WorldWideScience

Sample records for aluminium gallium indium

  1. Aluminium, gallium, indium and thallium

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    Aluminium can exist in a number of oxyhydroxide mineral phases including corundum, diaspore, boehmite and gibbsite. The stability constants at zero ionic strength reported for Al(OH) 3 (aq) vary linearly with respect to the inverse of absolute temperature. A full suite of thermodynamic parameters is available for all aluminium phases and hydrolysis species. Gallium hydrolyses to a greater extent than aluminium, with the onset of hydrolysis reactions occurring just above a pHof 1. In fact, even though aluminium has the smallest ionic radius of this series of metals, it has the weakest hydrolysis species and oxide/hydroxide phases.This is due to the presence of stabilising d-orbitals in the heavier metals, gallium, indium and thallium(III). There are few available data for the stability constants of indium(III) hydrolysis species. Of those that are available, the range in the proposed stability constants covers many orders of magnitude.

  2. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide

    International Nuclear Information System (INIS)

    Tanaka, Akiyo

    2004-01-01

    Gallium arsenide (GaAs), indium arsenide (InAs), and aluminium gallium arsenide (AlGaAs) are semiconductor applications. Although the increased use of these materials has raised concerns about occupational exposure to them, there is little information regarding the adverse health effects to workers arising from exposure to these particles. However, available data indicate these semiconductor materials can be toxic in animals. Although acute and chronic toxicity of the lung, reproductive organs, and kidney are associated with exposure to these semiconductor materials, in particular, chronic toxicity should pay much attention owing to low solubility of these materials. Between InAs, GaAs, and AlGaAs, InAs was the most toxic material to the lung followed by GaAs and AlGaAs when given intratracheally. This was probably due to difference in the toxicity of the counter-element of arsenic in semiconductor materials, such as indium, gallium, or aluminium, and not arsenic itself. It appeared that indium, gallium, or aluminium was toxic when released from the particles, though the physical character of the particles also contributes to toxic effect. Although there is no evidence of the carcinogenicity of InAs or AlGaAs, GaAs and InP, which are semiconductor materials, showed the clear evidence of carcinogenic potential. It is necessary to pay much greater attention to the human exposure of semiconductor materials

  3. Extraction of aluminium, gallium and indium by tri-n-octylamine from citric acid solutions

    International Nuclear Information System (INIS)

    Bol'shova, T.A.; Kaplunova, A.M.; Ershova, N.I.; Varshal, E.B.

    1984-01-01

    A study was made on aluminium, gallium and indium distribution in triocylam ine(toa)-citric acid system depending on pH of aqueous solution, concentration of components and foreign electrolytes. The methods of equilibrium shift, compe ting ions and isomolar series were used to find the component ratio in toa: Me: citric acid complexes equal to 3:1:2. The equation describing the extraction of citrate gallium, indium and aluminium complexes by trioctylamine was suggested. Using the difference in extraction behavior of the elements of aluminium, yttri um and lanthanum subgroup the extraction-chromatographic method of their separat ion, applied for the analysis of optical glasses was developed. The method is c haracterized by satisfactory reproduction, simplicity and expre

  4. Vibrational spectra of the cyanodimethylmetal complexes of magnesium, aluminium, gallium, and indium

    International Nuclear Information System (INIS)

    Mueller, J.; Schmock, F.; Klopsch, A.; Dehnicke, K.

    1975-01-01

    Tetramethylammonium cyanide reacts with an ethereal solution of dimethylmagnesium to form [NMe 4 ] 4 [Me 2 MgCN] 4 , the complex anion of which is isoelectronic with the known tetrameric dimethylaluminium cyanide [Me 2 AlCN] 4 . The vibrational spectra are reported together with those of the corresponding gallium and indium compounds. (orig.) [de

  5. First heats of cerium solution in liquid aluminium, gallium, indium, tin, lead and bismuth

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Lebedev, V.A.; Nichkov, I.F.; Raspopin, S.P.; Shein, V.G.

    1983-01-01

    Cerium solution heats in liquid alluminium, gallium, indium, tin, lead and bismuth are determined in high temperature mixing calorimeter with an isothermal shell. The statistical analysis carried out proves that values of cerium solution heat in fusible metals obtained by the methods of electric motive forces and calorimety give a satisfactory agreement

  6. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers.

    Science.gov (United States)

    Colombara, Diego; Werner, Florian; Schwarz, Torsten; Cañero Infante, Ingrid; Fleming, Yves; Valle, Nathalie; Spindler, Conrad; Vacchieri, Erica; Rey, Germain; Guennou, Mael; Bouttemy, Muriel; Manjón, Alba Garzón; Peral Alonso, Inmaculada; Melchiorre, Michele; El Adib, Brahime; Gault, Baptiste; Raabe, Dierk; Dale, Phillip J; Siebentritt, Susanne

    2018-02-26

    Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se 2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe 2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se 2 and Cu(In,Ga) 3 Se 5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.

  7. State of rare earth impurities in gallium and indium antimonides

    International Nuclear Information System (INIS)

    Evgen'ev, S.B.; Kuz'micheva, G.M.

    1990-01-01

    State of rare earth impurities in indium and gallium antimonides was studied. Results of measuring density and lattice parameter of samples in GaSb-rare earth and InSb-rare earth systems are presented. It is shown that during rare earth dissolution in indium and gallium antimonides rare earth atoms occupy interstitial positions or, at least, are displaced from lattice points

  8. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys

    Science.gov (United States)

    2011-03-01

    spectrum, photoluminescence (PL), and refractive index measurements. Other methods such as infrared imagery and micro probe wavelength dispersing ...States. AFIT/DS/ENP/11-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF MELT- GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ...CHARACTERIZATION OF MELT-GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ALLOYS Jean Wei, BS, MS Approved

  9. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  10. Small lead and indium inclusions in aluminium

    International Nuclear Information System (INIS)

    Johnson, E.; Hjemsted, K.; Schmidt, B.; Bourdelle, K.K.; Johansen, A.; Andersen, H.H.; Sarholt-Kristensen, L.

    1992-01-01

    This paper reports implantation of lead or indium into aluminum results in spontaneous phase separation and formation of lead or indium precipitates. The precipitates grow in topotactical alignment with the matrix, giving TEM images characterized by moire fringes. The size and density of the precipitates increase with increasing fluence until coalescence begins to occur. Implantation at elevated temperatures lead to formation of large precipitates with well developed facets. This is particularly significant for implantation above the bulk melting point of the implanted species. Melting and solidification have been followed by in-situ TEM heating and cooling experiments. Superheating up to ∼50 K above the bulk melting point has been observed, and the largest inclusions melt first. Melting is associated with only partial loss of facetting of the largest inclusion. Initial growth of the inclusions occurs by trapping of atoms retained in supersaturated solution. Further growth occurs by coalescence of neighboring inclusion in the liquid phase. Solidification is accompanied by a strong undercooling ∼30 K below the bulk melting point, where the smallest inclusions solidify first. Solidification is characterized by spontaneous restoration of the facets and the topotactical alignment

  11. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    International Nuclear Information System (INIS)

    Sallis, Shawn; Williams, Deborah S.; Quackenbush, Nicholas F.; Senger, Mikell; Woicik, Joseph C.; White, Bruce E.; Piper, Louis F.J.

    2015-01-01

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In + lone pair active electrons as the origin of the deep subgap features. No In + species are observed, only In 0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn; Williams, Deborah S. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Quackenbush, Nicholas F.; Senger, Mikell [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States); Woicik, Joseph C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 (United States); White, Bruce E.; Piper, Louis F.J. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States)

    2015-07-15

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In{sup +} lone pair active electrons as the origin of the deep subgap features. No In{sup +} species are observed, only In{sup 0} nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. The mobility of indium and gallium in groundwater systems: constraining the role of sorption in sand column experiments

    Science.gov (United States)

    Dror, I.; Ringering, K.; Yecheskel, Y.; Berkowitz, B.

    2017-12-01

    The mobility of indium and gallium in groundwater environments was studied via laboratory experiments using quartz sand as a porous medium. Indium and gallium are metals of very low abundance in the Earth's crust and, correspondingly, the biosphere is only adapted to very small concentrations of these elements. However, in modern semiconductor industries, both elements play a central role and are incorporated in devices of mass production such as smartphones and digital cameras. The resulting considerable increase in production, use and discharge of indium and gallium throughout the last two decades, with a continuous and fast increase in the near future, raises questions regarding the fate of both elements in the environment. However, the transport behavior of these two metals in soils and groundwater systems remains poorly understood to date. Because of the low solubility of both elements in aqueous solutions, trisodium citrate was used as a complexation agent to stabilize the solutions, enabling investigation of the transport of these metals at neutral pH. Column experiments showed different binding capacities for indium and gallium, where gallium is much more mobile compared to indium and both metals are substantially retarded in the column. Different affinities were also confirmed by examining sorption isotherms of indium and gallium in equilibrium batch systems. The effect of natural organic matter on the mobility of indium and gallium was also studied, by addition of humic acid. For both metals, the presence of humic acid affects the sorption dynamics: for indium, sorption is strongly inhibited leading to much higher mobility, whereas gallium showed a slightly higher sorption affinity and very similar mobility compared to the same setup without humic acid addition. However, in all cases, the binding capacity of gallium to quartz is much weaker than that of indium. These results are consistent with the assumption that indium and gallium form different types

  14. Interaction of simple indium iodides with silver- and aluminium iodides

    International Nuclear Information System (INIS)

    Denisov, Yu.N.; Halova, N.S.; Fedorov, P.I.

    1976-01-01

    Fusibility diagrams of the systems InI-AlI 3 , InI-AgI, InI 2 -AgI, and InI 2 -AlI 3 have been studied. In the system InI-AlI 3 a compound InAlI 4 has been detected having a melting point 194 deg C and two lamination regions. In the system InI-AgI two compounds In 2 AgI 3 and InAgI 2 are formed which melt incongruently at 272 deg and 220 deg C, respectively. The formation of the compounds has been confirmed by X-ray phase analysis. Specific electroconductivity of a number of alloys of the system InI-AlI 3 has been studied. The systems of eutectic type formed by diiodide of indium with iodides of silver and aluminium have been studied by thermal and X-ray analysis and by measuring electroconductivity

  15. Using Gallium as a tracer for aluminium toxicity in plants

    International Nuclear Information System (INIS)

    Ragapathi, S.S.; Ritchie, R.J.

    2000-01-01

    Full text: Aluminium (Al) is the most common metal in the earth's crust and is highly toxic to the roots or plants when present in the solution as monomeric cations (e.g.: Al 3+ and AlOH 2+ ) in acid soils. Despite this long known effect there is little consensus on the physiological basis of Al toxicity, which may manifest either externally or within the symplasm. One of the major factors that has retarded progress in understanding Al toxicity in plants is the lack of a convenient radioisotope for Al. We have studied the problem of AI toxicity in yeast (Saccharomyces cerevisiae), because yeast and higher plants share similar membrane transport mechanisms. We have shown that Al and Gallium (Ga) (chemically similar element to Al) has similar toxic effect on the yeast cells and that Ga 3+ and Al 3+ exhibit competitive inhibition. We have estimated the concentration of Al and Ga inside the yeast cells. We have tested the feasibility of using 67 Ga radioisotope as a tracer for Al transport with the view of using it to investigate the mechanism of Al uptake and toxicity in plants

  16. Indium gallium nitride/gallium nitride quantum wells grown on polar and nonpolar gallium nitride substrates

    Science.gov (United States)

    Lai, Kun-Yu

    Nonpolar (m-plane or a-plane) gallium nitride (GaN) is predicted to be a potential substrate material to improve luminous efficiencies of nitride-based quantum wells (QWs). Numerical calculations indicated that the spontaneous emission rate in a single In0.15Ga0.85N/GaN QW could be improved by ˜2.2 times if the polarization-induced internal field was avoided by epitaxial deposition on nonpolar substrates. A challenge for nonpolar GaN is the limited size (less than 10x10 mm2) of substrates, which was addressed by expansion during the regrowth by Hydride Vapor Phase Epitaxy (HVPE). Subsurface damage in GaN substrates were reduced by annealing with NH3 and N2 at 950°C for 60 minutes. It was additionally found that the variation of m-plane QWs' emission properties was significantly increased when the substrate miscut toward a-axis was increased from 0° to 0.1°. InGaN/GaN QWs were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on c-plane and m-plane GaN substrates. The QWs were studied by cathodoluminescence spectroscopy with different incident electron beam probe currents (0.1 nA ˜ 1000 nA). Lower emission intensities and longer peak wavelengths from c-plane QWs were attributed to the Quantum-confined Stark Effect (QCSE). The emission intensity ratios of m-plane QWs to c-plane QWs decreased from 3.04 at 1 nA to 1.53 at 1000 nA. This was identified as the stronger screening effects of QCSE at higher current densities in c-plane QWs. To further investigate these effects in a fabricated structure, biased photoluminescence measurements were performed on m-plane InGaN/GaN QWs. The purpose was to detect the possible internal fields induced by the dot-like structure in the InGaN layer through the response of these internal fields under externally applied fields. No energy shifts of the QWs were observed, which was attributed to strong surface leakage currents.

  17. Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process

    International Nuclear Information System (INIS)

    Flamini, D.O.; Saidman, S.B.; Bessone, J.B.

    2007-01-01

    The electrodeposition of gallium and/or zinc on aluminium, aluminium-zinc alloy and vitreous carbon electrodes in chloride solutions is analysed. The electrodissolution of the formed interfaces is also described and discussed. For this purpose, potentiodynamic and potentiostatic techniques and open circuit potential measurements were employed and surface characterisation was performed by scanning electron microscopy and energy dispersive X-ray analysis. The presence of zinc, electrodeposited from the solution or as an alloying component, facilitates gallium enrichment at the interface and improves the wetting on the aluminium oxide. These conditions ensure the formation of a surface Ga-Al amalgam. As a result, the dissolution process occurs at potentials which are more active than those observed for aluminium or aluminium-zinc alloy in halide solutions

  18. Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process

    Energy Technology Data Exchange (ETDEWEB)

    Flamini, D.O. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Saidman, S.B. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)], E-mail: ssaidman@criba.edu.ar; Bessone, J.B. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2007-07-31

    The electrodeposition of gallium and/or zinc on aluminium, aluminium-zinc alloy and vitreous carbon electrodes in chloride solutions is analysed. The electrodissolution of the formed interfaces is also described and discussed. For this purpose, potentiodynamic and potentiostatic techniques and open circuit potential measurements were employed and surface characterisation was performed by scanning electron microscopy and energy dispersive X-ray analysis. The presence of zinc, electrodeposited from the solution or as an alloying component, facilitates gallium enrichment at the interface and improves the wetting on the aluminium oxide. These conditions ensure the formation of a surface Ga-Al amalgam. As a result, the dissolution process occurs at potentials which are more active than those observed for aluminium or aluminium-zinc alloy in halide solutions.

  19. Continuum modelling of silicon diffusion in indium gallium arsenide

    Science.gov (United States)

    Aldridge, Henry Lee, Jr.

    A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point

  20. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  1. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    Science.gov (United States)

    2007-06-01

    models is of great interest in space applications. By increasing the efficiency of photovoltaics, the number of solar panels is decreased. Therefore...obtained in single-junction solar cells by using Gallium Arsenide. Monocrystalline Gallium Arsenide has a maximum efficiency of approximately 25.1% [10

  2. Chemical composition of cadmium selenochromite crystals doped with indium, silver and gallium

    International Nuclear Information System (INIS)

    Bel'skij, N.K.; Ochertyanova, L.I.; Shabunina, G.G.; Aminov, T.G.

    1985-01-01

    The high accuracy chemical analysis Which allows one to observe doping effect on the cadmium selenochromite crystal composition is performed. The problem on the possibility of impurity atom substitution for basic element is considered on the basis of data of atomic-absorption analysis of doped crystals. The crystals of cadmium selenochromite doped with indium by chromium to cadmium ratio are distributed into two groups and probably two types of substitution take place. At 0.08-1.5 at.% indium concentrations the Cr/Cd ratio >2. One can assume that indium preferably takes cadmium tetrahedral positions whereas at 1.5-2.5 at. % concentrations the Cr/Cd ratio =2 and cadmium is substituted for silver which does not contradict crystallochemical and physical properties of this compound. In crystals with gallium the Cr/Cd ratio <2. Gallium preferably substitutes chromium

  3. Analysis on the Performance of Copper Indium Gallium Selenide (CIGS Based Photovoltaic Thermal

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available This paper deals with the efficiency improvement of Copper Indium Gallium Selenide (CIGS Photovoltaic (PV and also solar thermal collector. Photovoltaic thermal (PV/T can improve overall efficiency for PV and also solve the problem of limited roof space at urban area. Objective of this study is to clarify the effect of mass flow rate on the efficiency of the PV/T system. A CIGS solar cell is used with rated output power 65 W and 1.18 m2 of area. 4 set of experiments were carried out, which were: thermal collector with 0.12 kg/s flow rate, PV/T with 0.12 kg/s flow rate, PV/T with 0.09 kg/s flow rate and PV. It was found that PV/T with 0.12 kg/s flow rate had the highest electrical efficiency, 2.92 %. PV/T with 0.09 kg/s flow rate had the lowest electrical efficiency, 2.68 %. It also had 2 % higher overall efficiency. The efficiency gained is low due to several factors. The rated output power of the PV is low for the area of 1.18 m2. The packing factor of the PV also need to be considered as it may not be operated at the optimal packing factor. Furthermore, aluminium sheet of the PV may affect the PV temperature due to high thermal conductivity. Further study on more values of mass flow rate and also other parameters that affect the efficiency of the PV/T is necessary.

  4. Effect of heat treatment on anodic activation of aluminium by trace element indium

    Energy Technology Data Exchange (ETDEWEB)

    Graver, Brit [Department of Materials Science and Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Helvoort, Antonius T.J. van [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Nisancioglu, Kemal, E-mail: kemal.nisancioglu@material.ntnu.n [Department of Materials Science and Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2010-11-15

    Research highlights: {yields} Indium segregation activates AlIn alloy surface anodically in chloride solution. {yields} Enrichment of In on Al surface can occur thermally by heat treatment at 300 {sup o}C. {yields} Increasing temperature homogenises indium in aluminium reducing anodic activation. {yields} Indium can activate AlIn surface by segregating through dealloying of aluminium. {yields} Anodic activation is caused by AlIn amalgam formation at aluminium surface. - Abstract: The presence of trace elements in Group IIIA-VA is known to activate aluminium anodically in chloride environment. The purpose of this paper is to investigate the surface segregation of trace element In by heat treatment and resulting surface activation. Model binary AlIn alloys, containing 20 and 1000 ppm by weight of In, were characterized after heat treatment at various temperatures by use of glow discharge optical emission spectroscopy, electron microscopy and electrochemical polarization. Heat treatment for 1 h at 300 {sup o}C gave significant segregation of discrete In particles (thermal segregation), which activated the surface. Indium in solid solution with aluminium, obtained by 1 h heat treatment at 600 {sup o}C, also activated by surface segregation of In on alloy containing 1000 ppm In, resulting from the selective dissolution of the aluminium component during anodic oxidation (anodic segregation). The effect of anodic segregation was reduced by decreasing indium concentration in solid solution; it had negligible effect at the 20 ppm level. The segregated particles were thought to form a liquid phase alloy with aluminium during anodic polarization, which in turn, together with the chloride in the solution destabilized the oxide.

  5. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials

    Directory of Open Access Journals (Sweden)

    Anna M. K. Gustafsson

    2015-01-01

    Full Text Available Recycling of the semiconductor material copper indium gallium diselenide (CIGS is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode, respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective.

  6. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    Energy Technology Data Exchange (ETDEWEB)

    Silk, Jonathan R. [Aerospace Metal Composites Ltd., RAE Road, Farnborough, GU14 6XE (United Kingdom); Dashwood, Richard J. [WMG, University of Warwick, Coventry, CV4 7AL (United Kingdom); Chater, Richard J., E-mail: r.chater@imperial.ac.u [Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)

    2010-06-15

    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  7. Dry Etching Characteristics of Amorphous Indium-Gallium-Zinc-Oxide Thin Films

    International Nuclear Information System (INIS)

    Zheng Yanbin; Li Guang; Wang Wenlong; Li Xiuchang; Jiang Zhigang

    2012-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) backplane technology is the best candidate for flat panel displays (FPDs). In this paper, a-IGZO TFT structures are described. The effects of etch parameters (rf power, dc-bias voltage and gas pressure) on the etch rate and etch profile are discussed. Three kinds of gas mixtures are compared in the dry etching process of a-IGZO thin films. Lastly, three problems are pointed out that need to be addressed in the dry etching process of a-IGZO TFTs. (plasma technology)

  8. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Li Qiang, E-mail: guoliqiang@ujs.edu.cn; Ding, Jian Ning; Huang, Yu Kai [Micro/Nano Science & Technology Center, Jiangsu University, Zhenjiang, 212013 (China); Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-08-15

    Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO{sub 2} electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO) synaptic transistor. In such synaptic transistors, protons within the SiO{sub 2} electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF) behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  9. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Directory of Open Access Journals (Sweden)

    Li Qiang Guo

    2015-08-01

    Full Text Available Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO2 electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO synaptic transistor. In such synaptic transistors, protons within the SiO2 electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  10. The new barium mercuride BaHg6 and ternary indium and gallium derivatives

    International Nuclear Information System (INIS)

    Wendorff, Marco; Röhr, Caroline

    2013-01-01

    Highlights: ► The new binary Hg-rich mercuride BaHg 6 crystallizes with a singular structure type. ► Ternary In substituted compounds are isotypic, whereas Ga substituted compounds are only structurally related. ► Structure relation to other Hg-rich alkali and alkaline earth mercurides. ► Discussion of covalent and metallic bonding aspects, as found by structure features and band structure calculations. - Abstract: The new binary barium mercuride BaHg 6 and the derived ternary indium and gallium containing compounds BaIn 1.2 Hg 4.8 and BaGa 0.8 Hg 5.2 were synthesized from melts of the elements, which were slowly cooled from 500 to 200 °C. Their crystal structures have been determined by means of single crystal X-ray diffraction. The binary mercuride BaHg 6 (Pnma, a = 1338.9(3), b = 519.39(13), c = 1042.6(4) pm, Z = 4, R1 = 0.0885) and the isotypic indium substituted compound BaIn 1.2 Hg 4.8 as well as the structurally related gallium mercuride BaGa 0.8 Hg 5.2 (Cmcm, a = 729.77(7), b = 1910.1(2), c = 507.48(5) pm, Z = 4, R1 = 0.0606) crystallize with new structure types. Common features of both structures are planar nets of five- and eight-membered Hg rings, stacked perpendicular to the shortest axes. According to their lengths, the Hg–Hg bonds can be classified into three groups: strong, short ones (I, 285–292 pm), which are only found inside the nets, and longer distances (II), still carrying bond critical points, around 300 pm. Further contacts (III) serve to complete the coordination spheres of Hg/M (320–358 pm). The overall coordination numbers of Hg/M range from 10 to 13. The Ba cations are positioned in the centers of the octagons of the Hg/M nets, thus exhibiting a 5:8:5, i.e. 18, coordination by Hg/M atoms. DFT calculations of the electronic band structure of pure BaHg 6 and ordered models of the indium ( ′ BaInHg 5 ′ ) and the gallium ( ′ BaGaHg 5 ′ ) mercurides were performed using the FP-LAPW method. The calculated Bader charges

  11. Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors.

    Science.gov (United States)

    Santos, Lídia; Nunes, Daniela; Calmeiro, Tomás; Branquinho, Rita; Salgueiro, Daniela; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2015-01-14

    Solution-processed field-effect transistors are strategic building blocks when considering low-cost sustainable flexible electronics. Nevertheless, some challenges (e.g., processing temperature, reliability, reproducibility in large areas, and cost effectiveness) are requirements that must be surpassed in order to achieve high-performance transistors. The present work reports electrolyte-gated transistors using as channel layer gallium-indium-zinc-oxide nanoparticles produced by solvothermal synthesis combined with a solid-state electrolyte based on aqueous dispersions of vinyl acetate stabilized with cellulose derivatives, acrylic acid ester in styrene and lithium perchlorate. The devices fabricated using this approach display a ION/IOFF up to 1 × 10(6), threshold voltage (VTh) of 0.3-1.9 V, and mobility up to 1 cm(2)/(V s), as a function of gallium-indium-zinc-oxide ink formulation and two different annealing temperatures. These results validates the usage of electrolyte-gated transistors as a viable and promising alternative for nanoparticle based semiconductor devices as the electrolyte improves the interface and promotes a more efficient step coverage of the channel layer, reducing the operating voltage when compared with conventional dielectrics gating. Moreover, it is shown that by controlling the applied gate potential, the operation mechanism of the electrolyte-gated transistors can be modified from electric double layer to electrochemical doping.

  12. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-07-07

    Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes and blue laser diodes. Despite the current development, there are still technological problems that still impede the performance of such devices. Three-dimensional nanostructures are proposed to improve the electrical and thermal properties of III-nitride optical devices. This thesis consolidates the characterization results and unveils the unique physical properties of polar indium gallium nitride quantum dots grown by molecular beam epitaxy technique. In this thesis, a theoretical overview of the physical, structural and optical properties of polar III-nitrides quantum dots will be presented. Particular emphasis will be given to properties that distinguish truncated-pyramidal III-nitride quantum dots from other III-V semiconductor based quantum dots. The optical properties of indium gallium nitride quantum dots are mainly dominated by large polarization fields, as well as quantum confinement effects. Hence, the experimental investigations for such quantum dots require performing bandgap calculations taking into account the internal strain fields, polarization fields and confinement effects. The experiments conducted in this investigation involved the transmission electron microscopy and x-ray diffraction as well as photoluminescence spectroscopy. The analysis of the temperature dependence and excitation power dependence of the PL spectra sheds light on the carrier dynamics within the quantum dots, and its underlying wetting layer. A further analysis shows that indium gallium nitride quantum dots through three-dimensional confinements are able to prevent the electronic carriers from getting thermalized into defects which grants III-nitrides quantum dot based light emitting diodes superior thermally induced optical

  13. A comparison of gallium-67 citrate scintigraphy and indium-111 labelled leukocyte imaging for the diagnosis of prosthetic joint infection. Preliminary results

    International Nuclear Information System (INIS)

    McKillop, J.H.; Cuthbert, G.F.; Gray, H.W.; McKay, Iain; Sturrock, R.D.

    1982-01-01

    Preliminary experience in comparing Gallium-67 imaging in patients with a painful prosthetic joint to the findings on Indium-111 labelled leukocyte imaging is reported. In the small series of patients so far studied, no clear advantage has emerged for either Gallium-67 or Indium-111 leukocyte imaging in terms of sensitivity or specificity for joint prosthesis infection. Should a larger group confirm the preliminary findings, Gallium-67 imaging may be preferable to Indium-111 leukocyte imaging in the patient with the painful joint prosthesis, in view of the greater simplicity of the former technique

  14. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    Energy Technology Data Exchange (ETDEWEB)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna [School of Microelectronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  15. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    Science.gov (United States)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-01

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, Pmax was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  16. Ohmic contact formation process on low n-type gallium arsenide (GaAs) using indium gallium zinc oxide (IGZO)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong-Uk [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Product and Test Engineering Team, System LSI Division, Samsung Electronics Co., Ltd, Yongin 446-711 (Korea, Republic of); Jung, Woo-Shik [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, In-Yeal; Jung, Hyun-Wook; Kim, Gil-Ho [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Jin-Hong, E-mail: jhpark9@skku.edu [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-02-01

    Highlights: • We propose a method to fabricate non-gold Ohmic contact on low n-type GaAs with IGZO. • 0.15 A/cm{sup 2} on-current and 1.5 on/off-current ratio are achieved in the junction. • InAs and InGaAs formed by this process decrease an electron barrier height. • Traps generated by diffused O atoms also induce a trap-assisted tunneling phenomenon. - Abstract: Here, an excellent non-gold Ohmic contact on low n-type GaAs is demonstrated by using indium gallium zinc oxide and investigating through time of flight-secondary ion mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, J–V measurement, and H [enthalpy], S [entropy], Cp [heat capacity] chemistry simulation. In is diffused through GaAs during annealing and reacts with As, forming InAs and InGaAs phases with lower energy bandgap. As a result, it decreases the electron barrier height, eventually increasing the reverse current. In addition, traps generated by diffused O atoms induce a trap-assisted tunneling phenomenon, increasing generation current and subsequently the reverse current. Therefore, an excellent Ohmic contact with 0.15 A/cm{sup 2} on-current density and 1.5 on/off-current ratio is achieved on n-type GaAs.

  17. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    International Nuclear Information System (INIS)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-01-01

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P max was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs

  18. Potential aluminium(III)- and gallium(III)-selective optical sensors based on porphyrazines.

    Science.gov (United States)

    Goslinski, Tomasz; Tykarska, Ewa; Kryjewski, Michal; Osmalek, Tomasz; Sobiak, Stanislaw; Gdaniec, Maria; Dutkiewicz, Zbigniew; Mielcarek, Jadwiga

    2011-01-01

    Porphyrazines possessing non-coordinating alkyl (propyl) and aralkyl (4-tert-butylphenyl) groups in the periphery were studied as optical sensors for a set of mono-, di- and trivalent cations. Investigated porphyrazines in the UV-Vis monitored titrations revealed significant responses towards aluminium and gallium cations, unlike other metal ions studied. Additionally, porphyrazine possessing 4-tert-butylphenyl peripheral substituents showed sensor property towards ruthenium cation and was chosen for further investigation. The presence of isosbestic points in absorption spectra for its titration with aluminium, gallium and ruthenium cations, accompanied by a linear Benesi-Hildebrand plot, proved complex formation. The continuous variation method was used to determine binding stoichiometry in 1:1 porphyrazine-metal ratio. X-Ray studies and density functional theory calculations were employed to investigate octa(4-tert-butylphenyl)porphyrazine structure. The results helped to explain the observed selectivity towards certain ions. Interaction between ion and porphyrazine meso nitrogen in a Lewis acid-Lewis base manner is proposed.

  19. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    International Nuclear Information System (INIS)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-01-01

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  20. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, S.; Williams, D. S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Butler, K. T.; Walsh, A. [Center for Sustainable Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Quackenbush, N. F. [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Junda, M.; Podraza, N. J. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Fischer, D. A.; Woicik, J. C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); White, B. E.; Piper, L. F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  1. Electrical effect of titanium diffusion on amorphous indium gallium zinc oxide

    International Nuclear Information System (INIS)

    Choi, Seung-Ha; Jung, Woo-Shik; Park, Jin-Hong

    2012-01-01

    In this work, thermal diffusion phenomenon of Ti into amorphous indium gallium zinc oxide (α-IGZO) was carefully investigated with secondary ion mass spectroscopy, I-V, and R s measurement systems and HSC chemistry simulation tool. According to the experimental and simulated results, the diffused Ti atoms were easily oxidized due to its lowest oxidation free energy. Since oxygen atoms were decomposed from the α-IGZO during the oxidation of Ti, the number of oxygen vacancies working as electron-donating sites in α-IGZO was dramatically increased, contributing to the decrease of resistivity (ρ) from 1.96 Ω cm (as-deposited α-IGZO) to 1.33 × 10 −3 Ω cm (350 °C annealed α-IGZO).

  2. Study of breakdown voltage of indium-gallium-zinc-oxide-based Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qian; Yan, Linlong; Luo, Yi [School of Physics, Shandong University, Jinan 250100 (China); Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Physics, Shandong University, Jinan 250100 (China); School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-03-16

    In contrast to the intensive studies on thin-film transistors based on indium gallium zinc oxide (IGZO), the research on IGZO-based diodes is still very limited, particularly on their behavior and stability under high bias voltages. Our experiments reveal a sensitive dependence of the breakdown voltage of IGZO Schottky diodes on the anode metal and the IGZO film thickness. Devices with an Au anode are found to breakdown easily at a reverse bias as low as −2.5 V, while the devices with a Pd anode and a 200-nm, fully depleted IGZO layer have survived up to −15 V. All diodes are fabricated by radio-frequency magnetron sputtering at room temperature without any thermal treatment, yet showing an ideality factor as low as 1.14, showing the possibility of achieving high-performance Schottky diodes on flexible plastic substrate.

  3. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

    Science.gov (United States)

    Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A

    2015-04-22

    This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants.

  4. Study of breakdown voltage of indium-gallium-zinc-oxide-based Schottky diode

    International Nuclear Information System (INIS)

    Xin, Qian; Yan, Linlong; Luo, Yi; Song, Aimin

    2015-01-01

    In contrast to the intensive studies on thin-film transistors based on indium gallium zinc oxide (IGZO), the research on IGZO-based diodes is still very limited, particularly on their behavior and stability under high bias voltages. Our experiments reveal a sensitive dependence of the breakdown voltage of IGZO Schottky diodes on the anode metal and the IGZO film thickness. Devices with an Au anode are found to breakdown easily at a reverse bias as low as −2.5 V, while the devices with a Pd anode and a 200-nm, fully depleted IGZO layer have survived up to −15 V. All diodes are fabricated by radio-frequency magnetron sputtering at room temperature without any thermal treatment, yet showing an ideality factor as low as 1.14, showing the possibility of achieving high-performance Schottky diodes on flexible plastic substrate

  5. High performance Schottky diodes based on indium-gallium-zinc-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiawei; Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Xin, Qian [School of Physics, Shandong University, Jinan 250100 (China)

    2016-07-15

    Indium-gallium-zinc-oxide (IGZO) Schottky diodes exhibit excellent performance in comparison with conventional devices used in future flexible high frequency electronics. In this work, a high performance Pt IGZO Schottky diode was presented by using a new fabrication process. An argon/oxygen mixture gas was introduced during the deposition of the Pt layer to reduce the oxygen deficiency at the Schottky interface. The diode showed a high barrier height of 0.92 eV and a low ideality factor of 1.36 from the current–voltage characteristics. Even the radius of the active area was 0.1 mm, and the diode showed a cut-off frequency of 6 MHz in the rectifier circuit. Using the diode as a demodulator, a potential application was also demonstrated in this work.

  6. Microencapsulation of gallium-indium (Ga-In) liquid metal for self-healing applications.

    Science.gov (United States)

    Blaiszik, B J; Jones, A R; Sottos, N R; White, S R

    2014-01-01

    Microcapsules containing a liquid metal alloy core of gallium-indium (Ga-In) are prepared via in situ urea-formaldehyde (UF) microencapsulation. The capsule size, shape, thermal properties, and shell wall thickness are investigated. We prepare ellipsoidal capsules with major and minor diameter aspect ratios ranging from 1.64 to 1.08 and with major diameters ranging from 245 µm to 3 µm. We observe that as the capsule major diameter decreases, the aspect ratio approaches 1. The thermal properties of the prepared microcapsules are investigated by thermogravimetric (TGA) and differential scanning calorimetry (DSC). Microcapsules are shown to survive incorporation into an epoxy matrix and to trigger via mechanical damage to the cured matrix. Microcapsules containing liquid metal cores may have diverse applications ranging from self-healing to contrast enhancement or the demonstration of mechano-adaptive circuitry.

  7. Low Temperature Reactions for the Preparation of Group 13-15 Materials from Organo-gallium(I) and -indium(I) Compounds

    National Research Council Canada - National Science Library

    Beachley, O

    1997-01-01

    ...) at 175 deg C and of neopentylgallium(I) Ga(CH2CMe3)n with P4 at 350- 400 deg C and with NH3 at 460-480 deg C in sealed tubes provide routes to indium phosphide, gallium phosphide and hexagonal gallium nitride, respectively...

  8. Roentgenographic and derivatographic investigation of gallium and indium complexes with azo compounds on the base of pyrogallol

    International Nuclear Information System (INIS)

    Gambarov, D.G.; Rzaev, R.Z.; Musaev, F.N.; Musaeva, A.N.; Chyragov, F.M.

    1985-01-01

    Seven complexes of gallium and indium with N-donor ligands obtained on the base of pyrogallol are synthesized. Their chemical composition is established. Nitrogen-containing ligands and their complexes are investigated by the methods of roentgenographic and thermogravimetric analyses. It is shown that gallium and indium complexes are amorphous compounds. An assumption is made on the thermolysis character that complexes have a similar structure: structural complex nucleus constitutes a six-term chelate ring. Para-substitutors in the ligand do not participate in complexing, possibly they participate in H-bonds formation. It is established by spectrophotometric methods that in solutions stoichiometric ratio metal: ligand is the same as in the solid phase

  9. Roentgenographic and derivatographic investigation of gallium and indium complexes with azo compounds on the base of pyrogallol

    Energy Technology Data Exchange (ETDEWEB)

    Gambarov, D G; Rzaev, R Z; Musaev, F N; Musaeva, A N; Chyragov, F M

    1985-01-01

    Seven complexes of gallium and indium with N-donor ligands obtained on the base of pyrogallol are synthesized. Their chemical composition is established. Nitrogen-containing ligands and their complexes are investigated by the methods of roentgenographic and thermogravimetric analyses. It is shown that gallium and indium complexes are amorphous compounds. An assumption is made on the thermolysis character that complexes have a similar structure: structural complex nucleus constitutes a six-term chelate ring. Para-substitutors in the ligand do not participate in complexing, possibly they participate in H-bonds formation. It is established by spectrophotometric methods that in solutions stoichiometric ratio metal: ligand is the same as in the solid phase.

  10. Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films

    International Nuclear Information System (INIS)

    Liu, P.; Chen, T.P.; Liu, Z.; Tan, C.S.; Leong, K.C.

    2013-01-01

    Evolution of electrical properties and thin-film transistor characteristics of amorphous indium gallium zinc oxide (IGZO) thin films synthesized by RF sputtering with O 2 plasma immersion has been examined. O 2 plasma immersion results in an enhancement in the Hall mobility and a decrease in the electron concentration; and the transistor performance can be greatly improved by the O 2 plasma immersion. X-ray photoelectron spectroscopy analysis indicates that the effect of O 2 plasma immersion on the electrical properties and the transistor performance can be attributed to the reduction of the oxygen-related defects in the IGZO thin films. - Highlights: • Oxygen plasma immersion effect on indium gallium zinc oxide thin film properties • Oxygen-related defect reduces in the InGaZnO thin film with oxygen plasma immersion. • Increasing oxygen plasma immersion duration on device will decrease the off current. • Oxygen plasma immersion enhances the performance of device

  11. The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer

    OpenAIRE

    Shin, Yeonwoo; Kim, Sang Tae; Kim, Kuntae; Kim, Mi Young; Oh, Saeroonter; Jeong, Jae Kyeong

    2017-01-01

    High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600??C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO bac...

  12. Magnetic properties of Kramers rare earth ions in aluminium and gallium garnets

    International Nuclear Information System (INIS)

    Capel, H.

    1964-01-01

    The magnetic properties of Kramers rare earth ions in aluminium and gallium garnets (MAlG and MGaG) are discussed by means of a molecular field treatment. The symmetry properties of the space group permit to establish a parametrization for the magnetic dipolar and exchange couplings. The magnetic properties of the system can be expressed in terms of these parameters and the g factors of the rare earth ions. We have calculated the transition temperatures, the sub-lattice magnetizations, the susceptibility in the paramagnetic region and the antiferromagnetic susceptibility for a special type of magnetic ordering. The influence of the excited Kramers doublets is described by means of a generalization of the usual g tensor. (authors) [fr

  13. The lattice thermal conductivity of pure metals: Aluminium and Indium, ch. 4

    International Nuclear Information System (INIS)

    Lang, H.N. de

    1977-01-01

    The lattice conductivity of aluminium and indium has been determined by reducing the electronic thermal conductivity by means of a magnetic field. This was done using the Corbino configuration which prevents the thermal Hall field from forming, hence produces the largest magnetoresistance for a given field strength. In this way for the first time the lattice conductivity of Al and In was measured by the magnetic field method. Apart from a discussion of these results, a comprehensive and critical examination is given of the different methods to determine the lattice conductivity of metals, the phenomenon of the linear magnetoresistance, the quadratic field dependence of the MR and the anomalous lattice conductivity of Potassium as well as the phenomenon of curve crossing

  14. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S., E-mail: psvasekar@yahoo.co [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States); Jahagirdar, Anant H.; Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States)

    2010-01-31

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of {approx} 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 {mu}m CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 {mu}m absorber prepared under similar conditions as that of a 2.7 {mu}m thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10{sup -10} mA/cm{sup 2} to 1.78 x 10{sup -8} mA/cm{sup 2}. This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  15. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    International Nuclear Information System (INIS)

    Vasekar, Parag S.; Jahagirdar, Anant H.; Dhere, Neelkanth G.

    2010-01-01

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of ∼ 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 μm CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 μm absorber prepared under similar conditions as that of a 2.7 μm thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10 -10 mA/cm 2 to 1.78 x 10 -8 mA/cm 2 . This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  16. Numerical Analysis of Copper-Indium-Gallium-Diselenide-Based Solar Cells by SCAPS-1D

    Directory of Open Access Journals (Sweden)

    S. Ouédraogo

    2013-01-01

    Full Text Available We used a one-dimensional simulation program Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D to investigate Copper-Indium-Gallium-Diselenide- (CIGS- based solar cells properties. Starting with a conventional ZnO-B/i-ZnO/CdS/CIGS structure, we simulated the parameters of current-voltage characteristics and showed how the absorber layer thickness, hole density, and band gap influence the short-circuit current density (Jsc, open-circuit voltage (Voc, fill factor (FF, and efficiency of solar cell. Our simulation results showed that all electrical parameters are greatly affected by the absorber thickness (w below 1000 nm, due to the increase of back-contact recombination and very poor absorption. Increasing hole density (p or absorber band gap (Eg improves Voc and leads to high efficiency, which equals value of 16.1% when p = 1016 cm−3 and Eg=1.2 eV. In order to reduce back-contact recombination, the effect of a very thin layer with high band gap inserted near the back contact and acting as electrons reflector, the so-called back-electron reflector (EBR, has been investigated. The performances of the solar cells are significantly improved, when ultrathin absorbers (w < 500 nm are used; the corresponding gain of Jsc due to the EBR is 3 mA/cm2. Our results are in good agreement with those reported in the literature from experiments.

  17. Surface cleaning procedures for thin films of indium gallium nitride grown on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, K.; Hunt, S. [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States); Teplyakov, A., E-mail: andrewt@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States); Opila, R.L. [Department of Material Science and Engineering, University of Delaware, Newark, DE 19716 (United States)

    2010-12-15

    Surface preparation procedures for indium gallium nitride (InGaN) thin films were analyzed for their effectiveness for carbon and oxide removal as well as for the resulting surface roughness. Aqua regia (3:1 mixture of concentrated hydrochloric acid and concentrated nitric acid, AR), hydrofluoric acid (HF), hydrochloric acid (HCl), piranha solution (1:1 mixture of sulfuric acid and 30% H{sub 2}O{sub 2}) and 1:9 ammonium sulfide:tert-butanol were all used along with high temperature anneals to remove surface contamination. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were utilized to study the extent of surface contamination and surface roughness, respectively. The ammonium sulfide treatment provided the best overall removal of oxygen and carbon. Annealing over 700 deg. C after a treatment showed an even further improvement in surface contamination removal. The piranha treatment resulted in the lowest residual carbon, while the ammonium sulfide treatment leads to the lowest residual oxygen. AFM data showed that all the treatments decreased the surface roughness (with respect to as-grown specimens) with HCl, HF, (NH{sub 4}){sub 2}S and RCA procedures giving the best RMS values ({approx}0.5-0.8 nm).

  18. Copper-indium-gallium-diselenide nanoparticles synthesized by a solvothermal method for solar cell application

    Directory of Open Access Journals (Sweden)

    Chiou Chuan-Sheng

    2017-01-01

    Full Text Available Chalcopyrite copper-indium-gallium-diselenide (CIGS nanoparticles are useful for photovoltaic applications. In this study, the synthesis of CIGS powder was examined, and the powder was successfully synthesized using a relatively simple and convenient elemental solvothermal route. From the reactions of elemental Cu, In, Se and Ga(NO33 powders in an autoclave with ethylenediamine as a solvent, spherical CIGS nanoparticles, with diameters ranging from 20-40 nm, were obtained using a temperature of 200°C for 36h. The structure, morphology, chemical composition and optical properties of the as-synthesized CIGS were characterized using X-ray diffraction, transmission electron microscopy, selected area electron diffraction, scanning electron microscopy, inductively coupled plasma-mass spectrometry. In this sample, the mole ratio of Cu:In:Ga:Se was equal to 0.89:0.71:0.29:2.01, and the optical band gap was found to be 1.18 eV. The solar cell obtained a power conversion efficiency of 5.62% under standard air mass 1.5 global illumination.

  19. Layer-by-Layer Nanoassembly of Copper Indium Gallium Selenium Nanoparticle Films for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    A. Hemati

    2012-01-01

    Full Text Available Thin films of CIGS nanoparticles interdigited with polymers have been fabricated through a cost-effective nonvacuum film deposition process called layer-by-layer (LbL nanoassembly. CIGS nanoparticles synthesized by heating copper chloride, indium chloride, gallium chloride, and selenium in oleylamine were dispersed in water, and desired surface charges were obtained through pH regulation and by coating the particles with polystyrene sulfonate (PSS. Raising the pH of the nanoparticle dispersion reduced the zeta-potential from +61 mV at pH 7 to −51 mV at pH 10.5. Coating the CIGS nanoparticles with PSS (CIGS-PSS produced a stable dispersion in water with −56.9 mV zeta-potential. Thin films of oppositely charged CIGS nanoparticles (CIGS/CIGS, CIGS nanoparticles and PSS (CIGS/PSS, and PSS-coated CIGS nanoparticles and polyethylenimine (CIGS-PSS/PEI were constructed through the LbL nanoassembly. Film thickness and resistivity of each bilayer of the films were measured, and photoelectric properties of the films were studied for solar cell applications. Solar cell devices fabricated with a 219 nm CIGS film, when illuminated by 50 W light-source, produced 0.7 V open circuit voltage and 0.3 mA/cm2 short circuit current density.

  20. Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz.

    Science.gov (United States)

    Zhang, Jiawei; Li, Yunpeng; Zhang, Binglei; Wang, Hanbin; Xin, Qian; Song, Aimin

    2015-07-03

    Mechanically flexible mobile phones have been long anticipated due to the rapid development of thin-film electronics in the last couple of decades. However, to date, no such phone has been developed, largely due to a lack of flexible electronic components that are fast enough for the required wireless communications, in particular the speed-demanding front-end rectifiers. Here Schottky diodes based on amorphous indium-gallium-zinc-oxide (IGZO) are fabricated on flexible plastic substrates. Using suitable radio-frequency mesa structures, a range of IGZO thicknesses and diode sizes have been studied. The results have revealed an unexpected dependence of the diode speed on the IGZO thickness. The findings enable the best optimized flexible diodes to reach 6.3 GHz at zero bias, which is beyond the critical benchmark speed of 2.45 GHz to satisfy the principal frequency bands of smart phones such as those for cellular communication, Bluetooth, Wi-Fi and global satellite positioning.

  1. Recurring polyhedral motifs in the amorphous indium gallium zinc oxide network

    International Nuclear Information System (INIS)

    Divya; Deepak; Prasad, Rajendra

    2017-01-01

    The coordination polyhedra around the cations are the building blocks of ionic solids. For amorphous InGaZn oxide (a-IGZO), these coordination polyhedra are identified to investigate properties that depend on short range interactions. Therefore, in this first principles based study, a large number (10) of samples of a-IGZO were prepared by ab initio melt-and-quench molecular dynamics, so that several distinct samples of the amorphous landscape are obtained corresponding to local minima in energy. Based on a method of comparing bond angles between metal and oxygen atoms, the identified polyhedra were matched to the polyhedral motifs present in the related crystalline systems, such as, InGaZnO_4, In_2O_3, Ga_2O_3, and ZnO. Consequently, we find, the a-IGZO primarily consists of the following polyhedra: a tetrahedron from space group 199 and an octahedron from space group 206 of In_2O_3; a tetrahedron from space group 12 and an octahedron from space group 167 of Ga_2O_3; a tetrahedron from space group 186 of ZnO; zinc and gallium trigonal bipyramids from c-IGZO; and one zinc fourfold, one zinc fivefold, and one indium fivefold coordination polyhedra that occur only in the amorphous phase. Thus, we were able to reduce the description of structure from 360 to 10 groups of polyhedra. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    International Nuclear Information System (INIS)

    Arora, H.; Malinowski, P. E.; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S.; Heremans, P.

    2015-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm 2 at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C 61 -butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10 12 Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO x as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment

  3. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-05-01

    Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.

  4. Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook

    Energy Technology Data Exchange (ETDEWEB)

    Bercegol, Adrien, E-mail: adrien.bercegol@polytechnique.edu; Chacko, Binoy; Klenk, Reiner; Lauermann, Iver; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert Einstein Straße 15, 12489 Berlin (Germany); Liero, Matthias [Weierstraß-Institut für Angewandte Analysis und Stochastik, 10117 Berlin (Germany)

    2016-04-21

    For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conduction band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.

  5. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Arora, H. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Phelma–Grenoble INP, 3 Parvis Louis Néel, 38016 Grenoble Cedex 01 (France); Malinowski, P. E., E-mail: pawel.malinowski@imec.be; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heremans, P. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); ESAT, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium)

    2015-04-06

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm{sup 2} at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C{sub 61}-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10{sup 12} Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO{sub x} as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.

  6. The distribution of gallium, germanium and indium in conventional and non-conventional resources. Implications for global availability

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Max

    2016-10-25

    Over the past 10 years, increased interest in the supply security of metal and mineral raw materials has resulted in the compilation of many lists of materials of particular concern. These materials are generally referred to as 'critical'. They are perceived to be both of high economic importance, as well as subject to high supply risks. Of particular relevance with respect to supply risk is the assessment of geological risk factors. However, this aspect is not considered in sufficient detail in most studies. In particular, the specific features of elements won as by-products are not adequately represented in any assessment. Yet many of these elements are often classified as critical, mostly due to their apparent importance in high-tech applications, the intransparency of their respective markets and resulting price volatility, and the concentration of their production in China. Gallium, germanium and indium are all good examples of such elements. All three are similar in many respects, and commonly have a similar rating in both the economic importance and supply risk dimensions. The aim of this work was to use these three elements as examples, and investigate whether they are truly as similar as current assessments suggest, or whether there are large underlying differences in their specific supply situations. In particular, the focus was on physical supply limitations: Since by-products can only be extracted with other main-product raw materials, their rate of extraction is limited by the extraction rate of these main products. This means that the relevant quantities for an assessment of their physical supply limitations are not reserves and/or resources, but supply potentials. The supply potential is the quantity of a given by-product which could theoretically be extracted under current market conditions (price, technology) per year if all suitable raw materials were processed accordingly. To assess the supply potentials of gallium, germanium and indium

  7. Synthesis of Two New Group 13 Benzoato-Chloro Complexes: A Structural Study of Gallium and Indium Chelating Carboxylates

    Science.gov (United States)

    Duraj, Stan A.; Hepp, Aloysius F.; Woloszynek, Robert; Protasiewicz, John D.; Dequeant, Michael; Ren, Tong

    2010-01-01

    Two new heteroleptic chelated-benzoato gallium (III) and indium (III) complexes have been prepared and structurally characterized. The molecular structures of [GaCl2(4-Mepy)2(O2CPh)]4-Mepy (1) and [InCl(4-Mepy)2(O2CPh)2]4-Mepy (2) have been determined by single-crystal x-ray diffraction. The gallium compound (1) is a distorted octahedron with cis-chloride ligands co-planar with the chelating benzoate and the 4-methylpyridines trans to each other. This is the first example of a Ga(III) structure with a chelating benzoate. The indium compound (2) is a distorted pentagonal bipyramid with two chelating benzoates, one 4-methylpyridine in the plane and a chloride trans to the other 4-methylpyridine. The indium bis-benzoate is an unusual example of a seven-coordinate structure with classical ligands. Both complexes, which due to the chelates, could also be described as pseudo-trigonal bipyramidal, include a three-bladed motif with three roughly parallel aromatic rings that along with a solvent of crystallization and electron-withdrawing chloride ligand(s) stabilize the solid-state structures.

  8. Synthesis, Characterization, and Processing of Copper, Indium, and Gallium Dithiocarbamates for Energy Conversion Applications

    Science.gov (United States)

    Duraj, S. A.; Duffy, N. V.; Hepp, A. F.; Cowen, J. E.; Hoops, M. D.; Brothrs, S. M.; Baird, M. J.; Fanwick, P. E.; Harris, J. D.; Jin, M. H.-C.

    2009-01-01

    Ten dithiocarbamate complexes of indium(III) and gallium(III) have been prepared and characterized by elemental analysis, infrared spectra and melting point. Each complex was decomposed thermally and its decomposition products separated and identified with the combination of gas chromatography/mass spectrometry. Their potential utility as photovoltaic materials precursors was assessed. Bis(dibenzyldithiocarbamato)- and bis(diethyldithiocarbamato)copper(II), Cu(S2CN(CH2C6H5)2)2 and Cu(S2CN(C2H5)2)2 respectively, have also been examined for their suitability as precursors for copper sulfides for the fabrication of photovoltaic materials. Each complex was decomposed thermally and the products analyzed by GC/MS, TGA and FTIR. The dibenzyl derivative complex decomposed at a lower temperature (225-320 C) to yield CuS as the product. The diethyl derivative complex decomposed at a higher temperature (260-325 C) to yield Cu2S. No Cu containing fragments were noted in the mass spectra. Unusual recombination fragments were observed in the mass spectra of the diethyl derivative. Tris(bis(phenylmethyl)carbamodithioato-S,S'), commonly referred to as tris(N,N-dibenzyldithiocarbamato)indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1(bar) with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry, and Fourier transform infrared (FT-IR) spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce

  9. Recurring polyhedral motifs in the amorphous indium gallium zinc oxide network

    Energy Technology Data Exchange (ETDEWEB)

    Divya; Deepak [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur (India); National Center for Flexible Electronics, Indian Institute of Technology, Kanpur (India); Prasad, Rajendra [Department of Physics, Indian Institute of Technology, Kanpur (India)

    2017-02-15

    The coordination polyhedra around the cations are the building blocks of ionic solids. For amorphous InGaZn oxide (a-IGZO), these coordination polyhedra are identified to investigate properties that depend on short range interactions. Therefore, in this first principles based study, a large number (10) of samples of a-IGZO were prepared by ab initio melt-and-quench molecular dynamics, so that several distinct samples of the amorphous landscape are obtained corresponding to local minima in energy. Based on a method of comparing bond angles between metal and oxygen atoms, the identified polyhedra were matched to the polyhedral motifs present in the related crystalline systems, such as, InGaZnO{sub 4}, In{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, and ZnO. Consequently, we find, the a-IGZO primarily consists of the following polyhedra: a tetrahedron from space group 199 and an octahedron from space group 206 of In{sub 2}O{sub 3}; a tetrahedron from space group 12 and an octahedron from space group 167 of Ga{sub 2}O{sub 3}; a tetrahedron from space group 186 of ZnO; zinc and gallium trigonal bipyramids from c-IGZO; and one zinc fourfold, one zinc fivefold, and one indium fivefold coordination polyhedra that occur only in the amorphous phase. Thus, we were able to reduce the description of structure from 360 to 10 groups of polyhedra. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen; Wilson, Joshua [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Jin, Jidong [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Du, Lulu; Xin, Qian [School of Physics, Shandong University, Jinan 250100 (China); Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); School of Physics, Shandong University, Jinan 250100 (China)

    2015-08-31

    The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant of 1.4 × 10{sup −9} was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10{sup −5}. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 10{sup 15 }eV{sup −1 }cm{sup −2}. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.

  11. Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell

    Directory of Open Access Journals (Sweden)

    Yan-Huei Lee

    2016-11-01

    Full Text Available The inverted organic solar cell was fabricated by using sol-gel indium-gallium-zinc-oxide (IGZO as the electron-transport layer. The IGZO precursor solution was deposited by blade coating with simultaneous substrate heating at 120 °C from the bottom and hot wind from above. Uniform IGZO film of around 30 nm was formed after annealing at 400 °C. Using the blend of low band-gap polymer poly[(4,8-bis-(2-ethylhexyloxy-benzo(1,2-b:4,5-b’dithiophene-2,6-diyl-alt- (4-(2-ethylhexanoyl-thieno [3,4-b]thiophene--2-6-diyl] (PBDTTT-C-T and [6,6]-Phenyl C71 butyric acid methyl ester ([70]PCBM as the active layer for the inverted organic solar cell, an efficiency of 6.2% was achieved with a blade speed of 180 mm/s for the IGZO. The efficiency of the inverted organic solar cells was found to depend on the coating speed of the IGZO films, which was attributed to the change in the concentration of surface OH groups. Compared to organic solar cells of conventional structure using PBDTTT-C-T: [70]PCBM as active layer, the inverted organic solar cells showed significant improvement in thermal stability. In addition, the chemical composition, as well as the work function of the IGZO film at the surface and inside can be tuned by the blade speed, which may find applications in other areas like thin-film transistors.

  12. ICP-MS as the method of the determination of gallium, indium and thallium isotope ratios in the studies of isotope effects in the chromatography systems

    International Nuclear Information System (INIS)

    Herdzik, I.

    2006-01-01

    The procedure of the determination of gallium, indium and thallium isotope ratios and its application to the studies of the isotope effects in chromatography systems by the ICP-MS method (inductively coupled plasma-mass spectrometry) are presented. It was shown that it is possible to determine the isotope ratios of gallium ( 69/71 Ga), indium ( 113/115 In) and thallium ( 203/205 Tl) with the relative standard deviation 0.03-0.07%. Such precision appeared to be sufficient to calculate the unit separation factors in the column chromatographic processes. (author) [pl

  13. Gallium

    Science.gov (United States)

    Foley, Nora K.; Jaskula, Brian W.; Kimball, Bryn E.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. Gallium is used in a wide variety of products that have microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). GaAs is able to change electricity directly into laser light and is used in the manufacture of optoelectronic devices (laser diodes, light-emitting diodes [LEDs], photo detectors, and solar cells), which are important for aerospace and telecommunications applications and industrial and medical equipment. GaAs is also used in the production of highly specialized integrated circuits, semiconductors, and transistors; these are necessary for defense applications and high-performance computers. For example, cell phones with advanced personal computer-like functionality (smartphones) use GaAs-rich semiconductor components. GaN is used principally in the manufacture of LEDs and laser diodes, power electronics, and radio-frequency electronics. Because GaN power transistors operate at higher voltages and with a higher power density than GaAs devices, the uses for advanced GaN-based products are expected to increase in the future. Gallium technologies also have large power-handling capabilities and are used for cable television transmission, commercial wireless infrastructure, power electronics, and satellites. Gallium is also used for such familiar applications as screen backlighting for computer notebooks, flat-screen televisions, and desktop computer monitors.Gallium is dispersed in small amounts in many minerals and rocks where it substitutes for elements of similar size and charge, such as aluminum and zinc. For example, gallium is found in small amounts (about 50 parts per million) in such aluminum-bearing minerals as diaspore-boehmite and gibbsite, which form bauxite deposits, and in the zinc-sulfide mineral sphalerite, which is found in many mineral deposits. At the present time, gallium metal is derived mainly as a

  14. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    International Nuclear Information System (INIS)

    Lee, Ching-Ting; Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-01

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g m change, threshold voltage V T change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature

  15. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Ting, E-mail: ctlee@ee.ncku.edu.tw; Lin, Yung-Hao; Lin, Jhong-Ham [Institute of Microelectronics, Department of Electrical Engineering, Research Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, Tainan, Taiwan (China)

    2015-01-28

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g{sub m} change, threshold voltage V{sub T} change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  16. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers

    NARCIS (Netherlands)

    Xu, M.; Wachters, A.J.H.; Van Deelen, J.; Mourad, M.C.D.; Buskens, P.J.P.

    2014-01-01

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the

  17. Eutectic Gallium-Indium (EGaIn) : A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature

    NARCIS (Netherlands)

    Dickey, Michael D.; Chiechi, Ryan C.; Larsen, Ryan J.; Weiss, Emily A.; Weitz, David A.; Whitesides, George M.

    2008-01-01

    This paper describes the rheological behavior of the liquid metal eutectic gallium-indium (EGaIn) as it is injected into microfluidic channels to form stable microstructures of liquid metal. EGaIn is well-suited for this application because of its rheological properties at room temperature: it

  18. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-01-01

    Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes

  19. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    Science.gov (United States)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  20. Fabrication of Amorphous Indium Gallium Zinc Oxide Thin Film Transistor by using Focused Ion Beam

    Science.gov (United States)

    Zhu, Wencong

    Compared with other transparent semiconductors, amorphous indium gallium zinc oxide (a-IGZO) has both good uniformity and high electron mobility, which make it as a good candidate for displays or large-scale transparent circuit. The goal of this research is to fabricate alpha-IGZO thin film transistor (TFT) with channel milled by focused ion beam (FIB). TFTs with different channel geometries can be achieved by applying different milling strategies, which facilitate modifying complex circuit. Technology Computer-Aided Design (TCAD) was also introduced to understand the effect of trapped charges on the device performance. The investigation of the trapped charge at IGZO/SiO2 interface was performed on the IGZO TFT on p-Silicon substrate with thermally grown SiO2 as dielectric. The subgap density-of-state model was used for the simulation, which includes conduction band-tail trap states and donor-like state in the subgap. The result shows that the de-trapping and donor-state ionization determine the interface trapped charge density at various gate biases. Simulation of IGZO TFT with FIB defined channel on the same substrate was also applied. The drain and source were connected intentionally during metal deposition and separated by FIB milling. Based on the simulation, the Ga ions in SiO2 introduced by the ion beam was drifted by gate bias and affects the saturation drain current. Both side channel and direct channel transparent IGZO TFTs were fabricated on the glass substrate with coated ITO. Higher ion energy (30 keV) was used to etch through the substrate between drain and source and form side channels at the corner of milled trench. Lower ion energy (16 keV) was applied to stop the milling inside IGZO thin film and direct channel between drain and source was created. Annealing after FIB milling removed the residual Ga ions and the devices show switch feature. Direct channel shows higher saturation drain current (~10-6 A) compared with side channel (~10-7 A) because

  1. Indium Gallium Zinc Oxide: Phase Formation and Crystallization Kinetics during Millisecond Laser Spike Annealing

    Science.gov (United States)

    Lynch, David Michael

    Flat panel displays have become ubiquitous, enabling products from highresolution cell phones to ultra-large television panels. Amorphous silicon (a- Si) has been the industry workhorse as the active semiconductor in pixeladdressing transistors due to its uniformity and low production costs. However, a-Si can no longer support larger and higher-resolution displays, and new materials with higher electron mobilities are required. Amorphous indium gallium zinc oxide (a-IGZO), which retains the uniformity and low cost of amorphous films, has emerged as a viable candidate due to its enhanced transport properties. However, a-IGZO devices suffer from long-term instabilities--the origins of which are not yet fully understood--causing a drift in switching characteristics over time and affecting product lifetime. More recently, devices fabricated from textured nanocrystalline IGZO, termed c-axis aligned crystalline (CAAC), have demonstrated superior stability. Unfortunately, little is known regarding the phase formation and crystallization kinetics of either the CAAC structure or in the broader ternary IGZO system. Crystallinity and texture of CAAC IGZO films deposited by RF reactive sputtering were studied and characterized over a wide range of deposition conditions. The characteristic CAAC (0 0 9) peak at 2theta = 30° was observed by X-ray diffraction, and nanocrystalline domain texture was determined using a general area detector diffraction system (GADDS). Highly ordered CAAC films were obtained near the InGaZnO4 composition at a substrate temperature of 310 °C and in a 10%O2/90% Ar sputtering ambient. High-resolution transmission electron microscopy (HRTEM) confirmed the formation of CAAC and identified 2-3 nm domains coherently aligned over large ranges extending beyond the field of view (15 nm x 15 nm). Cross-section HRTEM of the CAAC/substrate interface shows formation of an initially disordered IGZO layer prior to CAAC formation, suggesting a nucleation mechanism

  2. Optical and micro-structural characterizations of MBE grown indium gallium nitride polar quantum dots

    KAUST Repository

    Elafandy, Rami T.

    2011-12-01

    Comparison between indium rich (27%) InGaN/GaN quantum dots (QDs) and their underlying wetting layer (WL) is performed by means of optical and structural characterizations. With increasing temperature, micro-photoluminescence (μPL) study reveals the superior ability of QDs to prevent carrier thermalization to nearby traps compared to the two dimensional WL. Thus, explaining the higher internal quantum efficiency of the QD nanostructure compared to the higher dimensional WL. Structural characterization (X-ray diffraction (XRD)) and transmission electron microscopy (TEM)) reveal an increase in the QD indium content over the WL indium content which is due to strain induced drifts. © 2011 IEEE.

  3. Crystalline-like temperature dependence of the electrical characteristics in amorphous Indium-Gallium-Zinc-Oxide thin film transistors

    Science.gov (United States)

    Estrada, M.; Hernandez-Barrios, Y.; Cerdeira, A.; Ávila-Herrera, F.; Tinoco, J.; Moldovan, O.; Lime, F.; Iñiguez, B.

    2017-09-01

    A crystalline-like temperature dependence of the electrical characteristics of amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin film transistors (TFTs) is reported, in which the drain current reduces as the temperature is increased. This behavior appears for values of drain and gate voltages above which a change in the predominant conduction mechanism occurs. After studying the possible conduction mechanisms, it was determined that, for gate and drain voltages below these values, hopping is the predominant mechanism with the current increasing with temperature, while for values above, the predominant conduction mechanism becomes percolation in the conduction band or band conduction and IDS reduces as the temperature increases. It was determined that this behavior appears, when the effect of trapping is reduced, either by varying the density of states, their characteristic energy or both. Simulations were used to further confirm the causes of the observed behavior.

  4. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    International Nuclear Information System (INIS)

    Lin, Y. H.; Chou, J. C.

    2015-01-01

    We investigated amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFT_s) using different high-Κ gate dielectric materials such as silicon nitride (Si_3N_4) and aluminum oxide (Al_2O_3) at low temperature process (<300 degree) and compared them with low temperature silicon dioxide (SiO_2). The IGZO device with high-Κ gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, post annealing treatment is an essential process for completing the process. The chemical reaction of the high-κ/IGZO interface due to heat formation in high-Κ/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-Κ gate dielectric materials and explained the interface effect by charge band diagram.

  5. Modulation of the electrical properties in amorphous indium-gallium zinc-oxide semiconductor films using hydrogen incorporation

    Science.gov (United States)

    Song, Aeran; Park, Hyun-Woo; Chung, Kwun-Bum; Rim, You Seung; Son, Kyoung Seok; Lim, Jun Hyung; Chu, Hye Yong

    2017-12-01

    The electrical properties of amorphous-indium-gallium-zinc-oxide (a-IGZO) thin films were investigated after thermal annealing and plasma treatment under different gas conditions. The electrical resistivity of a-IGZO thin films post-treated in a hydrogen ambient were lower than those without treatment and those annealed in air, regardless of the methods used for both thermal annealing and plasma treatment. The electrical properties can be explained by the quantity of hydrogen incorporated into the samples and the changes in the electronic structure in terms of the chemical bonding states, the distribution of the near-conduction-band unoccupied states, and the band alignment. As a result, the carrier concentrations of the hydrogen treated a-IGZO thin films increased, while the mobility decreased, due to the increase in the oxygen vacancies from the occurrence of unoccupied states in both shallow and deep levels.

  6. Indium-gallium-zinc-oxide thin-film transistor with a planar split dual-gate structure

    Science.gov (United States)

    Liu, Yu-Rong; Liu, Jie; Song, Jia-Qi; Lai, Pui-To; Yao, Ruo-He

    2017-12-01

    An amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with a planar split dual gate (PSDG) structure has been proposed, fabricated and characterized. Experimental results indicate that the two independent gates can provide dynamical control of device characteristics such as threshold voltage, sub-threshold swing, off-state current and saturation current. The transconductance extracted from the output characteristics of the device increases from 4.0 × 10-6S to 1.6 × 10-5S for a change of control gate voltage from -2 V to 2 V, and thus the device could be used in a variable-gain amplifier. A significant advantage of the PSDG structure is its flexibility in controlling the device performance according to the need of practical applications.

  7. High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment

    KAUST Repository

    Nayak, Pradipta K.

    2012-05-16

    Solution-deposited amorphous indium gallium zinc oxide (a-IGZO) thin film transistors(TFTs) with high performance were fabricated using O2-plasma treatment of the films prior to high temperature annealing. The O2-plasma treatment resulted in a decrease in oxygen vacancy and residual hydrocarbon concentration in the a-IGZO films, as well as an improvement in the dielectric/channel interfacial roughness. As a result, the TFTs with O2-plasma treated a-IGZO channel layers showed three times higher linear field-effect mobility compared to the untreated a-IGZO over a range of processing temperatures. The O2-plasma treatment effectively reduces the required processing temperature of solution-deposited a-IGZO films to achieve the required performance.

  8. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Yun; Lee, Tae-Ho; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of)

    2016-08-15

    The authors report an improvement in resistive switching (RS) characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO)-based resistive random access memory devices using hydrogen post-annealing. Because this a-IGZO thin film has oxygen off-stoichiometry in the form of deficient and excessive oxygen sites, the film properties can be improved by introducing hydrogen atoms through the annealing process. After hydrogen post-annealing, the device exhibited a stable bipolar RS, low-voltage set and reset operation, long retention (>10{sup 5 }s), good endurance (>10{sup 6} cycles), and a narrow distribution in each current state. The effect of hydrogen post-annealing is also investigated by analyzing the sample surface using X-ray photon spectroscopy and atomic force microscopy.

  9. Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation

    International Nuclear Information System (INIS)

    Jo, Kwang-Won; Cho, Won-Ju

    2014-01-01

    In this study, we evaluated the effects of microwave irradiation (MWI) post-deposition-annealing (PDA) treatment on the gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) and compared the results with a conventional thermal annealing PDA treatment. The MWI-PDA-treated a-IGZO TFTs exhibited enhanced electrical performance as well as improved long-term stability with increasing microwave power. The positive turn-on voltage shift (ΔV ON ) as a function of stress time with positive bias and varying temperature was precisely modeled on a stretched-exponential equation, suggesting that charge trapping is a dominant mechanism in the instability of MWI-PDA-treated a-IGZO TFTs. The characteristic trapping time and average effective barrier height for electron transport indicate that the MWI-PDA treatment effectively reduces the defects in a-IGZO TFTs, resulting in a superior resistance against gate bias stress

  10. DC sputter deposition of amorphous indium-gallium-zinc-oxide (a-IGZO) films with H2O introduction

    International Nuclear Information System (INIS)

    Aoi, Takafumi; Oka, Nobuto; Sato, Yasushi; Hayashi, Ryo; Kumomi, Hideya; Shigesato, Yuzo

    2010-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) films were deposited by dc magnetron sputtering with H 2 O introduction and how the H 2 O partial pressure (P H 2 O ) during the deposition affects the electrical properties of the films was investigated in detail. Resistivity of the a-IGZO films increased dramatically to over 2 x 10 5 Ωcm with increasing P H 2 O to 2.7 x 10 -2 Pa while the hydrogen concentration in the films increased to 2.0 x 10 21 cm -3 . TFTs using a-IGZO channels deposited under P H 2 O at 1.6-8.6 x 10 -2 Pa exhibited a field-effect mobility of 1.4-3.0 cm 2 /Vs, subthreshold swing of 1.0-1.6 V/decade and on-off current ratio of 3.9 x 10 7 -1.0 x 10 8 .

  11. Chemical bath deposited zinc sulfide buffer layers for copper indium gallium sulfur-selenide solar cells and device analysis

    International Nuclear Information System (INIS)

    Kundu, Sambhu; Olsen, Larry C.

    2005-01-01

    Cadmium-free copper indium gallium sulfur-selenide (CIGSS) thin film solar cells have been fabricated using chemical bath deposited (CBD) zinc sulfide (ZnS) buffer layers. Shell Solar Industries provided high quality CIGSS absorber layers. The use of CBD-ZnS, which is a higher band gap material than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm 2 ) efficiency of 13.3%. The effect of the ZnS buffer layer thickness on device performance was studied carefully. This paper also presents a discussion of issues relevant to the use of the CBD-ZnS buffer material for improving device performance

  12. Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium-Gallium-Zinc-Oxide Electric-Double-Layer Transistors.

    Science.gov (United States)

    Wan, Chang Jin; Liu, Yang Hui; Zhu, Li Qiang; Feng, Ping; Shi, Yi; Wan, Qing

    2016-04-20

    In the biological nervous system, synaptic plasticity regulation is based on the modulation of ionic fluxes, and such regulation was regarded as the fundamental mechanism underlying memory and learning. Inspired by such biological strategies, indium-gallium-zinc-oxide (IGZO) electric-double-layer (EDL) transistors gated by aqueous solutions were proposed for synaptic behavior emulations. Short-term synaptic plasticity, such as paired-pulse facilitation, high-pass filtering, and orientation tuning, was experimentally emulated in these EDL transistors. Most importantly, we found that such short-term synaptic plasticity can be effectively regulated by alcohol (ethyl alcohol) and salt (potassium chloride) additives. Our results suggest that solution gated oxide-based EDL transistors could act as the platforms for short-term synaptic plasticity emulation.

  13. White light generation from Dy3+-doped yttrium aluminium gallium mixed garnet nano-powders

    International Nuclear Information System (INIS)

    Praveena, R.; Balasubrahmanyam, K.; Jyothi, L.; Venkataiah, G.; Basavapoornima, Ch.; Jayasankar, C.K.

    2016-01-01

    Yttrium aluminium gallium garnet (here after referred as YAGG), Y 3 Al 5−y Ga y O 12 (where y=1.0, 2.5 and 4.0), nano-powders doped with 1.0 mol% of dysprosium (Dy 3+ ) ions were synthesised by the citrate sol–gel method. The structure, phase evolution, morphology and luminescence properties of these nano-crytalline powders were characterized by means of XRD, FTIR, Raman, electron microscopy and UV–vis spectroscopy. From the XRD results, the crystallite sizes were found to be in the range of 18–26 nm. Excitation spectra of YAGG nano-powders showed that the samples can be efficiently excited by near UV and blue LEDs. Upon excitation at 448 nm, the emission spectra of all these samples showed two bands centred at 485 (blue) and 585 nm (yellow) which corresponds to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions of Dy 3+ ion, respectively. Intensity of blue emission was found to be stronger than the yellow emission in all the three samples. Integrated yellow to blue (Y/B) emission intensity was found to be increased with increasing the Ga content in the present YAGG host. Therefore, concentration (0.1, 1.0, 2.0 and 4.0 mol%) of Dy 3+ ions was varied in the Ga rich (Y 3 Ga 4 AlO 12 ) nano-powder. The chromaticity co-ordinates of all the prepared nano-powders were located in the white light region and also found to be dependent on Dy 3+ ion concentration and excitation wavelength. The decay curves for 4 F 9/2 level of Dy 3+ ion exhibited non-exponential nature in all the studied samples and the lifetime values remained constant (~1.0 ms) with increasing the Ga content, but were found to decrease with increasing the Dy 3+ ion concentration. The results indicated that 2.0 mol% of Dy 3+ -doped Y 3 Ga 4 AlO 12 nano-powder under 352 nm excitation is suitable for the white light emitting device applications.

  14. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nadja Rebecca [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Wehrli, Bernhard [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland)

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L{sup −1} molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L{sup −1}. From OPV, copper (14 μg L{sup −1}), zinc (87 μg L{sup −1}) and silver (78 μg L{sup −1}) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. - Highlights: • Photovoltaics may be disposed in the environment after usage. • Copper indium gallium selenide (CIGS) and organic (OPV) cells were compared. • Morphological and molecular effects were assessed in zebrafish embryos. • Environmental condition affected metal leaching and ecotoxicological activity. • Damaged CIGS cells pose higher risk to the environment than OPV cells.

  15. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    International Nuclear Information System (INIS)

    Kim, Sukwon; Kim, Tae Geun

    2015-01-01

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga_2O_3 targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10"−"3 Ω-cm"2 with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga_2O_3 targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10"−"3 Ω-cm"2 contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  16. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukwon; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr

    2015-09-30

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10{sup −3} Ω-cm{sup 2} with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10{sup −3} Ω-cm{sup 2} contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  17. Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Ishan; Deepak, E-mail: saboo@iitk.ac.in

    2017-04-15

    Highlights: • Both n and p-type semiconductors are solution processed. • Temperature compatibility with flexible substrates such as polyimide. • Compatibility of p-type film (CuO) on n-type film (IZO). • Diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. • Construction of band alignment using XPS. - Abstract: Printed electronics on flexible substrates requires low temperature and solution processed active inks. With n-type indium-gallium-zinc oxide (IGZO) based electronics maturing for thin film transistor (TFT), we here demonstrate its heterojunction diode with p-copper oxide, prepared by sol-gel method and processed at temperatures compatible with polyimide substrates. The phase obtained for copper oxide is CuO. When coated on n-type oxide, it is prone to develop morphological features, which are minimized by annealing treatment. Diodes of p-CuO films with IGZO are of poor quality due to its high resistivity while, conducting indium-zinc oxide (IZO) films yielded good diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. A detailed measurement at the interface by X-ray photoelectron spectroscopy and optical absorption ascertained the band alignment to be of staggered type. Consistently, the current in the diode is established to be due to electrons tunnelling from n-IZO to p-CuO.

  18. Effect of solvation on reactions of aluminium, gallium, indium, zinc and cadmium with azo compounds

    International Nuclear Information System (INIS)

    Savvin, S.B.

    1985-01-01

    Colour reactions have been examined between Al, Ga, In, Zn, Cd and reagents of a group of chromotropic acid 2.7-bisazo derivatives (Picramin B, Picramin M, Methanyl B, sulphonitrophenol M, sulphonitrophenol B) in organo-aqueous solutions containing acetone, propanol, DMFA, DMSO and acetic acid. Sensitive colour reactions occur in all the cases in aceton- or propanol-containing solutions: more sensitive than in water for Al, Ga, In; new reactions for Zn and Cd which are specific for organo-aqueous media and not observed in aqueous solutions. Sensitive reactions are observed only for Al and Ga in DMSO or DMFA solutions. Zn, Cd and In do not give colour reactions in such solutions. Differences in colour reactions for the elements in DMFA- and DMSO-containing media are connected with different solvation effects of the solvents on certain cations. Preferable solvation of some cations has been confirmed by infrared studies and is in agreement with the data reported on selective solvation

  19. Solvent extraction of indium and gallium complexes with bromopyrogallol red by mixed extractants containing chloroform, a polar organic solvent and monocarboxylic acids

    International Nuclear Information System (INIS)

    Pyatnitskij, I.V.; Lysenko, O.V.; Kolomiets, L.L.

    1987-01-01

    Solvent extraction of indium and gallium complexes with bromopyragallol red (BPR) has been studied using mixed extractants containing chloroform, capronic acid (HL) and 1-pentanol (S) (extractant 1), and chloroform, HL, S and propionic acid (extractant 2). The latter is more selectie and extracts only the indium complex. Optimal conditions have been found for the extraction of In-BRP complex (pH 6.3-6.5; C BPR 1.5x10 -4 M) its composition has been estimated and discussed

  20. Magnetic properties of Kramers rare earth ions in aluminium and gallium garnets; Proprietes magnetiques des ions de kramers des terres rares dans les grenats de terres rares et d'aluminium et les grenats de terres rares et de gallium

    Energy Technology Data Exchange (ETDEWEB)

    Capel, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The magnetic properties of Kramers rare earth ions in aluminium and gallium garnets (MAlG and MGaG) are discussed by means of a molecular field treatment. The symmetry properties of the space group permit to establish a parametrization for the magnetic dipolar and exchange couplings. The magnetic properties of the system can be expressed in terms of these parameters and the g factors of the rare earth ions. We have calculated the transition temperatures, the sub-lattice magnetizations, the susceptibility in the paramagnetic region and the antiferromagnetic susceptibility for a special type of magnetic ordering. The influence of the excited Kramers doublets is described by means of a generalization of the usual g tensor. (authors) [French] Les proprietes magnetiques des ions de Kramers des terres rares dans les grenats de terre rare et d'aluminium et les grenats de terre rare et de gallium sont discutees a l'aide d'un traitement du champ moleculaire. Les proprietes de symmetrie du groupe d'espace permettent d'exprimer les couplages dipolaires et les interactions d'echange en fonction de quelques parametres. Les proprietes magnetiques peuvent etre exprimees en fonction de ces parametres et les facteurs g des ions de terre rare. Nous avons calcule les temperatures de transition, les aimantations des sous-reseaux pour 0

  1. High efficiency copper indium gallium diselenide (CIGS) thin film solar cells

    Science.gov (United States)

    Rajanikant, Ray Jayminkumar

    The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3 % and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-ID) for understanding the physics of a solar cell device, so that an optimal structure is analyzed. In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a 'low' resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50 % and the low sheet resistance of about 1 O/□. The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a

  2. Measuring systolic ankle and toe pressure using the strain gauge technique--a comparison study between mercury and indium-gallium strain gauges

    DEFF Research Database (Denmark)

    Broholm, Rikke; Wiinberg, Niels; Simonsen, Lene

    2014-01-01

    BACKGROUND: Measurement of the ankle and toe pressures are often performed using a plethysmograph, compression cuffs and a strain gauge. Usually, the strain gauge contains mercury but other alternatives exist. From 2014, the mercury-containing strain gauge will no longer be available in the Europ......BACKGROUND: Measurement of the ankle and toe pressures are often performed using a plethysmograph, compression cuffs and a strain gauge. Usually, the strain gauge contains mercury but other alternatives exist. From 2014, the mercury-containing strain gauge will no longer be available...... in the European Union. The aim of this study was to compare an indium-gallium strain gauge to the established mercury-containing strain gauge. METHODS: Consecutive patients referred to the Department of Clinical Physiology and Nuclear Medicine at Bispebjerg and Frederiksberg Hospitals for measurements of systolic...... ankle and toe pressures volunteered for the study. Ankle and toe pressures were measured twice with the mercury and the indium-gallium strain gauge in random order. Comparison of the correlation between the mean pressure using the mercury and the indium-gallium device and the difference between the two...

  3. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  4. Relative quantification of indium-111 pentetreotide and gallium-68 DOTATOC uptake in the thyroid gland and association with thyroid pathologies.

    Science.gov (United States)

    Lincke, Thomas; Singer, Joerg; Kluge, Regine; Sabri, Osama; Paschke, Ralf

    2009-04-01

    Recent data suggest that increased somatostatin receptor (SSTR) expression is detectable in several thyroid diseases. This raises the question as to the specificity and pathophysiologic relevance of these findings. Therefore, we systematically evaluated Indium-111 (In-111) pentetreotide scintigraphies and Gallium-68 (Ga-68) DOTA-Phe(1)-Tyr(3)-Octreotide (DOTATOC) positron emission tomography (PET) scans for thyroid radiotracer uptake. Relative binding of In-111 pentetreotide in the thyroid was measured by region of interest (ROI) technique in 4-hour and 24-hour post-injection (p.i.) planar images of 73 patients undergoing In-111 pentetreotide scintigraphy. Ga-68 DOTATOC PET scans of 77 patients were analyzed by ROI technique applied to coronal slices of 1 cm (0.39 inch) thickness with highest uptake in the thyroid region. A basal indium In-111 and Ga-68 DOTATOC uptake was found in normal thyroid glands. Hot nodules, disseminated thyroid autonomy, and most cases of active Hashimoto's disease as well as goiters and nodular thyroids showed increased In-111 pentetreotide and/or Ga-68 DOTATOC uptake. Higher relative In-111 pentetreotide uptake in the 24-hour p.i. images as compared to the 4-hour p.i. images except for patients after thyroidectomy indicates specific receptor binding in the thyroid. The increased In-111 pentetreotide and Ga-68 DOTATOC uptake in active Hashimoto's disease is most likely related to the lymphocytic infiltration of the thyroid. However, the physiologic or pathophysiologic relevance of the increased In-111 pentetreotide and Ga-68 DOTATOC uptake in normal thyroid glands, hot and cold nodules, and goiters and nodular thyroids remain to be determined.

  5. Ion beam analysis of aluminium in thin layers

    International Nuclear Information System (INIS)

    Healy, M.J.F.; Pidduck, A.J.; Dollinger, G.; Gorgens, L.; Bergmaier, A.

    2002-01-01

    This work quantifies aluminium in thin surface and near surface layers. In one example, the layer overlies a thin gallium nitride layer on an aluminium oxide substrate and in a second example the aluminium exists just below the surface of an indium arsenide substrate. The technique of non-Rutherford elastic backscattering of protons was used for the samples where aluminum in the layer of interest needed to be resolved from aluminium in the sapphire substrate and the results were corroborated at the Technische Universitaet Muenchen using heavy ion elastic recoil detection analysis. In the second example, where it was unnecessary to isolate the signal of aluminium in the layer of interest (as the substrate contained no aluminium), then the 27 Al(d,p 01 ) 28 Al nuclear reaction was used. The elastic proton scattering cross section of aluminum was found to vary very rapidly over the energy range of interest

  6. Synthesis of Cu-Poor Copper-Indium-Gallium-Diselenide Nanoparticles by Solvothermal Route for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Chung Ping Liu

    2014-01-01

    Full Text Available Copper-indium-gallium-diselenide (CIGS thin films were fabricated using precursor nanoparticle ink and sintering technology. The precursor was a Cu-poor quaternary compound with constituent ratios of Cu/(In+Ga=0.603, Ga/(In+Ga=0.674, and Se/(Cu+In+Ga=1.036. Cu-poor CIGS nanoparticles of chalcopyrite for solar cells were successfully synthesized using a relatively simple and convenient elemental solvothermal route. After a fixed reaction time of 36 h at 180°C, CIGS nanocrystals with diameters in the range of 20–70 nm were observed. The nanoparticle ink was fabricated by mixing CIGS nanoparticles, a solvent, and an organic polymer. Analytical results reveal that the Cu-poor CIGS absorption layer prepared from a nanoparticle-ink polymer by sintering has a chalcopyrite structure and a favorable composition. For this kind of sample, its mole ratio of Cu : In : Ga : Se is equal to 0.617 : 0.410 : 0.510 : 2.464 and related ratios of Ga/(In+Ga and Cu/(In+Ga are 0.554 and 0.671, respectively. Under the condition of standard air mass 1.5 global illumination, the conversion efficiency of the solar cell fabricated by this kind of sample is 4.05%.

  7. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    Science.gov (United States)

    Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.

    2014-10-01

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K <0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.

  8. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wissman, J., E-mail: jwissman@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Finkenauer, L. [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Deseri, L. [DICAM, Department of Mechanical, Civil and Environmental Engineering, University of Trento, via Mesiano 77 38123 Trento (Italy); TMHRI-Department of Nanomedicine, The Methodist Hospital Research Institute, 6565 Fannin St., MS B-490 Houston, Texas 77030 (United States); Mechanics, Materials and Computing Center, CEE and ME-CIT, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Majidi, C. [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Robotics Institute and Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2014-10-14

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.

  9. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2015-01-01

    Full Text Available We investigated amorphous indium gallium zinc oxide (a-IGZO thin film transistors (TFTs using different high-k gate dielectric materials such as silicon nitride (Si3N4 and aluminum oxide (Al2O3 at low temperature process (<300°C and compared them with low temperature silicon dioxide (SiO2. The IGZO device with high-k gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, postannealing treatment is an essential process for completing the process. The chemical reaction of the high-k/IGZO interface due to heat formation in high-k/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-k gate dielectric materials and explained the interface effect by charge band diagram.

  10. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Directory of Open Access Journals (Sweden)

    Minkyu Chun

    2015-05-01

    Full Text Available We investigated the effects of top gate voltage (VTG and temperature (in the range of 25 to 70 oC on dual-gate (DG back-channel-etched (BCE amorphous-indium-gallium-zinc-oxide (a-IGZO thin film transistors (TFTs characteristics. The increment of VTG from -20V to +20V, decreases the threshold voltage (VTH from 19.6V to 3.8V and increases the electron density to 8.8 x 1018cm−3. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on VTG. At VTG of 20V, the mobility decreases from 19.1 to 15.4 cm2/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at VTG of - 20V, the mobility increases from 6.4 to 7.5cm2/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  11. Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection.

    Science.gov (United States)

    Kang, Byung Ha; Kim, Won-Gi; Chung, Jusung; Lee, Jin Hyeok; Kim, Hyun Jae

    2018-02-28

    A homojunction-structured amorphous indium gallium zinc oxide (a-IGZO) phototransistor that can detect visible light is reported. The key element of this technology is an absorption layer composed of hydrogen-doped a-IGZO. This absorption layer is fabricated by simple hydrogen plasma doping, and subgap states are induced by increasing the amount of hydrogen impurities. These subgap states, which lead to a higher number of photoexcited carriers and aggravate the instability under negative bias illumination stress, enabled the detection of a wide range of visible light (400-700 nm). The optimal condition of the hydrogen-doped absorption layer (HAL) is fabricated at a hydrogen partial pressure ratio of 2%. As a result, the optimized a-IGZO phototransistor with the HAL exhibits a high photoresponsivity of 1932.6 A/W, a photosensitivity of 3.85 × 10 6 , and a detectivity of 6.93 × 10 11 Jones under 635 nm light illumination.

  12. Channel length dependence of negative-bias-illumination-stress in amorphous-indium-gallium-zinc-oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Um, Jae Gwang; Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Migliorato, Piero [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Electrical Engineering Division, Department of Engineering, Cambridge University, Cambridge CB3 0FA (United Kingdom)

    2015-06-21

    We have investigated the dependence of Negative-Bias-illumination-Stress (NBIS) upon channel length, in amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). The negative shift of the transfer characteristic associated with NBIS decreases for increasing channel length and is practically suppressed in devices with L = 100-μm. The effect is consistent with creation of donor defects, mainly in the channel regions adjacent to source and drain contacts. Excellent agreement with experiment has been obtained by an analytical treatment, approximating the distribution of donors in the active layer by a double exponential with characteristic length L{sub D} ∼ L{sub n} ∼ 10-μm, the latter being the electron diffusion length. The model also shows that a device with a non-uniform doping distribution along the active layer is in all equivalent, at low drain voltages, to a device with the same doping averaged over the active layer length. These results highlight a new aspect of the NBIS mechanism, that is, the dependence of the effect upon the relative magnitude of photogenerated holes and electrons, which is controlled by the device potential/band profile. They may also provide the basis for device design solutions to minimize NBIS.

  13. Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments.

    Science.gov (United States)

    Tak, Young Jun; Ahn, Byung Du; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-02-23

    Indium-gallium-zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M-O) bonds through the decomposition-rearrangement of M-O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm(2)/Vs, 3.96 × 10(7) to 1.03 × 10(8), and 11.2 to 7.2 V, respectively.

  14. Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films

    Science.gov (United States)

    Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.

    2018-04-01

    ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.

  15. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho-young [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); LG Display R and D Center, 245 Lg-ro, Wollong-myeon, Paju-si, Gyeonggi-do 413-811 (Korea, Republic of); Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong [LG Display R and D Center, 245 Lg-ro, Wollong-myeon, Paju-si, Gyeonggi-do 413-811 (Korea, Republic of); Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-01-13

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n{sup +} a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10{sup −3} Ω cm after treatment, and then it increases to 7.92 × 10{sup −2} Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n{sup +}a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n{sup +} a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm{sup 2}/V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H{sub 2} plasma treatment degrades significantly after 300 °C annealing.

  16. Printed indium gallium zinc oxide transistors. Self-assembled nanodielectric effects on low-temperature combustion growth and carrier mobility.

    Science.gov (United States)

    Everaerts, Ken; Zeng, Li; Hennek, Jonathan W; Camacho, Diana I; Jariwala, Deep; Bedzyk, Michael J; Hersam, Mark C; Marks, Tobin J

    2013-11-27

    Solution-processed amorphous oxide semiconductors (AOSs) are emerging as important electronic materials for displays and transparent electronics. We report here on the fabrication, microstructure, and performance characteristics of inkjet-printed, low-temperature combustion-processed, amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) grown on solution-processed hafnia self-assembled nanodielectrics (Hf-SANDs). TFT performance for devices processed below 300 °C includes >4× enhancement in electron mobility (μFE) on Hf-SAND versus SiO2 or ALD-HfO2 gate dielectrics, while other metrics such as subthreshold swing (SS), current on:off ratio (ION:IOFF), threshold voltage (Vth), and gate leakage current (Ig) are unchanged or enhanced. Thus, low voltage IGZO/SAND TFT operation (IGZO combustion processing leaves the underlying Hf-SAND microstructure and capacitance intact. This work establishes the compatibility and advantages of all-solution, low-temperature fabrication of inkjet-printed, combustion-derived high-mobility IGZO TFTs integrated with self-assembled hybrid organic-inorganic nanodielectrics.

  17. Facile fabrication of wire-type indium gallium zinc oxide thin-film transistors applicable to ultrasensitive flexible sensors.

    Science.gov (United States)

    Kim, Yeong-Gyu; Tak, Young Jun; Kim, Hee Jun; Kim, Won-Gi; Yoo, Hyukjoon; Kim, Hyun Jae

    2018-04-03

    We fabricated wire-type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) using a self-formed cracked template based on a lift-off process. The electrical characteristics of wire-type IGZO TFTs could be controlled by changing the width and density of IGZO wires through varying the coating conditions of template solution or multi-stacking additional layers. The fabricated wire-type devices were applied to sensors after functionalizing the surface. The wire-type pH sensor showed a sensitivity of 45.4 mV/pH, and this value was an improved sensitivity compared with that of the film-type device (27.6 mV/pH). Similarly, when the wire-type device was used as a glucose sensor, it showed more variation in electrical characteristics than the film-type device. The improved sensing properties resulted from the large surface area of the wire-type device compared with that of the film-type device. In addition, we fabricated wire-type IGZO TFTs on flexible substrates and confirmed that such structures were very resistant to mechanical stresses at a bending radius of 10 mm.

  18. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Minkyu; Chowdhury, Md Delwar Hossain; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-05-15

    We investigated the effects of top gate voltage (V{sub TG}) and temperature (in the range of 25 to 70 {sup o}C) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of V{sub TG} from -20V to +20V, decreases the threshold voltage (V{sub TH}) from 19.6V to 3.8V and increases the electron density to 8.8 x 10{sup 18}cm{sup −3}. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on V{sub TG}. At V{sub TG} of 20V, the mobility decreases from 19.1 to 15.4 cm{sup 2}/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at V{sub TG} of - 20V, the mobility increases from 6.4 to 7.5cm{sup 2}/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  19. Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Kwang-Won; Cho, Won-Ju, E-mail: chowj@kw.ac.kr [Department of Electronic Materials Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701 (Korea, Republic of)

    2014-11-24

    In this study, we evaluated the effects of microwave irradiation (MWI) post-deposition-annealing (PDA) treatment on the gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) and compared the results with a conventional thermal annealing PDA treatment. The MWI-PDA-treated a-IGZO TFTs exhibited enhanced electrical performance as well as improved long-term stability with increasing microwave power. The positive turn-on voltage shift (ΔV{sub ON}) as a function of stress time with positive bias and varying temperature was precisely modeled on a stretched-exponential equation, suggesting that charge trapping is a dominant mechanism in the instability of MWI-PDA-treated a-IGZO TFTs. The characteristic trapping time and average effective barrier height for electron transport indicate that the MWI-PDA treatment effectively reduces the defects in a-IGZO TFTs, resulting in a superior resistance against gate bias stress.

  20. Inert gas annealing effect in solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors

    Science.gov (United States)

    Lee, Seungwoon; Jeong, Jaewook

    2017-08-01

    In this paper, the annealing effect of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs), under ambient He (He-device), is systematically analyzed by comparison with those under ambient O2 (O2-device) and N2 (N2-device), respectively. The He-device shows high field-effect mobility and low subthreshold slope owing to the minimization of the ambient effect. The degradation of the O2- and N2-device performances originate from their respective deep acceptor-like and shallow donor-like characteristics, which can be verified by comparison with the He-device. However, the three devices show similar threshold voltage instability under prolonged positive bias stress due to the effect of excess oxygen. Therefore, annealing in ambient He is the most suitable method for the fabrication of reference TFTs to study the various effects of the ambient during the annealing process in solution-processed a-IGZO TFTs.

  1. The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer.

    Science.gov (United States)

    Shin, Yeonwoo; Kim, Sang Tae; Kim, Kuntae; Kim, Mi Young; Oh, Saeroonter; Jeong, Jae Kyeong

    2017-09-07

    High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600 °C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO back-channel occurs with annealing at 300 °C, while complete crystallization of the active layer occurs at 400 °C. The field-effect mobility is significantly boosted to 54.0 cm 2 /V·s for the IGZO device with a metal-induced polycrystalline channel formed at 300 °C compared to 18.1 cm 2 /V·s for an amorphous IGZO TFT without a catalytic layer. This work proposes a facile and effective route to enhance device performance by crystallizing the IGZO layer with standard annealing temperatures, without the introduction of expensive laser irradiation processes.

  2. Selective metallization of amorphous-indium-gallium-zinc-oxide thin-film transistor by using helium plasma treatment

    Science.gov (United States)

    Jang, Hun; Lee, Su Jeong; Porte, Yoann; Myoung, Jae-Min

    2018-03-01

    In this study, the effects of helium (He) plasma treatment on amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) have been investigated. The He plasma treatment induced a dramatic decrease of the resistivity in a-IGZO thin films from 1.25 × 106 to 5.93 mΩ cm. After 5 min He plasma treatment, the a-IGZO films showed an increase in carrier concentration to 6.70 × 1019 cm-3 combined with a high hall mobility of 15.7 cm2 V-1 s-1. The conductivity improvement was linked to the formation of oxygen vacancies during the He plasma treatment, which was observed by x-ray photoelectron spectroscopy analysis. The a-IGZO films did not appear to be damaged on the surface following the plasma treatment and showed a high transmittance of about 88.3% at a wavelength of 550 nm. The He plasma-treated a-IGZO films were used as source/drain (S/D) electrodes in a-IGZO TFTs. The devices demonstrated promising characteristics, on pair with TFTs using Al electrodes, with a threshold voltage (V T) of -1.97 V, sub-threshold slope (SS) of 0.52 V/decade, saturation mobility (μ sat) of 8.75 cm2 V-1 s-1, and on/off current ratio (I on/I off) of 2.66 × 108.

  3. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    International Nuclear Information System (INIS)

    Jeong, Ho-young; Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong; Mativenga, Mallory; Jang, Jin

    2014-01-01

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n + a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10 −3 Ω cm after treatment, and then it increases to 7.92 × 10 −2 Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n + a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n + a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm 2 /V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H 2 plasma treatment degrades significantly after 300 °C annealing

  4. High-density plasma etching characteristics of indium-gallium-zinc oxide thin films in CF4/Ar plasma

    International Nuclear Information System (INIS)

    Joo, Young-Hee; Kim, Chang-Il

    2015-01-01

    We investigated the etching process of indium-gallium-zinc oxide (IGZO) thin films in an inductively coupled plasma system. The dry etching characteristics of the IGZO thin films were studied by varying the CF 4 /Ar gas mixing ratio, RF power, DC-bias voltage, and process pressure. We determined the following optimized process conditions: an RF power of 700 W, a DC-bias voltage of − 150 V, and a process pressure of 2 Pa. A maximum etch rate of 25.63 nm/min for the IGZO thin films was achieved in a plasma with CF 4 /Ar(= 25:75), and the selectivity of IGZO to Al and TiN was found to be 1.3 and 0.7, respectively. We determined the ionic composition of the CF 4 /Ar plasma using optical emission spectroscopy. Analysis of chemical reactions at the IGZO thin film surfaces was performed using X-ray photoelectron spectroscopy. - Highlights: • IGZO thin film was etched by CF 4 /Ar plasma as a function of gas mixing ratio. • IGZO bonds were broken Ar + sputtering and then reacted with the C-F x radicals. • The physical sputtering is dominant in etch control compared with chemical etching

  5. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    International Nuclear Information System (INIS)

    Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.

    2014-01-01

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.

  6. Contact resistance asymmetry of amorphous indium-gallium-zinc-oxide thin-film transistors by scanning Kelvin probe microscopy

    Science.gov (United States)

    Chen-Fei, Wu; Yun-Feng, Chen; Hai, Lu; Xiao-Ming, Huang; Fang-Fang, Ren; Dun-Jun, Chen; Rong, Zhang; You-Dou, Zheng

    2016-05-01

    In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain (S/D) series resistance in operating amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metal-semiconductor junction. Project supported by the Key Industrial R&D Program of Jiangsu Province, China (Grant No. BE2015155), the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. 021014380033).

  7. Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Lee

    2018-01-01

    Full Text Available We investigated the effects of vacuum rapid thermal annealing (RTA on the electrical characteristics of amorphous indium gallium zinc oxide (a-IGZO thin films. The a-IGZO films deposited by radiofrequency sputtering were subjected to vacuum annealing under various temperature and pressure conditions with the RTA system. The carrier concentration was evaluated by Hall measurement; the electron concentration of the a-IGZO film increased and the resistivity decreased as the RTA temperature increased under vacuum conditions. In a-IGZO thin-film transistors (TFTs with a bottom-gate top-contact structure, the threshold voltage decreased and the leakage current increased as the vacuum RTA temperature increased. As the annealing pressure decreased, the threshold voltage decreased, and the leakage current increased. X-ray photoelectron spectroscopy indicated changes in the lattice oxygen and oxygen vacancies of the a-IGZO films after vacuum RTA. At higher annealing temperatures, the lattice oxygen decreased and oxygen vacancies increased, which suggests that oxygen was diffused out in a reduced pressure atmosphere. The formation of oxygen vacancies increased the electron concentration, which consequently increased the conductivity of the a-IGZO films and reduced the threshold voltage of the TFTs. The results showed that the oxygen vacancies and electron concentrations of the a-IGZO thin films changed with the vacuum RTA conditions and that high-temperature RTA treatment at low pressure converted the IGZO thin film to a conductor.

  8. Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films

    Science.gov (United States)

    Lee, Hyun-Woo; Cho, Won-Ju

    2018-01-01

    We investigated the effects of vacuum rapid thermal annealing (RTA) on the electrical characteristics of amorphous indium gallium zinc oxide (a-IGZO) thin films. The a-IGZO films deposited by radiofrequency sputtering were subjected to vacuum annealing under various temperature and pressure conditions with the RTA system. The carrier concentration was evaluated by Hall measurement; the electron concentration of the a-IGZO film increased and the resistivity decreased as the RTA temperature increased under vacuum conditions. In a-IGZO thin-film transistors (TFTs) with a bottom-gate top-contact structure, the threshold voltage decreased and the leakage current increased as the vacuum RTA temperature increased. As the annealing pressure decreased, the threshold voltage decreased, and the leakage current increased. X-ray photoelectron spectroscopy indicated changes in the lattice oxygen and oxygen vacancies of the a-IGZO films after vacuum RTA. At higher annealing temperatures, the lattice oxygen decreased and oxygen vacancies increased, which suggests that oxygen was diffused out in a reduced pressure atmosphere. The formation of oxygen vacancies increased the electron concentration, which consequently increased the conductivity of the a-IGZO films and reduced the threshold voltage of the TFTs. The results showed that the oxygen vacancies and electron concentrations of the a-IGZO thin films changed with the vacuum RTA conditions and that high-temperature RTA treatment at low pressure converted the IGZO thin film to a conductor.

  9. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    Science.gov (United States)

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  11. A novel bioassay using the barnacle Amphibalanus amphitrite to evaluate chronic effects of aluminium, gallium and molybdenum in tropical marine receiving environments.

    Science.gov (United States)

    van Dam, Joost W; Trenfield, Melanie A; Harries, Simon J; Streten, Claire; Harford, Andrew J; Parry, David; van Dam, Rick A

    2016-11-15

    A need exists for appropriate tools to evaluate risk and monitor potential effects of contaminants in tropical marine environments, as currently impact assessments are conducted by non-representative approaches. Here, a novel bioassay is presented that allows for the estimation of the chronic toxicity of contaminants in receiving tropical marine environments. The bioassay is conducted using planktonic larvae of the barnacle Amphibalanus amphitrite and is targeted at generating environmentally relevant, chronic toxicity data for water quality guideline derivation or compliance testing. The developmental endpoint demonstrated a consistently high control performance, validated through the use of copper as a reference toxicant. In addition, the biological effects of aluminium, gallium and molybdenum were assessed. The endpoint expressed high sensitivity to copper and moderate sensitivity to aluminium, whereas gallium and molybdenum exhibited no discernible effects, even at high concentrations, providing valuable information on the toxicity of these elements in tropical marine waters. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  12. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects

    International Nuclear Information System (INIS)

    De Jamblinne de Meux, A; Genoe, J; Heremans, P; Pourtois, G

    2015-01-01

    We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen–metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced

  13. Gallium-Indium ordering in the complex [Ni{sub 2}Ga{sub 3}In] network of GdNi{sub 2}Ga{sub 3}In

    Energy Technology Data Exchange (ETDEWEB)

    Galadzhun, Yaroslav V.; Horiacha, Myroslava M.; Nychyporuk, Galyna P.; Zaremba, Vasyl I. [Inorganic Chemistry Department, Ivan Franko National University of Lviv (Ukraine); Rodewald, Ute C.; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany)

    2016-08-15

    Polycrystalline samples of the isotypic quaternary compounds RENi{sub 2}Ga{sub 3}In (RE = Y, Gd - Tm) were obtained by arc-melting of the elements. Crystals of the gadolinium compound were found by slow cooling of an arc-melted button of the initial composition ''GdNiGa{sub 3}In''. All samples were characterized by powder X-ray diffraction. The structure of GdNi{sub 2}Ga{sub 2.89}In{sub 1.11} was refined from single-crystal X-ray diffractometer data: new type, Pnma, a = 2426.38(7), b = 418.17(2), c = 927.27(3) pm, wR{sub 2} = 0.0430, 1610 F{sup 2} values and 88 variables. Two of the six crystallographically independent gallium sites show a small degree of Ga/In mixing. The nickel atoms show tricapped trigonal prismatic coordination by gadolinium, gallium, and indium. Together, the nickel, gallium, and indium atoms build up a complex three-dimensional [Ni{sub 2}Ga{sub 3}In]{sup δ-} network, which leaves cages for the gadolinium atoms. The indium atoms form zigzag chains with In-In distances of 337 pm. The crystal chemical similarities of the polyhedral packing in the GdNi{sub 2}Ga{sub 3}In and La{sub 4}Pd{sub 10}In{sub 21} structures are discussed. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Neutron diffraction study at 0.3 K of the magnetic properties of rare-earth aluminium or gallium garnets; Etude par diffraction des neutrons a 0,3 K des proprietes magnetiques de grenats de terre rare et d'aluminium ou de gallium

    Energy Technology Data Exchange (ETDEWEB)

    Hammann, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-03-01

    In order to study ordered magnetic states below 1.5 deg. K by neutron diffraction measurements, a helium-3 cryostat has been realised in which the thermalization of a great quantity of powdered sample is performed by a helium-4 superfluid film, and which leaves the possibility of applying an external magnetic field. We thus studied essentially the magnetic phase transitions of rare-earth aluminium or gallium garnets. First we determined the antiferromagnetic structures of the erbium gallium garnet (T{sub N} = 0.79 deg. K) and of the neodymium gallium garnet (T{sub N} = 0.516 deg. K). The metamagnetic behavior of the erbium gallium garnet has been observed and compared to that of the dysprosium aluminium garnet. Second we considered the 'non-Kramers' ions Tb{sup 3+} and Ho{sup 3+} in the aluminium garnets. In this case, only two single ground states (well isolated from upper levels) have to be considered. A molecular field model with purely magnetic dipolar interactions, leads then to the existence of magnetic phase transition with antiferromagnetic ordering. This has been observed for the terbium-aluminium garnet below T{sub N} 1.35 deg. K and for the holmium-aluminium garnet below T{sub N} {approx} 0.98 deg. K. (author) [French] Afin d'acceder a l'etude par diffraction des neutrons des etats magnetiques ordonnes en-dessous de 1,5 deg. K, nous avons realise un cryostat a helium-3 qui assure la mise en temperature de la quantite importante d'echantillon en poudre a l'aide d'un film d'helium-4-superfluide, et qui laisse la possibilite d'application d'un champ magnetique exterieur. Nous avons essentiellement etudie avec cette technique les transitions de phase magnetique de grenats de terre rare et d'aluminium ou de gallium. C'est ainsi qu'on a determine l'ordre antiferromagnetique dans les grenats de gallium-erbium (T{sub N} = 0,79 deg. K) et de gallium-neodyme (T{sub N} = 0,516 deg. K). Le comportement metamagnetique du grenat de gallium-erbium a ete mis en evidence

  15. Improvement of Electrical Characteristics and Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Nitrocellulose Passivation Layer.

    Science.gov (United States)

    Shin, Kwan Yup; Tak, Young Jun; Kim, Won-Gi; Hong, Seonghwan; Kim, Hyun Jae

    2017-04-19

    In this research, nitrocellulose is proposed as a new material for the passivation layers of amorphous indium gallium zinc oxide thin film transistors (a-IGZO TFTs). The a-IGZO TFTs with nitrocellulose passivation layers (NC-PVLs) demonstrate improved electrical characteristics and stability. The a-IGZO TFTs with NC-PVLs exhibit improvements in field-effect mobility (μ FE ) from 11.72 ± 1.14 to 20.68 ± 1.94 cm 2 /(V s), threshold voltage (V th ) from 1.85 ± 1.19 to 0.56 ± 0.35 V, and on/off current ratio (I on/off ) from (5.31 ± 2.19) × 10 7 to (4.79 ± 1.54) × 10 8 compared to a-IGZO TFTs without PVLs, respectively. The V th shifts of a-IGZO TFTs without PVLs, with poly(methyl methacrylate) (PMMA) PVLs, and with NC-PVLs under positive bias stress (PBS) test for 10,000 s represented 5.08, 3.94, and 2.35 V, respectively. These improvements were induced by nitrogen diffusion from NC-PVLs to a-IGZO TFTs. The lone-pair electrons of diffused nitrogen attract weakly bonded oxygen serving as defect sites in a-IGZO TFTs. Consequently, the electrical characteristics are improved by an increase of carrier concentration in a-IGZO TFTs, and a decrease of defects in the back channel layer. Also, NC-PVLs have an excellent property as a barrier against ambient gases. Therefore, the NC-PVL is a promising passivation layer for next-generation display devices that simultaneously can improve electrical characteristics and stability against ambient gases.

  16. Lipophilic hexadentate Gallium, indium and iron complexes of new phenolate derivatized cyclohexanetriamine ligands as potential in vivo metal transfer reagents

    International Nuclear Information System (INIS)

    Bollinger, J.E.; Roundhill, D.M.

    1995-01-01

    The compounds (RsalH 2 ) 3 tachH 3 (R=H, NO 2 , OMe) have been synthesized by Schiff base condensation between cis-1,3,5-triaminocyclohexane and a substituted salicylaldehyde, followed by reduction with KBH 4 . Reaction of these compounds with gallium(III), indium(III) and iron(III) salts neutral hexacoordinate N 3 O 3 complexes of type M(RsalH 2 )3tach (M = Ga, In, Fe). The complexes have been characterized by a combination of infrared, 1 H and 13 C [ 1H] NMR and mass spectroscopy. The distribution coefficient between 1-octanol and water indicate that complexes are lipophilic. The electronic absorption spectra of the high spin Fe(III) complexes show LMCT bands in the 450-500 nm range. The structures of (RsalH 2 ) 3 tachH 3 (R=H, NO 2 , OMe), and In(SalH 2 ) 3 tach have been confirmed by single-crystal X-ray crystallography. Solutions of the three ligands ((salH 2 ) 3 tach, (NO 2 salH 2 ) 3 tach) and (MeOsalH 2 ) 3 tach) complexed to radioactive 59 were prepared in a fashion similar to solutions of ligands complexed with non-radioactive iron, except on a much smaller scale. Biodistribution data for 5 9Fe(RsalH 2 ) 3 tach (R=H, NO 2 , and OMe) complexes over a 24 hour period ere obtained. These 24 hour data show that the complexes are more effectively cleared from the body than is the control solution of 59 Fe. These data will be discussed and possible medical applications for these compounds will be offered. (authors), 2 tabs., 1 figs., 7 refs

  17. Effect of Electric Field on the Wetting Behavior of Eutectic Gallium-Indium Alloys in Aqueous Environment

    Science.gov (United States)

    Yuan, Bo; He, Zhi-Zhu; Liu, Jing

    2018-02-01

    Room-temperature liquid metals have many intriguing properties that have not previously been fully understood. Among them, surface tension behaviors of such metals are especially critical in a group of newly emerging areas such as printed electronics, functional materials and soft machines, etc. This study is dedicated to clarifying the wettability of liquid metals on various substrate surfaces with varied roughness immersed in solutions when subject to an electric field. The contact angles of Ga75.5In24.5 in several typical liquids were comprehensively measured and interpreted, and were revealed to be affected by the components and concentration of the environmental solution. Meanwhile, the roughness of the substrates is also revealed to be an important parameter dominating the process. The dynamic wetting behaviors of liquid metal in aqueous environment under an electric field were quantified. The contact angle values of eutectic gallium-indium alloys (eGaIn) on titanium substrates with different roughness would lead to better electrowetting performances on rougher surfaces. In particular, using an electrical field to control the wetting status of liquid metal with the matching substrate have been illustrated, which would offer a practical way to flexibly control liquid metal-based functional devices working in an aqueous environment. Furthermore, Lippmann-Young's equation reveals the relationship between contact angle and applied voltage, explaining the excellent electrowetting property of eGaIn. The power law, R = αt β , was adopted to characterize the two-stage wetting process of eGaIn under different voltages. In the initial process, β ≈ 1/2 represents the complete wetting law, while the later one, β ≈ 1/10, meets with Tanner's law of a drop spontaneously spreading on a smooth surface.

  18. Effects of argon flow rate on electrical properties of amorphous indium gallium zinc oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, A.K.; Wu, G.M., E-mail: wu@mail.cgu.edu.tw

    2016-04-30

    In this report, amorphous indium gallium zinc oxide (a-IGZO) thin films were deposited on glass substrates using different argon flow rates (AFRs). The impact on the electrical properties of the a-IGZO thin-film transistors with various AFRs during film growth has been carefully investigated. The AFR varied 20–60 sccm while the oxygen flow rate was maintained at 1 sccm. All a-IGZO films achieved transmittance higher than 80% in the wavelength range of 350–1000 nm, and it increased slightly with increasing AFR in the higher wavelength region. The rise in partial pressure due to increased AFR could affect the performance, in particular by increasing the current on/off ratio, and changes in electron mobility, sub-threshold swing voltage and threshold voltage. The optimal results were attained at AFR of 50 sccm. The field effect mobility, sub-threshold swing, ratio of on-current to the off-current, interfacial trap density and threshold voltage are 27.7 cm{sup 2}/V·s, 0.11 V/dec, 2.9 × 10{sup 8}, 1.1 × 10{sup 12} cm{sup −2} eV{sup −1} and 0.84 V, respectively. In addition, good electrical properties were achieved using dielectric SiO{sub 2} prepared by simple, low-cost electron beam evaporator system. - Highlights: • IGZO thin films RF-sputtered on glass substrates under various Ar to oxygen flow rates • The electrical performances and thin film quality of a-IGZO TFT were characterized. • High mobility 27.7 cm{sup 2}/V·s and very small sub-threshold voltage 0.11 V/decade obtained. • Simple and low cost electron-beam deposited SiO{sub 2} used as gate dielectric. • Ohmic behavior of source–drain with channel material has been achieved.

  19. Comparison of the electrical and optical properties of direct current and radio frequency sputtered amorphous indium gallium zinc oxide films

    International Nuclear Information System (INIS)

    Yao, Jianke; Gong, Li; Xie, Lei; Zhang, Shengdong

    2013-01-01

    The electrical and optical properties of direct current and radio frequency (RF) sputtered amorphous indium gallium zinc oxide (a-IGZO) films are compared. It is found that the RF sputtered a-IGZO films have better stoichiometry (In:Ga:Zn:O = 1:1:1:2.5–3.0), lower electrical conductivity (σ < 8 S/cm), higher refractive index (n = 1.9–2.0) and larger band gap (E g = 3.02–3.29 eV), and show less shift of Fermi level (△ E F ∼ 0.26 eV) and increased concentration of electrons (△ N e ∼ 10 4 ) in the conduction band with the reduction concentration of oxygen vacancy (V O ). Although a-IGZO has intensively been studied for a semiconductor channel material of thin film transistors in next-generation flat panel displays, its fundamental material parameters have not been thoroughly reported. In this work, the work function (φ) of a-IGZO films is tested with the ultraviolet photoelectron spectroscopy. It is found that the φ of a-IGZO films is in the range of 4.0–5.0 eV depending on the V O . - Highlights: ► Amorphous InGaZnO 4 (a-IGZO) films were prepared with different sputtering modes. ► Electrical and optical properties of the different films were compared. ► Fermi level (△E F ) shift in a-IGZO films were tested by X-ray photoelectron spectroscopy. ► The relation of △E F with the properties of a-IGZO films were discussed. ► Work function was tested by ultraviolet photoelectron spectroscopy

  20. The effect of annealing ambient on the characteristics of an indium-gallium-zinc oxide thin film transistor.

    Science.gov (United States)

    Park, Soyeon; Bang, Seokhwan; Lee, Seungjun; Park, Joohyun; Ko, Youngbin; Jeon, Hyeongtag

    2011-07-01

    In this study, the effects of different annealing conditions (air, O2, N2, vacuum) on the chemical and electrical characteristics of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFT) were investigated. The contact resistance and interface properties between the IGZO film and the gate dielectric improved after an annealing treatment. However, the chemical bonds in the IGZO bulk changed under various annealing atmospheres, which, in turn, altered the characteristics of the TFTs. The TFTs annealed in vacuum and N2 ambients exhibited undesired switching properties due to the high carrier concentration (>10(17) cm(-3)) of the IGZO active layer. In contrast, the IGZO TFTs annealed in air and oxygen ambients displayed clear transfer characteristics due to an adequately adjusted carrier concentration in the operating range of the TFT. Such an optimal carrier concentration arose through the stabilization of unstable chemical bonds in the IGZO film. With regard to device performance, the TFTs annealed in O2 and air exhibited saturation mobility values of 8.29 and 7.54 cm2/Vs, on-off ratios of 7.34 x 10(8) and 3.95 x 10(8), and subthreshold swing (SS) values of 0.23 and 0.19 V/decade, respectively. Therefore, proper annealing ambients contributed to internal modifications in the IGZO structure and led to an enhancement in the oxidation state of the metal. As a result, defects such as oxygen vacancies were eliminated. Oxygen annealing is thus effective for controlling the carrier concentration of the active layer, decreasing electron traps, and enhancing TFT performance.

  1. Effects of argon flow rate on electrical properties of amorphous indium gallium zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Sahoo, A.K.; Wu, G.M.

    2016-01-01

    In this report, amorphous indium gallium zinc oxide (a-IGZO) thin films were deposited on glass substrates using different argon flow rates (AFRs). The impact on the electrical properties of the a-IGZO thin-film transistors with various AFRs during film growth has been carefully investigated. The AFR varied 20–60 sccm while the oxygen flow rate was maintained at 1 sccm. All a-IGZO films achieved transmittance higher than 80% in the wavelength range of 350–1000 nm, and it increased slightly with increasing AFR in the higher wavelength region. The rise in partial pressure due to increased AFR could affect the performance, in particular by increasing the current on/off ratio, and changes in electron mobility, sub-threshold swing voltage and threshold voltage. The optimal results were attained at AFR of 50 sccm. The field effect mobility, sub-threshold swing, ratio of on-current to the off-current, interfacial trap density and threshold voltage are 27.7 cm"2/V·s, 0.11 V/dec, 2.9 × 10"8, 1.1 × 10"1"2 cm"−"2 eV"−"1 and 0.84 V, respectively. In addition, good electrical properties were achieved using dielectric SiO_2 prepared by simple, low-cost electron beam evaporator system. - Highlights: • IGZO thin films RF-sputtered on glass substrates under various Ar to oxygen flow rates • The electrical performances and thin film quality of a-IGZO TFT were characterized. • High mobility 27.7 cm"2/V·s and very small sub-threshold voltage 0.11 V/decade obtained. • Simple and low cost electron-beam deposited SiO_2 used as gate dielectric. • Ohmic behavior of source–drain with channel material has been achieved.

  2. High Stability Performance of Quinary Indium Gallium Zinc Aluminum Oxide Films and Thin-Film Transistors Deposited Using Vapor Cooling Condensation Method

    Science.gov (United States)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-08-01

    High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.

  3. Effect of Gallium and Indium Co-Substituting on Upconversion Properties of Er/Yb:Yttrium Aluminum Garnet Powders Prepared by the Co-Precipitation Method.

    Science.gov (United States)

    Zhang, Wei; Liang, Yun-Ling; Hu, Zheng-Fa; Feng, Zu-Yong; Lun, Ma; Zhang, Xiu-ping; Sheng, Xia; Liu, Qian; Luo, Jie

    2016-04-01

    Gallium and Indium co-substituted Yb, Er:YAG was fabricated through the chemical co-precipitation method. The formation process and structure of the Ga3+ and In3+ substituted phosphor powders were characterized by the X-ray diffraction, thermo-gravimetry analyzer, infrared spectra, and X-ray photoelectron spectroscopy, and the effects of Ga3+ and In3+ concentration on the luminescence properties were investigated by spectrum. The results showed that the blue shift occurred after the substitution of Ga3+ and In3+ for Al3+ in matrix, and the intensity of emission spectrum was affected by the concentration of Ga3+ and In3+.

  4. Process development of ITO source/drain electrode for the top-gate indium-gallium-zinc oxide transparent thin-film transistor

    International Nuclear Information System (INIS)

    Cheong, Woo-Seok; Yoon, Young-sun; Shin, Jae-Heon; Hwang, Chi-Sun; Chu, Hye Yong

    2009-01-01

    Indium-tin oxide (ITO) has been widely used as electrodes for LCDs and OLEDs. The applications are expanding to the transparent thin-film transistors (TTFT S ) for the versatile circuits or transparent displays. This paper is related with optimization of ITO source and drain electrode for TTFTs on glass substrates. For example, un-etched ITO remnants, which frequently found in the wet etching process, often originate from unsuitable ITO formation processes. In order to improve them, an ion beam deposition method is introduced, which uses for forming a seed layer before the main ITO deposition. We confirm that ITO films with seed layers are effective to obtain clean and smooth glass surfaces without un-etched ITO remnants, resulting in a good long-run electrical stability of the top-gate indium-gallium-zinc oxide-TTFT.

  5. Improvement of Self-Heating of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors Using Al2O3 Barrier Layer

    Science.gov (United States)

    Jian, Li-Yi; Lee, Hsin-Ying; Lin, Yung-Hao; Lee, Ching-Ting

    2018-02-01

    To study the self-heating effect, aluminum oxide (Al2O3) barrier layers of various thicknesses have been inserted between the channel layer and insulator layer in bottom-gate-type indium gallium zinc aluminum oxide (IGZAO) thin-film transistors (TFTs). Each IGZAO channel layer was deposited on indium tin oxide (ITO)-coated glass substrate by using a magnetron radiofrequency cosputtering system with dual targets composed of indium gallium zinc oxide (IGZO) and Al. The 3 s orbital of Al cation provided an extra transport pathway and widened the conduction-band bottom, thus increasing the electron mobility of the IGZAO films. The Al-O bonds were able to sustain the oxygen stability of the IGZAO films. The self-heating behavior of the resulting IGZAO TFTs was studied by Hall measurements on the IGZAO films as well as the electrical performance of the IGZAO TFTs with Al2O3 barrier layers of various thicknesses at different temperatures. IGZAO TFTs with 50-nm-thick Al2O3 barrier layer were stressed by positive gate bias stress (PGBS, at gate-source voltage V GS = 5 V and drain-source voltage V DS = 0 V); at V GS = 5 V and V DS = 10 V, the threshold voltage shifts were 0.04 V and 0.2 V, respectively, much smaller than for the other IGZAO TFTs without Al2O3 barrier layer, which shifted by 0.2 V and 1.0 V when stressed under the same conditions.

  6. Measurements and FLUKA Simulations of Bismuth, Aluminium and Indium Activation at the upgraded CERN Shielding Benchmark Facility (CSBF)

    Science.gov (United States)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.; Yashima, H.

    2018-06-01

    The CERN High energy AcceleRator Mixed field (CHARM) facility is situated in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5·1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7·1010 protons per second. The extracted proton beam impacts on a cylindrical copper target. The shielding of the CHARM facility includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target that allows deep shielding penetration benchmark studies of various shielding materials. This facility has been significantly upgraded during the extended technical stop at the beginning of 2016. It consists now of 40 cm of cast iron shielding, a 200 cm long removable sample holder concrete block with 3 inserts for activation samples, a material test location that is used for the measurement of the attenuation length for different shielding materials as well as for sample activation at different thicknesses of the shielding materials. Activation samples of bismuth, aluminium and indium were placed in the CSBF in September 2016 to characterize the upgraded version of the CSBF. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields of bismuth isotopes (206 Bi, 205 Bi, 204 Bi, 203 Bi, 202 Bi, 201 Bi) from 209 Bi, 24 Na from 27 Al and 115 m I from 115 I for these samples. The production yields estimated by FLUKA Monte Carlo simulations are compared to the production yields obtained from γ-spectroscopy measurements of the samples taking the beam intensity profile into account. The agreement between FLUKA predictions and γ-spectroscopy measurements for the production yields is at a level of a factor of 2.

  7. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  8. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Hsin-Cheng [Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Pei, Zingway, E-mail: zingway@dragon.nchu.edu.tw [Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China); Jian, Jyun-Ruri; Tzeng, Bo-Jie [Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2014-07-21

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology is suitable for use in flexible displays.

  9. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress

    Energy Technology Data Exchange (ETDEWEB)

    Niang, K. M.; Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk [Electrical Engineering Division, Cambridge University, J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Barquinha, P. M. C.; Martins, R. F. P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal); Cobb, B. [Holst Centre/TNO, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Powell, M. J. [252, Valley Drive, Kendal LA9 7SL (United Kingdom)

    2016-02-29

    Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and analysed using the thermalization energy concept. The peak energy barrier to defect conversion is extracted to be 0.75 eV and the attempt-to-escape frequency is extracted to be 10{sup 7} s{sup −1}. These values are in remarkable agreement with measurements in a-IGZO TFTs under negative gate bias illumination stress (NBIS) reported recently (Flewitt and Powell, J. Appl. Phys. 115, 134501 (2014)). This suggests that the same physical process is responsible for both PBS and NBIS, and supports the oxygen vacancy defect migration model that the authors have previously proposed.

  10. Realization of write-once-read-many-times memory device with O{sub 2} plasma-treated indium gallium zinc oxide thin film

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P., E-mail: liup0013@ntu.edu.sg; Chen, T. P., E-mail: echentp@ntu.edu.sg; Li, X. D.; Wong, J. I. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Z. [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Liu, Y. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Leong, K. C. [GLOBALFOUNDRIES Singapore Pte Ltd, 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore)

    2014-01-20

    A write-once-read-many-times (WORM) memory devices based on O{sub 2} plasma-treated indium gallium zinc oxide (IGZO) thin films has been demonstrated. The device has a simple Al/IGZO/Al structure. The device has a normally OFF state with a very high resistance (e.g., the resistance at 2 V is ∼10{sup 9} Ω for a device with the radius of 50 μm) as a result of the O{sub 2} plasma treatment on the IGZO thin films. The device could be switched to an ON state with a low resistance (e.g., the resistance at 2 V is ∼10{sup 3} Ω for the radius of 50 μm) by applying a voltage pulse (e.g., 10 V/1 μs). The WORM device has good data-retention and reading-endurance capabilities.

  11. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    Science.gov (United States)

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  12. Electrical features of an amorphous indium-gallium-zinc-oxide film transistor using a double active matrix with different oxygen contents

    International Nuclear Information System (INIS)

    Koo, Ja Hyun; Kang, Tae Sung; Hong, Jin Pyo

    2012-01-01

    The electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFTs) are systematically studied using a double a-IGZO active layer that is composed of a-IGZO x (oxygen-ion-poor region) and a-IGZO y (oxygen-ion-rich-region). An active layer is designed to have a serially-stacked bi-layer matrix with different oxygen contents, providing the formation of different electron conduction channels. Two different oxygen contents in the active layer are obtained by varying the O 2 partial pressure during sputtering. The a-IGZO TFT based on a double active layer exhibits a high mobility of 9.1 cm 2 /Vsec, a threshold voltage (V T ) of 16.5 V, and ΔV T shifts of less than 1.5 V under gate voltage stress. A possible electrical sketch for the double active layer channel is also discussed.

  13. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Oh, Byung Su [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Display Company, Yongin (Korea, Republic of); Joo, Min-Kyu [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); IMEP-LAHC, Grenoble INP, Minatec, CS 50257, 38016 Grenoble (France); Ahn, Seung-Eon [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Advanced Institute of Technology, Samsung Electronics Corporations, Yongin 446-712 (Korea, Republic of)

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that the trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.

  14. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    Science.gov (United States)

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

  15. A transparent diode with high rectifying ratio using amorphous indium-gallium-zinc oxide/SiN{sub x} coupled junction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung-Jea; Kim, Myeong-Ho; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-08-03

    We introduce a transparent diode that shows both high rectifying ratio and low leakage current at process temperature below 250 °C. This device is clearly distinguished from all previous transparent diodes in that the rectifying behavior results from the junction between a semiconductor (amorphous indium-gallium-zinc oxide (a-IGZO)) and insulator (SiN{sub x}). We systematically study the properties of each junction within the device structure and demonstrate that the a-IGZO/SiN{sub x} junction is the source of the outstanding rectification. The electrical characteristics of this transparent diode are: 2.8 A/cm{sup 2} on-current density measured at −7 V; lower than 7.3 × 10{sup −9} A/cm{sup 2} off-current density; 2.53 ideality factor; and high rectifying ratio of 10{sup 8}–10{sup 9}. Furthermore, the diode structure has a transmittance of over 80% across the visible light range. The operating principle of the indium-tin oxide (ITO)/a-IGZO/SiN{sub x}/ITO device was examined with an aid of the energy band diagram and we propose a preliminary model for the rectifying behavior. Finally, we suggest further directions for research on this transparent diode.

  16. Solvent effects on extraction of aluminum(III), gallium(III), and indium(III), with decanoic acid

    International Nuclear Information System (INIS)

    Yamada, Hiromichi; Hayashi, Hisao; Fujii, Yukio; Mizuta, Masateru

    1986-01-01

    Extraction of aluminum(III) and indium(III) with decanoic acid in 1-octanol was carried out at 25 deg C and at an aqueous ionic strength of 0.1 mol dm -3 (NaClO 4 ). Monomeric and tetrameric aluminum(III) decanoates and monomeric indium(III) decanoate are responsible for the extraction. From a comparison of the present results with those obtained from the previous works, the polymerization of the extracted species was found to be more extensive in benzene than in 1-octanol, and the metal decanoates were highly polymerized in the following order in both solvents: Al > Ga > In. (author)

  17. Indium and gallium diffusion through zirconia in the TiN/ZrO{sub 2}/InGaAs stack

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos-Sanchez, O. [CINVESTAV-Unidad Queretaro, Queretaro, Qro. 76230 (Mexico); Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Martinez, E.; Guedj, C.; Veillerot, M. [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Herrera-Gomez, A. [CINVESTAV-Unidad Queretaro, Queretaro, Qro. 76230 (Mexico)

    2015-06-01

    Angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) was applied to the TiN/ZrO{sub 2}/InGaAs stack to assess its thermal stability. Through a robust ARXPS analysis, it was possible to observe subtle effects such as the thermally induced diffusion of substrate atomic species (In and Ga) through the dielectric layer. The detailed characterization of the film structure allowed for assessing the depth profiles of the diffused atomic species by means of the scenarios-method. Since the quantification for the amount of diffused material was done at different temperatures, it was possible to obtain an approximate value of the activation energy for the diffusion of indium through zirconia. The result is very similar to the previously reported values for indium diffusion through alumina and through hafnia.

  18. Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1−xGaxSe2 Growth: Indium-Gallium Selenide Co-Evaporation

    Directory of Open Access Journals (Sweden)

    Puja Pradhan

    2018-01-01

    Full Text Available Real time spectroscopic ellipsometry (RTSE has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV devices. The first stage entails the growth of indium-gallium selenide (In1−xGax2Se3 (IGS on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε1 − iε2, spectra. Here, RTSE has been used to obtain the (ε1, ε2 spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents (x deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε1, ε2 spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x. From the resulting database of polynomial coefficients, the (ε1, ε2 spectra can be generated for any composition of IGS from the single parameter, x. The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε1, ε2 spectra have been interpreted as well in relation to observations from scanning electron microscopy, X

  19. Effect of nitrogen doping on the structural, optical and electrical properties of indium tin oxide films prepared by magnetron sputtering for gallium nitride light emitting diodes

    Science.gov (United States)

    Tian, Lifei; Cheng, Guoan; Wang, Hougong; Wu, Yulong; Zheng, Ruiting; Ding, Peijun

    2017-01-01

    The indium tin oxide (ITO) films are prepared by the direct current magnetron sputtering technology with an ITO target in a mixture of argon and nitrogen gas at room temperature. The blue transmittance at 455 nm rises from 63% to 83% after nitrogen doping. The resistivity of the ITO film reduces from 4.6 × 10-3 (undoped film) to 5.7 × 10-4 Ω cm (N-doped film). The X-ray photoelectron spectroscopy data imply that the binding energy of the In3d5/2 peak is declined 0.05 eV after nitrogen doping. The high resolution transmission electron microscope images show that the nitrogen loss density of the GaN/ITO interface with N-doped ITO film is smaller than that of the GaN/ITO interface with undoped ITO film. The forward turn-on voltage of gallium nitride light emitting diode reduces by 0.5 V after nitrogen doping. The fabrication of the N-doped ITO film is conducive to modify the N component of the interface between GaN and ITO layer.

  20. Impact of severe cracked germanium (111 substrate on aluminum indium gallium phosphate light-emitting-diode’s electro-optical performance

    Directory of Open Access Journals (Sweden)

    Annaniah Luruthudass

    2016-01-01

    Full Text Available Cracked die is a serious failure mode in the Light Emitting Diode (LED industry – affecting LED quality and long-term reliability performance. In this paper an investigation has been carried out to find the correlation between severe cracked germanium (Ge substrate of an aluminum indium gallium phosphate (AlInGaP LED and its electro-optical performance after the Temperature Cycle (TC test. The LED dice were indented at several bond forces using a die bonder. The indented dice were analysed using a Scanning Electron Microscope (SEM. The result showed that severe cracks were observed at 180 gF onward. As the force of indentation increases, crack formation also becomes more severe thus resulting in the chipping of the substrate. The cracked dies were packaged and the TC test was performed. The results did not show any electro-optical failure or degradation, even after a 1000 cycle TC test. Several mechanically cross-sectioned cracked die LEDs, were analysed using SEM and found that no crack reached the active layer. This shows that severely cracked Ge substrate are able to withstand a −40°C/+100°C TC test up to 1000 cycles and LED optical performance is not affected. A small leakage current was observed in all of the cracked die LEDs in comparison to the reference unit. However, this value is smaller than the product specification and is of no concern.

  1. Non-volatile nano-floating gate memory with Pt-Fe{sub 2}O{sub 3} composite nanoparticles and indium gallium zinc oxide channel

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Quanli [Myongji University, Department of Nano Science and Engineering (Korea, Republic of); Lee, Seung Chang; Baek, Yoon-Jae [Myongji University, Department of Materials Science and Engineering (Korea, Republic of); Lee, Hyun Ho [Myongji University, Department of Chemical Engineering (Korea, Republic of); Kang, Chi Jung [Myongji University, Department of Nano Science and Engineering (Korea, Republic of); Kim, Hyun-Mi; Kim, Ki-Bum [Seoul National University, Department of Materials Science and Engineering (Korea, Republic of); Yoon, Tae-Sik, E-mail: tsyoon@mju.ac.kr [Myongji University, Department of Nano Science and Engineering (Korea, Republic of)

    2013-02-15

    Non-volatile nano-floating gate memory characteristics with colloidal Pt-Fe{sub 2}O{sub 3} composite nanoparticles with a mostly core-shell structure and indium gallium zinc oxide channel layer were investigated. The Pt-Fe{sub 2}O{sub 3} nanoparticles were chemically synthesized through the preferential oxidation of Fe and subsequent pileup of Pt into the core in the colloidal solution. The uniformly assembled nanoparticles' layer could be formed with a density of {approx}3 Multiplication-Sign 10{sup 11} cm{sup -2} by a solution-based dip-coating process. The Pt core ({approx}3 nm in diameter) and Fe{sub 2}O{sub 3}-shell ({approx}6 nm in thickness) played the roles of the charge storage node and tunneling barrier, respectively. The device exhibited the hysteresis in current-voltage measurement with a threshold voltage shift of {approx}4.76 V by gate voltage sweeping to +30 V. It also showed the threshold shift of {approx}0.66 V after pulse programming at +20 V for 1 s with retention > {approx}65 % after 10{sup 4} s. These results demonstrate the feasibility of using colloidal nanoparticles with core-shell structure as gate stacks of the charge storage node and tunneling dielectric for low-temperature and solution-based processed non-volatile memory devices.

  2. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment

    Science.gov (United States)

    Fan, Ching-Lin; Tseng, Fan-Ping; Tseng, Chiao-Yuan

    2018-01-01

    In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a HfO2 gate insulator and CF4 plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO2 gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm2/V∙s (without treatment) to 54.6 cm2/V∙s (with CF4 plasma treatment), which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO2 gate dielectric has also been improved by the CF4 plasma treatment. By applying the CF4 plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device’s immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF4 plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO2 gate dielectric, but also enhances the device’s reliability. PMID:29772767

  3. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process.

    Science.gov (United States)

    Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae

    2017-11-24

    We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

  4. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium-gallium-zinc oxide gate stack.

    Science.gov (United States)

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-20

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  5. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2018-05-01

    Full Text Available In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs with a HfO2 gate insulator and CF4 plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO2 gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm2/V∙s (without treatment to 54.6 cm2/V∙s (with CF4 plasma treatment, which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO2 gate dielectric has also been improved by the CF4 plasma treatment. By applying the CF4 plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device’s immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF4 plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO2 gate dielectric, but also enhances the device’s reliability.

  6. High-density plasma etching characteristics of indium-gallium-zinc oxide thin films in CF{sub 4}/Ar plasma

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Hee; Kim, Chang-Il

    2015-05-29

    We investigated the etching process of indium-gallium-zinc oxide (IGZO) thin films in an inductively coupled plasma system. The dry etching characteristics of the IGZO thin films were studied by varying the CF{sub 4}/Ar gas mixing ratio, RF power, DC-bias voltage, and process pressure. We determined the following optimized process conditions: an RF power of 700 W, a DC-bias voltage of − 150 V, and a process pressure of 2 Pa. A maximum etch rate of 25.63 nm/min for the IGZO thin films was achieved in a plasma with CF{sub 4}/Ar(= 25:75), and the selectivity of IGZO to Al and TiN was found to be 1.3 and 0.7, respectively. We determined the ionic composition of the CF{sub 4}/Ar plasma using optical emission spectroscopy. Analysis of chemical reactions at the IGZO thin film surfaces was performed using X-ray photoelectron spectroscopy. - Highlights: • IGZO thin film was etched by CF{sub 4}/Ar plasma as a function of gas mixing ratio. • IGZO bonds were broken Ar{sup +} sputtering and then reacted with the C-F{sub x} radicals. • The physical sputtering is dominant in etch control compared with chemical etching.

  7. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C.

    Science.gov (United States)

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-14

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm(2)/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  8. Effect of top gate potential on bias-stress for dual gate amorphous indium-gallium-zinc-oxide thin film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Minkyu; Um, Jae Gwang; Park, Min Sang; Chowdhury, Md Delwar Hossain; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 02447 (Korea, Republic of)

    2016-07-15

    We report the abnormal behavior of the threshold voltage (V{sub TH}) shift under positive bias Temperature stress (PBTS) and negative bias temperature stress (NBTS) at top/bottom gate in dual gate amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). It is found that the PBTS at top gate shows negative transfer shift and NBTS shows positive transfer shift for both top and bottom gate sweep. The shift of bottom/top gate sweep is dominated by top gate bias (V{sub TG}), while bottom gate bias (V{sub BG}) is less effect than V{sub TG}. The X-ray photoelectron spectroscopy (XPS) depth profile provides the evidence of In metal diffusion to the top SiO{sub 2}/a-IGZO and also the existence of large amount of In{sup +} under positive top gate bias around top interfaces, thus negative transfer shift is observed. On the other hand, the formation of OH{sup −} at top interfaces under the stress of negative top gate bias shows negative transfer shift. The domination of V{sub TG} both on bottom/top gate sweep after PBTS/NBTS is obviously occurred due to thin active layer.

  9. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO₂ Gate Dielectrics by CF₄ Plasma Treatment.

    Science.gov (United States)

    Fan, Ching-Lin; Tseng, Fan-Ping; Tseng, Chiao-Yuan

    2018-05-17

    In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a HfO₂ gate insulator and CF₄ plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO₂ gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm²/V∙s (without treatment) to 54.6 cm²/V∙s (with CF₄ plasma treatment), which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO₂ gate dielectric has also been improved by the CF₄ plasma treatment. By applying the CF₄ plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device's immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF₄ plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO₂ gate dielectric, but also enhances the device's reliability.

  10. Confinement - assisted shock-wave-induced thin-film delamination (SWIFD) of copper indium gallium diselenide (CIGS) on a flexible substrate

    Science.gov (United States)

    Lorenz, Pierre; Zagoranskiy, Igor; Ehrhardt, Martin; Han, Bing; Bayer, Lukas; Zimmer, Klaus

    2017-12-01

    The laser structuring of CIGS (copper indium gallium (di)selenide) solar cell material without influence and damaging the functionality of the active layer is a challenge for laser methods The shock-wave-induced thin-film delamination (SWIFD) process allows structuring without thermal modifications due to a spatial separation of the laser absorption from the functional layer removal process. In the present study, SWIFD structuring of CIGS solar cell stacks was investigated. The rear side of the polyimide was irradiated with a KrF-Excimer laser. The laser-induced ablation process generates a traverse shock wave, and the interaction of the shock wave with the layer-substrate interface results in a delamination process. The effect of a water confinement on the SWIFD process was studied where the rear side of the substrate was covered with a ∼2 mm thick water layer. The resultant surface morphology was analysed and discussed. At a sufficient number of laser pulses N and laser fluences Φ, the CIGS layer can be selectively removed from the Mo back contact. The water confinement, as well as the increasing laser beam size A0 and N, results in the reduction of the necessary minimal laser fluence Φth. Further, the delaminated CIGS area increased with increasing Φ, N, and A0.

  11. The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions.

    Science.gov (United States)

    Reus, William F; Thuo, Martin M; Shapiro, Nathan D; Nijhuis, Christian A; Whitesides, George M

    2012-06-26

    The liquid-metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film-consisting primarily of Ga(2)O(3)-that covers its surface when in contact with air. SAMs that rectify current have been measured using this electrode in Ag(TS)-SAM//Ga(2)O(3)/EGaIn (where Ag(TS) = template-stripped Ag surface) junctions. This paper organizes evidence, both published and unpublished, showing that the molecular structure of the SAM (specifically, the presence of an accessible molecular orbital asymmetrically located within the SAM), not the difference between the electrodes or the characteristics of the Ga(2)O(3) film, causes the observed rectification. By examining and ruling out potential mechanisms of rectification that rely either on the Ga(2)O(3) film or on the asymmetry of the electrodes, this paper demonstrates that the structure of the SAM dominates charge transport through Ag(TS)-SAM//Ga(2)O(3)/EGaIn junctions, and that the electrical characteristics of the Ga(2)O(3) film have a negligible effect on these measurements.

  12. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    Science.gov (United States)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  13. Influence of addition of indium and of post-annealing on structural, electrical and optical properties of gallium-doped zinc oxide thin films deposited by direct-current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Duy Phong [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Nguyen, Huu Truong [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Phan, Bach Thang [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Faculty of Materials Science, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Hoang, Van Dung [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Maenosono, Shinya [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Tran, Cao Vinh, E-mail: tcvinh@hcmus.edu.vn [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam)

    2015-05-29

    In this study, both gallium-doped zinc oxide (GZO) and indium-added gallium-doped zinc oxide (IGZO) thin films were deposited on commercial glasses by magnetron dc-sputtering in argon atmosphere. The crystal structure, electrical conductivity and optical transmission of as-deposited as well as post-annealed thin films of both GZO and IGZO were investigated for comparison. A small amount of indium introduced into GZO thin films had improved their polycrystalline structure and increased their electrical conductivity by over 29%. All obtained GZO and IGZO thin films have strong [002] crystalline direction, a characteristic orientation of ZnO thin films. Although post-annealed in air at high temperatures up to 500 °C, IGZO thin films still had very low sheet resistance of 6.6 Ω/□. Furthermore, they had very high optical transmission of over 80% in both visible and near-infrared regions. - Highlights: • Doping 0.1 at.% indium enhanced crystalline, electrical properties of GZO films. • The mobility of IGZO films was 25% higher than that of GZO films. • The IGZO films will be potential materials for transparent conducting electrodes.

  14. Influence of addition of indium and of post-annealing on structural, electrical and optical properties of gallium-doped zinc oxide thin films deposited by direct-current magnetron sputtering

    International Nuclear Information System (INIS)

    Pham, Duy Phong; Nguyen, Huu Truong; Phan, Bach Thang; Hoang, Van Dung; Maenosono, Shinya; Tran, Cao Vinh

    2015-01-01

    In this study, both gallium-doped zinc oxide (GZO) and indium-added gallium-doped zinc oxide (IGZO) thin films were deposited on commercial glasses by magnetron dc-sputtering in argon atmosphere. The crystal structure, electrical conductivity and optical transmission of as-deposited as well as post-annealed thin films of both GZO and IGZO were investigated for comparison. A small amount of indium introduced into GZO thin films had improved their polycrystalline structure and increased their electrical conductivity by over 29%. All obtained GZO and IGZO thin films have strong [002] crystalline direction, a characteristic orientation of ZnO thin films. Although post-annealed in air at high temperatures up to 500 °C, IGZO thin films still had very low sheet resistance of 6.6 Ω/□. Furthermore, they had very high optical transmission of over 80% in both visible and near-infrared regions. - Highlights: • Doping 0.1 at.% indium enhanced crystalline, electrical properties of GZO films. • The mobility of IGZO films was 25% higher than that of GZO films. • The IGZO films will be potential materials for transparent conducting electrodes

  15. Influence of indium/gallium gradients on the Cu(In,Ga)Se{sub 2} devices deposited by the co-evaporation without recrystallisation

    Energy Technology Data Exchange (ETDEWEB)

    Drobiazg, Tomasz, E-mail: drobiazg@if.pw.edu.pl [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS-UMR 6502, 2, rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Arzel, Ludovic [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS-UMR 6502, 2, rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Dönmez, Adem [Faculty of Science, Department of Physics, Muğla Sıtkı Koçman University, 48000, Muğla (Turkey); Zabierowski, Paweł [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Barreau, Nicolas [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS-UMR 6502, 2, rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France)

    2015-05-01

    In the laboratory scale, cells based on Cu(In,Ga)Se{sub 2} grown by the 3-stage process reach the best performance because of high open-circuit voltage and short-circuit current (V{sub OC}-J{sub SC}) combination. One of the reasons for that could be the V-shaped gradient of Ga to In atomic ratio throughout the Cu(In,Ga)Se{sub 2} layer, which results from large differences in the diffusion coefficients of In and Ga. The location of the lowest Ga-content in the Cu(In,Ga)Se{sub 2} (i.e. Ga notch), also corresponds to the Cu-poor to Cu-rich transition during the 2nd stage. Since this transition is associated to a phenomenon of recrystallisation, the arising question is whether high V{sub OC}-J{sub SC} combination is effectively inherent to V-shaped gradient or to recrystallisation. In our work we attempt to eliminate the influence of recrystallisation to exclusively study the influence of Ga/In gradients. Our approach was to co-evaporate samples by the one-step process with different gradients by the continuous modification of In and Ga fluxes during the deposition and keeping constant that of Cu in a way that its ratio to group III elements was 0.9. With this method, we could obtain a set of Cu(In,Ga)Se{sub 2} layers either free of gradient, with linear gradient (i.e. no notch) or V-shaped gradient with notch at a different distance from the Cu(In,Ga)Se{sub 2} surface. We observe that depending on the presence of notch in conduction band or the position of notch it is possible to modify the impact of secondary barriers on current-voltage characteristics. - Highlights: • Investigation of the indium and gallium gradients apart from the recrystallisation • Short-circuit current and open-circuit voltage benefit from the band gap gradient. • Constant band gap gradient decreases the influence of secondary barriers. • With the presence of gallium notch the secondary barriers are more pronounced.

  16. Indium-Gallium Radiation Contour of the IRT Nuclear Reactor; Circuit d'activation d'indium-gallium dans le reacteur nucleaire IRT; Indij-gallievyj radiatsionnyj kontur yadernogo reaktora IRT; Circuito de radiaciones de indio-galio del reactor IRT

    Energy Technology Data Exchange (ETDEWEB)

    Breger, A K; Ryabukin, Y S; Tulkes, S G; Volkov, E N

    1960-07-15

    Following on theoretical work already published, an indium-gallium radiation contour of the IRT nuclear reactor has been prepared, and represents a powerful new source of gamma-radiation. The first contour of this type ''RK-1'' was prepared on the IRT reactor at the Physics Institute of the Academy of Sciences of the Georgian SSR. The paper gives the activation calculations for indium-gallium alloy; the structural components of RK-1 and their arrangement in the reactor tank and the hot cell; the devise for feeding liquid and gaseous substances into the irradiation zone; and the conveyor for solid substances to be irradiated. When the IRT reactor is at a power of 2000 kW, the radiation strength of the contour is equivalent to that of a gamma-emitter having an activity of 20,000 g. Ra equivalent. The prospects for the use of the indium-gallium radiation contour for research and semi-industrial purposes are discussed. (author) [French] A la suite de la publication d'un ouvrage theorique, on a etabli autour du reacteur nucleaire IRT un circuit d'activation d'indium-gallium qui represente une nouvelle source de rayonnements gamma de grande intensite. Le premier circuit de ce type ''RK-1'' a ete etabli sur le reacteur IRT a l'Institut de physique de l'Academie des sciences de la RSS de Georgie. Les auteurs donnent les calculs de l'activation pour l'alliage indium-gallium; ils indiquent les elements structurels du RK-1 et leur disposition dans le reservoir et dans la cellule de haute activite du reacteur; ils decrivent le dispositif permettant d'introduire des substances liquides et gazeuses dans la zone d'irradiation et le systeme qui transporte les substances solides a irradier. Lorsque le reacteur IRT fonctionne a 2 000 kW, la puissance de rayonnement du circuit equivaut a celle d'un emetteur gamma ayant une activite equivalente a 20 000 grammes de radium. Les auteurs examinent les perspectives d'emploi de ce processus pour la recherche et a des fins semi

  17. Scattering and mobility in indium gallium arsenide channel, pseudomorphic high electron mobility transistors (InGaAs pHEMTs)

    International Nuclear Information System (INIS)

    Pearson, J.L.

    1999-03-01

    Extensive transport measurements have been completed on deep and shallow-channelled InGaAs p-HEMTs of varying growth temperature, indium content, spacer thickness and doping density, with a view to a thorough characterisation, both in the metallic and the localised regimes. Particular emphasis was given to MBE grown layers, with characteristics applicable for device use, but low measurement temperatures were necessary to resolve the elastic scattering mechanisms. Measurements made in the metallic regime included transport and quantum mobility - the former over a range of temperatures between 1.5K to 300K. Conductivity measurements were also acquired in the strong localisation regime between about 1.5K and 100K. Experimentally determined parameters were tested for comparison with those predicted by an electrostatic model. Excellent agreement was obtained for carrier density. Other parameters were less well predicted, but the relevant experimental measurements, including linear depletion of the 2DEG, were sensitive to any excess doping above a 'critical' value determined by the model. At low temperature (1.5K), it was found that in all samples tested, transport mobility was strongly limited at all carrier densities by a large q mechanism, possibly intrinsic to the channel. This was ascribed either to scattering by the long-range potentials arising from the indium concentration fluctuations or fluctuations in the thickness of the channel layer. This mechanism dominates the transport at low carrier densities for all samples, but at high carrier density, an additional mechanism is significant for samples with the thinnest spacers tested (2.5nm). This is ascribed to direct electron interaction with the states of the donor layer, and produces a characteristic transport mobility peak. At higher carrier densities, past the peak, quantum mobility was found only to increase monotonically in value. Remote ionised impurity scattering while significant, particularly for samples

  18. Development of III-nitride semiconductors by molecular beam epitaxy and cluster beam epitaxy and fabrication of LEDs based on indium gallium nitride MQWs

    Science.gov (United States)

    Chen, Tai-Chou Papo

    The family of III-Nitrides (the binaries InN, GaN, AIN, and their alloys) is one of the most important classes of semiconductor materials. Of the three, Indium Nitride (InN) and Aluminum Nitride (AIN) have been investigated much less than Gallium Nitride (GaN). However, both of these materials are important for optoelectronic infrared and ultraviolet devices. In particular, since InN was found recently to be a narrow gap semiconductor (Eg=0.7eV), its development should extend the applications of nitride semiconductors to the spectral region appropriate to fiber optics communication and photovoltaic applications. Similarly, the development of AIN should lead to deep UV light emitting diodes (LEDs). The first part of this work addresses the evaluation of structural, optical and transport properties of InN films grown by two different deposition methods. In one method, active nitrogen was produced in the form of nitrogen radicals by a radio frequency (RF) plasma-assisted source. In an alternative method, active nitrogen was produced in the form of clusters containing approximately 2000 nitrogen molecules. These clusters were produced by adiabatic expansion from high stagnation pressure through a narrow nozzle into vacuum. The clusters were singly or doubly ionized with positive charge by electron impact and accelerated up to approximately 20 to 25 KV prior to their disintegration on the substrate. Due to the high local temperature produced during the impact of clusters with the substrate, this method is suitable for the deposition of InN at very low temperatures. The films are auto-doped n-type with carrier concentrations varying from 3 x 1018 to 1020 cm-3 and the electron effective mass of these films was determined to be 0.09m0. The majority of the AIN films was grown by the cluster beam epitaxy method and was doped n- and p- type by incorporating silicon (Si) and magnesium (Mg) during the film deposition. All films were grown under Al-rich conditions at relatively

  19. Non-invasive Drosophila ECG recording by using eutectic gallium-indium alloy electrode: a feasible tool for future research on the molecular mechanisms involved in cardiac arrhythmia.

    Directory of Open Access Journals (Sweden)

    Po-Hung Kuo

    Full Text Available BACKGROUND: Drosophila heart tube is a feasible model for cardiac physiological research. However, obtaining Drosophila electrocardiograms (ECGs is difficult, due to the weak signals and limited contact area to apply electrodes. This paper presents a non-invasive Gallium-Indium (GaIn based recording system for Drosophila ECG measurement, providing the heart rate and heartbeat features to be observed. This novel, high-signal-quality system prolongs the recording time of insect ECGs, and provides a feasible platform for research on the molecular mechanisms involved in cardiovascular diseases. METHODS: In this study, two types of electrode, tungsten needle probes and GaIn electrodes, were used respectively to noiselessly conduct invasive and noninvasive ECG recordings of Drosophila. To further analyze electrode properties, circuit models were established and simulated. By using electromagnetic shielded heart signal acquiring system, consisted of analog amplification and digital filtering, the ECG signals of three phenotypes that have different heart functions were recorded without dissection. RESULTS AND DISCUSSION: The ECG waveforms of different phenotypes of Drosophila recorded invasively and repeatedly with n value (n>5 performed obvious difference in heart rate. In long period ECG recordings, non-invasive method implemented by GaIn electrodes acts relatively stable in both amplitude and period. To analyze GaIn electrode, the correctness of GaIn electrode model established by this paper was validated, presenting accuracy, stability, and reliability. CONCLUSIONS: Noninvasive ECG recording by GaIn electrodes was presented for recording Drosophila pupae ECG signals within a limited contact area and signal strength. Thus, the observation of ECG changes in normal and SERCA-depleted Drosophila over an extended period is feasible. This method prolongs insect survival time while conserving major ECG features, and provides a platform for

  20. Effect of top gate bias on photocurrent and negative bias illumination stress instability in dual gate amorphous indium-gallium-zinc oxide thin-film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunji; Chowdhury, Md Delwar Hossain; Park, Min Sang; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-12-07

    We have studied the effect of top gate bias (V{sub TG}) on the generation of photocurrent and the decay of photocurrent for back channel etched inverted staggered dual gate structure amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Upon 5 min of exposure of 365 nm wavelength and 0.7 mW/cm{sup 2} intensity light with negative bottom gate bias, the maximum photocurrent increases from 3.29 to 322 pA with increasing the V{sub TG} from −15 to +15 V. By changing V{sub TG} from negative to positive, the Fermi level (E{sub F}) shifts toward conduction band edge (E{sub C}), which substantially controls the conversion of neutral vacancy to charged one (V{sub O} → V{sub O}{sup +}/V{sub O}{sup 2+} + e{sup −}/2e{sup −}), peroxide (O{sub 2}{sup 2−}) formation or conversion of ionized interstitial (O{sub i}{sup 2−}) to neutral interstitial (O{sub i}), thus electron concentration at conduction band. With increasing the exposure time, more carriers are generated, and thus, maximum photocurrent increases until being saturated. After negative bias illumination stress, the transfer curve shows −2.7 V shift at V{sub TG} = −15 V, which gradually decreases to −0.42 V shift at V{sub TG} = +15 V. It clearly reveals that the position of electron quasi-Fermi level controls the formation of donor defects (V{sub O}{sup +}/V{sub O}{sup 2+}/O{sub 2}{sup 2−}/O{sub i}) and/or hole trapping in the a-IGZO /interfaces.

  1. Influence of source and drain contacts on the properties of indium-gallium-zinc-oxide thin-film transistors based on amorphous carbon nanofilm as barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Xu, Hua; Zhao, Mingjie; Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2015-02-18

    Amorphous indium-gallium-zinc-oxide thin film transistors (α-IGZO TFTs) with damage-free back channel wet-etch (BCE) process were achieved by introducing a carbon nanofilm as a barrier layer. We investigate the effects of different source-and-drain (S/D) materials on TFT performance. We find the TFT with Ti/C S/D electrodes exhibits a superior performance with higher output current, lower threshold voltage, and higher effective electron mobility compared to that of Mo/C S/D electrodes. Transmittance electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to analysis the interfacial interaction between S/D metal/C/α-IGZO layers. The results indicate that the better performance of TFTs with Ti/C electrodes should be attributed to the formations of Ti-C and Ti-O at the Ti/C-contact regions, which lead to a lower contact resistance, whereas Mo film is relatively stable and does not react easily with C nanofilm, resulting in a nonohmic contact behavior between Mo/C and α-IGZO layer. However, both kinds of α-IGZO TFTs show good stability under thermal bias stress, indicating that the inserted C nanofilms could avoid the impact on the α-IGZO channel regions during S/D electrodes formation. Finally, we successfully fabricated a high-definition active-matrix organic lighting emitting diode prototype driven by α-IGZO TFTs with Ti/C electrodes in a pilot line.

  2. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    International Nuclear Information System (INIS)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan; Park, Jozeph; Ahn, Byung Du; Kim, Hyun-Suk

    2015-01-01

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping

  3. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan, E-mail: khs3297@cnu.ac.kr, E-mail: drlife@kookmin.ac.kr [School of Electrical Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Park, Jozeph [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Ahn, Byung Du [School of Electrical and Electronic Engineering, Yonsei University, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Hyun-Suk, E-mail: khs3297@cnu.ac.kr, E-mail: drlife@kookmin.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2015-03-23

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  4. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination

    Energy Technology Data Exchange (ETDEWEB)

    Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk [Electrical Engineering Division, Cambridge University, J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Powell, M. J. [252, Valley Drive, Kendal LA9 7SL (United Kingdom)

    2014-04-07

    It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65–0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10{sup 6}−10{sup 7} s{sup −1}, which suggests a weak localization of carriers in band tail states over a 20–40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage

  5. Electronic and chemical properties of indium clusters

    International Nuclear Information System (INIS)

    Rayane, D.; Khardi, S.; Tribollet, B.; Broyer, M.; Melinon, P.; Cabaud, B.; Hoareau, A.

    1989-01-01

    Indium clusters are produced by the inert gas condensation technique. The ionization potentials are found higher for small clusters than for the Indium atom. This is explained by the p character of the bonding as in aluminium. Doubly charge clusters are also observed and fragmentation processes discussed. Finally small Indium clusters 3< n<9 are found very reactive with hydrocarbon. (orig.)

  6. Using KrF ELA to Improve Gate-Stacked LaAlO₃/ZrO₂ Indium Gallium Zinc Oxide Thin-Film Transistors with Novel Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition Technique.

    Science.gov (United States)

    Wu, Chien-Hung; Chang, Kow-Ming; Chen, Yi-Ming; Huang, Bo-Wen; Zhang, Yu-Xin; Wang, Shui-Jinn

    2018-03-01

    Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique and KrF excimer laser annealing (ELA) were employed for the fabrication of indium gallium zinc oxide thin-film transistors (IGZO-TFTs). Device with a 150 mJ/cm2 laser annealing densities demonstrated excellent electrical characteristics with improved on/off current ratio of 4.7×107, high channel mobility of 10 cm2/V-s, and low subthreshold swing of 0.15 V/dec. The improvements are attributed to the adjustment of oxygen vacancies in the IGZO channel to an appropriate range of around 28.3% and the reduction of traps at the high-k/IGZO interface.

  7. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    Science.gov (United States)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  8. Activation Analysis of Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Brune, Dag

    1961-01-15

    An analysis of pure aluminium alloyed with magnesium was per- formed by means of gamma spectrometry , Chemical separations were not employed. The isotopes to be determined were obtained in conditions of optimum activity by suitably choosing the time of irradiation and decay. The following elements were detected and measured quantitatively: Iron, zinc, copper, gallium, manganese, chromium, scandium and hafnium.

  9. Study the physical and optoelectronic properties of silver gallium indium selenide AgGaInSe2/Si heterojunction solar cell

    Science.gov (United States)

    Hassun, Hanan K.

    2018-05-01

    AgGa1-x InxSe2 (AGIS) thin films was deposited on Si and glass substrates by thermal evaporation at RT and different ratios of Indium (x=0.2, 0.5, 0.8). The synthetics properties of AGIS thin film have been examined using X-ray diffraction and AFM. AGIS thin films possessed a polycrystalline tetragonal structure. Average diameter and roughness calculated from AFM images shows an increase in its value with increasing the ratios of Indium. Hall measurements showed n-type conduction with high mobility. The AgGa0.2In0.8Se2 thin film solar cell with a band gap of 1.65eV exhibit a total efficiency of 6.3% with open-circuit voltage Voc 0.38V, short circuit current Jsc 29 mA/cm2, fill factor FF 0.571 and total area 1 cm2. The built-in potential Vbi, concentration of majoritarian carrier ND and depletion width w are definite under different ratios of Indium from C-V amount.

  10. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears

    2017-05-01

    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  11. Remarkable changes in interface O vacancy and metal-oxide bonds in amorphous indium-gallium-zinc-oxide thin-film transistors by long time annealing at 250 °C

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Md Delwar Hossain; Um, Jae Gwang; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2014-12-08

    We have studied the effect of long time post-fabrication annealing on negative bias illumination stress (NBIS) of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Annealing for 100 h at 250 °C increased the field effect mobility from 14.7 cm{sup 2}/V s to 17.9 cm{sup 2}/V s and reduced the NBIS instability remarkably. Using X-ray photoelectron spectroscopy, the oxygen vacancy and OH were found to exist at the interfaces of a-IGZO with top and bottom SiO{sub 2}. Long time annealing helps to decrease the vacancy concentration and increase the metal-oxygen bonds at the interfaces; this leads to increase in the free carrier concentrations in a-IGZO and field-effect mobility. X-ray reflectivity measurement indicated the increment of a-IGZO film density of 5.63 g cm{sup −3} to 5.83 g cm{sup −3} (3.4% increase) by 100 h annealing at 250 °C. The increase in film density reveals the decrease of O vacancy concentration and reduction of weak metal-oxygen bonds in a-IGZO, which substantially helps to improve the NBIS stability.

  12. Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y{sub 2}O{sub 3} passivation

    Energy Technology Data Exchange (ETDEWEB)

    An, Sungjin; Mativenga, Mallory; Kim, Youngoo; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-08-04

    We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%) + ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectron spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.

  13. Remarkable changes in interface O vacancy and metal-oxide bonds in amorphous indium-gallium-zinc-oxide thin-film transistors by long time annealing at 250 °C

    International Nuclear Information System (INIS)

    Chowdhury, Md Delwar Hossain; Um, Jae Gwang; Jang, Jin

    2014-01-01

    We have studied the effect of long time post-fabrication annealing on negative bias illumination stress (NBIS) of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Annealing for 100 h at 250 °C increased the field effect mobility from 14.7 cm 2 /V s to 17.9 cm 2 /V s and reduced the NBIS instability remarkably. Using X-ray photoelectron spectroscopy, the oxygen vacancy and OH were found to exist at the interfaces of a-IGZO with top and bottom SiO 2 . Long time annealing helps to decrease the vacancy concentration and increase the metal-oxygen bonds at the interfaces; this leads to increase in the free carrier concentrations in a-IGZO and field-effect mobility. X-ray reflectivity measurement indicated the increment of a-IGZO film density of 5.63 g cm −3 to 5.83 g cm −3 (3.4% increase) by 100 h annealing at 250 °C. The increase in film density reveals the decrease of O vacancy concentration and reduction of weak metal-oxygen bonds in a-IGZO, which substantially helps to improve the NBIS stability

  14. Reduced thermal quenching in indium-rich self-organized InGaN/GaN quantum dots

    KAUST Repository

    Elafandy, Rami T.; Bhattacharya, Pallab K.; Cha, Dong Kyu; Ng, Tien Khee; Ooi, Boon S.; Zhang, Meng

    2012-01-01

    Differences in optical and structural properties of indium rich (27), indium gallium nitride (InGaN) self-organized quantum dots (QDs), with red wavelength emission, and the two dimensional underlying wetting layer (WL) are investigated. Temperature

  15. Thermal effects from modified endodontic laser tips used in the apical third of root canals with erbium-doped yttrium aluminium garnet and erbium, chromium-doped yttrium scandium gallium garnet lasers.

    Science.gov (United States)

    George, Roy; Walsh, Laurence J

    2010-04-01

    To evaluate the temperature changes occurring on the apical third of root surfaces when erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser energy was delivered with a tube etched, laterally emitting conical tip and a conventional bare design optical fiber tip. Thermal effects of root canal laser treatments on periodontal ligament cells and alveolar bone are of concern in terms of safety. A total of 64 single-rooted extracted teeth were prepared 1 mm short of the working length using rotary nickel-titanium Pro-Taper files to an apical size corresponding to a F5 Pro-Taper instrument. A thermocouple located 2 mm from the apex was used to record temperature changes arising from delivery of laser energy through laterally emitting conical tips or plain tips, using an Er:YAG or Er,Cr:YSGG laser. For the Er:YAG and Er,Cr:YSGG systems, conical fibers showed greater lateral emissions (452 + 69% and 443 + 64%) and corresponding lower forward emissions (48 + 5% and 49 + 5%) than conventional plain-fiber tips. All four combinations of laser system and fiber design elicited temperature increases less than 2.5 degrees C during lasing. The use of water irrigation attenuated completely the thermal effects of individual lasing cycles. Laterally emitting conical fiber tips can be used safely under defined conditions for intracanal irradiation without harmful thermal effects on the periodontal apparatus.

  16. Solvothermal synthesis and characterisation of new one-dimensional indium and gallium sulphides: [C1N4H26]0.5[InS2] and [C1N4H26]0.5[GaS2

    International Nuclear Information System (INIS)

    Vaqueiro, Paz

    2006-01-01

    Two new main group metal sulphides, [C 1 N 4 H 26 ] 0.5 [InS 2 ] (1) and [C 1 N 4 H 26 ] 0.5 [GaS 2 ] (2) have been prepared solvothermally in the presence of 1,4-bis(3-aminopropyl)piperazine and their crystal structures determined by single-crystal X-ray diffraction. Both compounds are isostructural and crystallise in the monoclinic space group P2 1 /n (Z=4), with a=6.5628(5), b=11.2008(9), c=12.6611(9) A and β=94.410(4) o (wR=0.035) for compound (1) and a=6.1094(5), b=11.2469(9), c=12.7064(10) A and β=94.313(4) o (wR=0.021) for compound (2). The structure of [C 1 N 4 H 26 ] 0.5 [MS 2 ] (M=In,Ga) consists of one-dimensional [MS 2 ] - chains which run parallel to the crystallographic a axis and are separated by diprotonated amine molecules. These materials represent the first example of solvothermally prepared one-dimensional gallium and indium sulphides. -- Graphical abstract: [C 1 N 4 H 26 ] 0.5 [InS 2 ] and [C 1 N 4 H 26 ] 0.5 [GaS 2 ], prepared under solvothermal conditions, consist of one-dimensional [MS 2 ] - chains separated by diprotonated 1,4-bis(3-aminopropyl)piperazine molecules

  17. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Choi, Kyung Cheol, E-mail: shkp@kaist.ac.kr, E-mail: kyungcc@kaist.ac.kr [School of Electrical Engineering, KAIST, Daejeon 34141 (Korea, Republic of); Park, Sang-Hee Ko, E-mail: shkp@kaist.ac.kr, E-mail: kyungcc@kaist.ac.kr [Department of Material Science and Engineering, KAIST, Daejeon 34141 (Korea, Republic of)

    2016-05-02

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al{sub 2}O{sub 3}, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔV{sub th}) was 0 V even after a PBS time (t{sub stress}) of 3000 s under a gate voltage (V{sub G}) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔV{sub th} value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔV{sub th} values resulting from PBS quantitatively, the average oxide charge trap density (N{sub T}) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher N{sub T} resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of N{sub T} near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  18. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Choi, Kyung Cheol; Park, Sang-Hee Ko

    2016-01-01

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al_2O_3, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔV_t_h) was 0 V even after a PBS time (t_s_t_r_e_s_s) of 3000 s under a gate voltage (V_G) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔV_t_h value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔV_t_h values resulting from PBS quantitatively, the average oxide charge trap density (N_T) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher N_T resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of N_T near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  19. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Burghoorn, M.; Kniknie, B.; Deelen, J. van; Ee, R. van [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Xu, M. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Delft University of Technology, Optics Group, Van der Waalsweg 8, 2628 CH, Delft (Netherlands); Vroon, Z. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Zuyd Hogeschool, Nieuw Eyckholt 300, 6419 DJ, Heerlen (Netherlands); Belt, R. van de [Kriya Materials BV, Urmonderbaan 22, 6167 RD, Geleen (Netherlands); Buskens, P., E-mail: pascal.buskens@tno.nl, E-mail: buskens@dwi.rwth-aachen.de [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); DWI – Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen (Germany)

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency of CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.

  20. Improving the efficiency of copper indium gallium (Di-selenide (CIGS solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Directory of Open Access Journals (Sweden)

    M. Burghoorn

    2014-12-01

    Full Text Available Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-selenide (CIGS solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%. No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  1. Aluminium production

    International Nuclear Information System (INIS)

    Winter, B.; Ayers, J.; Sammer, G.

    2001-01-01

    Aluminium is the most important non-ferrous metal by quantity. Aluminium is produced by electrolysis of aluminium oxide (also known as alumina). Alumina is produced by refining bauxite. The quantity of primary and secondary aluminium production in ECE-countries between 1992 and 1998 is shown. The European aluminium industry employs approximately 200 000 employees. The annual aluminium production in the European Union was 3.58 million tonnes in 1994, of which 44 % was secondary aluminium. In 1996 3.96 million tonnes of aluminium were produced in the EU, of which 44 % was secondary aluminium. (author)

  2. The Availability of Indium: The Present, Medium Term, and Long Term

    Energy Technology Data Exchange (ETDEWEB)

    Lokanc, Martin [Colorado School of Mines, Golden, CO (United States); Eggert, Roderick [Colorado School of Mines, Golden, CO (United States); Redlinger, Michael [Colorado School of Mines, Golden, CO (United States)

    2015-10-01

    Demand for indium is likely to increase if the growth in deployment of the copper-indium-gallium-selenide (CIGS) and III-V thin-film photovoltaic technologies accelerates. There are concerns about indium supply constraints since it is relatively rare element in the earth's crust and because it is produced exclusively as a byproduct.

  3. Microstructures of group III-nitrides after implantation with gallium

    International Nuclear Information System (INIS)

    Kench, P.J.

    2001-05-01

    High doses of gallium have been implanted into layers of aluminium nitride (AIN), indium nitride (InN) and amorphous silicon nitride (a-SiN x ) in an attempt to bond gallium with nitrogen and form binary or ternary alloys. The microstructure of the resultant layers have been characterised using, principally, transmission electron microscopy and X-ray photoelectron spectroscopy. The implantation of a high dose of Ga ions into AIN was successful in synthesising a GaN/GaAlN compound. The resultant layers were largely uniform but contained aluminium precipitates near the surface. These precipitates were pure Al and were most common in the region associated with the maximum Ga concentration. Deconvolution of X-ray photoelectron spectroscopy peaks indicated that Ga existed in a number of chemical states, including the nitride. Electron diffraction patterns from the implanted layers were closely indexed to both AIN and GaN. A further N implant was used to reduce the concentration of the aluminium precipitates and increase the concentration of GaN bonds. The yield of Ga-N bonds dramatically increased and a reduction in the concentration of Al precipitates was observed. Laser and thermal annealing was performed on the implanted AIN substrates. The near surface regions of the implanted specimens appeared to free of precipitates and bubbles. Laser annealing did have a noticeable effect on the electrical and optical properties of the layers. After laser annealing the conductivity of the Ga implanted layer was lower, indicating that the quality of the material had improved. PL measurements showed that a new PL peak at 2.6 eV appeared after laser annealing. It has been found that implanting InN with gallium can yield Ga-N bonds. However, Ga implants into InN were not as successful at synthesising GaN compounds as those by implanting Ga into AIN, due to the low thermal stability of InN. The implanted InN layers were very irregular and contained large indium precipitates and

  4. Aluminium bridges, aluminium bridge decks

    NARCIS (Netherlands)

    Soetens, F.; Straalen, IJ.J. van

    2003-01-01

    Applications of aluminium have grown considerably in building and civil engineering the last decade. In building and civil engineering the increase of aluminium applications is due to various aspects like light weight, durability and maintenance, use of extrusions, and esthetics. The paper starts

  5. [Mechanism of renal elimination of 2 elements of group IIIA of the periodic table : aluminum and indium].

    Science.gov (United States)

    Galle, P

    1981-01-05

    Aluminium and indium, two elements of group IIIA of the periodic table, are concentrated by the kidney inside lysosomes of proximal tubule cell. In these lysosomes, aluminium and indium are precipitated as non-soluble phosphate salts and these precipitates are then expelled in the tubular lumen and eliminated with the urinary flow. These data have been visualized by analytical microscopy (ion microscopy and X ray microanalysis). Local acid phosphatases are assumed to permit the concentration of aluminium and indium salts inside the lysosomes.

  6. Structural influence of aluminium, gallium and indium metal oxides by means of dielectric and spectroscopic properties of CaO-Sb{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass system

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasa Reddy, M. [Department of Physics, Acharya Nagarjuna University P.G. Centre, Nuzvid 521 201, AP (India); Naga Raju, G. [Department of Physics, Acharya Nagarjuna University P.G. Centre, Nuzvid 521 201, AP (India); Nagarjuna, G. [Department of Chemistry, Acharya Nagarjuna University, Nagarjunanagar, AP (India); Veeraiah, N. [Department of Physics, Acharya Nagarjuna University P.G. Centre, Nuzvid 521 201, AP (India)]. E-mail: nvr8@rediffmail.com

    2007-07-12

    Dielectric constant ({epsilon}'), loss (tan {delta}), ac conductivity ({sigma}) of CaO-Sb{sub 2}O{sub 3}-B{sub 2}O{sub 3}:M{sub 2}O{sub 3} (Al{sub 2}O{sub 3}, Ga{sub 2}O{sub 3} and In{sub 2}O{sub 3}) glasses with varying concentrations of M{sub 2}O{sub 3} (0-5 mol%), were measured as a function of frequency and temperature over moderately wide ranges. The analysis of results of these studies along with IR, Raman and optical absorption spectra and also DTA studies indicated that in the concentration ranges, 0 {<=} Al{sub 2}O{sub 3} {<=} 4, 0 {<=} Ga{sub 2}O{sub 3} {<=} 2 and 1 {<=} In{sub 2}O{sub 3} {<=} 5, Al{sup 3+}, Ga{sup 3+} ions occupy tetrahedral positions whereas In{sup 3+} ions take up octahedral substitutional positions, cross-link with the other structural units in the glass network and increase the rigidity of the glass network.

  7. Metal Contacts to Gallium Arsenide.

    Science.gov (United States)

    Ren, Fan

    1991-07-01

    While various high performance devices fabricated from the gallium arsenide (GaAs) and related materials have generated considerable interest, metallization are fundamental components to all semiconductor devices and integrated circuits. The essential roles of metallization systems are providing the desired electrical paths between the active region of the semiconductor and the external circuits through the metal interconnections and contacts. In this work, in-situ clean of native oxide, high temperature n-type, low temperature n-type and low temperature p-type ohmic metal systems have been studied. Argon ion mill was used to remove the native oxide prior to metal deposition. For high temperature process n-type GaAs ohmic contacts, Tungsten (W) and Tungsten Silicide (WSi) were used with an epitaxial grown graded Indium Gallium Arsenide (InGaAs) layer (0.2 eV) on GaAs. In addition, refractory metals, Molybdenum (Mo), was incorporated in the Gold-Germanium (AuGe) based on n-type GaAs ohmic contacts to replace conventional silver as barrier to prevent the reaction between ohmic metal and chlorine based plasma as well as the ohmic metallization intermixing which degrades the device performance. Finally, Indium/Gold-Beryllium (In/Au-Be) alloy has been developed as an ohmic contact for p-type GaAs to reduce the contact resistance. The Fermi-level pinning of GaAs has been dominated by the surface states. The Schottky barrier height of metal contacts are about 0.8 V regardless of the metal systems. By using p-n junction approach, barrier height of pulsed C-doped layers was achieved as high as 1.4 V. Arsenic implantation into GaAs method was also used to enhance the barrier height of 1.6 V.

  8. Complexometric determination of scandium and aluminium

    International Nuclear Information System (INIS)

    Tikhonov, V.N.

    1980-01-01

    Described is the complexometric determination of scandium and aluminium by the method of reverse titration of EDTA excess by indium salt solution in the presence of the xylenol orange indicator. For the method selectivity increase fluorides are used as a camouflage substance at low pH values (2.5-3.0). The excess fluoride-ions preventing titration are bound by boric acid. Y, Tb, Ti, Zr, Cu, Zn, V, Mo, Co, Cr prevent the determination of Sc and Al

  9. Looking Down Under for a Circular Economy of Indium.

    Science.gov (United States)

    Werner, Tim T; Ciacci, Luca; Mudd, Gavin Mark; Reck, Barbara K; Northey, Stephen Alan

    2018-02-20

    Indium is a specialty metal crucial for modern technology, yet it is potentially critical due to its byproduct status in mining. Measures to reduce its criticality typically focus on improving its recycling efficiency at end-of-life. This study quantifies primary and secondary indium resources ("stocks") for Australia through a dynamic material-flow analysis. It is based on detailed assessments of indium mineral resources hosted in lead-zinc and copper deposits, respective mining activities from 1844 to 2013, and the trade of indium-containing products from 1988 to 2015. The results show that Australia's indium stocks are substantial, estimated at 46.2 kt in mineral resources and an additional 14.7 kt in mine wastes. Australian mineral resources alone could meet global demand (∼0.8 kt/year) for more than five decades. Discarded material from post-consumer products, instead, is negligible (43 t). This suggests that the resilience of Australia's indium supply can best be increased through efficiency gains in mining (such as introducing domestic indium refining capacity) rather than at the end of the product life. These findings likely also apply to other specialty metals, such as gallium or germanium, and other resource-dominated countries. Finally, the results illustrate that national circular economy strategies can differ substantially.

  10. Investigations in gallium removal

    Energy Technology Data Exchange (ETDEWEB)

    Philip, C.V.; Pitt, W.W. [Texas A and M Univ., College Station, TX (United States); Beard, C.A. [Amarillo National Resource Center for Plutonium, TX (United States)

    1997-11-01

    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated.

  11. Investigations in gallium removal

    International Nuclear Information System (INIS)

    Philip, C.V.; Pitt, W.W.; Beard, C.A.

    1997-11-01

    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated

  12. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T., E-mail: torsten.boeck@ikz-berlin.de [Leibniz-Institute for Crystal Growth, Max-Born-Straße 2, Berlin 12489 (Germany); Symietz, C.; Bonse, J.; Andree, S.; Krüger, J. [Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, Berlin 12205 (Germany); Heidmann, B.; Schmid, M. [Department of Physics, Freie Universität Berlin, Arnimalle 14, Berlin 14195 (Germany); Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Lux-Steiner, M. [Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Heterogeneous Material Systems, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany)

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  13. Aluminium in human sweat.

    Science.gov (United States)

    Minshall, Clare; Nadal, Jodie; Exley, Christopher

    2014-01-01

    It is of burgeoning importance that the human body burden of aluminium is understood and is measured. There are surprisingly few data to describe human excretion of systemic aluminium and almost no reliable data which relate to aluminium in sweat. We have measured the aluminium content of sweat in 20 healthy volunteers following mild exercise. The concentration of aluminium ranged from 329 to 5329μg/L. These data equate to a daily excretion of between 234 and 7192μg aluminium and they strongly suggest that perspiration is the major route of excretion of systemic aluminium in humans. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Surface Passivation of CIGS Solar Cells Using Gallium Oxide

    KAUST Repository

    Garud, Siddhartha

    2018-02-27

    This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5 nm passivation layer show an substantial absolute improvement of 56 mV in open-circuit voltage (VOC), 1 mA cm−2 in short-circuit current density (JSC), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).

  15. Variation of pHS value of mercury-dropping electrode layer in the process of molecular oxygen electro-reduction in polarographic determination of indium(3), cadmium(2), and thallium(1)

    International Nuclear Information System (INIS)

    Statsyuk, V.N.; Dergacheva, M.B.

    1998-01-01

    Quantitative evaluation of the pH S variation of an electrode layer in the process of molecular oxygen electroreduction in the indium(3), cadmium(2) and thallium(1) solutions by means of gallium introduction is carried out. the accomplished studied showed the possibility for determination of small amounts 10 -5 -10 -4 mole/l of indium at the background of the gallium concentrated solutions without removal of dissolved oxygen

  16. Recovery of galium and indium from liquid crystal displays and CIGS photovailtaic modules

    NARCIS (Netherlands)

    Bisselink, R.; Steeghs, W.; Brouwer, J.G.H.

    2014-01-01

    Abstract: The increasing amount of electronics, such as consumer products and green technologies (e.g. solar PV cells) increases the demand of metals such as indium and gallium. This increasing demand together with the dependency on import of these metals drive research on recycling of waste

  17. Human exposure to aluminium.

    Science.gov (United States)

    Exley, Christopher

    2013-10-01

    Human activities have circumvented the efficient geochemical cycling of aluminium within the lithosphere and therewith opened a door, which was previously only ajar, onto the biotic cycle to instigate and promote the accumulation of aluminium in biota and especially humans. Neither these relatively recent activities nor the entry of aluminium into the living cycle are showing any signs of abating and it is thus now imperative that we understand as fully as possible how humans are exposed to aluminium and the future consequences of a burgeoning exposure and body burden. The aluminium age is upon us and there is now an urgent need to understand how to live safely and effectively with aluminium.

  18. Femtosecond Nonlinearities in Indium Gallium Arsenic Phosphide Diode Lasers

    Science.gov (United States)

    Hall, Katherine Lavin

    Semiconductor optical amplifiers are receiving increasing attention for possible applications to broadband optical communication and switching systems. In this thesis we report the results of an extensive experimental study of the ultrafast gain and refractive index nonlinearities in 1.5 μm InGaAsP laser diode amplifiers. The temporal resolution afforded by the femtosecond optical pulses used in these experiments allows us to study carrier interactions with other carriers as well as carrier interactions with the lattice. The 100-200 fs optical pulses used in the pump -probe experiments are generated by an Additive Pulse Modelocked color center laser. The measured group velocity dispersion in the diodes ranged from -0.6 to -0.95 mu m^{-1 }. Differences in the group velocity for TE - and TM-polarized pulses suggested that cross-polarized pump-probe pulses walk off from each other in the diode. This walk-off can diminish the time resolution of some experiments. A novel heterodyne pump-probe technique was developed to distinguish collinear, copolarized, pump and probe pulses that were nominally at the same wavelength. Comparing cross-polarized and copolarized pump-probe results yielded new information about the physical mechanisms responsible for nonlinear gain in the diodes. We observed a gain compression across the entire bandwidth of the diode, associated with carrier heating. The hot carrier distribution cooled back to the lattice temperature with a 0.6 to 1.0 ps time constant, depending on the device structure. In addition, we observed a 0.1 to 0.25 ps delay in onset of carrier heating. Large gain compression due to two photon absorption was also observed. A small portion of the nonlinear gain is attributed to spectral hole burning. Pulsewidth-dependent output saturation energies were explained by a rate equation model that included the effect of carrier heating. Measurements of pump-induced probe phase changes revealed index nonlinearities due to delayed carrier heating and an instantaneous electronic, or virtual process. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  19. Czochralski growth of gallium indium antimonide alloy crystals

    Energy Technology Data Exchange (ETDEWEB)

    Tsaur, S.C.

    1998-02-01

    Attempts were made to grow alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb by the conventional Czochralski process. A transparent furnace was used, with hydrogen purging through the chamber during crystal growth. Single crystal seeds up to about 2 to 5 mole% InSb were grown from seeds of 1 to 2 mole% InSb, which were grown from essentially pure GaSb seeds of the [111] direction. Single crystals were grown with InSb rising from about 2 to 6 mole% at the seed ends to about 14 to 23 mole% InSb at the finish ends. A floating-crucible technique that had been effective in reducing segregation in doped crystals, was used to reduce segregation in Czochralski growth of alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb. Crystals close to the targeted composition of 1 mole% InSb were grown. However, difficulties were encountered in reaching higher targeted InSb concentrations. Crystals about 2 mole% were grown when 4 mole% was targeted. It was observed that mixing occurred between the melts rendering the compositions of the melts; and, hence, the resultant crystal unpredictable. The higher density of the growth melt than that of the replenishing melt could have triggered thermosolutal convection to cause such mixing. It was also observed that the floating crucible stuck to the outer crucible when the liquidus temperature of the replenishing melt was significantly higher than that of the growth melt. The homogeneous Ga{sub 1{minus}x}In{sub x}Sb single crystals were grown successfully by a pressure-differential technique. By separating a quartz tube into an upper chamber for crystal growth and a lower chamber for replenishing. The melts were connected by a capillary tube to suppress mixing between them. A constant pressure differential was maintained between the chambers to keep the growth melt up in the growth chamber. The method was first tested with a low temperature alloy Bi{sub 1{minus}x}Sb{sub x}. Single crystals of Ga{sub 1{minus}x}In{sub x}Sb were grown with uniform compositions up to nearly 5 mole% InSb.

  20. Growth and characterization of indium antimonide and gallium ...

    Indian Academy of Sciences (India)

    Unknown

    ous impurity distribution and low dislocation density to ... The incorporation of stress in the lattice due to differential thermal ... fabricated. It was then integrated into a home-made ..... During the course of this work some of the main problems.

  1. Solubility of uranium in liquid gallium, indium and their alloys

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Maltsev, Dmitry S.; Yamschikov, Leonid F.; Osipenko, Alexander G.; Kormilitsyn, Mikhail V.

    2014-01-01

    Pyrochemical reprocessing of spent nuclear fuels (SNF) employing molten salts and liquid metals as working media is considered as a possible alternative to the existing liquid extraction (PUREX) processes. Liquid salts and metals allow reprocessing highly irradiated high burn-up fuels with short cooling times, including the fuels of fast neutron reactors. Pyrochemical technology opens a way to practical realization of short closed fuel cycle. Liquid low-melting metals are immiscible with molten salts and can be effectively used for separation (or selective extraction) of SNF components dissolved in fused salts. Binary or ternary alloys of eutectic compositions can be employed to lower the melting point of the metallic phase. However, the information on SNF components behaviour and properties in ternary liquid metal alloys is very scarce

  2. Possible role of ectomycorrhizal fungi in cycling of aluminium in podzols

    NARCIS (Netherlands)

    Smits, M.M.; Hoffland, E.

    2009-01-01

    Budget studies in boreal podzols indicate a considerable upward transport of aluminium (Al) from the mineral soil into the organic horizon. In this paper we studied if ectomycorrhizal (EcM) fungi can be involved in this upward transport via their extramatrical hyphae. We tested the use of gallium

  3. Gallium scintigraphy in AIDS

    International Nuclear Information System (INIS)

    Van der Wall, Hans; Provan, I.; Murray, C.; Dwyer, M.; Jones, P.D.

    1990-01-01

    Gallium-67 scanning, indicated either for the elucidation of symptoms or for the assessment of appropriate therapy, was performed in 56 AIDS patients who underwent a total of 77 scans from 1986 to 1988. The age range of the patients was 13-66 years with an average age of 39 years. The majority of patients (95%) were male homosexuals. Gallium scanning has been applied to a wide spectrum of malignancies and to the detection of occult infections. Several mechanisms of uptake have been postulated for the localization of gallium. In general, gallium-67 acts as an analogue of the ferric ion, binding to transferrin soon after intravenous injection. It is believed that it is bound to transferrin receptors on the surface of tumour cells with subsequent intracellular transport. In infection, the association is probably with lactoferrin elaborated by polymorphonuclear cells and siderophores elaborated by bacteria. Gallium-67 is normally distributed to bone and bone marrow, liver, spleen, breast and bowel. In particular, the concentration in the ascending and transverse colon necessitates adequate bowel preparation. Lacrimal, nasopharyngeal and genital activity may also be seen. 11 refs., 2 tabs., 6 figs

  4. Thermodynamic properties of uranium in gallium–aluminium based alloys

    International Nuclear Information System (INIS)

    Volkovich, V.A.; Maltsev, D.S.; Yamshchikov, L.F.; Chukin, A.V.; Smolenski, V.V.; Novoselova, A.V.; Osipenko, A.G.

    2015-01-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  5. Thermodynamic properties of uranium in gallium–aluminium based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Volkovich, V.A., E-mail: v.a.volkovich@urfu.ru [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Maltsev, D.S.; Yamshchikov, L.F. [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Chukin, A.V. [Department of Theoretical Physics and Applied Mathematics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Smolenski, V.V.; Novoselova, A.V. [Institute of High-Temperature Electrochemistry UD RAS, Ekaterinburg, 620137 (Russian Federation); Osipenko, A.G. [JSC “State Scientific Centre - Research Institute of Atomic Reactors”, Dimitrovgrad, 433510 (Russian Federation)

    2015-10-15

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  6. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Nan, E-mail: nanniu@fas.harvard.edu; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Zhu, Tongtong; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States)

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  7. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    International Nuclear Information System (INIS)

    Niu, Nan; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L.; Zhu, Tongtong; Oliver, Rachel A.; Quan, Qimin

    2015-01-01

    We report exceptionally low thresholds (9.1 μJ/cm 2 ) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance

  8. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    Science.gov (United States)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  9. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    Science.gov (United States)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  10. High-performance indium gallium phosphide/gallium arsenide heterojunction bipolar transistors

    Science.gov (United States)

    Ahmari, David Abbas

    Heterojunction bipolar transistors (HBTs) have demonstrated the high-frequency characteristics as well as the high linearity, gain, and power efficiency necessary to make them attractive for a variety of applications. Specific applications for which HBTs are well suited include amplifiers, analog-to-digital converters, current sources, and optoelectronic integrated circuits. Currently, most commercially available HBT-based integrated circuits employ the AlGaAs/GaAs material system in applications such as a 4-GHz gain block used in wireless phones. As modern systems require higher-performance and lower-cost devices, HBTs utilizing the newer, InGaP/GaAs and InP/InGaAs material systems will begin to dominate the HBT market. To enable the widespread use of InGaP/GaAs HBTs, much research on the fabrication, performance, and characterization of these devices is required. This dissertation will discuss the design and implementation of high-performance InGaP/GaAs HBTs as well as study HBT device physics and characterization.

  11. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    Science.gov (United States)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm towards smaller values was observed when the stripe width was reduced from 1 μm to 50 nm. At the same time a strong fourfold enhancement of the light emission from the patterned region over the unpatterned area was observed. Micro-patterned LEDs showed non-linear scaling of the light output power, and an enhancement of 39 % was achieved for structures with an area fill ratio of 0.5 over an LED with square mesa. Growth of cubic GaN and cubic GaInN/GaN LEDs was shown by M-OVPE in Vshaped grooves formed by the {111} planes of etched silicon. SEM images of the GaN layer in small ( 0.5 μm) regions show a contrast change where the phase boundary between cubic and wurtzite GaN is expected to occur. The growth parameter space is explored for optimal conditions while minimizing the alloying problem for GaN growth on Si. The cubic GaN phase is confirmed by electron back-scatter diffraction (EBSD) in the V-groove center, whereas wurtzite GaN is found near the groove edges. Luminescence of undoped GaN and GaInN/GaN multi-quantum well structures was studied by cathodoluminescence (CL). The undoped cubic GaN structure showed strong band-edge luminescence at 385 nm (3.22 eV) at 78 K, whereas for the MQW device strong emission at 498 nm is observed, even at room temperature. Full cubic LED structures were grown, and wavelength-stable electroluminescence at 489 nm was demonstrated. LEDs with integrated light extraction structures are grown on free-standing GaN substrates with different off-cut angles. The devices with different off-cut show pronounced features at the top surface that also penetrate the active region. For a 2.24° off-cut, these features resemble fish scales, where the feature sizes are in the μm-range. The 2.24° off-cut LED shows a 3.6-fold increased light output power compared to a LED on virtually on-axis substrate with 0.06° off-cut. The enhancement found in the fish scale LEDs is attributed to increased light scattering, effectively reducing the fraction of trapped light. These results show the potential of structures on the micro and nanometer scale for LED device performance and the progress on cubic GaN could open alternative ways to understand the droop problem.

  12. Aluminium in Infrastructures

    NARCIS (Netherlands)

    Maljaars, J.

    2016-01-01

    Aluminium alloys are used in infrastructures such as pedestrian bridges or parts of it such as handrail. This paper demonstrates that aluminium alloys are in principle also suited for heavy loaded structures, such as decks of traffic bridges and helicopter landing platforms. Recent developments in

  13. Aluminium beverage can recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lewinski, A von

    1985-08-01

    Canned beverages have become a controversial issue in this era of ecological sensitivity. METALL has already discussed the problem of can recycling. The present article discusses the technical aspects of aluminium can recycling. Two further articles will follow on aluminium can recycling in North America and on the results of European pilot projects.

  14. Germanium and indium

    Science.gov (United States)

    Shanks, W.C. Pat; Kimball, Bryn E.; Tolcin, Amy C.; Guberman, David E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Germanium and indium are two important elements used in electronics devices, flat-panel display screens, light-emitting diodes, night vision devices, optical fiber, optical lens systems, and solar power arrays. Germanium and indium are treated together in this chapter because they have similar technological uses and because both are recovered as byproducts, mainly from copper and zinc sulfides.The world’s total production of germanium in 2011 was estimated to be 118 metric tons. This total comprised germanium recovered from zinc concentrates, from fly ash residues from coal burning, and from recycled material. Worldwide, primary germanium was recovered in Canada from zinc concentrates shipped from the United States; in China from zinc residues and coal from multiple sources in China and elsewhere; in Finland from zinc concentrates from the Democratic Republic of the Congo; and in Russia from coal.World production of indium metal was estimated to be about 723 metric tons in 2011; more than one-half of the total was produced in China. Other leading producers included Belgium, Canada, Japan, and the Republic of Korea. These five countries accounted for nearly 95 percent of primary indium production.Deposit types that contain significant amounts of germanium include volcanogenic massive sulfide (VMS) deposits, sedimentary exhalative (SEDEX) deposits, Mississippi Valley-type (MVT) lead-zinc deposits (including Irish-type zinc-lead deposits), Kipushi-type zinc-lead-copper replacement bodies in carbonate rocks, and coal deposits.More than one-half of the byproduct indium in the world is produced in southern China from VMS and SEDEX deposits, and much of the remainder is produced from zinc concentrates from MVT deposits. The Laochang deposit in Yunnan Province, China, and the VMS deposits of the Murchison greenstone belt in Limpopo Province, South Africa, provide excellent examples of indium-enriched deposits. The SEDEX deposits at Bainiuchang, China (located in

  15. Rows of Dislocation Loops in Aluminium Irradiated by Aluminium Ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.

    1967-01-01

    Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along <110 > directions. ©1967 The American Institute of Physics......Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along directions. ©1967 The American Institute of Physics...

  16. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  17. Sputter deposited gallium doped ZnO for TCO applications

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Marc; Kronenberger, Achim; Polity, Angelika; Meyer, Bruno [I. Physikalisches Institut, Justus Liebig Universitaet Giessen (Germany); Blaesing, Juergen; Krost, Alois [FNW/IEP/AHE, Otto-von-Guericke Universitaet Magdeburg (Germany)

    2010-07-01

    Transparent conducting oxides to be used for flat panel or display applications should exhibit low electrical resistivity in line with a high optical transmission in the visible spectral range. Today indium-tin-oxide is the material which meets these requirements best. However, the limited availability of indium makes it useful to search for alternatives and ZnO doped with group III elements are promising candidates. While the Al doping in high concentrations causes problems due to the formation of insulating Al-oxides, Gallium related oxides are typically n-type conducting wide band gap semiconductors. Therefore we deposited Gallium doped ZnO thin films on quartz and sapphire substrates by radio frequency magnetron sputtering with a ZnO/Ga{sub 2}O{sub 3}(3at%) composite target. The substrate temperature and the oxygen flow during the sputtering process were varied to optimise the layer properties. Introducing oxygen to the sputtering gas allowed to vary the resistivity of the films by three orders of magnitude from about 1 {omega}cm down to less than 1 m{omega}cm.

  18. Hot electron light emission in gallium arsenide/aluminium(x) gallium(1-x) arsenic heterostructures

    Science.gov (United States)

    Teke, Ali

    In this thesis we have demonstrated the operation of a novel tunable wavelength surface light emitting device. The device is based on a p-GaAs, and n-Ga1- xAlxAs heterojunction containing an inversion layer on the p- side, and GaAs quantum wells on the n- side, and, is referred to as HELLISH-2 (Hot Electron Light Emitting and Lasing in Semiconductor Heterostructure-Type 2). The devices utilise hot electron longitudinal transport and, therefore, light emission is independent of the polarity of the applied voltage. The wavelength of the emitted light can be tuned with the applied bias from GaAs band-to-band transition in the inversion layer to e1-hh1 transition in the quantum wells. In this work tunable means that the device can be operated at either single or multiple wavelength emission. The operation of the device requires only two diffused in point contacts. In this project four HELLISH-2 samples coded as ES1, ES2, ES6 and QT919 have been studied. First three samples were grown by MBE and the last one was grown by MOVPE techniques. ES1 was designed for single and double wavelength operation. ES2 was a control sample used to compare our results with previous work on HELLISH-2 and ES6 was designed for single, double and triple wavelength operation. Theoretical modelling of the device operation was carried out and compared with the experimental results. HELLISH-2 structure was optimised for low threshold and high efficiency operation as based on our model calculations. The last sample QT919 has been designed as an optimised device for single and double wavelength operation like ES1. HELLISH-2 has a number of advantages over the conventional light emitters, resulting in some possible applications, such as light logic gates and wavelength division multiplexing in optoelectronic.

  19. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  20. Recovery in aluminium

    DEFF Research Database (Denmark)

    Gundlach, Carsten

    2006-01-01

    In the present thesis the development of a unique experimental method for volume characterisation of individual embedded crystallites down to a radius of 150 nm is presented. This method is applied to in-situ studies of recovery in aluminium. The method is an extension of 3DXRD microscopy, an X...... are represented as strings. To identify the strings a combination of a 5D connected component type algorithm and multi-peak fitting was found to be superior. The first use of the method was a study of recovery of a deformed aluminium alloy (AA1050). The aluminium alloy was deformed by cold rolling to a thickness...

  1. Optical properties of aluminium-gallium-nitride semiconductors; Optische Eigenschaften von Aluminium-Galliumnitrid-Halbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Roeppischer, Marcus

    2011-08-17

    In this work fundamental optical properties of AlN, GaN and their alloys are presented. Spectroscopic ellipsometry from the near infrared (NIR) to the vacuum-ultraviolet (VUV) spectral region was the main tool to investigate these properties. The complete dielectric function (DF) of cubic as well as hexagonal GaN and AlN in the range between 0.6 eV and 20 eV is shown here, for the first time. A layer model including surface roughness and buffer layers was used to separate the DF of the investigated layer from the measured pseudo-DF. Afterwards all absorption structures in the DF's are discussed in detail. Due to the comparison with calculated bandstructures these absorption structures could be connected to interband transitions at high symmetry points in the Brillouin zone (BZ). Within this analysis similarities and differences between GaN and AlN are discussed. For zincblende (zb) AlN a pronounced absorption tail below the direct band gap transition was detected. This behaviour is typical for a phonon-assisted indirect absorption. In contrast zb-GaN exhibits a clear direct absorption. Furthermore, a change in the energetic position of the two main interband absorptions E1 and E2 at the L- and X-point of the BZ was found. A detailed analysis of the anisotropic fundamental band gap of hexagonal AlN offers a interchange of the two topmost valance bands at the BZ center compared to GaN. Due to this permutation the fundamental band edge of wurtzit (wz) AlN is only visible for parallel polarized light, while for GaN it can be detect in the perpendicular configuration. By analysing the energetic position of the three excitonic transitions the crystal-field- and spin-orbit-splitting were defined to be {delta}{sub cr}=-226 meV and {delta}{sub so}=14 meV. In addition, the energetic positions for these transitions at T=15 K are 6.0465 eV, 6.2694 eV and 6.2775 eV. The comparison between measurements at room and low temperature shows an energetic shift for both absorption edges of about 80 meV. By comparing the energetic positions of the excitonic transitions with the lattice parameters of different samples on silicon, sapphire and SiC substrate the influence of strain on the optical properties of wz-AlN was investigated. Due to this analysis the deformation potentials within the cubic approximation were calculated. Finally the spectral region below the fundamental band gap absorption of cubic AlGaN layers were studied. Therefore an analytical model was developed to calculate the dispersion in the transparent range for an arbitrary Al-content.

  2. Group 13 β-ketoiminate compounds: gallium hydride derivatives as molecular precursors to thin films of Ga2O3.

    Science.gov (United States)

    Pugh, David; Marchand, Peter; Parkin, Ivan P; Carmalt, Claire J

    2012-06-04

    Bis(β-ketoimine) ligands, [R{N(H)C(Me)-CHC(Me)═O}(2)] (L(1)H(2), R = (CH(2))(2); L(2)H(2), R = (CH(2))(3)), linked by ethylene (L(1)) and propylene (L(2)) bridges have been used to form aluminum, gallium, and indium chloride complexes [Al(L(1))Cl] (3), [Ga(L(n))Cl] (4, n = 1; 6, n = 2) and [In(L(n))Cl] (5, n = 1; 7, n = 2). Ligand L(1) has also been used to form a gallium hydride derivative [Ga(L(1))H] (8), but indium analogues could not be made. β-ketoimine ligands, [Me(2)N(CH(2))(3)N(H)C(R')-CHC(R')═O] (L(3)H, R' = Me; L(4)H, R' = Ph), with a donor-functionalized Lewis base have also been synthesized and used to form gallium and indium alkyl complexes, [Ga(L(3))Me(2)] (9) and [In(L(3))Me(2)] (10), which were isolated as oils. The related gallium hydride complexes, [Ga(L(n))H(2)] (11, n = 3; 12, n = 4), were also prepared, but again no indium hydride species could be made. The complexes were characterized mainly by NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The β-ketoiminate gallium hydride compounds (8 and 11) have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted (AA)CVD with toluene as the solvent. The quality of the films varied according to the precursor used, with the complex [Ga(L(1))H] (8) giving by far the best quality films. Although the films were amorphous as deposited, they could be annealed at 1000 °C to form crystalline Ga(2)O(3). The films were analyzed by powder XRD, SEM, and EDX.

  3. Gallium--A smart metal

    Science.gov (United States)

    Foley, Nora; Jaskula, Brian W.

    2013-01-01

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  4. Electrospun Gallium Nitride Nanofibers

    International Nuclear Information System (INIS)

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-01-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH 3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  5. Lattice Dynamics of Gallium Phosphide

    International Nuclear Information System (INIS)

    Yarnell, J.L.; Warren, J.L.; Wenzel, R.G.; Dean, P.J.

    1968-01-01

    Dispersion curves for phonons propagating in the [100], [110], and [111] directions in gallium phosphide have been measured using a triple-axis neutron diffraction spectrometer operating in the constant-Q mode. The sample was a pseudo-single crystal which was prepared by gluing together 36 single crystal plates of gallium phosphide 1 to 2.5 cm in diameter and ∼0.07 cm thick. The plates were grown epitaxially on substrates of gallium arsenide or gallium phosphide, and aligned individually by neutron diffraction. Rocking curves for eight reflections symmetrically distributed in the plane of the experiment had full widths at half maximum in the range 0.52° - 0.58° and were approximately Gaussian in shape. Gallium phosphide crystallizes in the zinc blende structure. A group theoretic analysis of the lattice dynamics of this structure and a shell model fit to the measured dispersion curves are presented. Various optical properties of gallium phosphide are discussed in terms of the phonon dispersion curves. In particular, the phonons which assist indirect electronic transitions are identified as those at the zone boundary in the [100] direction (symmetry point X) in agreement with theoretical and experimental indications that the extrema of the conduction and valence bands are at X and Γ (center of the zone), respectively. The LO branches lie above the TO branches throughout the Brillouin zone in contradiction to the predictions of Keyes and Mitra. The shell model fit indicates that the charge on the gallium atom is negative. (author)

  6. Gallium interstitial contributions to diffusion in gallium arsenide

    Science.gov (United States)

    Schick, Joseph T.; Morgan, Caroline G.

    2011-09-01

    A new diffusion path is identified for gallium interstitials, which involves lower barriers than the barriers for previously identified diffusion paths [K. Levasseur-Smith and N. Mousseau, J. Appl. Phys. 103, 113502 (2008), P. A. Schultz and O. A. von Lilienfeld, Modelling and Simulation in Materials Science and Engineering 17, 084007 (2009)] for the charge states which dominate diffusion over most of the available range of Fermi energies. This path passes through the ⟨110⟩ gallium-gallium split interstitial configuration, and has a particularly low diffusion barrier of 0.35 eV for diffusion in the neutral charge state. As a part of this work, the character of the charge states for the gallium interstitials which are most important for diffusion is investigated, and it is shown that the last electron bound to the neutral interstitial occupies a shallow hydrogenic bound state composed of conduction band states for the hexagonal interstitial and both tetrahedral interstitials. How to properly account for the contributions of such interstitials is discussed for density-functional calculations with a k-point mesh not including the conduction band edge point. Diffusion barriers for gallium interstitials are calculated in all the charge states which can be important for a Fermi level anywhere in the gap, q = 0, +1, +2, and +3, for diffusion via the ⟨110⟩ gallium-gallium split interstitial configuration and via the hexagonal interstitial configuration. The lowest activation enthalpies over most of the available range of Fermi energies are found to correspond to diffusion in the neutral or singly positive state via the ⟨110⟩ gallium-gallium split interstitial configuration. It is shown that several different charge states and diffusion paths contribute significantly for Fermi levels within 0.2 eV above the valence band edge, which may help to explain some of the difficulties [H. Bracht and S. Brotzmann, Phys. Rev. B 71, 115216 (2005)] which have been

  7. Ion nitriding of aluminium

    International Nuclear Information System (INIS)

    Fitz, T.

    2002-09-01

    The present study is devoted to the investigation of the mechanism of aluminium nitriding by a technique that employs implantation of low-energy nitrogen ions and diffusional transport of atoms. The nitriding of aluminium is investigated, because this is a method for surface modification of aluminium and has a potential for application in a broad spectrum of fields such as automobile, marine, aviation, space technologies, etc. However, at present nitriding of aluminium does not find any large scale industrial application, due to problems in the formation of stoichiometric aluminium nitride layers with a sufficient thickness and good quality. For the purposes of this study, ion nitriding is chosen, as an ion beam method with the advantage of good and independent control over the process parameters, which thus can be related uniquely to the physical properties of the resulting layers. Moreover, ion nitriding has a close similarity to plasma nitriding and plasma immersion ion implantation, which are methods with a potential for industrial application. (orig.)

  8. Raw materials for aluminium production

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to to raw materials which used in aluminium production. Therefore, the using of alumina, and fluoride salts in aluminium production was considered. The physical properties of alumina were studied.

  9. Prospects for recovering gallium from extracted coal

    Energy Technology Data Exchange (ETDEWEB)

    Ratynskiy, V M; Reznik, A M; Zekel, L A; Zharov, Yu N

    1979-01-01

    The authors conducted research in order to establish the physical-chemical mechanisms governing the behavior of rare and dispersed elements within the thermal treatment processes used to treat coal and enrichment waste. New means are proposed for obtaining concentrations of gallium. These methods are under consideration primarily for the isolation of gallium as a by-product during the production of aggloporite from coal waste. The authors examine in detail the results of research dealing with the transfer of gallium compounds in a solution, the extraction of gallium from solutions, the separation of impurities from gallium, and the isolation of gallium from extract. Utilizing research results, the authors determine the expenditure coefficient and costs for additives used to extract gallium from waste by-products. The realization of this gallium extraction process from those products having the best prospects for gallium content resulted in economic savings.

  10. Fatal aluminium phosphide poisoning

    Directory of Open Access Journals (Sweden)

    Meena Mahesh Chand

    2015-06-01

    Full Text Available Aluminium phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. AlP has currently aroused interest with a rising number of cases in the past four decades due to increased use for agricultural and non-agricultural purposes. Its easy availability in the markets has increased also its misuse for committing suicide. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. Poisoning with AlP has often occurred in attempts to commit suicide, and that more often in adults than in teenagers. This is a case of suicidal consumption of aluminium phosphide by a 32-year-old young medical anesthetist. Toxicological analyses detected aluminium phosphide. We believe that free access of celphos tablets in grain markets should be prohibited by law.

  11. Constructions of aluminium electrolytic cells

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to constructions of aluminium electrolytic cells. Therefore, the general characteristic and classification of aluminium electrolytic cells was considered. The anode and cathode structure was studied. The lining of cathode casing, the process of collection of anode gases, electrolytic cell cover, and electrical insulation was studied as well. The installation and dismantling of aluminium electrolytic cells was described.

  12. Gallium Safety in the Laboratory

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    2003-01-01

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002

  13. ASSESSMENT OF GALLIUM OXIDE TECHNOLOGY

    Science.gov (United States)

    2017-08-01

    AFRL-RY-WP-TR-2017-0167 ASSESSMENT OF GALLIUM OXIDE TECHNOLOGY Burhan Bayraktaroglu Devices for Sensing Branch Aerospace...TITLE AND SUBTITLE ASSESSMENT OF GALLIUM OXIDE TECHNOLOGY 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER N/A 6...report summarizes the current status of the Ga2O3 technology based on published results on theoretical electronic structure, materials growth, and

  14. Gallium and imaging studies

    International Nuclear Information System (INIS)

    Vogel, H.C.

    1982-01-01

    The indications for the use of 67 Gallium imaging studies of the lungs are discussed. In spite of localization of 67 Ga in a large variety of neoplastic and inflammatory tissues, there is only limited application of the lung study in the differential diagnosis of pulmonary diseases. The chest radiograph will continue to be the principal tool for evaluation of pulmonary diseases. The 67 Ga-citrate scan serves as a study complementary to the chest radiograph, as it indicates the localization, extent and degree of activity of lung disease with greater accuracy than radiography. Gallium-67 scanning may be used in the evaluation of patients with lymphoreticular neoplasms, especially Hodgkin-disease and malignant lymphoma both during initial staging and in evaluation of the response to therapy. The 67 Ga-citrate scan is useful in the pre-operative evaluation of patients with lung cancer. Hilar and mediastinal lymphadenopathy are accurately revealed. The lung study is non-invasive and complementary to mediastinoscopy by showing from which glands a biopsy might be taken. Unsuspected extrathoracic secondaries may be shown up, as well as pulmonary metastases from malignancies elsewhere, although the metastases must be at least 1,5 cm in size. The 67 Ga lung scan is valuable in the evaluation of pulmonary infiltrates of suspicious infective etiology, the differentiation between pulmonary infection and pneumonia in selected cases, follow-up of sarcoid patients on corticosteroid therapy, evaluation of inflammatory activity of idiopathic pulmonary fibrosis and the early detection of neo-plastic or inflammatory diseases before the chest radiograph reveals abnormality, e.g. in diffuse carcinomatosis or Pneumocystis carinii-infection. The sensitivity of tumors to radiation or chemotherapy may be shown

  15. Indium and thallium

    International Nuclear Information System (INIS)

    1976-01-01

    The physical and the chemical properties and methods for producing indium and its main compounds have been studied. Presented are the major fields of application of the metal, inclusive of the atomic and space engineering. Described are the natural occurrence and the types of deposits of this disseminated element. Given are the main methods for extracting In from various raw materials, the methods being also evaluated economically. It is inferred, that all the conditions being equal, the extraction technique yields In at a lesser cost, a higher recovery and higher labour productivity. Described are methods for manufacturing the frequently used In compounds, such as the antimonide, arsenide, phosphide

  16. Structural variations in nanosized confined gallium

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Kai [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Tien Cheng [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)] [Center for Micro/Nano Science of Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China); Charnaya, E.V., E-mail: charnaya@live.co [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)] [Institute of Physics, St. Petersburg State University, St. Petersburg, Petrodvorets 198504 (Russian Federation); Sheu, Hwo-Shuenn [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Kumzerov, Yu.A. [A.F. Ioffe Physico-Technical Institute RAS, St. Petersburg, 194021 (Russian Federation)

    2010-03-29

    The complex crystalline structure of gallium under nanoconfinement was revealed by synchrotron radiation x-ray powder diffraction. Nanoconfinement was shown to stabilize delta-Ga which is metastable in bulk. Two new gallium phases named iota- and kappa-Ga were found upon cooling below room temperature. These crystalline modifications were stable and coexisted with known gallium phases. Correlations between confined gallium particle shapes and emergence of particular crystalline phases were observed. Melting and freezing temperatures for different gallium phases were obtained. Remarkable supercooling of liquid gallium was seen in 3.5 nm pores.

  17. Anelasticity of polycrystalline indium

    Energy Technology Data Exchange (ETDEWEB)

    Sapozhnikov, K., E-mail: k.sapozhnikov@mail.ioffe.ru [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Golyandin, S. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Kustov, S. [Dept. de Fisica, Universitat de les Illes Balears, Cra Valldemossa km 7.5, E 07122 Palma de Mallorca (Spain)

    2009-09-15

    Mechanisms of anelasticity of polycrystalline indium have been studied over wide ranges of temperature (7-320 K) and strain amplitude (2 x 10{sup -7}-3.5 x 10{sup -4}). Measurements of the internal friction and Young's modulus have been performed by means of the piezoelectric resonant composite oscillator technique using longitudinal oscillations at frequencies of about 100 kHz. The stages of the strain amplitude dependence of the internal friction and Young's modulus defect, which can be attributed to dislocation - point defect and dislocation - dislocation interactions, have been revealed. It has been shown that thermal cycling gives rise to microplastic straining of polycrystalline indium due to the anisotropy of thermal expansion and to appearance of a 'recrystallization' internal friction maximum in the temperature spectra of amplitude-dependent anelasticity. The temperature range characterized by formation of Cottrell's atmospheres of point defects around dislocations has been determined from the acoustic data.

  18. Fire exposed aluminium structures

    NARCIS (Netherlands)

    Maljaars, J.; Fellinger, J.E.J.; Soetens, F.

    2005-01-01

    Material properties and mechanical response models for fire design of steel structures are based on extensive research and experience. Contrarily, the behaviour of aluminium load bearing structures exposed to fire is relatively unexplored. This article gives an overview of physical and mechanical

  19. Sintered aluminium powders

    International Nuclear Information System (INIS)

    Stepanova, M.G.; Matveev, B.I.

    1974-01-01

    The mechanical and physical properties of aluminium powder alloys and the various methods employed to produce them are considered. Data are given on the hardening of the alloys SAP and SPAK-4, as well as the powder-alloy system Al-Cr-Zr. (L.M.)

  20. Superconductivity and structure of gallium under nanoconfinement

    Energy Technology Data Exchange (ETDEWEB)

    Charnaya, E V; Tien, Cheng; Lee, Min Kai [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Kumzerov, Yu A [A F Ioffe Physico-Technical Institute RAS, St Petersburg, 194021 (Russian Federation)

    2009-11-11

    Superconductivity and crystalline structure were studied for two nanocomposites consisting of gallium loaded porous glasses with different pore sizes. The superconducting transition temperatures were found to differ from those in known bulk gallium modifications. The transition temperatures 7.1 and 6.7 K were ascribed to two new confined gallium structures, iota- and kappa-Ga, observed by synchrotron radiation x-ray powder diffraction. The evolution of superconductivity on decreasing the pore filling with gallium was also studied.

  1. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.

    2010-04-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  2. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.; Kube, R.; Bracht, Hartmut A.; Grimes, Robin W.; Schwingenschlö gl, Udo

    2010-01-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  3. Hydrogen inventory in gallium

    International Nuclear Information System (INIS)

    Mazayev, S.N.; Prokofiev, Yu.G.

    1994-01-01

    Investigations of hydrogen inventory in gallium (99.9%) were carried out after saturation both from molecular phase and from glow discharge plasma at room temperature, 370 and 520 K. Saturation took place during 3000 s under hydrogen pressure of 20 Pa, and ion flux was about 1x10 15 ions/cm 2 s with an energy about 400 eV during discharge. Hydrogen concentration in Ga at room temperature and that for 370 K by the saturation from gaseous phase was (2-3)x10 14 cm -3 Pa -1/2 . Hydrogen concentration at temperature 520 K increased by five times. Inventory at room temperature for irradiation from discharge was 7x10 16 cm -3 at the dose about 3x10 18 ions/cm 2 . It was more than inventory at temperature 520 K by four times and more than maximum inventory from gaseous phase at 520 K by a factor of 10. Inventory increased when temperature decreased. Diffusion coefficient D=0.003 exp(-2300/RT) cm 2 /s, was estimated from temperature dependence. ((orig.))

  4. Indium recovery by solvent extraction

    International Nuclear Information System (INIS)

    Fortes, Marilia Camargos Botelho

    1999-04-01

    Indium has been recovered as a byproduct from residues generated from the sulfuric acid leaching circuits in mineral plants for zinc recovery. Once its recovery comes from the slags of other metals recovery, it is necessary to separate it from the other elements which usually are present in high concentrations. Many works have been approaching this separation and indicate the solvent extraction process as the main technique used. In Brazilian case, indium recovery depends on the knowledge of this technique and its development. This paper describes the solvent extraction knowledge for the indium recovery from aqueous solutions generated in mineral plants. The results for determination of the best experimental conditions to obtain a high indium concentration solution and minimum iron poisoning by solvent extraction with di (2-ethylhexyl)-phosphoric acid (D2EHPA) solubilized in isoparafin and exxsol has been presented. (author)

  5. Gallium scintigraphy in Hansen's disease

    International Nuclear Information System (INIS)

    Braga, F.J.H.N.; Sao Paulo Univ., SP; Araejo, E.B.; Camargo, E.E.; Tedesco-Marchesi, L.C.M.; Rivitti, M.C.M.; Bouladour, H.; Galle, P.

    1991-01-01

    Gallium 67 imaging was used in 12 patients with documented Hansen's disease undergoing treatment or not in an attempt to determine the pattern of the disease. Diagnosis was confirmed by histopathology in all patients. The Mitsuda reaction was seen in all patients. Specific nuclear studies were performed when needed to evaluate particular organs better. Gallium 67 images show homogeneous, diffuse and moderate accumulation over the entire skin surface (except for the face) of untreated patients with multibacillary disease. The face skin in these cases presented homogeneous, diffuse but very marked uptake of gallium. Internal organ involvement was variable. There was a very good correlation among clinical, scintigraphical, immunological and histopathological data. The pattern of the body skin ('skin outlining') and face skin ('beard distribution') may be distinct for untreated patients with multibacillary leprosy. (orig.)

  6. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  7. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    International Nuclear Information System (INIS)

    Morgado, Jorge; Barbagallo, Nunzio; Charas, Ana; Matos, Manuel; Alcacer, Luis; Cacialli, Franco

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide

  8. Medical Applications and Toxicities of Gallium Compounds

    Directory of Open Access Journals (Sweden)

    Christopher R. Chitambar

    2010-05-01

    Full Text Available Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use.

  9. Laser welding of aluminium alloys

    OpenAIRE

    Forsman, Tomas

    2000-01-01

    This thesis treats laser welding of aluminium alloys from a practical perspective with elements of mathematical analysis. The theoretical work has in all cases been verified experimentally. The aluminium alloys studied are from the 5xxx and 6xxx groups which are common for example in the automotive industry. Aluminium has many unique physical properties. The properties which more than others have been shown to influence the welding process is its high reflection, high thermal conductivity, lo...

  10. Chapter 1. Economic aspects of aluminium production

    International Nuclear Information System (INIS)

    Yanko, E.A.; Kabirov, Sh.O.; Safiev, Kh.; Azizov, B.S.; Mirpochaev, Kh.A.

    2011-01-01

    This article is devoted to economic aspects of aluminium production. Therefore, the perspectives of development of aluminium production, the base components of aluminium cost and economic security of enterprise are considered in this chapter.

  11. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... of the cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  12. Potential effects of gallium on cladding materials

    International Nuclear Information System (INIS)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented

  13. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon

    2015-04-01

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Fatigue test on aluminium bridges

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Straalen, van IJ.J.

    2005-01-01

    Traffic bridges are subjected to variable loads and should therefore be checked on fatigue. Especially low weight materials, like aluminium, are sensitive to fatigue, because the variable load is a substantial part of the total load. This paper shows the structural design of an aluminium bridge

  15. Advanced shipbuilding in aluminium

    International Nuclear Information System (INIS)

    Larsson, H.; Svensson, L.E.; Karlsson, L.

    1997-01-01

    The applicability of two different welding techniques for welding ships in aluminium is discussed. Conventional MIG welding and the recently developed Friction Super Stir Welding (FSSW) are compared concerning weld metal microstructures and mechanical properties. Results from testing of FSSW welds are also presented. It was observed that the grain size was smaller in FSSW welds are also presented. It was observed that the grain size was smaller in FSSW welds than in MIG welds whereas precipitates generally were larger in FSSW welds. The two methods produced welds with comparable mechanical properties. Good fatigue behaviour was obtained for FSSW welds. Advantages of the welding methods are also discussed. (Author) 7 refs

  16. Indium solar neutrino experiment using superconducting grains

    International Nuclear Information System (INIS)

    Bellefon, A. de; Espigat, P.

    1984-08-01

    In this paper we would like to emphasize the revival of interest for Indium experiment in Europe. Properties of metastable superconducting indium grains are presented and our progress towards making an experiment feasible is reviewed

  17. A review of the world market of indium (Economy of indium)

    International Nuclear Information System (INIS)

    Naumov, A.V.

    2005-01-01

    A review of the current state of the world and Russian markets of indium and indium-containing products was made based on the publications of the last years. Main fields of indium application are given, in particular, its using for neutron absorbing regulating rods in nuclear reactors. The second γ-radiation resulted from neutron absorption allows using indium as a neutron detector. Indium market stabilization is expected due to supply from China and South Korea [ru

  18. Gallium-67 scintigraphy and the Heart

    International Nuclear Information System (INIS)

    Garayt, D.

    1987-01-01

    Although gallium-67 was initially used for tumor imaging, clinical studies suggested its potential use as a method of detecting occult inflammatory lesions. The demonstration of diffuse myocardial uptake of gallium-67 during Lyme disease myocarditis is consistent with a pattern of diffuse myocarditis as seen in sarcoid myocarditis. Two cases are presented. A critical review of the various applications of gallium-67 scintigraphy to myocardium investigation is carried out [fr

  19. Collector for recovering gallium from weapons plutonium

    International Nuclear Information System (INIS)

    Philip, C.V.; Anthony, R.G.; Chokkaram, S.

    1998-09-01

    Currently, the separation of gallium from weapons plutonium involves the use of aqueous processing using either solvent extraction of ion exchange. However, this process generates significant quantities of liquid radioactive wastes. A Thermally Induced Gallium Removal process, or TIGR, developed by researchers at Los Alamos National Laboratories, is a simpler alternative to aqueous processing. This research examined this process, and the behavior of gallium suboxide, a vapor that is swept away by passing hydrogen/argon over gallium trioxide/plutonium oxide heated at 1100 C during the TIGR process. Through experimental procedures, efforts were made to prevent the deposition of corrosive gallium onto furnace and vent surfaces. Experimental procedures included three options for gallium removal and collection: (1) collection of gallium suboxide through use of a cold finger; (2) collection by in situ air oxidation; and (3) collection of gallium on copper. Results conclude all three collection mechanisms are feasible. In addition, gallium trioxide exists in three crystalline forms, and each form was encountered during each experiment, and that each form will have a different reactivity

  20. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.; John, E.K.; Barnhart, A.J.

    1990-01-01

    Several isotopes of gallium and copper exhibit nuclear properties that make them attractive for applications in nuclear medicine, most notably Ga-67, Ga-68, Cu-67 and Cu-62. Of these, gamma-emitting Ga-67 has historically found the greatest clinical use, based on the observation that tracer gallium(III) citrate rapidly produces Ga-67 transferrin upon intravenous injection and then slowly affords selective Ga-67 localization in sites of abscess and certain tumors. Copper-67 has received attention as a potential label for tissue-selective monoclonal antibodies, since its associated γ-photons can be used for external imaging and its β - -emissions could be used for radiation therapy. Positron-emitting gallium-68 and copper-62, being available from parent/daughter generator systems, have attracted interest as potential labels for radiopharmaceuticals used in positron emission tomography (PET) because they could reduce the dependence of this imaging technology on hospital-based cyclotrons. The 10 min. half-life of Cu-62 is particularly well-suited to the time frame of PET studies of tissue perfusion, an application for which Cu(II)-bis(thiosemicarbazone) derivatives appear promising. The 68 min. half-life of Ga-68 makes it appropriate for PET studies over longer imaging time spans

  1. Indium gallium zinc oxide (IGZO)-based Ohmic contact formation on n-type gallium antimony (GaSb)

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jeong-Hun; Jung, Hyun-Wook [Samsung-SKKU Graphene Center and School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Woo-Shik [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Park, Jin-Hong, E-mail: jhpark9@skku.edu [Samsung-SKKU Graphene Center and School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-02-14

    In this paper, Ohmic-like contact on n-type GaSb with on/off-current ratio of 1.64 is presented, which is formed at 500 °C by inserting IGZO between metal (Ni) and GaSb. The resulting Ohmic contact is systematically investigated by TOF-SIMS, HSC chemistry simulation, XPS, TEM, AFM, and J–V measurements. Two main factors contributing to the Ohmic contact formation are (1) InSb (or InGaSb) with narrow energy bandgap (providing low electron and hole barrier heights) formed by In diffusion from IGZO and Sb released by Ga oxidation, and (2) free Sb working as traps that induces tunneling current. - Highlights: • We demonstrate Ohmic-like contact on n-type GaSb with on/off-current ratio of 1.64. • The reverse current is increased by low electron barrier height and high TAT current. • The low electron barrier height is achieved by the formation of InGaSb. • Free Sb atoms also work as traps inducing high TAT current.

  2. Recycling of aluminium swarf by direct incorporation in aluminium melts

    OpenAIRE

    Puga, Hélder; Barbosa, J.; Soares, Delfim; Silva, Filipe Samuel; Ribeiro, Carlos Silva

    2009-01-01

    The purpose of this work was to recover a standard AlSi12Cu1 alloy from machining chips inside the foundry plant, by using an environmentally friend technique to produce cast ingots with characteristics similar to those of the commercially available 2nd melt raw material. The recyclability of aluminium swarf using different melting techniques and the influence of chips preparation in the aluminium alloy recovery rate and dross production was experimentally studied and evaluated...

  3. Control of gallium incorporation in sol–gel derived CuIn(1−x)GaxS2 thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Bourlier, Yoan; Cristini Robbe, Odile; Lethien, Christophe

    2015-01-01

    Highlights: • CuIn (1−x) Ga x S 2 thin films were prepared by sol–gel process. • Evolution of lattice parameters is characteristic of a solid solution. • Optical band gap was found to be linearly dependent on the gallium rate. - Abstract: In this paper, we report the elaboration of Cu(In,Ga)S 2 chalcopyrite thin films via a sol–gel process. To reach this aim, solutions containing copper, indium and gallium complexes were prepared. These solutions were thereafter spin-coated onto the soda lime glass substrates and calcined, leading to metallic oxides thin films. Expected chalcopyrite films were finally obtained by sulfurization of oxides layers using a sulfur atmosphere at 500 °C. The rate of gallium incorporation was studied both at the solutions synthesis step and at the thin films sulfurization process. Elemental and X-ray diffraction (XRD) analyses have shown the efficiency of monoethanolamine used as a complexing agent for the preparation of CuIn (1−x) Ga x S 2 thin layers. Moreover, the replacement of diethanolamine by monoethanolamine has permitted the substitution of indium by isovalent gallium from x = 0 to x = 0.4 and prevented the precipitation of copper derivatives. XRD analyses of sulfurized thin films CuIn (1−x) Ga x S 2, clearly indicated that the increasing rate of gallium induced a shift of XRD peaks, revealing an evolution of the lattice parameter in the chalcopyrite structure. These results were confirmed by Raman analyses. Moreover, the optical band gap was also found to be linearly dependent upon the gallium rate incorporated within the thin films: it varies from 1.47 eV for x = 0 to 1.63 eV for x = 0.4

  4. Flexible organic light-emitting diodes consisting of a platinum doped indium tin oxide anode

    International Nuclear Information System (INIS)

    Hsu, C-M; Huang, C-Y; Cheng, H-E; Wu, W-T

    2009-01-01

    This paper demonstrates that a flexible organic light-emitting diode (OLED) with a platinum (Pt)-doped indium tin oxide (ITO) anode could show superior electro-optical characteristics to those of a conventional device. The threshold voltage and turn-on voltage of an OLED device consisting of an aluminium/lithium fluoride/tris(8-hydroxyquinoline) aluminium/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4, 4'-diamine/Pt-doped ITO/ITO structure were reduced by 1.2 V and 0.8 V, respectively. Current efficiency was found improved for a driving voltage of less than 6.5 V as a result of the enhanced hole-injection rate, attributed mainly to the elevated surface work function and partly reduced surface roughness of ITO by the incorporated Pt atoms in the ITO matrix.

  5. Gallium 67 uptake in thymic rebound

    International Nuclear Information System (INIS)

    Hurst, R.; Sabio, H.; Teates, C.D.

    1988-01-01

    We have reported a case of localized thymic enlargement and uptake of gallium 67 in a child who had received antineoplastic chemotherapy. The enlarged thymus showed normal histology, a picture consistent with thymic rebound after nonspecific stress. This case further demonstrates the need to consider thymic rebound as a cause of gallium 67 uptake in children with neoplastic diseases

  6. Gallium-67 citrate scan in extrapulmonary tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Lin Wanyu [Taichung Veterans General Hospital (Taiwan). Dept. of Nuclear Medicine; Hsieh Jihfang [Chi-Mei Foundation Hospital, Tainan (Taiwan)

    1999-07-01

    Aim: Whole-body gallium scan was performed to evaluate the usefulness of gallium scan for detecting extrapulmonary tuberculosis (TB) lesions. Methods: Thirty-seven patients with extrapulmonary TB were included in this study. Four patients were found to have two lesions. Totally, 41 lesions were identified, including 19 TB arthritis, 8 spinal TB, 5 TB meningitis, 3 TB lymphadenopathy, 2 TB pericarditis, 1 TB peritonitis, 1 intestinal TB, 1 skin TB and 1 renal TB. Results: Of the 41 extrapulmonary TB lesions, gallium scan detected 32 lesions with a sensitivity of 78%. All the patients with TB meningitis showed negative gallium scan. When the five cases of TB meningitis were excluded, the detection sensitivity of gallium scan increased to 88.9% (32/36). Conclusion: Our data revealed that gallium scan is a convenient and useful method for evaluating extrapulmonary TB lesions other than TB-meningitis. We suggest that gallium scan be included in the clinical routine for patients with suspected extrapulmonary TB. (orig.) [German] Ziel: Es wurden Ganzkoerper-Gallium-Szintigramme angefertigt, um den Nutzen der Gallium-Szintigraphie zur Erfassung von extrapulmonalen Tuberkuloseherden (TB) zu erfassen. Methoden: 37 Patienten mit extrapulmonaler TB wurden eingeschlossen. 4 Patienten hatten 2 Laesionen. Insgesamt wurden 41 Laesionen identifiziert, hierunter 19 TB-Arthritis, 8 spinale TB, 5 TB-Meningitis, 3 TB-Lymphadenopathie, 2 TB-Perikarditis, 1 TB-Peritonitis, 1 intestinale TB, 1 Haut-TB und eine Nieren-TB. Ergebnisse: Von den 41 extrapulmonalen TB-Herden erfasste die Gallium-Szintigraphie 32 Herde mit einer Sensitivitaet von 78%. Alle Patienten mit TB-Meningitis zeigten einen negativen Gallium-Scan. Wenn die 5 Faelle mit TB-Meningitis ausgeschlossen wurden, stieg die Sensitivititaet der Gallium-Szintigraphie auf 88,9% (32/36). Schlussfolgerung: Die Daten zeigen, dass die Gallium-Szintigraphie eine einfache und nuetzliche Methode zur Erfassung extrapulmonaler TB-Herde ist

  7. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    Science.gov (United States)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  8. Surfactant effects of indium on cracking in AlN/GaN distributed Bragg reflectors grown via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Miller, C. M.; Korakakis, D.

    2011-01-01

    Aluminum Nitride (AlN) and Gallium Nitride (GaN) superlattice structures are often characterized by a network of cracks resulting from the large lattice mismatch and difference in thermal expansion coefficients, especially as the thickness of the layers increases. This work investigates the influence of indium as a surfactant on strain and cracking in AlN/GaN DBRs grown via Metal Organic Vapor Phase Epitaxy (MOVPE). DBRs with peak reflectivities ranging from 465 nm to 540 nm were grown and indium was introduced during the growth of the AlN layer. Image processing techniques were used to quantify the crack length per square millimeter and it was observed that indium has a significant effect on the crack formation and reduced the total crack length in these structures by a factor of two.

  9. Gallium nitride on gallium oxide substrate for integrated nonlinear optics

    KAUST Repository

    Awan, Kashif M.; Dolgaleva, Ksenia; Mumthaz Muhammed, Mufasila; Roqan, Iman S.

    2017-01-01

    Gallium Nitride (GaN), being a direct bandgap semiconductor with a wide bandgap and high thermal stability, is attractive for optoelectronic and electronic applications. Furthermore, due to its high optical nonlinearity — the characteristic of all 111-V semiconductors — GaN is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a plethora of apphcations, ranging from on-chip wavelength conversion to quantum computing. Although GaN devices are in commercial production, it still suffers from lack of a suitable substrate material to reduce structural defects like high densities of threading dislocations (TDs), stacking faults, and grain boundaries. These defects significandy deteriorate the optical quality of the epi-grown GaN layer, since they act as non-radiative recombination centers. Recent studies have shown that GaN grown on (−201) β-Gallium Oxide (Ga2O3) has superior optical quality due to a better lattice matching as compared to GaN grown on Sapphire (Al2O3) [1-3]. In this work, we report on the fabrication of GaN waveguides on GaiOj substrate and their optical characterization to assess their feasibihty for efficient four-wave mixing (FWM).

  10. Gallium nitride on gallium oxide substrate for integrated nonlinear optics

    KAUST Repository

    Awan, Kashif M.

    2017-11-22

    Gallium Nitride (GaN), being a direct bandgap semiconductor with a wide bandgap and high thermal stability, is attractive for optoelectronic and electronic applications. Furthermore, due to its high optical nonlinearity — the characteristic of all 111-V semiconductors — GaN is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a plethora of apphcations, ranging from on-chip wavelength conversion to quantum computing. Although GaN devices are in commercial production, it still suffers from lack of a suitable substrate material to reduce structural defects like high densities of threading dislocations (TDs), stacking faults, and grain boundaries. These defects significandy deteriorate the optical quality of the epi-grown GaN layer, since they act as non-radiative recombination centers. Recent studies have shown that GaN grown on (−201) β-Gallium Oxide (Ga2O3) has superior optical quality due to a better lattice matching as compared to GaN grown on Sapphire (Al2O3) [1-3]. In this work, we report on the fabrication of GaN waveguides on GaiOj substrate and their optical characterization to assess their feasibihty for efficient four-wave mixing (FWM).

  11. Gallium determination in biological samples

    International Nuclear Information System (INIS)

    Stulzaft, O.; Maziere, B.; Ly, S.

    1980-01-01

    A sensitive, simple and time-saving method has been developed for the neutron activation analysis of gallium at concentrations around 10 -4 ppm in biological tissues. After a 24-hour irradiation in a thermal neutron flux of 2.8x10 13 nxcm -2 xs -1 and a purification by ion-exchange chromatography to eliminate troublesome elements such as sodium, iron and copper, the 72 Ga activity is measured with enough accuracy for the method to be applicable in animal physiology and clinical toxicology. (author)

  12. Thermodynamics of gallium arsenide electrodeposition

    International Nuclear Information System (INIS)

    Perrault, G.G.

    1986-01-01

    Gallium Arsenide is well known as a very interesting compound for photoelectrical devices. Up to now, it has been prepared mostly by high temperature technology, and the authors considered that it might be of interest to set up an electrodeposition technique suitable to prepare thin layers of this compound. A reaction sequence similar to the one observed for Cadmium Sulfide or Cadmium Telluride could be considered. In these cases, the metal chalcogenide is obtained from the precipitation of the metal ions dissolved in the solutions by the reduction product of the metalloidic compound

  13. Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids

    International Nuclear Information System (INIS)

    Koo, Su-Jin; Ju, Chang-Sik

    2013-01-01

    Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, 80 .deg. C, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination

  14. Alloys of uranium and aluminium with low aluminium content

    International Nuclear Information System (INIS)

    Cabane, G.; Englander, M.; Lehmann, J.

    1955-01-01

    Uranium, as obtained after spinning in phase γ, presents an heterogeneous structure with large size grains. The anisotropic structure of the metal leads to an important buckling and surface distortion of the fuel slug which is incompatible with its tubular cladding for nuclear fuel uses. Different treatments have been made to obtain an isotropic structure presenting high thermal stability (laminating, hammering and spinning in phase α) without success. Alloys of uranium and aluminium with low aluminium content present important advantage in respect of non allied uranium. The introduction of aluminium in the form of intermetallic compound (UAl 2 ) gives a better resistance to thermal fatigue. Alloys obtained from raw casting present an improved buckling and surface distortion in respect of pure uranium. This improvement is obtained with uranium containing between 0,15 and 0,5 % of aluminium. An even more improvement in thermal stability is obtained by thermal treatments of these alloys. These new characteristics are explained by the fine dispersion of the UAl 2 particles in uranium. The results after treatments obtained from an alloy slug containing 0,4 % of aluminium show no buckling or surface distortion and no elongation. (M.P.)

  15. Indium flotation from hydrometallurgical solutions

    International Nuclear Information System (INIS)

    Sviridov, V.V.; Mal'tsev, G.I.; Petryakova, N.K.; Gomzikov, A.I.

    1980-01-01

    The principal possibility of flotation of indium small quantities (10 -4 gxion/l) is established from sulphuric-acid solutions of leaching converter dusts of the copper melting production in the form of complex compounds with sodium hexametaphosphate and cation-active nitrogen-containing surfactants. It is shown that the flotation process effectiveness is determined by the molar ratio of hexametaphosphate and collector introduced into the solution, solution oxidity and surfactant nature

  16. Light forces on an indium atomic beam

    International Nuclear Information System (INIS)

    Kloeter, B.

    2007-01-01

    In this thesis it was studied, whether indium is a possible candidate for the nanostructuration respectively atomic lithography. For this known method for the generation and stabilization of the light necessary for the laser cooling had to be fitted to the special properties of indium. The spectroscopy of indium with the 451 nm and the 410 nm light yielded first hints that the formulae for the atom-light interaction for a two-level atom cannot be directly transferred to the indium atom. By means of the obtained parameters of the present experiment predictions for a possible Doppler cooling of the indium atomic beam were calculated. Furthermore the possibility for the direct deposition of indium on a substrate was studied

  17. Extraction of indium from extremely diluted solutions; Gewinnung von Indium aus extrem verduennten Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Vostal, Radek; Singliar, Ute; Froehlich, Peter [TU Bergakademie Freiberg (Germany). Inst. fuer Technische Chemie

    2017-02-15

    The demand for indium is rising with the growth of the electronics industry, where it is mainly used. Therefore, a multistage extraction process was developed to separate indium from a model solution whose composition was adequate to sphalerite ore. The initially very low concentration of indium in the solution was significantly increased by several successive extraction and reextraction steps. The process described is characterized by a low requirement for chemicals and a high purity of the obtained indium oxide.

  18. Nanomechanical Characterization of Indium Nano/Microwires

    Directory of Open Access Journals (Sweden)

    N Kiran MSR

    2010-01-01

    Full Text Available Abstract Nanomechanical properties of indium nanowires like structures fabricated on quartz substrate by trench template technique, measured using nanoindentation. The hardness and elastic modulus of wires were measured and compared with the values of indium thin film. Displacement burst observed while indenting the nanowire. ‘Wire-only hardness’ obtained using Korsunsky model from composite hardness. Nanowires have exhibited almost same modulus as indium thin film but considerable changes were observed in hardness value.

  19. Dispersion strengthening of aluminium-aluminium-oxide products

    DEFF Research Database (Denmark)

    Hansen, Niels

    1970-01-01

    The true stress-true strain curves at room temperature and at 400°C were determined for various types of aluminium-aluminium-oxide products containing from 0.2 to 4.7 weight per cent of aluminium oxide. The effect of particles on the initial flow stress and the flow stress for 0.2% offset at room...... temperature and at 400°C is in agreement with Orowan's theory. The increase in flow stress at room temperature for strain values below 3 per cent was related to the plastic strain by the equation σ-σoy=k1ε 1/2, where σoy is the initial flow stress and where k1 increases for increasing volume fraction...... and decreasing particle size of the dispersed particles. A general expression for k1 was derived for the relationship between the dislocation density and the strain in dispersion-strengthened products...

  20. Gallium-67 citrate scan in extrapulmonary tuberculosis

    International Nuclear Information System (INIS)

    Lin Wanyu

    1999-01-01

    Aim: Whole-body gallium scan was performed to evaluate the usefulness of gallium scan for detecting extrapulmonary tuberculosis (TB) lesions. Methods: Thirty-seven patients with extrapulmonary TB were included in this study. Four patients were found to have two lesions. Totally, 41 lesions were identified, including 19 TB arthritis, 8 spinal TB, 5 TB meningitis, 3 TB lymphadenopathy, 2 TB pericarditis, 1 TB peritonitis, 1 intestinal TB, 1 skin TB and 1 renal TB. Results: Of the 41 extrapulmonary TB lesions, gallium scan detected 32 lesions with a sensitivity of 78%. All the patients with TB meningitis showed negative gallium scan. When the five cases of TB meningitis were excluded, the detection sensitivity of gallium scan increased to 88.9% (32/36). Conclusion: Our data revealed that gallium scan is a convenient and useful method for evaluating extrapulmonary TB lesions other than TB-meningitis. We suggest that gallium scan be included in the clinical routine for patients with suspected extrapulmonary TB. (orig.) [de

  1. Alloys of uranium and aluminium with low aluminium content; Alliages uranium-aluminium a faible teneur en aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Cabane, G; Englander, M; Lehmann, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Uranium, as obtained after spinning in phase {gamma}, presents an heterogeneous structure with large size grains. The anisotropic structure of the metal leads to an important buckling and surface distortion of the fuel slug which is incompatible with its tubular cladding for nuclear fuel uses. Different treatments have been made to obtain an isotropic structure presenting high thermal stability (laminating, hammering and spinning in phase {alpha}) without success. Alloys of uranium and aluminium with low aluminium content present important advantage in respect of non allied uranium. The introduction of aluminium in the form of intermetallic compound (UAl{sub 2}) gives a better resistance to thermal fatigue. Alloys obtained from raw casting present an improved buckling and surface distortion in respect of pure uranium. This improvement is obtained with uranium containing between 0,15 and 0,5 % of aluminium. An even more improvement in thermal stability is obtained by thermal treatments of these alloys. These new characteristics are explained by the fine dispersion of the UAl{sub 2} particles in uranium. The results after treatments obtained from an alloy slug containing 0,4 % of aluminium show no buckling or surface distortion and no elongation. (M.P.)

  2. Determination of Aluminium Content in Aluminium Hydroxide Formulation by FT-NIR Transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Søndergaard, Ib

    2007-01-01

    A method for determining the aluminium content of an aluminium hydroxide suspension using near infrared (NIR) transmittance spectroscopy has been developed. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used as reference method. The factors influencing the NIR analysis...... aluminium content in aluminium hydroxide suspension. (c) 2007 Elsevier Ltd. All rights reserved....

  3. Synthesis and properties of bimetallic aluminium alkoxides

    International Nuclear Information System (INIS)

    Vyshinskaya, K.I.; Vasil'ev, G.A.; Vishnyakova, T.A.

    1997-01-01

    A single stage method of aluminium bimetallic alkoxide synthesis, which consists in activated aluminium reaction with metal salts in the relevant alcohols, has been developed. Properties of the compounds prepared are described

  4. Preparation of aluminium lakes by electrocoagulation

    OpenAIRE

    Prapai Pradabkham

    2008-01-01

    Aluminium lakes have been prepared by electrocoagulation employing aluminium as electrodes. The electrocoagulation is conducted in an aqueous alcoholic solution and is completed within one hour. The dye content in the lake ranges approximately between 4-32%.

  5. Effect of hydrogen on aluminium and aluminium alloys: A review

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1996-01-01

    Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen...... in aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between...

  6. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  7. Reduced thermal quenching in indium-rich self-organized InGaN/GaN quantum dots

    KAUST Repository

    Elafandy, Rami T.

    2012-01-01

    Differences in optical and structural properties of indium rich (27), indium gallium nitride (InGaN) self-organized quantum dots (QDs), with red wavelength emission, and the two dimensional underlying wetting layer (WL) are investigated. Temperature dependent micro-photoluminescence (?PL) reveals a decrease in thermal quenching of the QDs integrated intensity compared to that of the WL. This difference in behaviour is due to the 3-D localization of carriers within the QDs preventing them from thermalization to nearby traps causing an increase in the internal quantum efficiency of the device. Excitation power dependent ?PL shows a slower increase of the QDs PL signal compared to the WL PL which is believed to be due to the QDs saturation. © 2012 American Institute of Physics.

  8. Gallium-67 scintigraphy in borderline lepromatous leprosy

    International Nuclear Information System (INIS)

    Mouratidis, B.; Lomas, F.E.

    1993-01-01

    A middle aged woman with a pyrexia of unknown origin was shown to have borderline lepromatous leprosy. Early gallium-67 scintigraphy demonstrated increased uptake in the subcutaneous tissues of the face and thighs. As a result of these findings skin biopsy was obtained from the right thigh which gave a diagnosis of borderline lepromatous leprosy. The authors have been unable to find other reports of gallium-67 scintigraphy in leprosy but the pattern of gallium-67 distribution should suggest the diagnosis. 5 refs., 1 fig

  9. Chapter 2. Theoretical aspects of aluminium production

    International Nuclear Information System (INIS)

    Yanko, E.A.; Kabirov, Sh.O.; Safiev, Kh.; Azizov, B.S.; Mirpochaev, Kh.A.

    2011-01-01

    This article is devoted to theoretical aspects of aluminium production. Thus, the electrochemistry of electrolysis process, calculation of base industrial indicators of aluminium electrolytic cell, and processes occurring on anode and cathode were considered. Factors, which increase the current output and electrolytic cell productivity were studied. The side effects, including anode effect, sodium extraction on cathode, aluminium dissolution in the electrolyte, aluminium carbide formation, and influence of admixtures in the electrolyte were studied as well.

  10. Design and analysis of aluminium brdiges

    NARCIS (Netherlands)

    Soetens, F.; Straalen, IJ.J. van

    2004-01-01

    Applications of aluminium have grown considerably in building and civil engineering the last decade, which is due to various aspects: light weight, durability and maintenance, use of extrusions. The paper starts with a short history of aluminium bridges and then focuses on aluminium bridges in the

  11. Hot workability of aluminium alloys

    International Nuclear Information System (INIS)

    Yoo, Yeon Chul; Oh, Kyung Jin

    1986-01-01

    Hot Workability of aluminium alloys, 2024, 6061 and 7075, has been studied by hot torsion tests at temperatures from 320 to 515 deg C and at strain rates from 1.26 x 10 -3 to 5.71 x 10 -3 sec -1 . Hot working condition of these aluminium alloys was determined quantitatively from the constitutive equations obtained from flow stress curves in torsion. Experimental data of the logarith of the Zener-Hollomonn parameter showed good linear relationships to the logarith of sinh(ασ-bar)

  12. Gallium-67 activity in bronchoalveolar lavage fluid in sarcoidosis

    International Nuclear Information System (INIS)

    Trauth, H.A.; Heimes, K.; Schubotz, R.; von Wichert, P.

    1986-01-01

    Roentgenograms and gallium-67 scans and gallium-67 counts of BAL fluid samples, together with differential cell counts, have proved to be useful in assessing activity and lung involvement in sarcoidosis. In active pulmonary sarcoidosis gallium-67 scans are usually positive. Quantitation of gallium-67 uptake in lung scans, however, may be difficult. Because gallium-67 uptake and cell counts in BAL fluid may be correlated, we set out to investigate gallium-67 activity in BAL fluid recovered from patient of different groups. Sixteen patients with recently diagnosed and untreated sarcoidosis, nine patients with healthy lungs, and five patients with CFA were studied. Gallium-67 uptake of the lung, gallium-67 activity in the lavage fluid, SACE and LACE levels, and alpha 1-AT activity were measured. Significantly more gallium-67 activity was found in BAL fluid from sarcoidosis patients than in that from CFA patients (alpha = .001) or patients with healthy lungs (alpha = .001). Gallium-67 activity in BAL fluid could be well correlated with the number of lymphocytes in BAL fluid, but poorly with the number of macrophages. Subjects with increased levels of SACE or serum alpha 1-AT showed higher lavage gallium-67 activity than did normals, but no correlation could be established. High gallium-67 activity in lavage fluid may be correlated with acute sarcoidosis or physiological deterioration; low activity denotes change for the better. The results show that gallium-67 counts in BAL fluid reflects the intensity of gallium-67 uptake and thus of activity of pulmonary sarcoidosis

  13. NIM Realization of the Gallium Triple Point

    Science.gov (United States)

    Xiaoke, Yan; Ping, Qiu; Yuning, Duan; Yongmei, Qu

    2003-09-01

    In the last three years (1999 to 2001), the gallium triple-point cell has been successfully developed, and much corresponding research has been carried out at the National Institute of Metrology (NIM), Beijing, China. This paper presents the cell design, apparatus and procedure for realizing the gallium triple point, and presents studies on the different freezing methods. The reproducibility is 0.03 mK, and the expanded uncertainty of realization of the gallium triple point is evaluated to be 0.17 mK (p=0.99, k=2.9). Also, the reproducibility of the gallium triple point was compared with that of the triple point of water.

  14. Glutathione role in gallium induced toxicity

    African Journals Online (AJOL)

    Asim

    2012-01-26

    Jan 26, 2012 ... 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gomal University, D.I. Khan, ... Decrease in GSH level was dependant on gallium nitrate concentration. .... This 2 ml mixture sample was centrifuged at 1000.

  15. Properties of gallium lanthanum sulphide glass

    OpenAIRE

    Bastock, P.; Craig, C.; Khan, K.; Weatherby, E.; Yao, J.; Hewak, D.W.

    2015-01-01

    A series of gallium lanthanum sulphide (GLS) glasses has been studied in order to ascertain properties across the entire glass forming region. This is the first comprehensive study of GLS glass over a wide compositional range.

  16. Glutathione role in gallium induced toxicity

    African Journals Online (AJOL)

    Asim

    2012-01-26

    GSH) present in tissues. It is very important and interesting to study the reaction of gallium nitrate and glutathione as biomarker of glutathione role in detoxification and conjugation in whole blood components (plasma and ...

  17. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo, E-mail: kspark@iae.re.kr; Lee, Chan Gi; Hong, Hyun Seon, E-mail: hshong@iae.re.kr

    2015-04-15

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.

  18. Evaluated neutronic file for indium

    International Nuclear Information System (INIS)

    Smith, A.B.; Chiba, S.; Smith, D.L.; Meadows, J.W.; Guenther, P.T.; Lawson, R.D.; Howerton, R.J.

    1990-01-01

    A comprehensive evaluated neutronic data file for elemental indium is documented. This file, extending from 10 -5 eV to 20 MeV, is presented in the ENDF/B-VI format, and contains all neutron-induced processes necessary for the vast majority of neutronic applications. In addition, an evaluation of the 115 In(n,n') 116m In dosimetry reaction is presented as a separate file. Attention is given in quantitative values, with corresponding uncertainty information. These files have been submitted for consideration as a part of the ENDF/B-VI national evaluated-file system. 144 refs., 10 figs., 4 tabs

  19. Clinical applications of Gallium-68

    International Nuclear Information System (INIS)

    Banerjee, Sangeeta Ray; Pomper, Martin G.

    2013-01-01

    Gallium-68 is a positron-emitting radioisotope that is produced from a 68 Ge/ 68 Ga generator. As such it is conveniently used, decoupling radiopharmacies from the need for a cyclotron on site. Gallium-68-labeled peptides have been recognized as a new class of radiopharmaceuticals showing fast target localization and blood clearance. 68 Ga-DOTATOC, 8 Ga-DOTATATE, 68 Ga-DOTANOC, are the most prominent radiopharmaceuticals currently in use for imaging and differentiating lesions of various somatostatin receptor subtypes, overexpressed in many neuroendocrine tumors. There has been a tremendous increase in the number of clinical studies with 68 Ga over the past few years around the world, including within the United States. An estimated ∼10,000 scans are being performed yearly in Europe at about 100 centers utilizing 68 Ga-labeled somatostatin analogs within clinical trials. Two academic sites within the US have also begun to undertake human studies. This review will focus on the clinical experience of selected, well-established and recently applied 68 Ga-labeled imaging agents used in nuclear medicine. - Highlights: ► A summary of the emerging clinical uses of 68 Ga-based radiopharmaceuticals is provided. ► 68 Ga-PET may prove as or more clinically robust than the corresponding 18 F-labeled agents. ► 68 Ga-radiopeptides were studied for targeting of somatostatin receptors subtypes. ► 68 Ga-DOTATOC, 68 Ga-DOTATATE, 68 Ga-DOTANOC, are currently in clinical trials

  20. Developments in the US aluminium recycling industry

    Energy Technology Data Exchange (ETDEWEB)

    Bolling, R N

    1983-06-01

    In the USA scrap recovery of aluminium has gained in importance since the war. Today its amounts to about 32% of total supply. On the other hand primary production in the US seems to have hardly any expansion possibilities. The development of the aluminium beverage can is the clearest example for recycling growth. The increased use of aluminium in passenger cars has led to very close technical and local relations of aluminium foundries and secondary smelters. The changing nature of the aluminium business caused by the growth of recycling should be recognized and made use of.

  1. The prophylactic reduction of aluminium intake.

    Science.gov (United States)

    Lione, A

    1983-02-01

    The use of modern analytical methods has demonstrated that aluminium salts can be absorbed from the gut and concentrated in various human tissues, including bone, the parathyroids and brain. The neurotoxicity of aluminium has been extensively characterized in rabbits and cats, and high concentrations of aluminium have been detected in the brain tissue of patients with Alzheimer's disease. Various reports have suggested that high aluminium intakes may be harmful to some patients with bone disease or renal impairment. Fatal aluminium-induced neuropathies have been reported in patients on renal dialysis. Since there are no demonstrable consequences of aluminium deprivation, the prophylactic reduction of aluminium intake by many patients would appear prudent. In this report, the major sources of aluminium in foods and non-prescription drugs are summarized and alternative products are described. The most common foods that contain substantial amounts of aluminium-containing additives include some processed cheeses, baking powders, cake mixes, frozen doughs, pancake mixes, self-raising flours and pickled vegetables. The aluminium-containing non-prescription drugs include some antacids, buffered aspirins, antidiarrhoeal products, douches and haemorrhoidal medications. The advisability of recommending a low aluminium diet for geriatric patients is discussed in detail.

  2. Aluminium and energy. An interview

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, E R

    1978-06-01

    The interview between METALL and the president of Aluswuisse refers mainly to aspects of energy and deals more closely with the questions whether western Europe in view of relatively high prices for electricity is still competitive and which part can be played by aluminium in overcoming the energy crisis.

  3. Recovery mechanisms in nanostructured aluminium

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels; Huang, Xiaoxu

    2012-01-01

    Commercial purity aluminium (99.5%) has been cold rolled to a true strain of 5.5 (99.6% reduction in thickness). The material is very strong but low temperature recovery may be a limiting factor. This has been investigated by isothermal annealing treatments in the temperature range 5–100C. Hardness...

  4. Dynamical study of liquid aluminium

    International Nuclear Information System (INIS)

    Dubey, G.S.; Chaturvedi, D.K.

    1979-09-01

    Recent molecular dynamics data of Ebbsjoe et al. in liquid aluminium have been analysed through the memory function formalism. Two forms of the memory functions which have correct asymptotic limit at large wavenumbers but accounts for interatomic correlations in a different manner are considered. The results for ω 2 s(q, ω) obtained from both models are compared with experimental data. (author)

  5. Effect of Bio char on Plant Growth and Aluminium Form of Soil under Aluminium Stress

    Science.gov (United States)

    Qian, Lianwen; Li, Qingbiao; Sun, Jingwei; Feng, Ying

    2018-01-01

    Aluminium-enriched acid red soils in South China easily cause aluminium toxicity to plants, but biochip can improve soils and eliminate soil contaminations. In this project, biochip was used in potted plant control test to study the effect of biochip on plant growth in soil under acid aluminium stress and the migration and conversion of aluminium in plant-soil system. The fin dings show that the application of biochip increases the pH value of soil under aluminium stress significantly, changes the existing form of aluminium ion in soil, reduces the plants’ absorption of aluminium, and alleviates the aluminium toxicity to plants, but too much biochip may inhibit the growth of plants. In this case, further study should be carried out as regards the volume and way of biochip input in practical applications as well as the timeliness of aluminium toxicity removal.

  6. Ellipsometry study of process deposition of amorphous Indium Gallium Zinc Oxide sputtered thin films

    International Nuclear Information System (INIS)

    Talagrand, C.; Boddaert, X.; Selmeczi, D.G.; Defranoux, C.; Collot, P.

    2015-01-01

    This paper reports on an InGaZnO optical study by spectrometric ellipsometry. First of all, the fitting results of different models and different structures are analysed to choose the most appropriate model. The Tauc–Lorentz model is suitable for thickness measurements but a more complex model allows the refractive index and extinction coefficient to be extracted more accurately. Secondly, different InGaZnO process depositions are carried out in order to investigate stability, influence of deposition time and uniformity. Films present satisfactory optical stability over time. InGaZnO optical property evolution as a function of deposition time is related to an increase in temperature. To understand the behaviour of uniformity, mapping measurements are correlated to thin film resistivity. Results show that temperature and resputtering are the two phenomena that affect IGZO uniformity. - Highlights: • Model and structure are investigated to fit IGZO ellipsometric angles. • Maximum refractive index rises with substrate temperature and thus deposition time. • Resputtering leads to inhomogeneity in IGZO electrical and optical properties

  7. Organo-gallium and indium complexes with dithiolate and oxo ligands

    Indian Academy of Sciences (India)

    Page 1 ... of several of these com- plexes have been established by single crystal X-ray diffraction analyses. Complexes derived from oxo ligands ... diode) applications.8. Organometallic complexes derived from chelating ligands, such as substituted. 8-hydroxyqunoline and azomethine linkages, are emerging as potential ...

  8. Photon and carrier management design for nonplanar thin-film copper indium gallium diselenide photovoltaics

    Science.gov (United States)

    Atwater, Harry A.; Callahan, Dennis; Bukowsky, Colton

    2017-11-21

    Photovoltaic structures are disclosed. The structures can comprise randomly or periodically structured layers, a dielectric layer to reduce back diffusion of charge carriers, and a metallic layer to reflect photons back towards the absorbing semiconductor layers. This design can increase efficiency of photovoltaic structures. The structures can be fabricated by nanoimprint.

  9. Characterizing and engineering tunable spin functionality inside indium arsenide/gallium arsenide quantum dot molecules

    Science.gov (United States)

    Liu, Weiwen

    The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.

  10. Hall effect and photoconductivity lifetime studies of gallium nitride, indium nitride, and mercury cadmium telluride

    Science.gov (United States)

    Swartz, Craig H.

    A deep understanding of both carrier recombination and transport is necessary for semiconductor engineering, particularly in defining the ultimate limits of performance for a given device before spending the resources to perfect its fabrication. Hall effect measurements utilizing a variable magnetic field are necessary to discriminate between conduction in epitaxial layers and conduction originating at the surface or at an interfacial layer. For thick hydride vapor phase epitaxy (HVPE) grown GaN, variable field Hall measurements revealed the presence of small but significant lower mobility surface and interface electrons which would otherwise lead to errors in interpreting the electrical properties. In addition, QMSA analysis of the measurements indicates that thick GaN samples contain a large spread in electron mobility values, most likely with depth. For molecular beam epitaxial InN, it was found that electrical measurements are affected by surface charge conduction, as well as the non-uniformity of mobility and carrier concentration with depth. Both of these effects mask the surprisingly high quality of the material close to the surface. Photoconductance lifetime and variable-magnetic-field Hall and transient measurements were performed on a series of undoped, In-doped and As-doped HgCdTe grown by MBE and MOCVD. N-type layers often significantly influence the interpretation of the electrical measurements. Even the best Low Wavelength Infrared (LWIR) n-type material still appears to be dominated by defect-related recombination, as intrinsic lifetimes calculated with full band structure can be well above those measured. Mid-Wavelength Infrared (MWIR) lifetimes increase somewhat with carrier concentration, as if the n-type doping process were passivating Schockley-Read-Hall (SRH) defects. P-type MWIR films lie mainly below the predicted values, and their relationship between concentration and lifetime is essentially unchanged by growth technique, indicating that a fundamental native defect is responsible for the recombination. Those with lifetimes above the predicted values have anomalous temperature dependences when measured, and often a non-exponential photoconductive decay characteristic of minority carrier traps. Deep level trap concentrations in GaN can harm performance in many desired applications. Deep Level Transient Spectroscopy (DLTS) measurement on MBE GaN suggest that the trapping center concentration drops with temperature below 770°C.

  11. Amorphous indium gallium zinc oxide thin film grown by pulse laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Bhaumik V., E-mail: bhaumik-phy@yahoo.co.in; Joshi, U. S. [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad-380 009 (India)

    2016-05-23

    Highly electrically conducting and transparent in visible light IGZO thin film were grown on glass substrate at substrate temperature of 400 C by a pulse laser deposition techniques. Structural, surface, electrical, and optical properties of IGZO thin films were investigated at room temperature. Smooth surface morphology and amorphous nature of the film has been confirmed from the AFM and GIXRD analysis. A resistivity down to 7.7×10{sup −3} V cm was reproducibly obtained while maintaining optical transmission exceeding 70% at wavelengths from 340 to 780 nm. The carrier densities of the film was obtain to the value 1.9×10{sup 18} cm{sup 3}, while the Hall mobility of the IGZO thin film was 16 cm{sup 2} V{sup −1}S{sup −1}.

  12. Ellipsometry study of process deposition of amorphous Indium Gallium Zinc Oxide sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Talagrand, C., E-mail: talagrand@emse.fr [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Boddaert, X. [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Selmeczi, D.G.; Defranoux, C. [Semilab Semiconductor Physics Laboratory Co. Ltd., Budapest, 1117 (Hungary); Collot, P. [Ecole Nationale Supérieure d' Arts et Métiers ParisTech, Aix-en-Provence, 2 cours des Arts et Métiers (France)

    2015-09-01

    This paper reports on an InGaZnO optical study by spectrometric ellipsometry. First of all, the fitting results of different models and different structures are analysed to choose the most appropriate model. The Tauc–Lorentz model is suitable for thickness measurements but a more complex model allows the refractive index and extinction coefficient to be extracted more accurately. Secondly, different InGaZnO process depositions are carried out in order to investigate stability, influence of deposition time and uniformity. Films present satisfactory optical stability over time. InGaZnO optical property evolution as a function of deposition time is related to an increase in temperature. To understand the behaviour of uniformity, mapping measurements are correlated to thin film resistivity. Results show that temperature and resputtering are the two phenomena that affect IGZO uniformity. - Highlights: • Model and structure are investigated to fit IGZO ellipsometric angles. • Maximum refractive index rises with substrate temperature and thus deposition time. • Resputtering leads to inhomogeneity in IGZO electrical and optical properties.

  13. Design and Optimization of Copper Indium Gallium Selenide Thin Film Solar Cells

    Science.gov (United States)

    2015-09-01

    cathode material= Aluminum y.min=0 y.max=$topcontht x.min=$topxcontstart x.max=$topxcontend elec num=2 name= anode bottom 46 # DOPING doping...for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data...Design ........................................18 C. TRAP DENSITY IN CIGS ALLOYS ....................................................19 III. TCAD

  14. Radiation and temperature effects in gallium arsenide, indium phosphide, and silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Statler, R. L.

    1987-01-01

    The effects of radiation on performance are determined for both n+p and p+n GaAs and InP cells and for silicon n+p cells. It is found that the radiation resistance of InP is greater than that of both GaAs and Si under 1-MeV electron irradiation. For silicon, the observed decreased radiation resistance with decreased resistivity is attributed to the presence of a radiation-induced boron-oxygen defect. Comparison of radiation damage in both p+n and n+p GaAs cells yields a decreased radiation resistance for the n+p cell attributable to increased series resistance, decreased shunt resistance, and relatively greater losses in the cell's p-region. For InP, the n+p configuration is found to have greater radiation resistance than the p+n cell. The increased loss in this latter cell is attributed to losses in the cell's emitter region. Temperature dependency results are interpreted using a theoretical relation for dVoc/dT, which predicts that increased Voc should result in decreased numerical values for dPm/dT. The predicted correlation is observed for GaAs but not for InP, a result which is attributed to variations in cell processing.

  15. Stripping voltammetry of thallium, indium and gallium on mercury-graphite electrodes

    International Nuclear Information System (INIS)

    Kamenev, A.I.; Kharitonova, O.I.; Chernova, N.A.; Agasyan, P.K.

    1986-01-01

    Electrochemical Tl(1), In(3) and Ga(3) behaviour in mercury-graphite electrodes by the method of direct-current and alternating-current voltammetry is studied. Comparison of mathematical models and their experimental check are carried out. Possibility to forecast the investigation results is shown, and the procedure for mercury-graphite electrode surface formation necessary in measurements is chosen

  16. The role of bone scanning, gallium and indium imaging in infection

    International Nuclear Information System (INIS)

    Mido, K.; Navarro, D.A.; Segall, G.M.; McDougall, I.R.

    1987-01-01

    Nuclear medicine studies have considerable value in diagnosing infectious conditions in the skeleton. In this chapter the authors discuss acute infections of bone and joints separately. The section on acute osteomyelitis covers radiopharmaceuticals, methods, experimental models and the results of clinical series. Acute infections of joints is discussed with attention to radiopharmaceuticals, methods and results. The diagnosis of acute infection is prosthetic joints is treated separately. The evaluation of chronic bone infections is described briefly

  17. Investigation of enthalpy and specific heat of the gallium-indium-tin eutectic alloy

    International Nuclear Information System (INIS)

    Roshchupkin, V.V.; Migaj, L.L.; Fordeeva, L.K.; Perlova, N.L.

    1978-01-01

    Enthalpy and specific heat of the fusible (melting point is 10.6 deg C) eutectic alloy (67% Ga - 20.5% In - 12.5% Sn according to mass) are determined by the mixing method. The determination was carried out in vacuum at the residual pressure of >= 1x10 -5 torr in the temperature range from 59.3 to 437.0 deg C. It is established that temperature dependence of alloy enthalpy is described by the equation: Hsub(t) - Hsub(0degC)=1.014+0.0879t-0.0000129 t 2 , where (Hsub(t) - Hsub(0degC)) is enthalpy, cal/g; t-temperature, deg C. Mean-square dispersion is +-0.6%. Temperature dependence of alloy specific heat in the temperature range under study was determined by differentiation of the equation obtained for enthalpy: Csub(p)=0.0879-0.000026t, where Csub(p)-specific heat, cal/gx deg. It is supposed that temperature increase makes it possible to decrease slightly specific heat

  18. Size-effects in indium gallium arsenide nanowire field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zota, Cezar B., E-mail: cezar.zota@eit.lth.se; Lind, E. [Department of Electrical and Information Technology, Lund University, Lund 22101 (Sweden)

    2016-08-08

    We fabricate and analyze InGaAs nanowire MOSFETs with channel widths down to 18 nm. Low-temperature measurements reveal quantized conductance due to subband splitting, a characteristic of 1D systems. We relate these features to device performance at room-temperature. In particular, the threshold voltage versus nanowire width is explained by direct observation of quantization of the first sub-band, i.e., band gap widening. An analytical effective mass quantum well model is able to describe the observed band structure. The results reveal a compromise between reliability, i.e., V{sub T} variability, and on-current, through the mean free path, in the choice of the channel material.

  19. Friction Welding of Aluminium and Aluminium Alloys with Steel

    Directory of Open Access Journals (Sweden)

    Andrzej Ambroziak

    2014-01-01

    Full Text Available The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i microhardness measurements, (ii tensile tests, (iii bending tests, and (iv shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i changing the geometry of bonding surface, (ii using the interlayer, or (iii heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated.

  20. 67Gallium • the D,etection and Localization

    African Journals Online (AJOL)

    1971-12-11

    Dec 11, 1971 ... gallium and its compounds was first aroused when it was noted that this element is contained .... MATERIALS AND METHODS. ;;'Gallium citrate was .... another in a patient with a pathological fracture of the right humerus that ...

  1. Window structure for passivating solar cells based on gallium arsenide

    Science.gov (United States)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  2. Normal vibrations in gallium arsenide

    International Nuclear Information System (INIS)

    Dolling, G.; Waugh, J.L.T.

    1964-01-01

    The triple axis crystal spectrometer at Chalk River has been used to observe coherent slow neutron scattering from a single crystal of pure gallium arsenide at 296 o K. The frequencies of normal modes of vibration propagating in the [ζ00], (ζζζ], and (0ζζ] crystal directions have been determined with a precision of between 1 and 2·5 per cent. A limited number of normal modes have also been studied at 95 and 184 o K. Considerable difficulty was experienced in obtaining welt resolved neutron peaks corresponding to the two non-degenerate optic modes for very small wave-vector, particularly at 296 o K. However, from a comparison of results obtained under various experimental conditions at several different points in reciprocal space, frequencies (units 10 12 c/s) for these modes (at 296 o K) have been assigned: T 8·02±0·08 and L 8·55±02. Other specific normal modes, with their measured frequencies are (a) (1,0,0): TO 7·56 ± 008, TA 2·36 ± 0·015, LO 7·22 ± 0·15, LA 6·80 ± 0·06; (b) (0·5, 0·5, 0·5): TO 7·84 ± 0·12, TA 1·86 ± 0·02, LO 7·15 ± 0·07, LA 6·26 ± 0·10; (c) (0, 0·65, 0·65): optic 8·08 ±0·13, 7·54 ± 0·12 and 6·57 ± 0·11, acoustic 5·58 ± 0·08, 3·42 · 0·06 and 2·36 ± 004. These results are generally slightly lower than the corresponding frequencies for germanium. An analysis in terms of various modifications of the dipole approximation model has been carried out. A feature of this analysis is that the charge on the gallium atom appears to be very small, about +0·04 e. The frequency distribution function has been derived from one of the force models. (author)

  3. Normal vibrations in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Dolling, G; Waugh, J L T

    1964-07-01

    The triple axis crystal spectrometer at Chalk River has been used to observe coherent slow neutron scattering from a single crystal of pure gallium arsenide at 296{sup o}K. The frequencies of normal modes of vibration propagating in the [{zeta}00], ({zeta}{zeta}{zeta}], and (0{zeta}{zeta}] crystal directions have been determined with a precision of between 1 and 2{center_dot}5 per cent. A limited number of normal modes have also been studied at 95 and 184{sup o}K. Considerable difficulty was experienced in obtaining welt resolved neutron peaks corresponding to the two non-degenerate optic modes for very small wave-vector, particularly at 296{sup o}K. However, from a comparison of results obtained under various experimental conditions at several different points in reciprocal space, frequencies (units 10{sup 12} c/s) for these modes (at 296{sup o}K) have been assigned: T 8{center_dot}02{+-}0{center_dot}08 and L 8{center_dot}55{+-}02. Other specific normal modes, with their measured frequencies are (a) (1,0,0): TO 7{center_dot}56 {+-} 008, TA 2{center_dot}36 {+-} 0{center_dot}015, LO 7{center_dot}22 {+-} 0{center_dot}15, LA 6{center_dot}80 {+-} 0{center_dot}06; (b) (0{center_dot}5, 0{center_dot}5, 0{center_dot}5): TO 7{center_dot}84 {+-} 0{center_dot}12, TA 1{center_dot}86 {+-} 0{center_dot}02, LO 7{center_dot}15 {+-} 0{center_dot}07, LA 6{center_dot}26 {+-} 0{center_dot}10; (c) (0, 0{center_dot}65, 0{center_dot}65): optic 8{center_dot}08 {+-}0{center_dot}13, 7{center_dot}54 {+-} 0{center_dot}12 and 6{center_dot}57 {+-} 0{center_dot}11, acoustic 5{center_dot}58 {+-} 0{center_dot}08, 3{center_dot}42 {center_dot} 0{center_dot}06 and 2{center_dot}36 {+-} 004. These results are generally slightly lower than the corresponding frequencies for germanium. An analysis in terms of various modifications of the dipole approximation model has been carried out. A feature of this analysis is that the charge on the gallium atom appears to be very small, about +0{center_dot}04 e. The

  4. Bumblebee pupae contain high levels of aluminium.

    Science.gov (United States)

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer's disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline.

  5. Peculiarities of the interaction of indium-tin and indium-bismuth alloys with ammonium halides

    International Nuclear Information System (INIS)

    Red'kin, A.N.; Smirnov, V.A.; Sokolova, E.A.; Makovej, Z.I.; Telegin, G.F.

    1990-01-01

    Peculiarities of fusible metal alloys interaction with ammonium halogenides in vertical reactor are considered using indium-tin and indium-bismuth binary alloys. It is shown that at the end of the process the composition of metal and salt phases is determined by the equilibrium type and constant characteristic of the given salt-metal system. As a result the interaction of indium-tin and indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium which may be used in the processes of separation or purification. A model is suggested to calculate the final concentration of salt and metal phase components

  6. Control of gallium incorporation in sol–gel derived CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bourlier, Yoan [Institut de Recherche sur les Composants logiciels et matériels pour l’Information et la Communication Avancée (IRCICA), CNRS USR 3380, Université Lille 1, 50 avenue Halley, 59655 Villeneuve d’Ascq CEDEX (France); Cristini Robbe, Odile [Institut de Recherche sur les Composants logiciels et matériels pour l’Information et la Communication Avancée (IRCICA), CNRS USR 3380, Université Lille 1, 50 avenue Halley, 59655 Villeneuve d’Ascq CEDEX (France); Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS UMR 8523, Université Lille, 59655 Villeneuve d’Ascq CEDEX (France); Lethien, Christophe [Institut de Recherche sur les Composants logiciels et matériels pour l’Information et la Communication Avancée (IRCICA), CNRS USR 3380, Université Lille 1, 50 avenue Halley, 59655 Villeneuve d’Ascq CEDEX (France); Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS UMR 8523, Université Lille, 59655 Villeneuve d’Ascq CEDEX (France); Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520, Avenue Poincaré, 59652 Villeneuve d’Ascq CEDEX (France); and others

    2015-10-15

    Highlights: • CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin films were prepared by sol–gel process. • Evolution of lattice parameters is characteristic of a solid solution. • Optical band gap was found to be linearly dependent on the gallium rate. - Abstract: In this paper, we report the elaboration of Cu(In,Ga)S{sub 2} chalcopyrite thin films via a sol–gel process. To reach this aim, solutions containing copper, indium and gallium complexes were prepared. These solutions were thereafter spin-coated onto the soda lime glass substrates and calcined, leading to metallic oxides thin films. Expected chalcopyrite films were finally obtained by sulfurization of oxides layers using a sulfur atmosphere at 500 °C. The rate of gallium incorporation was studied both at the solutions synthesis step and at the thin films sulfurization process. Elemental and X-ray diffraction (XRD) analyses have shown the efficiency of monoethanolamine used as a complexing agent for the preparation of CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin layers. Moreover, the replacement of diethanolamine by monoethanolamine has permitted the substitution of indium by isovalent gallium from x = 0 to x = 0.4 and prevented the precipitation of copper derivatives. XRD analyses of sulfurized thin films CuIn{sub (1−x)}Ga{sub x}S{sub 2,} clearly indicated that the increasing rate of gallium induced a shift of XRD peaks, revealing an evolution of the lattice parameter in the chalcopyrite structure. These results were confirmed by Raman analyses. Moreover, the optical band gap was also found to be linearly dependent upon the gallium rate incorporated within the thin films: it varies from 1.47 eV for x = 0 to 1.63 eV for x = 0.4.

  7. Indium-bridged [1]ferrocenophanes.

    Science.gov (United States)

    Bagh, Bidraha; Sadeh, Saeid; Green, Jennifer C; Müller, Jens

    2014-02-17

    Indium-bridged [1]ferrocenophanes ([1]FCPs) and [1.1]ferrocenophanes ([1.1]FCPs) were synthesized from dilithioferrocene species and indium dichlorides. The reaction of Li2fc⋅tmeda (fc = (H4C5)2Fe) and (Mamx)InCl2 (Mamx = 6-(Me2NCH2)-2,4-tBu2C6H2) gave a mixture of the [1]FCP (Mamx)Infc (4(1)), the [1.1]FCP [(Mamx)Infc]2 (4(2)), and oligomers [(Mamx)Infc]n (4(n)). In a similar reaction, employing the enantiomerically pure, planar-chiral (Sp,Sp)-1,1'-dibromo-2,2'-diisopropylferrocene (1) as a precursor for the dilithioferrocene derivative Li2fc(iPr2), equipped with two iPr groups in the α position, gave the inda[1]ferrocenophane 5(1) [(Mamx)Infc(iPr2)] selectively. Species 5(1) underwent ring-opening polymerization to give the polymer 5(n). The reaction between Li2fc(iPr2) and Ar'InCl2 (Ar' = 2-(Me2NCH2)C6H4) gave an inseparable mixture of the [1]FCP Ar'Infc(iPr2) (6(1)) and the [1.1]FCP [Ar'Infc(iPr2)]2 (6(2)). Hydrogenolysis reactions (BP86/TZ2P) of the four inda[1]ferrocenophanes revealed that the structurally most distorted species (5(1)) is also the most strained [1]FCP. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Power distribution: conductors in aluminium

    International Nuclear Information System (INIS)

    Schmid, R.

    2007-01-01

    This article takes a look at the use of aluminium conductors in medium and low-voltage cables. The author discusses how the increasing price of copper has led to the increasing use of aluminium as a material for the production of the conductors used in medium and low-voltage power cables. Aid is provided that is to help purchasers make the correct decisions when buying medium and low-voltage cables. The current market situation is examined and the appropriate norms are looked at. Technical data and economic aspects are discussed, both for medium and low-voltage applications. The electrical characteristics of the type of cable to be used are examined and discussed

  9. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Mingfeng; Gao, Yunxia [Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Jing, E-mail: jliu@mail.ipc.ac.cn [Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2014-03-15

    In this study, Ni nanoparticles were loaded into the partially oxidized gallium and its alloys to fabricate desired magnetic nanofluid. It was disclosed that the Ni nanoparticles sharply increased the freezing temperature and latent heat of the obtained magnetic nano liquid metal fluid, while the melting process was less affected. For the gallium sample added with 10 vol% coated Ni particles, a hysteresis loop was observed and the magnetization intensity decreased with the increase of the temperature. The slope for the magnetization-temperature curve within 10–30 K was about 20 times of that from 40 K to 400 K. Further, the dynamic impact experiments of striking magnetic liquid metal droplets on the magnet revealed that the regurgitating of the leading edge of the liquid disk and the subsequent wave that often occurred in the gallium-indium droplets would disappear for the magnetic fluids case due to attraction force of the magnet. - Graphical abstract: High speed videos for the impact of striking GaIn{sub 24.5} based magnetic liquid metal droplets on a magnet plate. - Highlights: • A feasible way to fabricate magnetic nano liquid metal fluid was presented. • Ni nanoparticles sharply increased freezing temperature and latent heat of magnetic nanofluid. • A hysteresis loop phenomenon was observed for the magnetic nanofluid. • Temperature dependent magnetization spanning from 10 K to 400 K was measured. • Impact phenomena of striking magnetic droplets on magnet were disclosed.

  10. Neutron Cross Sections for Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Leif

    1963-08-15

    Total, elastic, inelastic, (n, 2n), (n, {alpha}), (n, p), and (n, {gamma}) cross sections for aluminium have been compiled from thermal to 100 MeV based upon literature search and theoretical interpolations and estimates. Differential elastic cross sections in the centre of mass system are represented by the Legendre coefficients. This method was chosen in order to obtain the best description of the energy dependence of the anisotropy.

  11. Aluminium and nickel in human albumin solutions

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Sandberg, E

    1989-01-01

    Five different brands of commercially available human albumin solutions for infusion were analysed for their aluminium and nickel contents by atomic absorption spectrometry. The aluminium concentrations ranged from 12 micrograms/l to 1109 micrograms/l and the nickel concentrations ranged from 17...... micrograms/l to 77 micrograms/l. Examination of the aluminium and nickel contents of the constituents for the production of one brand showed too low levels to explain the final contamination of the product. By following the aluminium and nickel concentrations of the same brand during the production...... of a batch of albumin solution, filtration was shown to contribute to contamination, although the largest increase in aluminium as well as nickel concentrations appeared during the bulk concentrating process. To avoid health risks to certain patients, regulations should be established requiring aluminium...

  12. Surface treatments for aluminium alloys

    Science.gov (United States)

    Ardelean, M.; Lascău, S.; Ardelean, E.; Josan, A.

    2018-01-01

    Typically, in contact with the atmosphere, the aluminium surface is covered with an aluminium oxide layer, with a thickness of less than 1-2μm. Due to its low thickness, high porosity and low mechanical strength, this layer does not protect the metal from corrosion. Anodizing for protective and decorative purposes is the most common method of superficial oxidation processes and is carried out through anodic oxidation. The oxide films, resulted from anodizing, are porous, have a thickness of 20-50μm, and are heat-resistant, stable to water vapour and other corrosion agents. Hard anodizing complies with the same obtains principles as well as decorative and protective anodization. The difference is in that hard anodizing is achieved at low temperatures and high intensity of electric current. In the paper are presented the results of decorative and hard anodization for specimens made from several aluminium alloys in terms of the appearance of the specimens and of the thickness of the anodized.

  13. Detection of aluminium in different culinary media using black ...

    African Journals Online (AJOL)

    Jacques Blessing

    The interactions between food and aluminium local kitchen utensils can be a potential source of aluminium released which can ... need to be adopted to preserve consumers' health. ..... Corrosion behaviour of different ... Aluminium beverage.

  14. Introduction. Aluminium production on electrolytic cells with calcined anodes

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter presents the monograph content, which includes the description of physicochemical processes in aluminium electrolytic cells, and mechanism of electrolytic aluminium obtaining. The short description of aluminium electrolytic cells construction is presented in this book as well.

  15. Polarographic determination of selenium in indium

    International Nuclear Information System (INIS)

    Kaplan, B.Ya.; Mikheeva, V.A.; Priz, N.B.

    1978-01-01

    The procedure of determining nx10 -6 % Se in indium after concentrating in an elemental form on arsenic and sulphur has been developed. The selenium content is determined by inversion a.c. polarography on a sulphuric-acid background in the presence of Cu(2), potassium bichromate, and sodium pyrophosphate. 5.7x10 -6 % Se in metal indium has been determined by this procedure, the mean standard deviation being Sr=0.26

  16. Quantification of indium in steel using PIXE

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J.C.

    1989-01-01

    The quantitative analysis of steel endodontics tools was carried out using low-energy protons (≤ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important. (orig.)

  17. Quantification of indium in steel using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J.C.

    1989-04-01

    The quantitative analysis of steel endodontics tools was carried out using low-energy protons (/le/ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important. (orig.).

  18. Coprecipitation of yttrium and aluminium hydroxide for preparation of yttrium aluminium garnet

    NARCIS (Netherlands)

    Vrolijk, J.W.G.A.; Willems, J.W.M.M.; Metselaar, R.

    1990-01-01

    Coprecipitation of yttrium and aluminium hydroxide for the preparation of pure yttrium aluminium garnet (YAG) powder with small grain size is the subject of this study. Starting materials are sulphates and chlorides of yttrium and aluminium. To obtain pure YAG (Y3Al5O12), the pH during flocculation

  19. Toxicity of aluminium on five aquatic invertebrates; Aluminiums toksisitet paa 5 akvatiske invertebrater

    Energy Technology Data Exchange (ETDEWEB)

    Moe, J [Oslo Univ. (Norway)

    1996-01-01

    The conference paper deals with the experiments done by investigating the effects from the toxicity of aluminium on aquatic invertebrates. The aim of the experiments was to compare the toxicity of unstable aluminium compounds with stable forms of aluminium. 8 refs., 2 figs., 2 tabs.

  20. Aluminium in foodstuffs and diets in Sweden.

    Science.gov (United States)

    Jorhem, L; Haegglund, G

    1992-01-01

    The levels of aluminium have been determined in a number of individual foodstuffs on the Swedish market and in 24 h duplicate diets collected by women living in the Stockholm area. The results show that the levels in most foods are very low and that the level in vegetables can vary by a factor 10. Beverages from aluminium cans were found to have aluminium levels not markedly different from those in glass bottles. Based on the results of the analysis of individual foods, the average Swedish daily diet was calculated to contain about 0.6 mg aluminium, whereas the mean content of the collected duplicate diets was 13 mg. A cake made from a mix containing aluminium phosphate in the baking soda was identified as the most important contributor of aluminium to the duplicate diets. Tea and aluminium utensils were estimated to increase the aluminium content of the diets by approximately 4 and 2 mg/day, respectively. The results also indicate that a considerable amount of aluminium must be introduced from other sources.

  1. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  2. Studies on deep electronic levels in silicon and aluminium gallium arsenide alloys

    International Nuclear Information System (INIS)

    Pettersson, H.

    1993-01-01

    This thesis reports on investigations of the electrical and optical properties of deep impurity centers, related to the transition metals (TMs) Ti, Mo, W, V and Ni, in silicon. Emission rates, capture cross sections and photoionization cross sections for these impurities were determined by means of various Junction Space Charge Techniques (JSCTs), such as Deep Level Transient Spectroscopy (DLTS), dark capacitance transient and photo capacitance transient techniques. Changes in Gibbs free energy as a function of temperature were calculated for all levels. From this temperature dependence, the changes in enthalpy and entropy involved in the electron and hole transitions were deduced. The influence of high electric fields on the electronic levels in chalcogen-doped silicon were investigated using the dark capacitance transient technique. The enhancement of the electron emission from the deep centers indicated a more complex field enhancement model than the expected Poole-Frenkel effect for coulombic potentials. The possibility to determine charge states of defects using the Poole-Frenkel effect, as often suggested, is therefore questioned. The observation of a persistent decrease of the dark conductivity due to illumination in simplified AlGaAs/GaAs high Electron Mobility Transistors (HEMTs) over the temperature range 170K< T<300K is reported. A model for this peculiar behavior, based on the recombination of electrons in the two-dimensional electron gas (2DEG) located at the AlGaAs/GaAs interface with holes generated by a two-step excitation process via the deep EL2 center in the GaAs epilayer, is put forward

  3. Thermodynamic and transport properties of liquid gallium

    International Nuclear Information System (INIS)

    Park, H.Y.; Jhon, M.S.

    1982-01-01

    The significant structure theory of liquids has been successfully applied to liquid gallium. In this work, we have assumed that two structures exist simultaneously in liquid gallium. One is considerec as loosely close packed β-Ga-like structure and the other is remainder of solid α-Ga or α-Ga-like structure. This two structural model is introduced to construct the liquid partition function. Using the partition function, the thermodynamic and transport properties are calculated ever a wide temperature range. The calculated results are quite satisfactory when compared with the experimental results. (Author)

  4. Gallium uptake in myositis ossificans. Potential pitfalls in diagnosis

    International Nuclear Information System (INIS)

    Salzman, L.; Lee, V.W.; Grant, P.

    1987-01-01

    Seven cases of gallium uptake in myositis ossificans are described. Gallium scans are done frequently in paraplegics, quadriplegics, and comatose patients to look for occult infection. It is important to be aware of possible gallium uptake in myositis ossificans, particularly in the extremities, which is frequent in these patients. Gallium uptake may be present prior to any abnormalities seen on plain films or CT scans. It is important to correlate roentgenograms with abnormal gallium scans, particularly in the extremities, to avoid potential pitfalls in diagnosis and prevent unnecessary antibiotic treatment. A bone scan should be obtained whenever possible, particularly when roentgenograms are negative, to confirm the diagnosis

  5. 67Gallium lung scans in progressive systemic sclerosis

    International Nuclear Information System (INIS)

    Baron, M.; Feiglin, D.; Hyland, R.; Urowitz, M.B.; Shiff, B.

    1983-01-01

    67 Gallium lung scans were performed in 19 patients with progressive systemic sclerosis (scleroderma). Results were expressed quantitatively as the 67 Gallium Uptake Index. The mean total pulmonary 67 Gallium Uptake Index in patients was significantly higher than that in controls (41 versus 25), and 4 patients (21%) fell outside the normal range. There were no clinical or laboratory variables that correlated with the 56 Gallium uptake. Increased pulmonary 67 Gallium uptake in scleroderma may prove useful as an index of pulmonary disease activity

  6. EDXRF and TXRF determination of gallium in gallium-uranium matrix

    International Nuclear Information System (INIS)

    Misra, N.L.; Sanjay Kumar, S.; Dhara, Sangita; Aggarwal, S.K.; Venugopal, V.

    2009-01-01

    Energy Dispersive X-Ray Fluorescence (EDXRF) and Total Reflection X-ray Fluorescence (TXRF) methods for determination of Gallium in Gallium-Uranium matrix have been developed. For EDXRF determinations, 200 μL of standards/samples mixed with internal standard copper were dispersed on 30 mm diameter absorbent sheet so that it behaves like a thin film of the sample. The Gallium amounts in samples were determined from their EDXRF spectra using a calibration plot. For TXRF determinations, samples were taken on flat polished quartz sample supports and Gallium was determined in conventional way. For EDXRF and TXRF determinations, the average precision and accuracy obtained for Ga determinations was better than 3% (1σ). (author)

  7. Two-Dimensional Modeling of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistor

    National Research Council Canada - National Science Library

    Holmes, Kenneth

    2002-01-01

    Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT's) are microwave power devices that have the performance characteristics to improve the capabilities of current and future Navy radar and communication systems...

  8. Application of extraction of gallium molybdotungstate HPA for their investigation in solutions and gallium determination

    International Nuclear Information System (INIS)

    Kol'tsova, E.G.; Vakulich, A.N.; Tsyganok, L.P.

    2001-01-01

    Extraction of gallium molybdotungstate heteropolyacids and their associates with a row of triphenylmethane dyes, use of extraction for study of complexing in Mo 6 -W 6 -Ga 3+ -H 3 O + system are investigated. Research of optimal analytical states and development of extraction spectrophotometric methods of gallium determination are done. It is shown that increase of Mo 6 part in heteropolyanion improves solvation interaction of heteropolyacids with organic solvents elevating extraction properties of polyanion [ru

  9. The role of gallium-67 in Hodgkin's disease

    International Nuclear Information System (INIS)

    Bogart, Jeffrey A.; Chung, T. Chung; Mariados, Neil F.

    1996-01-01

    Purpose/Objective: Although widely used, the value of gallium imaging in managing Hodgkin's lymphoma remains unclear. Methods: Retrospective review of gallium and treatment data in patients with Hodgkin's disease between January 1990 and July 1995. Results: Eighty-six of 101 patients had Ga-67 imaging. Stage was as follows: 1A-11 patients, 1B - 2, 2A - 27, 2B - 22, 3A - 10, 3B - 5, 4A - 3 and 4B - 6. Sixty-two patients had staging gallium scans and 15% of tumors were not gallium avid. Two patients were upstaged based on gallium scan. Five patients had positive laparotomy and all had negative abdominal gallium exams. Three studies had false positive lesions. Initial therapy was assessed with gallium in 61 patients and 45 had complete response. Tumor recurred in 36% ((10(28))) of patients gallium negative after 3-6 cycles of chemotherapy, with no recurrences in 17 patients gallium negative after radiotherapy or chemo radiation. Six of 7 patients with focal gallium uptake after chemotherapy received radiotherapy and all remain disease free. Seven patients had persistent or progressive gallium-avid tumor after chemotherapy correlating with clinical disease. Two patients had false positive exams after radiotherapy. Twenty-two patients had gallium scans at recurrence. One scan was (false) negative and in two cases, gallium imaging was the initial evidence of recurrent tumor. Conclusion: Ga-67 imaging may help confirm the presence of active Hodgkin's disease, but was unreliable in defining disease remission after chemotherapy in this study population. Prospective studies may help define the role of gallium scans

  10. Phase transformation of aluminium hydroxide to aα- alumina prepared from different aluminium salts

    International Nuclear Information System (INIS)

    Masliana Muslimin; Meor Yusoff Meor Sulaiman

    2006-01-01

    The study intends to look at the most suitable aluminium salt to produce a single-phase a-alumina by the hydrothermal method. In the process to produce alumina from the calcination of aluminium hydroxide (Al(OH) 3 ), three different aluminium salts namely aluminium sulfate (Al 2 (SO 4) 2), aluminium nitrate (A(NO 3 ) 3 ) and aluminium chloride (AlCl 3 ) were tried. The process involved the used of NH 4 OH as the precipitating medium. Aluminium hydroxide produced from each of these salts were characterised by x-ray diffraction (XRD) technique to identity the crystalline phase. Aluminium hydroxide produced by all the different aluminium salts is present as boehmite or pseudo-boehmite phase. Aluminium hydroxide produced from Al 2 (SO) 2 , Al(NO) 3 and AlCl 3 shows the transformation of the boehmite phase to a α-alumina phase at 500 0 C. On further heating, the α-alumina continuously formed at 800 o C followed soon at 1000 o C. But for the Al(NO3) 3 salts a different phase transitions occurs on heating especially at 1000 o C. Here it was observed not a single alumina phase is presence but the presence of both α and γ--alumina phases. At 1300 o C, the single α-alumina phase was formed. The study concluded that aluminium sulphate is recommended in order to obtain a single-phase α-alumina with the required characteristics. (Author)

  11. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    Science.gov (United States)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  12. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  13. Preparation of aluminium lakes by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Prapai Pradabkham

    2008-07-01

    Full Text Available Aluminium lakes have been prepared by electrocoagulation employing aluminium as electrodes. The electrocoagulation is conducted in an aqueous alcoholic solution and is completed within one hour. The dye content in the lake ranges approximately between 4-32%.

  14. Electron Conditioning of Technical Aluminium Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, F

    2004-09-02

    The effect of electron conditioning on commercially aluminium alloys 1100 and 6063 were investigated. Contrary to the assumption that electron conditioning, if performed long enough, can reduce and stabilize the SEY to low values (= 1.3, value of many pure elements [1]), the SEY of aluminium did not go lower than 1.8. In fact, it reincreases with continued electron exposure dose.

  15. Thermal formation of corundum from aluminium hydroxides ...

    Indian Academy of Sciences (India)

    Aluminium hydroxides have been precipitated from various aluminium salts and the differences in their thermal behaviour have been investigated. Pseudoboehmite derived from the nitrate, sulfate and chloride all form -Al2O3 at ∼ 400°C but the formation of -Al2O3 at 1200°C occurs more readily in the material derived ...

  16. Characterisation and concentration profile of aluminium during ...

    African Journals Online (AJOL)

    An aluminium(Al) characterisation study was conducted at a surface water treatment plant (Buffalo Pound Water Treatment Plant (BPWTP) in Moose Jaw, Saskatchewan, Canada) to understand better the effect of alum coagulant on various Al fractions. The raw water source for BPWTP is Buffalo Pound Lake water. The Al ...

  17. Thermal formation of corundum from aluminium hydroxides ...

    Indian Academy of Sciences (India)

    Abstract. Aluminium hydroxides have been precipitated from various aluminium salts and the differences in their thermal behaviour have been investigated. Pseudoboehmite derived from the nitrate, sulfate and chloride all form γ-Al2O3 at ~ 400°C but the formation of α-Al2O3 at 1200°C occurs more readily in the material ...

  18. Rapidly solidified aluminium for optical applications

    NARCIS (Netherlands)

    Gubbels, G.P.H.; Venrooy, B.W.H. van; Bosch, A.J.; Senden, R.

    2008-01-01

    This paper present the results of a diamond turning study of a rapidly solidified aluminium 6061 alloy grade, known as RSA6061. It is shown that this small grain material can be diamond turned to smaller roughness values than standard AA6061 aluminium grades. Also, the results are nearly as good as

  19. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    Science.gov (United States)

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  20. Optical characteristics of a gallium laser plasma

    International Nuclear Information System (INIS)

    Shuaibov, A.K.; Shimon, L.L.; Dashchenko, A.I.; Shevera, I.V.; Chuchman, M.P.

    2001-01-01

    Results are presented from studies of the emission from an erosion gallium laser plasma at a moderate intensity (W = (1-5) x 10 8 W/cm 2 ) of a 1.06-μm laser radiation. It is shown that, under these conditions, the lower excited states of gallium atoms are populated most efficiently. Among the ions, only the most intense GaII lines are observed in the emission spectrum. The populations of GaI and GaII excited states are not related to direct electron excitation, but are determined by the recombination of gallium ions with slow electrons. The recombination times of GaIII and GaII ions in the core of the plasma jet are determined from the waveforms of emission in the GaII and GaI spectral lines and are equal to 10 and 140 ns, respectively. The results obtained are of interest for spectroscopic diagnostics of an erosion plasma produced from gallium-containing layered crystals during the laser deposition of thin films

  1. Gallium-positive Lyme disease myocarditis

    International Nuclear Information System (INIS)

    Alpert, L.I.; Welch, P.; Fisher, N.

    1985-01-01

    In the course of a work-up for fever of unknown origin associated with intermittent arrhythmias, a gallium scan was performed which revealed diffuse myocardial uptake. The diagnosis of Lyme disease myocarditis subsequently was confirmed by serologic titers. One month following recovery from the acute illness, the abnormal myocardial uptake completely resolved

  2. Steam generated conversion coating on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    Aluminium and its alloys are widely used in aerospace industry owing to their high strength to weight ratio. The surface of aluminium under normal conditions has a thin oxide film (2.5-10 nm) responsible for its inherent corrosion resistance. This oxide film can further be converted or transformed...... into functional conversion coatings in order to enhance corrosion resistance and adhesion to paint systems. Chromium based conversion coatings have been extensively used on aluminium alloys to improve adhesion of subsequent paint layers and corrosion resistance. However, the use of hexavalent chromium is strictly...... regulated due to its toxic nature and suspected carcinogenicity. So, it is highly imperative to develop other alternatives for chrome conversion coatings. Treatment of aluminium with natural water at elevated temperatures results in the formation of different forms of aluminium oxide (γ-AlO(OH) , Al(OH)3...

  3. Laser micromachining of indium tin oxide films on polymer substrates by laser-induced delamination

    International Nuclear Information System (INIS)

    Willis, David A; Dreier, Adam L

    2009-01-01

    A Q-switched neodymium : yttrium-aluminium-garnet (Nd : YAG) laser was used to ablate indium tin oxide (ITO) thin films from polyethylene terephthalate substrates. Film damage and partial removal with no evidence of a melt zone was observed above 1.7 J cm -2 . Above the film removal threshold (3.3 J cm -2 ) the entire film thickness was removed without substrate damage, suggesting that ablation was a result of delamination of the film in the solid phase. Measurements of ablated fragment velocities near the ablation threshold were consistent with calculations of velocities caused by stress-induced delamination of the ITO film, except for a high velocity component at higher fluences. Nanosecond time-resolved shadowgraph photography revealed that the high velocity component was a shock wave induced by the rapid compression of ambient air when the film delaminated.

  4. Recent developments in advanced aircraft aluminium alloys

    International Nuclear Information System (INIS)

    Dursun, Tolga; Soutis, Costas

    2014-01-01

    Highlights: • To compete with composites, performance of aluminium alloys should be increased. • Al–Li alloys have higher strength, fracture and fatigue/corrosion resistance. • Improvements of aerospace Al alloys are due to optimised solute content and ratios. • In selecting new materials, there should be no reduction in the level of safety. • The use of hybrid materials could provide additional opportunities for Al alloys. - Abstract: Aluminium alloys have been the primary material for the structural parts of aircraft for more than 80 years because of their well known performance, well established design methods, manufacturing and reliable inspection techniques. Nearly for a decade composites have started to be used more widely in large commercial jet airliners for the fuselage, wing as well as other structural components in place of aluminium alloys due their high specific properties, reduced weight, fatigue performance and corrosion resistance. Although the increased use of composite materials reduced the role of aluminium up to some extent, high strength aluminium alloys remain important in airframe construction. Aluminium is a relatively low cost, light weight metal that can be heat treated and loaded to relatively high level of stresses, and it is one of the most easily produced of the high performance materials, which results in lower manufacturing and maintenance costs. There have been important recent advances in aluminium aircraft alloys that can effectively compete with modern composite materials. This study covers latest developments in enhanced mechanical properties of aluminium alloys, and high performance joining techniques. The mechanical properties on newly developed 2000, 7000 series aluminium alloys and new generation Al–Li alloys are compared with the traditional aluminium alloys. The advantages and disadvantages of the joining methods, laser beam welding and friction stir welding, are also discussed

  5. Indium oxide/n-silicon heterojunction solar cells

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  6. Dose dependent disposition of gallium-67 in rats

    International Nuclear Information System (INIS)

    Gautam, S.R.

    1982-01-01

    Radioactive gallium-67 has been employed as a diagnostic and follow-up agent for cancer therapy. Currently gallium nitrate is undergoing Phase I clinical studies. A million fold increase in the concentration of the carrier gallium citrate over the range of carrier-free gallium-67 (pgm) to 1.0 μg caused no significant alteration in the disposition of gallium-67 in rats.Gallium-67 was eliminated from blood with a biological t1/2 of 4.1 days. A linear tissue binding profile was observed for gallium-67 over this concentration range. A multi-compartment pharmacokinetic model was developed in which all the tissues studied were treated as separate compartments. At 1.0 mg dose level, significant alteration in the disposition of gallium-67 was observed in rats, > 95% of the initial radioactivity was characteristic reappearance of the radioactivity in the blood approximately 4 hours after dosing leading to a ''hump'' in the blood concentration-time profiles. Following the 1.0 mg dose low tissue levels were observed, except for the kidneys, which contained about 8% of the administered dose per gram of the tissue one-half hour after dosing. A non-linear tissue binding profile was observed to be associated with gallium at high doses. It was hypothesized that the rapid loss of gallium-67 from the vascular system following the high doses of gallium citrate was due to the accumulation of the drug in the kidneys where it was eventually eliminated via urine. The kidneys thus would act as a temporary storage site for gallium. It was concluded that the dose-related renal toxicity associated with gallium therapy may be attributed to the kidney's role as a temporary storage site following high doses

  7. Method for aluminium dross utilization

    International Nuclear Information System (INIS)

    Lucheva, B.; Petkov, R.; Tzonev, Tz.

    2003-01-01

    A new hydrometallurgical method has been developed for metal aluminum utilization from secondary aluminum dross. Secondary aluminum dross is a powder product with an average of 35% aluminium content (below 1mm). It is waste from primary aluminum dross pyrometallurgical flux less treatment in rotary DC electric arc furnace. This method is based on aluminum leaching in copper chloride water solution. As a result an aluminum oxychloride solution and solids, consisting of copper and oxides are obtained. In order to copper chloride solution regenerate hydrochloric acid is added to the solids. The process is simple, quick, economic and safe. The aluminum oxychloride solution contains 56 g/l Al 2 O 3 . The molar ratios are Al:Cl=0,5; OH:Al=1. The solution has 32 % basicity and 1,1 g/cm 3 density. For increasing the molar ratio of aluminium to chlorine aluminum hydroxide is added to this solution at 80 o C. Aluminum hydroxide is the final product from the secondary aluminum dross alkaline leaching. As a result aluminum oxychloride solution of the following composition is prepared: Al 2 O 3 - 180 g/l; Al:Cl=1,88; OH:Al=4,64; basicity 82%; density 1,22 g/cm 3 , pH=4 -4,5. Aluminum oxychloride solution produced by means of this method can be used in potable and wastewater treatment, paper making, in refractory mixture as a binder etc. (Original)

  8. Sputtering of neutral and ionic indium clusters

    International Nuclear Information System (INIS)

    Ma, Z.; Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Gruen, D.M.; Von Nagy-Felsobuki, E.I.

    1993-01-01

    Secondary neutral and secondary ion cluster yields were measured during the sputtering of a polycrystalline indium surface by normally incident ∼4 keV Ar + ions. In the secondary neutral mass spectra, indium clusters as large as In 32 were observed. In the secondary ion mass spectra, indium clusters up to In 18 + were recorded. Cluster yields obtained from both the neutral and ion channel exhibited a power law dependence on the number of constituent atoms, n, in the cluster, with the exponents measured to be -5.6 and -4. 1, respectively. An abundance drop was observed at n=8, 15, and 16 in both the neutral and ion yield distributions suggesting that the stability of the ion (either secondary ion or photoion) plays a significant role in the observed distributions. In addition, our experiments suggest that unimolecular decomposition of the neutral cluster may also plays an important role in the measured yield distributions

  9. Variation in aluminium patch test reactivity over time.

    Science.gov (United States)

    Siemund, Ingrid; Mowitz, Martin; Zimerson, Erik; Bruze, Magnus; Hindsén, Monica

    2017-11-01

    Contact allergy to aluminium has been reported more frequently in recent years. It has been pointed out that positive patch test reactions to aluminium may not be reproducible on retesting. To investigate possible variations in patch test reactivity to aluminium over time. Twenty-one adults, who had previously reacted positively to aluminium, were patch tested with equimolar dilution series in pet. of aluminium chloride hexahydrate and aluminium lactate, four times over a period of 8 months. Thirty-six of 84 (43%) serial dilution tests with aluminium chloride hexahydrate and 49 of 84 (58%) serial dilution tests with aluminium lactate gave negative results. The range of reactivity varied between a negative reaction to aluminium chloride hexahydrate at 10% and/or to aluminium lactate at 12%, and a positive reaction to aluminium chloride hexahydrate at 0.1% and/or to aluminium lactate at 0.12%. The highest individual difference in test reactivity noticed was 320-fold when the two most divergent minimal eliciting concentrations were compared. The patch test reactivity to aluminium varies over time. Aluminium-allergic individuals may have false-negative reactions. Therefore, retesting with aluminium should be considered when there is a strong suspicion of aluminium contact allergy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Electron beam welding of aluminium components

    International Nuclear Information System (INIS)

    Maajid, Ali; Vadali, S.K.; Maury, D.K.

    2015-01-01

    Aluminium is one of the most widely used materials in industries like transportation, shipbuilding, manufacturing, aerospace, nuclear, etc. The challenges in joining of aluminium are distortion, cleanliness and quality. Main difficulties faced during fusion welding of aluminium components are removal of surface oxide layer, weld porosity, high heat input requirement, distortion, hot cracking, etc. Physical properties of aluminium such as its high thermal conductivity, high coefficient of thermal expansion, no change in colour at high temperature, large difference in the melting points of the metal and its oxide (∼ 1400 °C) compound the difficulties faced during welding. Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Plasma Arc Welding (PAW), etc are generally used in industries for fusion welding of aluminium alloys. However in case of thicker jobs the above processes are not suitable due to requirements of elaborate edge preparation, preheating of jobs, fixturing to prevent distortion, etc. Moreover, precise control over the heat input during welding and weld bead penetration is not possible with above processes. Further, if heat sensitive parts are located near the weld joint then high energy density beam welding process like Electron Beam Welding (EBW) is the best possible choice for aluminium welding.This paper discusses EB welding of aluminium components, typical geometry of components, selection/optimization of welding parameters, problems faced during standardization of welding and process parameters and their remedies etc.

  11. Alveolar proteinosis associated with aluminium dust inhalation.

    Science.gov (United States)

    Chew, R; Nigam, S; Sivakumaran, P

    2016-08-01

    Secondary alveolar proteinosis is a rare lung disease which may be triggered by a variety of inhaled particles. The diagnosis is made by detection of anti-granulocyte-macrophage colony-stimulating factor antibodies in bronchoalveolar lavage fluid, which appears milky white and contains lamellar bodies. Aluminium has been suggested as a possible cause, but there is little evidence in the literature to support this assertion. We report the case of a 46-year-old former boilermaker and boat builder who developed secondary alveolar proteinosis following sustained heavy aluminium exposure. The presence of aluminium was confirmed both by histological examination and metallurgical analysis of a mediastinal lymph node. Despite cessation of exposure to aluminium and treatment with whole-lung lavage which normally results in improvements in both symptoms and lung function, the outcome was poor and novel therapies are now being used for this patient. It may be that the natural history in aluminium-related alveolar proteinosis is different, with the metal playing a mediating role in the disease process. Our case further supports the link between aluminium and secondary alveolar proteinosis and highlights the need for measures to prevent excessive aluminium inhalation in relevant industries. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. The indium-oxygen system, ch. 5

    International Nuclear Information System (INIS)

    Dillen, A.J. van

    1977-01-01

    This chapter is divided into three sections: 1) a survey of the literature concerning the indiumoxygen system, 2) the adsorption of oxygen at pure and partially oxidized indium surfaces in the temperature range 20-180degC, and 3) the oxidation of indium at temperatures above 180degC. The oxygen uptake is determined volumetrically and gravimetrically. The influence of the melting point is considered and the results are compared with data from the literature. The oxide layer is amorphous at lower temperatures but above 350degC, crystallisation of In 2 O 3 takes place

  13. Labelling of bacteria with indium chelates

    International Nuclear Information System (INIS)

    Kleinert, P.; Pfister, W.; Endert, G.; Sproessig, M.

    1985-01-01

    The indium chelates were prepared by reaction of radioactive indiumchloride with 10 μg oxine, 15 μg tropolone and 3 mg acetylacetone, resp. The formed chelates have been incubated with 10 9 germs/ml for 5 minutes, with labelling outputs from 90 to 95%. Both gram-positive (Streptococcus, Staphylococcus) and gram-negative bacteria (Escherichia coli) can be labelled. The reproductive capacity of the bacteria was not impaired. The application of indium labelled bacteria allows to show the distribution of microorganisms within the living organism and to investigate problems of bacterial adherence. (author)

  14. Neutral complexes of the indium dihalides

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, I.; Worrall, I.J. (Lancaster Univ. (UK))

    1982-03-15

    The neutral complexes In/sub 2/X/sub 4/.2L (X=Cl, Br, I; L 1,4-dioxan, tetrahydropyran, tetrahydrofuran, tetrahydrothiophene), In/sub 2/X/sub 4/.2L (X=Br, I; Ldimethylsulphide), In/sub 2/X/sub 4/.4L (X=Cl, Br, I; Lpiperidine, piperazine, morpholine), and In/sub 2/X/sub 4/.4L (X=Br, I; L=pyridine, dimethylsulphoxide) have been prepared. Solid state Raman spectra indicate that the compounds contain indium-indium bonds.

  15. Indium 111 leucocyte scintigraphy in abdominal sepsis

    International Nuclear Information System (INIS)

    Baba, A.A.; McKillop, J.H.; Gray, H.W.; Cuthbert, G.F.; Neilson, W.; Anderson, J.R.

    1990-01-01

    We have studied the clinical utility of indium 111 autologous leucocyte scintigraphy retrospectively in 45 patients presenting with suspected intra-abdominal sepsis. The sensitivity was 95% (21/22) and the specificity was 91% (21/23). Some 34 of the studies (17 positive and 17 negative) were considered helpful in furthering patient management (76%) and 8, unhelpful (18%). In 3, the study results were misleading and led to inappropriate treatment. Indium 111 scintigraphy, whether positive or negative, provides information in patients with suspected intra-abdominal sepsis upon which therapeutic decisions can be based. (orig.)

  16. Challenges in LCA modelling of multiple loops for aluminium cans

    DEFF Research Database (Denmark)

    Niero, Monia; Olsen, Stig Irving

    considered the case of closed-loop recycling for aluminium cans, where body and lid are different alloys, and discussed the abovementioned challenge. The Life Cycle Inventory (LCI) modelling of aluminium processes is traditionally based on a pure aluminium flow, therefore neglecting the presence of alloying...... elements. We included the effect of alloying elements on the LCA modelling of aluminium can recycling. First, we performed a mass balance of the main alloying elements (Mn, Fe, Si, Cu) in aluminium can recycling at increasing levels of recycling rate. The analysis distinguished between different aluminium...... packaging scrap sources (i.e. used beverage can and mixed aluminium packaging) to understand the limiting factors for multiple loop aluminium can recycling. Secondly, we performed a comparative LCA of aluminium can production and recycling in multiple loops considering the two aluminium packaging scrap...

  17. Determination of gallium in flint clay by neutron activation analysis

    International Nuclear Information System (INIS)

    Padova, A.; Even, O.

    1975-01-01

    Neutron activation analysis was applied to determine gallium traces in different flint clay samples found in Israel. The principal 835 KeV gamma ray of gallium-72 was measured with a 60 cm 2 Ge(Li) spectrometer in conjunction with a Packard 4000 channel analyzer and Wang table computer, model 720 C. Samples were weighed into polyethylene vials, sealed and inserted into polyethylene rabbit. Gallium metal and gallium oxide used as standards were similarly prepared for irradiation for 10 minutes in the I.R.R.I., at a thermal flux of 3.5x10 12 n/cm 2 sec. Careful calibration of the spectrometer and judicious choice of cooling time eliminate the influence of such elements as europium-152, and sodium-24 and make possible the determination of gallium without prior chemical separation. Representative Israel flint clay samples contain about 55 ppm gallium. (B.G.)

  18. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    Science.gov (United States)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  19. Confined recrystallization of high-purity aluminium during accumulative roll bonding of aluminium laminates

    International Nuclear Information System (INIS)

    Chekhonin, Paul; Beausir, Benoît; Scharnweber, Juliane; Oertel, Carl-Georg; Hausöl, Tina; Höppel, Heinz Werner; Brokmeier, Heinz-Günter; Skrotzki, Werner

    2012-01-01

    Aluminium laminates consisting of high-purity aluminium and commercially pure aluminium have been produced by accumulative roll bonding (ARB) at ambient temperature for up to 10 cycles. To study the microstructure and texture development of the high-purity aluminium layers with regard to the shrinking layer thickness during ARB, microstructure and texture investigations were carried out by electron backscatter diffraction and neutron and X-ray diffraction, respectively. While the commercially pure aluminium layers develop an ultrafine-grained microstructure, partial discontinuous recrystallization occurs in the high-purity layers. The texture of the high-purity layers mainly consists of Cube and “Tilted Cube” (tilted with respect to the transverse direction) components. The experimental results are discussed with respect to confined recrystallization in the ARB aluminium laminates.

  20. Niobium-base grain refiner for aluminium

    International Nuclear Information System (INIS)

    Silva Pontes, P. da; Robert, M.H.; Cupini, N.L.

    1980-01-01

    A new chemical grain refiner for aluminium has been developed, using inoculation of a niobium-base compound. When a bath of molten aluminium is inoculated whith this refiner, an intermetallic aluminium-niobium compound is formed which acts as a powerful nucleant, producing extremely fine structure comparable to those obtained by means of the traditional grain refiner based on titanium and boron. It was found that the refinement of the structure depends upon the weight percentage of the new refiner inoculated as well as the time of holding the bath after inoculation and before pouring, but mainly on the inoculating temperature. (Author) [pt

  1. Net shape powder processing of aluminium

    International Nuclear Information System (INIS)

    Schaffer, G.B.

    2000-01-01

    The increasing interest in light weight materials coupled to the need for cost-effective processing have combined to create a significant opportunity for aluminium powder metallurgy. Net shape processing of aluminium using the classical press-and-sinter powder metallurgy technique is a unique and important metal-forming method which is cost effective in producing complex parts at, or very close to, final dimensions. This paper provides an overview of the net shape powder processing of aluminium. Current research is critically reviewed and the future potential is briefly considered

  2. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid

    2014-01-01

    -life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition...... of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types...

  3. Interactions of Zircaloy cladding with gallium: 1998 midyear status

    International Nuclear Information System (INIS)

    Wilson, D.F.; DiStefano, J.R.; Strizak, J.P.; King, J.F.; Manneschmidt, E.T.

    1998-06-01

    A program has been implemented to evaluate the effect of gallium in mixed-oxide (MOX) fuel derived from weapons-grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in a light-water reactor. The graded, four-phase experimental program was designed to evaluate the performance of prototypic Zircaloy cladding materials against (1) liquid gallium (Phase 1), (2) various concentrations of Ga 2 O 3 (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of a series of tests for Phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement, and (3) corrosion-mechanical. These tests will determine corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in the mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at ≥300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (parts per million) of gallium in the MOX fuel. Although continued migration of gallium into the initially formed intermetallic compound can result in large stresses that may lead to distortion, this was shown to be extremely unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed

  4. Psoas abscess localization by gallium scan in aplastic anemia

    International Nuclear Information System (INIS)

    Oster, M.W.; Gelrud, L.G.; Lotz, M.J.; Herzig, G.P.; Johnston, G.S.

    1975-01-01

    Gallium 67 scanning is an effective method of detecting inflammatory lesions, especially abscesses. A 10-year-old boy with aplastic anemia and severe leukopenia and granulocytopenia had a psoas abscess diagnosed by gallium scan. The patient died with Candida sepsis 18 days after bone marrow transplantation. At autopsy, a chronic psoas abscess with Candida was found. The gallium scan offers a clinically effective and noninvasive means of evaluating suspected infection in the granulocytopenia patient. (U.S.)

  5. Survey of the market, supply and availability of gallium

    Energy Technology Data Exchange (ETDEWEB)

    Rosi, F.D.

    1980-07-01

    The objective of this study was to assess the present consumption and supply of gallium, its potential availability in the satellite power system (SPS) implementation time frame, and commercial and new processing methods for increasing the production of gallium. Findings are reported in detail. The findings strongly suggest that with proper long range planning adequate gallium would be available from free-enterprise world supplies of bauxite for SPS implementation.

  6. Interactions of zircaloy cladding with gallium -- 1997 status

    International Nuclear Information System (INIS)

    Wilson, D.F.; DiStefano, J.R.; King, J.F.; Manneschmidt, E.T.; Strizak, J.P.

    1997-11-01

    A four phase program has been implemented to evaluate the effect of gallium in mixed oxide (MOX) fuel derived from weapons grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in LWR. This graded, four phase experimental program will evaluate the performance of prototypic Zircaloy cladding materials against: (1) liquid gallium (Phase 1), (2) various concentrations of Ga 2 O 3 (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of an initial series of tests for phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement (LME), and (3) corrosion mechanical. These tests are designed to determine the corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at ≥ 300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (in parts per million) of gallium in the MOX fuel. While continued migration of gallium into the initially formed intermetallic compound results in large stresses that can lead to distortion, this is also highly unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed

  7. Inflammatory pseudotumor: A gallium-avid mobile mesenteric mass

    International Nuclear Information System (INIS)

    Auringer, S.T.; Scott, M.D.; Sumner, T.E.

    1991-01-01

    An 8-yr-old boy with a 1-mo history of culture-negative fever and anemia underwent gallium, ultrasound, and computed tomography studies as part of the evaluation of a fever of unknown origin. These studies revealed a mobile gallium-avid solid abdominal mass subsequently proven to be an inflammatory pseudotumor of the mesentery, a rare benign mass. This report documents the gallium-avid nature of this rare lesion and discusses associated characteristic clinical, pathologic, and radiographic features

  8. Aluminium Toxicity Targets in Plants

    Directory of Open Access Journals (Sweden)

    Sónia Silva

    2012-01-01

    Full Text Available Aluminium (Al is the third most abundant metallic element in soil but becomes available to plants only when the soil pH drops below 5.5. At those conditions, plants present several signals of Al toxicity. As reported by literature, major consequences of Al exposure are the decrease of plant production and the inhibition of root growth. The root growth inhibition may be directly/indirectly responsible for the loss of plant production. In this paper the most remarkable symptoms of Al toxicity in plants and the latest findings in this area are addressed. Root growth inhibition, ROS production, alterations on root cell wall and plasma membrane, nutrient unbalances, callose accumulation, and disturbance of cytoplasmic Ca2+ homeostasis, among other signals of Al toxicity are discussed, and, when possible, the behavior of Al-tolerant versus Al-sensitive genotypes under Al is compared.

  9. Implant damage and redistribution of indium in indium-implanted thin silicon-on-insulator

    International Nuclear Information System (INIS)

    Chen Peng; An Zhenghua; Zhu Ming; Fu, Ricky K.Y.; Chu, Paul K.; Montgomery, Neil; Biswas, Sukanta

    2004-01-01

    The indium implant damage and diffusion behavior in thin silicon-on-insulator (SOI) with a 200 nm top silicon layer were studied for different implantation energies and doses. Rutherford backscattering spectrometry in the channeling mode (RBS/C) was used to characterize the implant damage before and after annealing. Secondary ion mass spectrometry (SIMS) was used to study the indium transient enhanced diffusion (TED) behavior in the top Si layer of the SOI structure. An anomalous redistribution of indium after relatively high energy (200 keV) and dose (1 x 10 14 cm -2 ) implantation was observed in both bulk Si and SOI substrates. However, there exist differences in these two substrates that are attributable to the more predominant out-diffusion of indium as well as the influence of the buried oxide layer in the SOI structure

  10. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Gallium-cladding compatibility testing plan. Phases 1 and 2: Test plan for gallium corrosion tests. Revision 2

    International Nuclear Information System (INIS)

    Wilson, D.F.; Morris, R.N.

    1998-05-01

    This test plan is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water-Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. The plan summarizes and updates the projected Phases 1 and 2 Gallium-Cladding compatibility corrosion testing and the following post-test examination. This work will characterize the reactions and changes, if any, in mechanical properties that occur between Zircaloy clad and gallium or gallium oxide in the temperature range 30--700 C

  12. Synthesis of indium-111 mesoprotoporphyrin IX

    International Nuclear Information System (INIS)

    Lee, K.M.; Marshall, A.G.

    1981-01-01

    Indium-111 mesoprotoporphyrin IX has been prepared by refluxing suitable proportions of InCl 3 , sodium acetate, and mesoprotoporphyrin IX in glacial acetic acid. The labeled metalloporphyrin is sufficiently water-soluble for use as a scanning agent, and can also be incorporated into heme apoproteins for perturbed gamma-gamma angular correlation measurements. (author)

  13. TRANSPARENT CONDUCTING OXIDE SYNTHESIS OF ALUMINIUM DOPED ZINC OXIDES BY CHEMICAL COPRECIPITATION

    Directory of Open Access Journals (Sweden)

    Silvia Maioco

    2013-03-01

    Full Text Available Aluminium doped zinc oxides (AZO are promising replacements for tin doped indium oxides (ITO but thin films show a wide range of physical properties strongly dependent on deposition process conditions. Submicrometric 1% aluminum doped zinc oxide ceramics (AZO are examined, prepared by coprecipitation, from Zn(NO32 and Al(NO33 aqueous solutions, sintered at 1200°C and subsequently annealed in 10-16 atm controlled oxygen fugacity atmospheres, at 1000°C. Electrical resistivity diminishes by two orders of magnitude after two hours of annealing and the Seebeck coefficient gradually changes from -140 to -50 µV/K within 8 h. It is concluded that increased mobility is dominant over the increased carrier density, induced by changes in metal-oxygen stoichiometry

  14. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    The extensive demand of aluminium alloys in various industries such as in transportationis mainly due to the high strength to weight ratio, which could be translated into fuel economy and efficiency. Corrosion protection of aluminium alloys is an important aspect for all applications which includes...... the use of aluminium alloys in the painted form requiring a conversion coating to improve the adhesion. Chromate based conversion coating processes are extremely good for these purposes, however the carcinogenic and toxic nature of hexavalent chromium led to the search for more benign and eco......, crystalline nano-particles, role of steam-based treatment on adhesion of industrially applied powder coating, and investigations of a failed painted aluminium window profile due to defects in the extruded profile. Chapters 13 and 14 describe the overall discussion, conclusions and future work based...

  15. Generation and characterization of nano aluminium powder ...

    Indian Academy of Sciences (India)

    TECS

    Generation and characterization of nano aluminium powder obtained through wire ... Department of Aerospace Engineering, Indian Institute of Technology. Madras, Chennai 600 .... pressure developed due to current flow (z-Pinch). Figure 2.

  16. Irradiation effects in magnesium and aluminium alloys

    International Nuclear Information System (INIS)

    Sturcken, E.F.

    1979-01-01

    Effects of neutron irradiation on microstructure, mechanical properties and swelling of several magnesium and aluminium alloys were studied. The neutron fluences of 2-3 X 10 22 n/cm 2 , >0.2 MeV produced displacement doses of 20 to 45 displacements per atom (dpa). Ductility of the magnesium alloys was severely reduced by irradiation induced recrystallization and precipitation of various forms. Precipitation of transmuted silicon occurred in the aluminium alloys. However, the effect on ductility was much less than for the magnesium alloys. The magnesium and aluminium alloys had excellent resistance to swelling: The best magnesium alloy was Mg/3.0 wt% Al/0.19 wt% Ca; its density decreased by only 0.13%. The best aluminium alloy was 6063, with a density decrease of 0.22%. (Auth.)

  17. COMBINED ALUMINIUM SULFATE/HYDROXIDE PROCESS FOR ...

    African Journals Online (AJOL)

    sulfate, and used for fluoride removal from water by combining with Nalgonda Technique. ... effects on human health and could result in fluorosis. ... [23], nanoscale aluminium oxide hydroxide (AlOOH) [24] and natural zeolite [25], were among.

  18. Aluminium reprocessing with local mineral raw material

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    With the purpose of utilization of ice sediment, receiving from mud fields solutions and flotation tails and at using local aluminium and fluorine-containing raw material was elaborated fundamental technologic scheme presented in this chapter of book

  19. Deformation features of aluminium in tensile tests

    International Nuclear Information System (INIS)

    Quadros, N.F. de.

    1984-01-01

    It is presented a method to analyse stress-strain curves. Plastic and elastic strains were studied. The strains were done by tensile tests in four types of materials: highly pure aluminium, pure aluminium, commercially pure aluminium and aluminium - uranium. The chemical compositions were obtained by spectroscopy analysis and neutron activation analysis. Tensile tests were carried out at three strain rates, at room temperature, 100,200, 300 and 400 0 C, with knives extensometer and strain-gages to studied the elastic strain region. A multiple spring model based on two springs model to analyse elastic strain caused by tests without extensometers, taking in account moduli of elasticity and, an interactive analysis system with graphic capability were developed. It was suggested a qualitative model to explain the quantized multielasticity of Bell. (M.C.K.) [pt

  20. Boron, phosphorus, and gallium determination in silicon crystals doped with gallium

    International Nuclear Information System (INIS)

    Shklyar, B.L.; Dankovskij, Yu.V.; Trubitsyn, Yu.V.

    1989-01-01

    When studying IR transmission spectra of silicon doped with gallium in the range of concentrations 1 x 10 14 - 5 x 10 16 cm -3 , the possibility to quantity at low (∼ 20 K) temperatures residual impurities of boron and phosphorus is ascertained. The lower determination limit of boron is 1 x 10 12 cm -3 for a sample of 10 nm thick. The level of the impurities in silicon crystals, grown by the Czochralski method and method of crucible-free zone melting, is measured. Values of boron and phosphorus concentrations prior to and after their alloying with gallium are compared

  1. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...... of structures which would otherwise be difficult to mold. The resistance of the coated aluminium mold is significantly improved by applying a silane-based coating layer....

  2. Characterization of aluminium alloys rapidly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1988-01-01

    This paper discussed the investigation of the microstructural and mechanical properties of the aluminium alloys (3003; 7050; Al-9% Mg) rapidly solidified by melt spinning process (cooling rate 10 4 - 10 6 K/s). The rapidly solidification process of the studied aluminium alloys brought a microcrystallinity, a minimum presence of coarse precipitation and, also, better mechanical properties of them comparing to the same alloys using ingot process. (author) [pt

  3. Natively textured surface hydrogenated gallium-doped zinc oxide transparent conductive thin films with buffer layers for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin-liang, E-mail: cxlruzhou@163.com; Wang, Fei; Geng, Xin-hua; Huang, Qian; Zhao, Ying; Zhang, Xiao-dan

    2013-09-02

    Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. These natively textured HGZO thin films exhibit rough pyramid-like textured surface, high optical transmittances in the visible and near infrared region and excellent electrical properties. The experiment results indicate that tungsten-doped indium oxide (In{sub 2}O{sub 3}:W, IWO) buffer layers can effectively improve the surface roughness and enhance the light scattering ability of HGZO thin films. The root-mean-square roughness of HGZO, IWO (10 nm)/HGZO and IWO (30 nm)/HGZO thin films are 28, 44 and 47 nm, respectively. The haze values at the wavelength of 550 nm increase from 7.0% of HGZO thin film without buffer layer to 18.37% of IWO (10 nm)/HGZO thin film. The optimized IWO (10 nm)/HGZO exhibits a high optical transmittance of 82.18% in the visible and near infrared region (λ ∼ 400–1100 nm) and excellent electrical properties with a relatively low sheet resistance of 3.6 Ω/□ and the resistivity of 6.21 × 10{sup −4} Ωcm. - Highlights: • Textured hydrogenated gallium-doped zinc oxide (HGZO) films were developed. • Tungsten-doped indium oxide (IWO) buffer layers were applied for the HGZO films. • Light-scattering ability of the HGZO films can be improved through buffer layers. • Low sheet resistance and high haze were obtained for the IWO(10 nm)/HGZO film. • The IWO/HGZO films are promising transparent conductive layers for solar cells.

  4. Structural evolution in nanoporous anodic aluminium oxide

    International Nuclear Information System (INIS)

    Rocca, Emmanuel; Vantelon, Delphine; Reguer, Solenn; Mirambet, François

    2012-01-01

    Nanoporous and self-organized layers of aluminium alloys are used in many applications as membranes, templates for nanometric objects or corrosion protection for aluminium alloys. The use of this nanometric structure widely remains empirical, especially in the case of very small pores ( 4 into AlO 6 cluster and a partial release of sulphate ions are an important chemical transformation of the amorphous structure. This structural transformation defines the chemistry (pH and surface charge) inside the nanopores, the ageing behaviour and the possible incorporation or diffusion of chemical species in the nanostructure. Highlights: ► Investigations of local chemical environment of aluminium atoms in anodic aluminium oxide. ► The oxide structure is constituted by 2/3 of aluminium in tetrahedral coordination 1/3 in octahedral coordination. ► In contact with water, AlO 4 clusters are transformed into AlO 6 cluster and the aluminium sulphate bonds are hydrolysed. ► These transformations induce a pH decrease inside the nanostructure.

  5. State and prospects of Russian and world gallium market

    Directory of Open Access Journals (Sweden)

    F. D. Larichkin

    2017-12-01

    Full Text Available The authors consider the state of Russian and world mineral and raw materials base of gallium, the main spheres of application in various branches and industries of the national economy. The article presents the generalization and analysis of trends in world and Russian production, consumption of rare metal and its compounds, the world trade and global market of gallium and products based on it, consuming it in new science-intensive innovative industries, including the production of military equipment. The unique chemical properties of gallium remained unclaimed for a long time. Only after the discovery of the semiconductor properties of gallium compounds has the situation radically changed: the rate of growth in production and consumption of metallic gallium at the end of the twentieth and beginning of the 21st century amounted to an average of more than 8% per year. The largest area of consumption of gallium is the production of semiconductor materials – gallium arsenide (GaAs and gallium nitride (GaN. The areas of application of gallium not related to the semiconductor industry are very small. Industry structure of consumption of GaAs and GaN: in integrated circuits is 66%; optoelectronic devices (light-emitting diodes, laser diodes, photodetectors and solar batteries – 20%; the remaining 14% – scientific research, special alloys, etc. Optoelectronic devices are used in aerospace industry, consumer goods, industrial and medical equipment and telecommunications. Integral circuits are used in the military industry, high-power computers and electronic communications. The most significant growing sectors of the market are LEDs, electronics based on gallium nitride and solar cells. Solar energy has become the fastest growing branch of the world economy. The volumes of gallium production in Russia do not correspond to its raw material, scientific and technological potential as the country and require the development activation based on state

  6. [Aluminium content in foods with aluminium-containing food additives].

    Science.gov (United States)

    Ogimoto, Mami; Suzuki, Kumi; Kabashima, Junichiro; Nakazato, Mitsuo; Uematsu, Yoko

    2012-01-01

    The aluminium (Al) content of 105 samples, including bakery products made with baking powder, agricultural products and seafoods treated with alum, was investigated. The amounts of Al detected were as follows (limit of quantification: 0.01 mg/g): 0.01-0.37 mg/g in 26 of 57 bakery products, 0.22-0.57 mg/g in 3 of 6 powder mixes, 0.01-0.05 mg/g in all three agricultural products examined, 0.03-0.90 mg/g in 4 of 6 seafood samples, 0.01-0.03 mg/g in 3 of 11 samples of instant noodles, 0.04-0.14 mg/g in 3 of 4 samples of vermicelli, 0.01 mg/g in 1 of 16 soybean products, but none in soybeans. Amounts equivalent to the PTWI of a 16 kg infant were detected in two samples of bakery products, two samples of powder mixes and one sample of salted jellyfish, if each sample was taken once a week. These results suggest that certain foods, depending on the product and the intake, might exceed the PTWI of children, especially infants.

  7. Aluminium exclusion and aluminium tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    Ivano eBrunner

    2013-06-01

    Full Text Available The aluminium (Al cation Al3+ is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3+ conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al3+ from root cells (exclusion mechanisms and those that enable plants to tolerate Al3+ once it has entered the root and shoot symplast (internal tolerance mechanisms. The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al3+ exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al3+ adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.

  8. Automated realization of the gallium melting and triple points

    Science.gov (United States)

    Yan, X.; Duan, Y.; Zhang, J. T.; Wang, W.

    2013-09-01

    In order to improve the automation and convenience of the process involved in realizing the gallium fixed points, an automated apparatus, based on thermoelectric and heat pipe technologies, was designed and developed. This paper describes the apparatus design and procedures for freezing gallium mantles and realizing gallium melting and triple points. Also, investigations on the melting behavior of a gallium melting point cell and of gallium triple point cells were carried out while controlling the temperature outside the gallium point cells at 30 °C, 30.5 °C, 31 °C, and 31.5 °C. The obtained melting plateau curves show dentate temperature oscillations on the melting plateaus for the gallium point cells when thermal couplings occurred between the outer and inner liquid-solid interfaces. The maximum amplitude of the temperature fluctuations was about 1.5 mK. Therefore, the temperature oscillations can be used to indicate the ending of the equilibrium phase transitions. The duration and amplitude of such temperature oscillations depend on the temperature difference between the setting temperature and the gallium point temperature; the smaller the temperature difference, the longer the duration of both the melting plateaus and the temperature fluctuations.

  9. TEM investigation of aluminium containing precipitates in high aluminium doped silicon carbide

    International Nuclear Information System (INIS)

    Wong-Leung, J.; FitzGerald, J.D.

    2002-01-01

    Full text: Silicon carbide is a promising semiconductor material for applications in high temperature and high power devices. The successful growth of good quality epilayers in this material has enhanced its potential for device applications. As a novel semiconductor material, there is a need for studying its basic physical properties and the role of dopants in this material. In this study, silicon carbide epilayers were grown on 4H-SiC wafers of (0001) orientation with a miscut angle of 8 deg at a temperature of 1550 deg C. The epilayers contained regions of high aluminium doping well above the solubility of aluminium in silicon carbide. High temperature annealing of this material resulted in the precipitation of aluminium in the wafers. The samples were analysed by secondary ion mass spectrometry and transmission electron microscopy. Selected area diffraction studies show the presence of aluminium carbide and aluminium silicon carbide phases. Copyright (2002) Australian Society for Electron Microscopy Inc

  10. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    Directory of Open Access Journals (Sweden)

    Tae-Hee Kim

    2016-02-01

    Full Text Available Gallium nitride (GaN nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO33∙xH2O was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6 powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3. Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  11. Gallium-containing hydroxyapatite for potential use in orthopedics

    International Nuclear Information System (INIS)

    Melnikov, P.; Teixeira, A.R.; Malzac, A.; Coelho, M. de B.

    2009-01-01

    A novel material that may be recommended for grafts and implants stimulating bone growth has been obtained by introducing gallium ions (up to 11.0 mass%) into crystalline lattice of hydroxyapatite. The doping was carried out using gallium nitrate and sodium gallate solutions. In both cases, lattice parameters of gallium-doped hydroxyapatite are identical to those of pure synthetic hydroxyapatite. Gallium does not replace calcium as a result of heterovalent substitution and consequently produces no distortions in the framework of hydroxyapatite matrix. It remains strongly fixed in the form of solid solution of intercalation. According to scanning electron microscopy images gallium insertion does not cause any morphological alterations in hydroxyapatite structure and the product developed meets physico-chemical criteria for biomaterial to be employed in orthopedic practice and local handling of traumatic injuries. Its future usage opens the opportunity to enhance osteosynthesis and calcium retention in loco.

  12. Nuclear microprobe imaging of gallium nitrate in cancer cells

    Science.gov (United States)

    Ortega, Richard; Suda, Asami; Devès, Guillaume

    2003-09-01

    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.

  13. Nuclear microprobe imaging of gallium nitrate in cancer cells

    International Nuclear Information System (INIS)

    Ortega, Richard; Suda, Asami; Deves, Guillaume

    2003-01-01

    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material

  14. Investigation of aluminium-rich alloy system of aluminium-strontium-silicium

    International Nuclear Information System (INIS)

    Ganiev, I.N.; Vakhobov, A.B.; Dzhuraev, T.D.; Alidzhanov, F.N.

    1976-01-01

    An area of the solid solution based on aluminium was studied, and the surface was plotted of the liquidus adjoining the apex of the aluminium corner of the strontium-aluminium-silicon system. The investigation was carried out by microstructure and differential thermal analyses and by the measurement of the microhardness of the component phases. A combined solubility of silicon and strontium in aluminium was studied along three radial sections at Sr-to-Si ratios of 1/2, 1/1 and 2/1. The relationships of ''composition vs. Microhardness'', obtained in these sections, made it possible to define the boundaries of the phase regions in the aluminium corner of the strontium-aluminium-silicon system at 500 deg C. The greatest solubility is that along the Al-SrAl 2 Si 2 section at a Sr/Si ratio of 1/2. A further increase in the content of strontium brings about a drop in the solubility of silicon in solid aluminium. The projection of the liquidus surface of the strontium-aluminium-silicon system, rich in aluminium, includes four surfaces of primary crystallization: α-Al, SrAl 4 , SrAl 2 Si 2 and Si. The system comprises a section of Al-SrAl 2 Si 2 representing a quasibinary system of an eutectic type. The eutectic reaction takes place at a temperature of 640 deg C. The quasibinary Al-SrAl 2 Si 2 section divides the aluminium corner of the Sr-Al-Si system into two independent systems Al-SrAl 4 -SrAl 2 Si 2 and Al-Si-SrAl 2 Si 2 of an eutectic type

  15. Fluorimetric analysis of gallium in bauxite, by-products, products from gallium processing and its control solutions

    International Nuclear Information System (INIS)

    Ferreira, C.A.M.; Medeiros, V.

    1987-01-01

    The gallium processing since raw material analysis until end-products analysis is studied. Gallium presence in by-products and products, as well as the fluorimetric method is analyzed. Equipments and materials used in laboratory, reagents and chemical solutions are described. (M.J.C.) [pt

  16. Thin film metrology and microwave loss characterization of indium and aluminum/indium superconducting planar resonators

    Science.gov (United States)

    McRae, C. R. H.; Béjanin, J. H.; Earnest, C. T.; McConkey, T. G.; Rinehart, J. R.; Deimert, C.; Thomas, J. P.; Wasilewski, Z. R.; Mariantoni, M.

    2018-05-01

    Scalable architectures characterized by quantum bits (qubits) with low error rates are essential to the development of a practical quantum computer. In the superconducting quantum computing implementation, understanding and minimizing material losses are crucial to the improvement of qubit performance. A new material that has recently received particular attention is indium, a low-temperature superconductor that can be used to bond pairs of chips containing standard aluminum-based qubit circuitry. In this work, we characterize microwave loss in indium and aluminum/indium thin films on silicon substrates by measuring superconducting coplanar waveguide resonators and estimating the main loss parameters at powers down to the sub-photon regime and at temperatures between 10 and 450 mK. We compare films deposited by thermal evaporation, sputtering, and molecular beam epitaxy. We study the effects of heating in a vacuum and ambient atmospheric pressure as well as the effects of pre-deposition wafer cleaning using hydrofluoric acid. The microwave measurements are supported by thin film metrology including secondary-ion mass spectrometry. For thermally evaporated and sputtered films, we find that two-level state are the dominant loss mechanism at low photon number and temperature, with a loss tangent due to native indium oxide of ˜ 5 × 10 - 5 . The molecular beam epitaxial films show evidence of the formation of a substantial indium-silicon eutectic layer, which leads to a drastic degradation in resonator performance.

  17. Thermopower of dilute alloys of indium

    International Nuclear Information System (INIS)

    Dudenhoeffer, A.W.

    1974-01-01

    An experimental investigation of a new theory of electron-diffusion thermopower is discussed. A figure of merit for this ''Nielsen--Taylor'' theory in various metals is established, and it indicates that the effect should be largest in lead, indium, thallium, and aluminum, in that order. Previous investigations have been carried out for lead and aluminum. The thermopower of indium (or any metal) changes when impurity scattering centers are introduced into it. This change in the thermopower as a function of temperature is analyzed in terms of the Nielsen--Taylor theory and in terms of the competing process known as ''phonon drag.'' Definite conclusions as to the validity of the new theory are hampered by the complex nature of this phonon drag, but the experimental data is consistent with the Nielsen--Taylor theory. (Diss. Abstr. Int., B)

  18. Patterned gallium surfaces as molecular mirrors.

    Science.gov (United States)

    Bossi, Alessandra; Rivetti, Claudio; Mangiarotti, Laura; Whitcombe, Michael J; Turner, Anthony P F; Piletsky, Sergey A

    2007-09-30

    An entirely new means of printing molecular information on a planar film, involving casting nanoscale impressions of the template protein molecules in molten gallium, is presented here for the first time. The metallic imprints not only replicate the shape and size of the proteins used as template. They also show specific binding for the template species. Such a simple approach to the creation of antibody-like properties in metallic mirrors can lead to applications in separations, microfluidic devices, and the development of new optical and electronic sensors, and will be of interest to chemists, materials scientists, analytical specialists, and electronic engineers.

  19. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  20. Radioassay process using an indium-8-hydroxyquinoline

    International Nuclear Information System (INIS)

    Goedemans, W.T.

    1981-01-01

    There is disclosed an in vivo radioassay process in which a radioactive chelate of indium and an 8-hydroxyquinoline is introduced into a warmblooded animal having an inflammatory reaction in an area in which the chelate would not accumulate to the same extent if the inflammation were not present. The chelate gathers in the inflamed area, for instance, in a body abscess and its location is determined by radio surveying the body by an external imaging technique. (author)

  1. Preparation of trialkylindium by alkylation of metallic indium

    International Nuclear Information System (INIS)

    Eremeev, I.V.; Danov, S.M.; Sakhipov, V.R.

    1995-01-01

    The investigation results on production of trialkyl indium by alkylation of metallic indium are presented. In contradistinction to the known techniques for the production of trialkyls on indium by alkylation it is suggested to separate the synthesis into two steps. At the first step indium is alkylated by alkylhalide to alkyl indium halide, and at the second alkylation is carried out using. Grignard reagent. The techniques for preparation of trimethyl- and triethylindium, developed on the bases of this scheme, are noted for good reproducibility, allow to preclude, agglomeration of indium during the synthesis, as well as to reduce the consumption coefficients, and amounts, of the introduced starting reagents, i.e. magnesium and alkylhalide. Refs. 16

  2. Thermoelectric flux effect in superconducting indium

    International Nuclear Information System (INIS)

    Van Harlingen, D.J.

    1977-01-01

    In this paper we discuss a thermoelectric effect in superconductors which provides a mechanism for studying quasiparticle relaxation and scattering processes in non-equilibrium superconductors by transport measurements. We report measurements of the thermoelecric flux effect in samples consisting of indium and lead near the In transition temperature; in this temperature range, the contribution to DELTA/sub TAU/ from the Pb is insignificant and so values of OMEGA(T) are obtained for indium. The results of our experiments may be summarized as follows: (1) we have a thermally-generated flux effect in 5 superconducting In-Pb toroidal samples, (2) experimental tests suggest that the observed effect does indeed arise from the proposed thermoelectric flux effect, (3) OMEGA(T) for indium is found to diverge as (T/sub c/ - T)/sup -3/2/ more rapidly than predicted by simple theory, (4) OMEGA(T) at T/T sub c/ = .999 is nearly 10/sup 5/ larger than initially expected, (5) OMEGA (T) roughly correlates with the magnitude of the normal state thermoelectric coefficient for our samples

  3. Characterization and modeling of the intrinsic properties of 1.5-micrometer gallium indium nitrogen arsenic antimonide/gallium arsenide laser

    Science.gov (United States)

    Goddard, Lynford

    2005-12-01

    Low cost access to optical communication networks is needed to satisfy the rapidly increasing demands of home-based high-speed Internet. Existing light sources in the low-loss 1.2--1.6mum telecommunication wavelength bandwidth are prohibitively expensive for large-scale deployment, e.g. incorporation in individual personal computers. Recently, we have extended the lasing wavelength of room-temperature CW GaInNAs(Sb) lasers grown monolithically on GaAs by MBE up to 1.52mum in an effort to replace the traditional, more expensive, InP-based devices. Besides lower cost wafers, GaInNAs(Sb) opto-electronic devices have fundamental material advantages over InP-based devices: a larger conduction band offset which reduces temperature sensitivity and enhances differential gain, a lattice match to a material with a large refractive index contrast, i.e. AlAs, which decreases the necessary number of mirror pairs in DBRs for VCSELs, and native oxide apertures for current confinement. High performance GaInNAs(Sb) edge-emitting lasers, VCSELs, and DFB lasers have been demonstrated throughout the entire telecommunication band. In this work, we analyze the intrinsic properties of the GaInNAsSb material system, e.g. recombination, gain, band structure and renormalization, and efficiency. Theoretical modeling is performed to calculate a map of the bandgap and effective masses for various material compositions. We also present device performance results, such as: room temperature CW threshold densities below 450A/cm2, quantum efficiencies above 50%, and over 425mW of total power from a SQW laser when mounted epi-up and minimally packaged. These results are generally 2--4x better than previous world records for GaAs based devices at 1.5mum. The high CW power and low threshold exhibited by these SQW lasers near 1.5mum make feasible many novel applications, such as broadband Raman fiber amplifiers and uncooled WDM at the chip scale. Device reliability of almost 500 hours at 200mW CW output power has also been demonstrated. Comparative experiments using innovative characterization techniques, such as: the multiple section absorption/gain method to explore the band structure, as well as the Z-parameter to analyze the dominant recombination processes, have identified the physical mechanisms responsible for improved performance. Also, by measuring the temperature dependence of relevant laser parameters, we have been able to simulate device operation while varying temperature and device geometry.

  4. Potentiometric titration curves of aluminium salt solutions and its ...

    African Journals Online (AJOL)

    Potentiometric titration curves of aluminium salt solutions and its species conversion ... of aluminium salt solutions under the moderate slow rate of base injection. ... silicate radical, and organic acid radical on the titration curves and its critical ...

  5. Effect of tempering on corrosion resistance of cast aluminium bronzes

    International Nuclear Information System (INIS)

    Aaltonen, P.; Klemetti, K.; Haenninen, H.

    1985-01-01

    The subject of this study is corrosion resistance of aluminium bronzes, which are copper base alloys containing aluminium up to 12% with additions of nickel, iron and manganese. The main conclutions that can be drawn are: (1) The dealloying corrosion resistance of nickel-aluminium bronze is much better than that of aluminium bronze with iron and manganese additions, but it is not immune; (2) The dealloying corrosion resistance of aluminium bronzes can be improved by appropiate heat treatments. The best properties were obtained by temperering between 600 and 800 deg C, depending on the initial microstructure; (3) In crevice conditions, where local acidification can occur, dealloying of aluminium bronzes is a consequence of the preferential attack of aluminium-rich phases. By appropriate tempering, a uniform distribution of aluminium-rich phases is obtained and the continous path for selective corrosion is not formed

  6. Aluminium hydroxide-the carrier for catalysts coating

    International Nuclear Information System (INIS)

    Normatov, I.Sh.; Mirsaidov, U.M.

    2003-01-01

    At present time several methods of receiving aluminium hydroxide are exist. But all they differ by much staging of process connected with preliminary receiving of intermediate compounds, with application of expensive metallic aluminium

  7. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    Science.gov (United States)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  8. Short period strain balanced gallium arsenide nitride/indium arsenide nitride superlattice lattice matched to indium phosphide for mid-infrared photovoltaics

    Science.gov (United States)

    Bhusal, Lekhnath

    Dilute nitrogen-containing III-V-N alloys have been intensively studied for their unusual electronic and optical behavior in the presence of a small amount of nitrogen. Those behaviors can further be manipulated, with a careful consideration of the strain and strain balancing, for example, in the context of a strain-balanced superlattice (SL) based on those alloys. In this work, the k.p approximation and the band anti-crossing model modified for the strain have been used to describe the electronic states of the strained bulk-like GaAs1-xNx and InAs 1-yNy ternaries in the vicinity of the center of the Brillouin zone (Gamma-point). Band-offsets between the conduction and valence bands of GaAs1-xNx and InAs1-yN y have also been evaluated, before implementing them into the SL structure. By minimizing the total mechanical energy of the stack of the alternating layers of GaAs1-xNx and InAs1-yNy in the SL, the ratio of the thicknesses of the epilayers is determined to make the structure lattice-matching on the InP(001), through the strain-balancing. Mini-band energies of the strain-balanced GaAs1-xNx/InAs 1-yNy short-period SL on InP(001) is then investigated using the transfer matrix formalism. This enabled identifying the evolution of the band edge transition energies of the superlattice structure for different nitrogen compositions. Results show the potential of the new proposed design to exceed the existing limits of bulk-like InGaAsN alloys and offer the applications for photon absorption/emission energies in the range of ~0.65-0.35eV at 300K for a typical nitrogen composition of ≤5%. The optical absorption coefficient of such a SL is then estimated under the anisotropic medium approximation, where the optical absorption of the bulk structure is modified according to the anisotropy imposed by the periodic potential in the growth direction. As an application, the developed SL structure is used to investigate the performance of double, triple and quadruple junction thermophotovoltaic devices. Integration of the SL structure, which is lattice matched to InP, in the i region of the p(InGaAs)- i(SL) n(InGaAs) diode allowed the possibility of more than two junction thermophotovoltiac device with the enhanced performance in comparison to the conventional p(InGaAs)n(InGaAs) diode.

  9. Effect of Sintering Temperature on the Properties of Aluminium-Aluminium Oxide Composite Materials

    Directory of Open Access Journals (Sweden)

    Dewan Muhammad Nuruzzaman

    2016-12-01

    Full Text Available In this study, aluminium-aluminium oxide (Al-Al2O3 metal matrix composites of different weight percentage reinforcements of aluminium oxide were processed at different sintering temperatures. In order to prepare these composite specimens, conventional powder metallurgy (PM method was used. Three types specimens of different compositions such as 95%Al+5%Al2O3, 90%Al+10%Al2O3 and 85%Al+15%Al2O3 were prepared under 20 Ton compaction load. Then, all the specimens were sintered in a furnace at two different temperatures 550oC and 580oC. In each sintering process, two different heating cycles were used. After the sintering process, it was observed that undistorted flat specimens were successfully prepared for all the compositions. The effects of sintering temperature and weight fraction of aluminium oxide particulates on the density, hardness and microstructure of Al-Al2O3 composites were observed. It was found that density and hardness of the composite specimens were significantly influenced by sintering temperature and percentage aluminium oxide reinforcement. Furthermore, optical microscopy revealed that almost uniform distribution of aluminium oxide reinforcement within the aluminium matrix was achieved.

  10. Aluminium and the human breast.

    Science.gov (United States)

    Darbre, P D

    2016-06-01

    The human population is exposed to aluminium (Al) from diet, antacids and vaccine adjuvants, but frequent application of Al-based salts to the underarm as antiperspirant adds a high additional exposure directly to the local area of the human breast. Coincidentally the upper outer quadrant of the breast is where there is also a disproportionately high incidence of breast cysts and breast cancer. Al has been measured in human breast tissues/fluids at higher levels than in blood, and experimental evidence suggests that at physiologically relevant concentrations, Al can adversely impact on human breast epithelial cell biology. Gross cystic breast disease is the most common benign disorder of the breast and evidence is presented that Al may be a causative factor in formation of breast cysts. Evidence is also reviewed that Al can enable the development of multiple hallmarks associated with cancer in breast cells, in particular that it can cause genomic instability and inappropriate proliferation in human breast epithelial cells, and can increase migration and invasion of human breast cancer cells. In addition, Al is a metalloestrogen and oestrogen is a risk factor for breast cancer known to influence multiple hallmarks. The microenvironment is established as another determinant of breast cancer development and Al has been shown to cause adverse alterations to the breast microenvironment. If current usage patterns of Al-based antiperspirant salts contribute to causation of breast cysts and breast cancer, then reduction in exposure would offer a strategy for prevention, and regulatory review is now justified. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. New indium selenite-oxalate and indium oxalate with two- and three-dimensional structures

    International Nuclear Information System (INIS)

    Cao Junjun; Li Guodong; Chen Jiesheng

    2009-01-01

    Two new indium(III) compounds with extended structures, [In 2 (SeO 3 ) 2 (C 2 O 4 )(H 2 O) 2 ].2H 2 O (I) and [NH 3 (CH 2 ) 2 NH 3 ][In(C 2 O 4 ) 2 ] 2 .5H 2 O (II), have been prepared under mild hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction, thermogravimetric analysis and infrared spectroscopy. Compound I crystallizes in the triclinic system, space group P-1, with a=5.2596(11) A, b=6.8649(14) A, c=9.3289(19) A, α=101.78(3) o , β=102.03(3) o , γ=104.52(3) o , while compound II crystallizes in the orthorhombic system, space group Fdd2, with a=15.856(3) A, b=31.183(6) A, c=8.6688(17) A. In compound I, indium-selenite chains are bridged by oxalate units to form two-dimensional (2D) In 2 (SeO 3 ) 2 C 2 O 4 layers, separated by non-coordinating water molecules. In compound II, the indium atoms are connected through the oxalate units to generate a 3D open framework containing cross-linked 12- and 8-membered channels. - Graphical abstract: Two new indium(III) compounds have been hydrothermally synthesized and structurally characterized. In I, the indium-selenite chains are bridged by oxalate units to form 2D In 2 (SeO 3 ) 2 C 2 O 4 layers. In II, the indium atoms are connected through the oxalate units to generate a 3D open framework containing cross-linked 12- and 8-membered ring channels

  12. Steam Assisted Accelerated Growth of Oxide Layer on Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Yuksel, Serkan; Jellesen, Morten Stendahl

    2013-01-01

    Corrosion resistance of aluminium alloys is related to the composition and morphology of the oxide film on the surface of aluminium. In this paper we investigated the use of steam on the surface modification of aluminium to produce boehmite films. The study reveals a detailed investigation...... of the effect of vapour pressure, structure of intermetallic particles and thickness of boehmite films on the corrosion behaviour of aluminium alloys....

  13. Advances in development and application of aluminium batteries

    DEFF Research Database (Denmark)

    Qingfeng, Li; Zhuxian, Qiu

    2001-01-01

    Aluminium has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer at aluminium surface is however detrimental to its performance to achieve its reversible potential, and also causing the delayed activation o...... aluminium batteres, especially aluminium-air batteries, and a wide range of their applications from emergency power supplies, reserve batteries field portable batteries, to batteries for electric vehicles and underwater propulsion....

  14. InP (Indium Phosphide): Into the future

    International Nuclear Information System (INIS)

    Brandhorst, H.W. Jr.

    1989-03-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide

  15. InP (Indium Phosphide): Into the future

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  16. A study of the kinetics and mechanisms of electrocrystallization of indium oxide on an in situ prepared metallic indium electrode

    International Nuclear Information System (INIS)

    Omanovic, S.; Metikos-Hukovic, M.

    2004-01-01

    The mechanisms and kinetics of nucleation and growth of indium oxide film on an in situ prepared metallic indium electrode was studied in a borate buffer solution of pH 10.0 using cyclic voltammetry and chroanoamperometry techniques. It was shown that the initial stage of nucleation of the oxide film includes a three-dimensional progressive nucleation process, combined with a diffusion-controlled growth of the stable indium oxide crystals. The thermodynamic data obtained indicated a strong tendency of indium to form an indium oxide film on its surface in an aqueous solution. It was found that the rate-determining step in the nucleation and growth process is the surface diffusion of electroactive species. The nucleation rate constant, and the number of nucleation active sites were calculated independently. It was shown that between 2 and 15% of sites on the indium surface act as active nucleation centers, and that each active site represents a critical nucleus

  17. Aluminium hydroxide-induced granulomas in pigs

    DEFF Research Database (Denmark)

    Valtulini, S; Macchi, C; Ballanti, P

    2005-01-01

    The effect of intramuscular injection of 40 mg/2 ml aluminium hydroxide in the neck of pigs was examined in a number of ways. The investigation followed repeated slaughterhouse reports, according to which 64.8% of pigs from one particular farm were found at slaughter to have one or more nodules...... in the muscles of the neck (group slaughtered). The pigs had been injected with a vaccine containing 40 mg/2 ml dose of aluminium hydroxide as adjuvant. Research consisted of two phases: first, an epidemiological study was carried out, aimed at determining the risk factors for the granulomas. The results...... and adjuvant) to pigs inoculated twice with apyrogenic bi-distilled water (group water) and to pigs inoculated once with the adjuvant and once with apyrogenic bi-distilled water (group adjuvant/water). Both studies agreed in their conclusions, which indicate that the high amount of aluminium hydroxide...

  18. Compatibility of ITER candidate structural materials with static gallium

    International Nuclear Information System (INIS)

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-12-01

    Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400 degrees C, corrosion rates are ∼4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400 degrees C are ≥88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400 degrees C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized

  19. Analysis of aluminium in rat following administration of allergen immunotherapy using either aluminium or microcrystalline-tyrosine-based adjuvants.

    Science.gov (United States)

    McDougall, Stuart A; Heath, Matthew D; Kramer, Matthias F; Skinner, Murray A

    2016-03-01

    Investigation into the absorption, distribution and elimination of aluminium in rat after subcutaneous aluminium adjuvant formulation administration using ICP-MS is described. Assays were verified under the principles of a tiered approach. There was no evidence of systemic exposure of aluminium, in brain or in kidney. Extensive and persistent retention of aluminium at the dose site was observed for at least 180 days after administration. This is the first published work that has quantified aluminium adjuvant retention based on the quantity of aluminium delivered in a typical allergy immunotherapy course. The results indicate that the repeated administration of aluminium-containing adjuvants will likely contribute directly and significantly to an individual's body burden of aluminium.

  20. Aluminium toxicity tolerance in crop plants: Present status of research

    African Journals Online (AJOL)

    ... tolerance of which genes of the Aluminium-activated malate transporter (ALMT) and multidrug and toxic compound extrusion (MATE) families are prominent. In this review, the progress of research in identifying aluminium toxicity tolerant genes is discussed. Keywords: Aluminium toxicity, soil acidity, hydroponic screening, ...

  1. Aluminium allergy and granulomas induced by vaccinations for children

    DEFF Research Database (Denmark)

    Andersen, Rosa Marie O; Zachariae, Claus; Johansen, Jeanne Duus

    2014-01-01

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site - vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we...... examine the incidence, the symptoms and the prognosis for the vaccination granulomas and the allergy. Finally we discuss the status in Denmark....

  2. Aluminium allergy and granulomas induced by vaccinations for children

    DEFF Research Database (Denmark)

    Andersen, Rosa Marie O; Zachariae, Claus; Johansen, Jeanne Duus

    2014-01-01

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site - vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we...

  3. Spectrophotometric determination of aluminium in steel with xylenol orange

    International Nuclear Information System (INIS)

    Majeed, A.; Javed, N.; Khan, M.S.

    1996-01-01

    Spectrophotometric determination of Aluminium in steel based on colour reaction between Aluminium and xylenol orange has been carried out. Red coloured complex formed in weak acidic solution is measured for its absorbance at 550 nm. The various optimum experimental conditions for Aluminium xylenol orange (Al-Xo) complex have been studied. (author)

  4. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  5. Corrosion behaviour of borated aluminium used as neutron absorber

    Energy Technology Data Exchange (ETDEWEB)

    Emmerich, R. [EaglePicher Technologies GmbH, Oehringen (Germany); Ensinger, W.; Enders, B. [Philipps-Univ. of Marburg, Dept. of Chemistry, Material Science Centre (Germany)

    2004-07-01

    The electrochemical behaviour of pure and borated aluminium was examined. Measurements were performed in two different electrolytes at 90 C containing different trace-amounts of chloride. For borated aluminium current transients, i.e. metastable depassivation events were found. It is suggested to attribute these transients to less stable passivation layers in comparison to pure aluminium.

  6. Internal friction in iron-aluminium alloys having a high aluminium content

    International Nuclear Information System (INIS)

    Hillairet, J.; Delaplace, J.; Silvent, A.

    1966-01-01

    By using a torsion pendulum to measure the internal friction of iron-aluminium alloys containing between 25 and 50 atom per cent of aluminium, it has been possible to show the existence of three damping peaks due to interstitial carbon. Their evolution is followed as a function of the carbon content, of the thermal treatment and of the aluminium content. A model based on the preferential occupation of tetrahedral sites is proposed as an interpretation of the results. A study of the Zener peak in these substitution alloys shows also that a part of the short distance disorder existing at high temperatures can be preserved by quenching. (author) [fr

  7. Process for the manufacture of plates containing neutron poison from aluminium and aluminium alloys

    International Nuclear Information System (INIS)

    Bauer, G.; Pollmann, E.; Srostlik, P.

    1985-01-01

    A process for guaranteeing sub-critical arrangements of nuclear fuel in tranport and/or storage containers is described, in which a homogeneous distribution of neutron poison in the aluminium matrix is guaranteed. A homogeneous mixture of aluminium powder and neutron poison powder is produced, this is pressed into plates in several stages, dried and made into hollow aluminium profiles of rectangular cross-section. The open ends of the hollow profile are then closed and this is rolled to the required dimension at 470-500 0 C. (orig./HP) [de

  8. TITANIUM CARBON ALUMINIUM : A NOVEL GRAIN REFINER FOR ALUMINIUM-LITHIUM ALLOYS

    OpenAIRE

    Birch , M.; Cowell , A.

    1987-01-01

    This work explores the possibility of achieving grain size control in aluminium-lithium alloys with the titanium carbon aluminium (TiCAl) master alloys invented at the Technical University of Berlin and developed by London and Scandinavian Metallurgical Co Ltd (LSM). Grain refining tests were conducted on a single batch of 8090 alloy using addition rates of 0.2wt% and 0.4wt% of TiCAl and 3/1 titanium boron aluminium (TiBAl). Other tests using 0.4wt% of binary TiAl gave poor results, showing t...

  9. Molybdenum solubility in aluminium nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Heres, X.; Sans, D.; Bertrand, M.; Eysseric, C. [CEA, Centre de Marcoule, Nuclear Energy Division, DRCP, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Brackx, E.; Domenger, R.; Excoffier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, DTEC, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Valery, J.F. [AREVA-NC, DOR/RDP, Paris - La Defense (France)

    2016-07-01

    For over 60 years, research reactors (RR or RTR for research testing reactors) have been used as neutron sources for research, radioisotope production ({sup 99}Mo/{sup 99m}Tc), nuclear medicine, materials characterization, etc... Currently, over 240 of these reactors are in operation in 56 countries. They are simpler than power reactors and operate at lower temperature (cooled to below 100 C. degrees). The fuel assemblies are typically plates or cylinders of uranium alloy and aluminium (U-Al) coated with pure aluminium. These fuels can be processed in AREVA La Hague plant after batch dissolution in concentrated nitric acid and mixing with UOX fuel streams. The aim of this study is to accurately measure the solubility of molybdenum in nitric acid solution containing high concentrations of aluminium. The higher the molybdenum solubility is, the more flexible reprocessing operations are, especially when the spent fuels contain high amounts of molybdenum. To be most representative of the dissolution process, uranium-molybdenum alloy and molybdenum metal powder were dissolved in solutions of aluminium nitrate at the nominal dissolution temperature. The experiments showed complete dissolution of metallic elements after 30 minutes long stirring, even if molybdenum metal was added in excess. After an induction period, a slow precipitation of molybdic acid occurs for about 15 hours. The data obtained show the molybdenum solubility decreases with increasing aluminium concentration. The solubility law follows an exponential relation around 40 g/L of aluminium with a high determination coefficient. Molybdenum solubility is not impacted by the presence of gadolinium, or by an increasing concentration of uranium. (authors)

  10. Defect generation during solidification of aluminium foams

    International Nuclear Information System (INIS)

    Mukherjee, M.; Garcia-Moreno, F.; Banhart, J.

    2010-01-01

    The reason for the frequent occurrence of cell wall defects in metal foams was investigated. Aluminium foams often expand during solidification, a process which is referred as solidification expansion (SE). The effect of SE on the structure of aluminium foams was studied in situ by X-ray radioscopy and ex situ by X-ray tomography. A direct correlation between the magnitude of SE and the number of cell wall ruptures during SE and finally the number of defects in the solidified foams was found.

  11. An aluminium evaporation source for ion plating

    International Nuclear Information System (INIS)

    Walley, P.A.; Cross, K.B.

    1977-01-01

    Ion plating with aluminium is becoming increasingly accepted as a method of anti-corrosion surface passivation, the usual requirements being for a layer between 12 and 50 microns in thickness, (0.0005 to 0.002). The evaporation system described here offers a number of advantages over high power electron beam sources when used for aluminium ion plating. The source consists of a resistively heated, specially shaped, boron nitride-titanium diboride boat and a metering feed system. Its main features are small physical size, soft vacuum compatibility, low power consumption and metered evaporation output. (author)

  12. The determination of trace oxygen in aluminium and aluminium-silicon alloy by helium-3 activation analysis

    International Nuclear Information System (INIS)

    Vandecasteele, C.; Goethals, P.; Kieffer, R.; Hoste, J.

    1975-01-01

    The determination of oxygen in aluminium and aluminium-silicon alloy by helium-3 activation is studied. The 18 F formed from oxygen is separated by distillation followed by precipitation of leadfluorochloride. The chemical yield is determined by activation in an isotopic neutron source. Concentrations of resp. 27 and 64 ng.g -1 with a precision for a single determination of resp. 30 and 13% are found in 99.5% aluminium and in aluminium-silicon (3%) alloy. (author)

  13. Proportional counter response calculations for gallium solar neutrino detectors

    International Nuclear Information System (INIS)

    Kouzes, R.T.; Reynolds, D.

    1989-01-01

    Gallium bases solar neutrino detectors are sensitive to the primary pp reaction in the sun. Two experiments using gallium, SAGE in the Soviet Union and GALLEX in Europe, are under construction and will produce data by 1989. The radioactive /sup 71/Ge produced by neutrinos interacting with the gallium detector material, is chemically extracted and counted in miniature proportional counters. A number of calculations have been carried out to simulate the response of these counters to the decay of /sup 71/Ge and to background events

  14. Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate

    International Nuclear Information System (INIS)

    Wong, F.L.; Fung, M.K.; Tong, S.W.; Lee, C.S.; Lee, S.T.

    2004-01-01

    A radio-frequency sputtering deposition method was applied to prepare indium tin oxide (ITO) on a plastic substrate, polyethylene terephthalate (PET). The correlation of deposition conditions and ITO film properties was systematically investigated and characterized. The optimal ITO films had a transmittance of over 90% in the visible range (400-700 nm) and a resistivity of 5.0x10 -4 Ω-cm. Sequentially α-napthylphenylbiphenyl diamine, tris-(8-hydroxyquinoline) aluminium, and magnesium-silver were thermally deposited on the ITO-coated PET substrate to fabricate flexible organic light-emitting diodes (FOLEDs). The fabricated devices had a maximum current efficiency of ∼4.1 cd/A and a luminance of nearly 4100 cd/m 2 at 100 mA/cm 2 . These values showed that the FOLEDs had comparable performance characteristics with the conventional organic light-emitting diodes made on ITO-coated glasses with the same device configuration

  15. Investigation of aluminium ohmic contacts to n-type GaN grown by molecular beam epitaxy

    Science.gov (United States)

    Kribes, Y.; Harrison, I.; Tuck, B.; Kim, K. S.; Cheng, T. S.; Foxon, C. T.

    1997-11-01

    Using epi-layers of different doping concentrations, we have investigated aluminium contacts on n-type gallium nitride grown by plasma source molecular beam epitaxy. To achieve repeatable and reliable results it was found that the semiconductor needed to be etched in aqua-regia before the deposition of the contact metallization. Scanning electron micrographs of the semiconductor surface show a deterioration of the semiconductor surface on etching. The specific contact resistivity of the etched samples were, however, superior. Annealing the contacts at 0268-1242/12/11/030/img9 produced contacts with the lowest specific contact resistance of 0268-1242/12/11/030/img10. The long-term aging of these contacts was also investigated. The contacts and the sheet resistance were both found to deteriorate over a three-month period.

  16. Durability of bare and anodised aluminium in atmosphere of very different corrosivities I. Bare aluminium

    International Nuclear Information System (INIS)

    Gonzalez, J. A.; Escudero, E.; Lopez, V.; Simancas, J.; Morcillo, M.

    2004-01-01

    The behaviour of bare aluminium is studied in atmospheric exposure at 11 natural testing stations with salinity levels ranging between 2.1 and 684 mg Cl''- m''-2 d''-1. In atmospheres of low or moderate aggressivity aluminium behaves as a passive material, though the insignificant corrosion that is produced is sufficient to spoil its appearance. In contrast, at salinity levels of 50 mg Cl''- m''-2 ''-1 or above, aluminium is susceptible to pitting corrosion even in the first year of atmospheric exposure, or in the second year at salinities of ≤ 10 mg Cl''- m''-2 d''-1. For comparative purposes, results are included for aluminium protected with an anodic film of 28 μm thickness exposed at the same testing stations. A 28 μm anodic film, correctly sealed, prevents the risk of localised corrosion even in the most unfavourable situations. (Author) 23 refs

  17. Irradiation damage in aluminium single crystals produced by 50-keV aluminium and copper ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.

    1968-01-01

    Aluminium single crystals, thin enough to be examined by electron microscopy, have been irradiated with 50-keV aluminium and copper ions. The irradiation fluxes were in the range 1011–1014 cm−2 s−1 and the doses were from 6 × 1012 to 6 × 1014 cm−2. Irradiation along either a or a direction produces...... rows of dislocation loops all lying parallel to one particular direction. If the aluminium target is quenched from 600 °C and annealed at room temperature prior to irradiation with aluminium ions, the rows of loops are suppressed. The amount of damage observed is considerably less than would...

  18. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    Science.gov (United States)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  19. Selective separation of indium by iminodiacetic acid chelating resin

    International Nuclear Information System (INIS)

    Fortes, M.C.B.; Benedetto, J.S.; Martins, A.H.

    2007-01-01

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite R IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite R IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm 3 sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite R IRC748. (author)

  20. Mechanical behaviour of aluminium-lithium alloys

    Indian Academy of Sciences (India)

    Aluminium-lithium alloys hold promise of providing a breakthrough response to the crying need for lightweight alloys for use as structurals in aerospace applications. Considerable worldwide research has gone into developing a range of these alloys over the last three decades. As a result, substantial understanding has ...

  1. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  2. Warm Deep Drawing of Aluminium Sheet

    NARCIS (Netherlands)

    Bolt, P.J.; Werkhoven, R.J.; van den Boogaard, Antonius H.

    2003-01-01

    Aluminium sheet drawing processes can be improved by manipulating local flow behaviour by means of elevated temperatures and temperature gradients in the tooling. Forming tests showed that a substantial improvement is possible not only for 5xxx but also for 6xxx series alloys. Finite element method

  3. Complexes of alkylphenols with aluminium halides

    International Nuclear Information System (INIS)

    Golounin, A.V.

    1997-01-01

    Interaction of aluminium halides with alkylphenols is studied through the NMR method. The peculiarity of complex formation of pentamethylphenol with AlI 3 is revealed. By AlI 3 action on the pentamethylphenol the complexes are formed both of keto- and oxy form [ru

  4. Plasma metallization of aluminium oxide powder

    International Nuclear Information System (INIS)

    Smirnov, A.I.; Petrunichev, V.A.

    1981-01-01

    The sintering ability of cermets of metallized granulas of aluminium and matrix materials, such as chromium, nickel and nichrome is studied. Deformation tests of samples of cermets with molybdenum coated granules show satisfactory results at normal and high temperatures without fracture of metall-oxide interfaces [ru

  5. Indentation of aluminium foam at low velocity

    Directory of Open Access Journals (Sweden)

    Shi Xiaopeng

    2015-01-01

    Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.

  6. Molecular breeding of cereals for aluminium resistance

    Science.gov (United States)

    Aluminium (Al3+) toxicity is the primary factor limiting crop production on acidic soils worldwide. In addition to an application of lime for soil amelioration, Al3+ resistant plant varieties have been deployed to raise productivity on such hostile soils. This has been possible due to the exploita...

  7. Constant structure creep experiments on aluminium

    Czech Academy of Sciences Publication Activity Database

    Milička, Karel

    2011-01-01

    Roč. 49, č. 5 (2011), s. 307-318 ISSN 0023-432X R&D Projects: GA AV ČR IAA2041203 Institutional research plan: CEZ:AV0Z20410507 Keywords : mechanical properties * high temperature deformation * creep * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.451, year: 2011

  8. Creep properties of aluminium processed by ECAP

    Czech Academy of Sciences Publication Activity Database

    Král, Petr; Dvořák, Jiří; Jäger, Aleš; Kvapilová, Marie; Horita, Z.; Sklenička, Václav

    2016-01-01

    Roč. 54, č. 6 (2016), s. 441-451 ISSN 0023-432X R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 ; RVO:68378271 Keywords : equal channel angular pressing (ECAP) * aluminium * ultrafine-grained microstructure * creep Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) Impact factor: 0.366, year: 2016

  9. Optical Characterization of Thick Growth Orientation-Patterned Gallium Arsenide

    National Research Council Canada - National Science Library

    Meyer, Joshua W

    2006-01-01

    .... Orientation patterned gallium arsenide (OPGaAs) is a promising nonlinear conversion material because it has broad transparency and can be engineered for specific pump laser and output wavelengths using quasi-phase matching techniques...

  10. Fabrication and properties of gallium metallic photonic crystals

    International Nuclear Information System (INIS)

    Kozhevnikov, V.F.; Diwekar, M.; Kamaev, V.P.; Shi, J.; Vardeny, Z.V.

    2003-01-01

    Gallium metallic photonic crystals with 100% filling factor have been fabricated via infiltration of liquid gallium into opals of 300-nm silica spheres using a novel high pressure-high temperature technique. The electrical resistance of the Ga-opal crystals was measured at temperatures from 10 to 280 K. The data obtained show that Ga-opal crystals are metallic network with slightly smaller temperature coefficient of resistivity than that for bulk gallium. Optical reflectivity of bulk gallium, plain opal and several Ga-opal crystals were measured at photon energies from 0.3 to 6 eV. A pronounced photonic stop band in the visible spectral range was found in both the plain and Ga infiltrated opals. The reflectivity spectra also show increase in reflectivity below 0.6 eV; which we interpret as a significantly lower effective plasma frequency of the metallic mesh in the infiltrated opal compare to the plasma frequency in the pure metal

  11. Single and double ionization of gallium by electron impact

    Indian Academy of Sciences (India)

    Electron impact single and double ionization cross sections of gallium have been calcu- ... The experimental data on single ionization have been compared with the empirical and ..... and multiplication sign curve (¢¢¢) represent present.

  12. Multiple scaling power in liquid gallium under pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Renfeng; Wang, Luhong; Li, Liangliang; Yu, Tony; Zhao, Haiyan; Chapman, Karena W.; Rivers, Mark L.; Chupas, Peter J.; Mao, Ho-kwang; Liu, Haozhe

    2017-06-01

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiple scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.

  13. Compatibility of candidate structural materials with static gallium

    International Nuclear Information System (INIS)

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-01-01

    Scoping tests were conducted on compatibility of gallium with candidate structural materials, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chronimum. Type 316 stainless steel is least resistant and Nb-5 Mo-1 Zr alloy is most resistant to corrosion in static gallium. At 400 degrees C, corrosion rates are ∼4.0, 0.5, and 0.03 mm/y for Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than does nickel. The corrosion rates at 400 degrees C are ≥90 and 17 mm/y, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400 degrees C, corrosion occurs primarily by dissolution accompanied by formation of metal/gallium intermetallic compounds

  14. Gallium accumulation in early pulmonary Pneumocystis carinii infection

    International Nuclear Information System (INIS)

    Stevens, D.A.; Allegra, J.C.

    1986-01-01

    The accumulation of gallium 67 citrate in pulmonary Pneumocystis carinii is well known. The sensitivity of gallium uptake in detecting early inflammatory processes, even when conventional roentgenograms are normal, would seem to make it possible in immunocompromised patients to make a presumptive diagnosis of this serious infection early in its course without using invasive techniques to demonstrate the organism. However, the presence of gallium uptake in radiation pneumonitis, pulmonary drug toxicity, and other processes that also occur in this group limit its usefulness. In our two patients--a young woman with Hodgkin's disease and an elderly woman with small cell lung cancer--this technique proved helpful. Although the latter patient was successfully treated empirically, such empiric treatment should be reserved for patients unable or unwilling to undergo invasive tests. Pulmonary gallium uptake in patients with respiratory symptoms, even with a normal chest film, should prompt attempts to directly demonstrate the organism

  15. Gallium 67 scintigraphic examination of dilated myocardiopathies

    International Nuclear Information System (INIS)

    Lanfranchi, J.; Sachs, R.N.; Beaudet, B.; Deblock, C.; Tellier, P.

    1989-01-01

    Twenty-seven patients were diagnosed as having dilated cardiomyopathies, based on increases in the cardiothoracic index > 0.50, in the diastolic and systolic diameters of the left ventricle, and in the telediastolic volume of the left ventricle, which was indexed by body surface determined by contrast ventriculography. They underwent gallium 67 scintigraphic examination of the myocardium, in order to non-invasively detect the presence of an inflammatory infiltrate. Fifteen of them also had endomyocardial biopsies and all had virology check-up. The results were disappointing. Only in one case was the scintigraphic image undeniably positive; in 20 other patients the findings were dubious or negative. This technique did not demonstrate the presence of an inflammatory infiltrate and thus an association between myocarditis and dilated cardiomyopathy, could not be established [fr

  16. Cavity optomechanics in gallium phosphide microdisks

    International Nuclear Information System (INIS)

    Mitchell, Matthew; Barclay, Paul E.; Hryciw, Aaron C.

    2014-01-01

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 10 5 and mode volumes 3 , and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 10 4 intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g 0 /2π∼30 kHz for the fundamental mechanical radial breathing mode at 488 MHz

  17. Fabrication, structure and mechanical properties of indium nanopillars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyuhyon; Kim, Ju-Young; Budiman, Arief Suriadi; Tamura, Nobumichi; Kunz, Martin; Chen, Kai; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2010-01-01

    Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is {approx}9 times greater than bulk and is {approx}1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small.

  18. Gallium Nitride Schottky betavoltaic nuclear batteries

    International Nuclear Information System (INIS)

    Lu Min; Zhang Guoguang; Fu Kai; Yu Guohao; Su Dan; Hu Jifeng

    2011-01-01

    Research highlights: → Gallium Nitride nuclear batteries with Ni-63 are demonstrated for the first time. → Open circuit voltage of 0.1 V and conversion efficiency of 0.32% have been obtained. → The limited performance is due to thin effective energy deposition layer. → The output power is expected to greatly increase with growing thick GaN films. -- Abstract: Gallium Nitride (GaN) Schottky betavoltaic nuclear batteries (GNBB) are demonstrated in our work for the first time. GaN films are grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD), and then GaN Schottky diodes are fabricated by normal micro-fabrication process. Nickel with mass number of 63 ( 63 Ni), which emits β particles, is loaded on the GaN Schottky diodes to achieve GNBB. X-ray diffraction (XRD) and photoluminescence (PL) are carried out to investigate the crystal quality for the GaN films as grown. Current-voltage (I-V) characteristics shows that the GaN Schottky diodes are not jet broken down at -200 V due to consummate fabrication processes, and the open circuit voltage of the GNBB is 0.1 V and the short circuit current density is 1.2 nA cm -2 . The limited performance of the GNBB is due to thin effective energy deposition layer, which is only 206 nm to absorb very small partial energy of the β particles because of the relatively high dislocation density and carrier concentration. However, the conversion efficiency of 0.32% and charge collection efficiency (CCE) of 29% for the GNBB have been obtained. Therefore, the output power of the GNBB are expected to greatly increase with growing high quality thick GaN films.

  19. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.

    1990-12-01

    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  20. Recovery of gallium from coal fly ash by a dual reactive extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, B.; Pazos, C.; Coca, J. [University of Oviedo, Oviedo (Spain). Dept. of Chemical Engineering and Environmental Technology

    1997-08-01

    This paper describes the extraction of gallium from coal fly ash by leaching and extraction with commercial extractants Amerlite LA-2 and LIX-54N dissolved in kerosene. Leaching of gallium and other metals from the fly ash was carried out with 6 M hydrochloric acid. The leaching liquor is first contacted with Amerlite LA-2 which extracts the gallium and iron. The iron is then precipitated with sodium hydroxide, while gallium remains in solution. Gallium is extracted selectively from the base solution with LIX 54; the resulting stripped solution contains 83% of the gallium present in the leaching liquor.