WorldWideScience

Sample records for aluminium nitrides

  1. Plasmonic enhancement of photoluminescence from aluminium nitride

    Science.gov (United States)

    Flynn, Chris; Stewart, Matthew

    2016-03-01

    Aluminium nitride (AlN) films were grown on c-plane sapphire wafers by molecular beam epitaxy (MBE) under aluminium-rich conditions. The excess aluminium (Al) accumulated on the surface of the films as micro-scale droplets 1-10 μm in size, and as Al nanoparticles with diameters in the range 10-110 nm. Photoluminescence (PL) measurements were performed on the AlN samples using a 193 nm Excimer laser as the excitation source. Prior to PL measurements the wafers were cleaved in half. One half of each wafer was submitted to a 10 min treatment in H3PO4 heated to 70 °C to remove the excess Al from the film surface. The remaining half was left in the as-deposited condition. The mean intensities of the near-band-edge PL peaks of the as-deposited samples were 2.0-3.4 times higher compared to the samples subjected to the H3PO4 Al-removal treatment. This observation motivated calculations to determine the optimal Al surface nanosphere size for plasmonic enhancement of PL from AlN. The PL enhancement was found to peak for an Al nanosphere radius of 15 nm, which is within the range of the experimentally-observed Al nanoparticle sizes.

  2. First Principles Study of Aluminium Vacancy in Wurtzite Aluminium Nitride

    Institute of Scientific and Technical Information of China (English)

    GAO Ting-Ge; YI Jue-Min; ZHOU Zi-Yao; HU Xiao-Dong

    2008-01-01

    @@ We report that the aluminium vacancy in wurtzite AIN brings about two impurity levels e and a2 in the band gap, not just one single t2 level The aluminium vacancy carries a magnetic moment of 1 μB in the ground state. The molecule orbit of the aluminium vacancy becomes e↑↑ a2↑ rather than e↑↑ a2↑. The calculation is carried out by using the CASTEP code. The intrinsic symmetry of wurtzite A1N is the driving force for this spin splitting. Finally the symmetry of wurtzite AlN results in an anti-ferromagnetic coupling between the aluminium vacancies, as is predicted. Our findings are helpful to gain a more through understanding of the structural and spin property of aluminium vacancy in wurtzite AIN.

  3. Pressureless sintered silicon carbide tailored with aluminium nitride sintering agent

    International Nuclear Information System (INIS)

    This study reports the influence of aluminium nitride on the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Pressureless sintering was achieved at 2000 degrees C for 5 min with the additions of boron carbide together with carbon of 1 wt% and 6 wt%, respectively, and a content of aluminium nitride between 0 and 10 wt%. Sintered samples present relative densities higher than 92%. The sintered microstructure was found to be greatly modified by the introduction of aluminium nitride, which reflects the influence of nitrogen on the β-SiC to α-SiC transformation. The toughness of sintered sample was not modified by AlN incorporation and is relatively low (around 2.5 MPa m1/2). Materials exhibited transgranular fracture mode, indicating a strong bonding between SiC grains. (authors)

  4. Synthesis and reactivity of aluminium nitride obtained by action of ammonia on alumina

    International Nuclear Information System (INIS)

    Aluminium nitride is a ceramic with potential nuclear applications because of its exceptional structural resistance to neutrons. To improve quality and reactivity a new preparation process by reaction between ammonia and alumina is presented. The aluminium nitride thus obtained, white colored, is pure and its reactivity gives an useful product for a lot of synthesis in the area of nitrided ceramics and glasses

  5. Synthesis and reactivity of aluminium nitride obtained by action of ammonia on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rocherulle, J.; Guyader, J.; Verdier, P.; Laurent, Y.

    1985-01-01

    Aluminium nitride is a ceramic with potential nuclear applications because of its exceptional structural resistance to neutrons. To improve quality and reactivity a new preparation process by reaction between ammonia and alumina is presented. The aluminium nitride thus obtained, white colored, is pure and its reactivity gives an useful product for a lot of synthesis in the area of nitrided ceramics and glasses.

  6. Active metal brazing of different metals to aluminium nitride ceramics

    International Nuclear Information System (INIS)

    During recent years aluminium nitride ceramics for substrates, coolers and components have found more applications in micro- and power electronics. Aluminium nitride ceramic with high thermal conductivity, small CTE and good thermal shock resistance is used in aeronautical equipment as well as in drive systems of undergrounds and high speed trains. Different metals and alloys can be bonded to AIN by the so-called 'AMB-process'. The bonding mechanism is based on the use of so-called active metals like Ti, Zr, Hf. Copper conductor lines can be brazed onto AIN-substrates and components, resistor sheets can be applied on ceramic water coolers and a couple of other metals and alloys like tantalium, titanium, KOVAR and steel can be attached to AIN-ceramics by active brazing. Processing, analytical aspects and some special applications will be discussed. (author)

  7. Radio frequency plasma nitriding of aluminium at higher power levels

    International Nuclear Information System (INIS)

    Nitriding of aluminium 2011 using a radio frequency plasma at higher power levels (500 and 700 W) and lower substrate temperature (500 deg. C) resulted in higher AlN/Al2O3 ratios than obtained at 100 W and 575 deg. C. AlN/Al2O3 ratios derived from X-ray photoelectron spectroscopic analysis (and corroborated by heavy ion elastic recoil time of flight spectrometry) for treatments preformed at 100 (575 deg. C), 500 (500 deg. C) and 700 W (500 deg. C) were 1.0, 1.5 and 3.3, respectively. Scanning electron microscopy revealed that plasma nitrided surfaces obtained at higher power levels exhibited much finer nodular morphology than obtained at 100 W

  8. Shock wave synthesis of aluminium nitride with rocksalt structure

    Science.gov (United States)

    Keller, K.; Schlothauer, T.; Schwarz, M.; Heide, G.; Kroke, E.

    2012-03-01

    The high pressure phase of aluminium nitride with rocksalt structure (rs) is a ceramic with high potential and a challenging material to investigate. The rs-AlN was synthesised and recovered by shock wave experiments using the flyer-plate method with multiple reflections at peak pressures between 15 and 43 GPa. Successful syntheses were carried out using AlN nanopowder with ambient pressure wurtzite structure (w-AlN) as starting material. The high pressure modification could, however, not be obtained when starting from submicron w-AlN. The recovery of rs-AlN is sensitive to the synthesis conditions as these influence the reconversion of rs-AlN to w-AlN.

  9. Investigation of blistering kinetics in hydrogen implanted aluminium nitride

    International Nuclear Information System (INIS)

    Epitaxial layers of aluminium nitride (AlN) grown on sapphire by hydride vapour phase epitaxy (HVPE) were implanted with 100 keV hydrogen, H+2, ions with doses in the range of 5 × 1016–2.5 × 1017 cm−2 and subsequently annealed in ambient air at temperatures between 450 and 750 °C in order to determine the kinetics of surface blister formation in AlN. The Arrhenius plot of the blistering time versus temperature shows two different activation energies for the formation of surface blisters: 0.44 eV in the higher temperature regime of 550–750 °C and 1.16 eV in the lower temperature regime of 450–550 °C. The implantation-induced damage was analyzed by cross-sectional transmission electron microscopy, which revealed a band of defects extending from 330 to 550 nm from the surface of AlN. The XTEM image of the implanted and annealed AlN displayed clearly the formation of microcracks that ultimately lead to the formation of surface blisters

  10. Aluminium nitride coatings preparation using a chemical vapour deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Armas, B.; Combescure, C.; Icaza Herrera, M. de; Sibieude, F. [Centre National de la Recherche Scientifique (CNRS), 66 - Font-Romeu (France). Inst. de Science et du Genie des Materiaux et des Procedes

    2000-07-01

    Aluminium nitride was obtained in a cold wall reactor using AlCl{sub 3} and NH{sub 3} as precursors and N{sub 2} as a carrier gas. AlCl{sub 3} was synthesized << in situ >> by means of an original method based on the reaction of SiCl{sub 4(g)} with Al{sub (S)}. The substrate used was a cylinder of graphite coated with SiC and heated by high frequency induction. The deposition rate was studied as a function of temperature in the range 900 - 1500 C, the total pressure varying from 2 to 180 hPa. At low temperatures an Arrhenius type representation of the kinetics for several pressures indicated a thermally activated process with an apparent activation energy of about 80 kJ.mol{sup -1}. At high deposition temperatures, the deposition rate was almost constant, indicating that the growth was controlled by a diffusion process. The influence of gas composition and total AlCl{sub 3} flow rate was also discussed. The different layers were characterised particularly by means of X-ray diffraction and SEM. The influence of temperature and total pressure on crystallization and morphology was studied. (orig.)

  11. Wear Beahaviour of Nitrided Microstructures of AlSl H13 Dies for Hot Extrusion of Aluminium

    OpenAIRE

    Kugler, G.; Turk, R.; Večko-Pirtovšek, T.; M. Terčelj

    2006-01-01

    Nitriding of bearing surfaces on dies (tools, AISI H13) for hot extrusion of aluminium is technologically a very sensitive process with regard to achieving a constant quality of the nitrided layers. This study was based on the analysis of microstructure on dies with intentionally prepared deep and narrow gaps which were nitrided by various manufacturers of equipment for gas and ionic nitriding. The manufacturers chose their own nitriding parameters in order to achieve an optimal wear resistan...

  12. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...... by replacement of the nitride ions with oxide ions in the molten carbonate electrolyte....

  13. Effect of Crucibles on Qualities of Self-Seeded Aluminium Nitride Crystals Grown by Sublimation

    Institute of Scientific and Technical Information of China (English)

    HAN Qi-Feng; WANG Yu-Qi; DUAN Cheng-Hong; QIU Kai; JI Chang-Jian; LI Xin-Hua; ZHONG Fei; YIN Zhi-Jun; CAO Xian-Cun; ZHOU Xiu-Ju

    2007-01-01

    Self-seeded aluminium nitride (AIN)crystals are grown in tungsten and hot pressed boron nitride(HPBN)crucibles With different shapes by a sublimation method.The qualities of the AIN crystals are characterized by high-resolution transmission electronic microscopy(HRTEM),scanning electron microscopy(SEM)and MicroRaman spectroscopy.The results indicate that the better quality crystals can be collected in.conical tungsten crucible.

  14. Effect of aluminium nitride precipitation on recrystallisation kinetic in low carbon batch

    International Nuclear Information System (INIS)

    An important feature of aluminium killed steels is the strong influence that aluminium nitride precipitates produce in both the mechanical properties and the final micro-structural characteristics of the steel. This influence is related to the different stages of the fabrication process. This paper de las with a study of the effects of aluminium nitrides on the kinetics of recrystallisation. Different heat treatments were carried out, in one case to dissolve AIN, and in the other in order to precipitate AIN. These steels were subjected to cold rolling, followed by a batch annealing process. The recrystallised fraction was measured, thus obtaining the kinetic curves. The activation energy for recrystallisation was computed in each case. The results showed that AIN precipitation during recrystallisation produces a delay in recrystallisation kinetics through a change in the activation energy value. (Author) 29 refs

  15. Geometrical Deviation and Residual Strain in Novel Silicon-on-Aluminium-Nitride Bonded Wafers

    Institute of Scientific and Technical Information of China (English)

    门传玲; 徐政; 吴雁军; 安正华; 谢欣云; 林成鲁

    2002-01-01

    Aluminium nitride (AlN), with much higher thermal conductivity, is considered to be an excellent alternative to the SiO2 layer in traditional silicon-on-insulator (SOI) materials. The silicon-on-aluminium-nitride (SOAN) structure was fabricated by the smart-cut process to alleviate the self-heating effects for traditional SOI. The convergent beam Kikuchi line diffraction pattern results show that some rotational misalignment exists when two wafers are bonded, which is about 3°. The high-resolution x-ray diffraction result indicates that, before annealing at high temperature, the residual lattice strain in the top silicon layer is tensile. After annealing at 1100° C for an hour, the strain in the top Si decreases greatly and reverses from tensile to slightly compressive as a result of viscous flow of AlN.

  16. Radio frequency reactive sputtering for deposition of aluminium nitride thin films

    International Nuclear Information System (INIS)

    An aluminium target is reactively sputtered in an argon-nitrogen mixture. The influence of nitrogen on the electrical characteristics of the discharge are studied in the conducted experiments. Ionization is intensified in nitrogen, deposition rate is decreased in these conditions and a tentative interpretation is given. A study of nitridation is made and shows that synthesis reaction occurs on the substrate. For a set of deposition conditions, a critical rate of deposition is found. Below this rate, films are aluminium nitride. This critical rate is linearly depending on the amount of nitrogen in the gaseous mixture. Films are characterized as AlN by electrical, optical and crystallographic studies. Dielectric constant, losses, dielectric breakdown, optical index and infrared transmittance spectrum are investigated versus deposition parameters, particularly deposition rate and film thickness. Dielectric properties of AlN thin films prepared by RF reactive sputtering are interesting for use in microelectronics. (author)

  17. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    International Nuclear Information System (INIS)

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters of aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn2+ and Mn3+ are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN)x(SiMn0.25NyOz)1−x with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn2+ and Mn3+. • Oxygen incorporation is

  18. Wear Beahaviour of Nitrided Microstructures of AlSl H13 Dies for Hot Extrusion of Aluminium

    Directory of Open Access Journals (Sweden)

    Kugler, G.

    2006-01-01

    Full Text Available Nitriding of bearing surfaces on dies (tools, AISI H13 for hot extrusion of aluminium is technologically a very sensitive process with regard to achieving a constant quality of the nitrided layers. This study was based on the analysis of microstructure on dies with intentionally prepared deep and narrow gaps which were nitrided by various manufacturers of equipment for gas and ionic nitriding. The manufacturers chose their own nitriding parameters in order to achieve an optimal wear resistant microstructure. The microstructures obtained showed differences with regard to the presence or absence of a compound layer (white layer, its thickness and its e/g' phase ratio (XRD, nitriding depth and microhardness profile. The measured nitriding depths and the maximum microhardness values on nitrided surface layers were quite similar on dies of the same manufacturer, while for different manufacturers these values differed. Differences with regards to compound layer characteristics were also found on the same die. The die samples with these various nitrided microstructures were then laboratory tested for wear resistance using equipment that provides simulation of the tribological conditions during hot extrusion of aluminium. The wear testing results show differences in behaviour of the nitrided samples. The differences in the actual structures, microstructures, hardness, etc. explain the high level of scattering in die life in actual industrial applications.

  19. Emission pattern of an aluminium nitride target for radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Thin amorphous aluminium nitride films, (a-AlN) have been produced by radio frequency magnetron sputtering at rf power 120W from a highly pure AlN target. The target is mounted below the substrate holder such that its position can be adjusted inside the vacuum chamber. The emission pattern is determined by means of thickness distribution of the deposited material obtained from optical transmission measurements. Holding a set of the process parameters constant and only varying the target-sample distance a three dimensional emission pattern of the AlN target was determined. The deposition rate and emission pattern for 120W and 180W (studied before) were compared. This comparison allows us to consider the target and shielding dimensions of our magnetron to predict the thickness and the sputtering rate distribution for any process parameter and sample target geometry.

  20. INFLUENCE OF EXCITATION FREQUENCY ON ORIENTED (10(-1)0) GROWTH OF ALUMINIUM NITRIDE THIN FILMS BY PECVD

    OpenAIRE

    Azema, N.; Durand, J.; Berjoan, R.; Balladore, J.; Cot, L.

    1991-01-01

    The Metal-Organic Chemical Vapor Deposition process assisted by reactive plasma, leads to AlN coatings with oriented (10[MATH]0) structure. The Aluminium nitride was synthesized on a wide range of substrates (Silicon (100) or (111) wafers, graphite, polycrystalline Silicon Carbide and glass plates) from trimethylaluminium and ammonia at 330°C. The a-axis orientation of AlN coatings, which does not depend on the substrate, changes with the excitation frequency. Material crystallinity and eleme...

  1. Towards the structure of rare earth luminescence centres – terbium doped aluminium nitride as an example system

    International Nuclear Information System (INIS)

    Sputter deposited terbium doped aluminium nitride layers were investigated with respect to the distribution and surroundings of the terbium luminescence ions. Semi-empirical calculations indicate that terbium forms complexes consisting of one aluminium vacancy surrounded by three oxygen ions on nitrogen lattice positions and one nitrogen ion that is bound to a terbium ion on a distorted aluminium lattice position. The crystal field splitting of the terbium ions indicate their surroundings to be not tetrahedral but, as anticipated from the determined complex, C3v. Complementary electron microscopic investigations show a random distribution of these complexes within the layer volume. The terbium ions cause a shape of the Tb M5,4 edge similar to the shapes in other ionic compounds like Tb2O3

  2. Relation between microstructure and thermal conductivity in aluminium nitride substrates; Relations entre la microstructure et la conductivite thermique dans les substrats de nitrure d`aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Jarrige, J.; Lecompte, J.P.; Seck, O. [Faculte des Sciences (CNRS), 87 - Limoges (France). Laboratoire de Materiaux Ceramiques et Traitements de Surface

    1996-12-31

    Sintered aluminium nitride is a promising ceramic substrate for future power electronics applications. This ceramic is characterized by a high thermal conductivity (100 to 200 W/m.K) which depends on two main factors: the oxygen content of the AlN powder used for the sintering process and the microstructure of the sintered material. The oxygen content changes with sintering additions. For instance, boron nitride allows the diffusion of oxygen from the nitride grains to the grain joints. With a complement of yttrium oxide in the liquid phase, the BN/Y{sub 2}O{sub 3} couple allows to increase the conductivity to 190 W/m.K with a reduction of the oxygen content. The second part of the study concerns the microstructure of sintered materials. A control of conductivity can be obtained using an adjustment of the sintering cycles. Only two types of microstructure, the secondary phase dispersed in the AlN matrix and the secondary phase that concentrates around triple junctions, allow a better contact between nitride grains and thus higher conductivities of 210 W/m.K. (J.S.) 6 refs.

  3. Mechanical Properties Analysis of Iron-Nitride Thin Film on the Aluminium Substrate

    International Nuclear Information System (INIS)

    Deposition of iron-nitride thin film on the surface aluminium substrate has been done by plasma DC sputtering technique. The deposition process was done with the following process parameters variations: deposition time was at (15 to 60 min), substrate temperature (150 to 300℃), and ratio of N2/Ar gas (0.25 to 0.45). The purpose of the research is to study the mechanical properties and micro structure of surfaces materials including concentration of Fe and N2 elements. The micro hardness testing was done using Digital Type Microhardness Tester MX T70, while the micro structure and elements composition were observed by using SEM and EDS. It was obtained that the hardness of Al substrate increased by about 283% and this was achieved at substrate temperature of 150℃, deposition time 60 min, ratio of N2/Ar gas is 0.25 and 5 µm of depth, while the concentration of N2 and Fe elements in 25 µm of depth are 1.18 and 2.72 At%, respectively. (author)

  4. Green synthesis of tri/tetrasubstituted 1-imidazoles and 2,3-dihydroquinazolin-4(1H)-ones using nano aluminium nitride as solid source of ammonia

    Indian Academy of Sciences (India)

    Maryam Hajjami; Arash Ghorbani-Choghamarani; Zakieh Yousofvand; Masoomeh Rorouzi

    2015-07-01

    A simple, green and cost-effective protocol was achieved for the synthesis of tri/tetrasubstituted-1H-imidazoles and 2,3-dihydroquinazolin-4(1H)-ones using nano aluminium nitride. The reaction was carried out under catalyst-free conditions and the products were isolated in good to excellent yield.

  5. The influence of the oxygen partial pressure on the ion nitriding of aluminium - An investigation by means of real time elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Aluminium is known to be a difficult candidate for successful nitriding. It exhibits a dense native surface oxide layer that acts as a barrier for diffusional nitrogen transport. To investigate the influence of the oxygen partial pressure, samples of pure polycrystalline Al were ion nitrided at different oxygen partial pressures from a hot filament ion source. Before and during the nitriding process depth profiling of nitrogen and oxygen has been performed by real time elastic recoil detection analysis. The oxygen partial pressure plays a crucial role for the evolution of the surface oxide layer and thus for the nitriding result. If the surface oxide layer is removed an AlN-layer grows. The evolution of the oxide layer is compared to semi-quantitative considerations on the interplay of sputtering and oxidation. A criteria for the removal of the surface oxide layer is given

  6. Structural study of growth, orientation and defects characteristics in the functional microelectromechanical system material aluminium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Hrkac, Viktor, E-mail: vhr@tf.uni-kiel.de; Schürmann, Ulrich; Kienle, Lorenz, E-mail: lk@tf.uni-kiel.de [Synthesis and Real Structure, Institute for Materials Science CAU Kiel, Kaiserstr. 2, 24143 Kiel (Germany); Kobler, Aaron; Kübel, Christian [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Marauska, Stephan; Wagner, Bernhard [Fraunhofer Institute for Silicon Technology ISIT, Fraunhoferstr. 1, D-25524 Itzehoe (Germany); Petraru, Adrian; Kohlstedt, Hermann [Institute of Electrical and Information Engineering, Nanoelectronic, Christian-Albrechts-University, Kiel Kaiserstraße 2, D-24143 Kiel (Germany); Kiran Chakravadhanula, Venkata Sai [Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Duppel, Viola [Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart (Germany); Lotsch, Bettina Valeska [Max Planck Institute for Solid State Research and Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, D-81377 Munich (Germany)

    2015-01-07

    The real structure and morphology of piezoelectric aluminum nitride (AlN) thin films as essential components of magnetoelectric sensors are investigated via advanced transmission electron microscopy methods. State of the art electron diffraction techniques, including precession electron diffraction and automated crystal orientation mapping (ACOM), indicate a columnar growth of the AlN grains optimized for piezoelectric application with a (0 0 0 1) texture. Comparing ACOM with piezoresponse force microscopy measurements, a visual correlation of the structure and the piezoelectric properties is enabled. With a quantitative analysis of the ACOM measurements, a statistical evaluation of grain rotations is performed, indicating the presence of coincidence site lattices with Σ7, Σ13a, Σ13b, Σ25. Using a geometric phase analysis on high resolution micrographs, the occurrence of strain is detected almost exclusively at the grain boundaries. Moreover, high resolution imaging was applied for solving the atomic structure at stacking mismatch boundaries with a displacement vector of 1/2 〈1 0 -1 1〉. All real structural features can be interpreted via simulations based on crystallographic computing in terms of a supercell approach.

  7. Structural study of growth, orientation and defects characteristics in the functional microelectromechanical system material aluminium nitride

    International Nuclear Information System (INIS)

    The real structure and morphology of piezoelectric aluminum nitride (AlN) thin films as essential components of magnetoelectric sensors are investigated via advanced transmission electron microscopy methods. State of the art electron diffraction techniques, including precession electron diffraction and automated crystal orientation mapping (ACOM), indicate a columnar growth of the AlN grains optimized for piezoelectric application with a (0 0 0 1) texture. Comparing ACOM with piezoresponse force microscopy measurements, a visual correlation of the structure and the piezoelectric properties is enabled. With a quantitative analysis of the ACOM measurements, a statistical evaluation of grain rotations is performed, indicating the presence of coincidence site lattices with Σ7, Σ13a, Σ13b, Σ25. Using a geometric phase analysis on high resolution micrographs, the occurrence of strain is detected almost exclusively at the grain boundaries. Moreover, high resolution imaging was applied for solving the atomic structure at stacking mismatch boundaries with a displacement vector of 1/2 〈1 0 -1 1〉. All real structural features can be interpreted via simulations based on crystallographic computing in terms of a supercell approach

  8. Study of silicon nitride sintering with additions of lanthanum, gadolinium and aluminium oxides

    International Nuclear Information System (INIS)

    Rare earth oxides have been employed as sintering aids of silicon nitride in order to form high dense materials with refractory phases at grain boundary. In this work, various compositions with lanthanum, gadolinium and aluminum oxides were investigated to determine the efficiency of a pure oxide or mixture of oxides. Samples were sintered at 1750 deg C for 1 hour in a carbon resistance furnace under normal nitrogen atmosphere. Some of them were submitted to hot isostatic pressing to remove all close-porosity. A detailed study of densification was performed by dilatometric analysis. Shape and grain size, formed phases and their distribution and composition were evaluated by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Hardness and fracture toughness values were determined by using the indentation method. Oxidation tests were conducted under static air at 1400 deg C for 64 hours into a tubular furnace. The results showed that samples with gadolinium oxide additions and mixture of oxides achieved higher fracture toughness values and greater oxidation resistance, although these specimens had reached lower densification than those with lanthanum oxide additions. Hot isostatic pressing increased the hardness but decreased the fracture toughness of the material. (author)

  9. Nano aluminium nitride as a solid source of ammonia for the preparation of Hantzsch 1,4-dihydropyridines and bis -(1,4-dihydropyridines) in water via one pot multicomponent reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani-Choghamarani, Arash; Goudarziafshar, Hamid; Nikoorazm, Mohsen; Yousefi, Somaieh; Tahmasbi, Bahman, E-mail: arashghch58@yahoo.co [Ilam Univ., Ilam (Iran, Islamic Republic of). Faculty of Science. Dept. of Chemistry; Zolfigol, Mohammad Ali; Hajjami, Maryam [Bu-Ali Sina University, Hamadan (Iran, Islamic Republic of). Faculty of Chemistry

    2011-07-01

    Nano aluminium nitride in the presence of water acts as solid source of ammonia, which is used for the preparation of 1,4-dihydropyridines and bis-(1,4-dihydropyridines). An efficient and simple procedure for the one-pot synthesis of 1,4-dihydropyridine and bis-(1,4-dihydropyridine) derivatives was achieved by combination of methyl acetoacetate or ethyl acetoacetate with aldehydes or dialdehydes and aluminium nitride at 80 deg C in water in high purity and good yields. (author)

  10. Effect of aluminium nitride precipitation on recrystallisation kinetic in low carbon batch; Efecto de la precipitacion de nitruros de aluminio en la recristalizacion de aceros de bajo carbono recocidos convencionalmente

    Energy Technology Data Exchange (ETDEWEB)

    Monsalve, A.; Artigas, A.; Celentano, D.

    2005-07-01

    An important feature of aluminium killed steels is the strong influence that aluminium nitride precipitates produce in both the mechanical properties and the final micro-structural characteristics of the steel. This influence is related to the different stages of the fabrication process. This paper de las with a study of the effects of aluminium nitrides on the kinetics of recrystallisation. Different heat treatments were carried out, in one case to dissolve AIN, and in the other in order to precipitate AIN. These steels were subjected to cold rolling, followed by a batch annealing process. The recrystallised fraction was measured, thus obtaining the kinetic curves. The activation energy for recrystallisation was computed in each case. The results showed that AIN precipitation during recrystallisation produces a delay in recrystallisation kinetics through a change in the activation energy value. (Author) 29 refs.

  11. Plasma nitriding of Al 99.5

    OpenAIRE

    Chen, H. -Y; Stock, H.-R.; Mayr, P.

    1993-01-01

    Aluminium nitride (AlN) is a very interesting ceramic because of its combination of properties such as high thermal stability, high hardness and an unusual combination of high thermal and low electrical conductivity. But it is very difficulty to obtain an AlN layer on the aluminium substrates by thermochemical nitriding process. Since a thin film of aluminium oxide existing on the surface of every aluminium substrate prevents the nitrogen atoms from diffusing into the aluminium lattice. Howev...

  12. Characterisation of multi roof tile-shaped out-of-plane vibrational modes in aluminium-nitride-actuated self-sensing micro-resonators in liquid media

    Science.gov (United States)

    Kucera, Martin; Wistrela, Elisabeth; Pfusterschmied, Georg; Ruiz-Díez, Víctor; Sánchez-Rojas, José Luis; Schalko, Johannes; Bittner, Achim; Schmid, Ulrich

    2015-08-01

    This letter reports on higher orders of an advanced out-of-plane bending mode in aluminium-nitride (AlN)-actuated cantilever plates achieving the highest quality factors (Q-factor) of cantilever-based MEMS (micro electromechanical system) resonators in liquids up to now. Devices based on a 20 μm thick silicon cantilever were fabricated and characterised by optical and electrical measurements in air and in different liquids. Furthermore, finite element method eigenmode analyses were performed, showing an excellent agreement with the measured mode shape and the electrical characteristics. The highest Q-factor was achieved in deionised water with Q = 366, operated at the 10th order mode at a resonance frequency less than 4 MHz. This is the highest value ever measured in liquid media with a cantilever-based MEMS resonator up to now and exceeds the Q-factors of state of the art resonators in liquids in the given resonance frequency range by a factor of about 4. Furthermore, the strain related conductance peak of the multi roof tile-shaped modes is superior, showing great potential for further electrode design optimisation. Compared to common out-of-plane bending modes, this combination of most beneficial properties is unique, making this type of vibration mode the first choice for a large variety of resonator-based liquid-phase sensing applications.

  13. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    Science.gov (United States)

    Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling

    2016-05-01

    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  14. Nano-structured titanium and aluminium nitride coatings: Study by grazing incidence X-ray diffraction and X-ray absorption and anomalous diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tuilier, M.-H., E-mail: marie-helene.tuilier@uha.fr [Universite de Haute Alsace (UHA), Laboratoire Physique et Mecanique Textile (LPMT), EA 4365 -conventionnee au CNRS, Equipe PPMR, F-68093 Mulhouse (France); Pac, M.-J. [Universite de Haute Alsace (UHA), Laboratoire Physique et Mecanique Textile (LPMT), EA 4365 - conventionnee au CNRS, Equipe PPMR, F-68093 Mulhouse (France); Anokhin, D.V. [Universite de Haute Alsace (UHA), CNRS, Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228, F-68093 Mulhouse (France); Moscow State University, Faculty of Fundamental Physical and Chemical Engineering, 119991, Moscow, GSP-1, 1-51 Leninskie Gory (Russian Federation); Ivanov, D.A. [Universite de Haute Alsace (UHA), CNRS, Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228, F-68093 Mulhouse (France); Rousselot, C. [Universite de Franche-Comte, FEMTO-ST (UMR CNRS 6174), F-25211 Montbeliard (France); Thiaudiere, D. [Synchrotron Soleil, Saint Aubin, F-91192 Gif sur Yvette (France)

    2012-12-30

    Titanium and aluminium nitride thin films, Ti{sub 1-x}Al{sub x}N (x = 0, x = 0.5, x = 0.68), deposited by reactive magnetron sputtering on silicon substrates are investigated by combining two different X-ray diffraction experiments carried out using synchrotron radiation. Grazing-incidence X-ray diffraction and Ti K-edge diffraction anomalous near edge structure spectroscopy provide information on the micro- and nano-structure of the films respectively, which play a crucial role in the functionality of coatings. The spectroscopic data of Ti{sub 0.50}Al{sub 0.50}N film show that Ti atoms in crystallized domains and grain boundaries are all in octahedral cubic local order, but their growth mode is quite different. It is found that the crystallized part of the Ti{sub 0.50}Al{sub 0.50}N film has a single-crystalline nature, whereas the TiN one presents a fibrillar microstructure. For Ti{sub 0.32}Al{sub 0.68}N film, grazing-incidence X-ray diffraction provides information on the uniaxial texture along the [001] direction of the hexagonal lattice. A sharp Ti K pre-edge peak is observed in diffraction anomalous near edge spectrum that definitely shows that Ti atoms are incorporated in the hexagonal lattice of those fibrillar domains. Moreover, the difference observed between Ti K-edge diffraction anomalous and X-ray absorption pre-edge regions proves that a significant part of Ti atoms is located in nanocrystallites with cubic symmetry outside of the crystallized domains. - Highlights: Black-Right-Pointing-Pointer We study nano and micro-structures of TiN, Ti{sub 0.50}Al{sub 0.50}N and Ti{sub 0.32}Al{sub 0.68}N films. Black-Right-Pointing-Pointer Anomalous diffraction solves the crystallized part regardless of grain boundaries. Black-Right-Pointing-Pointer TiN microstructure is fibrillar, Ti{sub 0.5}Al{sub 0.5}N presents single crystalline domains. Black-Right-Pointing-Pointer For Ti{sub 0.32}Al{sub 0.68}N, Ti atoms are located in nanocrystallites with cubic symmetry

  15. Microstructure and Thermal Conductivity of Aluminium Nitride with (YCa)F3 as Sintering Aid%(YCa)F3助烧AlN陶瓷的显微结构和热导率

    Institute of Scientific and Technical Information of China (English)

    刘耀诚; 周和平; 乔梁

    2000-01-01

    Aluminium nitride ceramics were successfully fabricated through low-temperature sintering by using (YCa)F3 as the sintering aid. AlN ceramics with a high thermal conductivity of 208W/m were obtained after the specimen was sintered at 1650C for 6h. Calculation based on the present and reported results led to an equation which describes the dependence of thermal conductivity of AlN on the soaking time in sintering: (t)=-(0) et/. SEM, TEM, SThM and HREM were employed to study the microstructure-property relationship of AlN ceramics. It was concluded that AlN grain sizes have little effect on the thermal conductivity, while grain boundary phases deteriorate thermal conductivity%采用(CaY)F3为助烧结剂,低温烧结(1650C,6h)制备出热导率为208W/m的AlN陶瓷,在烧结过程中,热导率随保温时间的变化服从方程:λ(t)=λ∞-Δλ(0)e-t/τ.用SEM、SThM、TEM和HREM对AlN陶瓷的显微结构及其对热导率的影响进行了研究,结果表明,晶粒尺寸对AlN陶瓷热导率的影响可以忽略,而分隔在AlN晶粒之间的晶界相会降低热导率.

  16. Research on Property of Polyoleifn Composites Filled with Superifne Aluminium Nitride%超细AlN填充聚烯烃树脂基复合材料性能研究

    Institute of Scientific and Technical Information of China (English)

    章家立; 陈波; 何剑峰; 王祥吉

    2014-01-01

    The polyethylene and polypropylene composites filled with superfine aluminium nitride(AlN) were prepared by banburying machine shaping.The effects of superfine AIN powder content and coupling agent content on the thermal conductivities and mechanical properties of composites were studied.The results show that the thermal conductivity of composite filled with surface modified AlN is higher than that of the unmodified AlN,and polypropylene system exhibits excellent thermal conductivity.The thermal conductivity appeared a maximum at 5% content of coupling agent.The mechanical properties of composites decrease at first and then increase with AIN content increasing,while they show opposite trend with coupling agent content increasing.%采用密炼的加工方式将高导热性超细氮化铝(AlN)粉末与聚乙烯(PE)和聚丙烯(PP)树脂混合形成复合材料,研究了复合材料的导热性能和力学性能与超细AlN粉末的填充量、偶联剂含量的关系。结果表明,AlN表面修饰后更能提高聚烯烃树脂基复合材料的导热性能,其中PP体系性能变化更显著;偶联剂含量也是影响复合材料的一个重要因素,当含量为5%时,两种复合材料的导热系数最大;复合材料的力学性能随AlN含量的增加先下降后上升,随偶联剂含量的增加先提高后降低。

  17. Semi-quantitative chemical analysis of hard coatings by Raman micro-spectroscopy: the aluminium chromium nitride system as an example.

    Science.gov (United States)

    Kaindl, R; Sartory, B; Neidhardt, J; Franz, R; Reiter, A; Polcik, P; Tessadri, R; Mitterer, C

    2007-11-01

    A new method for chemical analyses of nitride-based hard coatings is presented. Raman band shifts in the spectra of Al(x)Cr(1-x)N coatings, deposited by physical vapour deposition from Al(x)Cr(1-x) targets with x (T,Al) = 0, 0.25, 0.50, 0.70 and 0.85, are calibrated using compositional data of the coatings derived by elastic recoil detection analysis (ERDA) and electron probe micro-analysis (EPMA). Inserting the composition-dependent Raman shift of a combinatorial acoustic-optic lattice mode into an empirically derived equation allows the determination of Al/Cr ratios of the coating with an accuracy of about +/-2%. Spot, line and area analyses of coated cemented carbide and cold work steel samples by using a computer-controlled, motorized x,y-stage are demonstrated and the most important errors influencing precision and accuracy are discussed. Figure Raman map of a coated cold-work steel sample. PMID:17932660

  18. Ion beam analysis of aluminium in thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Healy, M.J.F. E-mail: m.j.f.healy@rmcs.cranfield.ac.uk; Pidduck, A.J.; Dollinger, G.; Gorgens, L.; Bergmaier, A

    2002-05-01

    This work quantifies aluminium in thin surface and near surface layers. In one example, the layer overlies a thin gallium nitride layer on an aluminium oxide substrate and in a second example the aluminium exists just below the surface of an indium arsenide substrate. The technique of non-Rutherford elastic backscattering of protons was used for the samples where aluminum in the layer of interest needed to be resolved from aluminium in the sapphire substrate and the results were corroborated at the Technische Universitaet Muenchen using heavy ion elastic recoil detection analysis. In the second example, where it was unnecessary to isolate the signal of aluminium in the layer of interest (as the substrate contained no aluminium), then the {sup 27}Al(d,p{sub 01}){sup 28} Al nuclear reaction was used. The elastic proton scattering cross section of aluminum was found to vary very rapidly over the energy range of interest.

  19. Automotive Aluminium Recycling

    Energy Technology Data Exchange (ETDEWEB)

    Gelas, B. des

    2000-07-01

    This paper aims at providing an overview on the contribution of aluminium recycling in the supply of new aluminium for automotive applications. Based on a presentation on how the global European automotive aluminium supply requirements are met, an analysis of the present and future contribution of automotive aluminium recycling is first presented. Current situation and future developments for automotive aluminium recycling practices are then commented, together with an outline on design principles for easier aluminium recycling. (orig.)

  20. Aluminium structural elements

    OpenAIRE

    Švent, Nejc

    2016-01-01

    This thesis focuses on the structural analysis of aluminium structural members in accordance with the SIST EN 1999-1-1 standard. In the introduction, historical development of aluminium is summarized, as well as the processes of structural aluminium production and manufacture. Predominantly, resistance control checks of aluminium structural members are covered, with special attention to the major contrasts between aluminium and steel structural analyses. Finally, fundamental examples of resis...

  1. High hardness of alloyed ferrite after nitriding

    International Nuclear Information System (INIS)

    Detailed layer-by layer structure and phase analyses of the diffusion layer of nitrided binary alloys of iron with aluminium, chromium, vanadium and titanium have been carried out by means of a complex technique. Transition d-metals (chromium, vanadium and titanium) raise to a greater degree the solubility of nitrogen in the α solid solution, sharply increases the hardness of ferrite and decrease the depth of the layer. Nitrided binary alloys of iron with chromium, vanadium and titanium are strengthened through precipitation from the nitrogen-saturated α-solid solution of nitrides of alloying elements TiN, VN and CrN of a structure B1. A maximum hardness of ferrite alloyed by chromium, vanadium and titanium is observed after nitriding at 550 deg C when the precipitated special nitrides are fully coherent with the α matrix

  2. Production and some properties of Si3N4 reinforced aluminium alloy composites

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2015-09-01

    Full Text Available The present research work focuses on the production of aluminium (AA6082-T6 matrix composites reinforced with various weight percentage of silicon nitride particles by conventional stir casting route. The percentage of reinforcement is varied from 0 wt.% to 12 wt.% in a stage of 3%. The microstructures and mechanical properties of the fabricated aluminium matrix composites are investigated. The scanning electron microstructure images reveal the presence of Si3N4 particles in the aluminium matrix. The distribution of Si3N4 particles has also been recognized with X-ray diffraction technique. The mechanical properties such as ultimate tensile strength and hardness have improved at the cost of reduction in ductility with increase in weight percentage of silicon nitride particulates in the aluminium metal matrix. The density and porosity of the composites also show an increasing trend with increase in volume fraction of Si3N4 particles in the aluminium matrix.

  3. Rows of Dislocation Loops in Aluminium Irradiated by Aluminium Ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.;

    1967-01-01

    Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along <110 > directions. ©1967 The American Institute of Physics......Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along <110 > directions. ©1967 The American Institute of Physics...

  4. Nouveau procédé de synthèse du nitrure d'aluminium

    Science.gov (United States)

    Haussonne, J. M.; Lostec, J.; Bertot, J. P.; Lostec, L.; Sadou, S.

    1993-04-01

    Thermodynamic considerations show that, even at room temperature, pure aluminium can react with nitrogen to form the aluminium nitride AlN. However, pure aluminium does not exist: it is always surrounded by an alumina shell that protects the metal from further reactions. Furthermore, in the hypothesis where one has been able to make aluminium react with nitrogen, an aluminium nitride shell will protect as well the metal core from further oxidation. Prompted by the Lanxide process allowing to form Al/Al2O3 composites, we have mixed aluminium powders with lithium salts, and easily synthesized pure aluminium nitride by heating the mixed powders in nitrogen at temperatures ranging from 800 to 1200 °C. Starting from aluminium powders with a specific area ranging from 0.3 to 4 m^2/g, we have been able to produce aluminium nitride with specific are ranging from 1 to 20 m^2/g. Mixed with Y203-CaO and sintered at 1720 °C in N2, we obtained AIN ceramics owning 92% density and 160 W/m.K thermal conductivity. Les calculs thermodynamiques montrent que, même à température ambiante, l'aluminium pur peut réagir avec l'azote pour former le nitrure d'aluminium AlN. Cependant, la poudre d'aluminium pur n'existe pas : ses grains sont toujours entourés d'une couche d'alumine protectrice. De plus, dans l'hypothèse où l'on pourrait faire réagir de la poudre d'aluminium avec de l'azote, il se formerait de même une couche protectrice de nitrure d'aluminium qui empêcherait le centre des grains de réagir. S'inspirant du “procédé Lanxide” permettant de réaliser des composites Al/Al2O3, nous avons mélangé de la poudre d'aluminium avec des sels de lithium, et synthétisé du nitrure d'aluminium pur en portant ce mélange dans l'azote à une température pouvant être comprise entre 800 et 1 200 °C. Utilisant des poudres d'aluminium possédant une surface spécifique comprise entre 0,3 et 4 m^2/g, nous avons obtenu une poudre de nitrure d'aluminium avec une surface sp

  5. Recovery in aluminium

    DEFF Research Database (Denmark)

    Gundlach, Carsten

    2006-01-01

    growth curves are represented as strings. To identify the strings a combination of a 5D connected component type algorithm and multi-peak fitting was found to be superior. The first use of the method was a study of recovery of a deformed aluminium alloy (AA1050). The aluminium alloy was deformed by cold......In the present thesis the development of a unique experimental method for volume characterisation of individual embedded crystallites down to a radius of 150 nm is presented. This method is applied to in-situ studies of recovery in aluminium. The method is an extension of 3DXRD microscopy, an X......-ray diffraction technique for studies of the evolution of grains within polycrystalline materials. The much smaller volume of the crystallites of interest here in comparison to grains implies that the existing method is not applicable due to overlap of diffraction spots. In this work this obstacle is overcome by...

  6. Soldering of aluminium alloys

    International Nuclear Information System (INIS)

    A literature survey about soldering in general and aluminium alloys soldering in particular is presented. The existing methods of soldering aluminium alloys are described. These include soldering with flux, soldering after preliminary plating, vacuum brazipressure and temperature (NTP), sample age calculation based on 14C half life of 5570 and 5730 years, age correction for NTP, dendrochronological corrections and the relative radiocarbon concentration. All results are given with one standard deviation. Input data test (Chauvenet's criterion), gas purity test, standard deviation test and test of the data processor are also included in the program. (author)

  7. Fire exposed aluminium structures

    NARCIS (Netherlands)

    Maljaars, J.; Fellinger, J.H.H.; Soetens, F.

    2006-01-01

    Material properties and mechanical response models for fire design of steel structures are based on extensive research and experience. Contrarily, the behaviour of aluminium load bearing structures exposed to fire is relatively unexplored. This article gives an overview of physical and mechanical pr

  8. Damage of repeatedly nitrocarburised steel dies for aluminium extrusion

    OpenAIRE

    Firrao, Donato; Scavino, Giorgio; Matteis, Paolo

    2009-01-01

    The dies employed for the hot extrusion of aluminium alloys are subjected to repeated cycles of nitriding, or nitrocarburising, after service periods of given length. Three dies, fabricated with ISO X40CrMoV5-1 (AISI H13) steel and liquid nitrocarburised, were examined either in the asfabricated condition, or after one service period, or after 12 nitrocarburising and service cycles (end of life). Samples cut from the die subjected to one service period were re-nitrocarburised for increasing d...

  9. Recovery in aluminium

    OpenAIRE

    Gundlach, Carsten

    2006-01-01

    In the present thesis the development of a unique experimental method for volume characterisation of individual embedded crystallites down to a radius of 150 nm is presented. This method is applied to in-situ studies of recovery in aluminium. The method is an extension of 3DXRD microscopy, an X-ray diffraction technique for studies of the evolution of grains within polycrystalline materials. The much smaller volume of the crystallites of interest here in comparison to grains implies that the ...

  10. Aluminium and human breast diseases.

    Science.gov (United States)

    Darbre, P D; Pugazhendhi, D; Mannello, F

    2011-11-01

    The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268 ± 28 μg/l) compared with control healthy subjects (mean 131 ± 10 μg/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150 μg/l) compared with human serum (median 6 μg/l) or human milk (median 25 μg/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate. PMID:22099158

  11. Method of aluminium fluoride manufacture

    International Nuclear Information System (INIS)

    The manufacture of aluminium fluoride is based on waste processing in uranium hexafluoride conversion to uranium oxides within the fuel cycle. The conversion is the stoichiometric conversion of uranium hexafluoride with aluminium nitrate to uranyl nitrate. This is extracted from the water phase by phosphoric acid trialkyl ester to an organic solvent and further processed. The discharge water phase is solidified by evaporation to solid aluminium fluoride and nitric acid. (M.S.)

  12. Study of aluminum nitride precipitation in Fe- 3%Si steel

    OpenAIRE

    F.L. Alcântara; Barbosa, R; Cunha, M.A.

    2013-01-01

    For good performance of electrical steels it is necessary a high magnetic induction and a low power loss when submitted to cyclic magnetization. A fine dispersion of precipitates is a key requirement in the manufacturing process of Fe- 3%Si grain oriented electrical steel. In the production of high permeability grain oriented steel precipitate particles of copper and manganese sulphides and aluminium nitride delay normal grain growth during primary recrystallization, causing preferential grow...

  13. Studies of aluminium nitride ceramics for application in UV dosimetry

    DEFF Research Database (Denmark)

    Trinkler, L.; Bøtter-Jensen, L.; Christensen, P.; Berzina, B.

    2000-01-01

    The study is reported of the ceramic material AlN-Y2O3 as a potential luminescence dosemeter for the detection of UV radiation. Both the thermoluminescence and the optically stimulated luminescence properties of the material have been studied after exposure to UV radiation and compared with those...... of the widely used dosemeter material Al2O3:C. It has been shown that AlN-Y2O3 ceramics exhibit three orders of magnitude higher sensitivity to UV radiation than does Al2O3,:C over a broad spectral region. The thermoluminescence from AlN-Y2O3 is characterised by linear dose dependence over a wide...... range. The fading characteristics of the UV-induced thermoluminescence and optically stimulated luminescence signals with storage time at room temperature were found to be a drawback, but still lower than those induced after exposure to ionising radiation....

  14. Diamond/aluminium nitride composites for efficient thermal management applications

    Science.gov (United States)

    Cervenka, J.; Dontschuk, N.; Ladouceur, F.; Duvall, S. G.; Prawer, S.

    2012-07-01

    Synthetic diamond/AlN composite materials have been fabricated by a combination of microwave plasma-assisted chemical vapor deposition and molecular beam epitaxy. These wide band gap semiconductor heterojunctions show promises for many applications, including thermal management, deep ultraviolet light emitting devices, and high power and high temperature electronics. Here, we report results of an interface study of polycrystalline diamond layers grown on single crystal AlN(0001). High resolution transmission microscopy revealed atomically sharp interfaces between diamond and AlN. Temperature dependent Raman spectroscopy measurements showed reduced thermal resistance on diamond-coated AlN substrates compared to uncoated AlN at temperatures above 330 K.

  15. Electron microscopy of gallium nitride growth on polycrystalline diamond

    International Nuclear Information System (INIS)

    Transmission and scanning electron microscopy were used to examine the growth of gallium nitride (GaN) on polycrystalline diamond substrates grown by metalorganic vapour phase epitaxy with a low-temperature aluminium nitride (AlN) nucleation layer. Growth on unmasked substrates was in the (0001) orientation with threading dislocation densities ≈7 × 109 cm−2. An epitaxial layer overgrowth technique was used to reduce the dislocation densities further, by depositing silicon nitride stripes on the surface and etching the unmasked regions down to the diamond substrate. A re-growth was then performed on the exposed side walls of the original GaN growth, reducing the threading dislocation density in the overgrown regions by two orders of magnitude. The resulting microstructures and the mechanisms of dislocation reduction are discussed. (paper)

  16. Optical properties of aluminium-gallium-nitride semiconductors; Optische Eigenschaften von Aluminium-Galliumnitrid-Halbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Roeppischer, Marcus

    2011-08-17

    In this work fundamental optical properties of AlN, GaN and their alloys are presented. Spectroscopic ellipsometry from the near infrared (NIR) to the vacuum-ultraviolet (VUV) spectral region was the main tool to investigate these properties. The complete dielectric function (DF) of cubic as well as hexagonal GaN and AlN in the range between 0.6 eV and 20 eV is shown here, for the first time. A layer model including surface roughness and buffer layers was used to separate the DF of the investigated layer from the measured pseudo-DF. Afterwards all absorption structures in the DF's are discussed in detail. Due to the comparison with calculated bandstructures these absorption structures could be connected to interband transitions at high symmetry points in the Brillouin zone (BZ). Within this analysis similarities and differences between GaN and AlN are discussed. For zincblende (zb) AlN a pronounced absorption tail below the direct band gap transition was detected. This behaviour is typical for a phonon-assisted indirect absorption. In contrast zb-GaN exhibits a clear direct absorption. Furthermore, a change in the energetic position of the two main interband absorptions E1 and E2 at the L- and X-point of the BZ was found. A detailed analysis of the anisotropic fundamental band gap of hexagonal AlN offers a interchange of the two topmost valance bands at the BZ center compared to GaN. Due to this permutation the fundamental band edge of wurtzit (wz) AlN is only visible for parallel polarized light, while for GaN it can be detect in the perpendicular configuration. By analysing the energetic position of the three excitonic transitions the crystal-field- and spin-orbit-splitting were defined to be {delta}{sub cr}=-226 meV and {delta}{sub so}=14 meV. In addition, the energetic positions for these transitions at T=15 K are 6.0465 eV, 6.2694 eV and 6.2775 eV. The comparison between measurements at room and low temperature shows an energetic shift for both absorption edges of about 80 meV. By comparing the energetic positions of the excitonic transitions with the lattice parameters of different samples on silicon, sapphire and SiC substrate the influence of strain on the optical properties of wz-AlN was investigated. Due to this analysis the deformation potentials within the cubic approximation were calculated. Finally the spectral region below the fundamental band gap absorption of cubic AlGaN layers were studied. Therefore an analytical model was developed to calculate the dispersion in the transparent range for an arbitrary Al-content.

  17. Mechanical behaviour of nitrogen-implanted aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, L. [Centro Materiali e Biofisica Medica, Trento (Italy); Bonini, G. [Dipt. di Ingegneria Nucleare del Politecnico, Milano (Italy); Adami, M. [Dipt. di Meccanica Strutturale, Univ. degli Studi di Trento (Italy); Ossi, P.M. [Dipt. di Ingegneria Nucleare del Politecnico, Milano (Italy)]|[Trento Univ., Povo (Italy). Dipt. di Fisica; Miotello, A. [Ist. Nazionale per la Fisica della Materia, Univ. degli Studi di Trento (Italy)]|[Trento Univ., Povo (Italy). Dipt. di Fisica; Vittori-Antisari, M. [ENEA, C.R. Casaccia, Settore Nuovi Materiali, Roma (Italy); Serventi, A.M. [ENEA, C.R. Casaccia, Settore Nuovi Materiali, Roma (Italy); Voltolini, E. [Centro Materiali e Biofisica Medica, Trento (Italy)

    1996-09-01

    The effect of nitrogen implantation into pure aluminium has been extensively explored, taking into account the variation of several physical and technological properties of the implanted layer. In particular, the formation of aluminium nitride, which occurs under specific choices of the implantation parameters, is associated with an increase in hardness. In this work, we consider two Al alloys (Al-7075 and Al-2011), frequently employed in the mechanical industry, with properties strongly dependent on the thermomechanical treatment. Molecular nitrogen bombardment at 150 keV (75 keV N{sup +}) was employed, up to a total dose of 3.10{sup 17} N cm{sup -2}, varying the substrate temperature from 373 to 473 K. The samples were then characterized with respect to composition, structure, morphology, microhardness, scratch resistance (also performing multi-pass testing) and friction coefficient. The results were interpreted within the framework of micromechanical models describing the hardness of thin coatings deposited onto soft substrates; the microhardness of the implanted layer increased by a factor of five. It appears that nitrogen-implanted aluminium alloy layers, in spite of their shallow thickness, behave better than hard TiN coated surfaces. Care must be taken to implant both alloys at the lowest possible temperature to avoid degradation of the substrate properties. (orig.)

  18. Aluminium, antiperspirants and breast cancer.

    Science.gov (United States)

    Darbre, P D

    2005-09-01

    Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metalloestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer. PMID:16045991

  19. Aluminium oxide exoelectron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Akselrod, M.S.; Odegov, A.L. (Urals State Technical Univ., Ekaterinburg (Russian Federation)); Durham, J.S. (Pacific Northwest Lab., Richland, WA (United States))

    1994-01-01

    The exoemission properties of aluminium oxide ([alpha]-Al[sub 2]O[sub 3]:C), in the forms of both a single crystal and of powder, have been investigated. Measurements obtained during readout in a vacuum showed that irradiated Al[sub 2]O[sub 3]:C dosemeters emit exoelectrons with a sensitivity that is 10-20 times higher than that achievable using beryllium oxide (BeO) exoelectron dosemeters (EEDs). This paper presents results of studies using a commercial methane gas reader. The investigators studied the response of the Al[sub 2]O[sub 3]:C EEDs as a function of beta energy and measured the dose-response relationship. The effect of humidity on the dosemeter response was also investigated. (Author).

  20. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... circumstances both materials show good bonding, but the high purity material is excluded because of recrystallisation and the resulting loss of mechanical properties. The effect of cross stacking and roll bonding pre-strained sheets of the commercial purity material is investigated and some dependence of the...... cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  1. Friction surfacing of aluminium alloys

    OpenAIRE

    Pereira, Diogo Jorge O. A.

    2012-01-01

    Friction surfacing is a solid state joining process that has attracted much interest in the past decades. This technology allows joining dissimilar metallic materials while avoiding the brittle intermetallic formations, involving temperatures bellow melting point and producing like forged metal structures. Much research using different steels has been made but the same does not happen with aluminium alloys, specially using different aluminium alloys. Friction surface coatings using cons...

  2. Nitride and carbide preforms for infiltration process

    Directory of Open Access Journals (Sweden)

    A. Twardowska

    2007-11-01

    Full Text Available Purpose: Infiltration of molten metals into porous ceramic preforms is the only technique suitable for the fabrication of high volume fraction of ceramic materials in MMCs. The most popular material for porous preforms is Al2O3 because of its low cost. Infiltration process generates thermal stresses in the Al2O3 preforms. The thermal shock resistance of Al2O3 is lower than for Si3N4 or Al2O3/TiC+TiN materials. The aim of this study is to obtain the nitride and carbide base preforms material for the infiltration process of molten aluminium alloys.Design/methodology/approach: The method of obtaining the silicon nitride and oxide-carbonitride porous preform for the infiltration process is the free sintering process. Some of selected properties of this material are presented. The preforms were produced by the mixing of ceramic powders with organic binders, followed by forming, drying and firing. Ceramic preforms of 65% porosity were produced. Microscopic investigations revealed good joints between the ceramic particles.Findings: The material consist of the base component (90 wt.% of α-Si3N4, 5 wt.% of Al2O3, 5 wt.% of Y2O3, which were mixed with 40 wt.% of polyethylene glycol 6000 (mixed in Turbula porosity is 25.7 %. The higher value of porosity 66.6% was obtained for material with 20 wt.% tylose. The grain size of Si3N4 and method of the mixtures preparing (mixing with or without milling have the significant influence on compacts’ porosity. For 68 wt.% Al2O3, 2 wt.% ZrO2 and 30 wt.% Ti(C,N with addition of glycol 6000, the value of porosity is 67%. α-Si3N4 material produced shows strong bonding with aluminium and AlSi11 aluminium alloy.Practical implications: Pressureless infiltration of molten metals into ceramics is the most cost-effective approach to liquid-metal processing of MMCs. Metal matrix composites are applied widely in aircraft production technologies and defence technology.Originality/value: Compared to widely used alumina

  3. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2016-05-01

    Full Text Available Plasmonic metal nanoparticles supporting localized surface plasmon resonances have attracted a great deal of interest in boosting the light absorption in solar cells. Among the various plasmonic materials, the aluminium nanoparticles recently have become a rising star due to their unique ultraviolet plasmonic resonances, low cost, earth-abundance and high compatibility with the complementary metal-oxide semiconductor (CMOS manufacturing process. Here, we report some key factors that determine the light incoupling of aluminium nanoparticles located on the front side of silicon solar cells. We first numerically study the scattering and absorption properties of the aluminium nanoparticles and the influence of the nanoparticle shape, size, surface coverage and the spacing layer on the light incoupling using the finite difference time domain method. Then, we experimentally integrate 100-nm aluminium nanoparticles on the front side of silicon solar cells with varying silicon nitride thicknesses. This study provides the fundamental insights for designing aluminium nanoparticle-based light trapping on solar cells.

  4. Grain refinement by boron nitride; Gefuegemodifizierung durch Bornitrid

    Energy Technology Data Exchange (ETDEWEB)

    Bach, F.W.; Guenther, A.; Phan-Tan, T.; Kruessel, T.; Wilk, P. [Institut fuer Werkstoffkunde der Universitaet Hannover, Struktur- und Biomedizinwerkstoffe, Garbsen (Germany)

    2005-01-01

    Grain refinement of magnesium alloys aims at better deformation behaviour, higher strength and improved corrosion resistance. Besides mechanical treatment like pressing, it is possible to refine the grainsize by using nucleation materials. Whereas calcium and rare earth elements are already widely used, the use of boron nitride offers a cheap alternative to refine grains of magnesium aluminum alloys. The effect is achieved by the reaction of boron nitride with aluminum which cracks the chemical compound to form aluminum nitride with the nitrogen while boron is forming different magnesium borides. These two compounds both exhibit very high melting points and are stable in this environment so that they can act as seed crystals. Because boron nitride shows a bad wettability to metal molds, it would float on top of the mold. Therefore, it is necessary to produce pellets out of boron nitride and aluminum powder to improve contact to the mold and enhance reaction velocity. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [German] Durch die Kornfeinung von Magnesiumlegierungen wird das Ziel einer Festigkeitssteigerung, einer verbesserten Umformbarkeit und einer erhoehten Korrosionsbestaendigkeit verfolgt. Neben mechanischen Loesungswegen (Strangpressen etc.) besteht die Moeglichkeit legierungstechnisch durch den Einsatz keimbildender Stoffe eine Kornfeinung zu erzielen. Neben dem Einsatz von Kalzium oder Seltenen Erden bietet Bornitrid eine kostenguenstige Moeglichkeit eine Kornfeinung fuer aluminiumhaltige Magnesiumlegierungen zu erzeugen. Die Kornfeinung beruht dabei auf der Reaktion des Bornitrids mit dem Aluminium in der Schmelze, durch welche das Bornitrid zersetzt wird und mit dem freiwerdenden Stickstoff zu Aluminiumnitrid reagiert, waehrend sich das Bor mit Magnesium zu Magnesiumboriden verbindet. Bei beiden Produkten handelt es sich um hochschmelzende, in dieser Umgebung stabile Verbindungen, die als Kristallisationskeime wirken koennen. Die Zugabe des

  5. Effect of hydrogen on aluminium and aluminium alloys: A review

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1996-01-01

    Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen in...... aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between...

  6. Uptake of aluminium ion by the liver

    International Nuclear Information System (INIS)

    The specific uptake by the rat liver of 28Al was shown. There was specific uptake of 28Al by liver cell nuclei and DNA. This uptake was blocked by prior treatment with stable aluminium. It is concluded that aluminium enters the liver cell by some specific mechanism and that the reaction of aluminium with DNA inside the hepatocyte nucleus could be a mechanism responsible for the development of aluminium-induced experimental porphyria in the rat

  7. Molybdenum nitride nanotubes

    International Nuclear Information System (INIS)

    Molybdenum nitride nanotubes were prepared by depositing nitride film on anodized aluminum oxide (AAO) template by atomic layer deposition and then etching away the template with sodium hydroxide solution. The effect of deposition parameters on film growth and the properties of the nanotubes was investigated. The maximum depth of intrusion of the molybdenum nitride film into the AAO pores was found to be 20 μm, achieved with 7-second precursor pulses. Precursor diffusion into the AAO pores dominated over the intrusion. Three different architectures of molybdenum nitride nanotubes were isolated. Separated nanotubes were found when the template was etched in an ultrasonic bath, while bundling dominated when template etching was conducted without ultrasound. When the nitride-coated AAO template was mounted onto a steel plate before etching the nanotubes remained on the surface with the tips strongly intertwined

  8. Buckwheat stomatal traits under aluminium toxicity

    Directory of Open Access Journals (Sweden)

    Oleksandr E. Smirnov

    2014-04-01

    Full Text Available Aluminium influence on some stomatal parameters of common buckwheat (Fagopyrum esculentum Moench. was studied. Significant changes in stomatal density, stomatal index and stomatal shape coefficient under aluminium treatment were revealed. Stomatal closure and no difference in total stomatal potential conductance index of treatment plants were suggested as aluminium resistance characteristics.

  9. Nitrogen Availability Of Nitriding Atmosphere In Controlled Gas Nitriding Processes

    OpenAIRE

    Michalski J; Burdyński K.; Wach P.; Łataś Z.

    2015-01-01

    Parameters which characterize the nitriding atmosphere in the gas nitriding process of steel are: the nitriding potential KN, ammonia dissociation rate α and nitrogen availabilitymN2. The article discusses the possibilities of utilization of the nitriding atmosphere’s nitrogen availability in the design of gas nitriding processes of alloyed steels in atmospheres derived from raw ammonia, raw ammonia diluted with pre-dissociated ammonia, with nitrogen, as well as with both nitrogen and pre-dis...

  10. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, J., E-mail: j.bueno@sron.nl; Baselmans, J. J. A [SRON, Netherlands Institute of Space Research, Utrecht (Netherlands); Coumou, P. C. J. J.; Zheng, G. [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Visser, P. J. de [SRON, Netherlands Institute of Space Research, Utrecht (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Klapwijk, T. M. [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Physics Department, Moscow State Pedagogical University, 119991 Moscow (Russian Federation); Driessen, E. F. C. [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Doyle, S. [Cardiff University, School of Physics and Astronomy, Queens Buildings, Cardiff CF24 3AA (United Kingdom)

    2014-11-10

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.

  11. ThermophysicalProperties of Cellular Aluminium andCeramic Particulate / Aluminium Composites

    Directory of Open Access Journals (Sweden)

    Khalid Almadhoni

    2015-10-01

    Full Text Available In this paper, the thermophysical properties of cellular Al and Ceramic Particulate / Al Composites were explored. Thermophysical properties are defined as material properties that vary with temperature without altering the material's chemical identity including thermal conductivity (TC, coefficient of thermal expansion (CTE, energy absorption, porosity and relative density. The significance of cellular Al and AMMCs reinforced by ceramic particles lies in their propertieswhich are difficult to be available combined in other engineering materials. New cellular AMMCs that meet the needs of the required engineering applications could be synthesized by selection an appropriate reinforcements. Different kinds of ceramic particles such as oxides, carbides, nitrides, as well as carbon nanotubes can be utilized as reinforcements for manufacturing of cellular AMMCs. Thermophysicalproperties of cellular AMMCs consisting of Al as continuous matrix phase and ceramic particles as reinforcements are directly influenced by type, size, and geometry of dispersions, also the RVR. In addition, the constituents of ceramic particulate / aluminium composites characterized by different heat transfer mechanisms, wherethe TC mechanism in metals is attributed to free electrons, while phonons are primarily responsible for TC in nonmetallic materials, as well as an interfacial thermal barrier resistance influence effectively on heat transfer inside the composite and thus the thermophysical properties. In this paper, based on the literature review, thermophysical properties of cellular Al and AMMCs reinforced by ceramic particles were discussed.

  12. Silicon nitride passivated bifacial Cz-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, L. [Institute of Semiconductor Electronics, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen (Germany); Solland Solar Cells GmbH, Bohr 12, 52072 Aachen (Germany); Windgassen, H.; Baetzner, D.L. [Institute of Semiconductor Electronics, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen (Germany); Bitnar, B.; Neuhaus, H. [Deutsche Cell GmbH, Berthelsdorfer Str. 111a, 09599 Freiberg (Germany)

    2009-08-15

    A new process for all silicon nitride passivated silicon solar cells with screen printed contacts is analysed in detail. Since the contacts are fired through the silicon nitride layers on both sides, the process is easy to adapt to industrial production. The potential and limits of the presented bifacial design are simulated and discussed. The effectiveness of the presented process depends strongly on the base doping of the substrate, but only the open circuit voltage is affected. The current is mainly determined by the rear surface passivation properties. Thus, using a low resistivity (<1.5{omega}cm) base material higher efficiencies compared to an aluminium back surface field can be achieved. (author)

  13. Microstructural characterisation of silicon nitride-bonded silicon carbide

    International Nuclear Information System (INIS)

    The microstructure of a commercial silicon nitride-bonded silicon carbide ceramic composite, formed via the nitridation of Si powder-SiC preforms, has been characterised by transmission electron microscopy. A mechanism combining reaction bonding and liquid-phase sintering is proposed to describe the development and observed morphology of the microstructure of the bonding matrix, which comprises predominantly phases based on Si2N2O and β-Si3N4 and an amorphous phase. Qualitative microanalysis of amorphous matrix regions has revealed significant concentrations of oxygen, aluminium and calcium, with Al also being detected in both of the surrounding cyrstalline phases. It is thus suggested that the principal constituents of the matrix are in fact O' and β' sialons. (orig.)

  14. The prophylactic reduction of aluminium intake.

    Science.gov (United States)

    Lione, A

    1983-02-01

    The use of modern analytical methods has demonstrated that aluminium salts can be absorbed from the gut and concentrated in various human tissues, including bone, the parathyroids and brain. The neurotoxicity of aluminium has been extensively characterized in rabbits and cats, and high concentrations of aluminium have been detected in the brain tissue of patients with Alzheimer's disease. Various reports have suggested that high aluminium intakes may be harmful to some patients with bone disease or renal impairment. Fatal aluminium-induced neuropathies have been reported in patients on renal dialysis. Since there are no demonstrable consequences of aluminium deprivation, the prophylactic reduction of aluminium intake by many patients would appear prudent. In this report, the major sources of aluminium in foods and non-prescription drugs are summarized and alternative products are described. The most common foods that contain substantial amounts of aluminium-containing additives include some processed cheeses, baking powders, cake mixes, frozen doughs, pancake mixes, self-raising flours and pickled vegetables. The aluminium-containing non-prescription drugs include some antacids, buffered aspirins, antidiarrhoeal products, douches and haemorrhoidal medications. The advisability of recommending a low aluminium diet for geriatric patients is discussed in detail. PMID:6337934

  15. Dynamical study of liquid aluminium

    International Nuclear Information System (INIS)

    Recent molecular dynamics data of Ebbsjoe et al. in liquid aluminium have been analysed through the memory function formalism. Two forms of the memory functions which have correct asymptotic limit at large wavenumbers but accounts for interatomic correlations in a different manner are considered. The results for ω2s(q, ω) obtained from both models are compared with experimental data. (author)

  16. Aluminium foams. manufacture, properties and applications

    International Nuclear Information System (INIS)

    Aluminium foams are porous to have many interesting combinations of physical and mechanical properties, such as high stiffness in conjunction with very low specific weight. The aluminium foam structure, manufacture processes, physical, chemical and mechanical properties and applications are reviewed in this paper. The various manufacturing processes are classified according to the state of matter in which the metal is processed. Liquid aluminium can be foamed directly by injecting gas or gas-releasing blowing agents. Indirect methods include melting of powder compacts which contain a blowing agent. An inert gas entrapped in powder compacts can produce aluminium foams in solid state after heat treatment. Electron-deposition or metal vapour deposition also allow for the production of aluminium foams. Physical, chemical and mechanical properties and the various ways for characterising the aluminium foams are reviewed in second section of this paper. finally, the various application fields for aluminium foams are discussed. They are divided into different industrial sectors. (Author) 75 refs

  17. Electrochemical properties and thermal stability of epoxy coatings electrodeposited on aluminium and modified aluminium surfaces

    Directory of Open Access Journals (Sweden)

    ZORICA M. KACAREVIC-POPOVIC

    2001-12-01

    Full Text Available The corrosion behaviour of epoxy coatings electrodeposited on aluminium, as well as on electrochemically and chemically modified aluminium were investigated during exposure to 3 % NaCl. Electrochemical impedance spectroscopy (EIS and thermogravimetric analysis (TGA were used for the determination of the protective properties of epoxy coatings on aluminium, anodized aluminium, phosphatized and chromatized-phosphatized aluminium. The protective properties of epoxy coatings on anodized and chromatized-phosphatized aluminium are significantly improved with respect to the same epoxy coatings on aluminium and phosphatized aluminium: higher values of the pore resitance and charge-transfer resistance, lower values of the coating capacitance, double-layer capacitance and relative permittivity (from EIS smaller amount of absorbed water inside the coating (From TGA. On the other hand, the lower values of the ipdt temperature indicate a lower thermal stability of the epoxy coatings on anodized and chromatized-phosphatized aluminium.

  18. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    Science.gov (United States)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  19. Flux measurements in a nuclear research reactor by using an aluminum nitride detector

    International Nuclear Information System (INIS)

    A small polycrystalline aluminium nitride detector with a thickness of 381 μm was used to measure a 200,000 Ci Co60 source and to measure the flux in a research reactor where the neutron flux is about 1014/cm2 s, which is nearly the same order as in the commercial power plant. If the applied voltage is greater than or equal to 2000 V and if the measurements are done in a short period of time so that the heat energy does not build up in the aluminium nitride, then the measured electric current is linearly proportional to the input flux. It is assumed of course that the energy spectrum of the input flux remains constant. This linearity relation is illustrated by the results of a measurement in which the reactor power has been controlled so that the flux becomes a step function

  20. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  1. Friction Welding of Aluminium and Aluminium Alloys with Steel

    Directory of Open Access Journals (Sweden)

    Andrzej Ambroziak

    2014-01-01

    Full Text Available The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i microhardness measurements, (ii tensile tests, (iii bending tests, and (iv shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i changing the geometry of bonding surface, (ii using the interlayer, or (iii heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated.

  2. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    Science.gov (United States)

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  3. Nitrogen Availability Of Nitriding Atmosphere In Controlled Gas Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Michalski J.

    2015-06-01

    Full Text Available Parameters which characterize the nitriding atmosphere in the gas nitriding process of steel are: the nitriding potential KN, ammonia dissociation rate α and nitrogen availabilitymN2. The article discusses the possibilities of utilization of the nitriding atmosphere’s nitrogen availability in the design of gas nitriding processes of alloyed steels in atmospheres derived from raw ammonia, raw ammonia diluted with pre-dissociated ammonia, with nitrogen, as well as with both nitrogen and pre-dissociated ammonia. The nitriding processes were accomplished in four series. The parameters selected in the particular processes were: process temperature (T, time (t, value of nitriding potential (KN, corresponding to known dissociation rate of the ammonia which dissociates during the nitriding process (α. Variable parameters were: nitrogen availability (mN2, composition of the ingoing atmosphere and flow rate of the ingoing atmosphere (FIn.

  4. Abnormal Nitride Morphologies upon Nitriding Iron-Based Substrates

    Science.gov (United States)

    Meka, Sai Ramudu; Mittemeijer, Eric Jan

    2013-06-01

    Nitriding of iron-based components is a very well-known surface engineering method for bringing about great improvement of the mechanical and chemical properties. An overview is presented of the strikingly different nitride morphologies developing upon nitriding iron-based alloy substrates. Observed abnormal morphologies are the result of intricate interplay of the thermodynamic and kinetic constraints for the nucleation and growth of both alloying element nitride particles in the matrix and iron nitrides at the surface of the substrate. Alloying elements having strong Me-N interaction, such as Cr, V, and Ti, precipitate instantaneously as internal Me-nitrides, thus allowing the subsequent nucleation and growth of "normal" layer-type iron nitride. Alloying elements having weak Me-N interaction, such as Al, Si, and Mo, and simultaneously having low solubility in iron nitride, obstruct/delay the nucleation and growth of iron nitrides at the surface, thus leading to very high nitrogen supersaturation over an extended depth range from the surface. Eventually, the nucleation and growth of "abnormal" plate-type iron nitride occurs across the depth range of high nitrogen supersaturation. On this basis, strategies can be devised for tuned development of specific nitride morphologies at the surface of nitrided components.

  5. On the chemical and electrochemical formation of aluminium carbide in aluminium electrolysis

    OpenAIRE

    Bronislav, Novák

    2013-01-01

    Cathode wear is considered as one of the key factors for limiting the lifetime of aluminium electrolysis cells. This phenomenon has become more important as aluminium smelters have steadily increased the amperage of the cells and shifted towards graphitized cathode materials with higher electrical conductivity. The present work has focused on the fundamentals of the formation of aluminium carbide at the carbon-aluminium interface. The objective was to investigate the mechanism(s) of the forma...

  6. Aluminium Process Fault Detection and Diagnosis

    OpenAIRE

    Nazatul Aini Abd Majid; Taylor, Mark P; Chen, John J. J.; Brent R. Young

    2015-01-01

    The challenges in developing a fault detection and diagnosis system for industrial applications are not inconsiderable, particularly complex materials processing operations such as aluminium smelting. However, the organizing into groups of the various fault detection and diagnostic systems of the aluminium smelting process can assist in the identification of the key elements of an effective monitoring system. This paper reviews aluminium process fault detection and diagnosis systems and propo...

  7. Study of aluminum nitride precipitation in Fe- 3%Si steel

    Directory of Open Access Journals (Sweden)

    F.L. Alcântara

    2013-01-01

    Full Text Available For good performance of electrical steels it is necessary a high magnetic induction and a low power loss when submitted to cyclic magnetization. A fine dispersion of precipitates is a key requirement in the manufacturing process of Fe- 3%Si grain oriented electrical steel. In the production of high permeability grain oriented steel precipitate particles of copper and manganese sulphides and aluminium nitride delay normal grain growth during primary recrystallization, causing preferential growth of grains with Goss orientation during secondary recrystallization. The sulphides precipitate during the hot rolling process. The aluminium nitride particles are formed during hot rolling and the hot band annealing process. In this work AlN precipitation during hot deformation of a high permeability grain oriented 3%Si steel is examined. In the study, transfer bar samples were submitted to controlled heating, compression and cooling treatments in order to simulate a reversible hot rolling finishing. The samples were analyzed using the transmission electron microscope (TEM in order to identify the precipitates and characterize size distribution. Precipitate extraction by dissolution method and analyses by inductively coupled plasma optical emission spectrometry (ICP-OES were used to quantify the precipitation. The results allowed to describe the precipitation kinetics by a precipitation-time-temperature (PTT diagram for AlN formation during hot rolling.

  8. A bakable aluminium vacuum chamber with an aluminium flange and metal seal for ultrahigh vacuum

    International Nuclear Information System (INIS)

    A bakable (2000C) aluminium alloy vacuum chamber (6063-T6) with an aluminium alloy (2219-T87) flange and metal seal (Helicoflex-HN: aluminium O-ring) has been constructed. Such components may be used in the construction of the vacuum chamber in proton synchrotrons and electron storage rings. (author)

  9. Toxicity of aluminium on five aquatic invertebrates; Aluminiums toksisitet paa 5 akvatiske invertebrater

    Energy Technology Data Exchange (ETDEWEB)

    Moe, J. [Oslo Univ. (Norway)

    1996-01-01

    The conference paper deals with the experiments done by investigating the effects from the toxicity of aluminium on aquatic invertebrates. The aim of the experiments was to compare the toxicity of unstable aluminium compounds with stable forms of aluminium. 8 refs., 2 figs., 2 tabs.

  10. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  11. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan;

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  12. Aluminium in foodstuffs and diets in Sweden.

    Science.gov (United States)

    Jorhem, L; Haegglund, G

    1992-01-01

    The levels of aluminium have been determined in a number of individual foodstuffs on the Swedish market and in 24 h duplicate diets collected by women living in the Stockholm area. The results show that the levels in most foods are very low and that the level in vegetables can vary by a factor 10. Beverages from aluminium cans were found to have aluminium levels not markedly different from those in glass bottles. Based on the results of the analysis of individual foods, the average Swedish daily diet was calculated to contain about 0.6 mg aluminium, whereas the mean content of the collected duplicate diets was 13 mg. A cake made from a mix containing aluminium phosphate in the baking soda was identified as the most important contributor of aluminium to the duplicate diets. Tea and aluminium utensils were estimated to increase the aluminium content of the diets by approximately 4 and 2 mg/day, respectively. The results also indicate that a considerable amount of aluminium must be introduced from other sources. PMID:1542992

  13. Aluminium exclusion and aluminium tolerance in woody plants

    OpenAIRE

    Ivano eBrunner; Christoph eSperisen

    2013-01-01

    The aluminium (Al) cation Al3+ is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3+ conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion...

  14. Aluminium and nickel in human albumin solutions

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Sandberg, E

    1989-01-01

    Five different brands of commercially available human albumin solutions for infusion were analysed for their aluminium and nickel contents by atomic absorption spectrometry. The aluminium concentrations ranged from 12 micrograms/l to 1109 micrograms/l and the nickel concentrations ranged from 17...

  15. Preparation of aluminium lakes by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Prapai Pradabkham

    2008-07-01

    Full Text Available Aluminium lakes have been prepared by electrocoagulation employing aluminium as electrodes. The electrocoagulation is conducted in an aqueous alcoholic solution and is completed within one hour. The dye content in the lake ranges approximately between 4-32%.

  16. Recent developments in advanced aircraft aluminium alloys

    International Nuclear Information System (INIS)

    Highlights: • To compete with composites, performance of aluminium alloys should be increased. • Al–Li alloys have higher strength, fracture and fatigue/corrosion resistance. • Improvements of aerospace Al alloys are due to optimised solute content and ratios. • In selecting new materials, there should be no reduction in the level of safety. • The use of hybrid materials could provide additional opportunities for Al alloys. - Abstract: Aluminium alloys have been the primary material for the structural parts of aircraft for more than 80 years because of their well known performance, well established design methods, manufacturing and reliable inspection techniques. Nearly for a decade composites have started to be used more widely in large commercial jet airliners for the fuselage, wing as well as other structural components in place of aluminium alloys due their high specific properties, reduced weight, fatigue performance and corrosion resistance. Although the increased use of composite materials reduced the role of aluminium up to some extent, high strength aluminium alloys remain important in airframe construction. Aluminium is a relatively low cost, light weight metal that can be heat treated and loaded to relatively high level of stresses, and it is one of the most easily produced of the high performance materials, which results in lower manufacturing and maintenance costs. There have been important recent advances in aluminium aircraft alloys that can effectively compete with modern composite materials. This study covers latest developments in enhanced mechanical properties of aluminium alloys, and high performance joining techniques. The mechanical properties on newly developed 2000, 7000 series aluminium alloys and new generation Al–Li alloys are compared with the traditional aluminium alloys. The advantages and disadvantages of the joining methods, laser beam welding and friction stir welding, are also discussed

  17. Sintering silicon nitride

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Levine, Stanley R. (Inventor); Sanders, William A. (Inventor)

    1993-01-01

    Oxides having a composition of (Ba(1-x)Sr(x))O-Al2O3-2SiO2 are used as sintering aids for producing an improved silicon nitride ceramic material. The x must be greater than 0 to insure the formation of the stable monoclinic celsian glass phase.

  18. Hot pressing aluminum nitride

    International Nuclear Information System (INIS)

    Experiment was performed on the hot pressing of aluminum nitride, using three kinds of powder which are: a) made by electric arc method, b) made by nitrifying aluminum metal powder, and c) made from alumina and carbon in nitrogen atmosphere. The content of oxygen of these powders was analyzed by activation analysis using high energy neutron irradiation. The density of hot pressed samples was classified into two groups. The high density group contained oxygen more than 3 wt. %, and the low density group contained about 0.5 wt %. Typical density vs. temperature curves have a bending point near 1,5500C, and the sample contains iron impurity of 0.5 wt. %. Needle crystals were found to grow near 1,5500C by VLS mechanism, and molten iron acts a main part of mechanism as a liquid phase. According to the above-mentioned curve, the iron impurity in aluminum nitride prevents densification. The iron impurity accelerates crystal growth. Advance of densification may be expected by adding iron impurity, but in real case, the densification is delayed. Densification and crystal growth are greatly accelerated by oxygen impurity. In conclusion, more efforts must be made for the purification of aluminum nitride. In the present stage, the most pure nitride powder contains about 0.1 wt. % of oxygen, as compared with good silicon carbide crystals containing only 10-5 wt. % of nitrogen. (Iwakiri, K.)

  19. Shot peening of aluminium alloys

    International Nuclear Information System (INIS)

    Shot peening is a process of cold-hammering where a metallic surface is pelted with spherical grains. Each grain bumping into the surface acts as a hammer head and creates a small crater. The overlapping of these craters produces a residual compression layer just underneath the surface. It is well known that cracks cannot spread in a compression zone. In most cases of fatigue rupture and stress corrosion cracks propagate from the surface towards the inside so shot peening allows a longer lifetime of castings. Moreover most materials present a better resistance due to the cold-hammering effect of shot peening. Metallic surfaces can be treated in workshops or directly on site. Typical pieces that undergo shot peening on site are storing tanks, gas and steam turbines, tubes of steam generators and piping in oil or nuclear or chemical industries. This article describes shot peening from a theoretical and general point of view and presents the application to aluminium-lithium alloys. In the case of aluminium alloys shot peening can be used to shape the piece (peen-forming). (A.C.)

  20. Method for aluminium dross utilization

    International Nuclear Information System (INIS)

    A new hydrometallurgical method has been developed for metal aluminum utilization from secondary aluminum dross. Secondary aluminum dross is a powder product with an average of 35% aluminium content (below 1mm). It is waste from primary aluminum dross pyrometallurgical flux less treatment in rotary DC electric arc furnace. This method is based on aluminum leaching in copper chloride water solution. As a result an aluminum oxychloride solution and solids, consisting of copper and oxides are obtained. In order to copper chloride solution regenerate hydrochloric acid is added to the solids. The process is simple, quick, economic and safe. The aluminum oxychloride solution contains 56 g/l Al2O3. The molar ratios are Al:Cl=0,5; OH:Al=1. The solution has 32 % basicity and 1,1 g/cm3 density. For increasing the molar ratio of aluminium to chlorine aluminum hydroxide is added to this solution at 80oC. Aluminum hydroxide is the final product from the secondary aluminum dross alkaline leaching. As a result aluminum oxychloride solution of the following composition is prepared: Al2O3 - 180 g/l; Al:Cl=1,88; OH:Al=4,64; basicity 82%; density 1,22 g/cm3, pH=4 -4,5. Aluminum oxychloride solution produced by means of this method can be used in potable and wastewater treatment, paper making, in refractory mixture as a binder etc. (Original)

  1. Contact damage of silicon nitride whisker-silicon nitride composites

    International Nuclear Information System (INIS)

    The influence of β-silicon nitride whiskers content on Hertzian contact damage in silicon nitride matrix prepared by tape casting and gas pressure sintering (GPS) is discussed. Hertzian indentations with different loads were applied to follow the evolution of damage in these whisker-reinforced composites. The morphology of contact damage was investigated by using optical microscopy, as well as electron microscopy. With increasing β-silicon nitride whiskers content in α-silicon nitride, the porosity of materials increased and the micro structure of matrix became finer. With decreasing grain size, the subsurface contact damage increased by increasing crack length. The samples with 2 mass % β-silicon nitride addition had showed shallow ring crack and quasi-plastic deformation. On the other hand, for sample with 10 mass % β-silicon nitride whisker added sample and coarse microstructures subsurface deformation was not observed. Copyright (2002) AD-TECH - International Foundation for the Advancement of Technology Ltd

  2. Epoxy coatings electrodeposited on aluminium and modified aluminium surfaces

    Directory of Open Access Journals (Sweden)

    Lazarević Zorica Ž.

    2002-01-01

    Full Text Available The corrosion behaviour and thermal stability of epoxy coatings electrodeposited on modified aluminum surfaces (anodized, phosphatized and chromatized-phosphatized aluminium were monitored during exposure to 3% NaCl solution, using electrochemical impedance spectroscopy (EIS and thermogravimetric analysis (TGA. Better protective properties of the epoxy coatings on anodized and chromatized-phosphatized aluminum with respect to the same epoxy coatings on aluminum and phosphatized aluminum were obtained: higher values of Rp and Rct and smaller values of Cc and Cd, from EIS, and a smaller amount of absorbed water inside the coating, from TGA. On the other hand, a somewhat lower thermal stability of these coatings was obtained (smaller values of the ipdt temperature. This behavior can be explained by the less porous structure of epoxy coatings on anodized and chromatized-phosphatized aluminum, caused by a lower rate of H2 evolution and better wet ability.

  3. Influence of aluminium incorporation on the structure of ZrN films deposited at low temperatures

    International Nuclear Information System (INIS)

    We have studied the influence of Al incorporation in the crystalline structure of ZrN thin films deposited by dc magnetron sputtering at low temperature. The amount of aluminium in the films depends directly on the power applied to the aluminium cathode during the deposition. Energy dispersive x-ray analysis and x-ray diffraction (XRD) were used to obtain the chemical composition and crystalline structure of the films, respectively. When Al atoms are incorporated into the ZrN coatings, the strong ZrN (2 0 0) orientation is modified by a combination of other ones such as ZrN (1 1 1), Zr3N4 (2 1 1) and hexagonal AlN (1 0 0) as detected from the XRD spectra for high aluminium concentrations. Fourier-transform infrared spectroscopy allowed us to identify oxides and nitrides, ZrO, AlO and AlN, incorporated into the deposited films. The effect of a bias voltage applied to the substrate has also been investigated and related to the changes in the microstructure and in the nanohardness values of the ZrAlN films.

  4. Influence of aluminium incorporation on the structure of ZrN films deposited at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Araiza, J J [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Paseo a la Bufa esq, Calzada Solidaridad s/n 98060, Zacatecas (Mexico); Sanchez, O [Departamento de Fisica e Ingenieria de Superficies, Instituto de Ciencia de Materiales de Madrid-CSIC, C/ Sor Juana Ines de la Cruz 3, 28049 Cantoblanco, Madrid (Spain)], E-mail: olgas@icmm.csic.es

    2009-06-07

    We have studied the influence of Al incorporation in the crystalline structure of ZrN thin films deposited by dc magnetron sputtering at low temperature. The amount of aluminium in the films depends directly on the power applied to the aluminium cathode during the deposition. Energy dispersive x-ray analysis and x-ray diffraction (XRD) were used to obtain the chemical composition and crystalline structure of the films, respectively. When Al atoms are incorporated into the ZrN coatings, the strong ZrN (2 0 0) orientation is modified by a combination of other ones such as ZrN (1 1 1), Zr{sub 3}N{sub 4} (2 1 1) and hexagonal AlN (1 0 0) as detected from the XRD spectra for high aluminium concentrations. Fourier-transform infrared spectroscopy allowed us to identify oxides and nitrides, ZrO, AlO and AlN, incorporated into the deposited films. The effect of a bias voltage applied to the substrate has also been investigated and related to the changes in the microstructure and in the nanohardness values of the ZrAlN films.

  5. Premature thermal fatigue failure of aluminium injection dies with duplex surface treatment

    International Nuclear Information System (INIS)

    Research highlights: → The premature failure of an aluminium injection die with a duplex surface treatment (plasma nitriding and physical vapor deposition coating) was investigated. → The origin of failure was attributed to the sulfur inclusions introduced into the surface of the tool by a sulfur-impregnated grinding stone used in the final polishing operation. → The low adhesion of the CrN coating on the sulfur inclusions led to the spalling of the coating, the exposure of the substrate material and the nucleation of cracks. → New evidence is presented on the influence of surface preparation and manufacturing processes on aluminium injection tool performance. - Abstract: The premature failure of an aluminium injection die with a duplex surface treatment (plasma nitriding and physical vapor deposition coating) was investigated, in an effort to identify the causes of such premature failure of the component. The manufacturing and the operating conditions were documented. Analytical tools were used, including scanning electron microscopy with energy dispersive X-ray capability, X-ray diffraction, and instrumented microhardness testing. Preliminary observations showed a microstructure of coarse tempered martensite, and a considerably rough surface with porosity and cracks. A detailed analysis of crack initiation sites identified sulfur inclusions in the subsurface, underneath the coating. A further revision of the processing conditions revealed that a sulfur-impregnated grinding stone had been used to polish the die. The chemical composition of such grinding stone matched that of the inclusions found in the subsurface of the failed component. Thus, searched causes of premature failure could be discussed on the lights of the present findings.

  6. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    Science.gov (United States)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  7. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid;

    2014-01-01

    -life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a...... monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of...

  8. Aluminium Process Fault Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Nazatul Aini Abd Majid

    2015-01-01

    Full Text Available The challenges in developing a fault detection and diagnosis system for industrial applications are not inconsiderable, particularly complex materials processing operations such as aluminium smelting. However, the organizing into groups of the various fault detection and diagnostic systems of the aluminium smelting process can assist in the identification of the key elements of an effective monitoring system. This paper reviews aluminium process fault detection and diagnosis systems and proposes a taxonomy that includes four key elements: knowledge, techniques, usage frequency, and results presentation. Each element is explained together with examples of existing systems. A fault detection and diagnosis system developed based on the proposed taxonomy is demonstrated using aluminium smelting data. A potential new strategy for improving fault diagnosis is discussed based on the ability of the new technology, augmented reality, to augment operators’ view of an industrial plant, so that it permits a situation-oriented action in real working environments.

  9. Deformation features of aluminium in tensile tests

    International Nuclear Information System (INIS)

    It is presented a method to analyse stress-strain curves. Plastic and elastic strains were studied. The strains were done by tensile tests in four types of materials: highly pure aluminium, pure aluminium, commercially pure aluminium and aluminium - uranium. The chemical compositions were obtained by spectroscopy analysis and neutron activation analysis. Tensile tests were carried out at three strain rates, at room temperature, 100,200, 300 and 4000C, with knives extensometer and strain-gages to studied the elastic strain region. A multiple spring model based on two springs model to analyse elastic strain caused by tests without extensometers, taking in account moduli of elasticity and, an interactive analysis system with graphic capability were developed. It was suggested a qualitative model to explain the quantized multielasticity of Bell. (M.C.K.)

  10. DEPOSITION OF TiBN HARD FILMS ON HOT-WORKING-STEEL DIES FOR ALUMINIUM EXTRUSION VIA A DUPLEX PROCESS

    Institute of Scientific and Technical Information of China (English)

    K. MUller

    2001-01-01

    Hot working steels have been used as die materials for hot extrusion of aluminium.Due to tribological interaction at elevated temperature between the die bearing and thesurface of extruded aluminium profiles, not only the surface quality of the extrudedproduct, but also the lifetime of the dies decreases. Deposition of TiBN hard films onthe die bearing could improve the die performance. Treatment should be done in aduplex process process combining a plasma nitriding pretreatment (PN) and a plasmaassisted chemical vapour deposition (PACVD) of TiBN. In this study the influence ofthe process conditions on the properties of the duplex coatings was investigated. Therelationship between structure and mechanical property was researched. For testingthese TiBN hardfilms under elevated temperature conditions and for comparison withother possible coatings special extrusion dies with different coated bearings were used.The extrusion trials were performed on the 8MN-extrusion press at the research anddevelopment center for extrusion, Technical University of Berlin.

  11. Investigation & Analysis of Different Aluminium Alloys t

    OpenAIRE

    Nibedita Sethi*¹,; Ajit Senapati²

    2014-01-01

    Aluminium alloy LM-29, A-356 AND A-6060 was fabricated in sand casting method. Mach inability of aluminium alloy LM-29, A-356 AND A-6060 was investigated and evaluate the mach inability studying the different parameter such as cutting force, surface roughness, chip thickness, and power consumption during turning at different cutting speed and constant depth of cut and feed rate. In this paper also studies the mechanical properties means hardness, density and tensile strength o...

  12. Removal of aluminium from drinking water

    International Nuclear Information System (INIS)

    Aluminium in drinking water comes from natural sources and the alum used as coagulant in the water treatment process. Exposure to aluminium has been implicated in dialysis dementia, Parkinson and Alzheimer's disease. Drinking water containing aluminium was considered to be one of the main sources of Al intake into human body. For this reason, the removal of aluminium from drinking water is vital to our health. In this study, removal of aluminium was carried out by using a chelating resin. To achieve the purpose, two chelating resin iontosorb oxin (IO) and poly hydroxamic acid (PHA) were used. The effects of concentration, pH, stirring time and resin amount was investigated. The concentration range varied between 10 and 500 ppb, pH range was between 2 and 12, stirring time between 5 and 60 minutes, and resin amount between 100 and 1500 mg. The optimum conditions of these resins were determined in a batch system. The results obtained showed that the optimum condition to remove aluminium for poly hydroxamic acid and iontosorb was pH 5-8 and pH 4-9; concentration range between 50-500 ppb, and 150-500 ppb, resin amount 200 mg and the stirring time was 20 minutes, respectively. (author)

  13. Ongoing characterization of passivated aluminium nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Q.S.M.; Fouchard, R.C.; Turcotte, A-M.; Abdel-Qader, Z.; Jones, D.E.G. [Natural Resources Canada, CANMET, Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2002-04-01

    For characterization, the thermal behaviour of two aluminium nanopowders - Alss and Alssef - in air was determined using differential scanning calorimetry (DSC), simultaneous thermogravimetry-DTA (TG-DTA) and accelerating rate calorimetry (ARC). Alss and Alssef were found to be less reactive to air than previously determined for Als And Alex, possibly due to their thicker and different type of passivating layer. Stability determination for Alss and Alssef in a wet oxidizing environment was carried out using ARC, whereas outgassing behaviour of mixtures of ammonium dinitramide (ADN) and the various aluminium powders was investigated using TG-DTA-FTIR-MS (Fourier Transform Infrared Spectrometry-Mass Spectrometry). The addition of various aluminium powders resulted in only minimal effect on the thermal stability of ADN. Electrostatic discharge, friction sensitivities of ADN and its mixtures with various aluminium powders, and thermal stability and sensitivity of mixtures of nano-sized molybdenum trioxide with aluminium nanopowders were also studied. The electrostatic discharge sensitivity of molybdenum trioxide was shown to increase by the addition of aluminium nanopowders. 23 refs., 5 tabs., 7 figs.

  14. Aluminium exclusion and aluminium tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    Ivano eBrunner

    2013-06-01

    Full Text Available The aluminium (Al cation Al3+ is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3+ conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al3+ from root cells (exclusion mechanisms and those that enable plants to tolerate Al3+ once it has entered the root and shoot symplast (internal tolerance mechanisms. The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al3+ exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al3+ adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.

  15. Optical characterization of gallium nitride

    NARCIS (Netherlands)

    Kirilyuk, Victoria

    2002-01-01

    Group III-nitrides have been considered a promising system for semiconductor devices since a few decades, first for blue- and UV-light emitting diodes, later also for high-frequency/high-power applications. Due to the lack of native substrates, heteroepitaxially grown III-nitride layers are usually

  16. Single-layer graphene on silicon nitride micromembrane resonators

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Silvan; Guillermo Villanueva, Luis; Amato, Bartolo; Boisen, Anja [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, 2800 Kongens Lyngby (Denmark); Bagci, Tolga; Zeuthen, Emil; Sørensen, Anders S.; Usami, Koji; Polzik, Eugene S. [QUANTOP, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Taylor, Jacob M. [Joint Quantum Institute/NIST, College Park, Maryland 20899 (United States); Herring, Patrick K.; Cassidy, Maja C. [School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Charles M. [Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Cheol Shin, Yong; Kong, Jing [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-02-07

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization of such membranes would enable an electronic integration with the prospect for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling of graphene covered membranes is found to be equal to a perfectly conductive membrane, without significantly adding mass, decreasing the superior mechanical quality factor or affecting the optical properties of pure SiN micromembranes. The concept of graphene-SiN resonators allows a broad range of new experiments both in applied physics and fundamental basic research, e.g., for the mechanical, electrical, or optical characterization of graphene.

  17. Single-layer graphene on silicon nitride micromembrane resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Bagci, Tolga; Zeuthen, Emil;

    2014-01-01

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization of such membranes would enable an electronic integration with the prospe...... new experiments both in applied physics and fundamental basic research, e.g., for the mechanical, electrical, or optical characterization of graphene....... for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling...... of graphene covered membranes is found to be equal to a perfectly conductive membrane, without significantly adding mass, decreasing the superior mechanical quality factor or affecting the optical properties of pure SiN micromembranes. The concept of graphene-SiN resonators allows a broad range of...

  18. Heat treatment of aluminium strip coils; Gluehbehandlung von Aluminium-Bandbunden

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Dominik; Dambauer, Georg [LOI Thermprocess GmbH, Essen (Germany)

    2012-08-15

    Nowadays, aluminium strip coils are increasingly heat-treated in single-coil lifting hearth furnaces SCL. Flexible, individual heat treatment allows fast reactions to short term requirements for the production of aluminium strip and offers energy saving possibilities. The following report describes the advantages of single-coil hearth furnaces in terms of flexibility, energy consumption and possible configurations. (orig.)

  19. Design of welded aluminium connections (Entwurf und Berechnung von Aluminium Schweissverbindungen)

    NARCIS (Netherlands)

    Soetens, F.

    1998-01-01

    In the past two decades considerable research effort has been put into welded aluminium connections in order to better understand their structural behaviour and to up-date the design rules in the existing standards at the time [1]. Since weids in aluminium are more critical compared to steel, the ab

  20. TEM investigation of aluminium containing precipitates in high aluminium doped silicon carbide

    International Nuclear Information System (INIS)

    Full text: Silicon carbide is a promising semiconductor material for applications in high temperature and high power devices. The successful growth of good quality epilayers in this material has enhanced its potential for device applications. As a novel semiconductor material, there is a need for studying its basic physical properties and the role of dopants in this material. In this study, silicon carbide epilayers were grown on 4H-SiC wafers of (0001) orientation with a miscut angle of 8 deg at a temperature of 1550 deg C. The epilayers contained regions of high aluminium doping well above the solubility of aluminium in silicon carbide. High temperature annealing of this material resulted in the precipitation of aluminium in the wafers. The samples were analysed by secondary ion mass spectrometry and transmission electron microscopy. Selected area diffraction studies show the presence of aluminium carbide and aluminium silicon carbide phases. Copyright (2002) Australian Society for Electron Microscopy Inc

  1. Glow-discharge nitriding of gears

    International Nuclear Information System (INIS)

    The method of glow-discharge nitriding of gear parts made of 30Kh2NMFA steel is introduced. The diffusion saturation is carried out in the atmosphere of dissociated ammonia at the temperature of 520-540 deg C and 200-800 Pa pressure for 16-40 h depending on the required thickness of the nitrided layer (0.2-0.5 mm). The structure of the nitrided metal is a layer of nitride compounds of the Fe4N type and diffusion zone enriched with nitrides. Glow-discharge nitrided parts with 600-650 HV strength retain certain wear resistance and fatigue strength as compared with gas nitriding

  2. Water atomised aluminium alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Neikov, O.D.; Vasilieva, G.I.; Sameljuk, A.V.; Krajnikov, A.V

    2004-10-10

    The new rapid solidification (RS) process based on high-pressure water atomisation (WA) of the melt for manufacturing of advanced aluminium alloys was realised in the form of a pilot plant. The problems of safe operation in the course of Al alloy powder production and powder quality were solved by the use of water solutions of inhibitors, by the control of suspension temperature and hydrogen ion exponent (pH), by the hydraulic classification of atomised products, and by the optimisation of dehydration procedure. The rate of powder-water interaction strongly depends on the value of pH. While the rate of room temperature reactions is very slow at pH 3.0-4.0, the increase of pH to 6.0 leads to an intensive powder oxidation. A set of powder metallurgy (PM) alloys for various applications was produced on the base of water atomised powders. The characteristics of tensile strength of such alloys essentially exceed those of cast materials of similar compositions.

  3. Water atomised aluminium alloy powders

    International Nuclear Information System (INIS)

    The new rapid solidification (RS) process based on high-pressure water atomisation (WA) of the melt for manufacturing of advanced aluminium alloys was realised in the form of a pilot plant. The problems of safe operation in the course of Al alloy powder production and powder quality were solved by the use of water solutions of inhibitors, by the control of suspension temperature and hydrogen ion exponent (pH), by the hydraulic classification of atomised products, and by the optimisation of dehydration procedure. The rate of powder-water interaction strongly depends on the value of pH. While the rate of room temperature reactions is very slow at pH 3.0-4.0, the increase of pH to 6.0 leads to an intensive powder oxidation. A set of powder metallurgy (PM) alloys for various applications was produced on the base of water atomised powders. The characteristics of tensile strength of such alloys essentially exceed those of cast materials of similar compositions

  4. Aluminium as heating fuel. Tests with aluminium powder prove suitability in principle. Aluminium als Heizungs-Brennstoff. Versuche mit Aluminiumpulver beweisen prinzipielle Eignung

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.

    1990-12-01

    Tests prove that aluminium powder is perfectly suited as fuel and storage material for solar energy. The combustion product itself is again the base material for aluminium production, i.e. aluminium can be recycled. There are three problematic areas: 1. flame stability, 2. combustion duration and 3. environmental compatibility. Further development projects will aim at the construction of practice-orientated plants in which combustion, heat extraction and recovery of aluminium oxide is combined. A further aim is the melting burner to which aluminium is supplied in form of wires, cuttings or rods. (BWI).

  5. 3-dimensional shaped aluminium foam sandwiches

    Energy Technology Data Exchange (ETDEWEB)

    Baumeister, J. [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung, Bremen (Germany); Baumgaertner, F. [Schunk Sintermetalltechnik, Giessen (Germany); Gers, H. [Honsel AG, Meschede (Germany); Seeliger, W. [Wilhelm Karmann GmbH, Osnabrueck (Germany)

    2000-07-01

    3-dimensional shaped sandwich panels with a very high stiffness can be produced in an elegant way by combining aluminium face sheets with an aluminium foam core. For this, a mixture of aluminium powder and a foaming agent is compressed to a semi-finished product of nearly vanishing porosity by extrusion, powder rolling or hot isostatic pressing. The resulting foamable semi-finished aluminium material is roll clad with sheets of conventional sheet or aluminium. As a result a precursor material is obtained consisting of two face sheets which are metallurgically bonded to the foamable core layer. This sandwich precursor material can be shaped into a 3-dimensional part by conventional techniques, e.g. by stamping or deep drawing. In a final step the foamable precursor material is heated up to the melting point of the core layer thus initiating its expansion into the desired 3-dimensional shaped sandwich structure. The porosity of the foamed core layer is in the range from 80-90% so that the integral density of the sandwich structure can be as low as 0,7 g/cm{sup 3}. The sandwich materials combine the low weight and high bending stiffness with the advantages of the face sheets, i.e. the high strength and weldability. The manufacturing process will be described in detail and the material properties will be shown. Current and future possible applications will be outlined as well as concrete parts produced up to date. (orig.)

  6. Electrospun Gallium Nitride Nanofibers

    International Nuclear Information System (INIS)

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  7. Effect of aluminium phosphate as admixture on oxychloride cement

    Indian Academy of Sciences (India)

    M P S Chandrawat; R N Yadav

    2000-02-01

    The effect of admixing of aluminium phosphate on oxychloride cement in the matrix has been investigated. It is shown that aluminium phosphate retards the setting process of the cement and improves water-tightness.

  8. Solidification of spent TBP solvent with aluminium chloride compounds

    International Nuclear Information System (INIS)

    The new techniques for processing spent TBP was investigated. It was proved that treatment of TBP containing DBP with aluminium chloride resulted in the formation of aluminium phosphate suitable for long term storage and final disposal

  9. Determining the applicability of liquid alloy nitriding in fabrication of Al-AlN particle composites

    Directory of Open Access Journals (Sweden)

    J. Śleziona

    2008-08-01

    Full Text Available One of the possible techniques of the fabrication of dispersion-hardened composites is by in situ reaction between the liquid alloy and gas. The study presents the results of the research on nitriding of liquid aluminium alloy containing Mg and Ti as alloying elements under the conditions of high pressure comprised in the range of 150-1000hPa at the temperature of up to 1100oC. It has been stated that under the applied conditions of the synthesis it is possible to obtain the AlN nitride, but it is formed on the liquid alloy surface and as a deposit on the surface of the crucible. Some results of the analysis of the phase constitution obtained in the fabricated products were presented along with the structure of these products.

  10. Nitride fuel development in Japan

    International Nuclear Information System (INIS)

    Nitride fuel for ADS has been developed by Japan Atomic Energy Agency (JAEA) under a double strata fuel cycle concept. In this case the nitride fuel contains MA elements as a principal component and is diluted by inert materials in place of U, which is totally different from the fuel for power reactors. So the fuel fabrication manner, fuel properties and irradiation behaviour have to be investigated in detail as well as the treatment of spent fuel. Through the experimental R&D, technical feasibility of nitride fuel cycle for the transmutation of MA will be demonstrated

  11. Nitriding iron at lower temperatures.

    Science.gov (United States)

    Tong, W P; Tao, N R; Wang, Z B; Lu, J; Lu, K

    2003-01-31

    The microstructure in the surface layer of a pure iron plate was refined at the nanometer scale by means of a surface mechanical attrition treatment that generates repetitive severe plastic deformation of the surface layer. The subsequent nitriding kinetics of the treated iron with the nanostructured surface layer were greatly enhanced, so that the nitriding temperature could be as low as 300 degrees C, which is much lower than conventional nitriding temperatures (above 500 degrees C). This enhanced processing method demonstrates the technological significance of nanomaterials in improving traditional processing techniques and provides a new approach for selective surface reactions in solids. PMID:12560546

  12. Steam Assisted Accelerated Growth of Oxide Layer on Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Yuksel, Serkan; Jellesen, Morten Stendahl; Møller, Per; Ambat, Rajan

    2013-01-01

    Corrosion resistance of aluminium alloys is related to the composition and morphology of the oxide film on the surface of aluminium. In this paper we investigated the use of steam on the surface modification of aluminium to produce boehmite films. The study reveals a detailed investigation of the...... effect of vapour pressure, structure of intermetallic particles and thickness of boehmite films on the corrosion behaviour of aluminium alloys....

  13. Advances in development and application of aluminium batteries

    DEFF Research Database (Denmark)

    Qingfeng, Li; Zhuxian, Qiu

    2001-01-01

    Aluminium has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer at aluminium surface is however detrimental to its performance to achieve its reversible potential, and also causing the delayed activation of...... aluminium batteres, especially aluminium-air batteries, and a wide range of their applications from emergency power supplies, reserve batteries field portable batteries, to batteries for electric vehicles and underwater propulsion....

  14. Friction stir welding (FSW) of aluminium foam sandwich panels

    OpenAIRE

    M. Bušić; Kožuh, Z.; D. Klobčar; Samardžić, I.

    2016-01-01

    The article focuses on the influence of welding speed and tool tilt angle upon the mechanical properties at the friction stir welding of aluminium foam sandwich panels. Double side welding was used for producing butt welds of aluminium sandwich panels applying insertion of extruded aluminium profile. Such insertion provided lower pressure of the tool upon the aluminium panels, providing also sufficient volume of the material required for the weldment formation. Ultimate tensile strength and f...

  15. Study on hardening mechanisms in aluminium alloys

    Directory of Open Access Journals (Sweden)

    P. K. Mandal

    2016-01-01

    Full Text Available The Al-Zn-Mg alloys are most commonly used age-hardenable aluminium alloys. The hardening mechanism is further enhanced in addition of Sc. Sc additions to aluminium alloys are more promising. Due to the heterogeneous distribution of nano-sized Al3Sc precipitates hardening effect can be accelerated. Mainly, highlight on hardening mechanism in Al-Zn-Mg alloys with Sc effect is to study. In addition, several characterisations have been done to age-hardening measurements at elevated temperatures from 120oC to 180 oC. The ageing kinetics has also been calculated from Arrhenius equation. Furthermore, friction stir processing (FSP can be introduced to surface modification process and hardened the cast aluminium alloys. In this study, hardening mechanism can be evaluated by Vicker’s hardness measurement and mechanical testing is present task.

  16. Mechanical characteristics of aluminium / aluminium and aluminium / steel joints used for lightening of automobile bodies; Caracteristiques mecaniques d'assemblages aluminium / aluminium et aluminium / acier utilises pour l'allegement des carrosseries automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Kosuge, Haraga [Mitsubishi Electric Corp., Centre de R and D des Technologies Avancees, Dept. des Materiaux et des Eco-Materiaux (Japan)

    2001-06-01

    All the possible solutions used for the steel-aluminium composite bonds are not equal. The riveting, linked or not to the bonding, give the best results. The clinching requires an increase of thicknesses for a mechanical resistance equal to those of homogeneous joints. (O.M.)

  17. Corrosion behaviour of borated aluminium used as neutron absorber

    International Nuclear Information System (INIS)

    The electrochemical behaviour of pure and borated aluminium was examined. Measurements were performed in two different electrolytes at 90 C containing different trace-amounts of chloride. For borated aluminium current transients, i.e. metastable depassivation events were found. It is suggested to attribute these transients to less stable passivation layers in comparison to pure aluminium

  18. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    OpenAIRE

    B. Bobic; Mitrovic, S.; M. Babic; I. Bobic

    2010-01-01

    The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion) was discussed. Some corrosion protection methods of aluminium based MMCs were described

  19. Internal friction in iron-aluminium alloys having a high aluminium content

    International Nuclear Information System (INIS)

    By using a torsion pendulum to measure the internal friction of iron-aluminium alloys containing between 25 and 50 atom per cent of aluminium, it has been possible to show the existence of three damping peaks due to interstitial carbon. Their evolution is followed as a function of the carbon content, of the thermal treatment and of the aluminium content. A model based on the preferential occupation of tetrahedral sites is proposed as an interpretation of the results. A study of the Zener peak in these substitution alloys shows also that a part of the short distance disorder existing at high temperatures can be preserved by quenching. (author)

  20. Diamond grooving of rapidly solidified optical aluminium

    Science.gov (United States)

    Abou-El-Hossein, Khaled; Hsu, Wei-Yao; Ghobashy, Sameh; Cheng, Yuan-Chieh; Mkoko, Zwelinzima

    2015-10-01

    Traditional optical aluminium grades such as Al 6061 are intensively used for making optical components for applications ranging from mould insert fabrication to laser machine making. However, because of their irregular microstructure and relative inhomogeneity of material properties at micro scale, traditional optical aluminium may exhibit some difficulties when ultra-high precision diamond turned. Inhomogeneity and micro-variation in the material properties combined with uneven and coarse microstructure may cause unacceptable surface finish and accelerated tool wear, especially in grooving operation when the diamond tool edge is fully immersed in the material surface. Recently, new grades of optical aluminium that are featured by their ultra-fine microstructure and improved material properties have been developed to overcome the problem of high tool wear rates. The new aluminium grades have been developed using rapid solidification process which results in extremely small grain sizes combined with improved mechanical properties. The current study is concerned with investigating the performance of single-point diamond turning when grooving two grades of rapidly solidified aluminium (RSA) grades: RSA905 which is a high-alloyed aluminium grade and RSA443 which has a high silicon content. In this study, two series of experiments employed to create radial microgrooves on the two RSA grades. The surface roughness obtained on the groove surface is measured when different combinations of cutting parameters are used. Cutting speed is varied while feed rate and depth of cut were kept constant. The results show that groove surface roughness produced on RSA443 is higher than that obtained on RSA905. Also, the paper reports on the effect of cutting speed on surface roughness for each RSA grade.

  1. Study of the Active Screen Plasma Nitriding

    Institute of Scientific and Technical Information of China (English)

    Zhao Cheng; C. X. Li; H. Dong; T. Bell

    2004-01-01

    Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carder in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.

  2. Rapidly solidified aluminium for optical applications

    OpenAIRE

    Gubbels, G.P.H.; Venrooy, B.W.H.; Bosch, A.J.; Senden, R

    2008-01-01

    This paper present the results of a diamond turning study of a rapidly solidified aluminium 6061 alloy grade, known as RSA6061. It is shown that this small grain material can be diamond turned to smaller roughness values than standard AA6061 aluminium grades. Also, the results are nearly as good as nickel plated surfaces, but the RSA6061 has the advantage that no additional production steps are needed and that no bi-metallic bending or delamination can occur in a thermally changing environmen...

  3. Defect generation during solidification of aluminium foams

    International Nuclear Information System (INIS)

    The reason for the frequent occurrence of cell wall defects in metal foams was investigated. Aluminium foams often expand during solidification, a process which is referred as solidification expansion (SE). The effect of SE on the structure of aluminium foams was studied in situ by X-ray radioscopy and ex situ by X-ray tomography. A direct correlation between the magnitude of SE and the number of cell wall ruptures during SE and finally the number of defects in the solidified foams was found.

  4. Synthesis and Characterization of TiB2 Reinforced Aluminium Matrix Composites: A Review

    Science.gov (United States)

    Kumar, Narendra; Gautam, Gaurav; Gautam, Rakesh Kumar; Mohan, Anita; Mohan, Sunil

    2015-09-01

    Aluminium-matrix composites (AMCs) are developed to meet the demands of light weight high performance materials in aerospace, automotive, marine and other applications. The properties of AMCs can be tailored suitably by combinations of matrix, reinforcement and processing route. AMCs are one of the most attractive alternatives for the manufacturing of light weight and high strength parts due to their low density and high specific strength. There are various techniques for preparing the AMCs with different reinforcement particles. In AMCs, the reinforcements are usually in the form of metal oxides, carbides, borides, nitrides and their combination. Among the various reinforcements titanium di-boride (TiB2) is of much interest due to its excellent stiffness, hardness, and wear resistance. This paper attempts to provide an overview to explore the possibilities of synthesizing titanium di-boride reinforced AMCs with different techniques. The mechanical and tribological properties of these composites have been emphasized to project these as tribo-materials.

  5. The dissolution and formation enthalpy of alloys and intermetallics of aluminium-lanthanum and aluminium-cerium systems

    International Nuclear Information System (INIS)

    Present article is devoted to dissolution and formation enthalpy of alloys and intermetallics of aluminium-lanthanum and aluminium-cerium systems. Therefore the dissolution temperatures of alloys and intermetallics of aluminium-lanthanum and aluminium-cerium systems were defined by means of calorimetry method. The enthalpy of formation of intermetallics of Al-Ce system was defined as well. The regularities in changes of dissolution and formation enthalpy of alloys and intermetallics depending on composition were studied.

  6. Reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Reaction-bonded silicon nitride (RBSN) has been characterized. The oxidation behaviour in air up to 15000C and 3000 h and the effects of static and cyclic oxidation on room-temperature strength have been studied. (orig./IHOE)

  7. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  8. China’s Production and Market of Aluminium Extruded Profiles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Chinese aluminium extrusion industry came into existence at the early 1950s with most products used in military industry and national defence.At the beginning of 1980s,the produc- tion of construction aluminium profiles started simultaneously in North and South China.In the following thirty years,the aluminium extru- sion industry entered into a quickly developing stage with a focus on construction aluminium profiles.With the blooming real estate industry, the demand for construction aluminium profiles from the domestic market has a tendency of yearly increase.From 2000,the quick devel- opments of China’s auto and railway vehicle

  9. Aluminium composite casting dispersion reinforced with iron-aluminium and silicon carbide phases

    OpenAIRE

    B. Formanek; J. Piątkowski; J. Szymszal

    2010-01-01

    Aluminium matrix composite with dispersion-reinforced, made by similar to stircasting process was characterised. The mixture of powders was produced by the process of mechanical agglomeration of powdered FexAly and SiC with aluminium. The chemical composition ofagglomerates was selected in a way such as to obtain 25 wt.% reinforcement of the AlSi9Cu4 silumin matrix. Applying thermal analysis ATD, the alloy solidification process was determined, reading out the typical solidification parameter...

  10. Influence of aluminium alloy type on dissimilar friction stir lap welding of aluminium to copper

    OpenAIRE

    Galvão, I; Verdera, D; Gesto, D; Loureiro, A.; Rodrigues, D. M.

    2013-01-01

    A heat-treatable (AA 6082) and a non-heat treatable (AA 5083) aluminium alloys were friction stir lap welded to copper using the same welding parameters. Macro and microscopic analysis of the welds enabled to detect important differences in welding results, according to the aluminium alloy type. Whereas important internal defects, resulting from ineffective materials mixing, were detected for the AA 5083/copper welds, a relatively uniform material mixing was detected in the AA 6082/copper wel...

  11. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots

    OpenAIRE

    Sun, Chengliang; Lu, Lingli; Yu, Yan; Liu, Lijuan; Hu, Yan; Ye, Yiquan; Jin, Chongwei; Lin, Xianyong

    2015-01-01

    Highlight Aluminium-induced nitric oxide production enhances the aluminium sensitivity of wheat by decreasing pectin methylation of root cell-wall pectin, resulting in greater aluminium binding in root cell walls.

  12. Steam generated conversion coating on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    into functional conversion coatings in order to enhance corrosion resistance and adhesion to paint systems. Chromium based conversion coatings have been extensively used on aluminium alloys to improve adhesion of subsequent paint layers and corrosion resistance. However, the use of hexavalent chromium...

  13. Alloys oxidation of aluminium-scandium system

    International Nuclear Information System (INIS)

    Alloys and compounds of rare earth metals with aluminium thanks to their high corrosion stability, durability and small specific weight find to apply in various new techniques. On the base of carried out investigation it could be recommend as de oxidizing and alloying compositions containing 15-50 % of scandium as in possession of minimal oxidation

  14. Constant structure creep experiments on aluminium

    Czech Academy of Sciences Publication Activity Database

    Milička, Karel

    2011-01-01

    Roč. 49, č. 5 (2011), s. 307-318. ISSN 0023-432X R&D Projects: GA AV ČR IAA2041203 Institutional research plan: CEZ:AV0Z20410507 Keywords : mechanical properties * high temperature deformation * creep * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.451, year: 2011

  15. An ultrafast rechargeable aluminium-ion battery

    Science.gov (United States)

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-01

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g-1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g-1 (equivalent to ~3,000 W kg-1), and to withstand more than 7,500 cycles without capacity decay.

  16. Aluminium hydroxide-induced granulomas in pigs

    DEFF Research Database (Denmark)

    Valtulini, S; Macchi, C; Ballanti, P;

    2005-01-01

    adjuvant) to pigs inoculated twice with apyrogenic bi-distilled water (group water) and to pigs inoculated once with the adjuvant and once with apyrogenic bi-distilled water (group adjuvant/water). Both studies agreed in their conclusions, which indicate that the high amount of aluminium hydroxide was the...

  17. Indentation of aluminium foam at low velocity

    Directory of Open Access Journals (Sweden)

    Shi Xiaopeng

    2015-01-01

    Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.

  18. Technology of obtaining of cryolite and aluminium fluoride from alumina- and fluoride containing wastes of aluminium production

    International Nuclear Information System (INIS)

    This article is devoted to technology of obtaining of cryolite and aluminium fluoride from alumina- and fluoride containing wastes of aluminium production. Thus, the investigations on elaboration of technology of obtaining of cryolite and aluminium fluoride from alumina- and fluoride containing wastes of aluminium production by means of sulfuric acid decomposition method are carried out. The optimal parameters of technological processes are found. The physicochemical analysis of fluoride containing wastes is conducted. The flowsheet of obtaining of cryolite, aluminium fluoride and alumina from alumina- and fluoride containing wastes is presented.

  19. Cathodic Cage Plasma Nitriding: An Innovative Technique

    OpenAIRE

    de Sousa, R. R. M.; de Araújo, F. O.; da Costa, J. A. P.; A. de S. Brandim; de Brito, R. A.; Alves, C

    2012-01-01

    Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN), in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and...

  20. Corrosion of plasma nitrided austenitic stainless steels

    International Nuclear Information System (INIS)

    The corrosion behaviour of plasma nitrided austenitic stainless steel grades AISI 304, 316 and 321 was studied at various temperatures. Certain plasma nitriding cycles included a post-oxidation treatment. The corrosion rates were measured using linear polarisation technique. Results showed that corrosion rate increased with the plasma nitriding temperature. Minimum deterioration occurred at 653K. (author). 2 tabs., 4 figs., 10 refs

  1. Ion nitridation - physical and technological aspects

    International Nuclear Information System (INIS)

    Ion nitridation, is a technique which allows the formation of a controlled thickness of nitrides in the surface of the material, using this material as the cathode in a low pressure glow discharge, which presents many advantages over the conventional method. A brief review of the ion nitriding technique, the physical fenomena involved, and we discuss technological aspects of this method, are presented. (Author)

  2. Composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method including hydrothermal modification of the layer

    Science.gov (United States)

    Tacikowski, M.; Grzonka, J.; Płociński, T.; Jakieła, R.; Pisarek, M.; Wierzchoń, T.

    2015-08-01

    The microstructure and properties of the composite TiN-Ti-Al type titanium nitride surface layer with a sub-layer of titanium and aluminium produced on AZ91D magnesium alloy using a hybrid PVD method including final sealing by hydrothermal treatment were investigated. The results were analysed in terms of the microstructure-properties correlation, to approach the role of the sub-layers and the mechanisms involved in the properties improvement. The microstructure investigations indicate that the composite titanium nitride layers are tight and have nano-crystalline, diffusive character and multi zone microstructure of the type TixOy-TiN-Ti-Al-Al3Mg2-Al12Mg17. The significant corrosion resistance improvement of the AZ91D alloy obtained using the sealed composite titanium nitride layers was found to be the result of a synergistic mechanism which combined hydrothermal treatment of the layer with an action of aluminium sub-layer which is critical to make the sealing effective. The diffusive bonding via Mg-Al zone improves adhesion and the load bearing capacity of titanium nitride layers in wear conditions.

  3. III-Nitride nanowire optoelectronics

    Science.gov (United States)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  4. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    Directory of Open Access Journals (Sweden)

    Triwiyanto A.

    2014-07-01

    Full Text Available This paper present mathematical model which developed to predict the nitrided layer thickness (case depth of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with varying nitriding temperature and nitriding duration to see whether the model managed to successfully predict the nitrided layer thickness. This model predicted the coexistence of ε-Fe2-3N and γ΄-Fe4N under the present nitriding process parameters. After the validation process, it is proven that the mathematical model managed to predict the nitrided layer growth of the gas nitrided and plasma nitrided of AISI 316L SS up to high degree of accuracy.

  5. Stress relief and texture formation in aluminium nitride by plasma immersion ion implantation

    International Nuclear Information System (INIS)

    The effect on the intrinsic stress in AlN films of applying pulsed bias during cathodic arc deposition has been studied. We find that the stress depends only on the pulse voltage-pulse frequency product, V f. The form of the dependence is well fitted by an exponential function whose parameters can be interpreted physically. The preferred orientation changes progressively with V f, from hexagonal crystallites having their direction in the plane of the film at low V f, to hexagonal crystallites having their direction normal to the plane of the film at high V f. The in-plane orientation may be consistent with energy minimization in a biaxial stress field whereas the normal orientation is consistent with the alignment of a channelling direction with the ion beam

  6. Methodological approach of load sintering of ceramics (superconductor, alumina, alumina-aluminium nitride-magnesia system)

    International Nuclear Information System (INIS)

    Sintering parameters knowledge of ceramic powders by improvements of a high temperature pressing (computer piloting and data acquiring) allow a better control of fabrication and of the desired properties (mechanical, electro-magnetic...). By using experiences plan, maximum of informations are obtained with a minimum of experimental tests. This is applied to the sintering of three compounds; for YBaCuO, the superconductive phase is obtained at 450 deg and without post heat treatment; for Al2O3, mechanical properties and a partial microstructure controls are obtained; for the Al2O3-AlN-MgO system, an optimization of the mechanical properties is obtained. (A.B.). 63 refs., figs., tabs

  7. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    detailed analysis of the structure and morphology of the coating, and interface structure with and without organic top coat. Corrosion performance of the coatings was investigated using electrochemical methods, AASS, and FFC test. The morphology, microstructure, chemical composition, adhesion, and......The extensive demand of aluminium alloys in various industries such as in transportationis mainly due to the high strength to weight ratio, which could be translated into fuel economy and efficiency. Corrosion protection of aluminium alloys is an important aspect for all applications which includes......-friendly alternative processes. In the present work high temperature steam-based process has been investigated as a possible chromate free conversion coating. Investigations in the thesis includes the effect of alloy type, substrate microstructure, surface finish, and various chemistries on the coating formation, and...

  8. Studies on an aluminium-carbon cell

    Science.gov (United States)

    Verma, L. K.

    The current-voltage behaviour of an electrochemical cell that consists of an aluminium anode and a carbon cathode in a medium containing aqueous NH 4SCN has been studied, both in the presence and in the absence of a coating on the carbon electrode. It is found that activation polarization is the main factor that limits the current output when using an untreated carbon electrode. This problem is eliminated by coating the carbon electrode with an in situ deposition of HgI 2. In this condition, the current output is reduced mainly by ohmic polarization. Further studies with a coated HgI 2-carbon cathode and an aluminium anode, in a medium containing SCN - and Cl - ions together with a complexing agent (EDTA, sodium salt), revealed that a cell performance close to ideal, (i.e, showing no appreciable polarization) can be obtained at currents up to 0.6 mA/cm 2 and above.

  9. Straggling of heavy ions in aluminium

    International Nuclear Information System (INIS)

    An effort has been made to determine the straggling in aluminium of 4He, 16O and 35Cl ions of different energies produced by the tandem Van de Graaff at Harwell. The technique consists of scattering the accelerated and collimated ions in a scattering chamber from a 0.100 mg/cm2 gold foil, allowing the scattered ions to pass through a two aperture collimator, using different aluminium foils over one of the apertures and stopping the two emergent beams in a good quality silicon surface barrier detector the output of which is connected to a 4096 channel analyser. The energy widths obtained in the case of helium ions are in fair agreement with both the Bloch and the recent Tschalar (1968) theory. The measured widths in the case of heavy ions are very large and can be explained only if account is taken of their charge distributions in foils. This study should be useful in ion implantation work. (author)

  10. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    OpenAIRE

    Triwiyanto A.; Zainuddin A.; Abidin K.A.Z; Billah M.A; Hussain P.

    2014-01-01

    This paper present mathematical model which developed to predict the nitrided layer thickness (case depth) of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with ...

  11. FSW characterization of 6082 aluminium alloys sheets

    OpenAIRE

    K. Mroczka; A. Pietras

    2009-01-01

    Purpose: The purpose of the investigations was to elaborate a set of FSW parameters for connecting 6082 aluminium alloy sheets allowing to produce welds of highest strength.Design/methodology/approach: The FSW was tried at different speeds and at additional cooling. The welds microstructure was studied using optical and scanning electron microscopes. The mechanical properties of produced connections are discussed regarding their tensile test and microhardness measurements.Findings: The FSW we...

  12. Aluminium-based Coatings for Cadmium Replacement

    OpenAIRE

    Cardilli , Emanuele

    2008-01-01

    Cadmium electroplating is widely used in the aerospace industry for the corrosion protection of high strength steels. Cadmium is also used as compatible coating to reduce the galvanic corrosion generated in the assembly of components manufactured with different materials. However, environmental and safety concerns over the high toxicity of cadmium has led to the investigation of suitable replacements. Aluminium coatings are promising coatings for the replacement of electropl...

  13. Aluminium matrix composites fabricated by infiltration method

    OpenAIRE

    L.A. Dobrzański; M. Kremzer; A. J. Nowak; Nagel, A.

    2009-01-01

    Purpose: The aim of this work is to examine the structure and properties of metal matrix composites obtained by infiltration method of porous ceramic preforms by liquid aluminium alloy.Design/methodology/approach: Ceramic preforms were manufactured by the sintering method of ceramic powder. The preform material consists of powder Condea Al2O3 CL 2500, however, as the pore forming the carbon fibers Sigrafil C10 M250 UNS were used. Then ceramic preforms were infiltrated with liquid eutectic EN ...

  14. Quantitative evaluation of the aluminium titanate formation

    International Nuclear Information System (INIS)

    Samples of aluminium titanate were obtained under isothermal sintering condition in equimolar Al2 O3 Ti O2 powder mixtures at different soaking time intervals. The formation of Al2 Ti O5 and the effect of Si O2 additive in the reaction and densification were analysed. Quantitative evaluation of Al2 Ti O5 was performed by the Rietveld method and by using an internal standard. Both methods were considered appropriated for the presented purpose. (author)

  15. Methods of inoculation of pure aluminium structure

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-03-01

    Full Text Available Purpose: The main aim of investigations was the reduction of grain size and unification of structure for pure Al casting by introduction of small amount of inoculant (less than obligatory standart PN-EN 573-3, which concerning about aluminium purity, with electromagnetic field and variable casting parameters.Design/methodology/approach: To investigations it was used light microscopy and TEM. Surfaces of samples which were prepared for macro- and microstructure analysis were etched with use of solution of: 50g Cu, 400ml HCl, 300ml HNO3 and 300ml H2O. Thin foils for TEM investigations were electropolished with use of 20 ml HClO4 and 80ml CH3OH.Findings: The results of investigations and their analysis show possibility of effective inoculation of pure aluminium structure by use of some factors such as: different materials of the mould, influencing of stirring electromagnetic field into metal during solidification, inoculation by introducing AlTi5B1 inoculant into liquid aluminium and changing the pouring temperature.Research limitations/implications: I further research, authors of this paper are going to application of introduced method of inoculation in industrial tests.Practical implications: The work presents refinement of structure method which are particularly important in continuous and semi – continuous casting where products are used for plastic forming. Large columnar crystals zone result in forces extrusion rate reduction and during the ingot rolling delamination of external layers can occur. Thus, in some cases ingot skinning is needed, which rises the production costs.Originality/value: Contributes to research on size reduction in pure aluminium structure.

  16. Perforation of aluminium alloy thin plates

    OpenAIRE

    ANTOINAT, Léonard; Kubler, Régis; BAROU, Jean Luc; VIOT, Philippe; BARRALLIER, Laurent

    2015-01-01

    Low velocity perforation of aeronautical aluminium alloy sheets 2024 T3 is studied in this paper. After a literature review on recent experiments and models of plate’s perforation, experimental results for 2 thicknesses (2 mm and 4 mm) of plates are presented. Perforation tests are performed with an instrumented drop test. The striker has a large diameter and a conical shape nose. Two models for perforation are presented and calibrated to bring a better understanding of the experiments. The f...

  17. Aluminium phosphide poising: a case report

    International Nuclear Information System (INIS)

    This paper reports the case of a family in which three children were presented at Emergency Room (ER) with poisoning after the use of a pesticide at home. Initially, the cases were managed as routine cases of organophosphorus poisoning; however, the death of two children made the health team members realise that the poison's effects were delayed and devastating. Later, the compound was identified as Aluminium Phosphide (ALP), and the life of the last surviving child in the family was saved. (author)

  18. First wall design of aluminium alloy R-tokamak

    International Nuclear Information System (INIS)

    A design study of a low-activation D-T tokamak Reacting Plasma Project In Nagoya has been finished. The study emphasizes the vacuum vessel and the bumper limiter. Our choice of materials (aluminium vacuum vessel, copper conductors, aluminium TF coil case and lead shield) results in a radiation level of about 1 x 10-3 times that of a TFTR type design, and 1 x 10-4 times that of JET type design, at 2 weeks after one D-T shot. Thick graphite tiles will be fixed directly on the aluminium vacuum vessel using aluminium spring washers and bolts. With this simplified structure of the bumper limiter, the inner surface temperature of the thick aluminium vacuum vessel will be less than 1200C which is required to reduce the overaging effect of the aluminium alloy. (orig.)

  19. Feet sunk in molten aluminium: The burn and its prevention.

    Science.gov (United States)

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. PMID:25687835

  20. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    Science.gov (United States)

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as permeability were observed for any of the three diatoms suggesting that mechanisms of aluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated aluminium. PMID:26921729

  1. Synthesis of chromium nitride powder by carbo-thermal nitriding

    International Nuclear Information System (INIS)

    Fine chromium nitride powders were synthesized by carbo-thermal nitriding from Cr2O3 and carbon black. Thermal nitriding reaction of Cr2O3 and carbon black mixture was investigated by TG-DTA. The products were identified by XRD. Cr3C2 and Cr2 (CN) were formed in the early stage of the reaction, but finally they changed into Cr2N and CrN. Lab-scale syntheses of Cr2N and CrN were carried out using an electric tube furnace. Cr2N was synthesized by firing the mixed powder at 1393 K for 1 hr under nitrogen and hydrogen mixed gas flow, whereas CrN was synthesized by sequentially nitriding of Cr2N at 1173 K. The both synthesized powders showed homogeneous morphology with narrow particle size distribution and average size of about 1 μm. Cr2N and CrN contained 11 and 20 % of nitrogen respectively, sub percents of oxygen and carbon. (author)

  2. Aluminium matrix composites fabricated by infiltration method

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-03-01

    Full Text Available Purpose: The aim of this work is to examine the structure and properties of metal matrix composites obtained by infiltration method of porous ceramic preforms by liquid aluminium alloy.Design/methodology/approach: Ceramic preforms were manufactured by the sintering method of ceramic powder. The preform material consists of powder Condea Al2O3 CL 2500, however, as the pore forming the carbon fibers Sigrafil C10 M250 UNS were used. Then ceramic preforms were infiltrated with liquid eutectic EN AC – AlSi12 aluminum alloy. Stereological and structure investigations of obtained composite materials were made on light microscope. The mechanical properties of obtained composite material were investigated in tensile strength test and hardness test.Findings: It was proved that developed technology of manufacturing of composite materials based on the porous ceramic Al2O3 preforms infiltrated by liquid aluminium alloy ensures expected structure and strength Hardness increased about twice compared to the matrix and this process can be used in practice.Practical implications: The presented metal matrix composites fabrication technology allows to obtain locally reinforced elements and near net shape products.Originality/value: Results show the possibility of obtaining the new aluminium matrix composite materials being the cheaper alternative for other materials based on the ceramic fibers.

  3. Hydrodenitrogenation of pyridine over transition metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Milad, I.K.; Smith, K.J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical Engineering

    1997-11-01

    The use of transition metal nitrides (TMN) as catalysts for hydrodenitrogenation (HDN) was discussed. A study was conducted in which a series of unsupported and supported Mo, Fe, W, Co, Nb, Cr, V and Ti nitrides were examined as catalysts for the HDN of pyridine at atmospheric pressure and 350 degrees C. The catalysts were prepared by temperature programmed nitridation of the metal oxide with NH{sub 3}. It was shown that a single nitride phase was present in each of the catalysts. The Mo nitride showed the greatest activity per gram of catalyst. Co and Fe nitrides showed the highest activities per surface area of the unsupported catalyst. Metal nitrides with lower heats of formation showed higher HDN activity. 1 tab.

  4. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    Science.gov (United States)

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi

    2010-07-01

    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea. PMID:21128417

  5. Behaviour and design of aluminium alloy structural elements

    OpenAIRE

    Su, Meini; 蘇玫妮

    2014-01-01

    Aluminium alloys are nonlinear metallic materials with continuous stress-strain curves that are not well represented by the simplified elastic, perfectly plastic material model used in most existing design specifications. The aims of this study are to develop a more efficient design method for aluminium alloy structures by rationally exploiting strain hardening. The key components of this study include laboratory testing, numerical modelling and development of design guidance for aluminium al...

  6. Friction factor of CP aluminium and aluminium–zinc alloys

    Indian Academy of Sciences (India)

    N Vidhya Sagar; K S Anand; A C Mithun; K Srinivasan

    2006-12-01

    Friction factor has been determined for CP aluminium and aluminium–zinc alloys using ring compression test at different temperatures from 303 K to 773 K. It is found that CP aluminium exhibits sticking whereas Al–Zn alloys do not exhibit sticking at elevated temperatures. Hot working of Al–Zn alloy is easier than that of CP aluminium at 773 K. As zinc content increases up to 10 wt% the friction factor decreases up to 0.02.

  7. Softening Behaviour of Selected Commercially Pure Aluminium Model Alloys

    OpenAIRE

    Sande, Gunnar

    2012-01-01

    A characterization of the softening behaviour of four different commercially pure aluminium alloys has been carried out. The work is related to the MOREAL project (Modelling towards value-added recycling friendly aluminium alloys), where the main goal is to quantify the effect of the elements in recyclable aluminium alloys on microstructure and mechanical properties during thermo-mechanical processing. Typical elements are iron (Fe), silicon (Si) and manganese (Mn), and the alloys studied in ...

  8. Aluminium supplier selection for the automotive parts manufacturer

    OpenAIRE

    M. Cieśla

    2016-01-01

    This paper presents a methodology for selection of the optimal sources of supply, which is also known as the problem of supplier selection. Theoretical considerations are expanded with research related to aluminium supplier selection for a hypothetical manufacturer of aluminium parts for transportation equipment located in Poland. Evaluation of five suppliers of aluminium from Poland, Germany and Slovenia has been conducted using a weighted scoring method, a strengths and weaknesses method an...

  9. Multiply-negatively charged aluminium clusters and fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  10. Tribological characteristics of coatings on aluminium and its alloys

    OpenAIRE

    Abdul-Mahdi, Fadhil S

    1987-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Hard anodising on aluminium and its alloys has been widely practised for many years in order to improve the resistance of the otherwise poor wear characteristics of aluminium. In recent years there has been an increasing interest in other treatments and coatings, on both aluminium and other base metals. The aim of this investigation is to explain the tribological performance and wear mechanis...

  11. Wearing tests on aluminium coated with diamond by triboadhesion

    Institute of Scientific and Technical Information of China (English)

    J.M.RodríguezLelis; B.D.Angulo; J.O.Colín; J.PorcayoCalderón

    2001-01-01

    In this work the results obtained from subjecting aluminium coated with diamond by tri-boadhesion to a wearing process with a plane rider. Here it is shown the ratio of the normal toshearing forces, called friction factor, as an indication of the resistance of the surface. It was foundthat the film of the aluminium coated with diamond resisted three times compared with the oxida-tion film of commercial aluminium, which for the purpose of this work was considered withoutcoating.

  12. Un-optimistic Prospects for the Westward Movement of Aluminium

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>The westward movement of aluminium is essential for the industrial development.Up till now,the northwestern area has planned to construct more than 40 aluminium projects with a total production capacity of over 20 million tons.The future rate of progress of newly constructed projects are directly related to the supplies of the aluminium market,having critical guiding meaning for the trends of

  13. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  14. Synthesis of aluminium nanoparticles by arc evaporation of an aluminium cathode surface

    Indian Academy of Sciences (India)

    M Gazanfari; M Karimzadeh; S Ghorbani; M R Sadeghi; G Azizi; H Karimi; N Fattahi; Z Karimzadeh

    2014-06-01

    Aluminium nanoparticles (Al Nps) are synthesized using arc discharge method by applying direct current between aluminium electrodes in liquid environment without any use of vacuum equipment, heat exchangers, high temperatures furnaces and inert gases. After synthesis of Al Nps, in situ coating process on the nanoparticles was performed immediately. The effects of media on the yield and morphology of aluminium nanoparticles were investigated. Analysis result of the samples indicated that particle size was less than 30 nm, when 120 A/cm2 arc current was used. In addition, coating agent can affect arc velocity, arc stability, morphology and composition of the nanoparticles. Resultant nanoparticles were identified using X-ray powder diffraction (XRD), also their surface morphology was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and finally the accuracy of coating was assessed with infrared (IR) spectroscopy.

  15. Thermal formation of corundum from aluminium hydroxides prepared from various aluminium salts

    Indian Academy of Sciences (India)

    J Temuujin; Ts JADAMBAA; K J D Mackenzie; P Angerer; F Porte; F Riley

    2000-08-01

    Aluminium hydroxides have been precipitated from various aluminium salts and the differences in their thermal behaviour have been investigated. Pseudoboehmite derived from the nitrate, sulfate and chloride all form -Al2O3 at ∼ 400°C but the formation of -Al2O3 at 1200°C occurs more readily in the material derived from the sulfate. This contains a higher concentration of anionic impurities related to differences in the solubility of the original aluminium salts. The sulfate is retained in the gel to higher temperatures at which its eventual decomposition may lead to the formation of a reactive pore structure which facilitates the nucleation of -Al2O3.

  16. Aluminium composite casting dispersion reinforced with iron-aluminium and silicon carbide phases

    Directory of Open Access Journals (Sweden)

    B. Formanek

    2010-10-01

    Full Text Available Aluminium matrix composite with dispersion-reinforced, made by similar to stircasting process was characterised. The mixture of powders was produced by the process of mechanical agglomeration of powdered FexAly and SiC with aluminium. The chemical composition ofagglomerates was selected in a way such as to obtain 25 wt.% reinforcement of the AlSi9Cu4 silumin matrix. Applying thermal analysis ATD, the alloy solidification process was determined, reading out the typical solidification parameters. The methods of light and scanning microscopy were used to reveal the structure of composite casting. Changes in chemical composition and phase composition of particles of the FeAl intermetallic phase in aluminium matrix were confirmed. The structure of silumin casting with matrix containing microregions of ceramic and intermetallic phases, typical of hybrid reinforcements, was obtained.

  17. Cold-impregnated aluminium. A new source of nickel exposure.

    Science.gov (United States)

    Lidén, C

    1994-07-01

    A new technique for finishing anodized aluminium was introduced during the 1980s--cold impregnation with nickel. Nickel is available on the surface of cold-impregnated aluminium, as shown by the dimethylglyoxime test. Chemical analysis with EDXA showed that nickel was in the form of NiSO4. A case of work-related allergic contact dermatitis in an engraver with nickel allergy is reported. It transpired that the patient was exposed to nickel in connection with aluminium. It is concluded that cold-impregnated aluminium is a new source of nickel exposure, probably previously unknown to dermatologists. PMID:7924288

  18. Effects of aluminium surface morphology and chemical modification on wettability

    Science.gov (United States)

    Rahimi, M.; Fojan, P.; Gurevich, L.; Afshari, A.

    2014-03-01

    Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie-Baxter to Wenzel regime upon changing the surface roughness was also observed.

  19. Friction stir welding (FSW of aluminium foam sandwich panels

    Directory of Open Access Journals (Sweden)

    M. Bušić

    2016-07-01

    Full Text Available The article focuses on the influence of welding speed and tool tilt angle upon the mechanical properties at the friction stir welding of aluminium foam sandwich panels. Double side welding was used for producing butt welds of aluminium sandwich panels applying insertion of extruded aluminium profile. Such insertion provided lower pressure of the tool upon the aluminium panels, providing also sufficient volume of the material required for the weldment formation. Ultimate tensile strength and flexural strength for three-point bending test have been determined for samples taken from the welded joints. Results have confirmed anticipated effects of independent variables.

  20. A Reaction Coating on Aluminium Alloys by Laser Processing

    OpenAIRE

    Zhou, X.B.; De Hosson, J. Th. M.

    1993-01-01

    An aluminium oxide layer of 100 µm in thickness has been successfully coated on aluminium alloy 6061 and pure aluminium using a powder mixture of silicon oxide and aluminium by laser processing. A strong Al/Al2O3 interface was formed. The exothermic chemical reaction between SiO2 and Al may promote the metal/oxide wetting and the formation of Al2O3 layer. This new approach of ceramic coating on metals using a chemical reaction of other ceramics with metals may be applied to other systems.

  1. A study on the recycling of aluminium alloy 7075 scrap

    Energy Technology Data Exchange (ETDEWEB)

    Oezer, Goekhan [Yildiz Technical Univ., Yildiz (TR). Balkan Centre of Advanced Casting Technologies (BACAT); Marsoglu, Muezeyyen [Yildiz Technical Univ., Yildiz (Turkey). Dept. for Metal and Materials Science Engineering; Burgucu, Sarp

    2012-07-01

    Aluminium and its alloys have recently become an important metal whose area and amount of usage increase more and more, due to their mechanical properties, recycling ability, and penetrability. If it is considered that the bauxite, which is the raw material of aluminium is rare on earth, and also the area and amount of aluminium usage increases over time, the importance of aluminium recycling goes up. aluminium recycling has become crucial by means of both, the potential of the scrap's dependant increase on usage and the primary aluminium production, as it is providing energy and cost savings. 7xxx grades of scrap are collected with other scrap of aluminium alloys in one turn and recycled all together. As the regain of these alloys is not done by isolation of the various grades, the finally recycled ingots result in lower grades. High value aluminium scrap is regrettably not recovered, as it was anticipated. This study is dealing with 7075 aluminium alloys originated from discharged blow molding tools and the rest piece cuttings of blocks and plates. The material has been subjected to an induction furnace, and has been remelted into small ingots and hardened according to 7075 aluminium alloy parameters (hardening aluminium tooling). [German] Aluminium und seine Legierungen sind in den letzten Jahren aufgrund ihrer mechanischen Eigenschaften, ihrer Recyclingfaehigkeit und ihrer Durchlaessigkeit immer bedeutendere metallische Werkstoffe geworden. Unter Beruecksichtigung, dass Bauxit als Rohmaterial selten auf der Erde vorkommt und der Verbrauch mit der Zeit steigt, waechst die Bedeutung des Recyclings von Aluminium. Aluminiumrecycling, zumal es Energieund Kosteneinsparungen ermoeglicht, ist sowohl fuer die schrottabhaengigen Verwendungspotentiale und die PrimaerAluminiumproduktion gleichermassen bedeutend geworden. Die 7xxxx Schrottlegierungen werden in einem Arbeitsgang mit dem Schrott aus anderen Aluminiumlegierungen gesammelt und recycled. Da die

  2. There is (still too much aluminium in infant formulas

    Directory of Open Access Journals (Sweden)

    Burrell Shelle-Ann M

    2010-08-01

    Full Text Available Abstract Background Infant formulas are sophisticated milk-based feeds for infants which are used as a substitute for breast milk. Historically they are known to be contaminated by aluminium and in the past this has raised health concerns for exposed infants. We have measured the aluminium content of a number of widely used infant formulas to determine if their contamination by aluminium and consequent issues of child health persists. Methods Samples of ready-made milks and powders used to make milks were prepared by microwave digestion of acid/peroxide mixtures and their aluminium content determined by THGA. Results The concentration of aluminium in ready-made milks varied from ca 176 to 700 μg/L. The latter concentration was for a milk for preterm infants. The aluminium content of powders used to make milks varied from ca 2.4 to 4.3 μg/g. The latter content was for a soya-based formula and equated to a ready-to-drink milk concentration of 629 μg/L. Using the manufacturer's own guidelines of formula consumption the average daily ingestion of aluminium from infant formulas for a child of 6 months varied from ca 200 to 600 μg of aluminium. Generally ingestion was higher from powdered as compared to ready-made formulas. Conclusions The aluminium content of a range of well known brands of infant formulas remains high and particularly so for a product designed for preterm infants and a soya-based product designed for infants with cow's milk intolerances and allergies. Recent research demonstrating the vulnerability of infants to early exposure to aluminium serves to highlight an urgent need to reduce the aluminium content of infant formulas to as low a level as is practically possible.

  3. Effects of aluminium surface morphology and chemical modification on wettability

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M., E-mail: mar@sbi.aau.dk [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Fojan, P.; Gurevich, L. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4, DK-9220 Aalborg East (Denmark); Afshari, A. [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2014-03-01

    Highlights: • Successful surface modification procedures on aluminium samples were performed involving formation of the layer of hydrophilic hyperbranched polyethyleneglycol (PEG) via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. • The groups of surfaces with hydrophobic behavior were found to follow the Wenzel model. • A transition from Cassie–Baxter's to Wenzel's regime was observed due to changing of the surface roughness upon mechanical polishing in aluminium samples. - Abstract: Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie–Baxter to Wenzel regime upon changing the surface

  4. Gas heat treatment plants for the aluminium industry; Gasbeheizte Waermebehandlungsanlagen fuer die Aluminium-Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Olberts, P.; Hanus, A. [LOI Thermprocess GmbH, Essen (Germany)

    2004-09-01

    LOI Thermoprocess has developed new, flexible, innovative furnace designs for heat treatment of aluminium in general (car industry) and particularly for cylinder heads, engine units, chassis components, textured components, wheels, rolled sheet and extrusions. The furnaces are heated by means of radiant tubes (recuperators) and by the more usual open gas heating system (flue gas recirculation). (orig.)

  5. The aluminium body has been promoted in Canada; La carrosserie aluminium promue au Canada

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-02-01

    The aluminium vehicles technology is a technology which allows, with an equivalent structure, to decrease the weight of a car of 40%. Presented by the Alcan firm, this technology is one of the technologies of the year 2003. The Alcan firm has, besides, received the 2003 technology price awarded by the magazine Industry Week. (O.M.)

  6. Internal nitride formation during gas-phase thermal nitridation of titanium

    OpenAIRE

    Ajikumar, PK; M. Kamruddin; Shankar, P; Gouda, Ramakrishna; Balamurugan, AK; Nithya, R.; Tyagi, AK; Jayaram, V; Biswas, SK; Raj, Baldev

    2009-01-01

    Titanium nitride surface layers were prepared by gas-phase thermal nitridation of pure titanium in an ammonia atmosphere at 1373 K for different times. In addition to the surface nitride layer, nitride/hydride formation was observed in the bulk of the specimen. The cross-section of the specimen was characterized by various techniques such as optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry and nanomechanical testing, ...

  7. Enhanced corrosion protection by microstructural control of aluminium brazing sheet

    NARCIS (Netherlands)

    Norouzi Afshar, F.

    2013-01-01

    Aluminium brazing sheet is a sandwich material made out of two aluminium alloys (AA4xxx/AA3xxx) and is widely used in automotive heat exchangers. One of the main performance criteria for heat exchanger units is the lifetime of the product. The lifetime of the heat exchanger units is determined by th

  8. Thermoelectric power of multilayer compositions of aluminium and carbon nanotubes

    International Nuclear Information System (INIS)

    Changing the thermoelectric power monolayer and multilayer aluminium foil and multilayer foils compositions of aluminium and carbon nanotubes is the deformation ε < 60% due to the scattering of conduction electrons at dislocations and ε=(70 ...96)% - due to their scattering on the boundaries between the layers (thermoelectric size effect)

  9. Phase analysis of nickel surface layer implanted by aluminium

    International Nuclear Information System (INIS)

    The experimental result of study of microstructure and phase composition in the surface zone of nickel target under intensive implantation of aluminium ions on a vacuum-arc and plasma flow source Raduga-5 are presented. It was established that the fine dispersed intermetallic precipitates Ni3Al and NiAl and the variable composition solid solution of aluminium in nickel are formed

  10. CAD implementation of design rules for aluminium extrusion dies

    NARCIS (Netherlands)

    Ouwerkerk, van Gijs

    2009-01-01

    Aluminium extrusion is an industrial forming process that is used to produce long profiles of a constant cross-section. This cross-section is shaped by the opening in a steel tool known as the die. The understanding of the mechanics of the aluminium extrusion process is still limited. The flow of al

  11. Spark counting technique with an aluminium oxide film

    International Nuclear Information System (INIS)

    Automatic spark counting of etch-pits on a polycarbonate film produced by nuclear fission fragments is now used for neutron monitoring in several countries. A method was developed using an aluminium oxide film instead of a polycarbonate as the neutron detector. Aluminium oxide films were prepared as follows: A cleaned aluminium plate as an anode and a nickel plate as a cathode were immersed in dilute sulfuric acid solution and electric current flowed between the electrodes at 12degC for 10-30 minutes. Electric current density was about 10 mA/cm2. The aluminium plate was then kept in boiling water for 10-30 minutes for sealing. The thickness of the aluminium oxide layer formed was about 1μm. The aluminium plate attached to a plate of suitable fissionable material, such as uranium or thorium, was irradiated with neutrons and set in a usual spark counter for fission track counting. One electrode was the aluminium plate and the other was an aluminized polyester sheet. Sparked pulses were counted with a usual scaler. The advantage of using spark counting with an aluminium oxide film for neutron monitoring is rapid measurement of neutron exposure, since chemical etching which is indispensable for spark counting with a polycarbonate detector film, is not needed. (H.K.)

  12. The peculiarities of scandium and yttrium dissolution in aluminium melt

    International Nuclear Information System (INIS)

    The investigation results of dissolution of scandium and yttrium in liquid aluminium at 973-1173 K are presented in this work. It was shown that coefficient value of yttrium diffusion in aluminium melt equals to 3,566-17,9070 m2/sec, and scandium 9,692-4,072 m2/sec.

  13. Haemodialysis related osteomalacia: a staining method to demonstrate aluminium

    OpenAIRE

    Buchanan, Malcolm RC; Ihle, Benno U; Dunn, Cheryl M

    1981-01-01

    A slight modification in tissue processing and staining technique enables a previously described method for staining aluminium to be used to demonstrate aluminium in osteomalacia associated with haemodialysis. The stain appears to be accurate in diagnosing this condition and may assist in establishing the diagnosis before severe osteomalacia develops.

  14. PLASMA NITRIDING FOR IMPROVING WEAR RESISTANCE OF CABLE BOLT

    OpenAIRE

    SHAOQING NIU; SHUANGSUO YANG; YI LI

    2013-01-01

    In order to improve the wear resistance of the cable bolt and increase its life-time during operation, plasma nitriding was employed to obtain a protective nitriding layer on its surface. The microstructure, phase constitution, microhardness and wear resistance of the nitriding layer were investigated. It was shown that continuous and dense nitriding layers were formed on the surface of the samples. The microhardness of the nitrided sample was enhanced by the formation of nitriding layer, whi...

  15. Aluminium Alloy Cast Shell Development for Torpedoes

    Directory of Open Access Journals (Sweden)

    Vijaya Singh

    2005-01-01

    Full Text Available The sand-cast aluminium alloy cylindrical shells were developed for the advanced experimental torpedo applications. The components had intricate geometry, thin-walled sections, and stringent property requirements. The casting defects, such as shrinkage, porosity, incomplete filling of thin sections, cold shuts, inclusions and dimensional eccentricity, etc were found inthe initial castings trials. improvements in casting quality were achieved through modified methodology, selective chilling, risering, and by introducing ceramic-foam filters in the gatingsystem. The heat-treated and machined components met radiographic class I grade C/E standards, mechanical properties to BS1490 specifications, and leakage and hydraulic pressure testrequirements relevant for such applications.

  16. Dissolved aluminium in the Southern Ocean

    OpenAIRE

    Middag, R.; Slooten van, C.; Baar, H.J.W. de; Laan, P.

    2011-01-01

    Dissolved aluminium (Al) occurs in a wide range of concentrations in the world oceans. The concentrations of Al in the Southern Ocean are among the lowest ever observed. An all-titanium CTD sampling system makes it possible to study complete deep ocean sections of Al and other trace elements with the same high vertical resolution of 24 depths as normal for traditional CTD/Rosette sampling. Overall, 470 new data points of Al are reported for 22 full depth stations and 24 surface sampling posit...

  17. Roll casting of 5182 aluminium alloy

    OpenAIRE

    Haga, T; M. Mtsuo; D. Kunigo; Hatanaka, Y; R. Nakamuta; H. Watari; S. Kumai

    2009-01-01

    Purpose: of this paper is investigation of the ability of the high speed roll casting of 5182 aluminium alloy. Appropriate twin roll caster to cast the 5182 strip was researched.Design/methodology/approach: Method used in the present study was an unequal diameter twin roll caster and a vertical type high speed twin roll caster equipped with mild steel rolls without parting material.Findings: are that the vertical type high speed twin roll caster was effective to cast 5182 strip at high speed....

  18. On the Crystallization of Terbium Aluminium Garnet

    OpenAIRE

    Ganschow, S.; Klimm, D.; Reiche, P.; Uecker, R.

    2008-01-01

    Attempts to grow terbium aluminium garnet (Tb3Al5O12, TAG) by the Czochralski method lead to crystals of millimeter scale. Larger crystals could not be obtained. DTA measurements within the binary system showed that TAG melts incongruently at 1840 deg. C. The perovskite (TbAlO3, TAP) with a congruent melting point of 1930 deg. C is the most stable phase in this system. The region for primary crystallization of TAP covers the chemical composition of TAG and suppresses the primary crystallizati...

  19. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.;

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution of...... crystallographic texture around the tool in each weld. The extent of both dynamic recrystallisation and conventional recrystallisation varied considerably as a function of weld orientation. As the base plate begins to interact with the deformation field surrounding the tool, regions of the single crystal rotate to...

  20. Durability of Lacquered Aluminium Profile Considering Tropical Weather Conditions

    Directory of Open Access Journals (Sweden)

    Rigoberto Marrero Águila

    2013-11-01

    Full Text Available Searching for solutions against the degradation of materials by corrosion effect, is a common practice to use alloys such as aluminium instead of steel due to the advantages obtained. The lacquered aluminium profiles can substitute other materials like wood, in the carpentry production, becoming an economic saving. There is an increasingly use of aluminium replacing other traditional materials in the constructions in process, but its quality has been reduced in a considerable amount of installations. In this research, aluminium profiles from five different sources were submitted to a trial in natural exposition conditions at the Tropical weather condition Testing Lab, in order to evaluate their behaviour and establish, for the first time in our country, standing rules for lacquered aluminium profiles to be strictly fulfilled by manufacturers and importers. The results will allow modifying thickness standards of this type of coating, to guaranty its durability and to eliminate the failures provoked by our high severe weather conditions.

  1. Silicon nitride-fabrication, forming and properties

    International Nuclear Information System (INIS)

    This article, which is a literature survey of the recent years, includes description of several methods for the formation of silicone nitride, and five methods of forming: Reaction-bonded silicon nitride, sintering, hot pressing, hot isostatic pressing and chemical vapour deposition. Herein are also included data about mechanical and physical properties of silicon nitride and the relationship between the forming method and the properties. (author)

  2. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    International Nuclear Information System (INIS)

    Highlights: ► Aluminium packaging partitioning in MSW incineration residues is evaluated. ► The amount of aluminium packaging recoverable from the bottom ashes is evaluated. ► Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. ► 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  3. New sheet aluminium qualities for low-cost lightweight constructions; Neue Aluminium-Blechqualitaeten fuer den kosteneffizienten Leichtbau

    Energy Technology Data Exchange (ETDEWEB)

    Bloeck, M.; Furrer, P. [Novelis Technology AG, Neuhausen (Switzerland)

    2005-11-01

    Aluminium alloys used for car bodies have a wide range of material characteristics. New developments focus on selective development of material and surface characteristics for obtaining sheet aluminium qualities optimized for specific applications. These and further measures taken by Novelis are to reduce material consumption, simplify process steps in motor car manufacturing and reducing the overall system cost. (orig.)

  4. Design of the lines of aluminium drawing. Part 2; Conception des filieres de filage d'aluminium. Partie 2

    Energy Technology Data Exchange (ETDEWEB)

    Cescutti, J.P.; Ravaille, N. [Pechiney, Div. Filiage, 75 - Paris (France)

    2005-12-15

    This work is the second part of the file 'design of the lines of aluminium drawing'. It gives elements for structuring the analysis of the progress ways in the field of the design of the lines of aluminium extrusion. (O.M.)

  5. Property database of TRU nitride fuel

    OpenAIRE

    西 剛史; 荒井 康夫; 高野 公秀; 倉田 正輝

    2014-01-01

    The purpose of this study is to prepare a property database of nitride fuel needed for the fuel design of accelerator-driven system (ADS) for transmutation of minor actinide (MA). Nitride fuel of ADS is characterized by high content of Pu and MA as principal components, and addition of a diluent material such as ZrN. Experimental data or evaluated values from the raw data on properties Pu and MA nitrides, and nitride solid solutions containing ZrN are collected and summarized, which cover the...

  6. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel; Naik, Gururaj V.; Boltasseva, Alexandra; Guan, Jianguo; Kildishev, Alexander V.; Shalaev, Vladimir M.

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material.Renewable E......We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  7. III-nitride blue microdisplays

    International Nuclear Information System (INIS)

    Prototype blue microdisplays have been fabricated from InGaN/GaN quantum wells. The device has a dimension of 0.5x0.5mm2 and consists of 10x10 pixels 12 μm in diameter. Emission properties such as electroluminescence spectra, output power versus forward current (L--I) characteristic, viewing angle, and uniformity have been measured. Due to the unique properties of III-nitride wide-band-gap semiconductors, microdisplays fabricated from III nitrides can potentially provide unsurpassed performance, including high-brightness/resolution/contrast, high-temperature/high-power operation, high shock resistance, wide viewing angles, full-color spectrum capability, long life, high speed, and low-power consumption, thus providing an enhancement and benefit to the present capabilities of miniature display systems

  8. Aluminium and its alloys: weldability, welding metallurgy; L'aluminium et ses alliages: soudabilite, metallurgie du soudage

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Ch.

    2000-07-01

    The aim of this book is to give technological and use elements of the welding processes as well as the knowledge in weldability and metallurgy required for a better control of the welding of aluminium alloys. In the first part are detailed the generalities on aluminium alloys, their properties and uses sectors. The bases of the physical metallurgy of the aluminium alloys are dealt with too. The second part concerns the welding and the related techniques as well as the properties of the assemblies. Several supplements give useful data for the construction with aluminium alloys. This book is particularly devoted to engineers and technicians using or having to use for the first time the welding of aluminium alloys. (O.M.)

  9. Hearing conservation in the primary aluminium industry

    Science.gov (United States)

    Frisch, N.; Dixon-Ernst, C.; Chesson, B. J.; Cullen, M. R.

    2016-01-01

    Background Noise-induced hearing loss has been an intractable problem for heavy industry. Aims To report our experience in reducing the incidence of age-corrected confirmed 10 dB hearing shifts (averaged over 2, 3 and 4kHz) in employees in the primary aluminium industry in Australia over the period 2006–13. Methods We analysed annual audiometric data to determine the number of permanent hearing shifts that occurred in employees in two bauxite mines, three alumina refineries and two aluminium smelters. Annual hearing shift rates were calculated based on the number of employees tested per year. Hearing conservation initiatives undertaken during the study period are described. An assessment of similar exposure group noise exposures was also undertaken to determine the magnitude of noise exposure reduction during the study period. Results Across all operations, hearing shift rates declined from 5.5% per year in 2006 to 1.3% per year in 2013 (P < 0.001). The decline in shift rates was greater in mines and refineries, where baseline shift rates were higher, than in smelter workers. Modest reductions in noise exposure occurred during the study period. Conclusions We observed a substantial decline in hearing shift rates during the study period. We describe the hearing conservation initiatives that were collectively associated with this decline. We suspect these initiatives could be deployed relatively easily and at modest cost in other industries with noise-exposed employees. PMID:26470945

  10. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  11. Study on aluminium-based single films.

    Science.gov (United States)

    Vinod Kumar, G S; García-Moreno, F; Babcsán, N; Brothers, A H; Murty, B S; Banhart, J

    2007-12-28

    In the present paper the authors studied isolated metallic films made from the same material used for making metallic foams, and then characterised their properties. Metal films were made from a liquid aluminium alloy reinforced with ceramic particles of known concentration. Melts without such particles were also investigated. It is shown that stable films could not be made from Al-Si alloy having no particles, and just extremely thin and fragile films could be made from commercially-pure Al. In contrast, aluminium alloys containing particles such as SiC and TiB(2) allowed pulling thin, stable films, which did not rupture. Significant thinning of films was observed when the particle concentration in the melt decreased. By in situ X-ray monitoring of liquid films during pulling, film thickness and drainage effects within the liquid film could be studied. The morphology and microstructure of films was characterised after solidification. Our work shows that the question of how foams are stabilised can be studied using a simplified system such as a film, instead of having to deal with the multitude of different structural elements present in a foam. PMID:18060172

  12. Aluminium matrix composites: Challenges and opportunities

    Indian Academy of Sciences (India)

    M K Surappa

    2003-02-01

    Aluminium matrix composites (AMCs) refer to the class of light weight high performance aluminium centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibres, whisker or particulates, in volume fractions ranging from a few percent to 70%. Properties of AMCs can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route. Presently several grades of AMCs are manufactured by different routes. Three decades of intensive research have provided a wealth of new scientific knowledge on the intrinsic and extrinsic effects of ceramic reinforcement vis-a-vis physical, mechanical, thermo-mechanical and tribological properties of AMCs. In the last few years, AMCs have been utilised in high-tech structural and functional applications including aerospace, defence, automotive, and thermal management areas, as well as in sports and recreation. It is interesting to note that research on particle-reinforced cast AMCs took root in India during the 70’s, attained industrial maturity in the developed world and is currently in the process of joining the mainstream of materials. This paper presents an overview of AMC material systems on aspects relating to processing, microstructure, properties and applications.

  13. Aluminium alloys containing iron and nickel

    International Nuclear Information System (INIS)

    The first part of this report addresses mechanism, kinetics and structure factors of aluminium alloys containing iron and nickel in water and high temperature steam. The studied alloys contain from 0.3 to 0.7 per cent of iron, and 0.2 to 1.0 per cent of nickel. Corrosion resistance and corrosion structure have been studied. The experimental installation, process and samples are presented. Corrosion structures in water at 350 C are identified and discussed (structure of corrosion products, structure of metal-oxide interface), and then in steam at different temperatures (350-395 C). Corrosion kinetics is experimentally studied (weight variation in time) in water at 350 C and in steam at different temperatures. Reactions occurring at over-heated steam (more than 400 C) are studied, and the case of welded alloys is also addressed. The second part addresses the metallurgical mechanism and processes influencing aluminium alloy resistance to corrosion by high temperature water as it appeared that separated phases protect the solid solution through a neighbourhood action. In order to avoid deep local corrosions, it seems necessary to multiply protective phases in an as uniform as possible way. Some processes enabling this result are described. They belong to conventional metallurgy or to powder metallurgy (with sintering and extrusion)

  14. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    grains. On prolonged nitriding, immediate nucleation at the surface of iron grains becomes possible. Calculated incubation times for the nucleation of gamma'-Fe4N1-x during nitriding are generally longer than those observed experimentally in the present work. The incubation time is reduced dramatically......The nucleation of iron nitrides during gaseous nitriding has been investigated using light microscopy and X-ray diffraction. Initially, the nucleation of gamma'-Fe4N1-x on a pure iron surface starts at grain boundaries meeting the surface, from where the nitride grains grow laterally into the iron...

  15. Microstructure analysis of the iron nitride thin films nitrided on the surface of machinery component materials

    International Nuclear Information System (INIS)

    On this study the ion nitriding process of the machinery component materials, which consist of the piston pen and the piston rings, have been conducted. Ion nitriding of the machinery component materials was performed for some variation of nitriding temperature, nitriding time and pressure of nitrogen gas using DC glow discharge. The optimum hardness of the piston pen samples was obtained at the nitriding temperature of 100°C, the nitriding time of 3 hours and the nitrogen gas pressure of 1.6 mbar, and the hardness value increased approximately six times compared with the non nitrided samples; while the hardness value of the piston ring was increase approximately 2.6 time at the temperature nitriding of 100°C, the nitriding time of 3 hours and the nitrogen gas pressure of 1.2 mbar. To observe the micro-structure and elemental composition of iron nitride thin films formed on the surface of the samples was used SEM-EDAX, and the phase structure of iron nitride thin films was observed by using XRD. Based on the observations was known that a compound layer formed on the surface of samples containing different nitrogen and form the phase structure of γ-Fe4N, ε-Fe3N and ζ-Fe2N that have a very good mechanical properties. (author)

  16. Effect of Aluminium Content in Aluminium Pillared Montmorillonite To Its Surface Acidity Properties

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2011-07-01

    Full Text Available Aluminium pillared montmorillonites from Indonesian natural montmorillonite has been prepared using Al13 Keggin ion pillaring precursor in varied concentrations. Herein we studied their characterization and catalysis application for esterification reaction. X-ray diffraction (XRD, energy dispersive x-ray analysis (EDX, and BET gas sorption analysis were employed to characterize the prepared materials besides the characterization on surface acidity by pyridine and n-butylammine adsorptions and FTIR analysis. The result showed that significant improvement on physicochemical character data was obtained by a pillarization process. Such a process also provided improvements on catalytic activities in esterification reactions. The effect of aluminium content on material characters was discussed in this paper. It was observed from the catalytic activity tests that pillared montmorillonite samples demonstrated higher activity in esterification reaction relative to the raw montmorillonite. It was found that surface profile of materials consist of specific surface area, pore volume and Lewis acidity were significantly affect the catalyst activity.

  17. Preparation of Aluminium Oxynitride by Carbothermal Reduction of Aluminium Oxide in a Flowing N2 Atmosphere

    Institute of Scientific and Technical Information of China (English)

    LIYa-wei; YUANRun-zhang; 等

    1996-01-01

    Carbothermal reduction of alumina into aluminium oxynitride(AlON) spinel in a flowing nitrogen atmosphere was studied.The effects of Al2O3/C ratio temperature,soaking time,heating rate molding pressure of samples,and nitrogen flow rate on reactions were investigated.Then the stability of AlON was elucidated and AlON wa confirmed as an intermediate compound in reduction of alumina.

  18. Ion-beam nitriding of steels

    Science.gov (United States)

    Salik, Joshua (Inventor); Hubbell, Theodore E. (Inventor)

    1987-01-01

    A surface of a steel substrate is nitrided without external heating by exposing it to a beam of nitrogen ions under low pressure, a pressure much lower than that employed for ion-nitriding. An ion source is used instead of a glow discharge. Both of these features reduce the introduction of impurities into the substrate surface.

  19. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.; Jiang, Jianzhong

    2002-01-01

    nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...

  20. Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector array

    CERN Document Server

    Coiffard, G; Driessen, E F C; Pignard, S; Calvo, M; Catalano, A; Goupy, J; Monfardini, A

    2015-01-01

    We describe the fabrication of homogeneous sub-stoichiometric titanium nitride films for microwave kinetic inductance detector (mKID) arrays. Using a 6 inch sputtering target and a homogeneous nitrogen inlet, the variation of the critical temperature over a 2 inch wafer was reduced to <25 %. Measurements of a 132-pixel mKID array from these films reveal a sensitivity of 16 kHz/pW in the 100 GHz band, comparable to the best aluminium mKIDs. We measured a noise equivalent power of NEP = 3.6e-15 Hz/Hz^(1/2). Finally, we describe possible routes to further improve the performance of these TiN mKID arrays.

  1. INTEROGATION OF THE MANUFACTURING ROUTE OF ALUMINIUM AA 1050 USED IN LITHOGRAPHIC APPLICATION

    OpenAIRE

    Witkowska, Malgorzata Danuta

    2013-01-01

    The aluminium AA1050 alloy, known as commercially pure aluminium, contains 99.5% Al, together with Fe and Si as major alloying elements. During fabrication of aluminium substrates for lithographic printing plates in Bridgnorth Aluminium Ltd, the AA 1050 aluminium alloy proceeds through various stages of thermomechanical processing, with the conditions at each processing stage influencing the microstructure of the final coil. Because of its specific gravity, tensile strength, surface performa...

  2. Effect of filtration on reoxidation proceses in aluminium alloys

    Directory of Open Access Journals (Sweden)

    D. Bolibruchova

    2010-01-01

    Full Text Available This article is focused on reoxidation processes during filtration of aluminium alloys. Many of our experimental works pointed out, that using filtration media placed in gating system causes reoxidation of poured aluminium alloy. Main aim of our latest work was to validate our arguments, that filter in gating system can be considered as obstacle for continuous pouring, with help of computer simulations. This article is only a small part of our researches focused on reoxidation processes during filtration of aluminium alloys.

  3. Aluminium: Aluminij: kovina izbire: the metal of choice:

    OpenAIRE

    Gándara, María Josefa Freiría

    2013-01-01

    This article summarizes the importance of aluminium as the metal of choice formany applications. Aluminium is a lightweight, durable metal. It is silvery in appearance when freshly cut, is a good conductor of heat and electricity, and is easily shaped by moulding and extruding. Aluminium has two main advantages when compared with other metals. Firstly, it has a low density, about one-third that of iron and copper. Secondly, although it reacts rapidly with the oxygen in air, it forms a thin, t...

  4. Cold forming of aluminium - State of the art

    DEFF Research Database (Denmark)

    Bay, Niels

    1997-01-01

    The ongoing development of cold forging technology has been manifested lately by the increasing application of components in cold forged aluminium alloys. Applying precipitation hardening alloys components with great strength/weight ratio can be produced with a strength comparable to that of...... unalloyed steel. After description of the different types of alloys and their individual properties and applications, the special requirements for tool design by cold forging in aluminium is discussed. Finally, a large number of industrial examples on cold forged aluminium components are presented. (C) 1997...

  5. Radiation-induced creep of copper, aluminium and their alloys

    International Nuclear Information System (INIS)

    The results of creep studies on copper, aluminium and their alloys with and without neutron irradiation are presented. The experiments are carried out at the WWR-K reactor at the neutron fluence of 1.4.1016 n/m2.s (2.5.1016 n/m2.s, E>0.1 MeV). Polycrystalline copper (99.99 and 99.95%), aluminium (99.99%) and the alloys of copper with 4 at% of titanium, of aluminium with 4.2% of copper are studied within the temperature interval 0.31-0.51 Tm. (orig.)

  6. 59Fe distribution in continuously cast aluminium strip

    International Nuclear Information System (INIS)

    The problems are discussed of the homogeneity of continuously cast aluminium strips by horizontal casting. Theoretically discussed are phenomena present during primary solidification, namely the nonhomogeneous distribution of admixtures and impurities in primary solidified dendritic cells. A survey is given of the distribution of coefficients of basic admixtures and impurities in aluminium. Experimental investigation was carried out within the verification of theoretical research results, of the distribution of iron in continuously cast aluminium strips using radioactive iron 59Fe in form of radioactive foundry alloy containing 1.8% 59Fe. (author). 13 figs., 1 tab

  7. Optimization of Magnesium Metal into Commercially Pure Aluminium

    Directory of Open Access Journals (Sweden)

    Vandana J Rao

    2014-02-01

    Full Text Available The present investigation, involve development of Al-Mg systems by addition of magnesium into commercially pure aluminium. The amounts of magnesium added into commercially pure aluminium are of 1 and 2 wt%. The recoveries of magnesium are around 85-90%.Remaining Mg react with oxygen and float on the liquid aluminium. Presence of magnesium creates two phenomena. One is solid solution hardening and other is intermetallics formation. Both the phenomena checked by microstructural changes and by measuring the electrical conductivity values. By increasing the Mg, content mechanical properties (hardness and tensile strength increases and electrical conductivity decreases.

  8. Corrosion issues of powder coated AA6060 aluminium profiles

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Valgarðsson, Smári; Jellesen, Morten Stendahl;

    2015-01-01

    In this study detailed microstructural investigation of the reason for unexpected corrosion of powder coated aluminium alloy AA6060 windows profiles has been performed. The results from this study reveals that the failure of the window profiles was originated from the surface defects present...... on the extruded AA6060 aluminium profile after metallurgical process prior to powder coating. Surface defects are produced due to intermetallic particles in the alloy, which disturb the flow during the extrusion process. The corrosion mechanism leading to the failure of the powder coated AA6060 aluminium profiles...

  9. Study of fatigue behaviour of 7475 aluminium alloy

    Indian Academy of Sciences (India)

    B B Verma; J D Atkinson; M Kumar

    2001-04-01

    Fatigue properties of a thermomechanically treated 7475 aluminium alloy have been studied in the present investigation. The alloy exhibited superior fatigue life compared to conventional structural aluminium alloys and comparable stage II crack growth rate. It was also noticed that the fatigue crack initiated from a surface grain and the crack extension was dominated by ductile striations. Analysis also revealed that this alloy possessed fracture toughness and tensile properties superior to that noticed with other structural aluminium alloys. Therefore the use of this alloy can safely reduce the overall weight of the aircraft.

  10. Mechanical alloying of aluminium-lithium-magnesium alloy powders

    International Nuclear Information System (INIS)

    The production of high-purity aluminium-lithium-magnesium alloy powders, by mechanical alloying through grinding in a vibratory mill under high vacuum at room temperature, is described in details. The source materials for the grinding mixture were: aluminium-lithium alloy powder obtained by thermal vacuum-dehydrogenization of AlLiH4 hydride; magnesium metal powder; and chemically deoxidized aluminium metal powder. The implications which arose from the high reactivity of the component elements are discussed, and the measures taken to overcome them are described. The procedures used for the chemical analysis and powder characterization are given. (orig.)

  11. Aluminium content of some foods and food products in the USA, with aluminium food additives.

    Science.gov (United States)

    Saiyed, Salim M; Yokel, Robert A

    2005-03-01

    The primary objective was to determine the aluminium (Al) content of selected foods and food products in the USA which contain Al as an approved food additive. Intake of Al from the labeled serving size of each food product was calculated. The samples were acid or base digested and analysed for Al using electrothermal atomic absorption spectrometry. Quality control (QC) samples, with matrices matching the samples, were generated and used to verify the Al determinations. Food product Al content ranged from Cheese in a serving of frozen pizzas had up to 14 mg of Al, from basic sodium aluminium phosphate; whereas the same amount of cheese in a ready-to-eat restaurant pizza provided 0.03-0.09 mg. Many single serving packets of non-dairy creamer had approximately 50-600 mg Al kg(-1) as sodium aluminosilicate, providing up to 1.5 mg Al per serving. Many single serving packets of salt also had sodium aluminosilicate as an additive, but the Al content was less than in single-serving non-dairy creamer packets. Acidic sodium aluminium phosphate was present in many food products, pancakes and waffles. Baking powder, some pancake/waffle mixes and frozen products, and ready-to-eat pancakes provided the most Al of the foods tested; up to 180 mg/serving. Many products provide a significant amount of Al compared to the typical intake of 3-12 mg/day reported from dietary Al studies conducted in many countries. PMID:16019791

  12. Cathodic Cage Plasma Nitriding: An Innovative Technique

    Directory of Open Access Journals (Sweden)

    R. R. M. de Sousa

    2012-01-01

    Full Text Available Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN, in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and consequently, a smaller variation of the thickness/height relation can be obtained. The compound layers were characterized by X-ray diffraction, optical microscopy, and microhardness test profile. The results were compared with the properties of samples obtained with the conventional nitriding, for the three steel types. It was verified that samples treated by CCPN process presented, at the same temperature, a better uniformity in the thickness and absence of the edge effect.

  13. Orbital friction stir welding of aluminium pipes

    International Nuclear Information System (INIS)

    Friction stir welding (FSW) was originally developed for flat plates. This contribution shows how it can be applied to the welding of aluminium pipes. Pipes made of AlMG 3 (EN5754), AlMg 4.5Mn (EN5083) and AlMgSi 0.5 (EN6106) with dimensions of Da 600 and 520 x 10-8 mm were welded. The FSW orbital system comprises an annular cage with integrated FSW head, a hydraulic system, and a control unit. The welds were tested successfully according to EN 288. The mechanical and technical properties of the welds were somewhat better than with the TIG orbital process, and welding times were about 40 percent shorter

  14. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    A method of preparing an aluminum mold for injection molding is provided, the method comprises the steps of providing an aluminum mold having a least one surface, subjecting the at least one surface to a gas or liquid phase silane to thereby form an anti-stiction coating, the anti-stiction coating...... comprising a chemically bonded monolayer of silane compounds on the at least one surface wherein the silane is a halogenated silane. The at least one surface coated with the anti-stiction coating may be configured to withstand an injection molding process at a pressure above 100 MPa. Furthermore, a mold...... having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding of...

  15. Mechanical behaviour of aluminium-lithium alloys

    Indian Academy of Sciences (India)

    N Eswara Prasad; A A Gokhale; P Rama Rao

    2003-02-01

    Aluminium-lithium alloys hold promise of providing a breakthrough response to the crying need for lightweight alloys for use as structurals in aerospace applications. Considerable worldwide research has gone into developing a range of these alloys over the last three decades. As a result, substantial understanding has been developed of the microstructure-based micromechanisms of strengthening, of fatigue and fracture as well as of anisotropy in mechanical properties. However, these alloys have not yet greatly displaced the conventionally used denser Al alloys on account of their poorer ductility, fracture toughness and low cycle fatigue resistance. This review aims to summarise the work pertaining to study of structure and mechanical properties with a view to indicate the directions that have been and can be pursued to overcome property limitations.

  16. Experimental analysis of cut welding in aluminium

    DEFF Research Database (Denmark)

    Dorph, Pernille; De Chiffre, Leonardo; Bay, Niels

    1993-01-01

    Cut welding is a newly developed cold pressure welding process. In the present work, an experimental investigation was carried out analyzing the mechanisms involved in cut welding of a block to a strip. Experiments were carried out in technically pure aluminium. The investigation has involved...... tensile testing and metallographic investigations of the welds. The results show that this variant of cut welding is a very reproducible process giving a weld strength equal to 30-40% the strength of the parent material. The experiments have shown that the reason for this relatively low strength is an...... uneven pressure distribution along the weld due to a wave formed during sliding. Attempts to alter the material flow during sliding are presented....

  17. Adsorption of aluminium by stream particulates.

    Science.gov (United States)

    Tipping, E; Ohnstad, M; Woof, C

    1989-01-01

    An experimental study was made of the adsorption of aluminium by fine particulates from Whitray Beck, a hill stream in NW England. Adsorption increased with Al(3) activity, pH and concentration of particles, and could be quantitatively described by the empirical equation: [Formula: see text] [particles] where square brackets indicate concentrations, curly brackets, activities, and alpha, beta and gamma are constants with values of 5.14x10(-10) (mol litre(-1))(2.015) (g particles litre(-1))(-1), 0.457, and 1.472, respectively. For the experimental data, the equation gave a correlation ratio of 0.99. The equation accounts reasonably well for the adsorption of Al by particulates from seven other streams. In applying the equation, it must be borne in mind that the desorption kinetics of Al depend on pH, and rapid reversibility (or=10%) of total monomeric Al. PMID:15092454

  18. III-nitride semiconductor materials

    CERN Document Server

    Feng, Zhe Chuan

    2006-01-01

    III-Nitride semiconductor materials - (Al, In, Ga)N - are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field. Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the

  19. Electron spectroscopy of dilute nitrides

    International Nuclear Information System (INIS)

    The application of electron spectroscopies in dilute nitride semiconductor research for both chemical analysis and the determination of electronic and lattice vibrational properties is described. X-ray photoelectron spectroscopy of the nitrogen bonding configurations in dilute InNxSb1-x and InNxAs1-x alloys is presented. High resolution electron-energy-loss spectroscopy (HREELS) of the plasmon excitations in InNxSb1-x is shown to provide information on the electronic properties of the material, before and after annealing. HREELS is also used to investigate the GaN-like phonon modes in GaNxAs1-x alloys

  20. Surface analysis in steel nitrides by using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    The formation of iron nitride layer at low temperatures, 600-700 K, by Moessbauer spectroscopy is studied. These layers were obtained basically through two different processes: ion nitriding and ammonia gas nitriding. A preliminary study about post-discharge nitriding was made using discharge in hollow cathode as well as microwave excitation. The assembly of these chambers is also described. The analysis of the nitrided samples was done by CEMS and CXMS, aided by optical microscopy, and the CEMS and CXMS detectors were constructed by ourselves. We also made a brief study about these detectors, testing as acetone as the mixture 80% He+10% C H4 as detection gases for the use of CEMS. The surface analysis of the samples showed that in the ammonia gas process nitriding the nitrided layer starts by the superficial formation of an iron nitride rich nitrogen. By thermal evolution this nitride promotes the diffusion of nitrogen and the formation of other more stable nitrides. (author)

  1. Aluminium leaching from red mud by filamentous fungi.

    Science.gov (United States)

    Urík, Martin; Bujdoš, Marek; Milová-Žiaková, Barbora; Mikušová, Petra; Slovák, Marek; Matúš, Peter

    2015-11-01

    This contribution investigates the efficient and environmentally friendly aluminium leaching from red mud (bauxite residue) by 17 species of filamentous fungi. Bioleaching experiments were examined in batch cultures with the red mud in static, 7-day cultivation. The most efficient fungal strains in aluminium bioleaching were Penicillium crustosum G-140 and Aspergillus niger G-10. The A. niger G-10 strain was capable to extract up to approximately 141 mg·L(-1) of aluminium from 0.2 g dry weight red mud. Chemical leaching with organic acids mixture, prepared according to A. niger G-10 strain's respective fungal excretion during cultivation, proved that organic acids significantly contribute to aluminium solubilization from red mud. PMID:26365318

  2. Corrosion of spent nuclear fuel aluminium cladding in ordinary water

    International Nuclear Information System (INIS)

    Corrosion of aluminium alloy cladding of spent nuclear fuel elements in ordinary water is examined in the spent fuel storage pool of the RA research reactor at the Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro. Experimental examinations are carried out within framework of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) 'Corrosion of Research Reactor Aluminium-Clad Spent Fuel in Water', Phase II. Racks with coupons made of different aluminium alloys were exposed to water influence for period of six months to six years. The project comprises also activities on monitoring of the water chemistry and radioactivity in the storage pool. Visual and microscopic examinations of surfaces of aluminium coupons of the test racks have been done recently and results were presented in this paper confirming strong influence of water quality and exposition time to corrosion process. (author)

  3. Advances in development and application of aluminium batteries

    DEFF Research Database (Denmark)

    Qingfeng, Li; Zhuxian, Qiu

    2001-01-01

    Aluminium has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer at aluminium surface is however detrimental to its performance to achieve its reversible potential, and also causing the delayed activation of...... anode. The oxide layer can be removed by e.g. amalgamation but this will result in accelerated corrosion and poor shelf life. These difficulties have been successfully overcome by developing alloying elements and electrolyte additives in the recent years. The literature review also includes various...... aluminium batteres, especially aluminium-air batteries, and a wide range of their applications from emergency power supplies, reserve batteries field portable batteries, to batteries for electric vehicles and underwater propulsion....

  4. Deposition of aluminium nanoparticles using dense plasma focus device

    International Nuclear Information System (INIS)

    Plasma route to nanofabrication has drawn much attention recently. The dense plasma focus (DPF) device is used for depositing aluminium nanoparticles on n-type Si (111) wafer. The plasma chamber is filled with argon gas and evacuated at a pressure of 80 Pa. The substrate is placed at distances 4.0 cm, 5.0 cm and 6.0 cm from the top of the central anode. The aluminium is deposited on Si wafer at room temperature with two focused DPF shots. The deposits on the substrate are examined for their morphological properties using atomic force microscopy (AFM). The AFM images have shown the formation of aluminium nanoparticles. From the AFM images, it is found that the size of aluminium nanoparticles increases with increase in distance between the top of anode and the substrate for same number of DPF shots.

  5. Aluminium foam sandwich panels: manufacture, metallurgy and applications

    Energy Technology Data Exchange (ETDEWEB)

    Banhart, J. [Hahn-Meitner-Institut, TU Berlin (Germany); Seeliger, H.W. [Alm GmbH, Saarbruecken (Germany)

    2008-09-15

    Sandwich panels consisting of a highly porous aluminium foam core and aluminium alloy face sheets are manufactured by roll-bonding aluminium alloy sheets to a densified mixture of metal powders - usually Al-Si or Al-Si-Cu alloys with 6-8% Si and 3-10% Cu - and titanium hydride, and foaming the resulting three-layer structure by a thermal treatment. We review the various processing steps of aluminium foam sandwich (AFS) and the metallurgical processes during foaming, compare the process to alternative ways to manufacture AFS, e.g. by adhesive bonding, and give an overview of the available literature. Two ways to treat AFS after foaming are presented, namely forging and age-hardening. Some current and potential applications are described and the market potential of AFS is assessed. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. Thin film pc-Si by aluminium induced crystallization on metallic substrate

    Science.gov (United States)

    Delachat, F.; Antoni, F.; Prathap, P.; Slaoui, A.; Cayron, C.; Ducros, C.

    2013-04-01

    Thin film polycrystalline silicon (pc-Si) on flexible metallic substrates is promising for low cost production of photovoltaic solar cells. One of the attractive methods to produce pc-Si solar cells consists in thickening a large-grained seed layer by epitaxy. In this work, the deposited seed layer is made by aluminium induced crystallization (AIC) of an amorphous silicon (a-Si) thin film on metallic substrates (Ni/Fe alloy) initially coated with a tantalum nitride (TaN) conductive diffusion barrier layer. Effect of the thermal budget on the AIC grown pc-Si seed layer was investigated in order to optimize the process (i.e. the quality of the pc-Si thin film). Structural and optical characterizations were carried out using optical microscopy, μ-Raman and Electron Backscatter Diffraction (EBSD). At optimal thermal annealing conditions, the continuous AIC grown pc-Si thin film showed an average grain size around 15 μm. The grains were preferably (001) oriented which is favorable for its epitaxial thickening. This work proves the feasibility of the AIC method to grow large grains pc-Si seed layer on TaN coated metal substrates. These results are, in terms of grains size, the finest obtained by AIC on metallic substrates.

  7. Thin film pc-Si by aluminium induced crystallization on metallic substrate

    Directory of Open Access Journals (Sweden)

    Cayron C.

    2013-04-01

    Full Text Available Thin film polycrystalline silicon (pc-Si on flexible metallic substrates is promising for low cost production of photovoltaic solar cells. One of the attractive methods to produce pc-Si solar cells consists in thickening a large-grained seed layer by epitaxy. In this work, the deposited seed layer is made by aluminium induced crystallization (AIC of an amorphous silicon (a-Si thin film on metallic substrates (Ni/Fe alloy initially coated with a tantalum nitride (TaN conductive diffusion barrier layer. Effect of the thermal budget on the AIC grown pc-Si seed layer was investigated in order to optimize the process (i.e. the quality of the pc-Si thin film. Structural and optical characterizations were carried out using optical microscopy, μ-Raman and Electron Backscatter Diffraction (EBSD. At optimal thermal annealing conditions, the continuous AIC grown pc-Si thin film showed an average grain size around 15 μm. The grains were preferably (001 oriented which is favorable for its epitaxial thickening. This work proves the feasibility of the AIC method to grow large grains pc-Si seed layer on TaN coated metal substrates. These results are, in terms of grains size, the finest obtained by AIC on metallic substrates.

  8. Local electrochemical behaviour of 7xxx aluminium alloys

    OpenAIRE

    F. Andreatta

    2004-01-01

    Aluminium alloys of the 7xxx series (Al-Zn-Mg-Cu) are susceptible to localized types of corrosion like pitting, intergranular corrosion and exfoliation corrosion. This represents a limitation for the application of these alloys in the aerospace components because localized corrosion might have a negative effect on safety and costs. This PhD thesis investigates the relation between electrochemical behaviour and microstructure of a number of 7xxx aluminium alloys: AA7075, AA7349 and an experime...

  9. Crushing modes of aluminium tubes under axial compression

    OpenAIRE

    Pled, Florent; Yan, Wenyi; Wen, Cui'e

    2014-01-01

    6 pages International audience A numerical study of the crushing of circular aluminium tubes with and without aluminium foam fillers has been carried out to investigate their buckling behaviours under axial compression. A crushing mode classification chart has been established for empty tubes. The influence of boundary conditions on crushing mode has also been investigated. The effect of foam filler on the crushing mode of tubes filled with foam was then examined. The predicted results ...

  10. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  11. Modeling of aluminium deposition from chloroaluminate ionic liquids

    OpenAIRE

    Schaltin, Stijn; Ganapathi, Murugan; Binnemans, Koen; Fransaer, Jan

    2011-01-01

    A finite-element model of the electrodeposition of aluminium from chloroaluminate ionic liquids is introduced. The purpose of this model is to give an explanation for the reasonable current densities that can be achieved in chloroaluminate ionic liquids despite the fact that the electrochemically active Al2Cl7- complexes are transformed into inactive AlCl4- complexes during the electrodeposition of aluminium. The obtainable current density in the electrodeposition from chloroaluminate ionic l...

  12. TORSIONAL DEFORMATION AND FATIGUE BEHAVIOUR OF 6061 ALUMINIUM ALLOY

    OpenAIRE

    Marini Marno; Ahmad Badri Ismail

    2012-01-01

    Torsional deformation and fatigue behaviour of both solid and thin-walled tubular specimens were made from as-received and heat treated 6061 aluminium alloy were studied. 6061 aluminium alloy have been widely used as a candidate material in automobile, aerospace, aircraft and structural application because of their superior mechanical properties such as high strength to weight ratio, good ductility and others. The differences in cyclic deformation and fatigue behaviours between round and soli...

  13. Ball Pad Mold Electromagnetic Forming Process for Aluminium Alloy Sheet

    OpenAIRE

    Wang, Wen-ping; Wu, Xiang-Dong; Wan, Min; Chen, Xiao-wei; Xiong, Wei-Ren

    2014-01-01

    In order to meet requirements of lightweight technology in the field of aerospace, the new forming technology for aluminium alloy skin parts and integral panel are brought to more attention. Based on the principle of electromagnetic forming (EMF) and energy distribution, a new electromagnetic forming process using ball as pad mold for aluminium alloy sheet forming was suggested and test apparatus was designed. The new method was verified by the finite element simulation and exp...

  14. Blast Loaded Aluminium Plates : Experiments and numerical simulations

    OpenAIRE

    Melby, Emil Arne; Eide, Hilde Olaug Stakvik

    2013-01-01

    Light and flexible protective constructions in aluminium could be subjected to a blast load. In this thesis the effect of blast loading on aluminium plates of the type 1050A ? H14 was studied through experiments and numerical simulations. The effect of fragmentation was idealized with predrilled holes. The thesis was written at the Structural Impact Laboratory (SIMLab) at NTNU in collaboration with the Norwegian Defence Estates Agency (NDEA).Tensile tests revealed a clearly anisotropic behavi...

  15. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    OpenAIRE

    Ivan Michalec; Milan Marônek

    2013-01-01

    Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  16. Prevention of Dealloying in Manganese Aluminium Bronze Propeller: Part II

    OpenAIRE

    Napachat Tareelap; Kaysinee Sriraksasin; Nakorn Srisukhumbowornchai; Swieng Thuanboon; Choochat Nitipanyawong

    2014-01-01

    Due to the failure of manganese aluminium bronze (MAB) propeller caused by dealloying corrosion as described in Part I [1], this work aims to study the prevention of dealloying corrosion using aluminium and zinc sacrificial anodes. The results indicated that both of the sacrificial anodes could prevent the propeller from dealloying. Moreover, the dealloying in seawater was less than that found in brackish water. It was possible that hydroxide ions, from cathodic reaction, reacted with calcium...

  17. Crystallographic orientation-spray formed hypereutectic aluminium-silicon alloys

    OpenAIRE

    Hamilta de Oliveira Santos; Marilene Morelli Serna; Nelson Batista de Lima; Isolda Costa; Jesualdo Luiz Rossi

    2005-01-01

    Aluminium-silicon alloys have been wide accepted in the automotive, electric and aerospace industries. Preferred orientation is a very common condition for metals and alloys. Particularly, aluminium induces texture during the forming process. The preparation of an aggregate with completely random crystal orientation is a difficult task. The present work was undertaken to analyse the texture by X-ray diffraction techniques, of three spray formed hypereutectic Al-Si alloys. Samples were taken f...

  18. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces.

    Science.gov (United States)

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-12-01

    Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy. PMID:22749723

  19. Effects of Aluminium Sulfate on Cadmium Accumulation in Rice

    International Nuclear Information System (INIS)

    Full text: Cadmium accumulation in Pathum Thani 1 and Suphan Buri 60 rice cultivars was investigated upon treatment with aluminium sulfate as a precipitant. Rice was grown hydroponically in a medium containing 4 ppm cadmium nitrate with or without 4 ppm aluminium sulfate. Root, stem with leaves and grain samples were collected and analyzed for cadmium content using atomic absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy. Without the addition of aluminium sulfate, Pathum Thani 1 and Suphan Buri 60 accumulated 24.71∫ 3.14 ppm and 34.43 ∫ 4.51 ppm (dry weight of whole plant) of cadmium, respectively. With aluminium sulfate, cadmium accumulation increased to 40.66 ∫ 2.47 ppm and 62.94 ∫ 10.69 ppm, respectively. The addition of aluminium sulfate to the planting medium did not reduce cadmium accumulation but caused the rice to accumulate more cadmium especially in the shoots and grains. This observation might serve as the basis for future research on the management of agricultural areas that are contaminated with cadmium and aluminium

  20. Surface roughness when diamond turning RSA 905 optical aluminium

    Science.gov (United States)

    Otieno, T.; Abou-El-Hossein, K.; Hsu, W. Y.; Cheng, Y. C.; Mkoko, Z.

    2015-08-01

    Ultra-high precision machining is used intensively in the photonics industry for the production of various optical components. Aluminium alloys have proven to be advantageous and are most commonly used over other materials to make various optical components. Recently, the increasing demand from optical systems for optical aluminium with consistent material properties has led to the development of newly modified grades of aluminium alloys produced by rapid solidification in the foundry process. These new aluminium grades are characterised by their finer microstructures and refined mechanical and physical properties. However the machining database of these new optical aluminium grades is limited and more research is still required to investigate their machinability performance when they are diamond turned in ultrahigh precision manufacturing environment. This work investigates the machinability of rapidly solidified aluminium RSA 905 by varying a number of diamond-turning cutting parameters and measuring the surface roughness over a cutting distance of 4 km. The machining parameters varied in this study were the cutting speed, feed rate and depth of cut. The results showed a common trend of decrease in surface roughness with increasing cutting distance. The lowest surface roughness Ra result obtained after 4 km in this study was 3.2 nm. This roughness values was achieved using a cutting speed of 1750 rpm, feed rate of 5 mm/min and depth of cut equal to 25 μm.

  1. Electrospun Gallium Nitride Nanofibers (abstract)

    Science.gov (United States)

    Meléndez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  2. Wear behaviour of plasma nitrided tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Devi, M.U. [Tata Iron and Steel Co. Ltd., Jamshedpur (India). Research and Development Div.; Chakraborty, T.K. [Wire Rod Mill, Tata Iron and Steel Co. Ltd., Jamshedpur (India); Mohanty, O.N. [Research and Development Division, Tata Iron and Steel Co. Ltd., Jamshedpur (India)

    1999-09-01

    Plasma nitriding of three grades of tool steels, namely H13, D2 and a special purpose proprietary tool steel, referred to as L7', has been explored in an effort to enhance the working life of roll entry (RE) guides in wire rod rolling mill that are subjected to a complex wear mode including impact, sliding and rolling. In the case of H13 and D2 steels, plasma nitriding is found to improve the life of guide rolls by two to three times depending upon the type of tool steel. The working life of the guide rolls made from L7' steel, however, was observed to be lower after plasma nitriding due to softening of the substrate at plasma nitriding temperature. The cross-section normal to wear scar and the surface of worn-out rolls were characterised by scanning electron microscopy (SEM) to understand the wear mechanisms. The SEM examination of worn-out surfaces revealed signatures for the adhesion, abrasion, delamination and tribochemical (oxidative) modes of wear. In the case of rolls without plasma nitriding, adhesion was one of the important causes of wear in all the tool steels. Delamination wear occurred in H13 steel and both delamination and microcutting modes of wear contributed to the overall damage in D2 steel rolls. L7' steel showed breaking of surface oxide film, indicating tribochemical wear. Plasma nitriding decreased the adhesive wear substantially. Delamination was found to be the primary mode of wear in nitrided H13 steel rolls. Abrasive wear contributed to damage in nitrided D2 steel rolls. Severe roll damage occurred in L7' steel, primarily by microcutting, due to softening during plasma nitriding. The working life of the rolls has been deliberated upon in the light of wear mechanisms observed in the different tool steels. (orig.)

  3. Friction Characteristics of Nitrided Layers on AISI 430 Ferritic Stainless Steel Obtained by Various Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Hakan AYDIN

    2013-03-01

    Full Text Available The influence of plasma, gas and salt-bath nitriding techniques on the friction coefficient of AISI 430 ferritic stainless steel was studied in this paper. Samples were plasma nitrided in 80 % N2 + 20 % H2 atmosphere at 450 °C and 520 °C for 8 h at a pressure of 2 mbar, gas nitrided in NH3 and CO2 atmosphere at 570 °C for 13 h and salt-bath nitrided in a cyanide-cyanate salt-bath at 570 °C for 1.5 h. Characterisation of nitrided layers on the ferritic stainless steel was carried out by means of microstructure, microhardness, surface roughness and friction coefficient measurements. Friction characteristics of the nitrided layers on the 430 steel were investigated using a ball-on-disc friction-wear tester with a WC-Co ball as the counter-body under dry sliding conditions. Analysis of wear tracks was carried out by scanning electron microscopy. Maximum hardness and maximum case depth were achieved on the plasma nitrided sample at 520 ºC for 8 h. The plasma and salt-bath nitriding techniques significantly decreased the average surface roughness of the 430 ferritic stainless steel. The friction test results showed that the salt-bath nitrided layer had better friction-reducing ability than the other nitrided layers under dry sliding conditions. Furthermore, the friction characteristic of the plasma nitrided layer at 520 ºC was better than that of the plasma nitrided layer at 450 °C.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3819

  4. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim;

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bulk...... and thin-film glasses were used in the bonding experiments. Bond quality was evaluated using a tensile test on structured dies. The effect of oxygen-based pre-treatments of the nitride surface on the bond quality has been evaluated. Bond strengths up to 35 Nrmm2 and yields up to 100% were obtained....

  5. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one precip...... layer between the crystalline nitride and ferrite matrix. Usually precipitates are described as having (semi) coherent or incoherent interfaces, but in this case it is more energetically favourable to create an amorphous layer instead of the incoherent interface....

  6. Structure and properties of nitrided binary Fe-Al, Fe-V, Fe-Ti alloys

    International Nuclear Information System (INIS)

    The structure of binary alloys Fe-Al (up to 6.85% Al), Fe-V (up to 1.86% V), and Fe-Ti (up to 1.26% Ti) nitrated for 1 hr at 500 deg C has been investigated. The forming of the nitrous phases in the diffusion layers corresponds to the Fe-N diagram. The surface layer consists of epsilon -/nitride of Fe3N, then follows the γ'-phase, and further a wide region of a nitrous α-solid solution. Separate crystals of Al2O3 have been found on the surface of nitrated Fe-Al alloys. The ferrite hardness is increased most efficiently by titanium, less noticeably by vanadium, and only slightly by aluminium. It has been established that the diffusion sublayer of the Fe-Ti and Fe-V alloys contains, in addition to the segregations of the excess γ'-phase, another nitride phase Fe16N2, which is isomorphous with the matrix. The matrix reflexes indicate the effect of diffusion scattering in the form of rods, which points to the formation of clusters or Guinier-Preston zones coherent or partly coherent with the matrix

  7. Plasma nitriding of AISI 52100 ball bearing steel and effect of heat treatment on nitrided layer

    Indian Academy of Sciences (India)

    Ravindra Kumar; J Alphonsa; Ram Prakash; K S Boob; J Ghanshyam; P A Rayjada; P M Raole; S Mukherjee

    2011-02-01

    In this paper an effort has been made to plasma nitride the ball bearing steel AISI 52100. The difficulty with this specific steel is that its tempering temperature (∼170–200°C) is much lower than the standard processing temperature (∼460–580°C) needed for the plasma nitriding treatment. To understand the mechanism, effect of heat treatment on the nitrided layer steel is investigated. Experiments are performed on three different types of ball bearing races i.e. annealed, quenched and quench-tempered samples. Different gas compositions and process temperatures are maintained while nitriding these samples. In the quenched and quench-tempered samples, the surface hardness has decreased after plasma nitriding process. Plasma nitriding of annealed sample with argon and nitrogen gas mixture gives higher hardness in comparison to the hydrogen–nitrogen gas mixture. It is reported that the later heat treatment of the plasma nitrided annealed sample has shown improvement in the hardness of this steel. X-ray diffraction analysis shows that the dominant phases in the plasma nitrided annealed sample are (Fe2−3N) and (Fe4N), whereas in the plasma nitrided annealed sample with later heat treatment only -Fe peak occurs.

  8. Internal nitride formation during gas-phase thermal nitridation of titanium

    International Nuclear Information System (INIS)

    Titanium nitride surface layers were prepared by gas-phase thermal nitridation of pure titanium in an ammonia atmosphere at 1373 K for different times. In addition to the surface nitride layer, nitride/hydride formation was observed in the bulk of the specimen. The cross-section of the specimen was characterized by various techniques such as optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry and nanomechanical testing, and the mechanism of formation of these phases is discussed.

  9. Irradiation effects on aluminium and beryllium

    International Nuclear Information System (INIS)

    The High Flux Reactor (HFR) in Petten (The Netherlands) is a 45 MW light water cooled and moderated research reactor. The vessel was replaced in 1984 after more than 20 years of operation because doubts had arisen over the condition of the aluminium alloy construction material. Data on the mechanical properties of the aluminium alloy Al 5154 with and without neutron irradiation are necessary for the safety analysis of the new HFR vessel which is constructed from the same material as the old vessel. Fatigue, fracture mechanics (crack growth and fracture toughness) and tensile properties have been obtained from several experimental testing programmes with materials of the new and the old HFR vessel. 1) Low-cycle fatigue testing has been carried out on non-irradiated specimens from stock material of the new HFR vessel. The number of cycles to failure ranges from 90 to more than 50,000 for applied strain from 3.0% to 0.4%; 2) Fatigue crack growth rate testing has been conducted: - with unirradiated specimens from stock material of the new vessel; - with irradiated specimens from the remnants of the old core box. Irradiation has a minor effect on the sub-critical fatigue crack growth rate. The ultimate increase of the mean crack growth rate amounts to a factor of 2. However crack extension is strongly reduced due to the smaller crack length for crack growth instability (reduction of KIC). - Irradiated material from the core box walls of the old vessel has been used for fracture toughness testing. The conditional fracture toughness values KIQ ranges from 30.3 down to 16.5 MPa√m. The lowermost meaningful 'KIC' is 17.7 MPa√m corresponding to the thermal fluence of 7.5 1026 n/m2 for the End of Life (EOL) of the old vessel. - Testing carried out on irradiated material from the remnants of the old HFR core box shows an ultimate neutron irradiation hardening of 35 points increase of HSR15N and an ultimate tensile yield stress of 589 MPa corresponding to the ductility of 1

  10. Nitriding of Aluminum Extrusion Die: Effect of Die Geometry

    Science.gov (United States)

    Akhtar, S. S.; Arif, A. F. M.; Yilbas, B. S.

    2010-04-01

    Nitriding of complex-shaped extrusion dies may result in non-uniform nitride layers and hence a required hardness may not be achieved in some regions of the bearing area. The present study is carried out to assess the effect of extrusion die profile on the characteristics and growth behavior of nitride layers so that the critical die design feature can be identified to enhance the uniformity of the nitride layer. For this purpose, AISI H13 steel samples have been manufactured with profiles similar to those of hot extrusion dies. The samples were then gas nitrided under controlled nitriding potential. The uniformity and depth of nitride layers have been investigated in terms of compound layer and total nitride case depth for selected die features. The results of this study indicated the need to include the effect of profile on the nitride layer for the optimal die design with improved service life.

  11. Bioaccumulation of Aluminium in Hydromacrophytes in Polish Coastal Lakes

    Directory of Open Access Journals (Sweden)

    Senze Magdalena

    2015-03-01

    Full Text Available The research on aluminium content was conducted in water and on aquatic flora of Polish lakes in the central part of the coast. The study included the lakes Sarbsko, Choczewskie, Bia.e, K.odno, D.brze and Salino investigated in the summer of 2013. The examined lakes belong mainly to the direct basin of the Baltic Sea. Samples of aquatic plants and lake waters were collected. In the water samples pH and electrolytic conductivity were measured. The aluminium content was determined both in water and aquatic plants. Submerged hydromacrophyte studies included Myriophyllum alterniflorum L., Potamogeton perfoliatus L. and Ceratophyllum demersum L. Emergent hydromacrophyte studies included Phragmites australis (Cav. Trin. ex Steud., Juncus bulbosus L., Iris pseudacorus L., Eleocharis palustris (L. Roem. % Schult., Phalaris arundinacea L., Carex riparia Curt., Mentha aquatic L., Stratiotes aloides L., Alisma plantago-aquatica L., Glyceria maxima (Hartman Holmb., Sagittaria sagittifolia L., Scirpus lacustris L. and Typha angustifolia L. The purpose of this investigation was the determination of the aluminium content in submerged and emergent hydromacrophytes and also the definition of their bioaccumulative abilities. The average concentration of aluminium in water was 2.68 fęg Al dm.3. The average content of aluminium in plants was 2.8015 mg Al kg.1. The bioaccumulation factor ranged from BCF=19.74 to BCF=16619. On the basis of the analysis of the aluminium content in water and aquatic plants results show that both water and plants were characterized by a moderate level of aluminium. The recorded concentrations indicate a mid-range value and are much lower than those which are quoted for a variety of surface waters in various parts of the world.

  12. Oxidation of φ'-aluminium oxynitride

    International Nuclear Information System (INIS)

    Research highlights: Oxidation of φ'-AlON has been studied for the first time. First corrosion products are γ-alumina. Low density α-alumina is formed at high temperature. Grains are extensively cracked after oxidation. The low density of the α-alumina is due to a network of nanometric porosities. - Abstract: The oxidation in air of single crystal φ'-aluminium oxynitride (AlON) grains has been characterized by thermogravimetry and X-ray diffraction in the 1273-1673 K range. Two oxidation stages have been observed, suggesting the formation of a transitional phase. Below 1473 K, oxidation results in the apparition of platelets and noodle-like crystals on the surface of the initially faceted single crystals. Above 1473 K, low density α-alumina polycrystals start forming on the grain surface and grow towards the grain core with increasing temperature or time. Their low density is mainly due to the presence of a network of nano-porosities.

  13. A systematic review of aluminium phosphide poisoning.

    Science.gov (United States)

    Mehrpour, Omid; Jafarzadeh, Mostafa; Abdollahi, Mohammad

    2012-03-01

    Every year, about 300,000 people die because of pesticide poisoning worldwide. The most common pesticide agents are organophosphates and phosphides, aluminium phosphide (AlP) in particular. AlP is known as a suicide poison that can easily be bought and has no effective antidote. Its toxicity results from the release of phosphine gas as the tablet gets into contact with moisture. Phosphine gas primarily affects the heart, lungs, gastrointestinal tract, and kidneys. Poisoning signs and symptoms include nausea, vomiting, restlessness, abdominal pain, palpitation, refractory shock, cardiac arrhythmias, pulmonary oedema, dyspnoea, cyanosis, and sensory alterations. Diagnosis is based on clinical suspicion, positive silver nitrate paper test to phosphine, and gastric aspirate and viscera biochemistry. Treatment includes early gastric lavage with potassium permanganate or a combination with coconut oil and sodium bicarbonate, administration of charcoal, and palliative care. Specific therapy includes intravenous magnesium sulphate and oral coconut oil. Moreover, acidosis can be treated with early intravenous administration of sodium bicarbonate, cardiogenic shock with fluid, vasopresor, and refractory cardiogenic shock with intra-aortic baloon pump or digoxin. Trimetazidine may also have a useful role in the treatment, because it can stop ventricular ectopic beats and bigeminy and preserve oxidative metabolism. This article reviews the epidemiological, toxicological, and clinical/pathological aspects of AlP poisoning and its management. PMID:22450207

  14. Eu(III)-doped aluminium yttrium oxide

    International Nuclear Information System (INIS)

    In this work, we report the synthesis and the photoluminescence features of Eu(III)-doped yttrium-aluminium oxide obtained by non-hydrolytic sol-gel routes. After heating the powders above 600 deg C the XRD patterns show the presence of the Y4Al2O9 (YAM) and Y3Al5O12 (YAG) phases. At 800 and at 1500 deg C the PL spectra display the Eu(III) lines characteristic of the YAM monoclinic phase. The 5D0→7F2 transition is favored relatively to the 5D0→7F1 lines. However, at 1100 deg C the cubic YAG is the preferential phase and the 5D0→7F1 transition dominates the spectrum. The Eu(III) ions lie in a centro symmetrical site. The different solvents used in the sol-gel synthesis also change the relative proportion between these two phases. This is monitored analyzing the modifications in the relative intensity between the 5D0→7F2 and the 5D0→7F1 transitions. (author)

  15. Anomalous Diffusion of Mo Implanted into Aluminium

    Institute of Scientific and Technical Information of China (English)

    张通和; 吴瑜光; 邓志威; 钱卫东

    2001-01-01

    Mo ions are implanted into aluminium with a high ion flux and high dose at elevated temperatures of 300℃, 400℃ and 500℃ . X-ray diffraction spectra show that the Al12Mo phases are formed. Rutherford backscattering spectroscopy indicates that a profile of Mo appears in Al around the depth of 550nm and with an atomic concentration of ~7%, when Mo is implanted to the dose of 3 × 1017/cm2 with an ion flux of 45μA/cm2 (400℃).If the dose increases to 1 × 1018/cm2 at the same ion flux, the penetration of Mo ions in Al can reach a depth of 2μm, which is greater than the ion project range Rp (52.5nm). The results show that anomalous diffusion takes place. Owing to the intense atom collision cascades, the diffusion coefficient increases greatly with the increase of the ion flux and dose. The Mo diffusion coefficients in Al are calculated. The Mo retained dose in A1 increases obviously with the increase of the ion flux.

  16. Acute aluminium phosphide poisoning, what is new?

    Directory of Open Access Journals (Sweden)

    Yatendra Singh

    2014-01-01

    Full Text Available Aluminium phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide that is commonly used for grain preservation. AlP has currently generated interest with increasing number of cases in the past four decades because of its increased use for agricultural and nonagricultural purposes, and also its easy availability in the markets has led to its increased misuse to commit suicide. Ingestion is usually suicidal in intent, uncommonly accidental and rarely homicidal. The poison affects all systems, shock, cardiac arrhythmias with varied ECG changes and gastrointestinal features being the most prominent. Diagnosis is made on the basis of clinical suspicion, a positive silver nitrate paper test to phosphine, and gastric aspirate and viscera biochemistry. Treatment includes early gastric lavage with potassium permanganate or a combination of coconut oil and sodium bicarbonate, administration of charcoal and palliative care. Specific therapy includes intravenous magnesium sulphate and oral coconut oil. Unfortunately, the lack of a specific antidote Results in very high mortality and the key to treatment lies in rapid decontamination and institution of resuscitative measures. This article aims to identify the salient features and mechanism of AlP poisoning along with its management strategies and prognostic variables.

  17. Fuzzy Multicriteria Ranking of Aluminium Coating Methods

    Science.gov (United States)

    Batzias, A. F.

    2007-12-01

    This work deals with multicriteria ranking of aluminium coating methods. The alternatives used are: sulfuric acid anodization, A1; oxalic acid anodization, A2; chromic acid anodization, A3; phosphoric acid anodization, A4; integral color anodizing, A5; chemical conversion coating, A6; electrostatic powder deposition, A7. The criteria used are: cost of production, f1; environmental friendliness of production process, f2; appearance (texture), f3; reflectivity, f4; response to coloring, f5; corrosion resistance, f6; abrasion resistance, f7; fatigue resistance, f8. Five experts coming from relevant industrial units set grades to the criteria vector and the preference matrix according to a properly modified Delphi method. Sensitivity analysis of the ranked first alternative A1 against the `second best', which was A3 at low and A7 at high resolution levels proved that the solution is robust. The dependence of anodized products quality on upstream processes is presented and the impact of energy price increase on industrial cost is discussed.

  18. Method of nitriding refractory metal articles

    Science.gov (United States)

    Tiegs, Terry N.; Holcombe, Cressie E.; Dykes, Norman L.; Omatete, Ogbemi O.; Young, Albert C.

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  19. ALUMINUM NITRIDE AS A HIGH TEMPERATURE TRANSDUCER

    International Nuclear Information System (INIS)

    The high temperature capabilities of bulk single crystal aluminum nitride are investigated experimentally. Temperatures in excess of 1100 deg. Celsius are obtained and held for eight hours. Variation in the performance of single crystal samples is demonstrated.

  20. Titanium nitride nanoparticles for therapeutic applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Kildishev, Alexander V.; Boltasseva, Alexandra;

    2014-01-01

    Titanium nitride nanoparticles exhibit plasmonic resonances in the biological transparency window where high absorption efficiencies can be obtained with small dimensions. Both lithographic and colloidal samples are examined from the perspective of nanoparticle thermal therapy. © 2014 OSA....

  1. The Nitrogen-Nitride Anode.

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  2. Nitrogen-rich transition metal nitrides

    OpenAIRE

    Salamat, Ashkan; Hector, Andrew L.; Kroll, Peter; McMillan, Paul F.

    2013-01-01

    The solid state chemistry leading to the synthesis and characterization of metal nitrides with N:M ratios >1 is summarized. Studies of these compounds represent an emerging area of research. Most transition metal nitrides have much lower nitrogen contents, and they often form with non- or sub-stoichiometric compositions. These materials are typically metallic with often superconducting properties, and they provide highly refractory, high hardness materials with many technological applications...

  3. Progress in molecular uranium-nitride chemistry

    OpenAIRE

    King, David M.; Liddle, Stephen T

    2014-01-01

    The coordination, organometallic, and materials chemistry of uranium nitride has long been an important facet of actinide chemistry. Following matrix isolation experiments and computational characterisation, molecular, solution-based uranium chemistry has developed significantly in the last decade or so culminating most recently in the isolation of the first examples of long-sought terminal uranium nitride linkages. Herein, the field is reviewed with an emphasis on well-defined molecular spec...

  4. Surface modification of titanium by plasma nitriding

    OpenAIRE

    Myriam Pereira Kapczinski; Carlos Gil; Eder Julio Kinast; Carlos Alberto dos Santos

    2003-01-01

    A systematic investigation was undertaken on commercially pure titanium submitted to plasma nitriding. Thirteen different sets of operational parameters (nitriding time, sample temperature and plasma atmosphere) were used. Surface analyses were performed using X-ray diffraction, nuclear reaction and scanning electron microscopy. Wear tests were done with stainless steel Gracey scaler, sonic apparatus and pin-on-disc machine. The obtained results indicate that the tribological performance can ...

  5. Aluminum Nitride Sensors for Harsh Environments

    OpenAIRE

    Goericke, Fabian Thomas

    2013-01-01

    Harsh environment applications include high temperature, pressure and mechanical shock. Aluminum nitride is a strong ceramic material with very good high temperature survivability. It also has piezoelectric properties that can be used for sensing applications and it can be deposited with good control as thin polycrystalline film for the fabrication of micro-electromechanical systems. In this dissertation, optimized deposition parameters for aluminum nitride films and characterization techniqu...

  6. Innovative boron nitride-doped propellants

    OpenAIRE

    Thelma Manning; Richard Field; Kenneth Klingaman; Michael Fair; John Bolognini; Robin Crownover; Carlton P. Adam; Viral Panchal; Eugene Rozumov; Henry Grau; Paul Matter; Michael Beachy; Christopher Holt; Samuel Sopok

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower ...

  7. Aluminium Matrix Composites Reinforced with Co-continuous Interlaced Phases Aluminium-alumina Needles

    Directory of Open Access Journals (Sweden)

    Elvio de Napole Gregolin

    2002-09-01

    Full Text Available An Al-5SiO2 (5 wt% of SiO2 aluminium matrix fiber composite was produced where the reinforcement consists of fossil silica fibers needles. After being heat-treated at 600 °C, the original fiber morphology was retained but its microstructure changed from solid silica to an interconnected (Al-Si/Al2O3 interlaced structure named co-continuous composite. A technique of powder metallurgy, using commercial aluminium powder and the silica fibers as starting materials, followed by hot extrusion, was used to produce the composite. The co-continuous microstructure was obtained partially or totally on the fibers as a result of the reaction, which occurs during the heat treatment, first by solid diffusion and finally by the liquid Al-Si in local equilibrium, formed with the silicon released by reaction. The internal structure of the fibers was characterized using field emission electron microscope (FEG-SEM and optical microscopy on polished and fractured samples.

  8. Fabrication experience of aluminium clad aluminium matrix dispersion fuels at BARC

    International Nuclear Information System (INIS)

    Aluminium clad, aluminium matrix plate type dispersion fuels have been fabricated in BARC in recent years as part of fuel development programme for small non-power research reactors. The present paper describes the flowsheet developed for fabrication of Al-UAlx, Al-U3Si2 and Al-U3O8 fuels at BARC. The Al-20% U alloy fuel for KAMINI neutron radiography reactor was prepared by 'melting and casting' route, followed by picture framing and roll-bonding. For higher 'U' density fuels namely, Al-UAlx, Al-U3O8 and Al-U3Si2 the 'powder metallurgy' route was followed for preparation of fuel meat. The novel features in fabrication route were: addition of Zr for stabilizing UAl3 phase in Al-20% U alloy; x-ray radiography and microdensitometric scanning of radiographs for location of fuel outline inside fuel element and for confirming homogeneous distribution of fissile atoms; immersion ultrasonic testing for confirming good bonding between mating Al surface of the fuel plate. (author)

  9. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  10. Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process

    Science.gov (United States)

    Asmara, Y. P.; Siregar, J. P.; Tezara, C.; Ann, Chang Tai

    2016-02-01

    Aluminium is one of the preferred materials to be used as sacrificial anode for carbon steel protection. The efficiency of these can be low due to the formation of oxide layer which passivate the anodes. Currently, to improve its efficiency, there are efforts using a new technique called surface modifications. The objective of this research is to study corrosion mechanism of aluminium sacrificial anode which has been processed by cold work. The cold works are applied by reducing the thickness of aluminium sacrificial anodes at 20% and 40% of thickness reduction. The cathodic protection experiments were performed by immersion of aluminium connected to carbon steel cylinder in 3% NaCl solutions. Visual inspections using SEM had been conducted during the experiments and corrosion rate data were taken in every week for 8 weeks of immersion time. Corrosion rate data were measured using weight loss and linear polarization technique (LPR). From the results, it is observed that cold worked aluminium sacrificial anode have a better corrosion performance. It shows higher corrosion rate and lower corrosion potential. The anodes also provided a long functional for sacrificial anode before it stop working. From SEM investigation, it is shown that cold works have changed the microstructure of anodes which is suspected in increasing corrosion rate and cause de-passivate of the surface anodes.

  11. The structure of high-quality aluminium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available In this study presents the analyse of aluminium iron cast structure (as-cast condition which are used in high temperature. While producing the casts of aluminium iron major influence has been preserve the structure of technological process parameters. The addition to Fe-C-Al alloy V, Ti, Cr leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a aluminium cast iron structure and thus improve the production process. V and Ti additions in aluminium cast iron allows to development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

  12. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    grains. On prolonged nitriding, immediate nucleation at the surface of iron grains becomes possible. Calculated incubation times for the nucleation of gamma'-Fe4N1-x during nitriding are generally longer than those observed experimentally in the present work. The incubation time is reduced dramatically...

  13. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided

    International Nuclear Information System (INIS)

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  14. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Hajime, E-mail: h.kinoshita@sheffield.ac.uk [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Swift, Paul; Utton, Claire [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Carro-Mateo, Beatriz [The Public University of Navarra, C/Esquíroz, 30 trasera, Pamplona 31007 (Spain); Marchand, Geraldine [The National Institute of Applied Sciences (INSA) Lyon, 20 Avenue Albert Einstein 69621 Villeurbanne Cedex (France); Collier, Nick [National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, WA3 6AE (United Kingdom); Milestone, Neil [Industrial Research Ltd., 69 Gracefield Road, Lower Hutt, 5040 (New Zealand)

    2013-08-15

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, and the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.

  15. Synthesis of Vanadium Nitride by a One Step Method

    Institute of Scientific and Technical Information of China (English)

    Sansan YU; Nianxin FU; Feng GAO; Zhitong SUI

    2007-01-01

    Vanadium nitrides were prepared via one step method of carbothermal reduction and nitridation of vanadium trioxide. Thermalgravimetric analysis (TGA) and X-ray diffraction were used to determine the reaction paths of vanadium carbide, namely the following sequential reaction: V2O3→V8C7 in higher temperature stage, the rule of vanadium nitride synthesized was established, and defined conditions of temperature for the production of the carbides and nitrides were determined. Vanadium oxycarbide may consist in the front process of carbothermal reduction of vanadium trioxide. In one step method for vanadium nitride by carbothermal reduction and nitridation of vanadium trioxide, the nitridation process is simultaneous with the carbothermal reduction. A one-step mechanism of the carbothermal reduction with simultaneous nitridation leaded to a lower terminal temperature in nitridation process for vanadium nitride produced, compared with that of carbothermal reduction process without nitridation. The grain size and shape of vanadium nitride were uniform, and had the shape of a cube. The one step method combined vacuum carborization and nitridation (namely two step method) into one process. It simplified the technological process and decreased the costs.

  16. Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride

    International Nuclear Information System (INIS)

    The authors report the growth of iron nitride on zinc-blende gallium nitride using molecular beam epitaxy. First, zinc-blende GaN is grown on a magnesium oxide substrate having (001) orientation; second, an ultrathin layer of FeN is grown on top of the GaN layer. In situ reflection high-energy electron diffraction is used to monitor the surface during growth, and a well-defined epitaxial relationship is observed. Cross-sectional transmission electron microscopy is used to reveal the epitaxial continuity at the gallium nitride-iron nitride interface. Surface morphology of the iron nitride, similar to yet different from that of the GaN substrate, can be described as plateau valley. The FeN chemical stoichiometry is probed using both bulk and surface sensitive methods, and the magnetic properties of the sample are revealed.

  17. Interaction between hydrogen and a nitrided layer

    Directory of Open Access Journals (Sweden)

    J. Ćwiek

    2011-07-01

    Full Text Available Purpose: of this paper is to reveal the influence of nitrided layer on 34CrAlNi7-10 steel to its susceptibility to hydrogen degradation. Investigation was carried out with the use of slow strain tensile rate test (SSRT.Design/methodology/approach: Nitriding was done in the nitrogen-hydrogen (or argon gas atmospheres with various hydrogen content, i. e. 0%, 30%, and 70%, at the glow discharge at temperature 560°C for 6 hrs. In order to estimate the degree of hydrogen degradation SSRT test was conducted on round smooth specimens 4 mm in diameter. Tests were performed at ambient temperature either in dry air or in 0.005 M H2SO4 solution. The applied strain rate was 10-6 s-1. Tests in acid solution were conducted under cathodic polarization with constant current densities: 0.1; 1; 5 and 10 mA/cm2. Fracture surfaces after SSRT test were examined with scanning electron microscope (SEM to reveal a mode and mechanism of cracking.Findings: Plasma nitrided layers are effective barriers to hydrogen entry into structural steel which decreases susceptibility of steel to hydrogen degradation. Hydrogen is mainly accumulated in a compact nitrides zone. Evidences of no increase in brittleness of nitrided layers with absorbed hydrogen were observed.Research limitations/implications: There is no possibility to perform direct observations of exact mechanism of hydrogen-assisted cracking so far. Further research should be taken to reveal the exact mechanism of increased plasticity of nitrided layer with absorbed hydrogen.Practical implications: Plasma nitrided layers are effective barriers to hydrogen entry into structural steel utilized in aggressive environments, which could be potential sources of hydrogen charging of exploited steels.Originality/value: Plasma assisted nitriding provides the formation of thin compact nitride zone which protects high-strength steels against corrosion and hydrogen degradation. Evidences of no increase in brittleness of nitrided

  18. Residual stress in 7449 aluminium alloy forgings

    International Nuclear Information System (INIS)

    The through thickness residual stress distributions within three 120 mm thick rectilinear forgings, made from the high strength aluminium alloy 7449 have been measured using both neutron diffraction and deep hole drilling. Neutron diffraction measurements were made on two instruments, one using a pulsed spallation neutron source, the other a steady state reactor source. Heat treatment of the forgings included a rapid quench into cold water and it was the residual stresses arising from this step that were initially measured. Neutron diffraction measurements indicated large magnitude (>250 MPa) tensile residual stresses in the centre of an as quenched forging, balanced by surface regions stressed in compression (<-200 MPa). Sufficient measurements were made to permit the description of the residual stress distribution using area maps. Two forgings were stress relieved by cold compression immediately after quenching. The degree of plastic strain was either 2.5% or 4%, and was applied by a single application of force in the short transverse direction. Cold compressed forgings were found to have far lower residual stress when compared to the as quenched condition. The amount of cold compression was found to cause an insignificant difference in the final residual stress distribution. The neutron diffraction results are compared to measurements made by deep hole drilling and a new incremental variation of the technique. The deep hole was drilled through the centre of the forgings in the short transverse direction. Multiple neutron diffraction measurements were also made on the extracted cores from the deep hole measurements to assess the variation of the unstrained lattice parameter through the thickness of the forgings.

  19. PEMBINAAN PENGERAJIN BOKOR ALUMINIUM DI DESA MENYALI

    Directory of Open Access Journals (Sweden)

    I NYOMAN GDE ANTARA, dkk.

    2014-04-01

    Full Text Available Alluminium bowl craft industrial center is located in Menyali village Sawan district Buleleng regency of Bali province. In this business development, they faced some problems such as increasingly expensive alluminium plate raw materials, decreasing selling product prices due to competition among craftsmen, difficulty in extending the marketing, lack of capital, lack of knowledge in business management, and lack of technical capacity and production innovation. Currently the organization has been formed aluminum bowl craftsmen groups, they are “Sumber Urip” and “Sumur Jaya”. This organization is still limited to tradisional associations such as a community organization, has not led to organize in a micro-enterprise or cooperation. Their organization management should not be arranged. Therefore, they need helps from the government and other institutions to build this bowl craftsmen in developing their businesses through a group of micro-enterprises or cooperations. Wishly, with formal business entity that would facilitate access to a variety of coaching and help governments andother institutions. From the SWOT analysis, it is found some problems and solutions that should be done. Alluminium bowl craftsmen groups, named “Sumber Urip” and “Sumur Jaya” is not in the form of business entity or cooperation yet, so that the results of coaching have agreed to form a cooperation. Venture capital assistance for the development and production are still needed and to be an absolute given, but a way to market more absolute yield is given, through participation in various events exhibition to introduce the product is expected to expandits market share up to overseas or exports. In the production process it has been introduced that is appropriate technology for instant a rolling tool to make a wiring groove on the outside of the bowl, so that it will simplify and speed up the process, especially by aged mothers.Keywords: aluminium bowl, Menyali

  20. Low Speed Laser Welding of Aluminium Alloys Using Single-Mode Fiber Lasers

    OpenAIRE

    Tu, Jay; Paleocrassas, Alexander

    2010-01-01

    In this chapter, topics related to extending fiber laser welding of aluminium in the low speed range were discussed. General topics, such as the properties of aluminium and welding defects, review of high speed laser welding of aluminium, and fiber laser characteristics and optical setups for safety, were first reviewed. Recent research results on the modelling and validation of laser welding of aluminium, experimental characterization of low speed welding processes, and the instability pheno...

  1. Influence of Alkali Treatment on the Surface Area of Aluminium Dross

    OpenAIRE

    Zauzi, N. S. Ahmad; M. Z. H. Zakaria; Baini, R.; Rahman, M. R.; N. Mohamed Sutan; Hamdan, S

    2016-01-01

    Aluminium dross is an industrial waste from aluminium refining industry and classified as toxic substances. However, the disposal of dross as a waste is a burden to aluminium manufacturer industries due to its negative effects to the ecosystem, surface, and ground water. Therefore the purpose of this study is to evaluate the influence of sodium hydroxide (NaOH) on the surface area and pore size of aluminium dross. There were 3 stages in the treatment activities, which were leaching, precipita...

  2. The determination of boron in high-purity aluminium metal by spark-source mass spectrometry

    International Nuclear Information System (INIS)

    A method is described for the determination of boron in high-purity aluminium metal. Both isotopic boron lines (10B+1 and 11B+1) are used for the analysis. As there are no low-abundance isotopic lines for aluminium, measurements were made direct without reference to aluminium as an internal standard. The boron concentration values of eight aluminium samples analysed by this method compared favourably with results obtained from other techniques

  3. Aluminium salen and salan catalysts for polymerisation of novel monomers and macrostructures

    OpenAIRE

    MacDonald, Jarret Preston

    2016-01-01

    Aluminium salen and aluminium salan complexes are excellent catalysts for the ring-opening polymerisation of lactide. This thesis studied their efficacy in the polymerisation of novel monomers and their ability to build new macrostructures. Aluminium salen and aluminium salan complexes were tested as catalysts for ring-opening polymerisation of common aliphatic monomers where controlled polymer synthesis has not yet been achieved with similar systems. Excellent control over ...

  4. IEC 61267: Feasibility of type 1100 aluminium and a copper/aluminium combination for RQA beam qualities.

    Science.gov (United States)

    Leong, David L; Rainford, Louise; Zhao, Wei; Brennan, Patrick C

    2016-01-01

    In the course of performance acceptance testing, benchmarking or quality control of X-ray imaging systems, it is sometimes necessary to harden the X-ray beam spectrum. IEC 61267 specifies materials and methods to accomplish beam hardening and, unfortunately, requires the use of 99.9% pure aluminium (Alloy 1190) for the RQA beam quality, which is expensive and difficult to obtain. Less expensive and more readily available filters, such as Alloy 1100 (99.0% pure) aluminium and copper/aluminium combinations, have been used clinically to produce RQA series without rigorous scientific investigation to support their use. In this paper, simulation and experimental methods are developed to determine the differences in beam quality using Alloy 1190 and Alloy 1100. Additional simulation investigated copper/aluminium combinations to produce RQA5 and outputs from this simulation are verified with laboratory tests using different filter samples. The results of the study demonstrate that although Alloy 1100 produces a harder beam spectrum compared to Alloy 1190, it is a reasonable substitute. A combination filter of 0.5 mm copper and 2 mm aluminium produced a spectrum closer to that of Alloy 1190 than Alloy 1100 with the added benefits of lower exposures and lower batch variability. PMID:26776501

  5. Determination of ultratrace amounts of uranium and thorium in aluminium and aluminium alloys by electrothermal vaporization/ICP-MS

    International Nuclear Information System (INIS)

    A method has been developed for determining the 0.01 ng g-1 level of uranium and thorium in aluminium and aluminium alloys by electrothermal vaporization (ETV)/ICP-MS. This method was found to be significantly interfered with any matrices or other elements contained. An ion-exchange technique was therefore applied to separate uranium and thorium from aluminium and other elements. It was known that uranium are adsorbed on an anion-exchange resin and thorium are adsorbed on cation-exchange resin. However, aluminium and copper were eluted with 6 M hydrochloric acid. Dissolve the sample with hydrochloric acid containing copper which was added for analysis of pure aluminium, and oxidize with hydrogen peroxide. Concentration of hydrochloric acid in the solution was adjusted to 6 M, and then passed the solution through the mixed ion-exchange resin column. After the uranium and thorium were eluted with 1 M hydrofluoric acid-0.1 M hydrochloric acid, the solution was evaporated to dryness. It was then dissolved with 1 M hydrochloric acid. Uranium and thorium were analyzed by ETV/ICP-MS using tungsten and molybdenum boats, respectively, since the tungsten boat contained high-level thorium and the molybdenum boat contained uranium. The determination limit of uranium and thorium were 0.003 and 0.005 ng g-1, respectively. (author)

  6. Behaviour of painted aluminium in Ibero-American atmosphere

    International Nuclear Information System (INIS)

    Aluminium generally presents good corrosion resistance to the atmosphere. However, unprotected aluminium and aluminium alloys weather outdoors to an ugly grey colour, which deepens to black in industrial atmospheres, and undergo superficial pitting in marine atmospheres, etc. Finishing technologies are applied for their protection and decoration in a wide range of applications. These technologies basically consist of two protection processes: anodizing and painting: the latter going from conventional solvent base paints to modern water-born, high solids and powder coatings. This paper considers the weathering performance of three paint systems: alkyl, polyurethane and polyester, after more than three years of exposure in a wide spectra of Ibero-American atmospheric conditions. The information reported includes resistance to undercutting corrosion at the scribe, filiform corrosion, fungal attack and change in the physico-chemical properties of the paint surface (loss of gloss, colour changes, chalking, etc.). (Author) 9 refs

  7. Sensitivity analysis on ultimate strength of aluminium stiffened panels

    DEFF Research Database (Denmark)

    Rigo, P.; Sarghiuta, R.; Estefen, S.; Lehmann, E.; Otelea, S. C.; Pasqualino, I.; Simonsen, Bo Cerup; Wan, Z.; Yao, T.

    2003-01-01

    This paper presents the results of an extensive sensitivity analysis carried out by the Committee III.1 "Ultimate Strength" of ISSC?2003 in the framework of a benchmark on the ultimate strength of aluminium stiffened panels. Previously, different benchmarks were presented by ISSC committees on...... ultimate strength. The goal has typically been to give guidance to the designer on how to predict the ultimate strength and to indicate what level of accuracy would be expected. This time, the target of this benchmark is to present reliable finite element methods to study the behaviour of axial compressed...... stiffened aluminium panels (including extruded profiles). Main objectives are to compare codes/models and to perfom quantitative sensitivity analysis of the ultimate strength of a welded aluminium panel on various parameters (typically the heat-affected zone). Two phases were planned. In Phase A, alle...

  8. Aluminium toxicity in the rat liver and brain

    International Nuclear Information System (INIS)

    To investigate the etiology of Alzheimer's disease, we examined the brain and liver tissue uptake of aluminium 5-75 days after aluminium injection into healthy rats. Ten days after the last injection, Al was detected in the brain and the brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Al was also demonstrated in the liver and the liver cell nuclei by PIXE analysis and electron energy loss spectrometry (EELS). The morphological changes of the rat brain examined 75 days after the injection were similar to those which have been reportedly observed in the brain of patients with Alzheimer's disease. These results support the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium in the brain, as well as the nuclei of brain cells. (orig.)

  9. Comparative performance of aluminium copper and iron solar stills

    International Nuclear Information System (INIS)

    Three different metal sheets have been used in the fabrication of three different single sloping solar stills of the same surface geometry. The metals were galvanized iron, aluminium and copper. This paper presents the performance of the different stills operating under the same environmental conditions. The observed distillate yields was greatest for copper, then aluminium and lastly, iron still. The differences in the yields is attributed to the differences in the thermal conductivities of the metals. The equivalent local costs for the fabrication of the copper, aluminium and iron stills are respectively $160, $95 and $60. Taking the long run costs into consideration, the copper still is preferred because of its availability, durability, weldability and relatively higher conductivity of 380Wm-1K-1 value. (author). 9 refs, 2 figs, 2 tabs

  10. Reflection of infrared radiation from thin aluminium layers

    CERN Document Server

    Calatroni, Sergio

    2001-01-01

    The thermal shielding of the LHC magnets cryostats will make use of Multi-Layer Insulation. This is a sandwich of several Mylar (polyester) foils 6 µm thick coated with a thin film of aluminium, having a thickness of some 30 nm. The thickness of the aluminium film must be kept at a minimum to minimise lateral thermal conduction. The outer layer of this sandwich stays at a temperature of 20 K or below, and receives IR radiation from surfaces at 77 K (wavelength of 37.6 µm at the peak of blackbody radiation), which should be reflected with the highest efficiency. The minimum thickness for the aluminium layer to avoid transmission of the radiation can be calculated by making use of the skin effect theory, taking into account the changes in electrical properties that are due to the extremely low thickness of the film.

  11. Chapter 12. The initial aluminium as a raw material for goods

    International Nuclear Information System (INIS)

    The aluminium-raw product and methods of its refining including sedimentation, refining by inert gases and by fluxes was considered. The chemical composition of commodity aluminium was considered as well. The initial processing of aluminium-raw product was studied

  12. Bakable aluminium vacuum chamber and bellows with an aluminum flange and metal seal for ultrahigh vacuum

    International Nuclear Information System (INIS)

    A bakable (2000C) aluminium alloy vacuum chamber and bellows (6063-T6) with an aluminium alloy (2219-T87) flange and metal seal (Helicoflex-HN: aluminium O-ring) has been constructed. Such components may be used in the assemblies of the vacuum chambers in proton synchrotrons and electron storage rings

  13. Structural perturbation of diphtheria toxoid upon adsorption to aluminium hydroxide adjuvant

    NARCIS (Netherlands)

    Regnier, Marie; Metz, Bernard; Tilstra, Wichard; Hendriksen, Coenraad; Jiskoot, Wim; Norde, Willem; Kersten, Gideon

    2012-01-01

    Aluminium-containing adjuvants are often used to enhance the potency of vaccines. In the present work we studied whether adsorption of diphtheria toxoid to colloidal aluminium hydroxide induces conformational changes of the antigen. Diphtheria toxoid has a high affinity for the aluminium hydroxide p

  14. Characterisation of Ga-coated and Ga-brazed aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, E. [Universite de Nantes, Polytech' Nantes, Laboratoire Genie des Materiaux et Procedes Associes, Rue Christian Pauc, 44306 Nantes Cedex 3 (France); Christien, F., E-mail: frederic.christien@univ-nantes.fr [Universite de Nantes, Polytech' Nantes, Laboratoire Genie des Materiaux et Procedes Associes, Rue Christian Pauc, 44306 Nantes Cedex 3 (France); Barnier, V. [Ecole Nationale Superieure des Mines, MPI, CNRS UMR5146, Centre SMS, 158 Cours Fauriel, 42023 Saint Etienne (France); Paillard, P. [Universite de Nantes, Polytech' Nantes, Laboratoire Genie des Materiaux et Procedes Associes, Rue Christian Pauc, 44306 Nantes Cedex 3 (France)

    2012-05-15

    This work is devoted to the brazing of aluminium using liquid gallium. Gallium was deposited on aluminium samples at {approx} 50 Degree-Sign C using a liquid gallium 'polishing' technique. Brazing was undertaken for 30 min at 500 Degree-Sign C in air. EDS (Energy Dispersive X-ray Spectroscopy) and AES (Auger Electron Spectroscopy) characterisation of Ga-coated samples has shown that the Ga surface layer thickness is of ten (or a few tens of) nanometres. Furthermore, aluminium oxide layer (Al{sub 2}O{sub 3}) was shown to be 'descaled' during Ga deposition, which ensures good conditions for further brazing. Cross-section examination of Ga-coated samples shows that liquid gallium penetrates into the aluminium grain boundaries during deposition. The thickness of the grain boundary gallium film was measured using an original EDS technique and is found to be of a few tens of nanometres. The depth of gallium grain boundary penetration is about 300 {mu}m at the deposition temperature. The fracture stress of the brazed joints was measured from tensile tests and was determined to be 33 MPa. Cross-section examination of brazed joints shows that gallium has fully dissolved into the bulk and that the joint is really autogenous. - Highlights: Black-Right-Pointing-Pointer Aluminium can be brazed using liquid gallium deposited by a 'polishing' technique. Black-Right-Pointing-Pointer The aluminium oxide layer is 'descaled' during liquid Ga 'polishing' deposition. Black-Right-Pointing-Pointer EDS can be used for determination of surface and grain boundary Ga film thickness. Black-Right-Pointing-Pointer The surface and grain boundary Ga film thickness is of a few tens of nm. Black-Right-Pointing-Pointer Surface and grain boundary gallium dissolves in the bulk during brazing.

  15. New amorphous interface for precipitate nitrides in steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Kadkhodazadeh, Shima; Grumsen, Flemming Bjerg; Somers, Marcel A. J.

    2014-01-01

    According to classical theories precipitate interfaces are described by their degree of coherency with the matrix, which affects their strengthening contribution. Investigations of nitride precipitate interfaces in 12% Cr steels with transmission electron microscopy have shown the nitrides to be...

  16. Aging of maraging steel welds during aluminium alloy die casting

    OpenAIRE

    Klobčar, Damjan; Pleterski, Matej; Taljat, Boštjan; Kosec, Ladislav; Tušek, Janez

    2015-01-01

    The aim of this study is to evaluate precipitation annealing of 18% Ni maraging steel repair welds during aluminium die casting and to predict the prolonged in-service tool life. The emphasis of this study is the influence ofpost-weld precipitation annealing heat treatment and aluminium die casting thermal cycling on metallurgical and mechanical properties. A series of specimens of 1.2344 tool steel is prepared to which 1.6356 maraging steel is GTA weld cladded. Analysis of weld microstructur...

  17. Zinc- and aluminium making processes using HTGR process heat

    International Nuclear Information System (INIS)

    The high temperature gas-cooled reactor (HTGR) has frequently been suggested as a source of process heat for steel-making; now it has been suggested that it could also be used in the zinc- and aluminium-making processes. For that purpose, several procedures are proposed whereby the key steps in the reduction of zinc oxyde are the use of a gas produced and heated by the HTGR process heat source. Also for the aluminium making process a series of new techniques in connection with the Toth and Grothe processes, coupled to a HTGR, are discussed. (orig.)

  18. The hydrolysis of aluminium, a mass spectrometric study

    OpenAIRE

    Sarpola, A.

    2007-01-01

    Abstract This thesis is focused on the hydrolysis of aluminium, the polymerisation of the hydrolysis products, and how these can be monitored by mass spectrometric methods. The main aim of this research is to figure out how the aqueous speciation of aluminium changes as a function of pH (3.2–10), concentration (1–100 mM), reaction time (1s–14d), and counter anion (Cl-, SO42-, HCOO-). The method used was electrospray mass spectrometry. The results showed more variable speciation than those ...

  19. Spectrofluorimetric determination of microquantities of aluminium in uranium

    International Nuclear Information System (INIS)

    A rapid and sensitive method for the separation and spectrofluorimetric determination of microamounts of aluminium in uranium compounds is described. In sodium carbonate solution at pH 9.5-10.0, the uranyl ion forms a very stable anionic complex with the carbonate ion. In these conditions, uranium is not extracted by a chloroform oxine solution, while alumium is isolated as the tris(oxinate)aluminium(III) form. The interferences are previously extracted with chloroform as diethylditiocarbomates in the same tris(oxinate)aluminum(III) pH extraction. The sensitivity is 0,005 μ Al/ml of organic phase and the relative standard deviation is 10%

  20. Power quality results in energy efficient aluminium smelter operation

    Energy Technology Data Exchange (ETDEWEB)

    Wiestner, Max

    2010-09-15

    New aluminium smelters consume up to 2400MW of electrical energy making the energy efficiency aspect most important. Power quality, optimised power conversion systems and well engineered power plant interfaces are essential for highest energy efficiency. An early optimisation of the power system design will reduce the capital investment cost for the power plant and smelter substation as well as results in most energy efficient aluminium production. This paper describes and intends to discuss the power quality improvement concepts and designs as well as energy cost reduction opportunities which a high power quality system can achieve.

  1. Separation of 35S-sulfate on neutral aluminium oxide

    International Nuclear Information System (INIS)

    The results of 35S-sulfate chromatography on neutral aluminium oxide (γ-Al2O3) are presented. Possibility of quantitative adsorption of 35S-sulfate on Al2O3 from acidic or neutral potassium chloride solutions of high concentration is shown. Dynamic adsorption capacity of neutral aluminium oxide with respect to sulfate from weakly acidic potassium chloride solution equals near 10 μmol/ml of adsorbent. Optimal parameters for chromatographic isolation of 35S-sulfate without carrier from irradiated KCl target are determined. (author)

  2. Lubricated sliding wear behaviour of aluminium alloy composites

    OpenAIRE

    J. C. Walker; Rainforth, W. M.; Jones, H.

    2005-01-01

    Interest in aluminium alloy (Al-alloy) composites as wear resistant materials continues to grow. However, the use of the popular Al-alloy-SiC composite can be limited by the abrasive nature of the SiC, leading to increased counterface wear rates. This study reports new Al-alloy composites that offer high wear resistance, to a level similar to Al-alloy-SiC. Aluminium alloy (2124, 5056) matrix composites reinforced by nominally 15 vol.% of Cr3Si, MoSi2, Ni3Al and SiC particles were prepared by ...

  3. Determination of cadmium in aluminium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A direct method for the determination of cadmium in elemental aluminium is described. Metal samples are dissolved in diluted hydrochloric acid and cadmium is determined by atomic absorption spectrometry in an air-acetylene flame. Interference by non-specific absorption observed at the analytical wavelength incorrected for by means of a non-absorbing line emitted by the hollow-cathode lamp. Relatively large amounts of arsenic do not interfere. The minimun determinable concentration of cadmium for this procedure is 2-3 ppm, expressed on aluminium basis. (author)

  4. Electrochemical noise from corroding carbon steel and aluminium

    International Nuclear Information System (INIS)

    Electrochemical noise measurements were conducted on carbon steel and aluminium in sodium chloride solutions. Noise parameters like standard deviation of potential and current, noise resistance, pitting index, noise power were studied for the purpose of measuring corrosion rate. These parameters compared well with the corrosion rate. Pitting index was not very reliable. Current noise was more close to the corrosion rates. General corrosion gave rise to white noise type of power spectrum while flicker noise type of spectrum was obtained from pitting attack. Sodium nitrite is shown to inhibit the corrosion of carbon steel. Aluminium corrodes in the early period of exposure and passivates during long exposure

  5. Bioactive type glass-ceramics within incorporated aluminium

    International Nuclear Information System (INIS)

    Bioactive glass-ceramics are used as biomaterials for the reparation of bone tissue. They are prepared, generally, by bioglass of specific composition for each particular use. The aluminium addition in the formulation at very small quantities influences on the structural properties. Two glass-ceramics obtained by P2O5-Na2O-CaO-SiO2 formulation within aluminium (0.5 % in Al2O3 base) added through a reactive alumina and purified feldspar were analyzed. The results showed structural differences between both glass-ceramics. (author)

  6. Prevention of Dealloying in Manganese Aluminium Bronze Propeller: Part II

    Directory of Open Access Journals (Sweden)

    Napachat Tareelap

    2014-03-01

    Full Text Available Due to the failure of manganese aluminium bronze (MAB propeller caused by dealloying corrosion as described in Part I [1], this work aims to study the prevention of dealloying corrosion using aluminium and zinc sacrificial anodes. The results indicated that both of the sacrificial anodes could prevent the propeller from dealloying. Moreover, the dealloying in seawater was less than that found in brackish water. It was possible that hydroxide ions, from cathodic reaction, reacted with calcium in seawater to form calcium carbonate film protecting the propeller from corrosion.

  7. Monitoring of slurry fields solutions of aluminium production

    International Nuclear Information System (INIS)

    Results of annual monitoring of slurry fields solutions of aluminium industrial production of Tajik Aluminium Plant are considered in this work. It is found that in summer period the containing of sulfate, carbonate, hydro carbonate and fluoride salts in slurry fields solutions increase. This is due to intensive evaporation of solvent (water). In autumn-winter period due to air temperature decreasing the precipitation of above mentioned salts is observed. The results of chemical analysis of slurry fields solutions are presented in this work. The slurry fields solutions are analyzed by means of X-ray and thermal analysis. The flowsheet of purification of processed slurry fields solutions from sodium sulphate is proposed.

  8. Nitriding and Nitrocarburizing; Current Status and Future Challenges

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.

    This contribution addresses the current understanding of gaseous nitriding and nitrocarburizing. Aspects of thermodynamics, kinetics and microstructure development in iron and heat treatable steel will be explained. In these materials the nitrided/ nitrocarburized case can be subdivided in a...... compound layer consisting of iron (carbo-)nitrides and a diffusion zone, consisting of a dispersion of alloying element nitrides in ferrite. The compound layer provides beneficial tribological and corrosion performance, while the diffusion zone is responsible for improved fatigue performance. Furthermore...

  9. Nitriding and Nitrocarburizing; Current Status and Future Challenges

    OpenAIRE

    Somers, Marcel A.J.

    2013-01-01

    This contribution addresses the current understanding of gaseous nitriding and nitrocarburizing. Aspects of thermodynamics, kinetics and microstructure development in iron and heat treatable steel will be explained. In these materials the nitrided/ nitrocarburized case can be subdivided in a compound layer consisting of iron (carbo-)nitrides and a diffusion zone, consisting of a dispersion of alloying element nitrides in ferrite. The compound layer provides beneficial tribological and corrosi...

  10. Advancing liquid metal reactor technology with nitride fuels

    International Nuclear Information System (INIS)

    A review of the use of nitride fuels in liquid metal fast reactors is presented. Past studies indicate that both uranium nitride and uranium/plutonium nitride possess characteristics that may offer enhanced performance, particularly in the area of passive safety. To further quantify these effects, the analysis of a mixed-nitride fuel system utilizing the geometry and power level of the US Advanced Liquid Metal Reactor as a reference is described. 18 refs., 2 figs., 2 tabs

  11. Diffusion kinetics of nitrogen in tantalum during plasma-nitriding

    Institute of Scientific and Technical Information of China (English)

    张德元; 林勤; 曾卫军; 李放; 许兰萍; 付青峰

    2001-01-01

    The activation energies of nitrogen in tantalum on plasma nitriding conditions were calculated according to the experimental data of hardness of plasma-nitriding of tantalum vs time and temperature. The activation energy calculated is 148.873±0.390  kJ/mol. The depth increasing of nitriding layer with time follows square root relation. The nitriding process of tantalum is controlled by diffusion of nitrogen atoms in tantalum solid solution.

  12. Gas accumulation at grain boundaries during 800 MeV proton irradiation of aluminium and aluminium-alloys

    International Nuclear Information System (INIS)

    Samples of pure aluminium (99.9999%) and commercial Al-2.7%Mg (AlMg3) and Al-1.1%Mg-0.5%Si (Al6061) alloys were irradiated with 800 MeV protons at the Los Alamos Meson Physics Facility (LAMPF) at a temperature between 40-1000C to a maximum dose of 0.2 dpa. Transmission electron microscopy (TEM) showed a complete absence of voids or bubbles in the grain interiors of the aluminium and the aluminium-alloys. Bubbles were clearly visible by TEM at grain boundaries in pure Al and the AlMg3 alloy; but bubbles were not visible in the Al6061 alloy. The bubble density in the AlMg3 alloy was considerably higher than in pure Al. The amount of gas accumulation at grain boundaries was found to depend on gas generation rate, alloying and cold-work microstructure. (orig.)

  13. Accumulation of Aluminium and Physiological Status of Tree Foliage in the Vicinity of a Large Aluminium Smelter

    Directory of Open Access Journals (Sweden)

    E. D. Wannaz

    2012-01-01

    Full Text Available A pollution gradient was observed in tree foliage sampled in the vicinity of a large aluminium production facility in Patagonia (Argentina. Leaves of Eucalyptus rostrata, and Populus hybridus and different needle ages of Pinus spec. were collected and concentrations of aluminium (Al and sulphur (S as well as physiological parameters (chlorophyll and lipid oxidation products were analyzed. Al and S concentrations indicate a steep pollution gradient in the study showing a relationship with the physiological parameters in particular membrane lipid oxidation products. The present study confirms that aluminium smelting results in high Al and sulphur deposition in the study area, and therefore further studies should be carried out taking into account potentially adverse effects of these compounds on human and ecosystem health.

  14. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate CN/CFe near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  15. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  16. Transition Metal Nitrides: A First Principles Study

    Science.gov (United States)

    Pathak, Ashish; Singh, A. K.

    2016-04-01

    The present work describes the structural stability and electronic and mechanical properties of transition metal nitrides (TmNs: B1 cubic structure (cF8, Fm ‾ overline 3 m)) using first principles density functional theory (DFT) within generalized gradient approximation (GGA). The lattice constant of TmNs increases with increasing the atomic radii of the transition metals. Stability of the TmNs decreases from IVB to VIB groups due to increase in formation energy/atom. The bonding characteristics of these nitrides have been explained based on electronic density of states and charge density. All the TmNs satisfy Born stability criteria in terms of elastic constants except CrN and MoN that do not exist in equilibrium binary phase diagrams. The groups IVB and V-VIB nitrides are associated with brittle and ductile behaviour based on G/B ratios, respectively. The estimated melting temperatures of these nitrides exhibit reasonably good agreement with calculated with B than those of the C11 for all nitrides.

  17. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  18. Electrochemical characterization of the steel wire used as reinforcement in the conductors transmission networks electricity nitride by ion implantation

    Science.gov (United States)

    Castro Maldonado, J. J.; Dulcé Moreno, H. J.; Aperador, W.

    2016-02-01

    The power company feature infrastructure, which are generally shaped so the transmission and distribution lines, here is why it is necessary to characterize the process of electrochemical corrosion of these components. In this case the steel wire coated with zinc or aluminium, as it is undergoes the rigor of corrosive environments. Given the geographical diversity and different climatic environments, atmospheric corrosion carried affecting service life of structures. For example in very humid environments such as coasts and high altitudes, wetting time (TOW), parameter that meets the conditions of temperature and relative humidity, it affects large proportion, accelerating the corrosion of ferrous materials. Given the importance of establishing mechanisms that lessen the impact on degradation in transmission and distribution lines of both the reliability and the availability of the same. This paper presents the implementation in nitride steels as an alternative or complement to zinc coating.

  19. Experimental weathering rates of aluminium silicates

    International Nuclear Information System (INIS)

    The chemical weathering of primary rocks and minerals in natural systems has a major impact on soil development and its composition. Chemical weathering is driven to a large extent by mineral dissolution. Through mineral dissolution, elements are released into groundwater and can readily react to precipitate secondary minerals such as clays, zeolites, and carbonates. Carbonates form from divalent cations (e.g. Ca, Fe and Mg) and CO2, and kaolin clay and gibbsite formation is attributed to the weathering of aluminium-rich minerals, most notably the feldspars. The CarbFix Project in Hellisheidi (SW-Iceland) aims to use natural weathering processes to form carbonate minerals by the re-injection of CO2 from a geothermal power plant back into surrounding basaltic rocks. This process is driven by the dissolution of basaltic rocks, rich in divalent cations, which can combine with injected CO2 to form and precipitate carbonates. This thesis focuses on the dissolution behaviour of Stapafell crystalline basalt, which consists of three major phases (plagioclase, pyroxene, and olivine) and is rich in divalent cations. Steady-state element release rates from crystalline basalt at far-from-equilibrium conditions were measured at pH from 2 to 11 and temperatures from 5 to 75 C in mixed-flow reactors. Steady-state Si and Ca release rates exhibit a U-shaped variation with pH, where rates decrease with increasing pH at acid condition but increase with increasing pH at alkaline conditions. Silicon release rates from crystalline basalt are comparable to Si release rates from basaltic glass of the same chemical composition at low pH and temperatures ≥25 C but slower at alkaline pH and temperatures ≥50 C. In contrast, Mg and Fe release rates decrease continuously with increasing pH at all temperatures. This behaviour is interpreted to stem from the contrasting dissolution behaviours of the three major minerals comprising the basalt: plagioclase, pyroxene, and olivine. Element

  20. Ceramics based on titanium nitride and silicon nitride sintered by SPS-method

    Science.gov (United States)

    Sivkov, A. A.; Gerasimov, D. Yu; Evdokimov, A. A.

    2015-10-01

    The dependences of the microstructure and physical and mechanical properties of ceramic mixtures Si3N4/TiN in the full range of mass ratios of the components. Was also investigated directly, and the process of sintering occurring during a physical or chemical processes, in particular, has been obtained and the hardness of the material density on the ratio of the conductive titanium nitride phase and a silicon nitride insulating phase with values above and below the percolation threshold. Also obtained was pure ceramics based on titanium nitride with high physical-mechanical characteristics (H = 21.5 GPa).

  1. Microstructural characterization of nitrided Timetal 834.

    Science.gov (United States)

    Moskalewicz, T; Grogger, W; Czyrska-Filemonowicz, A

    2006-09-01

    The microstructure of Timetal 834, in as-received condition and after nitriding under glow discharge has been examined by light microscopy and analytical transmission electorn microscopy (TEM) methods (SAED, EDS, EELS and EFTEM). The microstructure of the as-received alloy consists of the alpha phase and a small amount of the beta phase. Silicide precipitates (Zr5Si4) are present both inside the grains and at the grain boundaries. TEM investigations of cross-sectional thin foils allow for detailed analysis of the nitrided layer microstructure. It was found that the nitrided layer exhibits a graded character with continuously varying nitrogen content. The outermost sublayer consists of nanocrystals of delta-TiN. The following sublayers consist mainly of delta'-Ti2N and epsilon-Ti2N grains. The last sublayer, closest to the substrate, is identified as a nitrogen-rich alpha(N) solid solution containing up to 14 at% of nitrogen. PMID:17059528

  2. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... 10th Congress of the International Federation for Heat Treatment and Surface Engineering held in Brighton, UK on 1-5 September 1996. (C) 1997 The Institute of Materials....... for, the nitriding result is determined largely by kinetics. Nitriding kinetics are shown to be characterised by local near equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data are presented. The necessary...

  3. Role of acidic chemistries in steam treatment of aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    The effect of acidic chemistry on the accelerated growth of oxide on aluminium alloys Peraluman 706TM and AA6060 under exposure to high temperature steam was investigated. Studied chemistries were based on citrates and phosphates. Results showed that the presence of citrate and phosphate anions...

  4. Aluminium dissolution for spray pulverization with nitric acid

    International Nuclear Information System (INIS)

    A comparative study of the nitric acid dissolution of aluminium, by immersion and spray pulverization has been carried out in laboratory scale. As a result, the optimum operation conditions to control reaction in the plant are fixed. Operation costs are also evaluated. (author)

  5. STRUCTURE OF ECAP ALUMINIUM AFTER DIFFERENT NUMBER OF PASSES

    Directory of Open Access Journals (Sweden)

    Lucia Ilucová

    2011-05-01

    Full Text Available The structure of high purity (99.99% aluminium processed by equal channel angular pressing in the as pressed state after different number of passes was examined using various stereological methods. An extreme inhomogeneity and complicated anisotropy was observed along the body of rod-like specimens.

  6. 1.3. Processing of aluminium production solid wastes

    International Nuclear Information System (INIS)

    The reprocessing of solid wastes of aluminium production, including fluorine regeneration, carbon regeneration, and extraction of valuable components was considered in this chapter. The main methods of fluorine regeneration, including alkaline, acidic, two-stage leaching, hydrochemical, burning, flotation, sintering, vacuum-thermal pyro hydrolysis were considered as well.

  7. Local electrochemical behaviour of 7xxx aluminium alloys

    NARCIS (Netherlands)

    Andreatta, F.

    2004-01-01

    Aluminium alloys of the 7xxx series (Al-Zn-Mg-Cu) are susceptible to localized types of corrosion like pitting, intergranular corrosion and exfoliation corrosion. This represents a limitation for the application of these alloys in the aerospace components because localized corrosion might have a neg

  8. Electrochemical Characterisation of Filiform Corrosion on Aluminium Rolled Products

    NARCIS (Netherlands)

    Huisert, M.

    2001-01-01

    When aluminium is protected by an organic coating a special form of corrosion can occur underneath the organic coating; filiform corrosion. This form of corrosion manifests itself as threadlike filaments under the coating, it causes local delamination of the coating and the coating cannot protect th

  9. Establishment of Integrated Information Displays in Aluminium Surfaces Using Nanomanufacturing

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Bladt, Henrik Henriksen; Hansen, Hans Nørgaard

    2005-01-01

    Bang & Olufsen has been working with a method for manufacturing ultra-thin structures in Aluminium that can be penetrated by light. This has resulted in a patent describing how to obtain this effect by etching of local areas in a solid material. The idea behind an invisible display in Aluminum co...... ultra-short pulses, selective etching + anodizing, and electrochemical machining....

  10. On the Numerical Determination of Optimal Textures of Aluminium

    OpenAIRE

    Burgholzer, P; Scherzer, O.

    1994-01-01

    In this paper a mathematical algorithm is studied to improve the deep-drawing quality of an aluminium sheet. The deep-drawing quality is usually expressed in terms of the normal anisotropie. In our mathematical model we use Taylor theory and ideal orientations to reformulate this problem as a nonlinear optimization problem for the normal anisotropie. Some numerical examples are presented.

  11. Waste treatment of fission product solutions containing aluminium nitrate

    International Nuclear Information System (INIS)

    In the Rossendorf molybdenum-99 production facility AMOR short-term irradiated aluminium clad fuel elements from the Rossendorf Research Reactor are reprocessed. Following extractive recovery of the enriched uranium the facility system has to be disposed of the fission product-Al(NO3)3 solution. Investigations on waste conditioning of such solutions are presented. (author)

  12. Hydrogen generation from aluminium corrosion in reactor containment spray solutions

    International Nuclear Information System (INIS)

    The aluminium corrosion experiments in reactor containment spray solutions, under the conditions expected to prevail during LOCA in BWR and PWR, were performed in order to investigate relationships between temperature, pH and hydrogen production rates. In order to simulate the conditions in a BWR containment realistic ratios between aluminium surface and water volume and between aluminium surface and oxygen volume were used. Three different aluminium alloys were exposed to spray solutions: AA 1050, AA 5052 and AA 6082. The corrosion rates were measured for BWR solutions (deaerated and aerated) with pH 5 and 9 at 50, 100 and 1500C. The pressure was constantly 0.8 MPa. The hydrogen production rate was measured by means of gas chromatography. In deionized BWR water the corrosion rates did not exceed about 0.05 mm/year in all cases, i.e. were practically independent of temperature and pH. Hydrogen concentrations were less than 0.1 vol.% in cooled dry gas. Corrosion rates and hydrogen production in PWR alkaline solution measured at pH 9.7 and 1500C were very high. AA 5052 alloy was the best material

  13. Microstructure and defect chemistry of yttrium aluminium garnet ceramics

    International Nuclear Information System (INIS)

    This thesis describes basic aspects concerning the defect chemistry and the microstructure of yttrium aluminium garnet ceramics. The work consists of three parts: a literature study, an experimental part and a section giving computer simulation data of defects. (author). 320 refs.; 68 figs.; 72 schemes; 32 tabs

  14. Finite size melting of spherical solid-liquid aluminium interfaces

    DEFF Research Database (Denmark)

    Chang, J.; Johnson, Erik; Sakai, T.; Saka, H.

    2009-01-01

    We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting tempera...... the conclusion that the depressed melting temperature is not controlled solely by the inverse radius 1/R. Instead, we found a direct relation between the depressed melting temperature and the ratio between the solid-liquid interface area and the molten volume.......We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting...... temperature of this spherical interface, with radius R, was found to scale linearly with the inverse radius 1/R. However, by varying the apex angle of the needles we show that the proportionality constant between the depressed melting temperature and the inverse radius changes significantly. This led us to...

  15. SOLUBILITY OF SILICON IN CAST ALUMINIUM ALLOY AFTER ELECTROHYDROPULSE TREATMENT

    OpenAIRE

    Dyachenko, S.; Fedchenko, N.

    2006-01-01

    The structure of cast aluminium alloy AЛ9 exposed to electrohydropulse treatment (EHPT) was studied. It has been shown that after EHPT solubility of silicon in alloy matrix was increased. With the help of thermodynemic analysis the structural changes in metal after EHPT were explained.

  16. Effect of Low Strain Rate on Formability of Aluminium Alloy

    OpenAIRE

    Bidulská, J.; T. Kvačkaj; Bidulský, R.; Cabbibo, M.; Evangelista, E.

    2007-01-01

    Effect of low strain rate on formability of aluminium alloy 2014 by means of torsion test was performed. The presented experimental results exhibit decrease of the ductility with increase and decrease of ε and T, respectively, and optimal values of , ε T are thus obtained.

  17. Aluminium enriched diffusion layers on NiAl alloy

    Czech Academy of Sciences Publication Activity Database

    Bartuška, Pavel; Lašek, Jiří; Paidar, Václav

    2003-01-01

    Roč. 19, č. 3 (2003), s. 185-188. ISSN 0267-0844 R&D Projects: GA AV ČR IAA1041302 Institutional research plan: CEZ:AV0Z1010914 Keywords : intermetallics based on Ni-Al * aluminium enriched diffusion layers * local elemental analysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.571, year: 2003

  18. Anisotropy of tertiary creep in aluminium-based composites

    Czech Academy of Sciences Publication Activity Database

    Dobeš, Ferdinand; Milička, Karel

    Naples : University of Naples, 2005 - (Crivelli-Visconti, I.), s. 225-226 [Advancing with composites 2005. Naples (IT), 11.10.2005-14.10.2005] Institutional research plan: CEZ:AV0Z20410507 Keywords : metal matrix composite * tertiary creep * aluminium alloys Subject RIV: JI - Composite Materials

  19. Aluminium in food and daily dietary intake estimate in Greece.

    Science.gov (United States)

    Bratakos, Sotirios M; Lazou, Andriana E; Bratakos, Michael S; Lazos, Evangelos S

    2012-01-01

    Aluminium content of foods, as well as dietary aluminium intake of the Greek adult population, was determined using graphite furnace atomic absorption spectroscopy after microwave sample digestion and food consumption data. Al content ranged from 0.02 to 741.2 mg kg⁻¹, with spices, high-spice foods, cereal products, vegetables and pulses found to be high in Al. Differences in aluminium content were found between different food classes from Greece and those from some other countries. Aluminium intake of Greeks is 3.7 mg/day based on DAFNE Food Availability Databank, which uses data from the Household Budget Surveys. On the other hand, according to the per capita food consumption data collected by both national and international organisations, Al intake is 6.4 mg day⁻¹. Greek adult population has an Al intake lower than the Provisional Tolerable Weekly Intake of 7 mg kg⁻¹ body weight established by EFSA. Cereals and vegetables are the main Al contributors, providing 72.4% of daily intake. PMID:24779693

  20. Examples on cold forged aluminium components in automotive industry

    DEFF Research Database (Denmark)

    Bay, Niels; Kolsgaard, A.

    2000-01-01

    The present paper describes the possibilites of applying cold forging for manufacturing of light weight components in aluminium. A short description of the basic cold forming processes forms the basis for describing the great variety in design of cold forged components. Examples are mainly taken ...... from automotive industry but in a few cases also from other industrial sectors to show the possibilities....

  1. Hydrogen evolution from aluminium in reactor containment spray solutions

    International Nuclear Information System (INIS)

    Three different aluminium alloys were exposed to conditions similar to BWR and PWR containment spray waters at 50, 100 and 1500C. BWR deionized water gives corrosion rates of at most 0.05 mm/year and hydrogen concentrations less than 0.1-1%. On the contrary PWR alkaline solutions give very high corrosion rates and hydrogen contents. (Auth.)

  2. Persistent Skin Reactions and Aluminium Hypersensitivity Induced by Childhood Vaccines

    DEFF Research Database (Denmark)

    Salik, Elaha; Løvik, Ida; Andersen, Klaus E; Bygum, Anette

    2016-01-01

    There is increasing awareness of reactions to vaccination that include persistent skin reactions. We present here a retrospective investigation of long-lasting skin reactions and aluminium hypersensitivity in children, based on medical records and questionnaires sent to the parents. In the 10-year...

  3. Effects of Aluminium in Forest. Results of a pilot experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, J.; Wit, H. de; Nygaard, P.H.

    1996-01-01

    This conference paper deals with an Norwegian pilot project which started in 1995 and finishing early 1999, investigates the solubility and phyto-toxicity of aluminium (Al) in mature forest ecosystems. The project consists of three major parts, including field manipulation study of Norwegian spruce stands, laboratory experiments and modelling Al chemistry in the root zone. 15 refs.

  4. Nitride Fuel Development at the INL

    International Nuclear Information System (INIS)

    A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon-hydrogen-nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 (micro)m) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90-95% nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form

  5. Nitride Fuel Development at the INL

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Windes

    2007-06-01

    A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon – hydrogen - nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 µm) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90 -95 % nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form.

  6. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  7. Precipitate-Accommodated Plasma Nitriding for Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Patama Visittipitukul; Tatsuhiko Aizawa; Hideyuki Kuwahara

    2004-01-01

    Reliable surface treatment has been explored to improve the strength and wear resistance of aluminum alloy parts in automotives. Long duration time as well as long pre-sputtering time are required for plasma nitriding of aluminum or its alloys only with the thickness of a few micrometers. New plasma inner nitriding is proposed to realize the fast-rate nitriding of aluminum alloys. Al-6Cu alloy is employed as a targeting material in order to demonstrate the effectiveness of this plasma nitriding. Mechanism of fast-rate nitriding process is discussed with consideration of the role of Al2Cu precipitates.

  8. The Moessbauer investigation in iron nitride/expanded graphite

    International Nuclear Information System (INIS)

    We successfully prepared the composites possessed high magnetic properties and shielding effectiveness (SE) in RF band with the methods of loading iron nitride nanoparticles on expanded graphite (EG) by the gaseous reduction and nitridation. XRD measurement shows that the ferric phases changed in different nitridation temperature. The phase components of nanoparticles were analyzed in detail by the measurement of 57Fe Moessbauer spectra. The result shows that as the temperature increased, the Fe particles were gradually nitride until completely before 400℃ and the γ'-Fe4N was gradually converted to ε-FexN (2nitride after 400℃. (authors)

  9. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  10. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.;

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  11. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium of...... pure iron-nitrogen phases has not been achieved fully. It has been shown that taking into account ordering of nitrogen in the epsilon and gamma' iron-nitride phases, leads to an improved understanding of the Fe-N phase diagram. Although thermodynamics indicate the state the system strives for, the...

  12. Four Terminal Gallium Nitride MOSFETs

    Science.gov (United States)

    Veety, Matthew Thomas

    All reported gallium nitride (GaN) transistors to date have been three-terminal devices with source, drain, and gate electrodes. In the case of GaN MOSFETs, this leaves the bulk of the device at a floating potential which can impact device threshold voltage. In more traditional silicon-based MOSFET fabrication a bulk contact can be made on the back side of the silicon wafer. For GaN grown on sapphire substrates, however, this is not possible and an alternate, front-side bulk contact must be investigated. GaN is a III-V, wide band gap semiconductor that as promising material parameters for use in high frequency and high power applications. Possible applications are in the 1 to 10 GHz frequency band and power inverters for next generation grid solid state transformers and inverters. GaN has seen significant academic and commercial research for use in Heterojunction Field Effect Transistors (HFETs). These devices however are depletion-mode, meaning the device is considered "on" at zero gate bias. A MOSFET structure allows for enhancement mode operation, which is normally off. This mode is preferrable in high power applications as the device has lower off-state power consumption and is easier to implement in circuits. Proper surface passivation of seminconductor surface interface states is an important processing step for any device. Preliminary research on surface treatments using GaN wet etches and depletion-mode GaN devices utilizing this process are discussed. Devices pretreated with potassium pursulfate prior to gate dielectric deposition show significant device improvements. This process can be applied to any current GaN FET. Enhancement-mode GaN MOSFETs were fabricated on magnesium doped p-type Wurtzite gallium nitride grown by Metal Organic Chemical Vapor Deposition (MOCVD) on c-plane sapphire substrates. Devices utilized ion implant source and drain which was activated under NH3 overpressure in MOCVD. Also, devices were fabricated with a SiO2 gate dielectric

  13. Mechanically milled aluminium matrix composites reinforced with halloysite nanotubes

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2012-12-01

    Full Text Available Purpose: The present work describes fabrication of aluminium AlMg1SiCu matrix composite materials reinforced with halloysite nanotubes by powder metallurgy techniques and hot extrusion.Design/methodology/approach: Mechanical milling, compacting and hot extrusion successively are considering as a method for manufacturing metal composite powders with a controlled fine microstructure and enhanced mechanical properties. It is possible by the repeated welding and fracturing of powders particles mixture in a highly energetic ball mill.Findings: The milling process has a huge influence on the properties of powder materials, changing the spherical morphology of as-received powder during milling process to flattened one due to particle deformation followed by welding and fracturing particles of deformed and hardened enough which allows to receive equiaxial particles morphology again. The investigation shows that so called brittle mineral particles yields to plastic deformation as good as ductile aluminium alloy particles. That indicates that the halloysite powder can play a role of the accelerator during mechanical milling. High energy ball milling as a method of mechanical milling improves the distribution of the halloysite reinforcing particles throughout the aluminium matrix, simultaneously reducing the size of particles. The apparent density changes versus milling time can be used to control the composite powders production by mechanical milling and the presence of halloysite reinforcements particles accelerates the mechanical milling process.Research limitations/implications: Contributes to knowledge about technology, structure and properties of aluminium alloy matrix composite material reinforced with mineral nanoparticles.Practical implications: Conducted research shows that applied technology allows obtaining very good microstructural characteristics.Originality/value: It has been confirmed that halloysite nanotubes can be applied as an effective

  14. Metallurgical Characterisation of Recovered Aluminium Alloys in Cameroon

    Directory of Open Access Journals (Sweden)

    T. Tchotang

    2013-07-01

    Full Text Available This article is a comparative study of metallurgical characteristics of the different aluminium alloys gotten through recycling of recovered aluminium in Cameroon. A simple experimental device for the foundry of secondary aluminium blend, of very good quality built around a movable charcoal furnace is presented. It enables better energy efficiency, a better distribution of the heat around the crucible and indirectly assures good quality of the products obtained, while respecting the economic constraints and users' safety. Six refining methods are proposed by the addition of polyvinyl chloride (method A, coke rich in carbon CHS (method C, ammonium chloride NH4Cl (method E, manganese dioxide MnO (method T, acrylic nitrite (C2H3Cln (method P and sodium chloride NaCl (method S. A critical analysis of the different recycling techniques is presented as well as a proposed process of melting and refining that enables the obtaining products with high degrees of purity. The results are then compared to the results obtained from the industrial methods of aluminium refining such as fractional crystallization (FC, granular filtration (GF and dissolution in a metal solvent (DS. The later (DS gives the rate of 6.540% of accumulated alloy elements and enables the best purification (93.460%, while the NaCl gives the lowest global rate of additive elements (9.478%, with the best purity index (90.522% amount the proposed methods. Results obtained show that this method of refining improves the metallurgical properties of secondary aluminium alloy blends and guarantees better safety, as well as reducing the risks of environmental pollution.

  15. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  16. Silicon nitride for photovoltaic application

    Directory of Open Access Journals (Sweden)

    M. Lipiński

    2010-12-01

    Full Text Available Purpose: of this paper is to present the research results of silicon nitride SiNx films used for industrial silicon solar cells and for third generation solar cells.Design/methodology/approach: The SiNx films were deposited using RF- and LF-PECVD methods. The optical and structural properties were investigated by spectroscopic ellipsometry, XPS, FTIR spectroscopy and X-Ray reflectometry. The passivation properties were investigated by carriers lifetime measurements using a photoconductance decay (PCD technique. For the photovoltaics of third generation the multilayer structures of SiNx were deposited and annealed in order to obtain the silicon quantum superlattices. These structure were characterized by high-resolution TEM, GI-XRD, photoluminescence, Raman and SPV spectroscopy.Findings: It is shown that the layers deposited by LF PECVD have more profitable optical and electrical properties for industrial silicon solar cells than those deposited by RF PECVD. The other finding is that multi-layer structure of SiNx annealed at high temperature shows the properties of the new semiconductor with the gap energy broader then the gap of the silicon.Research limitations/implications: The maximal density of SiNx layers is equal to 2.6 g/cm3. It is too low to obtain high efficiency mc-Si cells. The deposition process should be further optimized. The other limitation is obtaining a regular structure of quantum superlattice composed of quantum dots with defined diameter and density which is a very difficult technological task. This work should be continued in the future.Practical implications: The results of SiNx investigation can be used to increase the efficiency of mc-Si solar cells. The results of multilayer SiNx investigations may be applied to a solar cells based on silicon QDs superlatice.

  17. Canada: a big investment for the aluminium valorization; Canada: un gros investissement pour la valorisation de l'aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-02-01

    An amount of more than 2.4 millions of dollars has been given by the Quebec at the research and development sector for the aluminium valorization. Six plans will be studied by more than 30 searchers and 20 students in technology. (O.M.)

  18. Corrosion of aluminium in copper-aluminium couples under a marine environment: Influence of polyaniline deposited onto copper

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Rosa, E-mail: rvera@ucv.c [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Avda. Brasil 2950, Casilla 4059, Valparaiso (Chile); Verdugo, Patricia [Departamento de Quimica y Bioquimica, Facultad de Ciencias, Universidad de Valparaiso, Av. Gran Bretana 1111, Valparaiso (Chile); Orellana, Marco; Munoz, Eduardo [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Avda. Brasil 2950, Casilla 4059, Valparaiso (Chile)

    2010-11-15

    Research highlights: {yields} The presence of Polyaniline in the Al-Cu system produces a decrease in the oxygen reduction reaction. {yields} In the marine enviroment, aluminium in Al-Cu couples, suffers pitting and exfoliation. {yields} The aluminium deterioration increases with chloride and enviromental sulphur dioxide presence, mainly when it is united to bare copper. - Abstract: In this study, we examined how aluminium corrosion in Al-Cu/PANI galvanic couples in a marine environment is influenced by deposition of polyaniline (PANI) on copper. Polarization curves and immersion assays in 0.1 M NaCl were performed. The morphologies of etched Al and corrosion products were observed by SEM, and the Al ions in solution were quantified by atomic absorption spectroscopy. A reduction in aluminium damage due to galvanic corrosion was observed as a result of decreased effective area for the oxygen reduction reaction on Cu/PANI electrode. Furthermore, an electrochemical reduction of PANI from leucoemeraldine to emeraldine base is proposed.

  19. Design of the lines of aluminium drawing. Part 1; Conception des filieres de filage d'aluminium. Partie 1

    Energy Technology Data Exchange (ETDEWEB)

    Cescutti, J.P.; Ravaille, N. [Pechiney, Div. Filiage, 75 - Paris (France)

    2005-12-15

    After a general presentation, the second paragraph gives the main reasons of the complexity of the problem to be solved. Coming from the 'sciences of design', these aspects give valuable data to structure the analysis of the progress ways in the field of the design of the lines of aluminium extrusion. (O.M.)

  20. Decreased toxicity of aluminium when the ionic strength increases in water; Blir aluminium mindre toksisk naar ionestyrken i vannet oeker?

    Energy Technology Data Exchange (ETDEWEB)

    Alstad, E.W. [Oslo Univ. (Norway)

    1996-01-01

    The conference paper evaluates the acute mortality of fish caused by the toxicity of aluminium in water. The evaluation is based on the polymerization hypothesis. According to the author, the level of toxicity decreases when the concentration and charge of ions increase. The paper presents the preliminary results from the executed experiment. 2 refs., 2 figs., 1 tab.

  1. Optimization of processing temperature in the nitridation process for the synthesis of iron nitride nanoparticles

    International Nuclear Information System (INIS)

    We have demonstrated an effective strategy on the nitridation process to synthesize ε-Fe3N nanoparticles (NPs) from the zero valent iron NPs as a starting material. The transformation of iron into iron nitride phase was systematically studied by performing the nitridation process at different processing temperatures. The phase, crystal structure was analyzed by XRD. Morphology and size of the ZVINPs and ε-Fe3N NPs were analyzed by field emission scanning electron microscope. Further, their room temperature magnetic properties were studied by using vibrating sample magnetometer and it revealed that the magnetic property of ε-Fe3N is associated with ratio of Fe-N in the iron nitride system

  2. Study of the nitrides formation in the ionic nitriding process of zircaloy-2 zirconium alloy

    International Nuclear Information System (INIS)

    Zircaloy and Zr-Sn alloys are used in nuclear techniques because they show a very low effective absorption section for neutrons and a high corrosion resistance. This paper shows that by ionic nitriding of Zircaloy type alloys, a structure is obtained that enhances the wear resistance. From the study of the N2/H2 ratio on the nitride quantity formed by ion nitriding of Zircaloy-2 alloy, it can be concluded that the gaseous mixtures with high nitrogen and hydrogen content used in discharge are not favourable in the nitride forming process. The optimum ratio is 1/1. The ZrN superficial layer hardness was checked according to the exposure time and to the layer thickness. (J.S.). 6 refs., 4 figs., 2 tabs

  3. Optimization of processing temperature in the nitridation process for the synthesis of iron nitride nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rohith Vinod, K.; Sakar, M.; Balakumar, S., E-mail: balasuga@yahoo.com [National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai-600025 (India); Saravanan, P. [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2015-06-24

    We have demonstrated an effective strategy on the nitridation process to synthesize ε-Fe{sub 3}N nanoparticles (NPs) from the zero valent iron NPs as a starting material. The transformation of iron into iron nitride phase was systematically studied by performing the nitridation process at different processing temperatures. The phase, crystal structure was analyzed by XRD. Morphology and size of the ZVINPs and ε-Fe{sub 3}N NPs were analyzed by field emission scanning electron microscope. Further, their room temperature magnetic properties were studied by using vibrating sample magnetometer and it revealed that the magnetic property of ε-Fe{sub 3}N is associated with ratio of Fe-N in the iron nitride system.

  4. Characterization and properties of highly adhesive titanium nitride and tungsten nitride thin films

    International Nuclear Information System (INIS)

    The paper presents results on the physical characteristics and mechanical properties of titanium nitride (TiN) and tungsten nitride (W2N) thin films grown by reactive DC magnetron sputtering. The films were deposited in a system with several magnetron modules of different sputtering materials suitable for deposition of single-layer metal nitride films and multilayer nitride coatings. The deposition conditions were optimized to obtain films with the highest adhesion to substrates of machine steel and sintered hard alloy. The adhesion of the films was measured in dependence on two principal process parameters: the nitrogen partial pressure in the magnetron discharge gas mixture of nitrogen and argon and the substrate temperature. The composition of the TiN films was determined by Auger electron spectroscopy. The microstructure and the crystallization trend of the films were studied by transmission electron microscopy and selected area electron diffraction. The hardness of the films was examined using standard measuring methods

  5. Energy conversion from aluminium and phosphate rich solution via ZnO activation of aluminium

    International Nuclear Information System (INIS)

    Electrochemical power sources have motivated intense research efforts in the development of alternative ‘green’ power sources for ultra-low powered bioelectronic devices. Biofuel cells employ immobilized enzymes to convert the available chemical energy of organic fuels directly into electricity. However, biofuel cells are limited by short lifetime due to enzyme inactivation and frequent need to incorporate mediators to shuttle electrons to the final electron acceptor. In this context, other electrochemical power sources are necessary in energy conversion and storage device applications. Here we report on the fabrication and characterization of a membrane-free aluminium/phosphate cell based on the activation of aluminium (Al) using ZnO nanocrystal in an Al/phosphate cell as a ‘green’ alternative to the traditional enzymatic biofuel cells. The hybrid cell operates in neutral phosphate buffer solution and physiological saline buffer. The ZnO modifier in the phosphate rich electrolyte activated the pitting of Al resulting in the production of hydrogen, as the reducing agent for the reduction of H2PO4− ions to HPO32− ions at a formal potential of −0.250 V vs. Ag/AgCl. Specifically, the fabricated cell operating in phosphate buffer and physiological saline buffer exhibit an open-circuit voltage of 0.810 V and 0.751 V and delivered a maximum power density of 0.225 mW cm−2 and 1.77 mW cm−2, respectively. Our results demonstrate the feasibility of generating electricity by activating Al as anodic material in a hybrid cell supplied with phosphate rich electrolyte. Our approach simplifies the construction and operation of the electrochemical power source as a novel “green” alternative to the current anodic substrates used in enzymatic biofuel cells for low power bioelectronics applications. - Graphical abstract: Display Omitted - Highlights: • ZnO activation of metallic Al for generating electricity for bioelectronic applications. • Selective

  6. Energy conversion from aluminium and phosphate rich solution via ZnO activation of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, Gymama, E-mail: gslaught@umbc.edu; Sunday, Joshua; Stevens, Brian

    2015-08-01

    Electrochemical power sources have motivated intense research efforts in the development of alternative ‘green’ power sources for ultra-low powered bioelectronic devices. Biofuel cells employ immobilized enzymes to convert the available chemical energy of organic fuels directly into electricity. However, biofuel cells are limited by short lifetime due to enzyme inactivation and frequent need to incorporate mediators to shuttle electrons to the final electron acceptor. In this context, other electrochemical power sources are necessary in energy conversion and storage device applications. Here we report on the fabrication and characterization of a membrane-free aluminium/phosphate cell based on the activation of aluminium (Al) using ZnO nanocrystal in an Al/phosphate cell as a ‘green’ alternative to the traditional enzymatic biofuel cells. The hybrid cell operates in neutral phosphate buffer solution and physiological saline buffer. The ZnO modifier in the phosphate rich electrolyte activated the pitting of Al resulting in the production of hydrogen, as the reducing agent for the reduction of H{sub 2}PO{sub 4}{sup −} ions to HPO{sub 3}{sup 2−} ions at a formal potential of −0.250 V vs. Ag/AgCl. Specifically, the fabricated cell operating in phosphate buffer and physiological saline buffer exhibit an open-circuit voltage of 0.810 V and 0.751 V and delivered a maximum power density of 0.225 mW cm{sup −2} and 1.77 mW cm{sup −2}, respectively. Our results demonstrate the feasibility of generating electricity by activating Al as anodic material in a hybrid cell supplied with phosphate rich electrolyte. Our approach simplifies the construction and operation of the electrochemical power source as a novel “green” alternative to the current anodic substrates used in enzymatic biofuel cells for low power bioelectronics applications. - Graphical abstract: Display Omitted - Highlights: • ZnO activation of metallic Al for generating electricity for

  7. Silicon dioxide and aluminium nitride as gate dielectric for high temperature and high power silicon carbide MOSFETs

    OpenAIRE

    Zetterling, Carl-Mikael

    1997-01-01

    Silicon carbide (SIC) is a wide bandgap semiconductor thathas been suggested as a replacement for silicon in applicationsusing high voltages, high frequencies, high temperatures orcombinations thereof. Several basic process steps need to bedeveloped for reliable manufacturing of long-term stableelectronic devices. One important process step is the formationof an insulator on the silicon carbide surface that may be usedas a) a gate dielectric, b) for device isolation or c) forpassivation of th...

  8. Synthesis of TiCuAg thick film inks for glass frit free metallization of aluminium nitride

    International Nuclear Information System (INIS)

    A glas frit free screen printing ink for metallization of AIN was developed. Bonding to the substrate is achieved by active metal additives. The metallic component consists of Cu and Ag powder synthesized from inorganic salts by the polyol process, and Cu-Ti powder synthesized by arc melting, milling and ultracentrifugation. This ternary powder mixture was introduced to a specifically developed organic vehicle and screen printed onto AIN. The detailed development process and the results will be presented. (author)

  9. Steel sheet composite materials with foamed aluminium; Stahlblechverbundwerkstoffe mit geschaeumtem Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Baumeister, J.; Weber, M. [Institut fuer Angewandte Materialforschung, Bremen (Germany); Bleck, W.; Hagen, H. von [Technische Hochschule Aachen (Germany). Lehrstuhl und Inst. fuer Eisenhuettenkunde

    1999-07-01

    Sandwich structured steel sheets with a core of foamed aluminium can be produced by roll-bonding and glueing. Results of corrosion tests and laser welding tests so far were positive. Several applications have been proposed but none of them has been implemented as yet. The material is recommended for applications with a profile of requirements comprising structurally and functionally relevant characteristics. Recycling is unproblematic. [German] Zur Herstellung von Stahlblechsandwichverbunden mit einem Aluminiumschaumkern lassen sich die Verfahren Walzplattieren und Kleben einsetzen. Es sind Sandwichverbunde mit Gesamtdichten von 0,7 bis 2,0 g/cm{sup 3} und Gesamtdicken zwischen 10 und 32 mm darstellbar. Die Tafelgroessen fuer die vielversprechendsten Verfahren liegen derzeit bei ueber DIN A3 (konventionell geschaeumt) oder 160 mm x mehrere m (kontinuierlich im Banddurchlaufofen geschaeumt) und 2 m x 600 mm (geklebt). Es lassen sich gute mechanische Eigenschaften des Sandwichverbundes (Biegesteifigkeit) und hohe Versagensreserven bei Druck- und Biegebeanspruchungen sowie interessante funktionelle Eigenschaften (z.B. hohe Energieaufnahme) erzielen. Aus Tastversuchen zu Korrosionseigenschaften und Fuegeverfahren (Laserschweissen) konnten positive Resultate gewonnen werden. Vorschlaege zu Anwendungen bestehen, aber ein direkter Einsatz ist noch nicht realisiert worden. Ein Einsatz des Werkstoffverbundes ist sinnvoll in Gebieten, in denen ein Anforderungsprofil von strukturell und funktionell relevanten Eigenschaften vorherrscht. Das Recycling der rein metallischen Verbunde ist problemlos. (orig.)

  10. Aluminium content of foods originating from aluminium-containing food additives.

    Science.gov (United States)

    Ogimoto, Mami; Suzuki, Kumi; Haneishi, Nahoko; Kikuchi, Yuu; Takanashi, Mayu; Tomioka, Naoko; Uematsu, Yoko; Monma, Kimio

    2016-09-01

    Aluminium (Al) levels of 90 food samples were investigated. Nineteen samples contained Al levels exceeding the tolerable weekly intake (TWI) for young children [body weight (bw): 16 kg] when consuming two servings/week. These samples were purchased multiple times at specific intervals and were evaluated for Al levels. Al was detected in 27 of the 90 samples at levels ranging from 0.01 (limit of quantitation) to 1.06 mg/g. Of these, the Al intake levels in two samples (cookie and scone mix, 1.3 and 2 mg/kg bw/week, respectively) exceeded the TWI as established by European Food Safety Authority, although the level in the scone mix was equivalent to the provisional TWI (PTWI) as established by Joint Food and Agriculture Organization of the United Nations/World Health Organization Expert Committee on Food Additives. The Al levels markedly decreased in 14 of the 19 samples with initially high Al levels. These results indicated reductions in the Al levels to below the PTWI limits in all but two previously identified food samples. PMID:27092423

  11. Numerical and experimental investigations of aluminium powder compaction; Numerische und experimentelle Untersuchungen zum Pulverpressen von Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Hanini, K.; Doege, E.; Schmidt-Juergensen, R. [Institut fuer Umformtechnik und Umformmaschinen, (IFUM) Universitaet Hannover, Welfengarten 1A, 30167 Hannover (Germany)

    2003-08-01

    The FEM simulation is a powerful means which can drastically reduce the time to production and costs in the optimization of powder forming processes. The current paper investigates experimentally and numerically die compaction of aluminium powder. The plastic deformation is formulated by using the Drucker-Prager-Cap-model. This yield criterion describes the compressibility of porous bodies and allows the prediction of crack formation in the green compact. Axial compaction tests have been performed to determine material parameters for hardening. Simulation examples are presented to demonstrate the ability of the model to compute the distribution of the relative density. Furthermore, the compaction of an axisymmetric workpiece was simulated in order to determine optimal tools kinematics and to avoid crack formation. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Die Auslegung und Optimierung pulvertechnologischer Umformverfahren basiert bisher zu einem grossen Teil auf Erfahrungswissen. Die numerische Simulation bietet hierbei eine kosten- und zeitsparende Alternative. Besonders hat sich die Finite-Elemente-Methode (FEM) als leistungsfaehiges Simulationsverfahren bewaehrt. Im Rahmen dieser Arbeit wird das Pulverpressen von Aluminiumpulver numerisch und experimentell untersucht. Hierbei wird das Drucker-Prager-Cap-Modell verwendet, um das kompressible Verhalten des Pulvers abzubilden und moegliche Rissbildungen waehrend des Pressvorgangs vorherzusagen. Durch Pressversuche werden die Materialkennwerte fuer dieses Modell hinsichtlich der Verdichtung und Verfestigung des Aluminiumpulvers ermittelt. Der Pressvorgang wird anhand ausgewaehlter Referenzbauteile simuliert. Von besonderem Interesse ist hierbei die Berechnung der Verteilung der relativen Dichte und die Vermeidung der Rissbildung durch Optimierung der Stempelkinematik. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  12. Styrene Aziridination by Iron(IV) Nitrides.

    Science.gov (United States)

    Muñoz, Salvador B; Lee, Wei-Tsung; Dickie, Diane A; Scepaniak, Jeremiah J; Subedi, Deepak; Pink, Maren; Johnson, Michael D; Smith, Jeremy M

    2015-09-01

    Thermolysis of the iron(IV) nitride complex [PhB(tBuIm)3Fe≡N] with styrene leads to formation of the high-spin iron(II) aziridino complex [PhB(tBuIm)3Fe-N(CH2CHPh)]. Similar aziridination occurs with both electron-rich and electron-poor styrenes, while bulky styrenes hinder the reaction. The aziridino complex [PhB(tBuIm)3Fe-N(CH2CHPh)] acts as a nitride synthon, reacting with electron-poor styrenes to generate their corresponding aziridino complexes, that is, aziridine cross-metathesis. Reaction of [PhB(tBuIm)3Fe-N(CH2CHPh)] with Me3SiCl releases the N-functionalized aziridine Me3SiN(CH2CHPh) while simultaneously generating [PhB(tBuIm)3FeCl]. This closes a synthetic cycle for styrene azirdination by a nitride complex. While the less hindered iron(IV) nitride complex [PhB(MesIm)3Fe≡N] reacts with styrenes below room temperature, only bulky styrenes lead to tractable aziridino products. PMID:26179563

  13. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32. ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.163, year: 2014

  14. Gallium nitride junction field-effect transistor

    Science.gov (United States)

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  15. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. PMID:27007502

  16. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer...

  17. Effects of Nano-Aluminium on The Combustion of A PolyNIMMO-Based Propellant

    Institute of Scientific and Technical Information of China (English)

    Clive Woodley; Peter Henning

    2014-01-01

    Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellants have been reported to give similar benefits to micron-material propellants but without the disadvantage of increased abrasion.Tests were conducted to compare the burn rates,ignitability and wear rates of a propellant loaded with 0% aluminium,15% micro-aluminium and 15%nano-aluminium.Closed vessel tests showed a burn rate increase of 39% in the range 30-250 MPa,and 70% at low pressure (50-100 MPa)for the nano-aluminium propellant compared with the baseline propellant.The micro-aluminium propellant showed only a 10% increase in the burn rate compared with the standard propellant.The ignition delay for the nano-aluminium propellant was slightly shorter than that of the baseline propellant.Substantially increased wear rates were measured for the micro-aluminium propellant.The nano-aluminium propellant showed reduced wear rates compared with the micro-aluminium propellant but these were still substantially greater than those for the baseline propellant.

  18. Ammonothermal Growth of Gallium Nitride

    Science.gov (United States)

    Pimputkar, Siddha

    Bulk, single crystal Gallium Nitride (GaN) crystals are essential for enabling high performance electronic and optoelectronic devices by providing arbitrarily oriented, high quality, large, single crystal GaN substrates. Methods of producing single crystals of sufficient size and quality at a rate that would enable successful commercialization has been a major focus for research groups and companies worldwide. Recent advances have demonstrated remarkable improvements, though high cost and lack of high volume production remain key challenges. Major investments in bulk GaN growth were made at UCSB with particular focus on the ammonothermal method. The existing lab was upgraded and a new facility was designed and built with improved experimental setups for ammonothermal growth of GaN. The facilities can simultaneously operate up to 15 reactors of differing designs and capabilities with the ability to grow crystals up to 2 inches in diameter. A novel in-situ technique was devised to investigate the growth chemistry which occurs at typical operating conditions of 3,000 atm and 600 °C. Improvements in ammonothermal GaN include improved growth rates for c-plane by a factor of four to 344 μm/day with an overall record growth rate of 544 μm/day achieved for the (112¯2) plane. Crystal qualities comparable to that of the seed crystal were achieved. Impurity concentrations for transition metals were consistently reduced by a factor of 100 to concentrations below 1017 atoms/cm3. Optical transparency was improved by significantly reducing the yellow coloration typically seen for ammonothermal GaN. Single crystal GaN was successfully grown on large seeds and a 1 inch x ½ inch x ½ inch GaN crystal was demonstrated. To better understand the growth chemistry, models were created for the decomposition of ammonia under growth conditions, with initial experiments performed using the designed in-situ setup to verify the model's accuracy. To investigate the surface morphology and

  19. Synthesis of nano-crystalline zirconium aluminium oxynitride (ZrAlON) composite films by dense plasma Focus device

    International Nuclear Information System (INIS)

    Zirconium aluminium oxynitride multiphase composite film is deposited on zirconium substrate using energetic nitrogen ions delivered from dense plasma Focus device. X-ray diffractometer (XRD) results show that five Focus shots are sufficient to initiate the nucleation of ZrN and Al2O3 whereas 10 Focus shots are sufficient to initiate the nucleation of AlN. XRD results reveal that crystal growth of nitrides/oxides increases by increasing Focus shots (up to 30 Focus shots) and resputtering of the previously deposited film is taken place by further increase in Focus shots (40 Focus shots). Scanning electron microscopic (SEM) results indicate the uniform distribution of spherical grains (∼35 nm). A smoother surface is observed for 20 Focus shots at 0 deg. angular position. SEM results also show a net-type microstructure (thread like features) of the sample treated for 30 Focus shots whereas rough surface morphology is observed for 40 Focus shots. Energy dispersive spectroscopic profiles show the distribution of different elements present in the deposited composite films. A typical microhardness value of the deposited composite films is 5255 ± 10 MPa for 10 grams imposed load which is 3.3 times than the microhardness values of unexposed sample. The microhardness values of the exposed samples increases with increasing Focus shots (up to 30 Focus shots) and decreases for 40 Focus shots treatment due to resputtering of the previously deposited composite film. The microhardness values of the composite films decreases by increasing the sample's angular position.

  20. Friction and wear of stainless steel, titanium and aluminium with various surface treatments, ion implantation and overlay hard coatings

    International Nuclear Information System (INIS)

    This paper deals with the evaluation of the wear properties of 304 stainless steel, commercial grade titanium and commercial grade aluminium without and with different surface treatments, i.e., ion implantation of boron and nitrogen, and overlay coating of superhard materials, titanium carbide and nitride by the Biased Activated Reactive Evaporation (BARE) process. Wear properties were evaluated in adhesive, erosive and abrasive modes of wear. In the case of adhesive wear, ion implantation resulted in an improved wear behaviour in lubricated conditions but had no beneficial effect in dry wear conditions. Overlay coatings on the other hand resulted in improved wear behaviour for both the dry and lubricating conditions. In the case of erosive wear with SiC particles at high velocities, overlay coatings showed higher erosion rates (typical of brittle materials in normal impingement) whereas ion implanted materials behaved similarly as untreated materials; i.e., a lower wear rate than the specimens with overlay coatings. In the case of abrasive wear, it was again observed that the wear rates of overlay coatings is far lower than the wear rates of untreated or ion implanted materials. (author)

  1. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films

    International Nuclear Information System (INIS)

    Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 h in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed

  2. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  3. Nitriding of Co–Cr–Mo alloy in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ning, E-mail: ningtang@imr.tohoku.ac.jp; Li, Yunping, E-mail: lyping@imr.tohoku.ac.jp; Koizumi, Yuichiro; Chiba, Akihiko, E-mail: a.chiba@imr.tohoku.ac.jp

    2014-06-01

    Using the results of a thermodynamic analysis, a Co–Cr–Mo alloy was successfully nitrided in nitrogen at temperatures of 1073–1473 K. The near-surface microstructure of the treated Co–Cr–Mo alloy was characterized using X-ray diffraction, field-emission scanning electron microscopy, electron probe micro-analyzer, and transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy. The results indicated that the highest nitriding efficiency was achieved at the treatment temperature of 1273 K, with the size and coverage of the nitride particles on sample's surface increasing with an increase in the treatment duration. After nitriding at 1273 K for 2 h, numerous nitride particles, consisting of an outer Cr{sub 2}N layer and an inner π phase layer, were formed on top of the nitrogen-containing γ phase, and some π phase also precipitated in the alloy matrix at the sub-surface level. - Highlights: • A Co–Cr–Mo alloy was successfully nitrided in nitrogen at 1073–1473 K. • The highest nitriding efficiency of the Co–Cr–Mo alloy was achieved at 1273 K. • Numerous nitride particles formed on sample's surface during nitriding at 1273 K. • The nitride particles consist of an outer Cr{sub 2}N layer and an inner π phase layer.

  4. Nano α-alumina powders from aluminium dross waste

    International Nuclear Information System (INIS)

    The paper describes a solvo thermal chemical process to recycle aluminium dross waste into nano α-alumina powder. The process includes washing to remove the unwanted sodium follow by dissolving of this waste with dilute acid. The solvo thermal process then proceed with addition of propanol to crystallize the aluminium hydroxide. XRD analysis of this crystal shows that it belongs to Gibbs site (Al(OH)3). The crystals were then calcined at 1300 degree C where white powder was produced. Characteristic studies were then performed on this powder using XRD, SEM, EDX and particle size analysis showing that it has single α-alumina crystal phase with almost spherical shape. As the initial particle size is coarse and had a mean particle size of 3.80 μm, high speed wet milling was used and enable to reduce it to 0.49 μm. (Author)

  5. Effect of pressurized steam on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Ambat, Rajan

    2012-01-01

    measurements were used to study corrosion behavior. Findings - A 590?nm boehmite oxide layer was generated on AA1050 associated with partially dissolved and/or fallen off Fe-containing intermetallic particles after exposure to pressurized steam. A significant reduction (25 times) in anodic and cathodic......Purpose - The purpose of this paper is to understand the effect of pressurized steam on surface changes, structures of intermetallic particles and corrosion behavior of AA1050 aluminium. Design/methodology/approach - Industrially pure aluminium (AA1050, 99.5 per cent) surfaces were exposed to...... pressurized steam produced from a commercial pressure cooker at the maximum temperature of 116oC for 10?min. Surface morphology was observed using SEM-EDX and FIB-SEM. Phase identification and compositional depth profiling were investigated using XRD and GDOES, respectively. Potentiodynamic polarization...

  6. Production of aluminium oxide from the kaolin waste reprocessing

    International Nuclear Information System (INIS)

    The kaolin processing for paper covering produces a great volume of residues formed primary by clay mineral kaolinite which was in this study, the starting point for the synthesis of ammonium alum aiming to obtain free sodium alumina with fine grade for ceramic manufacture. The synthesis process to obtain ammonium alum consisted of the following procedures: residues calcination and sulphuric leaching of meta kaolinite followed by neutralization/ crystallization of aluminium sulphate solution with ammonium hydroxide concentrated solution. The effect of calcination temperature (650 deg C, 700 deg C and 750 deg C), calcination time of residues (30 min, 60 min and 120 min),sulphuric acid concentration as well as leaching temperature (70 deg C, 80 deg C and 90 deg C) on kinetics of aluminium leaching were studied. The influence of pH on ammonium alum crystallization was also studied. Data on chemical analysis, XRD and DTA of raw material utilized and synthesized are presented and discussed. (author)

  7. The nature of point defects in plastically deformed aluminium

    International Nuclear Information System (INIS)

    In order to find out which types of point defect are produced by plastic deformation, 57Co-doped aluminium specimens were cold worked at various temperatures by unidirectional tensile deformation or cyclic torsion. The specimens were then annealed at increasing temperatures, and the trapping of defects at the 57Co probes was studied by Moessbauer spectroscopy. In none of the experiments were interstitials found, although it is known that in aluminium 57Co probes readily trap interstitials after low-temperature particle irradiation. However, vacancy trapping was found in two temperature ranges corresponding to two different migration energies of vacancies: in dislocations Esub(m)sup(d) approx.0.2 to 0.3 eV and in the lattice Esub(m) approx.= 0.6 eV. The consequences of the results on models of point defect production by cold working are discussed. (author)

  8. Impact of Inert Metal Particles Flow on Aluminium Plate

    Institute of Scientific and Technical Information of China (English)

    WANG Zhongqi; LIU Yi; CHEN Yahong; BAI Chunhua

    2008-01-01

    Inert metal explosive, a new kind of explosive, is a mixture of high explosive and inert metal particle.When this kind of explosive is detonated, an inert metal particle flow will be formed by the explosive product driving.To determine the characteristics of the movement of the metal particle flow, a series of aluminium plates were designed to be the targets on which the metal particle flow impacted.The test result was presented and a numerical model was set up to analyze the impact of the high speed inert metal particles on aluminium plate.Based on the numerical analysis, the relationship between the characteristic of the mark on the target plate and the initial condition of the inert metal particles was proposed.From the analysis of the impact on target plates, more information about the movement of the metal particles could be reconstructed.

  9. Mechanisms of de cohesion in cutting aluminium matrix composites

    International Nuclear Information System (INIS)

    In this paper properties and applications of aluminium matrix composites are presented with a composite reinforced with saffil fibres selected for topical study. Behavior of matrix and reinforcement during machining with a cutting tool is analyzed. The paper presents an explosive quick-stop device designed to obtain undisturbed machined surface for examination. Meso hardness measurements of deformed structure, resultant chips and built-up-edge were carried out. Scanning micrographs of machined surface are presented with morphology and types of chips analysed. Values of the fibrousness angle ψ and thickening index kh of chip are evaluated. The research performed has enabled the authors to define mechanisms of e cohesion during cutting aluminium matrix composites. The results received for composite material are compared with those pertinent to aluminum alloys.

  10. Effects and mechanisms of grain refinement in aluminium alloys

    Indian Academy of Sciences (India)

    K T Kashyap; T Chandrashekar

    2001-08-01

    Grain refinement plays a crucial role in improving characteristics and properties of cast and wrought aluminium alloys. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys to grain refine the solidified product. The mechanism of grain refinement is of considerable controversy in the scientific literature. The nucleant effects i.e. which particle and its characteristics nucleate -Al, has been the subject of intensive research. Lately the solute effect i.e. the effect of dissolved titanium on grain refinement, has come into forefront of grain refinement research. The present paper attempts to review the literature on the nucleant effects and solute effects on grain refinement and addresses the importance of dissolved titanium in promoting nucleation of -Al on nucleant particles.

  11. Sorption of strontium-90 on anodized aluminium (2)

    International Nuclear Information System (INIS)

    Adsorption of the 90Sr+90Y system on anodized aluminium as a function of oxide layer thickness, purity of aluminum and temperature has been studied. It was found that only the adsorption of Sr2+ ions is affected by the oxide layer thickness. The content of admixtures in aluminium was meaningless from the point of view of adsorption capacity. An increase of Sr2+ adsorption with temperature was observed in the range from 20 to 600C. From the investigation of desorption it follows that the irreversibility of adsorption is higher for yttrium than for strontium and that the oxide layers of greater porosity tie up more strongly both kinds of ions. (author)

  12. Structural colours and applications to anodised aluminium surfaces

    DEFF Research Database (Denmark)

    Johansen, Villads Egede

    solve the problem. The problem is investigated by first reviewing existing work within colouration and visual appearance. This includes a study on how colours are perceived by humans and an investigation of the characteristics with which a surface appearance is properly described. Subsequently......, nanostructures and surface profiles are investigated using optimisation and topology optimisation in order to understand the limitations and design freedom of colour engineering. This is then followed by a study of the effect of disorder on a nanoscale level in order to tailor surface reflections for a smooth......, pleasing appearance. Afterwards, optical models for scattering of non-deterministic geometries suitable for anodised aluminium are considered. The outcome of the investigations are several different proposals for obtaining a white appearance for aluminium. These are described in the thesis alongside a...

  13. Microstructure evolution and grain refinement in asymmetrically rolled aluminium

    International Nuclear Information System (INIS)

    Aluminium alloy sheets were asymmetrically rolled and annealed. Asymmetric rolling was applied by imposing different velocity ratios between the top and bottom rolls, from 1 to 1.5. After cold rolling, the microstructures of various samples were analysed by electron back scatter diffraction, whereas the mechanical properties were characterized by stress–strain curves and microhardness measurements. The asymmetrical rolling process was examined as an alternative method to obtain fine- or even ultrafine-grained aluminium. The main purpose of this paper is to describe, qualitatively and quantitatively, the influence of asymmetrical rolling on microstructure evolution. Grain size, misorientation, image quality factor and other parameters were characterized and analysed in some detail. In the present study, a unique approach has been used for the first time to examine the possibility of applying the asymmetric rolling process in the preparation of materials with controlled heterogeneity

  14. TORSIONAL DEFORMATION AND FATIGUE BEHAVIOUR OF 6061 ALUMINIUM ALLOY

    Directory of Open Access Journals (Sweden)

    marini marno

    2012-02-01

    Full Text Available Torsional deformation and fatigue behaviour of both solid and thin-walled tubular specimens were made from as-received and heat treated 6061 aluminium alloy were studied. 6061 aluminium alloy have been widely used as a candidate material in automobile, aerospace, aircraft and structural application because of their superior mechanical properties such as high strength to weight ratio, good ductility and others. The differences in cyclic deformation and fatigue behaviours between round and solid specimens where a stress gradient exist, and thin-walled tubular specimens where a uniform stress state is commonly assumed, are also discussed. Von Mises and Tresca criteria has been used to predict the monotonic and cyclic deformation curve and compared to the torsional data obtained from the experiment. The S-N curve was used to present and evaluate the fatigue life of the specimens. Through fractographic analysis, failure criteria of fracture surfaces were observed and discussed. 

  15. Buffering effects on electrograining of aluminium in nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Koroleva, E.V. [Corrosion and Protection Centre, UMIST, P.O. Box 88, Manchester M60 1QD (United Kingdom)]. E-mail: e.koroleva@umist.ac.uk; Thompson, G.E. [Corrosion and Protection Centre, UMIST, P.O. Box 88, Manchester M60 1QD (United Kingdom); Skeldon, P. [Corrosion and Protection Centre, UMIST, P.O. Box 88, Manchester M60 1QD (United Kingdom); Hollrigl, G. [Alcan Technology and Management Ltd., Bad. Bahnhofstrasse 16, CH-8212 Neuhausen (Switzerland); Lockwood, S. [Bridgnorth Aluminium Limited, Stourbridge Road, Bridgnorth WV15 6AU (United Kingdom); Smith, G. [Bridgnorth Aluminium Limited, Stourbridge Road, Bridgnorth WV15 6AU (United Kingdom)

    2005-09-01

    Electrograining of a binary Al-Si alloy has been undertaken in nitric acid based electrolytes, with the resultant surfaces examined by scanning and transmission electron microscopies. Depending on electrograining conditions, the pit appearance varies from hemispherical to large lateral pits, with the latter favoured in relatively acidic electrolytes. The conditions prevailing in the pit have been explored through use of aluminium ion additions to the nitric acid electrolyte as well as additions of species which influence the precipitation and dissolution of aluminium hydroxide. These confirm that control of the pit solution pH, through hydroxide generation, as a result of the selected electrograining conditions and consequent anodic and cathodic polarisation, enables tailoring of the resultant electrograined surface appearance.

  16. Experimental evidence for a dynamical crossover in liquid aluminium.

    Science.gov (United States)

    Demmel, F; Fraile, A; Szubrin, D; Pilgrim, W-C; Morkel, C

    2015-11-18

    The temperature dependence of the dynamic structure factor at next-neighbour distances has been investigated for liquid aluminium. This correlation function is a sensitive parameter for changes in the local environment and its Fourier transform was measured in a coherent inelastic neutron scattering experiment. The zero frequency amplitude decreases in a nonlinear way and indicates a change in dynamics around 1.4 ∙ Tmelting. From that amplitude a generalized viscosity can be derived which is a measure of local stress correlations on next-neighbour distances. The derived generalized longitudinal viscosity shows a changing slope at the same temperature range. At this temperature the freezing out of degrees of freedom for structural relaxation upon cooling sets in which can be understood as a precursor towards the solid state. That crossover in dynamics of liquid aluminium shows the same signatures as previously observed in liquid rubidium and lead, indicating an universal character. PMID:26465204

  17. Environment pollution with aluminium around a coalburning electric power plant

    International Nuclear Information System (INIS)

    The experiments were carried out from November 1991 till November 1993 on the area surrounding an electric power plant within the circle of 20 km diameter and five geographical directions (N, S, SE, E, W). The results presented in this paper have indicated the threats caused by emissions of the power plant ashes and dusts. Mean aluminium content in soil has been multiply surpassed on the area studied. This must have as impact on fauna and flora. The distribution and intensity of pollution is determined first of all by the distance from the emitters and direction of prevailing winds. A part of aluminium contained in water soluble compounds can be distributed on large areas, what adds a lot to the threat to animals. That is why high chimneys do not solve the problem of pollution around big industrial plants. (author)

  18. Tailored Aluminium based Coatings for Optical Appearance and Corrosion Resistance

    DEFF Research Database (Denmark)

    Aggerbeck, Martin

    The current project investigated the possibility of designing aluminium based coatings focusing on the effect of composition and surface finish on the optical appearance and on the alkaline corrosion properties using titanium as the main alloying element. The main results and discussions of this...... the previously described magnetron sputtered Al-Ti coatings showed that 13 wt. % titanium and more improved the corrosion resistance at pH 13.5 and this was further improved by heat treatment, especially at 400 °C and more. The improved corrosion properties were ascribed to structural relaxation......, decreased galvanic potential differences in the microstructure, and protection from the network of the Al3Ti phases precipitated during the heat treatment. Laser surface cladding of aluminium containing up to 20 wt. % Ti6Al4V were studied focusing on the microstructure and the alkaline corrosion properties...

  19. Radiative capture of polarized neutrons by aluminium and manganese nuclei

    International Nuclear Information System (INIS)

    The angular distribution of the intensity is calculated for primary and secondary gamma-rays emitted after polarized neutron capture in a polarized target. Also the circular polarization is derived for capture of polarized neutrons by unoriented nuclei. Interference between the reaction channels and all possible dipole/quadrupole mixing is taken into account. Some aspects of p-wave and s-p interference are discussed. The results of these calculations are applied to the experiments on aluminium and manganese. In the nuclear orientation experiment with aluminium a 'brute force' polarized target was used. For five levels in 28Al the spin value could be determined uniquely. No evidence for significant M2/E1 mixing is found. A ferromagnetic MnSb sample was used to polarize the manganese nuclei. Unique spin values are assigned to 13 states in 56Mn. The magnetic hyperfine field on the Mn nuclei is determined to be negative

  20. Melting defect characterization in aluminium alloys by using computerized tomography

    International Nuclear Information System (INIS)

    This paper analyses the performance of parallel beam X-ray transmission computerized tomography, in the characterization of melting defects on a aluminium alloy. The results obtained presented a spatial resolution approximately of 0.8 mm. The porosity distribution existent in the piece appears as noise at the tomographic images with impossible detection. From the tomograms analyses it was possible to classify two defect regions at the pieces: empty and large pore concentration

  1. Studies on the chelation of aluminium for biological application

    International Nuclear Information System (INIS)

    Potentiometric determinations of the strength of chelation of aluminium(III) by citrate and 3-carboxy-1,5-pentanedioic acid have been made at 37,0 plus minus 0,1 degree Celsius and I = 150 mmol dm-3 NaCl. From these results, the citrate complex is inferred to be tridentate with coordination through the two terminal carboxyl groups and the central hydroxyl group. This structure is confirmed by 13C nuclear magnetic resonance

  2. Characteristics of particulate emissions from aluminium electrolysis cells

    OpenAIRE

    Gaertner, Heiko

    2013-01-01

    Modern sampling and analysis techniques were applied to study the morphology and composition of pot exhaust particles from aluminium smelters. In this study the total spectrum of pot exhaust particles from prebake electrolysis cells was sampled on filters and in a standard cyclone. Application of a cascade impactor allowed for fractionation of raw gas dust into 12 fractions with particle diameters in the range from approximately 7 nm to 10 μm. The performed experiments demonstrated that the p...

  3. Experimental study of friction in aluminium bolted joints

    OpenAIRE

    Vincenzi N.; De Agostinis M.; Croccolo D.

    2010-01-01

    This study aims at developing an experimental tool useful to define accurately the friction coefficients in bolted joints and, therefore, at relating precisely the tightening torque to the bolt preloading force in some special components used in front motorbike suspensions. The components under investigation are some clamped joints made of aluminium alloy. The preloading force is achieved by applying a torque wrench to the bolt head. Some specific specimens have been appropriately desig...

  4. ICT measuring method of small gap in aluminium component

    International Nuclear Information System (INIS)

    Because of the limitation of image reconstruction theory, the spatial resolution and random dispersion of CT value determine the minimum measuring size of Industrial Computed Tomography (ICT). This paper put forward the local boundary integration conception and found a new method to precisely measure the gap between 0.01-0.15 mm in aluminium component. When the credibility is 95%, the measuring accuracy is better than ± 0.005 mm. (authors)

  5. Load carrying capacity analysis of materials for aluminium rims

    OpenAIRE

    Fajdiga, Matija; Čižman, Jure

    2015-01-01

    In this contribution we present an experimental simulation of the fatique strength of clamped aluminium rims. This is supported by numerical modelling using the Finite Element Method (FEM), which was used for stress-strain analysis of a model representing a clamped detail during bendings. The design and analysis of the model are made simultaneously on an integrated computer controlled test rig for testing the fatique strength of clamped parts subjected to bending. The simulation is evaluated ...

  6. Fatigue Strength of Friction Stir Welded Joints in Aluminium

    OpenAIRE

    Ericsson, Mats

    2005-01-01

    Solid state Friction stir welding (FSW) is of major interest in the welding of aluminium since it improves the joint properties. Many applications where Al-alloys are used are subject to varying load conditions, making fatigue failure a critical issue. In the scope of this thesis, the fatigue performance of friction stir welded AlMgSi-alloy 6082 has been investigated. Static and dynamic properties of different joint configurations and welds produced with varying process parameters have been d...

  7. Fabrication and characterisation of uranium, molybdenum, chromium, niobium and aluminium

    International Nuclear Information System (INIS)

    This paper describes fabrication of binary uranium alloys by melting and casting. The following alloys with nominal composition were obtained by melting in the vacuum furnace: uranium with niobium contents from 0.5%- 4.0% and uranium with molybdenum contents from 0.4% - 1.2%. Uranium alloys with chromium content from 0.4% - 1.2% and uranium alloy with 0.12% of aluminium were obtained by vacuum induction furnace (electric arc melting)

  8. Establishment of integrated information displays in aluminium surfaces using nanomanufacturing

    DEFF Research Database (Denmark)

    Prichystal, Jan; Hansen, Hans Nørgaard; Bladt, Henrik H.;

    2006-01-01

    Bang & Olufsen has been working with a method for manufacturing ultra-thin structures in aluminium that can be penetrated by light. This work has resulted in a patent describing how to obtain this effect by material removal in local areas in a solid material. The idea behind an invisible display ...... micromachining with ultra-short pulses, selective etching combined with anodizing, and electrochemical machining....

  9. Experimental study of aluminium honeycomb behaviour under dynamic multiaxial loading

    OpenAIRE

    Markiewicz E.; Haugou G.; Chaari F.; Zouari B.; Tounsi R.; Dammak F.

    2012-01-01

    Split Hopkinson Pressure Bar system (SHPB) with large-diameter and Nylon bars introducing a shear-compression loading device is used in order to investigate the dynamic behaviour of aluminium honeycomb under multiaxial loadings conditions. All shear-compression configurations including the loading angle variation from 0∘ to 60∘ are performed with an impact velocity of about 15m/s. The adapted SHPB system with the device are validated numerically and a phenomenon of separation between the inpu...

  10. TEM microstructure investigations of aluminium alloys used as coating substrate

    Directory of Open Access Journals (Sweden)

    T. Tański

    2013-01-01

    Full Text Available Purpose: The aim of this paper was investigated structure and properties of gradient coatings produced in PVD process on AlSi9Cu aluminium alloys.Design/methodology/approach: The following results concern the structures of the substrates and coatings with the application of electron transmission and scanning microscopy; phase composition of the coatings using X-ray diffraction and grazing incident X-ray diffraction technique (GIXRD; microhardness and wear resistance.Findings: The deposited coatings are characterized by a single, double, or multi-layer structure according to the applied layers system, and the individual layers are coated even and tightly adhere to the substrate as well to each other. The analysis of coatings obtained on the surface of cast aluminium alloys by the PVD processes show a clear - over 100% - increase of the microhardness, compared to the base material microhardness.Practical implications: Achieving of new operational and functional characteristics and properties of commonly used materials, including the Al-Si-Cu alloys is often obtained by heat treatment, ie, precipitation hardening and/or surface treatment due to application or manufacturing of machined surface layer coatings of materials in a given group of materials used for different surface engineering processes.Originality/value: The paper presents the research involving the PVD coatings obtained on an unconventional substrate such as aluminium alloys. Contemporary materials should possess high mechanical properties, physical and chemical, as well as technological ones, to ensure long and reliable use. The above mentioned requirements and expectations regarding the contemporary materials are met by the non-ferrous metals alloys used nowadays, including the aluminium alloys.

  11. Work Hardening and Mechanical Anisotropy of Aluminium Sheets and Profiles

    OpenAIRE

    Ryen, Øyvind

    2003-01-01

    The processing of aluminium alloys from casting to end product is associated with a large number of metallurgical phenomena. In order to further improve and optimise process routes and alloys, a thorough understanding of the thermomechanical treatments by experimental observations and physically based modelling is necessary.In part A of this thesis the work hardening behaviour of non-heat treatable alloys is followed up to large strains. The evolution in strength, microstructure and texture d...

  12. Numerical modeling of aluminium foam on two scales

    Czech Academy of Sciences Publication Activity Database

    Němeček, J.; Denk, F.; Zlámal, Petr

    2015-01-01

    Roč. 267, September (2015), s. 506-516. ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP105/12/0824 Institutional support: RVO:68378297 Keywords : closed-cell aluminium foam * Alporas * multiscale modeling * homogenization * FFT * finite element modeling Subject RIV: JI - Composite Materials Impact factor: 1.551, year: 2014 http://www.sciencedirect.com/science/article/pii/S0096300315001162

  13. Aluminium extrusion investigated by theory, experiment and FEM-analysis

    OpenAIRE

    Khorasani, Sepinood Torabzadeh

    2015-01-01

    The process of aluminium extrusion has important influence in metal forming industry because of its ability to produce profiles with different shapes, sizes and complicated geometries. The required extrusion load is depending on the process parameters such as the flow stress of the billet material, velocity field, strain rate distribution, and thermal conditions within extrusion. These conditions are so important for industries, and interesting for academia, that research has been...

  14. Texture development during recrystallization of aluminium containing large particles

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; Hansen, Niels; Humphreys, F. J.

    1985-01-01

    The recrystallization process in heavily deformed commercially pure aluminium containing large intermetallic particles was studied by in situ neutron diffraction texture measurements and various microscopical techniques including texture measurements in local areas and simultaneous determination of...... size and orientation of individual grains. The formation and growth of recrystallization nuclei at the particles and in the matrix were examined by correlating the measured change in texture to the observed change in microstructure. It was found that prolific nucleation of grains having a wide spread...

  15. Structural use of aluminium in the construction industry

    Energy Technology Data Exchange (ETDEWEB)

    Nethercot, D.A. [Imperial Coll., London (United Kingdom)

    2002-07-01

    Examples are given of the structural use of aluminium in the Civil Engineering and Building Industries. These are taken from various periods within the past 50 years. The contrast between relatively widespread use for quite major structures in the 50' and 60's with the niche markets of today is striking. Paradoxically, availability of technical guidance, linked to professionally prepared educational material, has never been better. (orig.)

  16. Oxidation of solid aluminium-magnesium alloy doped by scandium

    International Nuclear Information System (INIS)

    The oxidation of solid aluminium-magnesium alloy with scandium was studied by means of thermogravimetry method. The kinetic and energy parameters of oxidation process were defined. The kinetics of oxidation was studied by means of thermogravimetry method. The apparent activation energy was defined as well. The products of oxidation were studied by means of X-ray analysis method. It was shown that the main products of oxidation were γ-Al2O3 and Mg O.

  17. Study of twist boundaries in aluminium. Structure and intergranular diffusion

    International Nuclear Information System (INIS)

    This research thesis addresses the study of grain boundaries in oriented crystals, and more particularly the systematic calculation of intergranular structures and energies of twist boundaries of <001> axis in aluminium, the determination of intergranular diffusion coefficients of zinc in a set of twist bi-crystals of same axis encompassing a whole range of disorientations, and the search for a correlation between these experimental results and calculated structures

  18. Wrought Aluminium Alloy Corrosion Propensity in Domestic Food Cooking Environment

    OpenAIRE

    Adeosun, S. O.; E. I. Akpan; S. A. Balogun

    2012-01-01

    The study on corrosion behaviour of wrought aluminium alloy in domestic food cooking conditions has been examined using the gravimetric approach. Flat cold rolled and annealed sheets were subjected to solutions of Capsicum annuum, L. esculentum, Allium cepa, and their blend under three conditions, namely, heating and cooling in still air, heating and cooling in refrigerator, and leaving some in open still atmosphere. Results show that corrosion occurred within the test period (288 hours) in t...

  19. Outstanding inhibitive effect of colchicine on aluminium alloy 6061 corrosion

    OpenAIRE

    Mudigere Krishnegowda Pavithra; Thimmappa Venkatarangaiah Venkateha; Mudigere Krishnegowda Punith Kumar; Nanjanagudu Subba Rao Anantha

    2015-01-01

    The corrosion protection ability of colchicine (CC) on Aluminium alloy 6061 (AA6061) in 3.5% NaCl medium was examined by potentiodynamic polarization, electrochemical impedance, and chronoamperometric techniques. About 99 % of protection efficiency was achieved by 2 mM concentration of CC in 3.5% NaCl solution.The adsorption of CC on AA6061 surface obeys Langmuir isotherm by following both physisorption and chemisorption mechanism. Variation in the surface morphology of inhibited and uninhibi...

  20. State diagram of copper-aluminium alloys after neutron irradiation

    International Nuclear Information System (INIS)

    It is ascertained that under reactor irradiation of copper-aluminium alloys (18.0-31.2 at% of Al) radiation-induced phase transformations occur, alpha-phase is decomposed into two ones with alpha'-phase precipitation, in gamma2-phase separate regions of its high-temperature disordered modification (gamma1-phase) are formed. Thermal stability of precipitations is investigated, regions of their existence are defined on the state diagram

  1. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav;

    2011-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting ...... drilled holes was fulfilled as well as high productivity achieved. Such optimized process results in a noticeable production cost reduction....

  2. METAL MATRIX COMPOSITES BASED ON ALUMINIUM LITHIUM AND SILICON CARBIDE

    OpenAIRE

    White, J.; Hughes, I; Willis, T.; Jordan, R.

    1987-01-01

    The present study tests the feasibility of producing metal matrix composites based on aluminium-lithium alloys. The first step in this process has been to produce an MMC based on 8090 with SiC. This has been successfully produced by Alcan International using the "Osprey" spray deposition process. The raw billets have been processed initially by extrusion. The tensile properties of this material have been determined and the strength compares favourably with DC cast alloys. Modulus is improved ...

  3. Noncontact ultrasonic thickness measurements of thin aluminium sheet

    International Nuclear Information System (INIS)

    A method has been described for the noncontact ultrasonic thickness measurements of thin aluminium sheets, using a Q-switched ruby laser generation concentric with an annular electro-magnetic acoustic transducer (EMAT) detection to imitate pulse-echo system. The detected waveforms were analyzed with the cut-off frequences of the higher order lamb modes. The results show in a good egreement with micrometer measurements within 2% discrepancy. (authors). 22 refs, 6 figs

  4. Modelling of semi-liquid aluminium flow in extrusion

    OpenAIRE

    G. Skorulski; J. Piwnik

    2007-01-01

    characterizing by low cost. The significant results may be quickly applying using theory of probability. The way of modelling the deformation mechanisms during extrusion of aluminium alloys in semi - liquid phase, the way of preparing samples and experimental technique has been analysed in the following work. On the ground of received results (i.e. registrations of consecutive process steps) the grid of the flow velocity vectors on a flat sample surface was done. It allowed to draw conclusion...

  5. Uranium and thorium behavior at aluminium floating-zone refining

    International Nuclear Information System (INIS)

    Uranium and thorium behaviour during aluminium refining by crystallization from the melt is ascertained. Measurements of of uranium and thorium radioactive impurities content in high-purity aluminiumn samples using the surface α-activity method are carried out. The content of the given impurities happened to be less than 1 x 10-7 mass.%. Such purity satisfies the requirements to materials applied in the low background 71Ge detection system of gallium-germanium solar neutrino detector

  6. Melting Transition of Small Aluminium Clusters Al11-20

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; ZHANG Feng-Shou; ZHU Zhi-Yuan

    2007-01-01

    Heat capacities of small aluminium clusters Al11-20 are investigated using MD simulation with empirical manybody Gupta potential. The heat capacities of some clusters Al11, Al12, Al13 and Al19 show well-defined peaks while the heat capacities of Al15-18 indicate a gradual melting transition. The spectra of isomers obtained by quenches along the MD trajectory give good interpretation for those results.

  7. Preparation of polymeric aluminium ferric chloride from bauxite tailings

    OpenAIRE

    Ma D; Guo M; Zhang M

    2013-01-01

    Bauxite tailings are the main solid wastes in the ore dressing process. The Al2O3 and Fe2O3 contents in bauxite tailings can reach 50% and 13% respectively. The present study proposed a feasible method to use bauxite tailings to prepare polymeric aluminium ferric chloride (PAFC), a new composite inorganic polymer for water purification. Bauxite tailings roasted reacting with hydrochloric acid under air, pickle liquor which mainly contains Fe3+, Al3+ was generated, then calcium aluminate...

  8. INVESTIGATION OF THE POTENTIAL PHYSIO-PATOLOGICAL EFFECTS OF ALUMINIUM IN PATIENTS WITH ALZHEIMER SPECIFIC SYMPTOMS

    Directory of Open Access Journals (Sweden)

    Constantin Bǎlǎeț

    2013-06-01

    Full Text Available In the past few years, there has been developed an idea about the connection between the Presence of aluminium in human blood and Alzheimer disease. The goal of our study was to demonstrate that there is a connection between the aluminium in the patients’ blood (who presented specific symptoms and Alzheimer disease’s occurrence, having a physiopathological determination. Aluminium dosage in a group of patients was analyzed (according to some pre-established procedures. 65% of the patients had 1-5% higher than normal values for aluminium level. Aluminium intoxication could lead to syndromes which could affect peoples’ activity. The general physicians must be aware of the need for detecting the aluminium in blood, of interpreting the physiopathological changes and of monitoring these changes in order to detect early symptoms of Alzheimer disease.

  9. RESPONSE OF PHENOLIC METABOLISM INDUCED BY ALUMINIUM TOXICITY IN FAGOPYRUM ESCULENTUM MOENCH. PLANTS.

    Science.gov (United States)

    Smirnov, O E; Kosyan, A M; Kosyk, O I; Taran, N Yu

    2015-01-01

    Buckwheat genus (Fagopyrum Mill.) is one of the aluminium tolerant taxonomic units of plants. The aim of the study was an evaluation of the aluminium (50 μM effect on phenolic accumulation in various parts of buckwheat plants (Fagopyrum esculentum Moench). Detection of increasing of total phenolic content, changes in flavonoid and anthocyanin content and phenylalanine ammonia-lyase activity (PAL) were revealed over a period of 10 days of exposure to aluminium. The most significant effects of aluminium treatment on phenolic compounds accumulation were total phenolic content increasing (by 27.2%) and PAL activity rising by 2.5 times observed in leaves tissues. Received data could be helpful to understand the aluminium tolerance principles and relationships of phenolic compounds to aluminium phytotoxicity. PMID:27025067

  10. Characteristics of the nitrided layer formed on AISI 304 austenitic stainless steel by high temperature nitriding assisted hollow cathode discharge

    International Nuclear Information System (INIS)

    Highlights: • AISI 304 austenite steel was nitrided at high temperatures in short time. • It could critically reduce time compared with low temperature nitriding. • The nitrided layer was mainly composed of nitrogen expanded austenite. • It could improve pitting corrosion resistance in NaCl solution. - Abstract: A series of experiments have been conducted on AISI 304 stainless steel using a hollow cathode discharge assisted plasma nitriding apparatus. Specimens were nitrided at high temperatures (520–560 °C) in order to produce nitrogen expanded austenite phase within a short time. The nitrided specimen was characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, potentiodynamic polarization and microhardness tester. The corrosion properties of nitrided samples were evaluated using anodic polarization tests in 3.5% NaCl solution. The nitrided layer was shown to consist of nitrogen expanded austenite and possibly a small amount of CrN precipitates and iron nitrides. The results indicated that rapid nitriding assisted hollow cathode discharge not only increased the surface hardness but also improved the corrosion resistance of the untreated substrate

  11. Modelling of detonation cellular structure in aluminium suspensions

    Science.gov (United States)

    Briand, A.; Veyssiere, B.; Khasainov, B. A.

    2010-12-01

    Heterogeneous detonations involving aluminium suspensions have been studied for many years for industrial safety policies, and for military and propulsion applications. Owing to their weak detonability and to the lack of available experimental results on the detonation cellular structure, numerical simulations provide a convenient way to improve the knowledge of such detonations. One major difficulty arising in numerical study of heterogeneous detonations involving suspensions of aluminium particles in oxidizing atmospheres is the modelling of aluminium combustion. Our previous two-step model provided results on the effect on the detonation cellular structure of particle diameter and characteristic chemical lengths. In this study, a hybrid model is incorporated in the numerical code EFAE, combining both kinetic and diffusion regimes in parallel. This more realistic model provides good agreement with the previous two-step model and confirms the correlations found between the detonation cell width, and particle diameter and characteristic lengths. Moreover, the linear dependence found between the detonation cell width and the induction length remains valid with the hybrid model.

  12. 68Ga radionuclide generator on the aluminium oxide

    International Nuclear Information System (INIS)

    The method of 68Ga generator on the base of aluminium oxide is supposed. The method includes the preliminarily treatment of the aluminium oxide by NaOH solution (0.1 mol/l) and following dynamical sorption of 68Ge maternal radionuclide on the treated aluminium oxide. Value of the 68Ge sorption makes up more than 97 %. Sorption of 68Ge is proceeding at pH water solution not more than 12, but elution the 68Ga daughterly radionuclide is carried out by HCl solution (0.1 mol/l). Testing of the 68Ga pilot radionuclide preparation shows, that the generator provides the production of 300 eluates of 68Ga preparation with output 50-70 %. The 68Ge impurities in 68Ga eluate makes up 2·10-4 %. Aluminum content in the all 68Ga fractions makes up 1 μg/ml. Influence of HCl concentration in eluent and time interval between elution on the 68Ga and 68Ge breakthrough is studied

  13. Aluminium intake by INAA of hair: The aerosol intoxication pathway

    International Nuclear Information System (INIS)

    Aluminium is present in healthy human organisms in concentrations that appear to be neither useful nor noxious. However, long term higher Al levels can produce severe bone, renal and cerebral troubles. Here we report the results of the first investigation using the Instrumental Neutron Activation Analysis of human hair aimed to assess the Al contamination in workers from aluminium industry due to aerosol inhalation. Seventy five subjects working at 'Alprom' Inc., Slatina, Romania aluminium processing plant were included in this study. The exposed subjects were casters, crane operators and rolling mill operators. Hair samples were washed with acetone-water-water-water-acetone using bi-distilled water and re-distilled-purified p.a. grade acetone and irradiated for 3 min at a thermal neutron flux of 2.3 x 1012 n/cm2s in the VVR-S reactor. Student's t-test showed the arithmetical mean values of all exposed groups to differ of the control group's one with a good statistical confidence level. In most workers the Al concentration in hair is 2 times higher than normal but in one third of the casters and in two of the rolling mill operators it is on average up to 7 times higher. Substantial Al overload can cause severe osteoporosis or encephalopathies even after retirement from activity. Protection filtering masks and medical therapy based on strong chelant drug deferoxamine are recommended, (authors)

  14. Welding metallurgy of aluminium for radiation tube of reactor

    International Nuclear Information System (INIS)

    The metallurgy of TIG weldment in aluminium alloy was examined based on physical metallurgy characteristics. The presence of weld defects have been detected by x-ray radiographic and metallographic methods. The lack of penetration in the aluminium weldment was possibly caused by the formation of aluminium oxide layer, insufficient heating flow and fast speed of work piece rotation. Segregation of major elements such as Mg and Si were varied between the weld zone and parent metal depending on the heat input during welding. Microstructure and microhardness across the weldment were markedly changed by heat-treatments. Minimum hardness was found in the heat-affected zone (HAZ) - fusion zone boundary and maximum hardness was found in the fusion zone. Both these extremes can produce premature failure of the weldment. Such failure especially embrittlement cracking could be hindered by heat-treated at 4130C, 2 1/2 hours and furnace cooled, where the distribution of hardness has been minimized and homogenized. (author)

  15. Weldability of high strength aluminium-scandium alloys

    International Nuclear Information System (INIS)

    Australia possesses a significant percentage of the world reserves of the ores required for the production of light alloys such as aluminium, magnesium and titanium. However, most of these minerals deposits are exported for processing, losing the potential of value adding benefits. Scandium has been known for some time to possess excellent grain refining properties when alloyed with aluminium. Although this adds considerable benefits to the mechanical properties of these alloys, it has not been fully exploited due to the high cost of producing the scandium metal. Deposits of scandium containing ore have recently been identified in Australia that are far more accessible than other deposits throughout the world. CSIRO Manufacturing Science and Technology had initiated a research project to investigate the effect of scandium and other grain refining additions on the properties of selected aluminium alloys in order to develop the market and maximise the potential benefits from Australian resources. The major objective of the project is to develop high strength aluminum alloys that exhibit good processing characteristics, particularly good weldability

  16. Analysis of Orthogonal Cutting of Aluminium-based Composites

    Directory of Open Access Journals (Sweden)

    P. Ravinder Reddy

    2002-10-01

    Full Text Available A turning test on aluminium-based metal-matrix composites (MMCs (aluminium-30% silicon carbide was performed with K-20 carbide tool material and wear patterns and the wear land growth rates were analysed to evaluate the wear characteristics and to classify the relationship between the physical (mechanical properties and the flank wear of cutting tools. The study was also extended to the machining aspects and the width of cuts on MMCs and the influence of various cutting parameters. The experiments were conducted to measure the temperature along the cutting tool edge using thermocouple at various cutting speeds, and depth of cuts, keeping the feed rate constant while turning with K-20 carbide cutting tool. The finite-element method was used to simulate the orthogonal cutting of aluminium-based MMCs. The heat generation at the chip-tool interface, frictional heat generation at the tool flank, and the heat generation at the work tool interface were calculated analytically and imposed as boundary conditions. The analysis of the steady-state heat transfer was carried out and the temperature distribution at cutting edge, shear zone, and interface regions have been reported.

  17. The Effect of Thickness of Aluminium Films on Optical Reflectance

    Directory of Open Access Journals (Sweden)

    Robert Lugolole

    2015-01-01

    Full Text Available In Uganda and Africa at large, up to 90% of the total energy used for food preparation and water pasteurization is from fossil fuels particularly firewood and kerosene which pollute the environment, yet there is abundant solar energy throughout the year, which could also be used. Uganda is abundantly rich in clay minerals such as ball clay, kaolin, feldspar, and quartz from which ceramic substrates were developed. Aluminium films of different thicknesses were deposited on different substrates in the diffusion pump microprocessor vacuum coater (Edwards AUTO 306. The optical reflectance of the aluminium films was obtained using a spectrophotometer (SolidSpec-3700/DUV-UV-VIS-NIR at various wave lengths. The analysis of the results of the study revealed that the optical reflectance of the aluminium films was above 50% and increased with increasing film thickness and wavelength. Thus, this method can be used to produce reflector systems in the technology of solar cooking and other appliances which use solar energy.

  18. Effect of ultrasonic energy on nanoscale interfacial structure in copper wire bonding on aluminium pads

    International Nuclear Information System (INIS)

    The effect of ultrasonic vibration on nanoscale interfacial structure of thermosonic copper wire bonding on aluminium pads was investigated. It was found that bonding strength was determined by the extent of fragmentation of a native aluminium oxide overlayer (5-10 nm thick) on aluminium pads, forming paths for formation of intermetallic compound CuAl2 in areas of direct contact of bonded metal surfaces. The degree of fracture of the oxide layer was strongly affected by a level of ultrasonic power.

  19. Subgrain Growth, Recovery Kinetics and Nucleation of Recrystallization of Cold Deformed Aluminium Alloys

    OpenAIRE

    Bunkholt, Sindre

    2013-01-01

    Phenomena related to annealing of aluminium alloys are among the least understood in aluminium metallurgy but very important for industrial thermo-mechanical processing i.e. deformation and annealing. Physical models are used to predict recovery and recrystallization behaviour, and associated material properties, industrially. However, alloy development, e.g. to incorporate more recycled aluminium, has shown that current softening models are not satisfactory. Thus, improvements do require a b...

  20. Selected properties of the aluminium alloy base composites reinforced with intermetallic particles

    OpenAIRE

    M. Adamiak

    2005-01-01

    Purpose: The main aim of this work is to investigate two types of intermetallics TiAl and Ti3Al as reinforcement and their influence on selected properties and microstructure of aluminium matrix composites.Design/methodology/approach: Aluminium matrix composites were produced employing the atomised aluminium alloy AA6061 as metal matrix, when as reinforcement TiAl and Ti3Al intermetallics particles were used. The powders were cold pressed and then hot extruded. To evaluate the effect of mecha...

  1. Anisotropic behaviour law for sheets used in stamping: A comparative study of steel and aluminium

    OpenAIRE

    Sinou, Jean-Jacques; Macquaire, Bruno

    2003-01-01

    International audience For a car manufacturer, reducing the weight of vehicles is an obvious aim. Replacing steel by aluminium moves towards that goal. Unfortunately, aluminium's stamping numerical simulation results are not yet as reliable as those of steel. Punch-strength and spring-back phenomena are not correctly described. This study on aluminium validates the behaviour law Hill 48 quadratic yield criterion with both isotropic and kinematic hardening. It is based on the yield surface ...

  2. Electrodeposition of aluminium film on P90 Li-Al alloy as protective coating against corrosion

    OpenAIRE

    U. Bardi; Caporali, S; M. Craig; A. Giorgetti; Perissi, I; Nicholls, J. R.

    2009-01-01

    In this paper we report on the electrodeposition of thin aluminium layers on P90 lithium–aluminium alloy at room temperature from a chloroaluminate ionic liquid (1-butyl-3-methyl imidazolium heptachloroaluminate [BMIm]Al2Cl7). We found that the treatment of the P90 sample's surface is a key point to obtain good quality coatings. On freshly mechanically polished surfaces, thin (about 24 µm), homogeneous and dense aluminium layers were obtained at 10 µm h− 1 deposition rate. F...

  3. Improvement in Wear Properties of a Hypereutectic Aluminium Silicon Alloy with Manganese

    OpenAIRE

    Prabhkiran Kaur; D.K. Dwivedi; P.M. Pathak; Sunil Kumar

    2014-01-01

    Improvement in wear properties of rare earth Cerium base hypereutectic Aluminium-Silicon alloy with Manganese modification has been reported in this paper. Wear studies were carried out on cast samples of hypereutectic Aluminium-Silicon alloy (Al-Si) with rare earth Cerium oxide (CeO2) and Manganese (Mn) modification. Final wear properties of rare earth Cerium oxide and Manganese modified hypereutectic Aluminium Silicon alloy were compared with the values of author?s previous work on rare ear...

  4. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations

    OpenAIRE

    Mold, M; Shardlow, E; Exley, C.

    2016-01-01

    Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al3+ in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, pote...

  5. Low-temperature nitridation of Fe nanoparticles precursor.

    Science.gov (United States)

    Huang, H; Lu, B; Lei, J P; Dong, X L

    2009-12-01

    Nitridation of Fe nanoparticle precursor was performed in a NH3 atmosphere at the temperatures of 473 K and 673 K for one hour. Fe nanoparticles precursor had a typical spherical shape with iron oxides shell and alpha-Fe core, which was obtained by an arc-discharge method. Up to date, the nitriding temperature of 473 K in present work was the lowest by thermal ammonolysis method because of the characteristics of the nano-sized particles. The resultant product after nitridation was a mixture of iron-nitrides (gamma'-Fe4N and epsilon-Fe3N) nanoparticles with homogeneous dispersion. The nitriding mechanism, oxidizing behaviors and magnetic properties of iron-nitride nanoparticles were measured and discussed. PMID:19908793

  6. An assessment of the thermodynamic properties of uranium nitride, plutonium nitride and uranium-plutonium mixed nitride

    International Nuclear Information System (INIS)

    Thermodynamic properties such as vapour pressures, heat capacities and enthalpies of formation for UN(s), PuN(s) and (U, Pu)N(s) are critically evaluated. The equations of the vapour pressures and the heat capacities for the three nitrides are assessed. Thermal functions, and thermodynamic functions for the formation of UN(s), PuN(s) and (U, Pu)N(s), are calculated

  7. Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining-nitriding technology

    International Nuclear Information System (INIS)

    Hexagonal boron nitride (hBN) powder was fabricated prepared by the spray drying and calcining-nitriding technology. The effects of nitrided temperature on the phases, morphology and particle size distribution of hBN powder, were investigated. The synthesized powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transformed infrared spectrum, ultraviolet-visible (UV-vis) spectrum and photoluminescence (PL) spectrum. UV-vis spectrum revealed that the product had one obvious band gap (4.7 eV) and PL spectrum showed that it had a visible emission at 457 nm (λex=230 nm). FESEM image indicated that the particle size of the synthesized hBN was mainly in the range of 0.5-1.5 μm in diameter, and 50-150 nm in thickness. The high-energy ball-milling process following 900 deg. C calcining process was very helpful to obtain fully crystallized hBN at lower temperature. - Graphical abstract: hBN powder was fabricated prepared by spray drying and calcining-nitriding technology. The results indicated that spray drying and calcining-nitriding technology assisted with high-energy ball-milling process following calcined process was a hopeful way to manufacture hBN powder with high crystallinity in industrial scale

  8. Preparation and study of the nitrides and mixed carbide-nitrides of uranium and of plutonium

    International Nuclear Information System (INIS)

    A detailed description is given of a simple method for preparing uranium and plutonium nitrides by the direct action of nitrogen under pressure at moderate temperatures (about 400 C) on the partially hydrogenated bulk metal. It is shown that there is complete miscibility between the UN and PuN phases. The variations in the reticular parameters of the samples as a function of temperature and in the presence of oxide have been used to detect and evaluate the solubility of oxygen in the different phases. A study has been made of the sintering of these nitrides as a function of the preparation conditions with or without sintering additives. A favorable but non-reproducible, effect has been found for traces of oxide. The best results were obtained for pure UN at 1600 C (96 per cent theoretical density) on condition that a well defined powder, was used. The criterion used is the integral width of the X-ray diffraction lines. The compounds UN and PuN are completely miscible with the corresponding carbides. This makes it possible to prepare carbide-nitrides of the general formula (U,Pu) (C,N) by solid-phase diffusion, at around 1400 C. The sintering of these carbide-nitrides is similar to that of the carbides if the nitrogen content is low; in particular, nickel is an efficient sintering agent. For high contents, the sintering is similar to that of pure nitrides. (author)

  9. Determination of aluminium contents in selected food samples by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Food and food products are the main sources of Aluminium entering the human body. In order to know aluminium contents in food and food products, selected 26 samples from local market were analyzed by instrumental neutron activation analysis (INAA) using reactor neutrons and high resolution gamma-ray spectrometry. INAA using 1,779 keV γ-ray of 28Al (2.24 min) was used for aluminium concentrations in the range of 33-529 mg kg-1. Two NIST standard reference materials (SRMs) and two IAEA reference materials (RMs) were analyzed by INAA for quantification of aluminium as a part of method validation. (author)

  10. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate

    International Nuclear Information System (INIS)

    Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image. (note)

  11. Low temperature oxidation of niobium alloy with silicon-aluminium coating

    International Nuclear Information System (INIS)

    Using the gravimetry methods heat resistance of niobium-titanium-aluminium alloy in the air and at 700 deg C in the initial state and when it is protected by silicide-aluminium coatings (with variable content of aluminium) is investigated. Using X-ray diffraction and micro X-ray diffraction analyses, mechanisms of the alloy oxidation and the coating protective effect are studied. The role of aluminium in the formation of coatings is analyzed and according to bend tests the plasticity of the coatings is evaluated

  12. Thermoelectric power in low-density interstitial-free iron-aluminium alloys

    Science.gov (United States)

    Rana, Radhakanta; Liu, Cheng

    2013-09-01

    Thermoelectric power (TEP) studies on low-density interstitial-free iron-aluminium alloys reveal that the TEP decreases with increase in the aluminium content on account of the introduction of lattice dispersion centres. The TEP coefficients, determined from the Nordheim-Gorter law, for 6.8 and 8.1 wt.% aluminium additions to α-iron are found to be higher than values reported in previous literature for small aluminium additions. The grain size has a very weak effect on the TEP of these alloys.

  13. Nitride semiconductors studied by atom probe tomography and correlative techniques

    OpenAIRE

    Bennett, Samantha

    2011-01-01

    Optoelectronic devices fabricated from nitride semiconductors include blue and green light emitting diodes (LEDs) and laser diodes (LDs). To design efficient devices, the structure and composition of the constituent materials must be well-characterised. Traditional microscopy techniques used to examine nitride semiconductors include transmission electron microscopy (TEM), and atomic force microscopy (AFM). This thesis describes the study of nitride semiconductor materials using these tradi...

  14. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  15. Research and development of nitride fuel cycle for TRU burning

    Energy Technology Data Exchange (ETDEWEB)

    Susuki, Y.; Ogawa, T.; Osugi, T.; Arai, Y.; Mukaiyama, T. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1997-07-01

    The present status of the research and development of nitride fuel cycle for burning transuranium elements in actinide burner reactors and fast reactors at JAERI is described, especially focusing on the progress in the recent two years. The research and development cover fuel fabrication technology, property measurements such as thermal conductivity, basic irradiation tests at Japan Materials Testing Reactors(JMTR), electrorefining of actinide nitrides in fused salts, and the evaluation of mass balance in the reprocessing process of nitride fuel. (authors)

  16. Application Of Active Screen Method For Ion Nitriding Efficiency Improvement

    OpenAIRE

    Ogórek M.; Frączek T.; Skuza Z.

    2015-01-01

    Paper presents the research of austenitic steel AISI 304 after ion nitriding at 400°C and at t =4h, for the two different variants of samples distribution in the working plasma reactive chamber tube. In order to assess the effectiveness of ion nitriding variants emission spectroscopy – GDOES, surface hardness tests, microstructure research (LM) of nitrided layers were made. It has been found that the use of active screens increases the surface layer thickness and depth of nitrogen diffusion i...

  17. Plasma nitriding of AISI 304L and AISI 316L stainless steels: effect of time in the formation of S phase and the chromium nitrides

    International Nuclear Information System (INIS)

    Plasma nitriding can improve hardness and wear resistance of austenitic stainless steels without losses in corrosion resistance. This fact relies on a nitrided layer constituted only by S phase, without chromium nitrides precipitation. In this work, the effect of nitriding time on phases formed on nitrided layer was investigated in two austenitic stainless steels: AISI 304L e AISI 316L. The samples were nitrided at 420 deg C, using a mixture of 60 % N2 and 40% H2, during 5, 7 and 9 hours. It was noted that chromium nitrides were formed on samples of AISI 304L, nitrided for 7 e 9 hours, while all nitrided samples of AISI 316L showed only formation of S phase. The nitrided layers were characterized using optical microscope and x-ray diffraction. (author)

  18. Investigation into some tribological properties of plasma nitrided hot-worked tool steel AISI H11

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S.; Sahin, A.Z.; Said, S.A.M.; Nickel, J.; Coban, A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    1996-04-01

    Interest in the tribological properties of plasma nitriding has increased substantially over the past years because plasma nitriding provides a high nitride depth and improved hard facing. The present study examines the tribological properties of AISI H11 plasma nitrided, hot-worked steel. Different nitriding temperatures and durations were considered. Characterization of the composite structures was investigated with wear tests, x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and microhardness tests. The depth profile of the nitrided zone was measured using the nuclear reaction analysis (NRA) technique. Plasma nitriding affected the microhardness, wear properties, and morphology considerably. Increase in process temperature increased the nitride zone depth.

  19. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA2CO3) at 970C. The results show that the presence of ZrO2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO2. It was shown experimentally that for this series of glasses, the presence of both TiO2 and ZrO2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO2. (Author)

  20. Heterostructure field effect transistors based on nitride interfaces

    International Nuclear Information System (INIS)

    A key property of the nitrides is the fact that they possess large spontaneous and piezoelectric polarization fields that allow a significant tailoring of the carrier dynamics and optical properties of nitride devices. In this paper, based on first-principles calculations of structural and electronic properties of bulk nitrides and their heterostructure, we investigate the potential of this novel material class for modern device applications by performing self-consistent Monte Carlo simulations. Our studies reveal that the nitride based electronic devices have characteristics that predispose them for high power and high frequency applications. We demonstrate also that transistor characteristics are favourably influenced by the internal polarization induced electric fields. (author)