nandigama 521 185, A.P. (India); Sanyal, Bhaskar [Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Bhargavi, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India); Piasecki, M. [Institute of Physics, J. Dlugosz University, Ul. Armii Krajowej 13/15, 42-201 Czestochowa (Poland); Veeraiah, N., E-mail: nvr8@rediffmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India)

    2014-12-15

    Graphical abstract: TL glow curves of PbO–SiO{sub 2}:Nd{sup 3+} glasses mixed with different concentrations of Al{sub 2}O{sub 3} exposed to γ-rays of dose 5.0 kGy. - Highlights: • TL studies of Nd{sup 3+} ions doped lead alumino silicate glasses were carried out. • Highest TL output was observed in the glasses mixed with 10 mol% of Al{sub 2}O{sub 3}. • Different mechanisms responsible for TL emission were discussed. • Near linearity of the dose response was observed in the dose range of 1.0–3.0 kGy. • These glasses may be useful as dosimeters in processing perishable food commodities. - Abstract: Thermoluminescence (TL) studies on PbO–Al{sub 2}O{sub 3}–SiO{sub 2}:Nd{sup 3+} glasses mixed with varying concentrations of Al{sub 2}O{sub 3} exposed to γ-rays of dose in the range 0–5.0 kGy were carried out. The TL emission exhibited a dosimetric peak at about 185 °C. The TL output under the glow peak increased with increasing Al{sub 2}O{sub 3} and also with the γ-ray dose. The mechanisms responsible for TL emission and enhancement of TL output with increase in the concentration of Al{sub 2}O{sub 3} were quantitatively discussed in terms of induced structural defects in the vicinity of Nd{sup 3+} ions due to interaction of γ-rays with the glass network in the scenario of varying concentration of Al{sub 2}O{sub 3}. The dose response of these glass samples exhibited linear behavior in the medium dose range viz., 1.0–3.0 kGy. Finally, it is concluded that the glass containing the highest concentration of Al{sub 2}O{sub 3} exhibits high TL output and such glasses are useful for dosimetry in the range 1.0–3.0 kGy and hence these glasses may be useful for dosimetry in such high range of doses required for commercial radiation processing of perishable food commodities to extend their shelf-lives.

  4. Modifications of optical properties with ceramic coatings

    International Nuclear Information System (INIS)

    Besmann, T.M.; Abdel-Latif, A.I.

    1990-01-01

    Coatings of ceramic materials that exhibited high thermal absorptivities and emissivities were chemical vapor deposited on graphite and refractory metals. In this paper the coatings prepared were SiC and B 4 C, and the substrates used were graphite, molybdenum, titanium, and Nb-1Zr. The coatings are characterized with regard to adherence, optical properties, and response to potential harsh environments

  5. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Science.gov (United States)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  6. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  7. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  8. Optical properties of CAD-CAM ceramic systems.

    Science.gov (United States)

    Della Bona, Alvaro; Nogueira, Audrea D; Pecho, Oscar E

    2014-09-01

    To evaluate the direct transmittance (T%), translucency, opacity and opalescence of CAD-CAM ceramic systems and the correlation between the translucency parameter (TP) and the contrast ratio (CR). Specimens of shades A1, A2 and A3 (n=5) were fabricated from CAD-CAM ceramic blocks (IPS e.max(®) CAD HT and LT, IPS Empress(®) CAD HT and LT, Paradigm™ C, and VITABLOCS(®) Mark II) and polished to 1.0±0.01mm in thickness. A spectrophotometer (Lambda 20) was used to measure T% on the wavelength range of 400-780nm. Another spectrophotometer (VITA Easyshade(®) Advance) was used to measure the CIE L(*)a(*)b(*) coordinates and the reflectance value (Y) of samples on white and black backgrounds. TP, CR and the opalescence parameter (OP) were calculated. Data were statistically analysed using VAF (variance accounting for) coefficient with Cauchy-Schwarz inequality, one-way ANOVA, Tukey's test, Bonferroni correction and Pearson's correlation. T% of some ceramic systems is dependent on the wavelength. The spectral behaviour showed a slight and constant increase in T% up to approximately 550nm, then some ceramics changed the behaviour as the wavelength gets longer. TP and CR values ranged, respectively, from 16.79 to 21.69 and from 0.52 to 0.64 (r(2)=-0.97). OP values ranged from 3.01 to 7.64. The microstructure of CAD-CAM ceramic systems influenced the optical properties. TP and CR showed a strong correlation for all ceramic systems evaluated. Yet, all ceramics showed some degree of light transmittance. In addition to shade, this study showed that other optical properties influence on the natural appearance of dental ceramics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Optical properties of pre-colored dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (Pceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dissolution of lanthanide alumino-silicate oxynitride glasses

    Science.gov (United States)

    Bois, L.; Barré, N.; Guillopé, S.; Guittet, M. J.; Gautier-Soyer, M.; Duraud, J. P.; Trocellier, P.; Verdier, P.; Laurent, Y.

    2000-01-01

    The aqueous corrosion behavior of lanthanide aluminosilicate glasses has been studied under static conditions ( T=96°C, duration=1 and 3 months, glass surface area/leachate volume, S/ V=0.3 cm -1) by means of solution and solid analyses. It was found that these glasses exhibit a high chemical durability. The influence of yttrium, magnesium and nitrogen, which are supposed to improve the mechanical properties, on the chemical durability, has been investigated. After a one-month experiment, lanthanum and yttrium releases were found to be about 10 -7 mol l -1, while silicon and aluminum releases were about 10 -5 mol l -1. Yttrium seems to improve the chemical durability. The presence of nitrogen does not seem to modify the glass constituents releases, but seems to improve the surface state of the altered glass. XPS experiments reveal that lanthanum and yttrium are more concentrated near the surface (20-30 Å) of the glass after the leaching test.

  11. Elaboration of optical glass-ceramic for frequency doubling

    International Nuclear Information System (INIS)

    Vigouroux, H.

    2012-01-01

    The High power laser development required the need of materials with nonlinear properties. Glass materials can be considered as ideal materials as they can be transparent and elaborated in very large dimension. Precipitation of non-centro symmetric crystalline particles in bulk glass leads to a material with bulk nonlinear properties. This glass-ceramic should be then easily integrated in such laser facilities. In this thesis, the results concerning the precipitation of the phase LiNbO 3 in the glassy-matrix 35 Li 2 O - 25 Nb 2 O 5 - 40 SiO 2 are detailed. The crystallization mechanism of this phase is studied through thermal analysis, optical and electronic microscopy as well as in-situ analyses. These studies reveal glass-ceramics are obtained through a precipitation of the lithium niobate crystalline phase in spherulite shape. The nonlinear optical properties are investigated on this materials and an original, isotropic Second Harmonic Generation Signal (SHG) is registered in the bulk glass-ceramic. A complete study using a multi-scale approach allows the correlation between the spherulite structure and the nonlinear optical properties. A mechanism at the origin of the SHG signal is proposed. This leads to a new approach for transparent inorganic materials development for isotropic SHG conversion. (author) [fr

  12. Development of optical phase shifter based on piezoelectric ceramic

    Science.gov (United States)

    Yu, Fusheng; Shen, Xiaoqin; Yao, Chunjuan; Leng, Changlin

    2005-02-01

    The phase shifter is necessary in the optical phase-shifting measurement. At present the phase shifter commonly used is approximately divided into the penetrance-type and the reflection-type. In this paper, a reflection-type phase shifter made of piezoelectric ceramic stackup assemble is developed. The assemble are constituted of the flat piezoelectric ceramic with parallel connection circuit and inline structure. The communication between the computer and MCU is by RS232. The D/A converter controlled by the MCU outputs 0~10V voltage. Then the voltage is amplified to 0~400V DC voltage by the designed linear DC amplifier. When this voltage loads on the piezoelectric ceramic stackup assemble, the assemble will axially extend 0~5mm. In this paper, the connecting types for the mechanical construction and circuit of the piezoelectric ceramic stackup assemble, the driving power and the DC amplifier with high linearity are all introduced. The whole system developed is standardized by using phase-interfering Michelson. The standardization and the practical application indicates that this system has excellent linearity and precision repeatability.

  13. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  14. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  15. Understanding and control of optical performance from ceramic materials

    International Nuclear Information System (INIS)

    Barbour, J.C.; Knapp, J.A.; Potter, B.G.; Jennison, D.R.; Verdozzi, C.A.; Follstaedt, D.M.; Bendale, R.D.; Simmons, J.H.

    1998-06-01

    This report summarizes a two-year Laboratory-Directed Research and Development (LDRD) program to gain understanding and control of the important parameters which govern the optical performance of rare-earth (RE) doped ceramics. This LDRD developed the capability to determine stable atomic arrangements in RE doped alumina using local density functional theory, and to model the luminescence from RE-doped alumina using molecular dynamic simulations combined with crystal-field calculations. Local structural features for different phases of alumina were examined experimentally by comparing their photoluminescence spectra and the atomic arrangement of the amorphous phase was determined to be similar to that of the gamma phase. The luminescence lifetimes were correlated to these differences in the local structure. The design of both high and low-phonon energy host materials was demonstrated through the growth of Er-doped aluminum oxide and lanthanum oxide. Multicomponent structures of rare-earth doped telluride glass in an alumina and silica matrix were also prepared. Finally, the optical performance of Er-doped alumina was determined as a function of hydrogen content in the host matrix. This LDRD is the groundwork for future experimentation to understand the effects of ionizing radiation on the optical properties of RE-doped ceramic materials used in space and other radiation environments

  16. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    Science.gov (United States)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  17. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  18. Aluminum Nitride Ceramic as an Optically Stimulable Luminescence Dosimeter Plate

    Directory of Open Access Journals (Sweden)

    Go Okada

    2016-04-01

    Full Text Available Photostimulable storage phosphors have been used in a wide range of applications including radiation measurements in one- and two-dimensional spaces, called point dosimetry and radiography. In this work, we report that an aluminum nitride (AlN ceramic plate, which is practically used as a heat sink (SHAPAL®, Tokuyama Corp., Yamaguchi, Japan, shows good optically-stimulated luminescence (OSL properties with sufficiently large signal and capability for imaging applications, and we have characterized the AlN plate for OSL applications. Upon interaction with X-rays, the sample color turns yellowish, due to a radiation-induced photoabsorption band in the UV-blue range below ~500 nm. After irradiating the sample with X-rays, an intense OSL emission can be observed in the UV (360 nm spectral region during stimulation by red light. Although our measurement setup is not optimized, dose detection was confirmed as low as ~3 mGy to over 20 Gy. Furthermore, we have successfully demonstrated that the SHAPAL® AlN ceramic plate has great potential to be used as an imaging plate in radiography.

  19. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  20. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    International Nuclear Information System (INIS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-01-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd 3 Ga 3 Al 2 O 12 :0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu) 3 Ga 3 Al 2 O 12 :1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce 3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce 3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137 Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal. - Highlights: • GGAG:Ce single crystal and GLuGAG:Ce optical ceramics were fabricated. • The light yield of both ceramic and crystal G(Lu)GAG:Ce reached the level of 45,000 photons/MeV. • GLuGAG:Ce optical ceramic showed a better energy resolution of 7.1% for 662 keV. • GLuGAG:Ce ceramics exhibited lower afterglow level than that of GGAG:Ce single crystals. • The possible optimization strategies for multicomponent aluminate garnets are discussed

  1. X-ray shielding behaviour of kaolin derived mullite-barites ceramic

    Science.gov (United States)

    Ripin, A.; Mohamed, F.; Choo, T. F.; Yusof, M. R.; Hashim, S.; Ghoshal, S. K.

    2018-03-01

    Mullite-barite ceramic (MBC) is an emergent material for effective shielding of redundant ionizing radiation exposure. The composition dependent mechanical, thermal, and microstructure properties of MBC that makes MBC a high performing novel radiation shielding candidate remained unexplored. This paper examines the possibility of exploiting Malaysian kaolin (AKIM-35) and barite (BaSO4) derived ceramic (MBC) system for X-ray shielding operation. Using conventional pressing and sintering method six ceramic samples are prepared by mixing AKIM-35 with barite at varying contents (0, 10, 20, 30, 40 and 50 wt%). Synthesized pressed mixtures are calcined at 400 °C for 30 min and then sintered to 1300 °C for 120 min at a heating rate of 10 °C/min. Sintered samples are characterized via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), lead equivalent (LE), uniformity and dose reduction analyses. XRD pattern of prepared ceramics revealed the presence of monoclinic barium alumino-silicate (BAS) and orthorhombic mullite as major shielding phases together with other minor phase of barite and hexagonal quartz (SiO2) structures. Furthermore, FESEM images of ceramics (between 0 and 30 wt%) displayed the existence of compacted monoclinic plate of BAS and acicular mullite morphology (ceramics at 40 and 50 wt%). Radiation tests displayed the capacity of ceramics (at 0 and 10 wt%) to shield the X-ray radiation emanated at tube potential range of 50-120 kV. The highest radiation attenuation is ascertained at 70 kV where the dose is reduced remarkably between 99.11% and 97.42%. Ceramics at 0 and 10 wt% demonstrated the highest lead (Pb) equivalent thickness (LE) of 0.44 mm and 0.34 mm, respectively. It is established that such MBC may contribute towards the development of shielding material against ionizing radiation in diagnostic radiology (X-ray) dose range.

  2. Characterization of glassy phase at the surface of alumina ceramics substrate and its effect on laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Fu Renli [School of Mechanical-Electronic and Materials Engineering, China Univ. of Mining and Technology, Xuzhou, JS (China); Dept. of Ceramics and Glass Engineering, CICECO, Univ. of Aveiro, Aveiro (Portugal); Li Yanbo [School of Mechanical-Electronic and Materials Engineering, China Univ. of Mining and Technology, Xuzhou, JS (China); Xu Xin; Ferreira, J.M.F. [Dept. of Ceramics and Glass Engineering, CICECO, Univ. of Aveiro, Aveiro (Portugal)

    2004-07-01

    Nowadays alumina ceramic substrates are widely used for high precision applications in electronic devices, such as hybrid integrated circuits (HIC). Usually, the alumina ceramic substrates are shaped through tape casting method and sintered in continuous slab kilns. The sintering aids used to enhance densification during sintering give rise to the formation of an alumino-silicate liquid phase, which is of crucial importance in pressureless and low-temperature sintering (<1600 C) of alumina ceramics. The preferential migration of liquid phase to the surface of alumina substrates under the capillary action and its transformation into glassy phase during cooling affects the subsequent processing steps of HIC. A smoothening effect on surface with its enrichment in glassy phase is accompanied by a decrease of the surface toughness. On the other hand, the accumulated glassy phase onto the surface has a great effect on laser cutting. The high temperatures developed during laser cutting turn the superficial glassy phase into liquid again, while rapid solidification will occur after removing laser beam. The fast cooling of the liquid phase causes formation of extensive network of cracks on the surface of alumina substrate. Apparently, the presence of such faults degrades mechanical strength and thermal shock resistance of alumina substrates. Meanwhile, the recast layers and spatter deposits at the periphery of the hole has been observed. (orig.)

  3. Recent research activities on functional ceramics for insulator, breeder and optical sensing systems in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, S., E-mail: nagata@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai (Japan); Katsui, H.; Hoshi, K. [Institute for Materials Research, Tohoku University, Sendai (Japan); Tsuchiya, B. [Meijo University, Faculty of Science and Technology, Nagoya (Japan); Toh, K. [J-PARC Center Japan Atomic Energy Agency, Tokai (Japan); Zhao, M.; Shikama, T. [Institute for Materials Research, Tohoku University, Sendai (Japan); Hodgson, E.R. [Euratom/CIEMAT Fusion Association, Madrid (Spain)

    2013-11-15

    The paper presents a brief overview of current research activities on functional ceramic materials for insulating components, tritium breeder and optical sensing systems, mainly carried out at Institute for Materials Research (IMR), Tohoku University. Topics include recent experimental results related to the electrical degradation and optical changes in typical oxide ceramics (e.g. Al{sub 2}O{sub 3} and SiO{sub 2}) concerning radiolytic effects. Hydrogen effects on the electrical conductivity in the Perovskite-type oxide ceramics and the interaction between hydrogen and irradiation induced defects in ternary Li oxides used as breeder materials, were dynamically observed under the irradiation environment. Further attention is focused on several challenging qualifications required for an advanced sensing system using optical characteristics (e.g., thermoluminescence in SiO{sub 2} core fiber, neutron-induced long lasting emission from oxides doped with rare-earth elements, and gasochromic coloration phenomenon of WO{sub 3})

  4. The thermoluminescence and optically stimulated luminescence properties of Cr-doped alpha alumina transparent ceramics

    International Nuclear Information System (INIS)

    Liu, Qiang; Yang, Qiu Hong; Zhao, Guang Gen; Lu, Shen Zhou; Zhang, Hao Jia

    2013-01-01

    Highlights: •Polycrystalline Cr:α-Al 2 O 3 transparent ceramics were obtained with vacuum sintering method. •The influence of different concentration of Cr 2 O 3 on the thermoluminescence and optical stimulated luminescence properties of Cr:α-Al 2 O 3 transparent ceramics was studied. •It had a main peak at 503 K of very high intensity and linear concentration dependence up to high concentration. •It showed so interesting results with high TL sensitivity and high stability of OSL signal that Cr:α-Al 2 O 3 transparent ceramics might be a promising material in TL dosimetry and replace Cr:α-Al 2 O 3 crystals. -- Abstract: Polycrystalline Cr:α-Al 2 O 3 transparent ceramics were fabricated by conventional solid-state processing under vacuum condition. The SEM microstructure photographs of Cr:α-Al 2 O 3 transparent ceramics doped with different content of Cr 2 O 3 were investigated. The absorption, emission spectra, thermoluminescence and optical stimulated luminescence of Cr:α-Al 2 O 3 transparent ceramics were comparable to those of Cr:α-Al 2 O 3 crystals. The influence of different concentration of Cr 2 O 3 on the thermoluminescence and optical stimulated luminescence properties of Cr:α-Al 2 O 3 transparent ceramics was discussed. It showed so interesting results with high TL sensitivity and high stability of OSL signal that Cr:α-Al 2 O 3 transparent ceramics might be a promising material in TL dosimetry and replace Cr:α-Al 2 O 3 crystals

  5. Ceramic phases for immobilization of 129I

    International Nuclear Information System (INIS)

    Vance, E.R.; Agrawal, D.K.; Scheetz, B.E.; Pepin, J.G.; Atkinson, S.D.; White, W.B.

    1981-01-01

    Materials for ultimate disposal of 129 I have been studied. At present, iodide-sodalite, though not ideal, appears to be the best material for 129 I immobilization from the aspects of ease of preparation, thermal stability, cost of materials, and leach resistance. Good consolidation of the material was achieved by sintering in air at 1000 to 1200 0 C, but the iodine content was significantly below stoichiometric expectations. Hot aqueous media preferentially removed iodine, apparently by OH - substitution in near-neutral solutions, and I reversible reaction Cl - exchange occurred in brine. Alternation of the sodalite also took place. Soxhlet leach rates were about 5 x 10 -4 g/cm 2 -day by total weight loss, but physical weathering contributed significantly to this value. Moderate doses of radiation had no observable deleterious structural effects. Iodoboracites seemingly cannot be prepared by ceramic or nonhydrothermal wet chemical techniques. Fe-iodoboracite has inferior thermal stability to iodide-sodalite and was completely altered to hematite after treatment at 200 0 C in deionized water. Silver zeolites retained some iodine in the form of crystalline α-AgI at temperatures up to 1300 0 C even though heating above approx. 700 0 C altered the alumino-silicate framework. However, some of the iodine appeared to be present as soluble iodine, even in heated materials. Treatment at 200 0 C in deionized water or 2M NaCl significantly decreased the crystallinity of the aluminosilicate framework and the α-AgI reflections in the x-ray patterns were enhanced. Mild γ irradiations (approx. 50 MR) affected the x-ray diffraction patterns of some of the zeolites. Various lead oxyhalides had very poor thermal stability

  6. The harmful effects of sintering aids in Pr:LuAG optical ceramic scintillator

    Czech Academy of Sciences Publication Activity Database

    Shen, Y.; Shi, Y.; Feng, X.; Pan, Y.; Li, J.; Zeng, J.-Y.; Nikl, Martin; Krasnikov, A.; Vedda, A.; Moretti, F.

    2012-01-01

    Roč. 95, č. 7 (2012), s. 2130-2132 ISSN 0002-7820 R&D Projects: GA MŠk LH12185 Institutional research plan: CEZ:AV0Z10100521 Keywords : scintillator * optical ceramics * sintering aids * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.107, year: 2012

  7. Optical properties of ytterbium-doped yttrium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, V.I.; Maksimov, R.N. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation); Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira 19, 620002 Ekaterinburg (Russian Federation); Osipov, V.V.; Shitov, V.A.; Lipchak, A.I. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation)

    2017-05-15

    Ytterbium-doped yttrium oxide (Yb:Y{sub 2}O{sub 3}) transparent ceramics with different sintering additives (Lu{sub 2}O{sub 3}, Sc{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2}, or HfO{sub 2}) were fabricated using nanopowders produced by laser ablation. Transmission and photoluminescence spectra of the obtained ceramics were investigated at room temperature. Highest in-line transmittance was over 80% at the wavelength of 1060 nm for 2 mm thick Yb:Y{sub 2}O{sub 3} ceramics with zirconium and hafnium. Divalent Yb ions with the ground state electron configuration 4f{sup 13}6s were revealed. The absorption and emission bands caused by s <-> s transitions of these ions were observed in the IR spectral range of Yb{sup 3+} ions. The superposition of both Yb{sup 3+} and Yb{sup 2+} emission bands leads to an effective broadening of the whole luminescence band. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Transparent ceramic photo-optical semiconductor high power switches

    Science.gov (United States)

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  9. Influence of implant abutment material and ceramic thickness on optical properties.

    Science.gov (United States)

    Jirajariyavej, Bundhit; Wanapirom, Peeraphorn; Anunmana, Chuchai

    2018-05-01

    Anterior shade matching is an essential factor influencing the esthetics of a ceramic restoration. Dentists face a challenge when the color of an implant abutment creates an unsatisfactory match with the ceramic restoration or neighboring teeth. The purpose of this in vitro study was to evaluate the influence of abutment material and ceramic thickness on the final color of different ceramic systems. Four experimental and control ceramic specimens in shade A3 were cut from IPS e.max CAD, IPS Empress CAD, and VITA Suprinity PC blocks. These specimens had thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm, respectively, for the experimental groups, and 4 mm for the controls. Background abutment specimens were fabricated to yield 3 different shades: white zirconia, yellow zirconia, and titanium at a 3-mm thickness. All 3 ceramic specimens in each thickness were placed in succession on different abutment backgrounds with glycerin optical fluid in between, and the color was measured. A digital spectrophotometer was used to record the specimen color value in the Commission Internationale De L'éclairage (CIELab) color coordinates system and to calculate the color difference (ΔE) between the control and experimental groups. The Kruskal-Wallis test was used to analyze the effect of ceramic thickness on different abutments, and the pair-wise test was used to evaluate within the group (α=.05). The color differences between the test groups and the control decreased with increasing ceramic thickness for every background material. In every case, significant differences were found between 1.0- and 2.5-mm ceramic thicknesses. Only certain 2.5-mm e.max CAD, VITA Suprinity PC, and Empress CAD specimens on yellow-shade zirconia or VITA Suprinity PC on titanium were identified as clinically acceptable (ΔEabutment background decreased the color mismatch. Increasing the thickness of ceramic on a yellow-shaded zirconia abutment rather than on titanium or white zirconia yielded a more

  10. Optical effects of different colors of artificial gingiva on ceramic crowns.

    Science.gov (United States)

    Wang, Jian; Lin, Jin; Gil, Mindy; Da Silva, John D; Wright, Robert; Ishikawa-Nagai, Shigemi

    2013-08-01

    The interaction between gingival color and the shade of ceramic restorations has never been fully studied. The purpose of this study is to investigate the optical effects of altering artificial gingival color on the ceramic crown shade in the cervical area. Thirty-one all-ceramic crowns of different shades were used in this study with six different artificial gingival colors. Using a spectrophotometer (Crystaleye(®) Olympus, Japan), we measured the shade of crowns in cervical areas with each of six different artificial gingiva. The crown color measured in the presence of pink artificial gingiva (control) was compared with the crown color with five other artificial gingiva. color difference values ΔE* were calculated and compared between the control group and test groups and the correlation of the artificial gingival color with the crown color was also assessed. Significant differences were found in the mean L* and a* values of all-ceramic crowns at the cervical regions in all six gingival color groups (pcolors of artificial gingiva generated clinically detectable shade differences in the cervical region of ceramic crowns. Copyright © 2013. Published by Elsevier Ltd.

  11. High-power electro-optic switch technology based on novel transparent ceramic

    Science.gov (United States)

    Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai

    2016-03-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).

  12. High-power electro-optic switch technology based on novel transparent ceramic

    International Nuclear Information System (INIS)

    Zhang Xue-Jiao; Ye Qing; Qu Rong-Hui; Cai Hai-wen

    2016-01-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. (paper)

  13. Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics

    International Nuclear Information System (INIS)

    Stambouli, W.; Elhouichet, H.; Gelloz, B.; Férid, M.

    2013-01-01

    Tellurite glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (85−x) TeO 2 +5La 2 O 3 +10TiO 2 +xEu 2 O 3 by varying the concentration of the rare-earth ion in the order 0.5, 1 and 1.5 mol%. Using Judd–Ofelt analysis, we calculated intensity parameters (Ω 2 and Ω 4 ), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross-sections for 5 D 0 → 7 F 2 transition. The change in optical properties with the variation of Eu 3+ ion concentration have been discussed and compared with other glasses. The luminescence intensity ratio, quantum efficiency and emission cross-section values support that the TeEu1.5 tellurite glass is a suitable candidate for red laser source applications. Optical properties for Eu 3+ doped tellurite glass, heated for different temperature, were investigated. Crystalline phases for α-TeO 2 , γ-TeO 2 and TiTe 3 O 8 system were determined by the XRD method. The effect of heat treatment on luminescence properties in the tellurite glass was discussed. By using Eu 3+ as a probe, the local structure of rare-earth ion in tellurite glass, vitro-ceramic and ceramic glass has been investigated. The evaluated J–O intensity parameters have been used to calculate different radiative and laser characteristic parameters of the 5 D 0 excited level. The large magnitudes of stimulated emission cross-section (σ e ), branching ratio (β) and Gain bandwidth (σ e ×Δλ eff ) obtained for 5 D 0 → 7 F 2 (613 nm) transition for ceramic glass indicate that the present glass ceramic is promising host material for Eu 3+ doped fiber amplifiers. The measured lifetime of 5 D 0 excited state increases with increase of the heat treatment which further indicate that some Eu 3+ ions were successfully embedded in the crystal phase and prove the low phonon energy environment of Eu 3+ ions

  14. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  15. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  16. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  17. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography.

    Science.gov (United States)

    Lin, Chun-Li; Kuo, Wen-Chuan; Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Yun-Chu

    2014-08-01

    This study investigates monitored micro-crack growth and damage in the ceramic/enamel adhesive interface using the acoustic emission (AE) technique with optical coherence tomography (OCT) under fatigue shear testing. Shear bond strength (SBS) was measured first with eight prepared ceramic/enamel adhesive specimens under static loads. The fatigue shear testing was performed with three specimens at each cyclic load according to a modified ISO14801 method, applying at 80%, 75%, 70%, and 65% of the SBS to monitor interface debonding. The number of cycles at each load was recorded until ceramic/enamel adhesive interface debonding occurred. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 18.07 ± 1.72 MPa (mean ± standard deviation), expressed in Newton's at 56.77 ± 5.40N. The average number of fatigue cycles in which ceramic/enamel interface damage was detected in 80%, 75%, 70% and 65% of the SBS were 41, 410, 8141 and 76,541, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 65% and 70% fatigue tests. A good correlation was observed between the crack location in OCT images and the number of AE signal hits. The AE technique combined with OCT images as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/enamel bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 10.98 MPa (about 34.48 N) passing 10(6) fatigue cyclic. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    International Nuclear Information System (INIS)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F.; Suarez, G.; Aglietti, E.F.; Rendtorff, N.M.

    2014-01-01

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  19. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F. [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Buenos Aires (Argentina); Suarez, G.; Aglietti, E.F.; Rendtorff, N.M., E-mail: rendtorff@cetmic.unlp.edu.ar [Universidad Nacional de La Plata (UNLP), Buenos Aires (Argentina). Fac. de Ciencias Exactas. Dept. de Quimica

    2014-10-15

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  20. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Directory of Open Access Journals (Sweden)

    M. S. Conconi

    2014-12-01

    Full Text Available The firing transformations of traditional (clay based ceramics are of technological and archeological interest, and are usually reported qualitatively or semiquantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite, the low crystalline (metakaolinite and/or spinel type pre-mullite and glassy phases evolution of a triaxial (clay-quartz-feldspar ceramic fired in a wide temperature range between 900 and 1300 ºC. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 ºC spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and

  1. Optical and spectroscopic investigation on Calcium Borotellurite glass system

    Science.gov (United States)

    Paz, E. C.; Lodi, T. A.; Gomes, B. R. A.; Melo, G. H. A.; Pedrochi, F.; Steimacher, A.

    2016-05-01

    In this work, the glass formation in Calcium Borotellurite (CBTx) system and their optical properties were studied. Six glass samples were prepared by melt-quenching technique and the samples obtained are transparent, lightly yellowish, without any visible crystallites. The results showed that TeO2 addition increases the density, the electronic polarizability and, consequently, the refractive index. The increase of electronic polarizability and optical basicity suggest that TeO2 addition increases the non-bridging oxygen (NBO) concentration. The increase of TeO2 shifts the band edge to longer wavelength owing to increase in non-bridging oxygen ions, resulting in a linear decrease of optical energy gap. The addition of TeO2 increases the temperature coefficient of the optical path length (dS/dT) in room temperature, which are comparable to phosphate and lower than Low Silica Calcium Alumino Silicate (LSCAS) glasses. The values of dS/dT present an increase as a function of temperature for all the samples measured. The results suggest that CBTx is a good candidate for rare-earth doping and several optical applications.

  2. Towards Bright and Fast Lu3Al5O12:Ce,Mg Optical Ceramics Scintillators

    CERN Document Server

    Liu, Shuping; Feng, Xiqi; Vedda, Anna; Fasoli, Mauro; Shi, Yun; Kou, Huamin; Beitlerova, Alena; Wu, Lexiang; D'Ambrosio, Carmelo; Pan, Yubai; Nikl, Martin

    2016-01-01

    The recent advent of Lu 3 Al 5 O 12 :Ce optical ceramics marks a turning point in scintillator material technology. Because of their lower preparation tem-perature, brightness, and robustness such materials can now compete with single crystals. Their further scintillation effi ciency optimization includes the thorough control of the defects responsible for optical and scintillation losses. The choice of sintering agent appears critical to achieve both high optical transparency and scintillation performance. In this work, the optical investi-gations coupled with X-ray absorption near-edge spectroscopy evidence the benefi cial role of MgO sintering agent. Mg 2+ co-dopants in ceramics drive the partial conversion of Ce 3+ to Ce 4+ . The Ce 4+ center, however, does not impair the scintillation performance due to its capability to positively infl uence the scintillation process. The importance of simultaneous application of such co-doping and annealing treatment is also demonstrated. With 0.3 at% Mg, our cer...

  3. Synthesis and optical properties of Pr and Ti doped BiFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vikash, E-mail: vikash.singh@abes.ac.in [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida (U.P.), India-201307 (India); Applied Science and Humanities, ABES EC, Ghaziabad (U.P), India-201009 (India); Sharma, Subhash; Dwivedi, R. K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida (U.P.), India-201307 (India)

    2016-05-23

    Bi{sub 1-x}Pr{sub x}Fe{sub 1-x}Ti{sub x}O{sub 3} ceramics with x = 0.00, 0.10 and 0.20 were synthesized by solid state reaction method. Rietveld fitting of diffraction data reveals structural transition from rhombohedral phase (R{sub 3C}) for x ≤ 0.10 to orthorhombic phase (P{sub nma}) for x = 0.20. FTIR spectra exhibit broad absorption bands, which may be due to the overlapping of Fe-O and Bi-O vibrations in these ceramics. UV-visible spectroscopy results show strong absorption of light in the spectral range of 400-600 nm, indicating optical band gap in the visible region for these samples.

  4. Impact of Gastric Acid Induced Surface Changes on Mechanical Behavior and Optical Characteristics of Dental Ceramics.

    Science.gov (United States)

    Kulkarni, Aditi; Rothrock, James; Thompson, Jeffery

    2018-01-14

    To test the impact of exposure to artificial gastric acid combined with toothbrush abrasion on the properties of dental ceramics. Earlier research has indicated that immersion in artificial gastric acid has caused increased surface roughness of dental ceramics; however, the combined effects of acid immersion and toothbrush abrasion and the impact of increased surface roughness on mechanical strength and optical properties have not been studied. Three commercially available ceramics were chosen for this study: feldspathic porcelain, lithium disilicate glass-ceramic, and monolithic zirconium oxide. The specimens (10 × 1 mm discs) were cut, thermally treated as required, and polished. Each material was divided into four groups (n = 8 per group): control (no exposure), acid only, brush only, acid + brush. The specimens were immersed in artificial gastric acid (50 ml of 0.2% [w/v] sodium chloride in 0.7% [v/v] hydrochloric acid mixed with 0.16 g of pepsin powder, pH = 2) for 2 minutes and rinsed with deionized water for 2 minutes. The procedure was repeated 6 times/day × 9 days, and specimens were stored in deionized water at 37°C. Toothbrush abrasion was performed using an ISO/ADA design brushing machine for 100 cycles/day × 9 days. The acid + brush group received both treatments. Specimens were examined under SEM and an optical microscope for morphological changes. Color and translucency were measured using spectrophotometer CIELAB coordinates (L*, a*, b*). Surface gloss was measured using a gloss meter. Surface roughness was measured using a stylus profilometer. Biaxial flexural strength was measured using a mechanical testing machine. The data were analyzed by one-way ANOVA followed by Tukey's HSD post hoc test (p gloss, and surface roughness for porcelain and e.max specimens. No statistically significant changes were found for any properties of zirconia specimens. The acid treatment affected the surface roughness, color, and gloss of porcelain and e

  5. Alumino-silicate speciation in aqueous fluids at deep crustal conditions

    Science.gov (United States)

    Mookherjee, M.; Keppler, H.; Manning, C. E.

    2014-12-01

    Alumina and silica are major oxides in most crustal rocks. While SiO2 is quite soluble in aqueous fluids at metamorphic conditions, behavior of Al2O3 in crustal metamorphic fluids has been poorly understood. It is known that alumina is dramatically less soluble in aqueous fluids and hence it is difficult to explain the common occurrence of quartz with aluminous minerals in metamorphic veins. In order to understand this complex behavior of alumina, we investigated aluminum speciation in aqueous fluids in equilibrium with corundum using in situ Raman spectroscopy in hydrothermal diamond anvil cells to 20 kbar and 1000 oC. In order to better understand the spectral features of the aqueous fluids, we used first principles simulations based on density functional theory to calculate and predict the energetics and vibrational spectra for various aluminum species that are likely to be present in aqueous solutions. The Raman spectra of pure water in equilibrium with Al2O3 are devoid of any characteristic spectral features. In contrast, aqueous fluids with KOH solution in equilibrium with Al2O3 show a sharp band at ~620 cm-1 which could be attributed to the [Al(OH)4]1- species. The band grows in intensity with temperature along an isochore. In the limited pressure, temperature and density explored in the present study, we do not find any evidence for the polymerization of the [Al(OH)4]1- species to dimers [(OH)2-Al-O2-Al(OH)2]2- or [(OH)3-Al-O-Al(OH)3]2-. This is likely due to the relatively low concentration of Al in the solutions and does not rule out significant polymerization at higher pressures and temperatures. We are also investigating the effect of SiO2 on the solubility of Al2O3 and the relative energetics of formation of pure alumina dimer [(OH)3-Al-O-Al(OH)3]2- vs. the aluminosilicate dimers, [(OH)3-Al-O-Si(OH)3]2- at deep crustal conditions. Acknowledgement- MM is supported by the US National Science Foundation grant (EAR-1250477).

  6. Potential Applications of Alkali-Activated Alumino-Silicate Binders in Military Operations

    Science.gov (United States)

    1985-11-01

    portland 14 cement clinker) are to be blended, they are generally not ground together. However, some plasticizers (such as alkali lignosulphonate ) have a...34--- 31. Activators may also contain wetting agents (plasticizers) to re- duce the amount of water needed and to assist in mixing. Lignosulphonates ...or sulphonated lignins, have proven to be more effective than melamine or naphthalene-based superplastiCizers (Forss 1981, 1982). Lignosulphonates can

  7. Redox equilibria and the structural role of iron in alumino-silicate melts

    Science.gov (United States)

    Dickenson, M. P.; Hess, P. C.

    1982-01-01

    The relationship between the redox ratio Fe+2/(Fe+2+Fe+3) and the K2O/(K2O + Al2O3) ratio (K2O*) were experimentally investigated in silicate melts with 78 mol% SiO2 in the system SiO2-Al2O3-K2O-FeO-Fe2O3, in air at 1,400° C. Quenched glass compositions were analyzed by electron microprobe and wet chemical microtitration techniques. Minimum values of the redox ratio were obtained at K2O*≈0.5. The redox ratio in peralkaline melts (K2O*>0.5) increases slightly with K2O* whereas this ratio increases dramatically in peraluminous melts (K2O*<0.5) as K2O is replaced by Al2O3. These data indicate that all Fe+3 (and Al+3) occur as tetrahedral species charge balanced with K+ in peralkaline melts. In peraluminous melts, Fe+3 (and Al+3) probably occur as both tetrahedral species using Fe+2 as a charge-balancing cation and as network-modifying cations associated with non-bridging oxygen.

  8. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  9. Optical Property Requirements for Glasses, Ceramics and Plastics in Spacecraft Window Systems

    Science.gov (United States)

    Estes, Lynda

    2011-01-01

    This is a preliminary draft of a standard published by the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) that is intended to provide uniform window optical design requirements in support of the development of human-rated spaceflight hardware. The material covered in this standard is based on data from extensive testing by the Advanced Sensing and Optical Measurement Branch at NASA Langley Research Center, and compiled into requirements format by the NASA JSC Structural Engineering Division. At the time of this initial document release, a broader technical community has not reviewed this standard. The technical content of this standard is primarily based on the Constellation Program Orion Crew Exploration Vehicle Window Optical Properties Requirements, CxP 72407, Baseline. Unlike other optical requirements documents available for human rated spacecraft, this document includes requirements that ensure functionality for windows that contain glass/ceramic and/or plastic window substrate materials. These requirements were derived by measuring the optical properties of fused silica and aluminosilicate glass window assemblies and ensuring that the performance of any window assembly that includes a plastic pane or panes will meet the performance level of the all-glass assemblies. The resulting requirements are based upon the performance and parameter metrology testing of a variety of materials, including glass, transparent ceramics, acrylics, and polycarbonates. In general, these requirements are minimum specifications for each optical parameter in order to achieve the function specified for each functional category, A through D. Because acrylic materials perform at a higher level than polycarbonates in the optics regime, and CxP/Orion is planning to use acrylic in the Orion spacecraft, these requirements are based heavily on metrology from that material. As a result, two of the current Category D requirements for plastics are cited in

  10. An optical method for characterizing carbon content in ceramic pot filters.

    Science.gov (United States)

    Goodwin, J Y; Elmore, A C; Salvinelli, C; Reidmeyer, Mary R

    2017-08-01

    Ceramic pot filter (CPF) technology is a relatively common means of household water treatment in developing areas, and performance characteristics of CPFs have been characterized using production CPFs, experimental CPFs fabricated in research laboratories, and ceramic disks intended to be CPF surrogates. There is evidence that CPF manufacturers do not always fire their products according to best practices and the result is incomplete combustion of the pore forming material and the creation of a carbon core in the final CPFs. Researchers seldom acknowledge the existence of potential existence of carbon cores, and at least one CPF producer has postulated that the carbon may be beneficial in terms of final water quality because of the presence of activated carbon in consumer filters marketed in the Western world. An initial step in characterizing the presence and impact of carbon cores is the characterization of those cores. An optical method which may be more viable to producers relative to off-site laboratory analysis of carbon content has been developed and verified. The use of the optical method is demonstrated via preliminary disinfection and flowrate studies, and the results of these studies indicate that the method may be of use in studying production kiln operation.

  11. Thermally and optically stimulated luminescence of AlN-Y2O3 ceramics after ionising irradiation

    DEFF Research Database (Denmark)

    Trinkler, L.; Bos, A.J.J.; Winkelman, A.J.M.

    1999-01-01

    , an essential drawback of AlN-Y2O3 is its high fading rate. Special attention has been focused on understanding and improving the fading properties. In particular, the influence of the ceramics production conditions and the additive concentration on the fading rate have been studied. Experimental results......Thermally (TL) and optically stimulated luminescence (OSL) were studied in AlN-Y2O3 ceramics after irradiation with ionising radiation. The extremely high TL sensitivity (approximately 60 times the sensitivity of LiF:Mg,Tl (TLD-100)) makes AlN-Y2O3 ceramics attractive as a TLD material. However...... on spectral properties and thermal evolution of OSL are also presented. The stimulation spectrum covers the spectral range from green to infrared light. A combination of thermal and optical stimulation allowed a correlation to be found between parameters of OSL and TL after the same irradiation dose...

  12. Preparation and Optical Properties of Infrared Transparent 3Y-TZP Ceramics

    Directory of Open Access Journals (Sweden)

    Chuanfeng Wang

    2017-04-01

    Full Text Available In the present study, a tough tetragonal zirconia polycrystalline (Y-TZP material was developed for use in high-speed infrared windows and domes. The influence of the preparation procedure and the microstructure on the material’s optical properties was evaluated by SEM and FT-IR spectroscopy. It was revealed that a high transmittance up to 77% in the three- to five-micrometer IR region could be obtained when the sample was pre-sintered at 1225 °C and subjected to hot isostatic pressing (HIP at 1275 °C for two hours. The infrared transmittance and emittance at elevated temperature were also examined. The in-line transmittance remained stable as the temperature increased to 427 °C, with degradation being observed only near the infrared cutoff edge. Additionally, the emittance property of 3Y-TZP ceramic at high temperature was found to be superior to those of sapphire and spinel. Overall, the results indicate that Y-TZP ceramic is a potential candidate for high-speed infrared windows and domes.

  13. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  14. Manufacturing process scale-up of optical grade transparent spinel ceramic at ArmorLine Corporation

    Science.gov (United States)

    Spilman, Joseph; Voyles, John; Nick, Joseph; Shaffer, Lawrence

    2013-06-01

    While transparent Spinel ceramic's mechanical and optical characteristics are ideal for many Ultraviolet (UV), visible, Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and multispectral sensor window applications, commercial adoption of the material has been hampered because the material has historically been available in relatively small sizes (one square foot per window or less), low volumes, unreliable supply, and with unreliable quality. Recent efforts, most notably by Technology Assessment and Transfer (TA and T), have scaled-up manufacturing processes and demonstrated the capability to produce larger windows on the order of two square feet, but with limited output not suitable for production type programs. ArmorLine Corporation licensed the hot-pressed Spinel manufacturing know-how of TA and T in 2009 with the goal of building the world's first dedicated full-scale Spinel production facility, enabling the supply of a reliable and sufficient volume of large Transparent Armor and Optical Grade Spinel plates. With over $20 million of private investment by J.F. Lehman and Company, ArmorLine has installed and commissioned the largest vacuum hot press in the world, the largest high-temperature/high-pressure hot isostatic press in the world, and supporting manufacturing processes within 75,000 square feet of manufacturing space. ArmorLine's equipment is capable of producing window blanks as large as 50" x 30" and the facility is capable of producing substantial volumes of material with its Lean configuration and 24/7 operation. Initial production capability was achieved in 2012. ArmorLine will discuss the challenges that were encountered during scale-up of the manufacturing processes, ArmorLine Optical Grade Spinel optical performance, and provide an overview of the facility and its capabilities.

  15. Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes

    Energy Technology Data Exchange (ETDEWEB)

    Benayas, A.; Jaque, D. [Universidad Autonoma de Madrid, Departamento de Fisica de Materiales, Madrid (Spain); Silva, W.F.; Jacinto, C. [Universidade Federal de Alagoas, Grupo de Fotonica e Fluidos Complexos, Instituto de Fisica, Maceio, Alagoas (Brazil); Rodenas, A.; Thomsom, R.R.; Psaila, N.D.; Reid, D.T.; Kar, A.K. [Heriot-Watt University, School of Engineering and Physical Sciences, Edinburgh (United Kingdom); Vazquez de Aldana, J. [Universidad de Salamanca, Grupo de Optica, Departamento de Fisica Aplicada, Facultad de Ciencias Fisicas, Salamanca (Spain); Chen, F.; Tan, Y. [Shandong University, School of Physics, Jinan (China); Torchia, G.A. [CONICET-CIC, Centro de Investigaciones Opticas, La Plata (Argentina)

    2011-07-15

    We report the improvement of ultrafast laser written optical waveguides in Yb:YAG ceramics by tailoring the presence of heat accumulation effects. From a combination of ytterbium micro-luminescence and micro-Raman structural analysis, maps of lattice defects and stress fields have been obtained. We show how laser annealing can strongly reduce the concentration of defects and also reduce compressive stress, leading to an effective 50% reduction in the propagation losses and to more extended and symmetric propagation modes. (orig.)

  16. Structural and optical properties of Tb-doped Na-Gd metaphosphate glasses and glass-ceramics

    Czech Academy of Sciences Publication Activity Database

    Moretti, F.; Vedda, A.; Nikl, Martin; Nitsch, Karel

    2009-01-01

    Roč. 21, č. 15 (2009), 155103/1-155103/7 ISSN 0953-8984 R&D Projects: GA AV ČR IAA200100626 Institutional research plan: CEZ:AV0Z10100521 Keywords : Na-Gd metaphosphate glass * glass -ceramics * NaGd(PO 3 ) 4 * optical properties * structural properties * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  17. Temperature variation in metal ceramic technology analyzed using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-01-01

    The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.

  18. Ceramic and polymeric dental onlays evaluated by photo-elasticity, optical coherence tomography, and micro-computed tomography

    Science.gov (United States)

    Sinescu, Cosmin; Negrutiu, Meda; Topala, Florin; Ionita, Ciprian; Negru, Radu; Fabriky, Mihai; Marcauteanu, Corina; Bradu, Adrian; Dobre, George; Marsavina, Liviu; Rominu, Mihai; Podoleanu, Adrian

    2011-10-01

    Dental onlays are restorations used to repair rear teeth that have a mild to moderate amount of decay. They can also be used to restore teeth that are cracked or fractured if the damage is not severe enough to require a dental crown. The use of onlays requires less tooth reduction than does the use of metal fillings. This allows dentists to conserve more of a patient's natural tooth structure in the treatment process. The aims of this study are to evaluate the biomechanical comportment of the dental onlays, by using the 3D photo elasticity method and to investigate the integrity of the structures and their fitting to the dental support. For this optical coherence tomography and micro-computed tomography were employed. Both methods were used to investigate 37 dental onlays, 17 integral polymeric and 20 integral ceramic. The results permit to observe materials defects inside the ceramic or polymeric onlays situate in the biomechanically tensioned areas that could lead to fracture of the prosthetic structure. Marginal fitting problems of the onlays related to the teeth preparations were presented in order to observe the possibility of secondary cavities. The resulted images from the optical coherence tomography were verified by the micro-computed tomography. In conclusion, the optical coherence tomography can be used as a clinical method in order to evaluate the integrity of the dental ceramic and polymeric onlays and to investigate the quality of the marginal fitting to the teeth preparations.

  19. Accuracy of optical scanning methods of the Cerec®3D system in the process of making ceramic inlays

    Directory of Open Access Journals (Sweden)

    Trifković Branka

    2010-01-01

    Full Text Available Background/Aim. One of the results of many years of Cerec® 3D CAD/CAM system technological development is implementation of one intraoral and two extraoral optical scanning methods which, depending on the current indications, are applied in making fixed restorations. The aim of this study was to determine the degree of precision of optical scanning methods by the use of the Cerec®3D CAD/CAM system in the process of making ceramic inlays. Methods. The study was conducted in three experimental groups of inlays prepared using the procedure of three methods of scanning Cerec ®3D system. Ceramic inlays made by conventional methodology were the control group. The accuracy of optical scanning methods of the Cerec®3D system computer aided designcomputer aided manufacturing (CAD/CAM was indirectly examined by measuring a marginal gap size between inlays and demarcation preparation by scanning electron microscope (SEM. Results. The results of the study showed a difference in the accuracy of the existing methods of scanning dental CAD/CAM systems. The highest level of accuracy was achieved by the extraoral optical superficial scanning technique. The value of marginal gap size inlays made with the technique of extraoral optical superficial scanning was 32.97 ± 13.17 μ. Techniques of intraoral optical superficial and extraoral point laser scanning showed a lower level of accuracy (40.29 ± 21.46 μ for inlays of intraoral optical superficial scanning and 99.67 ± 37.25 μ for inlays of extraoral point laser scanning. Conclusion. Optical scanning methods in dental CAM/CAM technologies are precise methods of digitizing the spatial models; application of extraoral optical scanning methods provides the hightest precision.

  20. Optically stimulated luminescence dating of archaeological ceramics from Osvaldo and Lago Grande sites in central Amazon

    International Nuclear Information System (INIS)

    Hazenfratz, Roberto; Tudela, Diego R.G.; Munita, Casimiro S.; Mittani, Juan C.R.; Tatumi, Sonia H.

    2013-01-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) dating are two important techniques for dating archaeological and geological material, especially suitable for archaeological ceramics, where samples for 14 C dating are not available. In this work, five pottery shards from Osvaldo and Lago Grande archaeological sites were dated by OSL. For measurements, it was used the SAR protocol. The annual dose rates were estimated by the contents of U, Th and K, determined by instrumental neutron activation analysis (INAA) of the pottery shards and clay samples near both sites. Lago Grande and Osvaldo represent a microcosm of the region, and their proximity and high density of archaeological record turn them interesting to study possible relations of cultural and/or commercial exchange. Calculations showed that the water content is an important variable that cannot be neglected in OSL dating of pottery shards from central Amazon, due to the high humidity in regional soils. The results between 867 ± 101 and 1154 ± 62 years AD agreed with the average time span for the archaeological sites occupation found in the literature. (author)

  1. Optically stimulated luminescence dating of archaeological ceramics from Osvaldo and Lago Grande sites in central Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Hazenfratz, Roberto; Tudela, Diego R.G.; Munita, Casimiro S., E-mail: robertohm@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Mittani, Juan C.R.; Tatumi, Sonia H. [Universidade Federal de Sao Paulo (UNIFESP), Santos, SP (Brazil)

    2013-07-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) dating are two important techniques for dating archaeological and geological material, especially suitable for archaeological ceramics, where samples for {sup 14}C dating are not available. In this work, five pottery shards from Osvaldo and Lago Grande archaeological sites were dated by OSL. For measurements, it was used the SAR protocol. The annual dose rates were estimated by the contents of U, Th and K, determined by instrumental neutron activation analysis (INAA) of the pottery shards and clay samples near both sites. Lago Grande and Osvaldo represent a microcosm of the region, and their proximity and high density of archaeological record turn them interesting to study possible relations of cultural and/or commercial exchange. Calculations showed that the water content is an important variable that cannot be neglected in OSL dating of pottery shards from central Amazon, due to the high humidity in regional soils. The results between 867 ± 101 and 1154 ± 62 years AD agreed with the average time span for the archaeological sites occupation found in the literature. (author)

  2. Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics

    Science.gov (United States)

    Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki

    2018-04-01

    13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.

  3. Investigation of firing temperature variation in ovens for ceramic-fused-to-metal dental prostheses using swept source optical coherence tomography

    Science.gov (United States)

    Todor, Raluca; Negrutiu, Meda-Lavinia; Sinescu, Cosmin; Topala, Florin Ionel; Bradu, Adrian; Duma, Virgil-Florin; Romînu, Mihai; Podoleanu, Adrian G.

    2018-03-01

    One of the most common fabrication techniques for dental ceramics is sintering, a process of heating of the ceramic to ensure densification. This occurs by viscous flow when the firing temperature is reached. Acceptable restorations require the alloy and ceramic to be chemically, thermally, mechanically, and aesthetically compatible. Thermal and mechanical compatibility include a fusing temperature of ceramic that does not cause distortion of the metal substructure. Decalibration of ovens used for firing of the ceramic layers for metal ceramic dental prostheses leads to stress and cracks in the veneering material, and ultimately to the failure of the restoration. 25 metal ceramic prostheses were made for this study. They were divided in five groups, each sintered at a different temperature: a group at the temperature prescribed by the producer, two groups at lower and two groups at higher temperatures set in the ceramic oven. An established noninvasive biomedical imaging method, swept source (SS) optical coherence tomography (OCT) was employed, in order to evaluate the modifications induced when using temperatures different from those prescribed for firing the samples. A quantitative assessment of the probes is performed by en-face OCT images, taken at constant depths inside the samples. The differences in granulation, thus in reflectivity allow for extracting rules-of-thumb to evaluate fast, by using only the prostheses currently produced the current calibration of the ceramic oven. OCT imaging can allow quick identification of the oven decalibration, to avoid producing dental prostheses with defects.

  4. Physical-optical effects obtention for the ceramic tiles decoration; Obtencion de efectos fisico-opticos para la decoracion de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, M J; Montins, V; Solsona, D; Sala, J M

    2012-07-01

    This paper presents a range of products for the ceramic tiles decoration, characterized for a microcracks structure after its application on a ceramic substrate and subsequent firing. This structure origins a multicoloured iridescent effect that confers to the ceramic tile differential aesthetics characteristics, with a final aspect similar to the rainbow quartz or iris quartz. An analysis of the state of the art is made as well as a deepening in the study and characterization of the physical optical phenomena responsible of that kind of effects in these minerals, with the aim of determining and modelling the multicoloured effect or iridescent effect, the cause of this effect, the physical-optical phenomenon that produces it, and the analysis and knowledge of the phenomenological mechanisms that origins it, so that we can try the extrapolation of that effects wit our ceramic materials. (Author)

  5. EFFECTS OF NEODYMIUM DOPING ON DIELECTRIC AND OPTICAL PROPERTIES OF Ba(1-xNdxTi1.005O3 CERAMICS

    Directory of Open Access Journals (Sweden)

    Zhang W.

    2013-06-01

    Full Text Available This paper investigated the optical properties and dielectric properties of neodymium doped BaTiO3 ceramics prepared by Ba(1-xNdxTi1.005O3 powders synthesized via a hydrothermal method. The effects of Nd3+ ions content on the structure, dielectric properties and optical properties of the ceramics were studied. The structural analysis performed on the X-ray diffractometer shows that the phase compositions of all ceramics are tetragonal phase structure. The red shift of the absorption edge indicates the presence of defect energy levels which was proved by the UV-Vis-NIR diffuse reflection spectra. Dielectric property measurements show that Nd-doped BaTiO3 ceramics possess improved dielectric properties at low Nd3+ contents (x = 0.001 and 0.002, as demonstrated by decreased dependence to frequency for both the dielectric constant and dielectric loss.

  6. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori [Laser Research Center, Institute for Molecular Science, Okazaki, Aichi (Japan); Ikesue, Akio [Japan Fine Ceramics Center, Nagoya, Aichi (Japan); Yoshida, Kunio [Institute of Laser Engineering, Osaka Institute of Technology, Osaka (Japan)

    2000-03-01

    Diode-pumped microchip laser oscillation of highly Nd{sup 3+}-doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  7. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    International Nuclear Information System (INIS)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori; Ikesue, Akio; Yoshida, Kunio

    2000-01-01

    Diode-pumped microchip laser oscillation of highly Nd 3+ -doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  8. High Radiation Tolerant Ceramic Voltage Isolator (Non-optical Gate Driver), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the Phase I effort is to design, develop and demonstrate a novel solid-state ceramic-based voltage isolator and demonstrate its potential to provide a...

  9. Optical, mechanical and fractographic response of transparent alumina ceramics on erbium doping

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Drdlíková, K.; Hadraba, Hynek; Máca, K.

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4265-4270 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : Alumina * Erbia * Fractography * Hardness * Transparency Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  10. Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Clara Musa

    2016-06-01

    Full Text Available In the present study, nearly fully dense monolithic ZrC samples are produced and broadly characterized from microstructural, mechanical and optical points of view. Specifically, 98% dense products are obtained by Spark Plasma Sintering (SPS after 20 min dwell time at 1850 °C starting from powders preliminarily prepared by Self-propagating High-temperature Synthesis (SHS followed by 20 min ball milling. A prolonged mechanical treatment up to 2 h of SHS powders does not lead to appreciable benefits. Vickers hardness of the resulting samples (17.5 ± 0.4 GPa is reasonably good for monolithic ceramics, but the mechanical strength (about 250 MPa up to 1000 °C could be further improved by suitable optimization of the starting powder characteristics. The very smoothly polished ZrC specimen subjected to optical measurements displays high absorption in the visible-near infrared region and low thermal emittance at longer wavelengths. Moreover, the sample exhibits goodspectral selectivity (2.1–2.4 in the 1000–1400 K temperature range. These preliminary results suggest that ZrC ceramics produced through the two-step SHS/SPS processing route can be considered as attractive reference materials for the development of innovative solar energy absorbers.

  11. Early Medieval ceramics from the Viile Tecii archaeological site (Romania: an optical and XRD study

    Directory of Open Access Journals (Sweden)

    Corina Ionescu

    2007-10-01

    Full Text Available Mineralogical and petrographic studies of Early Medieval potshards exhumed in the Viile Tecii archaeological site (North Transylvania, Romania show a ceramic body composed of a microcrystalline to amorphous matrix, various clasts and voids. The microscopical features and XRD patterns indicate that illitic-kaolinitic clays were used as raw materials, together with quartzitic sands as tempering material. The ceramic vessels were obtained with the potter’s wheel, but the fabric is only slightly oriented, due either to the fast modeling or to the coarseness of the clayish paste. The thermal alteration of mineral phases points to relatively high firing-temperatures, between 800 and 900°C.

  12. High gamma-ray measurement using optical emission of ceramic material

    Energy Technology Data Exchange (ETDEWEB)

    Kakuta, Tsunemi; Sakasai, Kaoru; Yamagishi, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakazawa, Masaharu

    1996-07-01

    This paper describes the fluorescence phenomena in Zr-O ceramic under expose to high gamma-ray and fission neutron source. In addition, the paper also discusses the possibility of ionizing radiation detection in the core region of reactor. (J.P.N.)

  13. Optical, luminescence and scintillation characteristics of non-stoichiometric LuAG:Ce ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Feng, X.; Mareš, Jiří A.; Babin, Vladimir; Nikl, Martin; Beitlerová, Alena; Shi, Y.; Zeng, Y.; Pan, Y.; D'Ambrosio, C.; Huang, Y.

    2016-01-01

    Roč. 169, Jan (2016), s. 72-77 ISSN 0022-2313 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : non-stoichimetric LuAG:Ce ceramic s * radioluminescence * scintillation response * anti-site defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  14. Preparation of modified polymer- Alumino silicate composite and their application in removal of some radionuclides from aqueous solutions

    International Nuclear Information System (INIS)

    El- Masry, E.H.

    2012-01-01

    Ion exchange is one of the most common and effective treatment methods for radioactive liquid waste. This technique is well developed and has been employed for many years in both the nuclear industry and in other industries. In this thesis polyacrylamide- zeolite and polyacrylamide- bentonite composites were prepared and characterized using advanced analytical techniques. The prepared materials were used as composite ion exchangers for removal of Cesium, Cobalt and Strontium ions from simulated waste solution. Effect of ph of the medium on the removal of aforementioned ions was investigated. The sorption kinetic was studied and the data were analyzed by different kinetic models which rivaled that the mechanism of the sorption processes is mainly controlled by pseudo-second order reaction, and particle diffusion might be involved in the sorption processes. The values of diffusion coefficient of the three metal ions were calculated and suggested that chemisorption was the predominated sorption mechanism. Several isotherm models were applied for the sorption, and thermodynamic parameters were determined. The positive values of enthalpy change, δH, for the three metal ions confirmed the endothermic nature of the sorption processes. The results indicated that the prepared materials can be used as efficient ion exchange materials for the removal of cesium, cobalt and strontium ions from simulated waste solution. In the present study, immobilization of polyacrylamide- zeolite and/ or polyacrylamide- bentonite composites loaded with cesium, cobalt and/or strontium radionuclides with Ordinary Portland Cement (OPC) has been carried out. Several factors affecting the characteristics of the final solidified waste product towards safe disposal such as mechanical strength and leaching behavior of the radioisotopes have been studied. The obtained results showed that the presence of polyacrylamide- zeolite and/ or polyacrylamide- bentonite composites in the cemented wastes improve the mechanical characteristics of the solidified cement matrix (mechanical strength) towards the safety requirements and reduce considerably the radionuclides leach rates.

  15. Development of nondestructive evaluation methods for ceramic coatings

    International Nuclear Information System (INIS)

    Ellingson, W. A.; Deemer, C.; Sun, J. G.; Erdman, S.; Muliere, D.; Wheeler, B.

    2002-01-01

    has demonstrated that environmental EBCs are required to reduce oxidation-induced recession rates. NDE technologies, primarily one-sided and through-thickness thermal imaging, are under development to detect delaminations and degradation of EBCs. Recent results have demonstrated that NDE thermal image data correctly detected pre-spall regions of a barium-strontium-alumino-silicate coating on melt-infiltrated SiC/SiC. The NDE data were verified with field test data from a combustor liner in a 4.5 MW(e) natural-gas-fired turbine. The shape of the spalled EBC region and the growth of the spalled EBC region after various engine run times were correlated with boroscope image data from field tests. An effort has recently been started to address NDE development for oxide/oxide ceramic composites with an EBC. We will discuss the NDE methods under development for TBCs, recent NDE test results from thermally cycled TBCs, NDE results from EBCs on SiC/SiC, and the new effort directed toward oxide/oxide materials

  16. Towards bright and fast Lu.sub.3./sub.Al.sub.5./sub.O.sub.12./sub.:Ce,Mg optical ceramics scintillators

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Mareš, Jiří A.; Feng, X.; Vedda, A.; Fasoli, M.; Shi, Y.; Kou, H.; Beitlerová, Alena; Wu, L.; D´Ambrosio, C.; Pan, Y.; Nikl, Martin

    2016-01-01

    Roč. 4, č. 5 (2016), 731-739 ISSN 2195-1071 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : optical ceramics * Ce dopant * LuAG garnet * luminescence * scintillators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.875, year: 2016

  17. Fundamental optical constants of Nd-doped Y.sub.2./sub.O.sub.3./sub. ceramic and its scintillation characteristics

    Czech Academy of Sciences Publication Activity Database

    Fukabori, A.; Chani, V.; Pejchal, Jan; Kamada, K.; Yoshikawa, A.; Ikegami, T.

    2011-01-01

    Roč. 34, č. 2 (2011), s. 452-456 ISSN 0925-3467 Institutional research plan: CEZ:AV0Z10100521 Keywords : Nd:Y 2 O 3 ceramic * fundamental optical constant * scintillator * scintillation properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.023, year: 2011

  18. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  19. Crystallization Kinetics and Characterization of Nanostructure Mica Glass-Ceramics with Optical Transparency

    Directory of Open Access Journals (Sweden)

    P. Alizadeh

    2014-01-01

    Full Text Available Transparent glasses in a system of Li2O-MgO-SiO2-Al2O3-Fchemical constituents were prepared by melt quenching method. In the fabrication of nanocrystal glass-ceramics, controlled nucleation and subsequent crystal growth were necessary to avoid loss of transparency. It was therefore important to understand thermal properties and crystallization kinetics of the glass ceramics. The crystallization behavior of the prepared glass was investigated by DTA, XRD and SEM. By crystallization heat-treatment, various crystalline phases, microstructure and transmittance were obtained. The sellaite was first precipitated as the nuclei before the crystallization of mica and then mica nanocrystals were precipitated with average size of

  20. Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Joshi, C.; Rai, R.N.; Rai, S.B.

    2012-01-01

    Glass-ceramics and ceramics containing nano-crystals of different phases doped with Er 3+ /Yb 3+ ions have been successfully prepared by heat treatment of the precursor oxyhalide glasses synthesized by the melt-quench method. X-ray diffraction patterns and transmission electron microscopy (TEM) images verify the precipitation of nano-crystals. Emission of Er 3+ enhances several times when Yb 3+ ion is added with the matrix. The Stark splitting and the intensity of different emission bands increase to a great extent when we approach to ceramics from glasses via glass-ceramics. The intensity of the blue and green emission bands increases much faster than the red and NIR emission bands. Intense upconversion emission observed by the naked eye has been quantified in terms of standard chromaticity diagram (CIE). Power dependence study shows that the upconversion of NIR radiation to visible radiation takes place mainly via photon avalanche (PA) process.

  1. Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties

    International Nuclear Information System (INIS)

    Zhang Yanfei; Li Jiayan; Li Qin; Zhu Ling; Liu Xiangdong; Zhong Xinghua; Meng Jian; Cao Xueqiang

    2007-01-01

    Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing polyvinyl pyrrolidone (PVP) and In(NO 3 ) 3 .412H 2 O. Upon firing the composite fibers at 800 deg. C, In 2 O 3 fibers with diameters ranging from 200 to 400nm were synthesized. This indium oxide calcined at 800 deg. C is a body-centered cubic cell. The photoluminescence (PL) properties of the as-formed In 2 O 3 nanofibers were investigated. The In 2 O 3 nanofibers show a strong PL emission in the ultraviolet (UV) region under shorter UV light irradiation

  2. Characterization, optical properties and laser ablation behavior of epoxy resin coatings reinforced with high reflectivity ceramic particles

    Science.gov (United States)

    Li, Wenzhi; Kong, Jing; Wu, Taotao; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi; Wei, Chenghua; Wang, Lijun

    2018-04-01

    Thermal damage induced by high power energy, especially high power laser, significantly affects the lifetime and performance of equipment. High-reflectance coating/film has attracted considerable attention due to its good performance in the damage protection. Preparing a high-reflectance coating with high reaction endothermal enthalpy will effectively consume a large amount of incident energy and in turn protect the substrate from thermal damage. In this study, a low temperature process was used to prepare coatings onto substrate with complex shape and avoid thermal effect during molding. An advanced high reflection ceramic powder, La1‑xSrxTiO3+δ , was added in the epoxy adhesive matrix to improve the reflectivity of coating. The optical properties and laser ablation behaviors of coatings with different ceramic additive ratio of La1‑xSrxTiO3+δ and modified epoxy-La1‑xSrxTiO3+δ with ammonium polyphosphate coatings were investigated, respectively. We found that the reflectivity of coatings is extremely high due to mixed high-reflection La1‑xSrxTiO3+δ particles, up to 96% at 1070 nm, which can significantly improve the laser resistance. In addition, the ammonium polyphosphate modifies the residual carbon structure of epoxy resin from discontinuous fine particles structure to continuous and porous structure, which greatly enhances the thermal-insulation property of coating. Furthermore, the laser ablation threshold is improved obviously, which is from 800 W cm‑2 to 1000 W cm‑2.

  3. Method of bistable optical information storage using antiferroelectric phase PLZT ceramics

    Science.gov (United States)

    Land, Cecil E.

    1990-01-01

    A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field.

  4. Clinical application of bio ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  5. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  6. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    Science.gov (United States)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste

  7. [An experimental study on the effect of different optical impression methods on marginal and internal fit of all-ceramic crowns].

    Science.gov (United States)

    Tan, Fa-Bing; Wang, Lu; Fu, Gang; Wu, Shu-Hong; Jin, Ping

    2010-02-01

    To study the effect of different optical impression methods in Cerec 3D/Inlab MC XL system on marginal and internal fit of all-ceramic crowns. A right mandibular first molar in the standard model was used to prepare full crown and replicated into thirty-two plaster casts. Sixteen of them were selected randomly for bonding crown and the others were used for taking optical impression, in half of which the direct optical impression taking method were used and the others were used for the indirect method, and then eight Cerec Blocs all-ceramic crowns were manufactured respectively. The fit of all-ceramic crowns were evaluated by modified United States Public Health Service (USPHS) criteria and scanning electron microscope (SEM) imaging, and the data were statistically analyzed with SAS 9.1 software. The clinically acceptable rate for all marginal measurement sites was 87.5% according to USPHS criteria. There was no statistically significant difference in marginal fit between direct and indirect method group (P > 0.05). With SEM imaging, all marginal measurement sites were less than 120 microm and no statistically significant difference was found between direct and indirect method group in terms of marginal or internal fit (P > 0.05). But the direct method group showed better fit than indirect method group in terms of mesial surface, lingual surface, buccal surface and occlusal surface (P impression method had no significant effect on marginal fit of Cerec Blocs crowns, but it had certain effect on internal fit. Overall all-ceramic crowns appeared to have clinically acceptable marginal fit.

  8. Microstructure, mechanical, thermal, EPR, and optical properties of MgAl2O4:Cr3+ spinel glass–ceramic nanocomposites

    International Nuclear Information System (INIS)

    Molla, A.R.; Kesavulu, C.R.; Chakradhar, R.P.S.; Tarafder, A.; Mohanty, S.K.; Rao, J.L.; Karmakar, B.; Biswas, S.K.

    2014-01-01

    Highlights: • E c of MgAl 2 O 4 spinel glass–ceramics has been found to be 250–270 kJ/mol. • TEM images show presence of cubic crystals of uniform size 10–15 nm in the GC. • HV ∼6.0 GPa, K c ∼ 5.0 MPa m 1/2 , flexural strength ∼100 MPa and E ∼ 55 GPa obtained. • Observed red emission of Cr 3+ ions due to spin-forbidden 2 E g → 4 A 2g transition. -- Abstract: The mechanical, thermal, and optical properties, along with the microstructure and electron paramagnetic resonance (EPR) spectra, have been studied for MgAl 2 O 4 :Cr 3+ spinel glass and glass–ceramics. The activation energy of the crystallization has been estimated from the differential scanning calorimetry (DSC) study using different models and is found to vary within 255–270 kJ/mol for the un-doped precursor glass. The microstructure of the glass–ceramics has been characterized using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The TEM images demonstrate the presence of cubic crystals in the glass–ceramics of uniform size 10–15 nm. X-ray diffraction (XRD) and Fourier-transform infrared (FT-IR) spectroscopy reveal the presence of MgAl 2 O 4 spinel as the only crystalline phase, formed in the heat-treated glass–ceramics. The EPR spectrum of Cr 3+ doped glass sample exhibits a broad resonance signal with effective g = 1.97 whereas in glass–ceramic sample an additional weak resonance signal is observed at g = 3.83. The excitation spectrum exhibits two bands in the visible region. The emission spectrum exhibits an intense red emission at 690 nm which is characteristic of Cr 3+ ions caused by the spin-forbidden 2 E g → 4 A 2g transition. All the mechanical properties are found to have improved in the glass–ceramics when compared to glasses. A good combination of micro-hardness (∼6.0 GPa), high fracture toughness (∼5.0 MPa m 1/2 ), 3 point flexural strength (∼100 MPa) and elastic modulus (∼55 GPa) has been obtained

  9. Study on optical properties of ceramics scintillator for X-ray CT equipment. (Pt. 2)

    International Nuclear Information System (INIS)

    Nakamura, Ryouhei; Tsukuda, Yasuo; Nitanda, Humio

    1993-01-01

    The scintillator elements in X-ray CT equipment of the third generation type require high uniformity of distribution of light output as well as quality response characteristic. Parameters responsible for the distribution of light output were studied using the Monte Carlo method. Although the scattering coefficient was neglected, close agreement was obtained between calculated and experimental results. Calculated results indicated that relative output drop at both ends decreased with increasing optical absorption coefficient and was constant for X-ray absorption factor. (author)

  10. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  11. Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids

    Science.gov (United States)

    Dai, Jiawei; Pan, Yubai; Xie, Tengfei; Kou, Huamin; Li, Jiang

    2018-04-01

    Highly transparent terbium aluminum garnet (Tb3Al5O12, TAG) magneto-optical ceramics were fabricated from co-precipitated nanopowders with tetraethoxysilane (TEOS) as sintering aid by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment. The ball milled TAG powder shows better dispersity than the as-synthesized powder, and its average particle size is about 80 nm. For the ceramic sample pre-sintered at 1720 °C for 20 h with HIP post-treated at 1700 °C for 3 h, the in-line transmittance exceeds 76% in the region of 400-1580nm (except the absorption band), reaching a maximum value of 81.8% at the wavelength of 1390 nm. The microstructure of the TAG ceramic is homogeneous and its average grain size is approximately 19.7 μm. The Verdet constant of the sample is calculated to be -182.7 rad·T-1·m-1 at room temperature.

  12. Positron annihilation in transparent ceramics

    Science.gov (United States)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  13. Positron annihilation in transparent ceramics

    International Nuclear Information System (INIS)

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  14. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Directory of Open Access Journals (Sweden)

    Karima Amer Almasri

    Full Text Available The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3 based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM, Fourier transforms infrared reflection spectroscopy (FTIR, and X-ray diffraction (XRD. The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature. Keywords: Soda lime silica glass, Wollastonite, Sintering, Structural properties, Optical properties

  15. Study of brazilian market of advanvced ceramics

    International Nuclear Information System (INIS)

    Veiga, M.M.; Soares, P.S.M.; SIlva, A.P. da; Alvarinho, S.B.

    1989-01-01

    The brazilian actual market survey of advanced ceramics, divided in sectors according to their function is described. The electroelectronics, magnetics, optics, mechanics and nuclears ceramics are presented. A forecasting of the brazilian market in advanced ceramics are also mentioned. (C.G.C.) [pt

  16. Microstructure, optical, and scintillation characteristics of Pr.sup.3+./sup. doped Lu.sub.3./sub.Al.sub.5./sub.O.sub.12./sub. optical ceramics

    Czech Academy of Sciences Publication Activity Database

    Shi, Y.; Nikl, Martin; Feng, X.; Mareš, Jiří A.; Shen, Y.; Beitlerová, Alena; Kučerková, Romana; Pan, Y.; Liu, Q.

    2011-01-01

    Roč. 109, č. 1 (2011), "013522-1"-"013522-7" ISSN 0021-8979 R&D Projects: GA AV ČR KAN300100802; GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : Pr 3+ doped Lu 3 Al 5 O 12 , * optical ceramics * microstructure * radio-luminescence * scintillation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.168, year: 2011 http://link.aip.org/link/?JAP/109/013522

  17. Transparent glass–ceramics with (Eu{sup 3+},Yb{sup 3+}):YNbO{sub 4} nanocrystals: Crystallization, structure, optical spectroscopy and cooperative upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Loiko, P.A. [Center for Optical Materials and Technologies (COMT), Belarusian National Technical University, 65/17 Nezavisimosti Ave., Minsk 220013 (Belarus); Dymshits, O.S., E-mail: vodym@goi.ru [NITIOM Vavilov State Optical Institute, 36/1 Babushkin St, Saint-Petersburg 192171 (Russian Federation); Alekseeva, I.P.; Zhilin, A.A.; Tsenter, M.Ya. [NITIOM Vavilov State Optical Institute, 36/1 Babushkin St, Saint-Petersburg 192171 (Russian Federation); Vilejshikova, E.V. [Center for Optical Materials and Technologies (COMT), Belarusian National Technical University, 65/17 Nezavisimosti Ave., Minsk 220013 (Belarus); Bogdanov, K.V. [National Research University of Information Technologies, Mechanics and Optics, Kronverkskiy pr., 49, 197101 Saint-Petersburg (Russian Federation); Mateos, X. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili (URV), Campus Sescelades, C/Marcellí Domingo, s/n, Tarragona E-43007 (Spain); Yumashev, K.V. [Center for Optical Materials and Technologies (COMT), Belarusian National Technical University, 65/17 Nezavisimosti Ave., Minsk 220013 (Belarus)

    2016-11-15

    In the present work, we report on a comprehensive study of crystallization, structure and optical spectroscopy of transparent glass–ceramics with (Eu{sup 3+},Yb{sup 3+}):YNbO{sub 4} nanocrystals synthesized by secondary heat-treatments of glass of the Li{sub 2}O–Al{sub 2}O{sub 3}–SiO{sub 2} system, for the first time, to the best of our knowledge. Heat treatments result in volume crystallization of RENbO{sub 4} with the sizes of 4–15 nm. Crystals of rare-earth niobates with disordered fluorite structure (T′) appear during heat-treatment at 720–740 °C for 6 h, crystals with tetragonal structure (T) appear at higher temperatures or longer durations of heat-treatment, and in samples heat-treated at 1000 °C, the monoclinic form (M) is detected additionally. Rare-earth niobates act as nucleating agents for bulk crystallization of β-quartz solid solutions, the main crystalline phase of the glass–ceramics, which ensures their good thermo-mechanical properties. Optical spectroscopy confirms entering of both Eu{sup 3+} and Yb{sup 3+} ions into the RENbO{sub 4} nanophase and their specroscopic properties variation according to the T′→T→M phase transformations. Under UV excitation, glass–ceramics heat-treated at 900 °C provide intense red emission with the color coordinates x=0.665, y=0.335 (CIE 1931). In the sample, heat-treated at 1000 °C, a partial reduction of Eu{sup 3+} to Eu{sup 2+} is observed which allows for tuning the color properties of emission. When excited in the near-IR by an InGaAs diode, the initial glass and glass–ceramics show red cooperative upconversion due to the 2Yb{sup 3+}→Eu{sup 3+} energy transfer. The efficiency of the latter is ~10%. The developed materials due to the good emission and thermo-mechanical properties are promising for the development of color-tunable red phosphors.

  18. Bulk glass ceramics containing Yb{sup 3+}/Er{sup 3+}: β-NaGdF{sub 4} nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wan, Zhongyi; Zhou, Yan [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Zhong, Jiasong; Ding, Mingye [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong; Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-07-25

    Highlights: • Hexagonal NaGdF{sub 4} nanocrystals embedded bulk glass ceramics were fabricated. • The incorporation of Ln{sup 3+} dopants into the β-NaGdF{sub 4} lattice was demonstrated. • Upconversion luminescence was highly intensified after glass crystallization. • Such glass ceramics had possible application in the optical temperature sensors. - Abstract: Lanthanide doped hexagonal β-NaGdF{sub 4} nanocrystals embedded transparent bulk glass ceramics were successfully fabricated via a phase-separation-controlled crystallization route. Elemental mapping in the scanning transmission electron microscope and optical spectroscopy analysis demonstrated the partition of the active centers into the β-NaGdF{sub 4} crystalline lattice. As a result, upconversion luminescence of the glass ceramic co-doped with Yb{sup 3+} and Er{sup 3+} is about 60 times as high as that of the precursor glass, attributing to the modification of Yb{sup 3+}/Er{sup 3+} surrounding from phase-separated amorphous nanoparticle to β-NaGdF{sub 4} crystalline lattice with low phonon energy and high crystallinity after crystallization. Furthermore, the temperature-dependent green upconversion emissions assigned to {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2} (520 nm) and {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} (540 nm) transitions were investigated, and the corresponding fluorescence intensity ratio of these two thermally coupled emitting-states greatly enhanced with increase of temperature. Using such fabricated glass ceramic as an optical thermometric medium, the maximum sensitivity reached as high as 0.0037 K{sup −1} at 580 K. It is expected that the investigated Er{sup 3+}/Yb{sup 3+} codoped glass ceramic might be a very promising candidate for accurate optical temperature sensors.

  19. Effect of Er{sub 2}O{sub 3} dopant on electrical and optical properties of potassium sodium niobate silicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yongsiri, Ploypailin [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sirisoonthorn, Somnuk [National Metal and Materials Technology Center, Pathumthani 12120 (Thailand); Pengpat, Kamonpan, E-mail: kamonpan.p@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-09-15

    Highlights: • The KNN–SiO{sub 2} doped Er{sub 2}O{sub 3} glass-ceramics was prepared by incorporation method. • High dielectric constant (458.41 at 100 kHz) and low loss (0.0005) could be obtained. • TEM and SEM confirmed the existence of KNN crystals embedded in glass matrix. • The Er{sub 2}O{sub 3} dopant causes insignificant effect on modifying E{sub g} value. - Abstract: In this study, transparent glass-ceramics from potassium sodium niobate (KNN)-silicate glass system doped with erbium oxide (Er{sub 2}O{sub 3}) were successfully prepared by incorporation method. KNN was added in glass batches as heterogeneous nucleating agent. The KNN powder was mixed with SiO{sub 2} and Er{sub 2}O{sub 3} dopant with KNN and Er{sub 2}O{sub 3} content varied between 70–80 and 0.5–1.0 mol%, respectively. Each batch was subsequently melted at 1300 °C for 15 min in a platinum crucible using an electric furnace. The quenched glasses were then subjected to heat treatment at various temperatures for 4 h. XRD results showed that the prepared glass ceramics contained crystals of KNN solid solution. In contrary, dielectric constant (ϵ{sub r}) and dielectric loss (tan δ) were found to increase with increasing heat treatment temperature. Additionally, optical properties such as absorbance and energy band gap have been investigated.

  20. Structural, Optical, and Dielectric Investigations of the Relaxor PLZT 9,75/65/35 Ceramics Irradiated by High-Current Pulsed Electron Beam

    CERN Document Server

    Efimov, V V; Kalmikov, A V; Klevtsova, E A; Minashkin, V F; Novikova, N N; Sikolenko, V V; Skripnik, A V; Sternberg, A; Tiutiunnikov, S I; Yakovlev, V A

    2002-01-01

    First time comprehensive study of high-current pulsed electron irradiation effects on the structural, optical and dielectric properties of relaxor (Pb_{(1-x)}La^{x}(Zr_{0.65}Ti_{0.35})_{1-x/4}O_{3} ceramics with x=9.75% has been provided. The electron beam had the following parameters: energy E_{e}=250 keV, current density J_{e}=1000 A/cm^{2}, pulse duration tau = 300 ns, density 10^{15} electrons/cm^{2} per pulse. Infrared reflectivity spectra in the region of 100-2000 cm^{-1} were obtained in virgin, irradiated by 1500 pulses and annealed up to t=500^{circ}C ceramics. The reconstruction of perovskite ABO_{3} structure in irradiated samples has been studied by complex use of X-ray and neutron scattering and IR spectroscopy techniques revealing the changes in transverse and longitudinal phonon modes, oscillators strength and damping of modes. Radiation effects on temperature behaviour of dielectric permittivity in the region of phase transition were studied. The possible mechanisms of pulsed electron irradiat...

  1. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  2. Effect of MnO2 doping and temperature treatment on optical energy band gap properties in Zn-Bi-Ti-O varistor ceramics

    International Nuclear Information System (INIS)

    Ghazali, M. S. M.; Abdullah, W. R. W.; Zakaria, A.; Kamari, H. M.; Rizwan, Z.

    2016-01-01

    In this study, the optical band-gap energy ( Eg ) was investigated with respect to MnO 2 and sintering temperatures on ZnO based varistor ceramics. Eg of the ceramic (99-x) mol% ZnO + 0.5 mol% Bi 2 O 3 + 0.5 mol% TiO 2 + × MnO 2 where × = 0, 0.2, 0.4, 0.6 and 0.8 mol%, were determined using UV-Vis spectrophotometer. The samples was prepared through solid-state route and sintered at the sintering temperature from 1110, 1140 and 1170 °C for 45 and 90 min in open air. At no doping of MnO 2 , the values of Eg are 2.991 ± 0.001, 2.989 ± 0.001 eV for 45 and 90 min sintering time; respectively. Eg was decreased to 2.192 ± 0.001 eV at 1140 °C at 45 min sintering time. Similar result of Eg was observed at longer heat treatment. Further addition of dopant causing the Eg decreases rapidly to 2.099 and 2.106 ± 0.001 eV at 45 and 90 min sintering time; respectively. XRD analysis indicates that there is hexagonal ZnO and secondary phases, Zn 2 MnO 4 , Bi 4 Ti 3 O 12 and Zn 2 Ti 3 O 8 . The relative density of the sintered ceramics decreased or remain constant with the increase of MnO 2 concentration for 45 min sintering time, however, further prolong sintering time; the relative density decreases form 90.25 to 88.35%. This indicates the pores are increasing with the increase of heat treatment. The variation of sintering temperatures to the optical band gap energy of based ZnO varistor doped with MnO 2 due to the formation of interface states. (paper)

  3. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  4. Optical thermometry based on green upconversion emission in Er3+/Yb3+ codoped BaGdF5 glass ceramics

    Science.gov (United States)

    Wu, Ting; Zhao, Shilong; Lei, Ruoshan; Huang, Lihui; Xu, Shiqing

    2018-02-01

    Er3+/Yb3+ codoped BaGdF5 glass ceramics have been prepared and used to develop a portable all-fiber temperature sensor based on fluorescence intensity ratio technique. XRD and TEM results affirm the generation of BaGdF5 nanocrystals in the borosilicate glass. Eu3+ ions are used as spectral probe to investigate external environment around rare earth (RE) ions. Intense green upconversion emissions from Er3+ ions are detected in the BaGdF5 glass ceramics and their intensity are enhanced about three orders of magnitude after heat treatment, which is attributed to the enrichment of RE ions in the BaGdF5 phase. Based on green upconversion emission from Er3+ ions, the temperature sensing property of the portable all-fiber temperature sensor is studied. The maximum absolute sensitivity is 15.5 × 10-4 K-1 at 567 K and the relative sensitivity is 1.28% K-1 at 298 K, respectively.

  5. Optical and vibrational spectroscopy of Ba0.85Ca0.15Zr0.1Ti0.9O3 modified lithium borate glass ceramics

    Science.gov (United States)

    Viswanath, Pamarti; Prashanth, Sadhu Sai Pavan; Molli, Muralikrishna; Wicram, Jaschin Prem; Sai Muthukumar, V.

    2018-04-01

    Glass ceramics are excellent replacement for single crystalline materials which are expensive and difficult to fabricate. In this context, we have attempted to fabricate glass nanocomposites comprising of Lithium Borate glass matrix embedded with lead free ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT). Both of these functional materials are known to exhibit excellent ferroelectric behavior and are currently explored for various device applications. We have prepared these novel glass nanocomposite using melt-quenching techniquein various chemical composition involving different molar ratio. x(Ba0.85Ca0.15Zr0.1Ti0.9O3)-(1-x)(Li2O.2B2O3) where (x=0.1,0.2,0.3,0.4). The as-quenched samples exhibited amorphous nature as revealed by X-ray Diffraction studies. With the increase in BCZT content we have observed significant alteration in optical bandgap and Urbach energy. The tailoring of optical properties by tuning the structure was probed by Raman vibrational spectroscopy which confirmed the dominant role played by BCZT as a network modifier in these borate glasses. Concomitantly, these glass nanocomposites were found to be excellent UV absorbers.

  6. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  7. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  8. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  9. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  10. Status quo of ceramic material for metal halide discharge lamps

    International Nuclear Information System (INIS)

    Kappen, Theo G M M

    2005-01-01

    Polycrystalline alumina is an excellent ceramic material for use as the envelope for metal halide discharge lamps. Although this material was introduced in the mid-1960s, and is thus already known for several decades, recent years have seen considerable effort aimed at further development of these ceramic envelope materials. Developments are not only in the field of ceramic shaping technologies, but are also concentrated on the material properties of the ceramic material itself. Optical, mechanical as well as the chemical properties of the ceramic envelope are strongly controlled by the shape as well as the microstructure of the ceramics used

  11. Preparation of glasses and glass ceramics of heavy metal oxides containing silver: optical, structural and electrochemical properties; Preparacao de vidros e vitroceramicas de oxidos de metais pesados contendo prata: propriedades opticas, estruturais e eletroquimicas

    Energy Technology Data Exchange (ETDEWEB)

    Bregadiolli, Bruna A. [Departamento de Fisica, Faculdade de Ciencias, Universidade Estadual Paulista, Bauru - SP (Brazil); Souza, Ernesto R.; Sigoli, Fernando A. [Instituto de Quimica, Universidade Estadual de Campinas, Campinas - SP (Brazil); Caiut, Jose M.A. [Departamento de Quimica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto - SP (Brazil); Alencar, Monica A.S.; Benedetti, Assis V. [Instituto de Quimica, Universidade Estadual Paulista, Araraquara - SP (Brazil); Nalin, Marcelo, E-mail: mnalin@ufscar.br [Departamento de Quimica, Universidade Federal de Sao Carlos, SP, (Brazil)

    2012-07-01

    Silver containing heavy metal oxide glasses and glass ceramics of the system WO{sub 3}-SbPO{sub 4} -PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonance band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment. (author)

  12. Light scattering in glass-ceramics

    International Nuclear Information System (INIS)

    Hendy, S.C.

    2002-01-01

    Full text: Glass-ceramic materials with microstructures comprised of dispersed nanocrystallites in a residual glass matrix show promise for many new technological applications. In particular, transparent glass-ceramics offer low thermal expansion and stability, in addition to the prospect of novel non-linear optical properties that can arise from the nanocrystallites. Good transparency requires low optical scattering and low atomic absorption. Light scattering in the glass-ceramic arises primarily from the glass-crystallite interface. The attenuation due to scattering (turbidity) will depend upon the difference in refractive index of the two phases and the size and distribution of nanocrystallites in the glass. Here we consider models of glass-ceramic structure formation and look at scattering in these model structures to increase our understanding of the transparency of glass-ceramics

  13. Development of optically stimulated luminescence techniques using natural minerals and ceramics, and their application to retrospective dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Boetter-Jensen, L

    2000-09-01

    This thesis summarises research and development of optically stimulated luminescence (OSL) and its applications by the author at Risoe National Laboratory, up to 1999. These developments have been directed primarily at retrospective accident dosimetry and luminescence dating. Experimental investigations include the studies of OSL properties of the natural minerals quartz and feldspars and the artificial materials porcelain and aluminium oxide (Al{sub 2}O{sub 3}). Blue light emitting diodes and infrared laser diodes are shown to provide simple and practical alternatives to broad-band light and visible laser stimulation. The development of OSL apparatus designed for the rapid measurement of single grains of phosphors also opens up a new area of luminescence measurement, allowing the detailed examination of dose distributions within a multiple-grain sample. This is of particular importance to the studies of incompletely reset geological sediments, and to accident dosimetry measurements using unheated materials. Al{sub 2}O{sub 3}:C single crystals are tested as environmental OSL dosemeters for assessing both the natural background photon radiation dose rates in the field and the natural dose rates inside bricks collected for accident dose evaluation. Environmental doses of the order of few {mu}Gy are measured with high precision. UV photo-stimulated luminescence spectra obtained from porcelain samples are used to confirm that the main component responsible for the OSL signal from porcelain is Al{sub 2}O{sub 3}. OSL single-aliquot regenerative-dose (SAR) techniques are used with quartz extracted from Chernobyl bricks to determine the accrued dose after the accident. This has improved the measurement precision significantly, from about 5-6 % using traditional methods to now less than 2 %. Depth-dose profiles measured in Chernobyl bricks are compared with those obtained in the laboratory using different gamma sources and these comparisons show that the average energy of

  14. Development of optically stimulated luminescence techniques using natural minerals and ceramics, and their application to retrospective dosimetry

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.

    2000-09-01

    This thesis summarises research and development of optically stimulated luminescence (OSL) and its applications by the author at Risoe National Laboratory, up to 1999. These developments have been directed primarily at retrospective accident dosimetry and luminescence dating. Experimental investigations include the studies of OSL properties of the natural minerals quartz and feldspars and the artificial materials porcelain and aluminium oxide (Al 2 O 3 ). Blue light emitting diodes and infrared laser diodes are shown to provide simple and practical alternatives to broad-band light and visible laser stimulation. The development of OSL apparatus designed for the rapid measurement of single grains of phosphors also opens up a new area of luminescence measurement, allowing the detailed examination of dose distributions within a multiple-grain sample. This is of particular importance to the studies of incompletely reset geological sediments, and to accident dosimetry measurements using unheated materials. Al 2 O 3 :C single crystals are tested as environmental OSL dosemeters for assessing both the natural background photon radiation dose rates in the field and the natural dose rates inside bricks collected for accident dose evaluation. Environmental doses of the order of few μGy are measured with high precision. UV photo-stimulated luminescence spectra obtained from porcelain samples are used to confirm that the main component responsible for the OSL signal from porcelain is Al 2 O 3 . OSL single-aliquot regenerative-dose (SAR) techniques are used with quartz extracted from Chernobyl bricks to determine the accrued dose after the accident. This has improved the measurement precision significantly, from about 5-6 % using traditional methods to now less than 2 %. Depth-dose profiles measured in Chernobyl bricks are compared with those obtained in the laboratory using different gamma sources and these comparisons show that the average energy of the accident radiation was

  15. The effects of PbZn1/3Nb2/3O3-doping on structural, thermal, optical, dielectric, and ferroelectric properties of BaTiO3 ceramics

    Science.gov (United States)

    Suchanicz, J.; Świerczek, K.; Sitko, D.; Czaja, P.; Marchet, P.; Czternastek, H.; Majda, D.

    2017-09-01

    Low-lead (1-x)BT-xPZN (x = 0, 0.025, 0.05, 0.075, 0.10, 0.125, and 0.15) ceramics were successfully synthesized by the spark-plasma-sintering method for the first time. Their phase transition behavior as well as structural, thermal, optical, and electrical properties was investigated. These materials exhibit the structure of perovskite-type solid solutions and undergo a sequence of phase transitions, typical of pure BaTiO3 (BT). The dielectric test results revealed that with the increase in the PbZn1/3Nb2/3O3 (PZN) content, the frequency dispersion of electric permittivity increases, whilst the dielectric/ferroelectric properties tend to deteriorate, which is characteristic of relaxor-type behavior. Therefore, it is reasonable to suppose that these ceramics progressively lack long-range ordering. These effects are due to the competition between lone-pair electrons' induced changes in the A-O band upon Pb2+ addition and ionic size differences. In general, the transition temperatures observed by dielectric analyses are in good agreement with those obtained from X-ray diffraction and differential scanning calorimetry measurements. The BT-PZN system may help to understand why relaxor behavior appears in perovskite-based materials. It appears that these materials can become a good starting point for the development of new low-lead electronic ceramics.

  16. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  17. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  18. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  19. Industrial ceramics

    International Nuclear Information System (INIS)

    Mengelle, Ch.

    1999-04-01

    After having given the definition of the term 'ceramics', the author describes the different manufacturing processes of these compounds. These materials are particularly used in the fields of 1)petroleum industry (in primary and secondary reforming units, in carbon black reactors and ethylene furnaces). 2)nuclear industry (for instance UO 2 and PuO 2 as fuels; SiC for encapsulation; boron carbides for control systems..)

  20. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    International Nuclear Information System (INIS)

    Cherepy, N.J.; Kuntz, J.D.; Roberts, J.J.; Hurst, T.A.; Drury, O.B.; Sanner, R.D.; Tillotson, T.M.; Payne, S.A.

    2008-01-01

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed

  1. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    Science.gov (United States)

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469

  2. Transparent ceramic lamp envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  3. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  4. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  5. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  6. Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Murugan, Ganapathy Senthil; Ohishi, Yasutake

    2005-01-01

    Transparent Li 2 O-Ga 2 O 3 -SiO 2 (LGS) glass-ceramics embedding Ni:LiGa 5 O 8 nanocrystals were fabricated. An intense emission centered around 1300 nm with the width of more than 300 nm was observed by 976 nm photoexcitation of the glass-ceramics. The lifetime was more than 900 μs at 5 K and 500 μs at 300 K. The emission could be attributed to the 3 T 2g ( 3 F)→ 3 A 2g ( 3 F) transition of Ni 2+ in distorted octahedral sites in LiGa 5 O 8 . The product of stimulated emission cross section and lifetime for the emission was about 3.7x10 -24 cm 2 s and was a sufficiently practical value

  7. Metallizing of machinable glass ceramic

    International Nuclear Information System (INIS)

    Seigal, P.K.

    1976-02-01

    A satisfactory technique has been developed for metallizing Corning (Code 9658) machinable glass ceramic for brazing. Analyses of several bonding materials suitable for metallizing were made using microprobe analysis, optical metallography, and tensile strength tests. The effect of different cleaning techniques on the microstructure and the effect of various firing temperatures on the bonding interface were also investigated. A nickel paste, used for thick-film application, has been applied to obtain braze joints with strength in excess of 2000 psi

  8. The role of air annealing on the optical and scintillation properties of Mg co-doped Pr:LuAG transparent ceramics

    Czech Academy of Sciences Publication Activity Database

    Hu, Z.; Cao, M.; Chen, H.; Shi, Y.; Kou, H.; Xie, T.; Wu, L.; Pan, Y.; Feng, X.; Vedda, A.; Beitlerová, Alena; Nikl, Martin; Li, J.

    2017-01-01

    Roč. 72, Oct (2017), s. 201-207 ISSN 0925-3467 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : Mg co-doped Pr:LuAG * transparent ceramics * annealing effect * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  9. Ceramic transactions: Environmental and waste management issues in the ceramic industry. Volume 39

    International Nuclear Information System (INIS)

    Mellinger, G.B.

    1994-01-01

    A symposium on environmental and waste management issues in the ceramic industry took place in Cincinnati, Ohio, April 19-22, 1993. The symposium was held in conjunction with the 95th Annual Meeting of the American Ceramic Society and was sponsored by the Ceramic Manufacturing Council, Legislative and Regulatory Affairs Committee with the Glass and Optical Materials, Basic Science, Cements, Nuclear, Refractory Ceramics, Structural Clay Products, Whitewares, Design, Electronics, Engineering Ceramics, and Materials and Equipment Divisions. This volume documents several of the papers that were presented at the symposium. Papers presented in this volume are categorized under the following headings: vitrification of hazardous and mixed wastes; waste glass properties and microstructure; processing of nuclear waste disposal glasses; waste form qualification; glass dissolution: modeling and mechanisms; systems and field testing of waste forms

  10. Field-Induced Texturing of Ceramic Materials for Unparalleled Properties

    Science.gov (United States)

    2017-03-01

    Texturing of Ceramic Materials for Unparalleled Properties by...influence over many properties , such as optical transparency, strength, electrical conductivity, and piezoelectricity .19 Highly textured materials are... Ceramic Materials for Unparalleled Properties by Raymond Brennan, Victoria Blair, Nicholas Ku, Krista Limmer, Tanya Chantawansri, Mahesh

  11. Agglomeration of ceramic powders

    Science.gov (United States)

    Cawley, James D.; Larosa, Judith; Dirkse, Fredrick

    1989-01-01

    A research program directed at a critical comparison of numerical models for power agglomeration with experimental observations is currently underway. Central to this program is the quantitative characterization of the distribution of mass within an agglomerate as a function of time. Current experiments are designed to restrict agglomeration to a surface, which is oriented perpendicular to the force of gravity. These experiments are discussed with reference to: their significance to ceramic processing; artifacts which may be avoided in microgravity experiments; and the comparison of information available in real space (from optical microscopy) to that in reciprocal space (from light scattering). The principle machine requirement appears to be a need to obtain information at small scattering angles.

  12. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    Science.gov (United States)

    Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.

    2010-01-01

    The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.

  13. QXRD, XRF and optical microscopy applied to characterization and provenance of ancient ceramics from Haft Teppeh (1500 – 1150 BC), southwest Iran

    International Nuclear Information System (INIS)

    Emami, Mohammadamin

    2012-01-01

    Classifications of Archaeological discoveries are an essential feature for better interpretation of the extractive data from a case excavation. The question that will be focused on in this paper is; which of the parameters – raw materials or manufacturing processes – have changed during the time in an ancient archaeological place. The materials used in this research are ceramic pieces from archaeological excavations carried out in Haft-Tappeh, south-western Iran that chronologically belonging to the middle Elamite period (1500 B.C.). Samples classified firstly by their exterior characters. According to obtained results from quantitative X-ray diffraction and phase refining by Rietveld, it has become possible to characterize the data for clustering the samples in different groups. Observation by polarized light microscopy produced additional information about the manufacturing as well as the processing of the different admixtures used by ancient potters. Mineralogical- chemical interpretation of ceramics based on x-ray methods proved a dissimilar thermal behaviour due to different fabrication conditions during the same period. The results provided principally information on the existence of a common raw material reservoir but different manufacturing technique in pottering during middle Elamite period in Haft-Tappeh.

  14. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  15. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  16. Production of superconducting ceramic oxides by coprecipitation

    International Nuclear Information System (INIS)

    Bizaio, L.R.; Lima, M.A.F. de; Figueiredo Jardim, R.de; Pinheiro, E.A.; Galembeck, F.

    1988-01-01

    An alternative method for production of ceramic oxides is described. The method consist in the coprecipitation reaction of metallic ions with oxalic acid. The obtainment samples present additional phases characterized by X-rays and optical microscopy. (C.G.C.) [pt

  17. Research and Development of High Energy 2 - Micron Lasers Based on TM: Doped Ceramic Laser Gain Media and TM: Doped Optical Fibers

    Science.gov (United States)

    2016-07-20

    bandwidth limited. In this case the bandwidth limitation comes from the two-photon absorption of silicon which drops off rapidly around 1050-1100 nm...2868 (2013). [3] C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, “Coherence properties of a doubly resonant monolithic optical parametric...C. Leindecker, V. Pervak, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator

  18. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  19. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  20. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  1. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  2. Structure and properties of interfaces in ceramics

    International Nuclear Information System (INIS)

    Bonnell, D.; Ruehle, M.; Chowdhry, U.

    1995-01-01

    The motivation for the symposium was the observation that interfaces in crystallographically and compositionally complex systems often dictate the performance and reliability of devices that utilize functional ceramics. The current level of understanding of interface-property relations in silicon-based devices required over 30 years of intensive research. Similar issues influence the relationship between atomic bonding at interfaces and properties in functional ceramic systems. The current understanding of these complex interfaces does not allow correlation between atomic structure and interface properties, in spite of their importance to a number of emerging technologies (wireless communications, radar-based positioning systems, sensors, etc.). The objective of this symposium was to focus attention on these fundamental issues by featuring recent theoretical and experimental work from various disciplines that impact the understanding of interface chemistry, structure, and properties. The emphasis was on relating properties of surfaces and interfaces to structure through an understanding of atomic level phenomena. Interfaces of interest include metal/ceramic, ceramic/ceramic, ceramic/vapor, etc., in electronic, magnetic, optical, ferroelectric, piezoelectric, and dielectric applications. Sixty one papers have been processed separately for inclusion on the data base

  3. International activities on research and production in ceramics. ; Development of overseas business-optical fiber. Kenkyu kaihatsu, seisan katsudo no kokusaika. ; Hikari faiba no kaigai seisan

    Energy Technology Data Exchange (ETDEWEB)

    Egami, K. (Corning International K.K., Tokyo (Japan))

    1994-04-01

    Researchers of the Corning Glass Works have made great contribution to the development of practical use of optical fibers. The effort of the Corning Glass Works in technological development and overseas production was introduced. Corning developed the outer vapor deposition (OVD) method suitable for large scale production. Later, the so-called vertical axial deposition (VAD) method was developed also in Japan, and a technology for quantity production of high quality optical fibers was established. The bases of the Corning's approach were respect for intellectual property and strategic market development, indicating that Corning had strategy for overseas production from the early stage (early stage of market growth) in addition to product supply strategy. Optical fiber is one of the strategic materials whose export is controlled in many countries, and the transfer of the related technology is also controlled. 1 fig.

  4. Machinability of IPS Empress 2 framework ceramic.

    Science.gov (United States)

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.

  5. Electrical and optical characteristics of ITO films by pulsed laser deposition using a 10 wt.% SnO2-doped In2O3 ceramic target

    International Nuclear Information System (INIS)

    Kim, Sang Hyeob; Park, Nae-Man; Kim, TaeYoub; Sung, GunYong

    2005-01-01

    We have investigated the effect of the oxygen pressure and the deposition temperature on the electrical and optical properties of the Sn-doped indium oxide (ITO) films on quartz glass substrate by pulsed laser deposition (PLD) using a 10 wt.% SnO 2 -doped In 2 O 3 target. The resistivity and the carrier concentration of the films were decreased due to the decrease of the oxygen vacancy while increasing the oxygen pressure. With increasing deposition temperature, the resistivity of the films was decreased and the carrier concentration was increased due to the grain growth and the enhancement of the Sn diffusion. We have optimized the PLD process to deposit a highly conductive and transparent ITO film, which shows the optical transmittance of 88% and the resistivity of 2.49x10 -4 Ω cm for the film thickness of 180 nm

  6. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  7. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  8. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  9. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  10. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  11. [Ceramic inlays and onlays].

    Science.gov (United States)

    van Pelt, A W; de Kloet, H J; van der Kuy, P

    1996-11-01

    Large direct composite restorations can induce shrinkage related postoperative sensitivity. Indirect resin-bonded (tooth colored) restorations may perhaps prevent these complaints. Indirect bonded ceramics are especially attractive because of their biocompatibility and esthetic performance. Several procedures and techniques are currently available for the fabrication of ceramic restorations: firing, casting, heat-pressing and milling. In this article the different systems are described. Advantages, disadvantages and clinical performance of ceramic inlays are compared and discussed.

  12. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  13. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  14. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  15. Piezo-electrostrictive ceramics

    International Nuclear Information System (INIS)

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  16. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  17. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  18. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  19. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  20. Composite Laser Ceramics by Advanced Bonding Technology.

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin; Kamimura, Tomosumi; Honda, Sawao; Iwamoto, Yuji

    2018-02-09

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm². On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm². 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm²). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties.

  1. PREFACE: 3rd International Congress on Ceramics (ICC3)

    Science.gov (United States)

    Niihara, Koichi; Ohji, Tatsuki; Sakka, Yoshio

    2011-10-01

    Early in 2005, the American Ceramic Society, the European Ceramic Society and the Ceramic Society of Japan announced a collaborative effort to provide leadership for the global ceramics community that would facilitate the use of ceramic and glass materials. That effort resulted in an agreement to organize a new biennial series of the International Congress on Ceramics, convened by the International Ceramic Federation (ICF). In order to share ideas and visions of the future for ceramic and glass materials, the 1st International Congress on Ceramics (ICC1) was held in Canada, 2006, under the organization of the American Ceramic Society, and the 2nd Congress (ICC2) was held in Italy, 2008, hosted by the European Ceramic Society. Organized by the Ceramic Society of Japan, the 3rd Congress (ICC3) was held in Osaka, Japan, 14-18 November 2010. Incorporating the 23rd Fall Meeting of the Ceramic Society of Japan and the 20th Iketani Conference, ICC3 was also co-organized by the Iketani Science and Technology Foundation, and was endorsed and supported by ICF, Asia-Oceania Ceramic Federation (AOCF) as well as many other organizations. Following the style of the previous two successful Congresses, the program was designed to advance ceramic and glass technologies to the next generation through discussion of the most recent advances and future perspectives, and to engage the worldwide ceramics community in a collective effort to expand the use of these materials in both conventional as well as new and exciting applications. ICC3 consisted of 22 voluntarily organized symposia in the most topical and essential themes of ceramic and glass materials, including Characterization, design and processing technologies Electro, magnetic and optical ceramics and devices Energy and environment related ceramics and systems Bio-ceramics and bio-technologies Ceramics for advanced industry and safety society Innovation in traditional ceramics It also contained the Plenary Session and the

  2. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  3. Microstructural analysis of clayey ceramic incorporated with fluorescent lamp glass

    International Nuclear Information System (INIS)

    Morais, A.S.C.; Caldas, T.C.C.; Pereira, P.S.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    This study aims to evaluate the effect of the incorporation of glass powder fluorescent lamp, from a decontamination process, in the microstructure of clayey ceramic. Formulations were prepared with incorporation of the waste in amounts of up to 10 wt.% into the clayey body. Specimens were prepared by uniaxial mold-press at 20 MPa and then fired at 850 and 1050°C. After firing, the microstructure of the ceramics was evaluated by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that the incorporation of glass powder into the clayey body changes the microstructure of the ceramics. (author)

  4. Influence of Ni substitution at B-site for Fe{sup 3+} ions on morphological, optical, and magnetic properties of HoFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Zubida; Majid, Kowsar [National Institute of Technology, Department of Chemistry, Srinagar (India); Ikram, Mohd; Sultan, Khalid; Mir, Sajad Ahmad [National Institute of Technology, Department of Physics, Srinagar (India); Asokan, K. [Inter University Accelerator Centre, New Delhi (India)

    2016-05-15

    Present study reports the effect of Ni substitution at B-site in HoFeO{sub 3} on the morphological, optical and magnetic properties. These compounds were prepared by solid-state reaction method. Scanning electron microscope reveals an increase in average grain sizes with Ni concentration. Absorption and emission spectra show redshift in band gap with increase in Ni ion concentrations. The Tauc plots show direct allowed transitions. Temperature-dependent magnetization studies on these compounds revealed the transition from ferromagnetism to paramagnetism. There is separation between temperature at which zero-field-cooled and field-cooled occurs at varied temperature with Ni substitution. The separation effect is related to the impact of the paramagnetic Ho{sup 3+} ions, whose magnitude becomes more prominent at higher temperature. The value of squareness ratio in these materials is below 0.5 indicating presence of multidomain structures. (orig.)

  5. Development of new functional properties in traditional ceramics field

    International Nuclear Information System (INIS)

    Carda, J.B.; Pedra, J.M.; Nunez, I.; Peiro, N.C.; Gil, C.; Navarro, E.; Gomez, J.J.; Chiva, L.

    2004-01-01

    In the present communication, several ways to obtain functional properties in ceramic tiles will be exposed, developed by the research group in Solid State Chemistry of Jaume I University from Castellon, in close collaboration with the ceramic industry set in Castellon (Spain). Then, searching for a new properties, those that involve advanced fields in ceramics, such as mechanical, electrical or optical properties have been chosen, transferring their application to traditional products, selecting for it the development of this properties in surface (as the obtaining if glass-ceramic glazes) or in the ceramic body (increasing its mechanical resistance, more dense and with less thickness of layer). Related to the surface properties interesting in traditional ceramics field, glass-ceramic glazes have been designed, presenting high resistance to abrasion and chemical agents attack, formulating systems of devitrification of α-SiO 2 crystallization (cristobalite), anoritite and zircon. Systems that reduce resistivity of glazes have been developed too, causing the discharge to the ground of the static charge, designing a semiconductor system SnO 2 -Sb 2 O 3 . o finish with surface properties, bactericidal properties glazes have been originated, working with CeO 2 -ZrO 2 and TiO 2 (anatase) systems. According to ceramic bodies, highly gressificated systems have been developed, with an open porosity lower than 0.5% of water absorption and with high mechanical resistance, aspects that open ways to develop multilayer systems allowing the reduction of body thickness without a decrease of its technical features. (author)

  6. New ceramic materials

    International Nuclear Information System (INIS)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  7. Mounting for ceramic scroll

    Science.gov (United States)

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  8. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  9. Improving the strength of ceramics by controlling the interparticle forces and rheology of the ceramic suspensions

    International Nuclear Information System (INIS)

    Chou, Yi-Ping

    2001-01-01

    This thesis describes a study of the modification of the interparticle forces of colloidal ceramic particles in aqueous suspensions in order to improve the microstructural homogeneity, and hence the reliability and mechanical performances, of subsequently formed ceramic compacts. A concentrated stable fine ceramic powder suspension has been shown to be able to generate a higher density of a ceramic product with better mechanical, and also electrical, electrochemical and optical, properties of the ceramic body. This is because in a colloidally stable suspension there are no aggregates and so defect formation, which is responsible for the ceramic body performance below its theoretical maximum, is reduced. In order to achieve this, it is necessary to form a well dispersed ceramic suspension by ensuring the interparticle forces between the particles are repulsive, with as a high a loading with particles as possible. By examining the rheological behaviour and the results of Atomic Force Microscope, the dispersion state of the suspensions and hence the interparticle forces can be analysed. In this study, concentrated ceramic suspensions were made from two kinds of zirconia powders, monoclinic (DK1) and yttria partially stabilised (HSY3) zirconia, in the presence of a dispersant, 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt (Tiron), in aqueous system. The optimum dispersant concentrations, where the viscosity and rheological moduli are the entire minimum, for DK1 and HSY3 suspensions, respectively, are 0.625% and 0.1%. The modifications of the interparticle forces were also achieved by pH adjustment and it was found that both of the suspensions at the optimum dispersant concentration were stable over the pH range 7 ∼ 10, which coincide with the results of the electrophoretic mobility measurements. Ceramic compacts have then been made by slip casting the suspensions of different dispersant concentration, followed by firing procedure. Mechanical properties of

  10. Temperature Measurement of Ceramic Materials Using a Multiwavelength Pyrometer

    Science.gov (United States)

    Ng, Daniel; Fralick, Gustave

    1999-01-01

    The surface temperatures of several pure ceramic materials (alumina, beryllia, magnesia, yittria and spinel) in the shape of pellets were measured using a multiwavelength pyrometer. In one of the measurements, radiation signal collection is provided simply by an optical fiber. In the other experiments, a 4.75 inch (12 cm) parabolic mirror collects the signal for the spectrometer. Temperature measurement using the traditional one- and two-color pyrometer for these ceramic materials is difficult because of their complex optical properties, such as low emissivity which varies with both temperature and wavelength. In at least one of the materials, yittria, the detected optical emission increased as the temperature was decreased due to such emissivity variation. The reasons for such changes are not known. The multiwavelength pyrometer has demonstrated its ability to measure surface temperatures under such conditions. Platinum electrodes were embedded in the ceramic pellets for resistance measurements as the temperature changed.

  11. Optical characterization in Pb(Zr{sub 1-x} Ti{sub x}){sub 1-y} Nb{sub y} O{sub 3} ferroelectric ceramic system

    Energy Technology Data Exchange (ETDEWEB)

    Durruthy-Rodriguez, M.D. [Instituto de Cibernetica, Matematica y Fisica, CITMA, Departamento de Fisica Aplicada, La Habana (Cuba); CINVESTAV-Unidad Queretaro, IPN, Santiago de Queretaro, Queretaro (Mexico); Costa-Marrero, J.; Hernandez-Garcia, M. [Instituto de Cibernetica, Matematica y Fisica, CITMA, Departamento de Fisica Aplicada, La Habana (Cuba); Calderon-Pinar, F. [Universidad de La Habana, Laboratorio de Magnetismo, Instituto de Ciencia y Tecnologia de Materiales, La Habana (Cuba); Malfatti, Celia [Universidade Federal do Rio Grande do Sul, Departamento de Metalurgia, Escola de Engenharia, Porto Alegre, RS (Brazil); Yanez-Limon, J.M. [CINVESTAV-Unidad Queretaro, IPN, Santiago de Queretaro, Queretaro (Mexico)

    2011-05-15

    In this work, visible photoluminescence was observed at room temperature in a sintered Pb(Zr{sub 1-x}Ti{sub x}){sub 1-y}Nb{sub y}O{sub 3} perovskite-type structure system, doped with Nb using the next excitation bands 325, 373 and 457 nm. The intensity and energy of such emissions have been studied by changing the Nb concentration (0optical absorption spectroscopy, structural and micro-structural measurements were carried out by using Uv-vis spectroscopy, X-ray diffraction and scanning electron microscopy techniques, respectively. The experimental results of band gap energy, e.g., in our samples are in accordance with the findings by J. Baedi et al. in the calculations of band structure, energy gap and density of states for different phases of Pb(Zr{sub 1-x} Ti{sub x})O{sub 3} using density functional theory (DFT). (orig.)

  12. Effect of heat treatment on the optical properties of perovskite BaZr0.5Ce0.3Y0.2O3-δ ceramic prepared by spark plasma sintering

    Science.gov (United States)

    Xing, Bohang; Cheng, Zhi; Wang, Cao; Zhao, Zhe

    2017-09-01

    The effect of heat treatment on the in-line transmittance of BaZr0.5Ce0.3Y0.2O3-δ (BZCY532) ceramics prepared by spark plasma sintering method was investigated. The loss of Ba in transparent BZCY532 ceramics is the key reason for the loss of transmittance during the annealing process. This problem can be effectively alleviated by using a powder bed of BZCY532. Heat treatment atmospheres, wet air and dry air, were also found to be critical for obtaining high quality transparent ceramics. A highly transparent BZCY532 ceramic with the in-line transmittance (Tin) of 71.4% at 2000 nm can be obtained by using SPS method followed by an annealing in powder bed at 1500 °C in wet air.

  13. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  14. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  15. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  16. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  17. Applications of Piezoelectric Ceramics

    Indian Academy of Sciences (India)

    Applications of Piezoelectric Ceramics. Piezoelectric Actuators. Nano and Micropositioners. Vibration Control Systems. Computer Printers. Piezoelectric Transformers,Voltage Generators, Spark Plugs, Ultrasonic Motors,. Ultrasonic Generators and Sensors. Sonars, Medical Diagnostic. Computer Memories. NVFRAM ...

  18. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  19. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  20. Selecting Ceramics - Introduction

    OpenAIRE

    Cassidy, M.

    2002-01-01

    AIM OF PRESENTATION: To compare a number of materials for extracoronal restoration of teeth with particular reference to CAD-CAM ceramics. CASE DESCRIPTION AND TREATMENT CARRIED OUT: This paper will be illustrated using clinical examples of patients treated using different ceramic restorations to present the advantages and disadvantages and each technique. The different requirements of tooth preparation, impression taking and technical procedures of each system will be presented and compar...

  1. Cavitation damage of ceramics

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Marinin, V.G.

    1988-01-01

    Consideration is given to results of investigation of ceramic material damage under the effect of cavitation field on their surface, formed in water under the face of exponential concentrator, connected with ultrasonic generator UZY-3-0.4. Amplitude of vibrations of concentrator face (30+-2)x10 -6 m, frequency-21 kHz. It was established that ceramics resistance to cavitation effect correlated with the product of critical of stress intensity factor and material hardness

  2. Mechanical properties of polymer-infiltrated-ceramic-network materials.

    Science.gov (United States)

    Coldea, Andrea; Swain, Michael V; Thiel, Norbert

    2013-04-01

    To determine and identify correlations between flexural strength, strain at failure, elastic modulus and hardness versus ceramic network densities of a range of novel polymer-infiltrated-ceramic-network (PICN) materials. Four ceramic network densities ranging from 59% to 72% of theoretical density, resin infiltrated PICN as well as pure polymer and dense ceramic cross-sections were subjected to Vickers Indentations (HV 5) for hardness evaluation. The flexural strength and elastic modulus were measured using three-point-bending. The fracture response of PICNs was determined for cracks induced by Vickers-indentation. Optical and scanning electron microscopy (SEM) was employed to observe the indented areas. Depending on the density of the porous ceramic the flexural strength of PICNs ranged from 131 to 160MPa, the hardness values ranged between 1.05 and 2.10GPa and the elastic modulus between 16.4 and 28.1GPa. SEM observations of the indentation induced cracks indicate that the polymer network causes greater crack deflection than the dense ceramic material. The results were compared with simple analytical expressions for property variation of two phase composite materials. This study points out the correlation between ceramic network density, elastic modulus and hardness of PICNs. These materials are considered to more closely imitate natural tooth properties compared with existing dental restorative materials. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  3. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  4. Single, composite, and ceramic Nd:YAG 946-nm lasers

    Science.gov (United States)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  5. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  6. Large ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  7. The history of ceramic filters.

    Science.gov (United States)

    Fujishima, S

    2000-01-01

    The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.

  8. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Three Oxide/Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-03-26

    observations on the fracture surface using an optical microscope and SEM. 4 II. Background 2.1 Ceramics Ceramics are inorganic and nonmetallic... The original uses for ceramic were primarily decorative, until more utilitarian purposes were discovered. Pottery was developed around 9,000...OF THREE OXIDE/OXIDE CERAMIC MATRIX COMPOSITES THESIS Christopher J. Hull, Captain, USAF AFIT-ENY-MS-15-M-228 DEPARTMENT OF THE AIR FORCE

  9. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  10. Atomic profile imaging of ceramic oxide surfaces

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin; Sellar, J.R.

    1989-01-01

    Atomic surface profile imaging is an electron optical technique capable of revealing directly the surface crystallography of ceramic oxides. Use of an image-intensifier with a TV camera allows fluctuations in surface morphology and surface reactivity to be recorded and analyzed using digitized image data. This paper reviews aspects of the electron optical techniques, including interpretations based upon computer-simulation image-matching techniques. An extensive range of applications is then presented for ceramic oxides of commercial interest for advanced materials applications: including uranium oxide (UO 2 ); magnesium and nickel oxide (MgO,NiO); ceramic superconductor YBa 2 Cu 3 O 6.7 ); barium titanate (BaTiO 3 ); sapphire (α-A1 2 O 3 ); haematite (α-Fe-2O 3 ); monoclinic, tetragonal and cubic monocrystalline forms of zirconia (ZrO 2 ), lead zirconium titanate (PZT + 6 mol.% NiNbO 3 ) and ZBLAN fluoride glass. Atomic scale detail has been obtained of local structures such as steps associated with vicinal surfaces, facetting parallel to stable low energy crystallographic planes, monolayer formation on certain facets, relaxation and reconstructions, oriented overgrowth of lower oxides, chemical decomposition of complex oxides into component oxides, as well as amorphous coatings. This remarkable variety of observed surface stabilization mechanisms is discussed in terms of novel double-layer electrostatic depolarization mechanisms, as well as classical concepts of the physics and chemistry of surfaces (ionization and affinity energies and work function). 46 refs., 16 figs

  11. A 526 W Diode-Pumped Nd:YAG Ceramic Slab Laser

    International Nuclear Information System (INIS)

    Chen Yan-Zhong; Bo Yong; Xu Jian; Xu Yi-Ting; Xu Jia-Lin; Guo Ya-Ding; Yang Feng-Tu; Peng Qin-Jun; Cui Da-Fu; Xu Zu-Yan; Liu Wen-Bin; Jiang Ben-Xue; Kou Hua-Min; Pan Yu-Bai; Jiang Dong-Liang

    2011-01-01

    A diode-side-pumped Nd:YAG ceramic slab laser with a high power output is presented. An average power of 526 W is achieved at 1064 nm with a repetition rate of 120 Hz and a pulse width of 180 μs from a 93mm × 52mm × 8 mm ceramic slab at a pump power of 1928 W, corresponding to an optical-to-optical efficiency of 27.3%. (fundamental areas of phenomenology(including applications))

  12. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  13. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2018-03-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.

  14. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  15. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  16. Microstructural, compositional and mechanical properties of the archaeological indigenous ceramics of Caninhas, Sao Paulo,Brazil

    International Nuclear Information System (INIS)

    Nakano, F.P.; Taguchi, S.P.; Ribeiro, R.B.; Rosa, S.J.L.; Bornal, W.G.; Queiroz, C.M.

    2009-01-01

    Archaeological ceramics contain infinity of data about social and cultural indigenous site Caninhas/SP. The ceramics present a gradient of color (ochre to dark gray), when from the surface to the center of the piece, indicating compositional variability caused by inefficient sintering carried out by indigenous peoples. It was analyzed the composition phases by X-rays diffraction (XRD) and mapping by EDS, identifying the illite, quartz and lutecite phases (ochre region) and illite, quartz, hydrated alumina and lutecite phases (dark gray region). The results of EDS confirmed the stages identified by X-rays diffraction and suggesting the presence of roots and scrap of ceramics sintered in the composition of indigenous ceramics, when compared by optical microscope and scanning electron microscope. Vickers hardness identified as fragile and heterogeneous are archaeological ceramics, reaching approximately 203 HV in the grains of silica and 16 HV in the ceramic matrix. (author)

  17. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Arai, Yusuke; Ohishi, Yasutake

    2008-01-01

    A systematic method to evaluate potentials of Ni 2+ -doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni 2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa 2 O 4 and LiGa 5 O 8 at room temperature. Transparent glass-ceramics containing Ni 2+ :LiGa 5 O 8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media

  18. Ceramic to metal joining by using 1064 nm pulsed and CW laser energy source

    International Nuclear Information System (INIS)

    Lee, Young Min; Kim, Soo Won; Choi, Hae Woon; Kim, Joo Han

    2013-01-01

    A novel joining method for ceramic and metallic layers is proposed using laser drilling and surface tension driven liquid metal filling. A high intensity laser beam irradiated a 500 µm thick ceramic filter, and the irradiated laser drilled the ceramic layer. The pulsed or CW laser transmitted through the ceramic layer irradiated the bottom metallic layer; the molten metallic layer then filled the drilled ceramic holes by the capillary force between the liquid metal and ceramic layer. As process variables, average laser power, pulse duration, and the number of pulses were used. The scattering optical properties were also studied for both green and red lasers. There was no significant difference between the colors and the estimated extinction coefficients were -26.94 1/mm and -28.42 1/mm for the green and red lasers, respectively.

  19. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  20. Fatigue of dental ceramics.

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Ceramic combustor mounting

    Science.gov (United States)

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  3. Ceramic impregnated superabrasives

    Science.gov (United States)

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  4. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  5. Fabrication of Nd:YAG transparent ceramics with both TEOS and MgO additives

    International Nuclear Information System (INIS)

    Yang Hao; Qin Xianpeng; Zhang Jian; Wang Shiwei; Ma Jan; Wang Lixi; Zhang Qitu

    2011-01-01

    Research highlights: → It is well known that the use of TEOS as sintering aid is required to reach fully dense and transparent Nd:YAG ceramics. However, it is difficult to produce high quality transparent Nd:YAG ceramics only using TEOS as sintering aid. In this present work, high quality transparent Nd:YAG ceramic was fabricated using both TEOS and MgO as sintering aids. There have been few reports that both TEOS and MgO were co-added as sintering aids in YAG or Nd:YAG transparent ceramics to date. The transmittance of Nd:YAG ceramic is 83.8% at 1064 nm. The effect of MgO on the optical properties of transparent ceramics was also studied. - Abstract: Neodymium doped YAG transparent ceramics were fabricated by vacuum reactive sintering method using commercial α-Al 2 O 3 , Y 2 O 3 and Nd 2 O 3 powders as the starting materials with both tetraethyl orthosilicate (TEOS) and MgO as sintering aids. The morphologies and microstructure of the powders and Nd:YAG transparent ceramics were investigated. Fully dense Nd:YAG ceramics with average grain size of ∼10 μm were obtained by vacuum sintering at 1780 deg. C for 8 h. No pores and grain-boundary phases were observed. The in-line transmittance of the ceramic was 83.8% at 1064 nm.

  6. Monolithic fiber optic sensor assembly

    Science.gov (United States)

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  7. High flow ceramic pot filters

    NARCIS (Netherlands)

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more

  8. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  9. Composite Laser Ceramics by Advanced Bonding Technology

    Science.gov (United States)

    Kamimura, Tomosumi; Honda, Sawao

    2018-01-01

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152

  10. Observation of domain patterns on a ferroelectric ceramic

    International Nuclear Information System (INIS)

    Ibrahim, R.C.; Zavaglia, C.A.C.

    1992-01-01

    In this work ferroelectric domain patterns are observed on a PZT-like ceramic material produced in Brazil. This material has tetragonal unit cell composing a perovskite type structure. The samples, after grinding and polishing, were chemically etched and observed on optical microscope and scanning electron microscope. (author)

  11. Mechanical Properties of Ceramics for High Temperature Applications

    Science.gov (United States)

    1976-12-01

    meets another aim of gas turbine ceramics. Temperature measuring by optical pyrometer gives here a reproducibility of approximately 150 C. The...with a similar acoustic impedence to the host material (e.g., certain inclusions, large grains) will be minimal, signal averaging instrumentation

  12. Nanosystems in Ceramic Oxides Created by Means of Ion Implantation

    OpenAIRE

    Van Huis, M.A.

    2003-01-01

    The material properties of nanometer-sized clusters are dependent on the cluster size. Changing the cluster dimensions induces structural phase transformations, metal-insulator transitions, non-linear optical properties and widening of the band gap of semiconductors. In this work, nanoclusters are created by ion implantation followed by thermal annealing. The ceramic oxides MgO and Al2O3 are used as embedding materials because of their stability and optical transparency. All clusters were cre...

  13. Verification of Ceramic Structures

    Science.gov (United States)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  14. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  15. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  16. Multielement (P-Yb-Zr-Ce-Al-Ca) fiber for moderate-power laser application with enhanced photodarkening resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Anirban; Paul, Mukul Chandra [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032 (India); Das, Shyamal; Reddy, Pinninty Harshavardhan; Siddiki, Salim H.; Dutta, Debjit; Pal, Mrinmay [Academy of Scientific and Innovative Research (AcSIR), CSIR-CGCRI Campus, Kolkata 700 032 (India); Kir' yanov, Alexander V. [Centro de Investigaciones en Optica, Loma del Bosque 115, Col. Lomas del Campestre, Leon 37150, Guanajuato (Mexico)

    2017-06-15

    Multielement (ME) (P-Yb-Zr-Ce-Al-Ca) nanophase separated silica-glass-based optical fiber is fabricated through a conventional-modified chemical vapor deposition (MCVD) process, coupled with solution doping technique. The lasing and photodarkening behaviors of this ME fiber have been demonstrated and compared, in terms of its photodarkening (PD) performance at moderate pump powers (tens of Watts), with standard Yb-doped fiber with phospho-alumino-silicate (PAS) glass composition, which clearly reveals that the ME-Yb doped fiber is a promising candidate for laser applications with enhanced PD resistivity. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  18. Piezoelectric displacement in ceramics

    International Nuclear Information System (INIS)

    Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This Good Practice Guide is intended to aid a user to perform displacement measurements on piezoelectric ceramic materials such as PZT (lead zirconium titanate) in either monolithic or multilayer form. The various measurement issues that the user must consider are addressed, and good measurement practise is described for the four most suitable methods. (author)

  19. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  20. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  1. Ceramic analysis in Greece

    NARCIS (Netherlands)

    Hilditch, J.

    2016-01-01

    Scientific, analytical or ‘archaeometric’ techniques for investigating ceramic material have been used within archaeology for over 50 years and now constitute an indispensable tool for archaeologists in the Aegean world (see Jones 1986 for a detailed summary of early work in Greece and Italy) and

  2. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  3. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  4. New Sr{sub 1−x−z}R{sub x}(NH{sub 4}){sub z}F{sub 2+x−z} (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Rozhnova, Yu. A. [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation); A.M. Prokhorov General Physics Institute, RAS, Moscow (Russian Federation); Kuznetsov, S.V. [A.M. Prokhorov General Physics Institute, RAS, Moscow (Russian Federation); Luginina, A.A. [All-Russian Institute for Scientific and Technical Information (VINITI), Moscow (Russian Federation); Voronov, V.V.; Ryabova, A.V.; Pominova, D.V.; Ermakov, R.P. [A.M. Prokhorov General Physics Institute, RAS, Moscow (Russian Federation); Usachev, V.A.; Kononenko, N.E. [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation); Baranchikov, A.E.; Ivanov, V.K. [N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS, Moscow (Russian Federation); Fedorov, P.P., E-mail: ppfedorov@yandex.ru [A.M. Prokhorov General Physics Institute, RAS, Moscow (Russian Federation)

    2016-04-01

    In this paper, we describe the use of self-fluorinating conditions for the thermal treatment of Sr{sub 1−x−y−z}Yb{sub x}Er{sub y}(NH{sub 4}){sub z}F{sub 2+x+y−z} precursor for the preparation of high-efficiency SrF{sub 2}:Yb:Er up-converter powders. We report actual SrF{sub 2}:Yb:Er compositions with up-conversion efficiencies exceeding 4% (pumping power 1 W/cm{sup 2} at 974 nm wavelength) and describe the synthesis of ceramics with higher than 80% transmittance at 0.42–7.0 μm. The latter ceramics can be used as a potential IR radiation visualizer. For the first time, we present an analysis of correlation between up-conversion luminescence energy yield and specimen composition for SrF{sub 2}:Yb:Er nanopowders. Taking into account the observed erbium ion up-conversion luminescence in the red part of the visible spectrum, we recommend certain SrF{sub 2}:Yb:Er compositions for practical application in photodynamic cancer therapy. - Highlights: • SrF{sub 2}:Yb/Er luminophor nanopowders were precipitated from aqueous solutions. • Precipitation of Sr{sub 1−x−y−z}Yb{sub x}Er{sub y}(NH{sub 4}){sub z}F{sub 2+x+y−z} solid solution has been proved. • Up-conversion luminescence energy yield luminophors of more than 4% were obtained. • Optical ceramics with 80% transmittance in 0.42–7.0 μm range was synthesized.

  5. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...... by varying the temperature of heat treatment. The predominant crystalline phase in the glass was identified as augite. It was found that the hardness of the glass phase decreased slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreased....

  6. AlN ceramics as a detector for UV exposure

    International Nuclear Information System (INIS)

    Trinkler, L.; Berzina, B.; Boetter-Jensen, L.; Christensen, P.; Palcevskis, E.

    1999-01-01

    AlN-Y 2 O 3 ceramics is proposed for application in the field of UV detection and dosimetry. Both thermoluminescence (TL) and optically stimulated luminescence (OSL) signals from the material have been studied after exposure to UV light. AlN-Y 2 O 3 ceramics demonstrates very high sensitivity to UV light over a broad spectral region. The TL is characterized by a linear dose dependence over a large range. The fading rate of the UV-induced TL and OSL signals on storage at room temperature is lower than in the case of exposure to ionizing irradiation. (au)

  7. Processing, microstructure and properties of grain-oriented ferroelectric ceramics

    International Nuclear Information System (INIS)

    Okazaki, K.; Igarashi, H.; Nagata, K.; Yamamoto, T.; Tashiro, S.

    1986-01-01

    Grain oriented ferroelectric ceramics such as PbBi/sub 2/Nb/sub 2/O/sub 9/, bismuth compound with layer structure, (PbLa)Nb/sub 2/O/sub 6/, tungsten-bronze structure and SbSI were prepared by an uni-axial hot-pressing, a double-stage hot-pressing and tape casting methods. Microstructures of them were examined by SEM and the prefered textures of the ceramics composed of thin plate and/or needle crystallites were ascertained. Grain orientation effects on electrical, piezoelectric, optical and mechanical properties are discussed

  8. Aluminium nitrate ceramics: A potential UV dosemeter material

    DEFF Research Database (Denmark)

    Trinkler, L.; Bøtter-Jensen, L.; Berzina, B.

    2002-01-01

    The ceramic material AIN-Y2O3 is proposed as a potential ultraviolet radiation (UVR) dosemeter using optically stimulated luminescence (OSL) and thermally stimulated luminescence (TL). Experimental studies have shown that AIN ceramics exhibit attractive characteristics suitable for practical UV...... dosimetry applications. The features are: (1) the spectral sensitivity covers the 200-350 nm range, in the UV-B region it is similar to that of human skin: (2) the angular dependence of the incident radiation follows the cosine law; (3) high yields of both UVR-induced OSL and TL signals compared to those...

  9. Polishing of silicon based advanced ceramics

    Science.gov (United States)

    Klocke, Fritz; Dambon, Olaf; Zunke, Richard; Waechter, D.

    2009-05-01

    Silicon based advanced ceramics show advantages in comparison to other materials due to their extreme hardness, wear and creep resistance, low density and low coefficient of thermal expansion. As a matter of course, machining requires high efforts. In order to reach demanded low roughness for optical or tribological applications a defect free surface is indispensable. In this paper, polishing of silicon nitride and silicon carbide is investigated. The objective is to elaborate scientific understanding of the process interactions. Based on this knowledge, the optimization of removal rate, surface quality and form accuracy can be realized. For this purpose, fundamental investigations of polishing silicon based ceramics are undertaken and evaluated. Former scientific publications discuss removal mechanisms and wear behavior, but the scientific insight is mainly based on investigations in grinding and lapping. The removal mechanisms in polishing are not fully understood due to complexity of interactions. The role of, e.g., process parameters, slurry and abrasives, and their influence on the output parameters is still uncertain. Extensive technological investigations demonstrate the influence of the polishing system and the machining parameters on the stability and the reproducibility. It is shown that the interactions between the advanced ceramics and the polishing systems is of great relevance. Depending on the kind of slurry and polishing agent the material removal mechanisms differ. The observed effects can be explained by dominating mechanical or chemo-mechanical removal mechanisms. Therefore, hypotheses to state adequate explanations are presented and validated by advanced metrology devices, such as SEM, AFM and TEM.

  10. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  11. Direct ink write fabrication of transparent ceramic gain media

    Science.gov (United States)

    Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; Duoss, Eric B.; Payne, Stephen A.

    2018-01-01

    Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y2.97Nd0.03Al5.00O12.00 (Nd:YAG) and an undoped cladding region of Y3Al5O12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Fully-dense transparent optical ceramics in a "top hat" geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scatter at 1064 nm of <3%/cm.

  12. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  13. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  14. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  15. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  16. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  17. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  18. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  19. [Fractographic analysis of clinically failed anterior all ceramic crowns].

    Science.gov (United States)

    DU, Qian; Zhou, Min-bo; Zhang, Xin-ping; Zhao, Ke

    2012-04-01

    To identify the site of crack initiation and propagation path of clinically failed all ceramic crowns by fractographic analysis. Three clinically failed anterior IPS Empress II crowns and two anterior In-Ceram alumina crowns were retrieved. Fracture surfaces were examined using both optical stereo and scanning electron microscopy. Fractographic theory and fracture mechanics principles were applied to disclose the damage characteristics and fracture mode. All the crowns failed by cohesive failure within the veneer on the labial surface. Critical crack originated at the incisal contact area and propagated gingivally. Porosity was found within the veneer because of slurry preparation and the sintering of veneer powder. Cohesive failure within the veneer is the main failure mode of all ceramic crown. Veneer becomes vulnerable when flaws are present. To reduce the chances of chipping, multi-point occlusal contacts are recommended, and layering and sintering technique of veneering layer should also be improved.

  20. Advanced ceramic in structural engineering

    OpenAIRE

    Alonso Rodea, Jorge

    2012-01-01

    The work deals with "Advanced Ceramics in Structural Engineering”. Throughout this work we present the different types of ceramic that are currently in wider use, and the main research lines that are being followed. Ceramics have very interesting properties, both mechanical and electrical and refractory where we can find some of the most interesting points of inquiry. Through this work we try tounderstand this complex world, analyzing both general and specific properties of ...

  1. The technical ceramics (second part)

    International Nuclear Information System (INIS)

    Auclerc, S.; Poulain, E.

    2004-01-01

    This work deals with ceramics used in the nuclear and the automotive industries. Concerning the nuclear sector, ceramics are particularly used in reactors, in the treatment of radioactive wastes and for the storage of the ultimate wastes. Details are given about the different ceramics used. In the automobile sector, aluminium is principally used for its lightness and cordierite, basic material of catalyst supports is especially used in the automobile devices of cleansing. (O.M.)

  2. Ceramic superconductors II

    International Nuclear Information System (INIS)

    Yan, M.F.

    1988-01-01

    This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites

  3. Piezoelectric Ceramics Characterization

    National Research Council Canada - National Science Library

    Jordan, T

    2001-01-01

    ... the behavior of a piezoelectric material. We have attempted to cover the most common measurement methods as well as introduce parameters of interest. Excellent sources for more in-depth coverage of specific topics can be found in the bibliography. In most cases, we refer to lead zirconate titanate (PZT) to illustrate some of the concepts since it is the most widely used and studied piezoelectric ceramic to date.

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  5. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  6. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  7. Producing transparent PLZT ceramics using different synthesis method

    International Nuclear Information System (INIS)

    Dambekalne, M.; Antonova, M.; Livinsh, M.; Kalvane, A.; Plonska, M.; Garbarz-Glos, B.

    2004-01-01

    Full text: Ceramic samples of Pb 1-x La x (Zr 0.65 Ti 0.35 )O 3 (x 8, 9, 10) were prepared from powders being sintered by two methods: 1) peroxohydroxopolimer (PHP), where as precursors were used solutions of inorganic salts TiCl 4 , ZrOCl 4 ·8H 2 O, Pb(NO 3 ) 2 , La(NO 3 ) 3 ·6H 2 O); 2) sol-gel, using as precursors solutions of metal organic salts Pb(COOCH 3 ) 2 ·3H 2 O, La(COOCH 3 ) 3 ·1.5H 2 O, Zr(OCH 2 CH 2 CH 3 ) 4 , Ti(OCH 2 CH 2 CH 3 ) 4 . The thermal regimes for both powders were similar: synthesis at 600 0 C for 2 - 4h, obtaining amorphous nanopowder. Ceramic samples were produced by hot pressing at 1100 - 1200 0 C for 2 - 6h and pressure of 20Mpa.Optical transmittance of ceramic samples from PHP derived powders was higher than that from sol- gel derived. The transparency of poled plates with thickness of 0.3mm (wavelength λ = 630nm) was 67 - 69% and 56 - 59%, respectively. It can be explained by lack of technical support for sol-gel processing in atmosphere of neutral gas, as metal organic precursors are extremely sensitive to moisture of air. X-ray and DTA studies were used for powders. Dielectrics, ferroelectric and optical properties as well as studies of icrostructure were carried out for ceramic samples. The grain size of ceramics produced from PHP powders is 3- 4μ, for sol-gel ceramics less than 1μ

  8. Nuclear techniques in the development of advanced ceramic technologies

    International Nuclear Information System (INIS)

    Axe, J.D.; Hewat, A.W.; Maier, J.; Margaca, F.M.A.; Rauch, H.

    1999-01-01

    The importance of research, development and application of advanced materials is well understood by all developed and most developing countries. Amongst advanced materials, ceramics play a prominent role due to their specific chemical and physical properties. According to performance and importance, advanced ceramics can be classified as structural ceramics (mechanical function) and the so-called functional ceramics. In the latter class of materials, special electrical, chemical, thermal, magnetic and optical properties are of interest. The most valuable materials are multifunctional, for example, when structural ceramics combine beneficial mechanical properties with thermal and chemical sensitivity. Multifunctionality is characteristic of many composite materials (organic/inorganic composite). Additionally, properties of material can be changed by reducing its dimension (thin films, nanocrystalline ceramics). Nuclear techniques, found important applications in research and development of advanced ceramics. The use of neutron techniques has increased dramatically in recent years due to the development of advanced neutron sources, instrumentation and improved data analysis. Typical neutron techniques are neutron diffraction, neutron radiography, small angle neutron scattering and very small angle neutron scattering. Neutrons can penetrate deeply into most materials thus sampling their bulk properties. In determination of the crystal structure of HTSC, YBa 2 Cu 2 O 7 , XRD located the heavy metal atoms, but failed in finding many of the oxygen atoms, while the neutron diffraction located all atoms equally well in the crystal structure. Neutron diffraction is also unique for the determination of the magnetic structure of materials since the neutrons themselves have a magnetic moment. Application of small angle neutron scattering for the determination of the size of hydrocarbon aggregates within the zeolite channels is illustrated. (author)

  9. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  10. Deodorant ceramic catalyst. Dasshu ceramics shokubai

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K. (Kobe Steel Ltd., Kobe (Japan)); Naka, R. (Hitachi Ltd., Tokyo (Japan))

    1993-07-01

    Concerning debromination to be used for the filter of deodorizing device, those of long life and high deodorizing performance are demanded a great deal. As one of this kind of debromination, a deodorant ceramic catalyst (mangantid) has been developed and put for practical use as deodorant for refrigerator. In this article, the information and knowledge obtained by the development of mangantid, the features as well as several properties of the product are stated. The deodorizing methods currently used practically are roughly divided into 6 kinds such as the adsorption method, the direct combustion method, the catalytic method and the oxidation method, but each of them has its own merit and demerit, hence it is necessary to select the method in accordance with the kind of odor and its generating condition. Mangantid is a compound body of high deodorant material in a honeycomb configuration, and has the features that in comparison with the existing deordorants, its pressure loss is smaller, its deodorizing rate is bigger, and acidic, neutral and basic gaseous components can be removed in a well-balanced manner. Deodorization with mangantid has the mechanism to let the odorous component contact and react with the catalyst and change the component to the non-odorous component in the temperature range from room temperature to the low temperature region. 5 refs., 11 figs., 1 tab.

  11. Illuminating light-dependent color shifts in core and veneer layers of dental all-ceramics

    Science.gov (United States)

    Lee, Yong-Keun; Cha, Hyun-Suk; Yu, Bin

    2014-09-01

    The color of an object is perceived differently depending on the ambient light conditions. Since dental all-ceramic restorations are fabricated by building up several layers to reproduce the tooth shade, the optical properties of each layer should be optimized for successful shade reproduction. This study aimed to determine the separate contributions of the color shifts in each of the core and veneer layers of all-ceramics by switching the illuminating lights on the color shifts of layered ceramics. Specimens of seven kinds of core ceramics and the corresponding veneer ceramics for each core were fabricated with a layered thickness of 1.5 mm. A sintering ceramic was used as a reference core material. The Commission Internationale de l'Eclairage (CIE) color coordinates of core, veneer, and layered specimens were measured with a spectroradiometer under the CIE illuminant D65 (daylight), A (incandescent lamp), and F9 (fluorescent lamp) simulating lights. Color shifts of the layered specimens were primarily determined by the CIE a* shifts (D65 to A switch) or by the CIE b* shifts (D65 to F9 switch) of the veneer layer. The color coordinates shifts in the constituent layers differentially influenced those of the layered specimens by the kind of switched lights. Therefore, the optical properties of the constituent layers of all-ceramics should be controlled to reflect these findings.

  12. Development of high power ceramic lasers and possible application to nuclear fusion

    International Nuclear Information System (INIS)

    Yanagitani, Takagimi; Yagi, Hideki; Ueda, Ken-ichi; Lu, Jianren; Kaminskii, Alexander A.

    2003-01-01

    We have succeeded in fabricating high-transparent Y 3 Al 5 O 12 (YAG) and Y 2 O 3 laser ceramic materials using vacuum sintering method. Compared with single crystal, ceramics have the following advantages, namely: (1) Ease of fabrication; (2) Less expensive; (3) Fabrication of large size and high concentration; (4) Multi-layer and multi-functional ceramic structure; (5) Mass production, etc. On the base of Nd 3+ :YAG ceramics, we performed high efficient and high power (up to 1.46 kW) CW lasers with laser diode pumping. Optical properties of Nd:YAG ceramics, such as absorption, emission and fluorescence lifetime, were found to be similar to those of Nd:YAG single crystal. The thermal conductivity of Nd:YAG ceramics was measured, which is also found to be very similar to that of Nd:YAG single crystal. The simulated emission cross section of Nd 3+ :Y 2 O 3 happened to be in the range that is required for laser fusion driver. This makes Nd:Y 2 O 3 a potential candidate for being used in laser fusion system. Some optical properties of Nd:Y 2 O 3 ceramics were investigated and for the first time, CW room-temperature laser oscillation at two wavelength (1074.6 nm and 1078.6 nm) of 4 F 3/2 → 4 I 11/2 channel was obtained with a slope efficiency of 32%. (author)

  13. A high temperature testing system for ceramic composites

    Science.gov (United States)

    Hemann, John

    1994-01-01

    Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.

  14. Radiance limits of ceramic phosphors under high excitation fluxes

    Science.gov (United States)

    Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim

    2013-09-01

    Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.

  15. An investigation in texturing high Tc superconducting ceramics by creep sintering

    International Nuclear Information System (INIS)

    Regnier, P.; Deschanels, X.; Maurice, F.; Schmirgeld, L.; Aguillon, C.; Senoussi, S.; Mac Carthy, M.; Tatlock, G.J.

    1991-01-01

    We study in detail the possibility of high-T c superconducting ceramics texturing by high pressing them during sintering. We show texture variations as a function of the applied load, of the deformation, of the temperature, and of the sintering stage length, of the rate of variation of temperature, of the material nature in contact with ceramic and of the original powder quality. We present results obtained by optical microscopy, electronic microscopy, X-rays, and local chemical analysis

  16. The Impact of Ceramic Shell Strength on Hot Tearing during Investment Casting

    International Nuclear Information System (INIS)

    Norouzi, Saeid; Farhangi, Hassan

    2011-01-01

    The effect of ceramic shell strength on hot tearing susceptibility during solidification was inspected practicing investment casting of the cobalt-base superalloy samples with the same casting conditions, but different ceramic shell systems. Results showed that the lower the ceramic shell strength upon using polymer additives, the lower the hindered contraction rate, and the lower the hindered contraction rate, the smaller the hot tearing tendency. Optical microscopy and electron microscopy scanning revealed that the hot tear propagated along the last solidified interdendritic phase, and that the hot tear surface had two major modes: 1) the ductile region in the outer layer; and 2) the inner region of liquid embrittlement.

  17. Micromolding for ceramic microneedle arrays

    NARCIS (Netherlands)

    van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; Lüttge, Regina

    2011-01-01

    The fabrication process of ceramic microneedle arrays (MNAs) is presented. This includes the manufacturing of an SU-8/Si-master, its double replication resulting in a PDMS mold for production by micromolding and ceramic sintering. The robustness of the replicated structures was tested by means of

  18. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  19. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 12. Science and Technology of Ceramics - Functional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 12 December 1999 pp 21-30. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Science and Technology of Ceramics - Traditional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 8 August 1999 pp 16-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  2. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  3. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  4. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  5. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1989-05-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scients, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electroeletronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  6. Directionally Solidified Multifunctional Ceramics

    Science.gov (United States)

    2006-12-01

    Vidrio , Vol. 44 [5] (2005) pp 347 - 352. 9. F. W. Dynys and A. Sayir, "Self Assemble Silicide Architectures by Directional Solidification," Journal...Sociedad Espanola de Ceramica y Vidrio , Vol. 43 [4] (2004) pp 753 - 758. 21. A. Sayir and F. S. Lowery, "Combustion-Resistance of Silicon-Based Ceramics...Espafiola de Cerdmica y Vidrio , Vol. 43 [3], 2004. ISSN-0366-3175-BSCVB9. 14 37. P. Berger, A. Sayir and M. H. Berger, "Nuclear Microprobe using Elastic

  7. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  8. Studies of aluminium nitride ceramics for application in UV dosimetry

    DEFF Research Database (Denmark)

    Trinkler, L.; Bøtter-Jensen, L.; Christensen, P.

    2000-01-01

    The study is reported of the ceramic material AlN-Y2O3 as a potential luminescence dosemeter for the detection of UV radiation. Both the thermoluminescence and the optically stimulated luminescence properties of the material have been studied after exposure to UV radiation and compared with those...... of the widely used dosemeter material Al2O3:C. It has been shown that AlN-Y2O3 ceramics exhibit three orders of magnitude higher sensitivity to UV radiation than does Al2O3,:C over a broad spectral region. The thermoluminescence from AlN-Y2O3 is characterised by linear dose dependence over a wide range....... The fading characteristics of the UV-induced thermoluminescence and optically stimulated luminescence signals with storage time at room temperature were found to be a drawback, but still lower than those induced after exposure to ionising radiation....

  9. Electrophoretic deposition of sol-gel-derived ceramic coatings

    International Nuclear Information System (INIS)

    Zhang, Y.; Crooks, R.M.

    1992-01-01

    In this paper the physical, optical, and chemical characteristics of electrophoretically and dip-coated sol-gel ceramic films are compared. The results indicate that electrophoresis may allow a higher level of control over the chemistry and structure of ceramic coatings than dip-coating techniques. For example, controlled-thickness sol-gel coatings can be prepared by adjusting the deposition time or voltage. Additionally, electrophoretic coatings can be prepared in a four-component alumino-borosilicate sol display interesting optical characteristics. For example, the ellipsometrically-measured refractive indices of electrophoretic coatings are higher than the refractive indices of dip-coated films cast from identical sols, and they are also higher than any of the individual sol components. This result suggests that there are physical and/or chemical differences between films prepared by dip-coating and electrophoresis

  10. Calcium fluoride whispering gallery mode optical resonator with reduced thermal sensitivity

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey

    2018-03-01

    We demonstrate a crystalline CaF2 resonator with thermal sensitivity of the optical modes approaching zero. The resonator is made by laminating a calcium fluoride layer forming an optical monolithic cavity with ceramic compensation layers. The ceramics is characterized with negative thermal expansion coefficient achievable in a certain temperature range. The thermally compensated resonator has a potential application for laser frequency stabilization.

  11. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  12. Preparation of 147Pm ceramic source core

    International Nuclear Information System (INIS)

    Mielcarski, M.

    1989-01-01

    Preparation of ceramic pellets containing fixed promethium-147 is described. Incorporation rate of 147 Pm into the ceramic material was determined. The leachability and vaporization of promethium from the obtained ceramics was investigated. The ceramic pellets prepared by the described procedure, mounted in special holders, can be applied as point sources in beta backscatter thickness gauges. (author)

  13. Fibrous monolithic ceramics

    International Nuclear Information System (INIS)

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  14. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  15. Luminescence characteristics of dental ceramics for retrospective dosimetry: a preliminary study

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Correcher, V.; Delgado, A.; Goksu, Y.; Huebner, S.

    2002-01-01

    Ceramic materials that are widely employed in dental prosthetics and repairs exhibit luminescent properties. Because of their use in the body, these materials are potentially of interest in situations where retrospective dosimetry for individuals is required but where monitoring was not planned. The luminescent properties of dental ceramics obtained in Germany, Spain and the UK were examined. Linear dose-response characteristics were obtained in the range <100 mGy to 10 Gy using thermoluminescence (TL), optically stimulated luminescence and infrared-stimulated luminescence measurement techniques. Measurements of time-resolved luminescence were also performed to examine the nature of the luminescence recombination under visible (470 nm) and IR (855 nm) stimulation. The results obtained by TL and optically stimulated techniques suggest that there may be deeper traps than previously observed in certain types of dental ceramic. Such traps may be less susceptible to optical and athermal fading than was reported in earlier studies. (author)

  16. Investigation of medieval ceramics from Ras by physicochemical methods

    Directory of Open Access Journals (Sweden)

    Zindović Nataša D.

    2008-01-01

    Full Text Available Although early medieval Serbian ceramic is well described by the archeologists and historians, knowledge of the Balkan ceramic production is still limited. Archaeometric study of ceramics provenance, technology of preparation and used pigments as well as influence of neighboring countries and specific characteristics of different workshops has never been performed so far. The detailed knowledge of the micro-chemical and micro-structural nature of an archaeological artifact is critical in finding solutions to problems of restoration, conservation, dating and authentication in the art world. In this work we present results of systematic investigation of pottery shards from archeological site Ras. The term Ras, which signifies both the fortress and the region encompassing the upper course of Raška River, used to be the center of the medieval Serbian state. Both the ceramic body and the polychromatic glaze of the artifacts were studied by a multianalitical approach combining optical microscopy (OM, FT-IR spectroscopy and X-ray fluorescence (XRF. Mineralogical composition of pottery shards has been determined combining results obtained by FT-IR spectroscopy, after deconvolution of the spectra, and XRPD analysis. Firing temperature has been estimated based on the mineralogical composition and positions of Si-O stretching (-1000 cm-1 and banding (-460 cm-1 vibrations. Investigated samples have been classified into two groups based on the mineralogical composition, cross sections and firing temperature. Larger group consists of samples of fine-grained, homogeneous ceramics with firing temperatures bellow 800 °C which indicates imported products. Second, smaller group consists of inhomogeneous ceramics with firing temperatures between 850 and 900 °C produced in the domestic workshops. The obtained results will be used to build up a national database for the compositions of bodies, glazes and pigments.

  17. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  18. Ceramic drug-delivery devices.

    Science.gov (United States)

    Lasserre, A; Bajpai, P K

    1998-01-01

    A variety of ceramics and delivery systems have been used to deliver chemicals, biologicals, and drugs at various rates for desired periods of time from different sites of implantation. In vitro and in vivo studies have shown that ceramics can successfully be used as drug-delivery devices. Matrices, inserts, reservoirs, cements, and particles have been used to deliver a large variety of therapeutic agents such as antibiotics, anticancer drugs, anticoagulants, analgesics, growth factors, hormones, steroids, and vaccines. In this article, the advantages and disadvantages of conventional drug-delivery systems and the different approaches used to deliver chemical and biological agents by means of ceramic systems will be reviewed.

  19. High flow ceramic pot filters

    OpenAIRE

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6–19 L h−1), but initial LRVs for E. coli o...

  20. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  1. Porous ceramics out of oxides

    International Nuclear Information System (INIS)

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  2. Structure-terahertz property relationship in yttrium aluminum garnet ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Steere, D.W.; Clark, B.M.; Sundaram, S.K. [Alfred University, Terahertz and Millimeter Waves Laboratory (T-Lab), Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred, NY (United States); Gaume, R. [Townes Laser Institute and the NanoScience Technology Center, CREOL, The College of Optics and Photonics, Orlando, FL (United States)

    2017-08-15

    Terahertz (THz) transmission measurements on chemically variant yttrium aluminum garnet (YAG) ceramics are described. Chemical compositions and processing parameters were varied to determine the effect of stoichiometry, density, and pore volume distribution on the optical and dielectric properties in the THz frequency regime. Density has the largest effect on properties out of the parameters that were investigated. In addition, a linear correlation between cubic root of real permittivity at 1 THz and average density of these samples is observed. Our results show promise for design and fabrication of advanced optical materials and devices with desired THz properties via controlling density and porosity of the materials. (orig.)

  3. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  4. Antibacterial Functionalization of PVD Coatings on Ceramics

    Directory of Open Access Journals (Sweden)

    Javier Osés

    2018-05-01

    Full Text Available The application of surface treatments that incorporate silver or copper as antibacterial elements has become a common practice for a wide variety of medical devices and materials because of their effective activity against nosocomial infections. Ceramic tiles are choice materials for cladding the floors and walls of operation rooms and other hospital spaces. This study is focused on the deposition of biocide physical vapor deposition (PVD coatings on glazed ceramic tiles. The objective was to provide antibacterial activity to the surfaces without worsening their mechanical properties. Silver and copper-doped chromium nitride (CrN and titanium nitride (TiN coatings were deposited on samples of tiles. A complete characterization was carried out in order to determine the composition and structure of the coatings, as well as their topographical and mechanical properties. The distribution of Ag and Cu within the coating was analyzed using glow discharge optical emission spectrometry (GD-OES and field emission scanning electron microscope (FE-SEM. Roughness, microhardness, and scratch resistance were measured for all of the combinations of coatings and dopants, as well as their wettability. Finally, tests of antibacterial efficacy against Staphylococcus aureus and Escherichia coli were carried out, showing that all of the doped coatings had pronounced biocide activity.

  5. O3 perovskite ceramic

    Indian Academy of Sciences (India)

    The prepared sample remains as double phases with the perovskite struc- ture. The structure ... Ferroelectric oxides with perovskite structure are the subject of many investigations. ... in optical devices and heterojunction solar cells. 1765 ...

  6. Creep in electronic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  7. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  8. Moessbauer studies of Inca ceramics

    International Nuclear Information System (INIS)

    Wagner, U.; Wagner, F.E.; Marticorena, B.; Salazar, R.; Schwabe, R.; Riederer, J.

    1986-01-01

    To obtain information on the firing of Inca ceramics, 7 samples from different locations were studied by Moessbauer spectroscopy including a detailed laboratory refiring procedure. The glaze typical for the surface of this ware was studied by Moessbauer scattering. (Auth.)

  9. Non destructive evaluation of ceramics

    International Nuclear Information System (INIS)

    Green, R.E. Jr

    1992-01-01

    While monolithic and composite ceramics have been successfully manufactured, inconsistencies in processing and the unpredictable nature of their failure have limited their use as engineering materials. The optimization of the processing and properties of ceramics and the structures, devices and systems made from them demand the innovative application of modern nondestructive materials characterization techniques to monitor and control as many stages of the production process as possible. This paper will describe the state-of-the-art of nondestructive evaluation techniques for characterization of monolithic ceramics and ceramic composites. Among the techniques to be discussed are laser ultrasonics, acoustic microscopy, thermography, microfocus and x-ray tomography, and micro-photoelasticity. Application of these and other nondestructive evaluation techniques for more effective and efficient real-time process control will result in improved product quality and reliability. 27 refs

  10. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  11. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  12. Metal-ceramic joint assembly

    Science.gov (United States)

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  13. Multiphase-Multifunctional Ceramic Coatings

    Science.gov (United States)

    2013-06-30

    systems for high temperatura applications” “ Estudios de Ferroelasticidad en Sistemas Cerámicos Multifásicos para Aplicaciones en Alta Temperatura ...Ceramic Coatings Performing Organization names: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional – Unidad Queretaro...materials, Cinvestav. Thesis: “Ferroelasticity studies in multiphase ceramic systems for high temperatura applications”. Her work mainly focused in the

  14. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  15. Method for preparing ceramic composite

    Science.gov (United States)

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-01-09

    A process is disclosed for preparing ceramic composite comprising blending TiC particulates, Al{sub 2}O{sub 3} particulates and nickel aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m{sup 1/2}, a hardness equal to or greater than 18 GPa. 5 figs.

  16. Influence of Resin Cements on Color Stability of Different Ceramic Systems.

    Science.gov (United States)

    Rodrigues, Renata Borges; Lima, Erick de; Roscoe, Marina Guimarães; Soares, Carlos José; Cesar, Paulo Francisco; Novais, Veridiana Resende

    2017-01-01

    The purpose of this study was to evaluate color stability of two dental ceramics cemented with two resin cements, assessing the color difference (ΔE00) by the measurement of L*, a*, b*, c* and h* of transmittance. The combination of two ceramic system (feldspathic and lithium disilicate) and two resin cements - color A3 (RelyX ARC and Variolink II) resulted in 4 groups (n=5). Ten disks-shaped specimens were fabricated for each ceramic system (10x1.5 mm), etched with hydrofluoric acid (10%) and silanized prior to cementation. The color analysis was performed 24 h after cementation of the samples and after 6 months of storage in relative humidity by means of spectrophotometry. The ΔE00 values were analyzed statistically by two-way ANOVA followed by the Tukey test (p<0.05). One-way ANOVA were calculated for the means of individual color coordinates (L*, a*, b*, c* and h*). Two-way ANOVA showed that only the ceramic factor was significant (p=0.003), but there was no difference for the cement factor (p=0.275) nor for the ceramic/cement interaction (p=0.161). The feldspathic ceramic showed the highest values of ΔE00. Variations in L*, a*, b*, c* and h* were more significant for feldspathic ceramic. In conclusion, storage alters similarly the optical properties of the resin cements and feldspathic porcelain was more susceptible to cement color change after aging.

  17. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. [Integral Technologies, Inc., Westmont, IL (United States)

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  18. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. (Integral Technologies, Inc., Westmont, IL (United States))

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  19. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  20. Mode I Failure of Armor Ceramics: Experiments and Modeling

    Science.gov (United States)

    Meredith, Christopher; Leavy, Brian

    2017-06-01

    The pre-notched edge on impact (EOI) experiment is a technique for benchmarking the damage and fracture of ceramics subjected to projectile impact. A cylindrical projectile impacts the edge of a thin rectangular plate with a pre-notch on the opposite edge. Tension is generated at the notch tip resulting in the initiation and propagation of a mode I crack back toward the impact edge. The crack can be quantitatively measured using an optical method called Digital Gradient Sensing, which measures the crack-tip deformation by simultaneously quantifying two orthogonal surface slopes via measuring small deflections of light rays from a specularly reflective surface around the crack. The deflections in ceramics are small so the high speed camera needs to have a very high pixel count. This work reports on the results from pre-crack EOI experiments of SiC and B4 C plates. The experimental data are quantitatively compared to impact simulations using an advanced continuum damage model. The Kayenta ceramic model in Alegra will be used to compare fracture propagation speeds, bifurcations and inhomogeneous initiation of failure will be compared. This will provide insight into the driving mechanisms required for the macroscale failure modeling of ceramics.

  1. Corrosion penetration monitoring of advanced ceramics in hot aqueous fluids

    Directory of Open Access Journals (Sweden)

    Klaus G. Nickel

    2004-03-01

    Full Text Available Advanced ceramics are considered as components in energy related systems, because they are known to be strong, wear and corrosion resistant in many environments, even at temperatures well exceeding 1000 °C. However, the presence of additives or impurities in important ceramics, for example those based on Silicon Nitride (Si3N4 or Al2O3 makes them vulnerable to the corrosion by hot aqueous fluids. The temperatures in this type of corrosion range from several tens of centigrade to hydrothermal conditions above 100 °C. The corrosion processes in such media depend on both pH and temperature and include often partial leaching of the ceramics, which cannot be monitored easily by classical gravimetric or electrochemical methods. Successful corrosion penetration depth monitoring by polarized reflected light optical microscopy (color changes, Micro Raman Spectroscopy (luminescence changes and SEM (porosity changes will be outlined. The corrosion process and its kinetics are monitored best by microanalysis of cross sections, Raman spectroscopy and eluate chemistry changes in addition to mass changes. Direct cross-calibrations between corrosion penetration and mechanical strength is only possible for severe corrosion. The methods outlined should be applicable to any ceramics corrosion process with partial leaching by fluids, melts or slags.

  2. Fracture Toughness (KIC) of Lithography Based Manufactured Alumina Ceramic

    Science.gov (United States)

    Nindhia, T. G. T.; Schlacher, J.; Lube, T.

    2018-04-01

    Precision shaped ceramic components can be obtained by an emerging technique called Lithography based Ceramic Manufacturing (LCM). A green part is made from a slurry consisting of a ceramic powder in a photocurable binder with addition of dispersant and plasticizer. Components are built in a layer–by-layer way by exposing the desired cross- sections to light. The parts are subsequently sintered to their final density. It is a challenge to produce ceramic component with this method that yield the same mechanical properties in all direction. The fracture toughness (KIc) of of LCM-alumina (prepared at LITHOZ GmbH, Austria) was tested by using the Single-Edge-V-Notched Beam (SEVNB) method. Notches are made into prismatic bend-bars in all three direction X, Y and Z to recognize the value of fracture toughness of the material in all three directions. The microstructure was revealed with optical microscopy as well as Scanning Electron Microscopy (SEM). The results indicate that the fracture toughness in Y-direction has the highest value (3.10 MPam1/2) that is followed by the one in X-direction which is just a bit lower (2.90 MPam1/2). The Z-direction is found to have a similar fracture toughness (2.95 MPam1/2). This is supported by a homogeneous microstructure showing no hint of the layers used during production.

  3. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  4. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  5. Method for Waterproofing Ceramic Materials

    Science.gov (United States)

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  6. Development of ceramic support the base of cordierite for one-side welding

    International Nuclear Information System (INIS)

    Almeida, L.L.P. de; Vieira, C.M.F.; Paranhos, R.P.R.; Tatagiba, L.C.S.

    2009-01-01

    This work has as objective develops ceramic backing for the execution of one side welds in steel. The backing consists the mixture of refractory mineral (Cordierite), adhesive (sodium silicate) and water. Test coupons produced by uniaxial pressing and burned to 1100 deg C they were submitted to physical and mechanical tests for determination the water absorption and flexion strength, respectively. The microstructure of ceramics produced was evaluated by diffraction of X-Ray, scanning electron microscopy and optical microscopy. After the production of the ceramic backing, welding tests were accomplished by the process MIG-MAG to evaluate the format of the weld bead. Based on the results obtained, during and after the welding accomplished with the employment of the ceramic backing, has shown that it is technically feasible for one-side welding. (author)

  7. Yb:Y2O3 transparent ceramics processed with hot isostatic pressing

    Science.gov (United States)

    Wang, Jun; Ma, Jie; Zhang, Jian; Liu, Peng; Luo, Dewei; Yin, Danlei; Tang, Dingyuan; Kong, Ling Bing

    2017-09-01

    Highly transparent 5 at.% Yb:Y2O3 ceramics were fabricated by using a combination method of vacuum sintering and hot isostatic pressing (HIP). Co-precipitated Yb:Y2O3 powders, with 1 at.% ZrO2 as the sintering aid, were used as the starting material. The Yb:Y2O3 ceramics, vacuum sintered at 1700 °C for 2 h and HIPed at 1775 °C for 4 h, exhibited small grain size of 1.9 μm and highly dense microstructure. In-line optical transmittance of the ceramics reached 83.4% and 78.9% at 2000 and 600 nm, respectively. As the ceramic slab was pumped by a fiber-coupled laser diode at about 940 nm, a maximum output power of 0.77 W at 1076 nm was achieved, with a corresponding slope efficiency of 10.6%.

  8. Characterization of ashes of elephant grass (Pennisetum purpureum) for potential added in mass red ceramic

    International Nuclear Information System (INIS)

    Silva, A.M.F.D.; Sales, K.A.; Monteiro, S.N.; Vieira, C.M.F.

    2012-01-01

    This work is in characterizing ash from biomass grass (Pennisetum purpureums) for incorporation into red ceramic masses. The ashes of elephant grass were generated from burning this dry biomass in an industrial furnace of red ceramic. The morphology of the material generated was observed by an optical microscope. The chemical composition was determined by fluorescence X-ray spectrometry, and the identification of phases by X-ray diffraction. The particle size distribution was obtained by sieving. Thermogravimetric analyzes were also conducted. The results indicate that these ashes are constituted of high quantities of SiO 2 , MgO, CaO and K 2 O, totaling approximately 75% of composition of matter. They have a particle size of 0.7 to 2.2mm featuring. The residue as a kind of coarse particles. Therefore, the results of this study can support future research to the addition of this residue in structural ceramics products (red ceramic)

  9. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Science.gov (United States)

    Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  10. Investigation of the thermophysical properties of oxide ceramic materials at liquid-helium temperatures

    International Nuclear Information System (INIS)

    Taranov, A. V.; Khazanov, E. N.

    2008-01-01

    The main regularities in the transport of thermal phonons in oxide ceramic materials are investigated at liquid-helium temperatures. The dependences of the thermophysical characteristics of ceramic materials on their structural parameters (such as the grain size R, the grain boundary thickness d, and the structure of grain boundaries) are analyzed. It is demonstrated that, in dense coarse-grained ceramic materials with qR>>1 (where q is the phonon wave vector), the grain boundaries and the grain size are the main factors responsible for the thermophysical characteristics of the material at liquid-helium temperatures. A comparative analysis of the thermophysical characteristics of optically transparent ceramic materials based on the Y 3 Al 5 O 12 (YAG) and Y 2 O 3 cubic oxides synthesized under different technological conditions is performed using the proposed criterion

  11. Design and In-Situ Processing of Metal-Ceramic and Ceramic-Ceramic Microstructures

    National Research Council Canada - National Science Library

    Sass, Stephen

    1997-01-01

    .... Metal-ceramic microstructures have been synthesized in situ by a variety of novel processing techniques, including the partial reduction of oxide compounds and displacement reactions and sol-gel...

  12. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    Science.gov (United States)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  13. All-ceramic crowns: bonding or cementing?

    Science.gov (United States)

    Pospiech, Peter

    2002-12-01

    Despite the wide variety of all-ceramic systems available today, the majority of dental practitioners hesitate to recommend and insert all-ceramic crowns. This article regards the nature of the ceramic materials, the principles of bonding and adhesion, and the clinical problems of the acid-etch technique for crowns. Advantages and disadvantages are discussed, and the influences of different factors on the strength of all-ceramic crowns are presented. Finally, the conclusion is drawn that conventional cementing of all-ceramic crowns is possible when the specific properties of the ceramics are taken into consideration.

  14. Exoelectron emission from magnesium borate glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  15. Producing ceramic laminate composites by EPD

    International Nuclear Information System (INIS)

    Nicholson, P.S.; Sarkar, P.; Datta, S.

    1996-01-01

    The search for tough structural ceramics to operate at high temperatures in hostile environments has led to the development of ceramic composites. This class of material includes laminar ceramic-ceramic composites, continuous-fiber-reinforced ceramic composites and functionally graded materials. The present authors developed electrophoretic deposition (EPD) to synthesize lamellar, fiber-reinforced and functionally graded composites. This paper briefly describes the synthesis and characterization of these EPD composites and introduces a novel class of lamellar composites with nonplanar layers. The synthesis of the latter demonstrates the facility of the EPD process for the synthesis of ceramic composites. The process is totally controllable via suspension concentration, deposition current, voltage and time

  16. Superconductivity and ceramic superconductors II; Proceedings of the Symposium, Orlando, FL, Nov. 12-15, 1990. Ceramic transactions. Vol. 18

    International Nuclear Information System (INIS)

    Nair, K.M.; Balachandran, U.; Chiang, Y.-M.; Bhalla, A.S.

    1991-01-01

    The present symposium on superconductivity and ceramic superconductors discusses fundamentals and general principles, powder processing and properties, fabrication and properties, and device reliability and applications. Attention is given to phase formation in the Tl-Ca-Ba-Cu-O system, comparative defect studies in La2CuO4 and La2NiO4, solid solution and defect behavior in high Tc oxides, oxygen ion transport and disorder in cuprates, and Sr-free Bi-Ln-Ca-Cu-O superconductors. Topics addressed include the preparation of superconductor Y-Ba-Cu-O powder by single-step calcining in air, low-temperature synthesis of YBa2Cu3O(7-x), synthesis of high-phase purity ceramic oxide superconductors by the xerogel method, and the preparation and characterization of the BYa2Cu4O8 superconductor. Also discussed are optical studies of humidity-based corrosion effects on thin film and bulk ceramic YBa2Cu3O(7-delta), thermomechanical processing of YBa2Cu3O(x)/Ag sheathed wires, and the expansion of high-Tc superconducting ceramics

  17. Preparation and spectral analysis of a new Tb3+-doped CaO-MgO-SiO2 glass ceramics

    International Nuclear Information System (INIS)

    Cheng Jinshu; Tian Peijing; Zheng Weihong; Xie Jun; Chen Zhenxia

    2009-01-01

    Tb 3+ -doped CaO-MgO-SiO 2 glass ceramics have been prepared and characterized. The structure and optical properties of the glass ceramics were studied by XRD, SEM, Raman, and fluorescence spectra. The precipitated crystalline phase in the glass ceramics was columnar CaMgSi 2 O 6 . Raman spectra showed the introduction of rare earth nearly had no influence on the sample structure. Fluorescence measurements showed that Tb 3+ ions entered into the diopside crystalline phase and induced a much stronger emission in the glass ceramics than that in the corresponding glass. With increase of Tb 3+ content and the introduction of Gd 3+ , the fluorescence intensity of the luminescent glass ceramic increased

  18. TECHNOLOGY OF PRODUCTION OF CERAMIC TILES BASED ON DOLERITE AND FUSIBLE CLAY

    Directory of Open Access Journals (Sweden)

    Pleshko Marianna Viktorovna

    2018-02-01

    Full Text Available The paper presents a completely new composition of the ceramic mass for production of ceramic tiles for interior lining of walls, on the basis of fusible clay. The optimal compositions of jade engobe and glossy glaze, the most suitable for this composition, are determined. A new technological scheme is developed for production of ceramic tiles for interior lining based on dolerite and fusible clay. The curve of firing, which is the most suitable for charge masses and decorative coating compositions being used, has been constructed. Subject: ceramic mass for the production of ceramic facing tiles. Ceramic tiles are the most popular building material in Russia. The most promising technology for its production from the standpoint of technical and economic efficiency is the technology of rapid single firing, which is rarely used at the plants of our country. In this regard, the development and implementation of new effective compositions of ceramic masses and decorative coatings that are the most compatible with the specifics of rapid single firing technology, based on new unconventional raw materials, are very relevant and promising. Research objectives: development of technological parameters, compositions of ceramic masses and decorative coatings of ceramic tiles for the internal wall lining that provide an increase in tiles production efficiency using the technology of rapid single firing through the use of non-traditional plagioclase-pyroxene raw materials: dolerites, loam and technogenic raw materials. Materials and methods: technological, numerical and experimental studies were conducted. To select the optimal composition of the ceramic mass, the method of mathematical planning was used, namely the simplex-centroid design of Scheffe. To identify the scientific foundations of the energy-efficient production technology being developed, differential thermal and X-ray phase, optical, electron microscopic and dilatometric studies were applied

  19. PERFORMANCE EVALUATION OF CERAMICS MICROFILTRATION MEMBRANE FOR WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    F.T. Owoeye

    2016-05-01

    Full Text Available Ceramic membranes are especially suitable for processes with high temperatures and harsh chemical environments or for processes where sterilizability of the membrane is important. The main objective of this work is to determine the evaluation of four different ceramic membranes with different material compositions. Ceramic disc type microfiltration membranes were fabricated by the mould and press method from different percentage compositions of clay, kaolin, sawdust and wood charcoal. The fabricated membranes were sintered at a temperature of 1100°C and characterized by an X-ray diffractometer and optical scanner. Compressibility tests and physical properties of the membranes were also examined. It was observed that, as the percentage composition of kaolin increased from 0 to 80% and the percentage composition of clay decreased from 80 to 0% respectively, the compressive stress of all the sample membranes increased, with an increase in compressive strain from 1.8 to 2.4. Sample A had the highest value of compressive stress from 1.8 to 2.2 compressive strain, but sample B had the highest value of compressive stress of 150MPa at a compressive strain of 2.4. Optical micrographs of all membranes showed the presence of uniformly distributed pores and no cracks were seen around them. It was concluded that, with increasing percentage of kaolin and decreasing percentage of clay, there was a decrease in porosity and water absorption, as well as a decrease in the mechanical properties of the fabricated membranes.

  20. Glass Ceramic Formulation Data Package

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-01-01

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  1. Disc piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.

  2. Bar piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš

    2013-07-01

    Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.

  3. Reliability of ceramics for heat engine applications

    Science.gov (United States)

    1980-01-01

    The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.

  4. III Advanced Ceramics and Applications Conference

    CERN Document Server

    Gadow, Rainer; Mitic, Vojislav; Obradovic, Nina

    2016-01-01

    This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.

  5. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  6. Ceramics: past, present, and future.

    Science.gov (United States)

    Lemons, J E

    1996-07-01

    The selection and application of synthetic materials for surgical implants has been directly dependent upon the biocompatibility profiles of specific prosthetic devices. The early rationale for ceramic biomaterials was based upon the chemical and biochemical inertness (minimal bioreactivity) of elemental compounds constituted into structural forms (materials). Subsequently, mildly reactive (bioactive), and partially and fully degradable ceramics were identified for clinical uses. Structural forms have included bulk solids or particulates with and without porosities for tissue ingrowth, and more recently, coatings onto other types of biomaterial substrates. The physical shapes selected were application dependent, with advantages and disadvantages determined by: (1) the basic material and design properties of the device construct; and (2) the patient-based functional considerations. Most of the ceramics (bioceramics) selected in the 1960s and 1970s have continued over the long-term, and the science and technology for thick and thin coatings have evolved significantly over the past decade. Applications of ceramic biomaterials range from bulk (100%) ceramic structures as joint and bone replacements to fully or partially biodegradable substrates for the controlled delivery of pharmaceutical drugs, growth factors, and morphogenetically inductive substances. Because of the relatively unique properties of bioceramics, expanded uses as structural composites with other biomaterials and macromolecular biologically-derived substances are anticipated in the future.

  7. Shock compression profiles in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  8. High flow ceramic pot filters.

    Science.gov (United States)

    van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J

    2017-11-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h -1 ), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  10. Ion implantation and fracture toughness of ceramics

    International Nuclear Information System (INIS)

    Clark, J.; Pollock, J.T.A.

    1985-01-01

    Ceramics generally lack toughness which is largely determined by the ceramic surface where stresses likely to cause failure are usually highest. Ion implantation has the capacity to improve the surface fracture toughness of ceramics. Significantly reduced ion size and reactivity restrictions exist compared with traditional methods of surface toughening. We are studying the effect of ion implantation on ceramic fracture toughness using indentation testing as the principal tool of analysis

  11. Ceramic cutting tools materials, development and performance

    CERN Document Server

    Whitney, E Dow

    1994-01-01

    Interest in ceramics as a high speed cutting tool material is based primarily on favorable material properties. As a class of materials, ceramics possess high melting points, excellent hardness and good wear resistance. Unlike most metals, hardness levels in ceramics generally remain high at elevated temperatures which means that cutting tip integrity is relatively unaffected at high cutting speeds. Ceramics are also chemically inert against most workmetals.

  12. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  13. Development of advanced ceramics at AECL

    International Nuclear Information System (INIS)

    Palmer, B.J.F.; MacEwen, S.R.; Sawicka, B.D.; Hayward, P.J.; Sridhar, S.

    1986-12-01

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  14. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients

    OpenAIRE

    Hernigou, Philippe; Roubineau, Fran?ois; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-01-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantages CoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion. However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with...

  15. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  16. Ceramic component with reinforced protection against radiations

    International Nuclear Information System (INIS)

    Dubuisson, J.; Laville, H.; Le Gal, P.

    1986-01-01

    Ceramic components hardened against radiations are claimed (for example capacitors or ceramic substrates for semiconductors). They are prepared with a sintered ceramic containing a high proportion of heavy atoms (for instance barium titanate and a bismuth salt) provided with a glass layer containing a high proportion of light atoms. The two materials are joined by vitrification producing a diffusion zone at the interface [fr

  17. Polymer-ceramic piezoelectric composites (PZT)

    International Nuclear Information System (INIS)

    Bassora, L.A.; Eiras, J.A.

    1992-01-01

    Polymer-ceramic piezoelectric transducers, with 1-3 of connectivity were prepared with different concentration of ceramic material. Piezoelectric composites, with equal electromechanical coupling factor and acoustic impedance of one third from that ceramic transducer, were obtained when the fractionary volume of PZT reach 30%. (C.G.C.)

  18. Solution combustion synthesis of (La, K) FeO3 orthoferrite ceramics ...

    Indian Academy of Sciences (India)

    Administrator

    Fourier transform infrared spectroscopy (FTIR), and magnetic and optical property ... Among many perovskite ceramics, LaFeO3 is of cur- ... example, in anode-supported SOFCs, doped LaFeO3 used ... doped with K+, synthesized by a simple combustion ... single phase formation was limited to ... magnetic field of 1000 Oe.

  19. A Comparative Study of Structural Stability and Mechanical and Optical Properties of Fluorapatite (Ca5(PO4)3F) and Lithium Disilicate (Li2Si2O5) Components Forming Dental Glass-Ceramics: First Principles Study

    Science.gov (United States)

    Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.

    2016-10-01

    The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.

  20. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Science.gov (United States)

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  1. Surface treatment of ceramic articles

    International Nuclear Information System (INIS)

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-01-01

    A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs

  2. Dynamic properties of ceramic materials

    International Nuclear Information System (INIS)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  3. Superplastic forging nitride ceramics

    Science.gov (United States)

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  4. Chemical characterization of marajoara ceramics

    International Nuclear Information System (INIS)

    Toyota, Rosimeiri Galbiati

    2009-01-01

    In this study the elemental concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn were determined by instrumental neutron activation analysis (INAA) in 204 fragments of Marajoara archaeological ceramics, of which 156 were provided by the Archaeology and Ethnology Museum of Sao Paulo University (MAE) and 48 were provided by Dr. Denise Pahl Schaan, Marajo Museum curator. Also, 9 contemporary ceramics produced and marketed at Marajo Island were analyzed. Electron paramagnetic resonance (EPR) analyses were performed in 8 archaeological samples and 1 contemporary sample in order to identify the burning temperature of the samples. X-ray diffraction (XRD) analyses were performed in 13 archaeological samples and 2 contemporary samples for the investigation of their mineralogical composition. Mahalanobis distance was used for the study of outlier while modified filter was used for the study of the temper added to the ceramic paste. Result interpretation was performed using cluster analysis, principal components analysis and discriminant analysis. Procrustes analysis was used for variable selection and it showed that the Ce, Fe, Eu, Hf, K and Th variables are adequate for the characterization of the analyzed samples. The comparative study among the archaeological and contemporary ceramics showed the arrangement of two well-defined and close groups for the archaeological samples and a third, distant group for the contemporary ones. This result indicates that the archaeological and contemporary ceramics differ in their composition. EPR and XRD analysis were inconclusive for the differentiation of archaeological and contemporary ceramics. (author)

  5. Uranium determination in dental ceramics

    International Nuclear Information System (INIS)

    Jacobson, I.; Gamboa, I.; Espinosa, G.; Moreno, A.

    1984-01-01

    There are many reports of high uranium concentration in dental ceramics, so they require to be controlled. The SSNTD is an optional method to determine the uranium concentration. In this work the analysis of several commercial dental ceramics used regularly in Mexico by dentists is presented. The chemical and electrochemical processes are used and the optimal conditions for high sensitivity are determined. CR-39 (allyl diglycol polycarbonate) was used as detector. The preliminary results show some materials with high uranium concentrations. Next step will be the analysis of equivalent dose and the effects in the public health. (author)

  6. Microstructural analysis of ceramic masses with waste kaolin addition for the red ceramic production

    International Nuclear Information System (INIS)

    Vida, Talita Almeida; Fagury Neto, Elias; Rabelo, Adriano Alves

    2010-01-01

    Incorporating reject industrial ceramic mixtures has proved viable in the reduction of environmental liabilities. In this study, we sought to study the potential use of ceramic formulations with the addition of tailings from the production of kaolin clay to the region of the city of Maraba-PA. Formulations were obtained with two clays of this region with the addition of up to 60% by weight of kaolin waste. The microstructural analyses were carried out from the preparation of specimens that were sintered at 1000 and 1200 °C with level 3 hours. The samples prepared were used to observe the microstructure by optical microscope, to determine the constituents of each formulation after burning. And later analysis was performed X-rays diffraction, to quantify the phases present. It was observed that increasing the content of the mixture of kaolin clay caused the reaction of kaolinite forming the primary mullite from 1000 ° C. For a firing temperature around 1200 ° C showed the presence of mullite even the addition of 20% kaolin, noting also the presence of secondary kaolinite. (author)

  7. Optical materials

    International Nuclear Information System (INIS)

    Poker, D.B.; Ortiz, C.

    1989-01-01

    This book reports on: Diamond films, Synthesis of optical materials, Structure related optical properties, Radiation effects in optical materials, Characterization of optical materials, Deposition of optical thin films, and Optical fibers and waveguides

  8. Fracture mechanics of ceramics. Vol. 7

    International Nuclear Information System (INIS)

    Bradt, R.C.; Evans, A.G.; Hasselman, D.P.; Lange, F.F.

    1986-01-01

    This volume, together with volume 8, constitutes the proceedings of an international symposium on the fracture mechanics of ceramics. The topics discussed in this volume include the toughening of ceramics by whisker reinforcement; the mechanical properties of SiCwhisker-reinforced TZP; the fracture of brittle rock and oil shale under dynamic explosive loading; impact damage models of ceramic coatings used in gas turbine and diesel engines; the use of exploratory data analysis for the safety evaluation of structural ceramics; and proof testing methods for the reliability of structural ceramics used in gas turbines

  9. MHD oxidant intermediate temperature ceramic heater study

    Science.gov (United States)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-09-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  10. Ceramic nanostructures and methods of fabrication

    Science.gov (United States)

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  11. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    Science.gov (United States)

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-Wzirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  12. Microstructure of SiC ceramics fabricated by pyrolysis of electron beam irradiated polycarbomethylsilane containing precursors

    International Nuclear Information System (INIS)

    Xu Yunshu; Tanaka, Shigeru

    2003-01-01

    A modified gel-casting method was developed to form the ceramics precursor matrix by using polycarbomehylsilane (PCMS) and SiC powder. The polymer precursor was mixed with SiC powder in toluene, and then the slurry samples were cast into designed shapes. The pre-ceramic samples were then irradiated by 2.0 MeV electron beam generated by a Cockcroft-Walton type accelerator in He gas flow to about 15 MGy. The cured samples were pyrolyzed and sintered into SiC ceramics at 1300degC in Ar gas. The modified gel-casting method leaves almost no internal stress in the pre-ceramic samples, and the electron beam curing not only diminished the amount of pyrolysis gaseous products but also enhanced the interface binding of the polymer converted SiC and the grains of SiC powder. Optical microscope, AFM and SEM detected no visible internal or surface cracks in the final SiC ceramics matrix. A maximum value of 122 MPa of flexural strength of the final SiC ceramics was achieved. (author)

  13. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment

    International Nuclear Information System (INIS)

    Stumpf, Aisha S.G.; Bergmann, Carlos P.; Vicenzi, Juliane; Fetter, Rebecca; Mundstock, Karina S.

    2009-01-01

    This study investigates the mechanical properties of alumina-feldspar based ceramics when exposed to an aggressive environment (acetic acid 4%). Alumina ceramics containing different concentrations of feldspar (0%, 1%, 5%, 10%, or 40%) were sintered at either 1300, 1600, or 1700 o C. Flaws (of width 0%, 30%, or 50%) were introduced into the specimens using a saw. Half of these ceramic bodies were exposed to acetic acid. Their flexural strength, K IC , and porosity were measured and the fractured samples were evaluated using scanning electronic- and optical microscopy. It was found that in the ceramic bodies sintered at 1600 o C, feldspar content up to 10% improved flexural strength and K IC, and reduced porosities. Generally, it was found that acetic acid had a weakening effect on the flexural strength of samples sintered at 1700 o C but a beneficial effect on K IC of ceramics sintered at 1600 o C. It was concluded that alumina-based ceramics with feldspar content up to 10% and sintered at higher temperatures would perform better in an aggressive environment similar to oral cavity.

  14. Custom ceramic microchannel-cooled array for high-power fiber-coupled application

    Science.gov (United States)

    Junghans, Jeremy; Feeler, Ryan; Stephens, Ed

    2018-03-01

    A low-SWaP (Size, Weight and Power) diode array has been developed for a high-power fiber-coupled application. High efficiency ( 65%) diodes enable high optical powers while minimizing thermal losses. A large amount of waste heat is still generated and must be extracted. Custom ceramic microchannel-coolers (MCCs) are used to dissipate the waste heat. The custom ceramic MCC was designed to accommodate long cavity length diodes and micro-lenses. The coolers provide similar thermal performance as copper MCCs however they are not susceptible to erosion and can be cooled with standard filtered water. The custom ceramic micro-channel cooled array was designed to be a form/fit replacement for an existing copperbased solution. Each array consisted of three-vertically stacked MCCs with 4 mm CL, 976 nm diodes and beamshaping micro-optics. The erosion and corrosion resistance of ceramic array is intended to mitigate the risk of copperbased MCC corrosion failures. Elimination of the water delivery requirements (pH, resistivity and dissolved oxygen control) further reduces the system SWaP while maintaining reliability. The arrays were fabricated and fully characterized. This work discusses the advantages of the ceramic MCC technology and describes the design parameters that were tailored for the fiber-coupled application. Additional configuration options (form/fit, micro-lensing, alternate coolants, etc.) and on-going design improvements are also discussed.

  15. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  16. Ferrites and ceramic composites

    CERN Document Server

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  17. Industrial ceramics in Spain

    Directory of Open Access Journals (Sweden)

    Regueiro, M.

    2000-02-01

    Full Text Available The Spanish ceramic industry has experienced a amazing growth in the last four years. Such expansion has affected all sector, but has been particularly noteworthy in those directly related to construction: tiles. glazes, bricks and roof tiles. A combination of an extraordinary exporting effort, together with a record figure in new housing projects (415 000 houses in 1999, are responsible for such outburst. Other sectors, such as refractories have undergone significant growths due to the high rate of steel production increase, also in historical record figures (15m t in 1999. All this sectors doubled altogether the growing rate of their main European competitors. Raw material production has had an even more effervescent trend, almost doubling 1995 production. Such dynamic growth has been associated to a remarkable quality increase and to an unparalleled technological innovation process.

    La industria española de la cerámica ha experimentado un notable crecimiento en los últimos cuatro años; expansión que ha alcanzado a todos los sectores, pero que ha sido especialmente notable en los mas directamente asociados a la construcción: revestimientos, esmaltes, tejas y ladrillos. La combinación de un extraordinario esfuerzo exportador unido a las cifras récord en la viviendas iniciadas, 415 000 en 1999, justifican este auge. Otros sectores como refractarios han experimentado crecimientos significativos ante el ritmo elevado en la producción de acero, que alcanzó asimismo un récord histórico, 15 Mt en 1999. Para el conjunto de estos sectores el ritmo de crecimiento ha duplicado el de los principales competidores europeos. La producción de materias primas han experimentado un dinamismo aún mas elevado duplicándose prácticamente las cifras respecto a 1995. Este crecimiento ha estado asociado a un notable incremento en la calidad y en los procesos de innovación tecnológica.

  18. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    Science.gov (United States)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2018-01-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  19. Dispersion toughened silicon carbon ceramics

    Science.gov (United States)

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  20. Microstructural Design for Tough Ceramics

    Science.gov (United States)

    1994-10-01

    or Rockwell cones) where the contact pressure (i.e. the ’hardness’) is effectively independent of load (Sperisen, Carry and Mocellin 1986, Makino...148. RrrcHM, R. 0., 1988, Mater. Sci. Engng, A, 103, 15. SPERmEN, T., CARRY, C., and MOCELLIN , A, 1986, Fracture Mechanics of Ceramics, Vol. 8, edited

  1. Electrical Degradation in Ceramic Dielectrics

    Science.gov (United States)

    1988-09-09

    and D. M. Smyth, " Positron Annihilation in Calcium-Doped Barium Titanate", in Electro- Ceramics and Solid State Ionsi, H. L. Tuller and D. M. Smyth...2 with the formation of ompensating oxygen vacancies, and this causes an increase in the ioni conductivity: 2CaO CaC + Call + 20 + (5) TiO2 --- V

  2. Natural Radioactivity in Ceramic Materials

    International Nuclear Information System (INIS)

    Abu Khadra, S.A.; Kamel, N.H.

    2005-01-01

    Ceramics are one of the most important types of the industrial building materials. The raw materials of the ceramic are made of a mixture of clay, feldspar, silica, talc kaolin minerals together with zirconium silicates (ZrSiO4).The ceramic raw materials and the final products contain naturally occurring radionuclide mainly U-238 and, Th-232 series, and the radioactive isotope of potassium K-40. Six raw ceramic samples were obtained from the Aracemco Company at Egypt together with a floor tile sample (final product) for measuring radioactive concentration levels., The activity of the naturally U-238, Th-232, and K-40 were determined as (Bq/kg) using gamma spectroscopy (Hyperactive pure germanium detector). Concentration of U and Th were determined in (ppm) using spectrophotometer technique by Arsenazo 111 and Piridy l-Azo -Resorcinol (PAR) indicators. Sequential extraction tests were carried out in order to determine the quantity of the radionuclide associated with various fractions as exchangeable, carbonate, acid soluble and in the residue. The results evaluated were compared to the associated activity indices (AI) that were defined by former USSR and West Germany

  3. Radiation Effects in Nuclear Ceramics

    Directory of Open Access Journals (Sweden)

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  4. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2011-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  5. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2010-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  6. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2012-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  7. [Posterior ceramic bonded partial restorations].

    Science.gov (United States)

    Mainjot, Amélie; Vanheusden, Alain

    2006-01-01

    Posterior ceramic bonded partial restorations are conservative and esthetic approaches for compromised teeth. Overlays constitute a less invasive alternative for tooth tissues than crown preparations. With inlays and onlays they are also indicated in case of full arch or quadrant rehabilitations including several teeth. This article screens indications and realization of this type of restorations.

  8. GEORGIAN PRODUCTION PREFABRICATED CERAMIC FIREPLACE

    International Nuclear Information System (INIS)

    Gaprindashvili, G.; Chemia, M.; Kartozia, L.

    2006-01-01

    General description and basic working principles of new construction prefabricated ceramic fireplace are given. The presented fireplace represents a unique synthesis of various fireplaces distributed in Georgian and some European countries; however, it is distinguished for its higher efficiency and other advantages. (author)

  9. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  10. Compositionally Graded Multilayer Ceramic Capacitors.

    Science.gov (United States)

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (filters and power converters.

  11. Soft lithography of ceramic patterns

    NARCIS (Netherlands)

    Göbel, Ole; Nedelcu, M.; Steiner, U.

    2007-01-01

    Polymer-based precursor solutions are patterned using a soft-lithographic patterning technique to yield sub-micrometer-sized ceramic patterns. By using a polymer-metal-nitrate solution as a lithographic resist, we demonstrate a micromolding procedure using a simple rubber stamp that yields a

  12. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    These ceramics are developed by chemical synthesis, in other words, they ... Science in 1980 and was a post doctoral ... complex crystal structures that have anisotropic characteristics. (Box 1) .... is a rare-earth or transition metal ion) and hexagonal ferrites. .... dielectric loss factor and dielectric strength normally determine.

  13. Photovoltaic effect in ferroelectric ceramics

    Science.gov (United States)

    Epstein, D. J.; Linz, A.; Jenssen, H. P.

    1982-01-01

    The ceramic structure was simulated in a form that is more tractable to correlation between experiment and theory. Single crystals (of barium titanate) were fabricated in a simple corrugated structure in which the pedestals of the corrugation simulated the grain while the intervening cuts could be filled with materials simulating the grain boundaries. The observed photovoltages were extremely small (100 mv).

  14. Doubled-ended ceramic thyratron

    CERN Multimedia

    1974-01-01

    The double-ended ceramic thyratron CX 1171 B, with its coaxial voltage divider for the SPS. Such a switch, paralleled by three ignitrons in series forms the "thyragnitron" arrangement, and can switch 10 kA, 25 ms pulses, with very fast rise times.

  15. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  16. Application of neutron activation analysis in study of ancient ceramics

    International Nuclear Information System (INIS)

    Li Guoxia; Zhao Weijuan; Gao Zhengyao; Xie Jianzhong; Huang Zhongxiang; Jia Xiuqin; Han Song

    2000-01-01

    Trace-elements in ancient ceramics and imitative ancient ceramics were determined by neutron activation analysis (NAA). The NAA data are then analyzed by fuzzy cluster method and the trend cluster diagram is obtained. The raw material sources of ancient ceramics and imitative ancient ceramics are determined. The path for improving quality of imitative ancient ceramics is found

  17. Application of sol-gel process on the elaboration of SnO2 based ceramics

    International Nuclear Information System (INIS)

    Prescatan, R.T.; Silva, D.V. da; Hiratsuka, R.S.; Santilli, C.V.; Pulcinelli, S.H.

    1990-01-01

    The electrical, optical and chemical peculiar properties of SnO 2 confers it-self some potential application. The densification difficulty during sintering of SnO 2 compromises its elaboration by ceramic conventional process. In this work the preparation of SnO 2 ceramics by sol-gel process was investigated. Some parameters envolved on the colloidal stability, sol-gel transition and drying process were analysed. The obtained materials were characterized by rheological, X-ray diffraction, infra-red spectroscopy and pores size distribution measurements. The results show that a considerable densification during sintering at 400 and 600 0 C was obtained. (author) [pt

  18. Automatic quality control in the production of ceramic substrates by pulsed laser cutting

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    This paper deals with the use of optical coordinate measuring machines (CMMs) in the quality control of ceramic substrates produced by a CO2 pulsed laser. A procedure of automatic measurements on a CMM equipped with a CCD camera was developed. In particular, the number and the distribution...... of cavities on the cut face of thin ceramic substrates were investigated and different strategies to assess the depth and the pitch of cavities were compared. Then, the measurement uncertainty for these two critical parameters was evaluated using the method described in ISO/TS 15530-3....

  19. Melter viewing system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.; Brenden, B.B.

    1988-01-01

    Melter viewing systems are an integral component of the monitoring and control systems for liquid-fed ceramic melters. The Pacific Northwest Laboratory (PNL) has designed cameras for use with glass melters at PNL, the Hanford Waste Vitrification Plant (HWVP), and West Valley Demonstration Project (WVDP). This report is a compilation of these designs. Operating experiences with one camera designed for the PNL melter are discussed. A camera has been fabricated and tested on the High-Bay Ceramic Melter (HBCM) and the Pilot-Scale Ceramic Melter (PSCM) at PNL. The camera proved to be an effective tool for monitoring the cold cap formed as the feed pool developed on the molten glass surface and for observing the physical condition of the melter. Originally, the camera was built to operate using the visible light spectrum in the melter. It was later modified to operate using the infrared (ir) spectrum. In either configuration, the picture quality decreases as the size of the cold cap increases. Large cold caps cover the molten glass, reducing the amount of visible light and reducing the plenum temperatures below 600 0 C. This temperature corresponds to the lowest level of blackbody radiation to which the video tube is sensitive. The camera has been tested in melter environments for about 1900 h. The camera has withstood mechanical shocks and vibrations. The cooling system in the camera has proved effective in maintaining the optical and electronic components within acceptable temperature ranges. 10 refs., 15 figs

  20. Cr3+ and Cr4+ luminescence in glass ceramic silica

    International Nuclear Information System (INIS)

    Martines, Marco A.U.; Davolos, Marian R.; Jafelicci, Miguel Junior; Souza, Dione F. de; Nunes, Luiz A.O.

    2008-01-01

    This paper reports on the effect of glass ceramic silica matrix on [CrO 4 ] 4- and Cr 2 O 3 NIR and visible luminescence. Chromium-containing silica was obtained by precipitation from water-glass and chromium nitrate acid solution with thermal treatment at 1000 deg. C. From XRD results silica and silica-chromium samples are crystalline. The chromium emission spectrum presents two main broad bands: one in the NIR region (1.1-1.7μm) and other in the visible region (0.6-0.7μm) assigned to Cr 4+ and to Cr 3+ , respectively. This thermal treated glass ceramic silica-chromium sample stabilizes the [CrO 4 ] 4- where Cr 4+ substitutes for Si 4+ and also hexacoordinated Cr 3+ group probably as segregated phase in the system. It can be pointed out that luminescence spectroscopy is a powerful tool for detecting the two chromium optical centers in the glass ceramic silica

  1. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  2. Translucency of dental ceramics with different thicknesses.

    Science.gov (United States)

    Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko

    2013-07-01

    The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (Pceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  3. Method of forming a ceramic to ceramic joint

    Science.gov (United States)

    Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis

    2010-04-13

    A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.

  4. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  5. Evaluation of Monolithic Ceramics and Ceramic Thermal Barrier Coatings for Diesel Engine Applications

    National Research Council Canada - National Science Library

    Swab, Jeffrey J

    2001-01-01

    The Metals and Ceramics Research Branch (MCRB) of the Weapons and Materials Research Directorate is providing ceramic material characterization and evaluation to the Tank Automotive Research, Development, and Engineering Center (TARDEC...

  6. Optic neuritis

    Science.gov (United States)

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  7. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  8. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  9. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    OpenAIRE

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis

  10. Werkstoffwoche 98. Vol. 7. Symposium 9: Ceramics. Symposium 14: Simulation of ceramics

    International Nuclear Information System (INIS)

    Heinrich, J.; Ziegler, G.; Hermel, W.; Riedel, H.

    1999-01-01

    The leading subject of this proceedings volume is ceramic materials, with papers on the following subject clusters: Processing (infiltration, sintering, forming) - Physics and chemistry of ceramics (functional ceramics, SiC, ceramic precursors, microstructural properties) - Novel concepts (composites, damage induced by oxidation and mechanical stress, performance until damage under mechanical and thermal stress, layers, nanocomposites). 28 of the conference papers have been prepared for individual retrieval from the ENERGY database. (orig./CB) [de

  11. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  12. Salt splitting with ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.

    1996-01-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures

  13. Ceramics: Durability and radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  14. Interfaces in ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    Internal interfaces in all-ceramic dispersion fuels (such as these for HTGRs) are discussed for two classes: BeO-based dispersions, and coated particles for graphite-based fuels. The following points are made: (1) The strength of a two-phase dispersion is controlled by the weaker dispersed phase bonded to the matrix. (2) Differential expansion between two phases can be controlled by an intermediate buffer zone of low density. (3) A thin ceramic coating should be in compression. (4) Chemical reaction between coating and substrate and mass transfer in service should be minimized. The problems of the nuclear fuel designer are to develop coatings for fission product retention, and to produce radiation-resistant interfaces. 44 references, 18 figures

  15. Silsesquioxane-derived ceramic fibres

    Science.gov (United States)

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  16. Microimpurity composition of superconducting ceramics

    International Nuclear Information System (INIS)

    Zhiglov, Yu.S.; Poltoratskij, Yu.B.; Protsenko, A.N.; Tuchin, O.V.

    1989-01-01

    Using laser mass spectrometry, the microimpurity composition of YBa 2 Cu 3 O 7-y superconducting ceramics, prepared by routine solid-phase synthesis from extremely pure yttrium and copper oxides and BaCO 3 , is determined. The presence of F, Na, Al, P, Cl, S, K, Ca impurities, which concentration in specimens varies within 10 -3 +5x10 -3 at.% and also Si, Sr, Fe of about 1x10 -1 at.% is established. It is difficult to determine concentrations of C, N, H 2 O impurities because of the presence of background signals of residual gases in the chamber. Using the method of Auger electron spectroscopy, a surface layer of HTSC ceramics grain is studied. The availability of chlorine impurity, which amount considerably exceeds its volume concentration, is determined in near the surface layer. 2 refs.; 2 figs

  17. Surface treatment of zirconia ceramics

    International Nuclear Information System (INIS)

    1980-01-01

    A method of chemically micropitting and/or microcratering at least a portion of a smooth surface of an impervious zirconia-base ceramic is described, comprising (a) contacting the smooth surface with a liquid leachant selected from concentrated sulphuric acid, ammonium bisulphate, alkali metal bisulphates and mixtures thereof at a temperature of at least 250 0 C for a period of time sufficient to effect micropitting and/or microcratering generally uniformly distributed throughout the microstructure of the resultant leached surface; (b) removing the leached surface from contact with the leachant; (c) contacting the leached surface with hydrochloric acid to effect removal from the leached surface of a residue thereon comprising sulphate of metal elements including zirconium in the ceramic; (d) removing the leached surface from contact with the hydrochloric acid; and (e) rinsing the leached surface with water to effect removal of acid residue from that surface. (author)

  18. Fatigue properties and impedance analysis of potassium sodium niobate-strontium titanate transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiyong; Fan, Huiqing; Lei, Shenhui; Wang, Ju; Tian, Hailin [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Xi' an (China)

    2016-10-15

    Highly transparent ferroelectric ceramics based on 0.9K{sub 0.5}Na{sub 0.5}NbO{sub 3}-0.1SrTiO{sub 3} were prepared using a pressure-less solid-state sintering method without using hot isostatic pressing and spark plasma sintering. An independence electromechanical response of bipolar switching cycles (S{sub 33} only degraded 3.2 % up to 10{sup 7} cycles) was presented in this transparent ceramics, which indicated an extremely stable property under electric field. From impedance spectroscopy and X-ray photoelectron spectroscopy analyses, it was concluded that such optical transparency and fatigue-resistant behaviors were mainly attributed to the lower density of oxygen vacancies in the ceramics. (orig.)

  19. Recycling of the reduction sludge of manganese in the production of ceramics

    International Nuclear Information System (INIS)

    Castro, C.G.; Araujo, F.G.S.; Kruger, F.L.

    2011-01-01

    To study the use of manganese reduction residues, from the electric arc furnaces for the production of manganese ferro-alloys, as raw materials for construction bricks, different ceramic compositions were formulated with contents of 0, 2.5, 5 and 10wt% of waste addition to the clay used commercially, and sintered at different temperatures, 850, 950 and 1050°C. After firing, the ceramic samples were studied by optical microscopy, scanning electron microscopy (SEM), x-ray diffraction and by spectrophotometry. Their mechanical properties were evaluated by flexural strength, apparent porosity and specific mass, water absorption, linear shrinkage and loss on ignition. With the help of technics and experiment planning programs, the effects of the variables: temperature, composition and interaction between them over the results were discussed. This work proved that the addition of manganese reduction sludge to the clay, for the production of ceramic construction bricks, is highly feasible, from a technical standpoint. (author)

  20. Incorporation of petroleum coke into red ceramic; Incorporacao de coque de petroleo em ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, L.A. de; Monteiro, S.N.; Sanchez, R.; Vieira, C.M.F. [Laboratorio de Materiais Avancados - LAMAV, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Campos dos Goytacazes, RJ (Brazil)], e-mails: sanchez@uenf.br, vieira@uenf.br

    2011-04-15

    This work has as its objective the evaluation of the effect of incorporation of petroleum coke in the physical and mechanical properties of red ceramic. Compositions were prepared with 0%, 1%, 2% and 4 wt.% of petroleum coke incorporated into a kaolinitic clayey body. Rectangular specimens were formed by extrusion to fire at 850 deg C and 1050 deg C. The determined physical and mechanical properties were flexural rupture strength and water absorption. The microstructure of the fired ceramics was evaluated by optical microscopy. The results show that the petroleum coke waste can significantly contribute to reduce the energy consumption during the firing stage. However, incorporations must be done in amounts around 1 wt.% to avoid deleterious effect on the water absorption of the ceramic. (author)

  1. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    Science.gov (United States)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  2. Tensile Properties of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2009-01-01

    Roč. 409, - (2009), s. 168-175 ISSN 1013-9826. [Fractography of Advanced Ceramics /3./. Stará Lesná, 07.09.2008-10.09.2008] R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : tensile test * ceramics foam * open porosity * tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  3. Acid-base properties of ceramic powders

    International Nuclear Information System (INIS)

    Bleier, A.

    1983-01-01

    This chapter addresses the fundamental aspects of potentiometric titration, electrokinetics, and conductometric titration in evaluating surface and interfacial thermodynamic behavior. Emphasizes the characterization of aqueous systems which are pertinent to the processing of ceramic powders. Attempts to clarify the role of novel analytical techniques that will increasingly contribute to the advanced characterization of ceramic powders. Evaluates recently developed acid-base and complexation concepts and their applications to the processing of oxide ceramics

  4. Structure and conductivity of nanostructured YBCO ceramics

    Science.gov (United States)

    Palchayev, D. K.; Gadzhimagomedov, S. Kh; Murlieva, Zh Kh; Rabadanov, M. Kh; Emirov, R. M.

    2017-12-01

    Superconducting nanostructured ceramics based on YBa2Cu3O7-δ were made of nanopowder obtained by burning nitrate-organic precursors. The structure, morphology, electrical resistivity, and density of ceramics were studied. Various porosity values of the ceramics were achieved by preliminary heat treatment of the nanopowder. The features of conductivity and the reason for increase of the of the superconducting transition temperature in these materials are discussed.

  5. Advanced ceramics: the present and the perspectives

    International Nuclear Information System (INIS)

    Freitas, C.T. de.

    1990-04-01

    Development in the Brazilian and international areas of advanced ceramics is described, emphasizing its economic perspectivas and industrial applications. Results obtained by national institutions are reviewed, mainly in the context of those that pioneered the required high technology in this ceramic field. The rapid growth of the interest for those special materials, made more evident by ample information related to the superconducting ceramics great pontential for important practical applications, is one of the most significant characteristics of the area. (author) [pt

  6. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  7. High temperature fracture of ceramic materials

    International Nuclear Information System (INIS)

    Wiederhorn, S.M.

    1979-01-01

    A review is presented of fracture mechanisms and methods of lifetime prediction in ceramic materials. Techniques of lifetime prediction are based on the science of fracture mechanics. Application of these techniques to structural ceramics is limited by our incomplete understanding of fracture mechanisms in these materials, and by the occurrence of flaw generation in these materials at elevated temperatures. Research on flaw generation and fracture mechanisms is recommended as a way of improving the reliability of structural ceramics

  8. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  9. Strength and Microstructure of Ceramics

    Science.gov (United States)

    1989-11-01

    Forex - one particular alumina ceramic, I our own detailed crack ample, the relatively large values of r, and c* for the VI observations, and those of...particularly toughness indices, 1i71", indicating that there is sonic the c° , T parameters. However, the indentation mcth- kind of trade -o1Tbetwecn...macroscopic and microsnpic odology takes us closer to the strengths of specimens toughness levels, and that this trade -off is cont’olled by with natural

  10. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  11. Energy storage in ceramic dielectrics

    International Nuclear Information System (INIS)

    Love, G.R.

    1990-01-01

    Historically, multilayer ceramic capacitors (MLC's) have not been considered for energy storage applications for two primary reasons. First, physically large ceramic capacitors were very expensive and, second, total energy density obtainable was not nearly so high as in electrolytic capacitor types. More recently, the fabrication technology for MLC's has improved significantly, permitting both significantly higher energy density and significantly lower costs. Simultaneously, in many applications, total energy storage has become smaller, and the secondary requirements of very low effective series resistance and effective series inductance (which, together, determine how efficiently the energy may be stored and recovered) have become more important. It is therefore desirable to reexamine energy storage in ceramics for contemporary commercial and near-commercial dielectrics. Stored energy is proportional to voltage squared only in the case of paraelectric insulators, because only they have capacitance that is independent of bias voltage. High dielectric constant materials, however, are ferroics (that is ferroelectric and/or antiferroelectric) and display significant variation of effective dielectric constant with bias voltage

  12. The Electrospun Ceramic Hollow Nanofibers

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2017-11-01

    Full Text Available Hollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.g., for an enhanced charging–discharging rate. In this review, we discuss and introduce the latest developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly, electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures have been mainly suggested for energy and environmental remediation. Despite the various advantages of such one dimensional (1D nanostructures, their fabrication strategies need to be improved to increase their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard to their composition and dimensions could be one of such challenges. Moreover, their poor scalability hinders their wide applicability for commercialization and industrial use.

  13. Silicate bonded ceramics of laterites

    International Nuclear Information System (INIS)

    Wagh, A.S.; Douse, V.

    1989-05-01

    Sodium silicate is vacuum impregnated in bauxite waste (red mud) at room temperature to develop ceramics of mechanical properties comparable to the sintered ceramics. For a concentration up to 10% the fracture toughness increases from 0.12 MNm -3/2 to 0.9 MNm -3/2 , and the compressive strength from 7 MNm -2 to 30 MNm -2 . The mechanical properties do not deteriorate, when soaked in water for an entire week. The viscosity and the concentration of the silicate solution are crucial, both for the success of the fabrication and the economics of the process. Similar successful results have been obtained for bauxite and lime stone, even though the latter has poor weathering properties. With scanning electron microscopy and energy dispersive analysis, an attempt is made to identify the crystals formed in the composite, which are responsible for the strength. The process is an economic alternative to the sintered ceramics in the construction industry in the tropical countries, rich in lateritic soils and poor in energy. Also the process has all the potential for further development in arid regions abundant in limestone. (author). 6 refs, 20 figs, 3 tabs

  14. Apatite glass-ceramics: a review

    Science.gov (United States)

    Duminis, Tomas; Shahid, Saroash; Hill, Robert Graham

    2016-12-01

    This article is a review of the published literature on apatite glass-ceramics (GCs). Topics covered include crystallization mechanisms of the various families of the apatite GCs and an update on research and development on apatite GCs for applications in orthopedics, dentistry, optoelectronics and nuclear waste management. Most apatite GCs crystallize through a homogenous nucleation and crystallization mechanism, which is aided by a prior liquid-liquid phase separation. Careful control of the base glass composition and heat-treatment conditions, which determine the nature and morphology of the crystal phases in the GC can produce GC materials with exceptional thermal, mechanical, optical and biological properties. The GCs reviewed for orthopedic applications exhibit suitable mechanical properties and can chemically bond to bone and stimulate its regeneration. The most commercially successful apatite GCs are those developed for dental veneering. These materials exhibit excellent translucency and clinical esthetics, and mimic the natural tooth mineral. Due to the ease of solid solution of the apatite lattice, rare earth doped apatite GCs are discussed for potential applications in optoelectronics and nuclear waste management. One of the drawbacks of the commercial apatite GCs used in orthopedics is the lack of resorbability, therefore the review provides a direction for future research in the field.

  15. All-ceramic restorations: an overview.

    Science.gov (United States)

    Bassi, F; Carossa, S; Pera, P; Preti, G

    1998-09-01

    Advantages and disadvantages of metal-ceramic and all-ceramic restorations are reviewed particularly from the aesthetic point of view. All-ceramic restorations offer the best results because they let the light through optimally. In constructing all-ceramic crowns on teeth which have been endodontically treated, the material used to rebuild the pin-abutments must be taken into consideration if the best aesthetic results are to be achieved. Materials which, because of their translucent characteristics, are the most aesthetic alternatives to metal alloy pin-abutments in rebuilding teeth which have been endodontically treated, are then described.

  16. Performances of multi-channel ceramic photomultipliers

    International Nuclear Information System (INIS)

    Comby, G.; Karolak, M.; Piret, Y.; Mouly, J.P.

    1995-09-01

    Ceramic electron multipliers with real metal dynodes and independent channels ware constructed using multilayer ceramic technology. Tests of these prototypes show their capability to form sensitive detectors such as photomultipliers or light intensifiers. Here, we present results for the photocathode sensitivity, dynode activation, gain, linearity range and dynamic characteristics as well as the effect of 3-year aging of the main operational functions. The advantages provided by the ceramic components are discussed. These results motivate the development of a compact 256 pixel ceramic photomultiplier. (author)

  17. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  18. Portland blended cements: demolition ceramic waste management

    International Nuclear Information System (INIS)

    Trezza, M.A.; Zito, S.; Tironi, A.; Irassar, E.F.; Rahhal, V.F.

    2017-01-01

    Demolition ceramic wastes (DCWs) were investigated in order to determine their potential use as supplementary cementitious materials in Portland Blended Cements (PBCs). For this purpose, three ceramic wastes were investigated. After characterization of the materials used, the effect of ceramic waste replacement (8, 24 and 40% by mass) was analyzed. Pozzolanic activity, hydration progress, workability and compressive strength were determined at 2, 7 and 28 days. The results showed that the ground wastes behave as filler at an early age, but as hydration progresses, the pozzolanic activity of ceramic waste contributes to the strength requirement. [es

  19. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium, and cop......Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...

  20. Review of glass ceramic waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  1. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  2. Tritium behaviour in ceramic breeder blankets

    International Nuclear Information System (INIS)

    Miller, J.M.

    1989-01-01

    Tritium release from the candidate ceramic materials, Li 2 O, LiA10 2 , Li 2 SiO 3 , Li 4 SiO 4 and Li 2 ZrO 3 , is being investigated in many blanket programs. Factors that affect tritium release from the ceramic into the helium sweep gas stream include operating temperature, ceramic microstructure, tritium transport and solubility in the solid. A review is presented of the material properties studied and of the irradiation programs and the results are summarized. The ceramic breeder blanket concept is briefly reviewed

  3. Emerging ceramic-based materials for dentistry.

    Science.gov (United States)

    Denry, I; Kelly, J R

    2014-12-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. © International & American Associations for Dental Research.

  4. Measurement of Emissivity of Porous Ceramic Materials

    OpenAIRE

    BÜYÜKALACA, Orhan

    1998-01-01

    In this study, measurements of spectral and total emissivities of seven different porous ceramic materials and one ceramic fibre material are reported. Measurements were made for wavelength range from 1.2 µm to 20 µm and temperature range from 200 °C to 700 °C. It was found that total emissivity increases with increase of pore size but decreases with increase of temperature. The results showed all the porous ceramic materials tested to be much better than ceramic fibre in terms of total em...

  5. A review of the strength properties of dental ceramics.

    Science.gov (United States)

    Hondrum, S O

    1992-06-01

    New ceramic materials for restorative dentistry have been developed and introduced in recent years. This article reviews advantages and disadvantages of dental ceramics, concentrating on strength properties. Included are factors affecting the strength of dental ceramic materials and the most common mechanisms for increasing the strength of dental ceramics. The properties of presently available materials such as dispersion-strengthened ceramics, cast ceramics, and foil-reinforced materials are discussed. Current research efforts to improve the fracture resistance of ceramic restorative materials are reviewed. A description of methods to evaluate the strength of ceramics is included, as a caution concerning the interpretation of strength data reported in the literature.

  6. Association of sleep bruxism with ceramic restoration failure: A systematic review and meta-analysis.

    Science.gov (United States)

    de Souza Melo, Gilberto; Batistella, Elis Ângela; Bertazzo-Silveira, Eduardo; Simek Vega Gonçalves, Thais Marques; Mendes de Souza, Beatriz Dulcineia; Porporatti, André Luís; Flores-Mir, Carlos; De Luca Canto, Graziela

    2018-03-01

    Ceramic restorations are popular because of their excellent optical properties. However, failures are still a major concern, and dentists are confronted with the following question: is sleep bruxism (SB) associated with an increased frequency of ceramic restoration failures? The purpose of this systematic review and meta-analysis was to assess whether the presence of SB is associated with increased ceramic restoration failure. Observational studies and clinical trials that evaluated the short- and long-term survival rate of ceramic restorations in SB participants were selected. Sleep bruxism diagnostic criteria must have included at least 1 of the following: questionnaire, clinical evaluation, or polysomnography. Seven databases, in addition to 3 nonpeer-reviewed literature databases, were searched. The risk of bias was assessed by using the meta-analysis of statistics assessment and review instrument (MAStARI) checklist. Eight studies were included for qualitative synthesis, but only 5 for the meta-analysis. Three studies were categorized as moderate risk and 5 as high risk of bias. Clinical and methodological heterogeneity across studies were considered high. Increased hazard ratio (HR=7.74; 95% confidence interval [CI]=2.50 to 23.95) and odds ratio (OR=2.52; 95% CI=1.24 to 5.12) were observed considering only anterior ceramic veneers. Nevertheless, limited data from the meta-analysis and from the restricted number of included studies suggested that differences in the overall odds of failure concerning SB and other types of ceramic restorations did not favor or disfavor any association (OR=1.10; 95% CI=0.43 to 2.8). The overall quality of evidence was considered very low according to the GRADE criteria. Within the limitations of this systematic review, the overall result from the meta-analysis did not favor any association between SB and increased odds of failure for ceramic restorations. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry

  7. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  8. A continuing study of electrically conducting ceramics. Final report, August 9, 1978 - March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A series of 36 perovskite ceramics based on SrZrO/sub 3/ has been prepared and investigated as potential materials for electrodes for MHD systems using hydrogen as a fuel. All ceramics prepared were found to be relatively dark in color, indicating optical absorptions associated with the existence of conduction electrons. Many were found to be soft and crumbly after firing at 1400/sup 0/ or 1500/sup 0/C, but became hard and often quite shiny when fired at 1650/sup 0/C using a special graphite induction furnace. In most cases, this increase in hardness was also accompanied by a significant density increase. Most ceramics were found to be composed of second perovskite structures, i.e. manganates of Ba, Ca, Sr or La, in addition to the zirconate phase. Their room temperature electrical resistivity was determined by the van der Paaw method. Results show that resistivity falls below 100 ohm-cm (the value acceptable for MHD electrodes) for certain ceramics of the types tested. The resistivity value was found to vary significantly with firing temperature; this can be correlated with the crystal structures and number of phases within the ceramic. Weight loss measurements done at 1440/sup 0/C have enabled three ceramics to be identified as potential materials for thermoelectric converters requiring high temperature structural and chemical stability in oxidizing atmospheres. An appendix reviews the current status of the basis for development of perovskite ceramics and specific materials are discussed on the basis of relevant thermoelectric properties. Also included is a review of semiconductor thermocouples and of materials selection for insulators and electrodes for use in MHD systems. 91 refs., 3 figs., 10 tabs.

  9. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    International Nuclear Information System (INIS)

    Selling, J.

    2007-01-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl 2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI 2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu 2+ /Eu 3+ ratio in the glass ceramics should be determined and optimize favor of the Eu 2+ . We also want to distinguish between Eu 2+ in the glass matrix and Eu 2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF 2 host lattice were carried

  10. Electrically conductive ceramics and new joining technology for applications in HTR engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hille, Carmen, E-mail: carmen.hille@ilkdresden.de [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3b, D-01062 Dresden (Germany); Lippmann, Wolfgang, E-mail: wolfgang.lippmann@tu-dresden.de [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3b, D-01062 Dresden (Germany); Hurtado, Antonio, E-mail: antonio.hurtado@tu-dresden.de [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3b, D-01062 Dresden (Germany)

    2012-10-15

    Ceramic constructional components are quite extensively required for operation of high-temperature nuclear reactors. Functional ceramics, in addition to constructional ceramics, are increasingly coming into the focus of research. Ceramic materials are predestined for use at high temperatures and in corrosive atmospheres. Modification of silicon carbide (SiC) by targeted doping, for instance, produces a suitable material for the production of heating conductors and thermoelectric generators. As a construction material, silicon carbide (SiC) is especially interesting due to its very good thermal, mechanical and radiological properties. SiC, furthermore, performs well when activated by neutron irradiation, with the induced activation subsiding after only a few hours (). This property vector makes it an ideal starting material for use in a wide range of functional elements in high-temperature power engineering, particularly in high-temperature nuclear reactor engineering (e.g. V/HTR) including thermochemical plants for hydrogen generation or Synfuel production. In principle, it is possible to produce all-ceramic assemblies consisting of a thermoelectric generator and a sensor that can provide reliable measurement signals under extreme conditions in the high-temperature range without external power supply. This paper explains the feasibility of laser-joining such modified non-oxide ceramics, how to make electrically conductive joints, and thus, how to design complex assemblies. The parameters required for an optimal laser process to join ceramic materials were determined in extensive preliminary experiments. These investigations focused on the specific electrical resistances and optical properties. Specifically developed brazing fillers were fine-tuned so that the joints of the ceramics improved in terms of their physical interactions, chemical reactions and ability to bond or key chemically and mechanically with the ceramic surfaces. Thereby, the electrical

  11. Electrically conductive ceramics and new joining technology for applications in HTR engineering

    International Nuclear Information System (INIS)

    Hille, Carmen; Lippmann, Wolfgang; Hurtado, Antonio

    2012-01-01

    Ceramic constructional components are quite extensively required for operation of high-temperature nuclear reactors. Functional ceramics, in addition to constructional ceramics, are increasingly coming into the focus of research. Ceramic materials are predestined for use at high temperatures and in corrosive atmospheres. Modification of silicon carbide (SiC) by targeted doping, for instance, produces a suitable material for the production of heating conductors and thermoelectric generators. As a construction material, silicon carbide (SiC) is especially interesting due to its very good thermal, mechanical and radiological properties. SiC, furthermore, performs well when activated by neutron irradiation, with the induced activation subsiding after only a few hours (). This property vector makes it an ideal starting material for use in a wide range of functional elements in high-temperature power engineering, particularly in high-temperature nuclear reactor engineering (e.g. V/HTR) including thermochemical plants for hydrogen generation or Synfuel production. In principle, it is possible to produce all-ceramic assemblies consisting of a thermoelectric generator and a sensor that can provide reliable measurement signals under extreme conditions in the high-temperature range without external power supply. This paper explains the feasibility of laser-joining such modified non-oxide ceramics, how to make electrically conductive joints, and thus, how to design complex assemblies. The parameters required for an optimal laser process to join ceramic materials were determined in extensive preliminary experiments. These investigations focused on the specific electrical resistances and optical properties. Specifically developed brazing fillers were fine-tuned so that the joints of the ceramics improved in terms of their physical interactions, chemical reactions and ability to bond or key chemically and mechanically with the ceramic surfaces. Thereby, the electrical

  12. Light transmittance and surface roughness of a feldspathic ceramic CAD-CAM material as a function of different surface treatments.

    Science.gov (United States)

    Ural, Çağrı; Duran, İbrahim; Evmek, Betül; Kavut, İdris; Cengiz, Seda; Yuzbasioglu, Emir

    2016-07-15

    The aim of the present study was to determine the effect of different surface treatments on light transmission of aesthetic feldspathic ceramics used in CAD-CAM chairside restorations. Forty eight feldspatic ceramic test specimens were prepared from prefabricated CAD-CAM blocks by using a slow speed diamond saw. Test specimens were prepared and divided into 4 groups (n = 12). In the control group, no surface treatments were applied on the feldspathic ceramic surfaces. In the hydrofluoric acid group, the bonding surfaces of feldspathic ceramics were etched with 9.5 % hydrofluoric acid. In the sandblasting group the feldspathic ceramic surfaces were air-abraded with 30-μm alumium oxide (Al2O3) particles and Er:YAG laser was used to irradiate the ceramic surfaces. The incident light power given by the LED device and the transmitted light power through each ceramic sample was registered using a digital LED radiometer device. Each polymerization light had a light guide with 8-mm-diameter tips. Light transmission of feldspathic ceramic samples was determined by placing it on the radiometer and irradiating the specimen for 10 s at the highest setting for each light polymerization. All specimens were coated with gold using a sputter coater and examined under a field emission scanning electron microscope. Surface roughness measurement each group were evaluated with 3D optical surface and tactile profilometers. One-way ANOVA test results revealed that both surface conditioning method significantly affect the light transmittance (F:412.437; p ceramic material below the value of 400 mW/cm(2) which is critical limit for safe polymerization.

  13. Upconversion studies of Er3+/Yb3+ doped SrO.TiO2 borosilicate glass ceramic system

    International Nuclear Information System (INIS)

    Maheshwari, Aditya; Om Prakash; Kumar, Devendra; Rai, S.B.

    2011-01-01

    Upconversion behaviour has been studied in various matrices and fine powders of SrTiO 3 by previous workers. In present work, Er 3+ /Yb 3+ were doped in appropriate ratio in SrO.TiO 2 borosilicate glass ceramic system to study the upconversion phenomenon. Dielectric properties of this class of glass ceramic system have been extensively investigated by Thakur et al. It has been observed that both upconversion efficiency and dielectric constant increases with transformation of glass into glass ceramic. Therefore, present investigation is based upon the study of optical as well as the electrical properties of same glass ceramic system. In order to prepare different crystalline matrices, two different Er 3+ /Yb 3+ :SrO.TiO 2 borosilicate glasses with same amount of Er 2 O 3 and Yb 2 O 3 were prepared by melt quench method. Glasses were transparent with light-wine colour. Glass ceramics were prepared from the glasses by heat treatment based on DTA (Differential thermal analysis) results. Glass ceramics were fully opaque with brownish-cream colour. Powder X-ray diffraction (XRD) patterns confirmed that two different crystalline matrices, Sr 3 Ti 2 O 7 , Ti 10 O 19 and SrTiO 3 , TiO 2 were present in two glass ceramic samples respectively. Luminescence properties of glass and glass ceramic samples with 976nm laser irradiation showed that the intensities of the green and red emission increased multiple times in glass ceramic than that of the glass. Possible mechanisms responsible for upconversion eg. Energy Transfer (ET) and Excited State Absorption (ESA), were studied through laser pumping power log dependence

  14. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function.

    Science.gov (United States)

    Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R

    2014-06-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation. © 2014 Eur J Oral Sci.

  15. Cytotoxicity evaluation of polymer-derived ceramics for pacemaker electrode applications.

    Science.gov (United States)

    Grossenbacher, Jonas; Gullo, Maurizio R; Dalcanale, Federico; Blugan, Gurdial; Kuebler, Jakob; Lecaudé, Stéphanie; Tevaearai Stahel, Hendrik; Brugger, Juergen

    2015-11-01

    Ceramics are known to be chemically stable, and the possibility to electrically dope polymer-derived ceramics makes it a material of interest for implantable electrode applications. We investigated cytotoxic characteristics of four polymer-derived ceramic candidates with either electrically conductive or insulating properties. Cytotoxicity was assessed by culturing C2C12 myoblast cells under two conditions: by exposing them to material extracts and by putting them directly in contact with material samples. Cell spreading was optically evaluated by comparing microscope observations immediately after the materials insertion and after 24 h culturing. Cell viability (MTT) and mortality (LDH) were quantified after 24-h incubation in contact with the materials. Comparison was made with biocompatible positive references (alumina, platinum, biocompatible stainless steel 1.4435), negative references (latex, stainless steel 1.4301) and controls (no material present in the culture wells). We found that the cytotoxic properties of tested ceramics are comparable to established reference materials. These ceramics, which are reported to be very stable, can be microstructured and electrically doped to a wide range of conductivity and are thus excellent candidates for implantable electrode applications including pacemakers. © 2015 Wiley Periodicals, Inc.

  16. Systematic approach to preparing ceramic-glass composites with high translucency for dental restorations.

    Science.gov (United States)

    Yoshimura, Humberto N; Chimanski, Afonso; Cesar, Paulo F

    2015-10-01

    Ceramic composites are promising materials for dental restorations. However, it is difficult to prepare highly translucent composites due to the light scattering that occurs in multiphase ceramics. The objective of this work was to verify the effectiveness of a systematic approach in designing specific glass compositions with target properties in order to prepare glass infiltrated ceramic composites with high translucency. First it was necessary to calculate from literature data the viscosity of glass at the infiltration temperature using the SciGlass software. Then, a glass composition was designed for targeted viscosity and refractive index. The glass of the system SiO2-B2O3-Al2O3-La2O3-TiO2 prepared by melting the oxide raw materials was spontaneously infiltrated into porous alumina preforms at 1200°C. The optical properties were evaluated using a refractometer and a spectrophotometer. The absorption and scattering coefficients were calculated using the Kubelka-Munk model. The light transmittance of prepared composite was significantly higher than a commercial ceramic-glass composite, due to the matching of glass and preform refractive indexes which decreased the scattering, and also to the decrease in absorption coefficient. The proposed systematic approach was efficient for development of glass infiltrated ceramic composites with high translucency, which benefits include the better aesthetic performance of the final prosthesis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Design and fabrication of aspherical bimorph PZT optics

    CERN Document Server

    Tseng, T C; Yeh, Z C; Perng, S Y; Wang, D J; Kuan, C K; Chen, J R; Chen, C T

    2001-01-01

    Bimorph piezoelectric optics with a third-order-polynomial surface is designed and a prototype is fabricated as active optics. Two pairs of silicon (Si) and lead zirconate titanate (PZT) piezoelectric ceramic are bonded as Si-PZT-PZT-Si together with a multi-electrode or thin film resistor coating used as the control electrode between Si and PZT and metallic films as grounding between the interface of PZT ceramics. A linear voltage is applied to the bimorph PZT optics by probing the control electrodes from a two-channel controllable power supplier. In doing so, the optics surface can achieve a desired third-order-polynomial surface. Reducing hysteresis and creep in bimorph PZT X-ray optics is the only feasible way by inserting an appropriate capacitor in series with bimorph PZT optics to significantly reduce both effects.

  18. Microstructural, compositional and mechanical properties of the archaeological indigenous ceramics of Caninhas, Sao Paulo,Brazil; Analise microestrutural, composicional e propriedades mecanicas das ceramicas indigenas do sitio arqueologico Caninhas, Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, F.P.; Taguchi, S.P., E-mail: japaum@alunos.eel.usp.b [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia de Lorena. Dept. de Engenharia de Materiais; Ribeiro, R.B.; Rosa, S.J.L. [Faculdades Integradas Teresa D' Avila (FATEA), Lorena, SP (Brazil). Rede Salesianas. Dept. de Desenho Industrial; Bornal, W.G.; Queiroz, C.M. [Fundacao Cultural de Jacarehy, Jacarei, SP (Brazil). Nucleo de Arqueologia do Vale do Paraiba

    2009-07-01

    Archaeological ceramics contain infinity of data about social and cultural indigenous site Caninhas/SP. The ceramics present a gradient of color (ochre to dark gray), when from the surface to the center of the piece, indicating compositional variability caused by inefficient sintering carried out by indigenous peoples. It was analyzed the composition phases by X-rays diffraction (XRD) and mapping by EDS, identifying the illite, quartz and lutecite phases (ochre region) and illite, quartz, hydrated alumina and lutecite phases (dark gray region). The results of EDS confirmed the stages identified by X-rays diffraction and suggesting the presence of roots and scrap of ceramics sintered in the composition of indigenous ceramics, when compared by optical microscope and scanning electron microscope. Vickers hardness identified as fragile and heterogeneous are archaeological ceramics, reaching approximately 203 HV in the grains of silica and 16 HV in the ceramic matrix. (author)

  19. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  20. Prestresses in bilayered all-ceramic restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N; Feilzer, Albert J; de Jager, Niek; Kleverlaan, Cornelis J

    2008-10-01

    A general trend in all ceramic systems is to use veneering ceramics of slightly lower thermal expansion coefficients compared with that of the framework resulting in a positive mismatch in thermal expansion coefficient (+DeltaTEC). The concept behind this TEC mismatch is to generate compressive stresses in the weaker veneering ceramic and thus enhance the overall strength of the restoration. This technique had excellent results with porcelain fused to metal restorations (PFM). However, there are concerns to apply this concept to all-ceramic restorations. The aim of this research was to determine the stresses in bilayered all-ceramic restorations due to the mismatch in TEC. Two commercial veneering ceramics with a TEC lower than that of zirconia (+DeltaTEC); NobelRondo zirconiatrade mark and Lava Ceramtrade mark, plus one experimental veneering ceramic with an identical TEC that matches that of zirconia (DeltaTEC = 0) were used to veneer zirconia discs. The specimens were loaded in biaxial flexure test setup with the veneer ceramic in tension. The stresses due to load application and TEC mismatch were calculated using fractography, engineering mathematics, and finite element analysis (FEA). In this study, the highest load at failure (64 N) was obtained with the experimental veneer where the thermal mismatch between zirconia and veneering ceramic was minimal. For the two commercial veneer ceramics the magnitude of the thermal mismatch localized at the zirconia veneer interface (42 MPa) exceeded the bond strength between the two materials and resulted in delamination failure during testing (ca. 50 MPa). For all-ceramic zirconia veneered restorations it is recommended to minimize the thermal mismatch as much as possible. (c) 2008 Wiley Periodicals, Inc.

  1. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials.

    Science.gov (United States)

    Gorni, Giulio; Velázquez, Jose J; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-30

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF₄ glass-ceramics. Moreover, a new SiO₂ precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  2. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials

    Directory of Open Access Journals (Sweden)

    Giulio Gorni

    2018-01-01

    Full Text Available Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  3. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials

    Science.gov (United States)

    Gorni, Giulio; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-01

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications. PMID:29385706

  4. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    Science.gov (United States)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  5. Microstructural analysis of clayey ceramic incorporated with fluorescent lamp glass; Analise microestrutural de ceramica vermelha incorporada com vidro de lampada fluorescente

    Energy Technology Data Exchange (ETDEWEB)

    Morais, A.S.C.; Caldas, T.C.C.; Pereira, P.S.; Monteiro, S.N.; Vieira, C.M.F., E-mail: allinescmorais@yahoo.com.br [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LAMAV/UENF), Campos dos Goytacazes, RJ (Brazil). Laboratorio de Materiais Avancados

    2011-07-01

    This study aims to evaluate the effect of the incorporation of glass powder fluorescent lamp, from a decontamination process, in the microstructure of clayey ceramic. Formulations were prepared with incorporation of the waste in amounts of up to 10 wt.% into the clayey body. Specimens were prepared by uniaxial mold-press at 20 MPa and then fired at 850 and 1050°C. After firing, the microstructure of the ceramics was evaluated by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that the incorporation of glass powder into the clayey body changes the microstructure of the ceramics. (author)

  6. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients.

    Science.gov (United States)

    Hernigou, Philippe; Roubineau, François; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-04-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantagesCoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion.However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with fracture of a component.We recommend that surgeons weigh the potential advantages and disadvantages of current CoC THA in comparison with other bearing surfaces when considering young very active patients who are candidates for THA. Cite this article: Hernigou P, Roubineau F, Bouthors C, Flouzat-Lachaniette C-H. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients. EFORT Open Rev 2016;1:107-111. DOI: 10.1302/2058-5241.1.000027.

  7. Structural study of some gadolinium glass ceramics obtained by sol-gel method

    International Nuclear Information System (INIS)

    Coroiu, Ilioara; Simiti, Vida I.; Bratu, I.; Borodi, Gh.; Darabont, Al.

    2004-01-01

    Increased interest in silicate systems containing different rare earth oxides has resulted from their important applications in various fields of technology including laser, optical fiber and optical waveguides in telecommunication applications, microelectronics and catalysis. Glass-ceramics of 0.95 SiO 2 -0.05 Na 2 O composition containing up to 15% molar Gd 2 O 3 were obtained by the sol-gel method. We chose the sol-gel method because this offers the advantage of a good chemical homogeneity and a better control of physical and chemical properties in comparison with traditional methods used to obtain glasses and ceramics. The obtained samples were pressed at 200 kgf/cm 2 as disks with a diameter of Φ=22 mm and a thickness of around 1 mm. Then, they were heat-treated at 250 deg C, 500 deg C and 1000 deg C for about 48 hours. The structural study was made using X-ray diffraction, scanning electron microscopy (SEM) and IR spectroscopy. The X-ray diffraction patterns show that addition of Gd 2 O 3 exerts an important influence on the crystallization process of the studied samples. The crystalline phase decreases with increasing the Gd 2 O 3 concentration. SEM data support this assertion. IR spectra point out also that the increasing of the gadolinium oxide content and the thermal treatment temperature produce the strengthening of the glass ceramic network. Thus, the gadolinium ions play the role of network modifier of the glass ceramic structure. (authors)

  8. Sol–Gel-Derived Glass-Ceramic Photorefractive Films for Photonic Structures

    Directory of Open Access Journals (Sweden)

    Anna Lukowiak

    2017-02-01

    Full Text Available Glass photonics are widespread, from everyday objects around us to high-tech specialized devices. Among different technologies, sol–gel synthesis allows for nanoscale materials engineering by exploiting its unique structures, such as transparent glass-ceramics, to tailor optical and electromagnetic properties and to boost photon-management yield. Here, we briefly discuss the state of the technology and show that the choice of the sol–gel as a synthesis method brings the advantage of process versatility regarding materials composition and ease of implementation. In this context, we present tin-dioxide–silica (SnO2–SiO2 glass-ceramic waveguides activated by europium ions (Eu3+. The focus is on the photorefractive properties of this system because its photoluminescence properties have already been discussed in the papers presented in the bibliography. The main findings include the high photosensitivity of sol–gel 25SnO2:75SiO2 glass-ceramic waveguides; the ultraviolet (UV-induced refractive index change (Δn ~ −1.6 × 10−3, the easy fabrication process, and the low propagation losses (0.5 ± 0.2 dB/cm, that make this glass-ceramic an interesting photonic material for smart optical applications.

  9. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  10. Superplasticity in Fine-Grained Ceramics

    Science.gov (United States)

    1994-01-31

    Stabilized, Tetragonal Zirconia," Acta Metall. Mater., 39(12), (1991), pp. 3227-3236. 10. B. Kellett, P. Carry, and A. Mocellin , "Extrusion of Tet-ZrO2...F. Wakai, S. Sakaguchi, and H. Kato, J. Ceram. Soc. Jap., 94, 72 (1986). 8. B. Kellett, P. Carry, and A. Mocellin , J. Amer. Ceram. Soc., 74, 1922

  11. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti

  12. New ceramic materials; Nuevos materiales ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-07-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  13. Crack growth in thermally sprayed ceramic coatings

    Czech Academy of Sciences Publication Activity Database

    Kroupa, František; Náhlík, Luboš; Knésl, Zdeněk

    2004-01-01

    Roč. 49, č. 2 (2004), s. 149-168 ISSN 0001-7043 R&D Projects: GA ČR GP106/04/P084; GA ČR GA101/03/0331 Institutional research plan: CEZ:AV0Z2043910 Keywords : ceramic coatings, fracture mechanics, crack extension Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  14. Prestresses in bilayered all-ceramic restorations

    NARCIS (Netherlands)

    Aboushelib, M.N.; Feilzer, A.J.; de Jager, N.; Kleverlaan, C.J.

    2008-01-01

    Introduction: A general trend in all ceramic systems is to use veneering ceramics of slightly lower thermal expansion coefficients compared with that of the framework resulting in a positive mismatch in thermal expansion coefficient (+ΔTEC). The concept behind this TEC mismatch is to generate

  15. Yellow cake to ceramic uranium dioxide

    International Nuclear Information System (INIS)

    Zawidzki, T.W.; Itzkovitch, I.J.

    1983-01-01

    This overview article first reviews the processes for converting uranium ore concentrates to ceramic uranium dioxide at the Port Hope Refinery of Eldorado Resources Limited. In addition, some of the problems, solutions, thoughts and research direction with respect to the production and properties of ceramic UO 2 are described

  16. Ceramics for applications in fusion systems

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1979-01-01

    Six critical applications for ceramics in fusion systems are reviewed, and structural and electrical problem areas discussed. Fusion neutron radiation effects in ceramics are considered in relation to fission neutron studies. A number of candidate materials are proposed for further evaluation

  17. Synthesis of crystalline ceramics for actinide immobilisation

    International Nuclear Information System (INIS)

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-01-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  18. Atomic imaging and microanalysis of ceramics

    International Nuclear Information System (INIS)

    Thomas, G.; Ramesh, R.

    1988-10-01

    This paper is a short review of electron microscopy techniques, as applied to modern ceramics. Examples: representative of the significance of modern electron microscopy, methods of atomic resolution imaging, diffraction and spectroscopy in the task of characterising, and understanding typical ceramic materials are given. (JL)

  19. Oxygen diffusion in glasses and ceramic materials

    International Nuclear Information System (INIS)

    Kolitsch, A.; Richter, E.; Wolf, M.

    1978-10-01

    A survey is given on the published works to study oxygen diffusion in glasses and ceramic materials in the last years. In the first part methods are described for the measurement of oxygen diffusion coefficients and in the second part the published reports on oxygen diffusion in glasses, ceramic and other oxides are discussed. The most important results are summarized in different tables. (author)

  20. Nature of radiation damage in ceramics

    International Nuclear Information System (INIS)

    Bunch, J.M.

    1976-01-01

    Efforts to determine the equivalence between different sources of radiation damage in ceramics are reviewed. The ways in which ceramics differ from metals are examined and proposed mechanisms for creation and stabilization of defects in insulators are outlined. Work on radiation damage in crystalline oxides is summarized and suggestions for further research are offered

  1. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  2. Synthesis and characterization of biomorphic ceramics

    International Nuclear Information System (INIS)

    Rambo, Carlos Renato

    2001-01-01

    Biotemplating represents a recently developed technology for manufacturing of biomorphous ceramics from naturally grown plant structures. This approach allows the production of ceramic materials with cellular structure, where the microstructural features of the ceramic product are similar to the native plant. After processing, the biomorphic ceramic exhibits directed pore morphology in the micrometer range. Biomorphic SiC fibers were produced from bamboo by carbothermal reduction of SiO 2 originally present in the bamboo structure. Bamboo pieces were heated up to 1500 deg C in argon to promote the reaction between carbon and silica. Biomorphic alumina, mullite and zirconia ceramics were manufactured via the sol-gel route by repeated infiltration of low viscous oxide precursors (sols) into rattan, pine and bamboo structures. The raw samples were pyrolyzed at 800 deg C in nitrogen for 1h and subsequently annealed at 1550 deg C in air. The microstructure and physical properties of the biomorphic ceramics were characterized by X-ray diffraction (XRD) and high temperature-XRD, scanning electron microscopy (SEM), porosimetry and picnometry. Thermal analysis (TGA/DTA) was performed on the infiltrated samples in order to evaluate the reactions and the total weight loss during the thermal process. The mechanical properties were evaluated by compressive strength tests. In contrast to conventional processed ceramic foam of similar porosity, the microstructure highly porous biomorphic ceramics shows uniaxial pore morphology with anisotropic properties. These properties are favorable for applications in catalyst support, filters or low-density heat insulation structures, or as biomaterials. (author)

  3. Fabrication and scintillation properties of highly transparent Pr:LuAG ceramics using Sc,La-based isovalent sintering aids

    Czech Academy of Sciences Publication Activity Database

    Shen, Y.; Feng, X.; Babin, Vladimir; Nikl, Martin; Vedda, A.; Moretti, F.; Dell'Orto, E.; Pan, Y.; Li, J.; Zeng, Y.

    2013-01-01

    Roč. 39, č. 5 (2013), s. 5985-5990 ISSN 0272-8842 R&D Projects: GA MŠk LH12185; GA AV ČR KAN300100802 Institutional support: RVO:68378271 Keywords : Pr:LuAG transparent ceramics * isovalent sintering aids * scintillation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.086, year: 2013

  4. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  5. Polymer and ceramic nanocomposites for aerospace applications

    Science.gov (United States)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  6. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.

  7. FY2016 Ceramic Fuels Development Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  8. Fluorescence of ceramic color standards

    International Nuclear Information System (INIS)

    Koo, Annette; Clare, John F.; Nield, Kathryn M.; Deadman, Andrew; Usadi, Eric

    2010-01-01

    Fluorescence has been found in color standards available for use in calibration and verification of color measuring instruments. The fluorescence is excited at wavelengths below about 600 nm and emitted above 700 nm, within the response range of silicon photodiodes, but at the edge of the response of most photomultipliers and outside the range commonly scanned in commercial colorimeters. The degree of fluorescence on two of a set of 12 glossy ceramic tiles is enough to introduce significant error when those tiles have been calibrated in one mode of measurement and are used in another. We report the nature of the fluorescence and the implications for color measurement.

  9. Ceramics for Turbine Engine Applications.

    Science.gov (United States)

    1980-03-01

    permet de travailler en compression. 2 - LES TURBINES CONTRAROTATIVES Connues depuis plus de 50 ans dsns lea turbines A vapeur (A grilles radiales) lea...AD-AO87 594 ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT--ETC F/6 11/2 CERAMICS FOR TURBINE ENGINE APPICATIONS.(U) MAR 8G H M GURTE, J...for Turbine Engine Applications ( X.,, ~LAJ DISTRIBUTION AND AVAILABILITY Ths ai’-t~ ~ru O ACK COVER forp"~ ~So’ 8 6 0 40 NORTH ATLANTIC TREATY

  10. Building ceramic based on sludge

    International Nuclear Information System (INIS)

    Szöke, A-M; Muntean, M; Dumitrescu, O; Bartalis, I

    2013-01-01

    Because of the rapid evolution in the last decade of science and engineering materials, development of new advanced materials, particularly in construction, we must find solutions, namely, new performed materials, with functional and aesthetic qualities. In recent years, there have been made alternative attempts to reuse various types of wastes, including the incorporation of products in ceramic clay. This theme concerning the achievement of some durable, economic and ecological materials represents a high-level preoccupation in this domain, the problems related to the ecosystem being permanent issues of the century

  11. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  12. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  13. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    Science.gov (United States)

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P Empress 2 and In-Ceram groups.

  14. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei; Cheng, Wei; Zhang, Tao; Lu, Xinglin; Liu, Qianliang; Jiang, Jin; Ma, Jun

    2016-01-01

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  15. Characterization and spectroscopic studies of multi-component calcium zinc bismuth phosphate glass ceramics doped with iron ions

    Science.gov (United States)

    Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, M. V. Sambasiva; Tirupataiah, Ch.; Rao, D. Krishna

    2018-04-01

    Glass ceramics with the composition 10CaF2-20ZnO-(15-x)Bi2O3-55P2O5:x Fe2O3(0≤x≤2.5) were synthesized by melt-quenching technique and heat treatment. These glass ceramics were characterized by XRD and SEM. Spectroscopic studies such as optical absorption, EPR were also carried out on these glass ceramics. From the absorption spectra the observed bands around 438 and 660nm are the octahedral transitions of Fe3+ (d5) ions and another band at about 536 nm is the tetrahedral transition of Fe3+ (d5) ions. The absorption spectrum also consist of a band around 991 nm and is attributed to the octahedral transition of Fe2+ ions. The EPR spectra of the prepared glass ceramics have exhibited two resonance signals one at g1=4.32 and another signal at g2=2.008. The observed decrease in band gap energy up to 2 mol% Fe2O3 doped glass ceramics is an evidence for the change of environment around iron ions and ligands from more covalent to less covalent (ionic) and induces higher concentration of NBOs which causes the depolymerization of the glass ceramic network.

  16. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-03-17

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  17. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics.

    Science.gov (United States)

    Höland, W; Schweiger, M; Frank, M; Rheinberger, V

    2000-01-01

    The aim of this report is to analyze the microstructures of glass-ceramics of the IPS Empress 2 and IPS Empress systems by scanning electron microscopy. The main properties of the glass-ceramics were determined and compared to each other. The flexural strength of the pressed glass-ceramic (core material) was improved by a factor of more than three for IPS Empress 2 (lithium disilicate glass-ceramic) in comparison with IPS Empress (leucite glass-ceramic). For the fracture toughness, the K(IC) value was measured as 3.3 +/- 0.3 MPa. m(0.5) for IPS Empress 2 and 1.3 +/- 0.1 MPa. m(0.5) for IPS Empress. Abrasion behavior, chemical durability, and optical properties such as translucency of all glass-ceramics fulfill the dental standards. The authors concluded that IPS Empress 2 can be used to fabricate 3-unit bridges up to the second premolar. Copyright 2000 John Wiley & Sons, Inc.

  18. Chemical and mechanical performance properties for various final waste forms -- PSPI scoping study

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Larsen, E.D.; Sears, J.W.; Eddy, T.L.; Anderson, G.L.

    1996-09-01

    The US DOE is obtaining data on the performance properties of the various final waste forms that may be chosen as primary treatment products for the alpha-contaminated low-level and transuranic waste at the INEL's Transuranic Storage Area. This report collects and compares selected properties that are key indicators of mechanical and chemical durability for Portland cement concrete, concrete formed under elevated temperature and pressure, sulfur polymer cement, borosilicate glass, and various forms of alumino-silicate glass, including in situ vitrification glass and various compositions of iron-enriched basalt (IEB) and iron-enriched basalt IV (IEB4). Compressive strength and impact resistance properties were used as performance indicators in comparative evaluation of the mechanical durability of each waste form, while various leachability data were used in comparative evaluation of each waste form's chemical durability. The vitrified waste forms were generally more durable than the non-vitrified waste forms, with the iron-enriched alumino-silicate glasses and glass/ceramics exhibiting the most favorable chemical and mechanical durabilities. It appears that the addition of zirconia and titania to IEB (forming IEB4) increases the leach resistance of the lanthanides. The large compositional ranges for IEB and IEB4 more easily accommodate the compositions of the waste stored at the INEL than does the composition of borosilicate glass. It appears, however, that the large potential variation in IEB and IEB4 compositions resulting from differing waste feed compositions can impact waste form durability. Further work is needed to determine the range of waste stream feed compositions and rates of waste form cooling that will result in acceptable and optimized IEB or IEB4 waste form performance. 43 refs

  19. Optical Fiber Protection

    Science.gov (United States)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  20. Identifying Opportunities in the Development of Ceramic Matrix Composite (CMC) Materials for Armor Applications

    Science.gov (United States)

    2017-03-01

    Composite Factory, Inc. Northrop-Grumman Composite Optics Inc. Ceramics (formerly a Dow Corning business unit) Refractory Composites, Inc. General...Creating carbon fiber from PAN precursor requires 4 pyrolysis steps: 1) oxidative stabilization (~200 °C), 2) carbonization (burning off other elements), 3...and mechanically strong graphene fibers. Science 2015;349 (6252):1083–1087. Yusof N, Ismail AF. Post spinning and pyrolysis processes of