WorldWideScience

Sample records for aluminium electrolytic capacitors

  1. Reliability determination of aluminium electrolytic capacitors by the mean of various methods application to the protection system of the LHC

    CERN Document Server

    Perisse, F; Rojat, G

    2004-01-01

    The lifetime of power electronic components is often calculated from reliability reports, but this method can be discussed. We compare in this article the results of various reliability reports to an accelerated ageing test of component and introduced the load-strength concept. Large aluminium electrolytic capacitors are taken here in example in the context of the protection system of LHC (Large Hadron Collider) in CERN where the level of reliability is essential. We notice important differences of MTBF (Mean Time Between Failure) according to the reliability report used. Accelerating ageing tests carried out prove that a Weibull law is more adapted to determinate failure rates of components. The load-strength concept associated with accelerated ageing tests can be a solution to determine the lifetime of power electronic components.

  2. Towards Prognostics of Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several...

  3. Gas evolution in aluminum electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Aleixandre, C.; Albella, J.M.; Martinez-Duart, J.M.

    1984-03-01

    Gas evolution in aluminum electrolytic capacitors constitutes one of their main drawbacks in comparison to other types of capacitors lacking a liquid electrolyte. In this respect, one of the most common causes of failure shown by liquid electrolyte capacitors is electrolyte leakage through the seal or even explosions produced by internal pressure buildup. In order to prevent these hazards, some substances, known as depolarizers, are usually added to the capacitor electrolyte with the purpose of absorbing the hydrogen evolved at the cathode (1, 2). Although the gas evolution problem in electrolytic capacitors has been known for a long time, there is a lack of literature on both direct measurements of the gas evolved and assessments of the amount of depolarizer active for the hydrogen absorption process. Aluminum electrolytic capacitors of 100..mu..F and 40V nominal voltage, miniature type (diam 8 mm, height 18.5 mm), were manufactured under standard specifications. The capacitors were filled with about 0.5 ml of an electrolyte consisting essentially of a solution of boric, adipic, and phosphoric acids in ethylene glycol. Picric acid and p-benzoquinone in molar concentrations of 0.01M and 0.05M, respectively, were added as depolarizers, yielding an electrolyte with a resistivity of about 80 ..cap omega..-cm and a pH of 5.1. The pressure inside the capacitors was monitored by a conventional Ushaped manometer made from a capillary glass tube filled with distilled water. The number of mols of gas generated in the capacitor (/eta/ /SUB g/ ) was calculated from the measured pressure (sensitivity 0.1 mm Hg) and the value of the internal volume of the manometercapacitor system.

  4. All-tantalum electrolytic capacitor

    Science.gov (United States)

    Green, G. E., Jr.

    1977-01-01

    Device uses single-compression tantalum-to-tantalum seal. Single-compression seal allows better utilization of volume within device. As result of all-tantalum case and lengthened cathode, electrical parameters, particularly equivalent series resistance and capacitance stability, improved over silver-cased capacitor.

  5. High-Energy-Density Electrolytic Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Lewis, Carol R.

    1993-01-01

    Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.

  6. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    S Sampath; N A Choudhury; A K Shukla

    2009-09-01

    Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous phase of the polymer. Gel polymer electrolytes (GPE) that are formed using plastizicers and polymers along with ionic salts are known to exhibit liquid-like ionic conductivity while maintaining the dimensional stability of a solid matrix. In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolytes for electrochemical capacitors have been reported. Varying HClO4 dopant concentration leads to different characteristics of the capacitors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to exhibit a maximum specific capacitance value of 97 F g-1, a phase angle value of 78°, and a maximum charge-discharge coulombic efficiency of 88%.

  7. Aging Methodologies and Prognostic Health Management for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the ageing mechanisms of electronic components critical avionics systems such as the GPS and INAV are of critical importance. Electrolytic capacitors...

  8. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  9. Prognostics Health Management and Physics based failure Models for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors and MOSFETs are the two major...

  10. Flake tantalum powder for manufacturing electrolytic capacitors

    Institute of Scientific and Technical Information of China (English)

    HE Jilin; YANG Guoqi; PAN Luntao; LIU Hongdong; BAO Xifang

    2008-01-01

    The FTP200 flake tantalum powder was introduced.The microstructures of the powder with leaf-like primary particles having an average flakiness of 2 to 20 and porous agglomerated particles were observed.The chemical composition,physical properties,and electrical properties of the FTP200 powder were compared with those of the FTW300 nodular powder.The FTP200 powder is more sinter-resistant,and the surface area of the flake tantalum powder under sintering at high temperature has less loss than that of the nodular tantalum powder.The specific capacitance of the flake tantalum powder is higher than that of the nodular tantalum powder with the same surface area when anodized at high voltage,Thus,the flake tantalum powder is suitable for manufacturing tantalum solid electrolytic capacitors in the range of median and high (20-63 V) voltages.

  11. Candidate organic electrolytes for electric double-layer capacitor application

    Institute of Scientific and Technical Information of China (English)

    B.Fang; Y.Wei; K.Suzuki; M.Kumagai

    2004-01-01

    Electrolytic conductivity,viscosity and electrochemical behavior were investigated for organic electrolytes based on PC(Propylene carbonate),MAN(Methoxy acetonitrile) and GBL(γ-Butyrolactone) solvents.It was found that 1 mol/L Et4NBF4-MAN had the highest conductivity,lowest viscosity and acceptable potential window.The specific capacitance and energy density obtained from the capacitor using 1 mol/L Et4NBF4-MAN as electrolyte were the highest among all the tested electrolytes.1 mol/L Et4NBF4-GBL also seemed promising to be used in electric double-layer capacitor (EDLCs).

  12. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    Science.gov (United States)

    Sharp, D.J.; Armstrong, P.S.; Panitz, J.K.G.

    1998-03-17

    A solid electrolytic capacitor is described having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects. 2 figs.

  13. Physics Based Modeling and Prognostics of Electrolytic Capacitors

    Science.gov (United States)

    Kulkarni, Chetan; Ceyla, Jose R.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors have become critical components in electronics systems in aeronautics and other domains. Degradations and faults in DC-DC converter unit propagates to the GPS and navigation subsystems and affects the overall solution. Capacitors and MOSFETs are the two major components, which cause degradations and failures in DC-DC converters. This type of capacitors are known for its low reliability and frequent breakdown on critical systems like power supplies of avionics equipment and electrical drivers of electromechanical actuators of control surfaces. Some of the more prevalent fault effects, such as a ripple voltage surge at the power supply output can cause glitches in the GPS position and velocity output, and this, in turn, if not corrected will propagate and distort the navigation solution. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  14. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Prabhat Tripathy; Laura Wurth; Eric Dufek; Toni Y. Gutknecht; Natalie Gese; Paula Hahn; Steven Frank; Guy Fredrickson; J Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  15. PEO nanocomposite polymer electrolyte for solid state symmetric capacitors

    Indian Academy of Sciences (India)

    Nirbhay K Singh; Mohan L Verma; Manickam Minakshi

    2015-10-01

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites. The composites have been synthesized by the completely dry (solution-free) hot-press method. The addition of filler in fractional amount to the solid polymer matrix at room temperature further enhances the ionic conductivity. Nature of the NPEs were studied using X-ray diffraction and energy-dispersive spectra analyses. Thermal stability of the resulting electrolyte was analysed by thermogravimetric analysis and differential scanning calorimetric studies. Morphology changes occurred during the addition of fillers was evidenced by scanning electronic microscope images. Solid polymer electrolytes exhibiting these parameters was found to be suitable for solid state capacitors. The results obtained from the electrolytes with an optimum compositions (PEO70AgI30)93 (Al2O3)7 and (PEO70AgI30)95 (SiO2)5 used in the (PEO70AgI30)70 (AC)30 electrodes for symmetric capacitor applications and their performances were analysed by impedance spectroscopic, Bode plot, cyclic voltammetry, discharge characteristics and leakage current profile.

  16. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  17. Polymer--Ionic liquid Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Ketabi, Sanaz

    Polymer electrolyte, comprised of ionic conductors, polymer matrix, and additives, is one of the key components that control the performance of solid flexible electrochemical capacitors (ECs). Ionic liquids (ILs) are highly promising ionic conductors for next generation polymer electrolytes due to their excellent electrochemical and thermal stability. Fluorinated ILs are the most commonly applied in polymer-IL electrolytes. Although possessing high conductivity, these ILs have low environmental favorability. The aim of this work was to develop environmentally benign polymer-ILs for both electrochemical double layer capacitors (EDLCs) and pseudocapacitors, and to provide insights into the influence of constituent materials on the ion conduction mechanism and the structural stability of the polymer-IL electrolytes. Solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIHSO4) were investigated for ECs. The material system was optimized to achieve the two criteria for high performance polymer-ILs: high ionic conductivity and highly amorphous structure. Thermal and structural analyses revealed that EMIHSO4 acted as an ionic conductor and a plasticizer that substantially decreased the crystallinity of PEO. Two types of inorganic nanofillers were incorporated into these polymer electrolytes. The effects of SiO2 and TiO2 nanofillers on ionic conductivity, crystallinity, and dielectric properties of PEO-EMIHSO 4 were studied over a temperature range from -10 °C and 80 °C. Using an electrochemical capacitor model, impedance (complex capacitance) and dielectric analyses were performed to understand the ionic conduction process with and without fillers in both semi crystalline and amorphous states of the polymer electrolytes. Despite their different nanostructures, both SiO2 and TiO2 promoted an amorphous structure in PEO-EMIHSO 4 and increased the ionic conductivity 2-fold. While in the amorphous state, the

  18. Electrolytic deposition of aluminium-magnesium-alloys from electrolytes containing organo-aluminium complexes; Elektrolytische Abscheidung von Aluminium-Magnesium-Legierungen aus aluminiumorganischen Komplexelektrolyten

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, H.; Mehler, K.; Bongard, H.; Tesche, B. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Reinhold, B. [Audi AG, Ingolstadt (Germany). Technische Entwicklung

    2000-10-01

    The galvanic deposition of pure aluminium from fluoride-containing electrolytes has been developed further and for the first time aluminium and magnesium have been deposited from a toluene-solution of a halide-free organo-aluminium complex electrolyte. The rate of incorporation of magnesium can be controlled over a wide range by either adjusting the composition of the aluminium-magnesium anode or by using separate aluminium or magnesium anodic circuits. The current efficiency for both anode and cathode approaches 100%. The resulting coating is optically attractive and, depending upon the magnesium-content or the cathodic current density, can be formed as a dull or polished surface. Investigations using an electron microscope show that the surface, in contrast to that of pure aluminium, consists of spherical particles. The aluminium-magnesium coating provides excellent protection against the corrosion of magnesium components. Electrochemical investigations using, for example 25% by weight magnesium incorporation, indicate a pronounced passivity interval compared to the alloy AZ91hp. In contrast to galvanic zinc-plated and silicate-sealed examples, cyclic corrosion tests on screws simulating 10 years of exposure, show no corrosion. (orig.)

  19. Accelerated Aging in Electrolytic Capacitors for Prognostics

    Science.gov (United States)

    Celaya, Jose R.; Kulkarni, Chetan; Saha, Sankalita; Biswas, Gautam; Goebel, Kai Frank

    2012-01-01

    The focus of this work is the analysis of different degradation phenomena based on thermal overstress and electrical overstress accelerated aging systems and the use of accelerated aging techniques for prognostics algorithm development. Results on thermal overstress and electrical overstress experiments are presented. In addition, preliminary results toward the development of physics-based degradation models are presented focusing on the electrolyte evaporation failure mechanism. An empirical degradation model based on percentage capacitance loss under electrical overstress is presented and used in: (i) a Bayesian-based implementation of model-based prognostics using a discrete Kalman filter for health state estimation, and (ii) a dynamic system representation of the degradation model for forecasting and remaining useful life (RUL) estimation. A leave-one-out validation methodology is used to assess the validity of the methodology under the small sample size constrain. The results observed on the RUL estimation are consistent through the validation tests comparing relative accuracy and prediction error. It has been observed that the inaccuracy of the model to represent the change in degradation behavior observed at the end of the test data is consistent throughout the validation tests, indicating the need of a more detailed degradation model or the use of an algorithm that could estimate model parameters on-line. Based on the observed degradation process under different stress intensity with rest periods, the need for more sophisticated degradation models is further supported. The current degradation model does not represent the capacitance recovery over rest periods following an accelerated aging stress period.

  20. THE QUALITY CONTROL OF ELECTROLYTIC TANTALUM CAPACITORS BY USING THE STRESS TEST

    OpenAIRE

    P. L. Kuznetsov; V. V. Muraviev

    2015-01-01

    The article discusses the accelerated method of analysis the electrolytic tantalum capacitors quality on the basis of the change equivalent series resistance forecast while conducting the STRESS TEST.

  1. Tantalum-niobium-alloys as electrolyte capacitor materials

    Energy Technology Data Exchange (ETDEWEB)

    Chamdawalla, N.; Ettmayer, P.; Leuprecht, R.; Aschenbrenner, W.; Bildstein, H.

    1986-07-01

    The properties of Na-Nb-alloys with respect to their use in electrolytic foil condensers were examined by measuring the etching factor, the formability of Ta-Nb foils and the residual current of Ta-Nb alloy wires used for contact leads. Alloys with Nb contents up to 25 wt.-% can be used instead of unalloyed Ta without loss of quality. If the etching and forming procedures were optimized for different compositions, the use of alloys with up to 50 wt.-% Nb for capacitors might be feasible.

  2. Influence of Electrolyte on ESR of Medium Voltage Wet Tantalum Capacitors

    Institute of Scientific and Technical Information of China (English)

    刘仲娥; 宋金荣; 陈晓静; 李忆莲; 桂娟

    2004-01-01

    In this paper, the influence of working electrolyte on high-frequency electrical performance of wet tantalum capacitors is studied. Emphasis is especially put on the study of the contribution of depolariser in reducing Equivalent Series Resistance(ESR). According to the theory of depolarization in electrochemistry and the theory of cathode capacitance of electrolytic capacitor, different kinds of depolarisers are added separately into the foregone electrolyte. Then capacitors are assembled with tantalum cores dipped with the compounded electrolytes. The best depolariser and its concentration in the whole electrolyte could be selected according to the test results of the capacitance and ESR of the capacitors. The results of our experiment show that depolariser Fe2(SO4)3 used in working electrolyte of 100 V/100 μF wet tantalum capacitors can help to obtain lower ESR and higher capacitance at frequency from 0.1 kHz to 100 kHz.

  3. Study and analysis of failure modes of the electrolytic capacitors and thyristors, applied to the protection system of the LHC (Large Hadron Collider); Etude et analyse des modes de defaillances des condensateurs electrolytiques a l'aluminium et des thyristors: appliquees au systeme de protection du LHC (Large Hadron Collider)

    Energy Technology Data Exchange (ETDEWEB)

    Perisse, F

    2003-07-15

    The study presented in this thesis is a contribution about the analysis of failures modes of electrolytic capacitors and thyristors. The studied components are main elements of the protection system of the superconductive magnets of the LHC. The study of the ageing of the electrolytic capacitors has shown that their reliability is strongly related to their technological characteristic. Evolution of their principal indicator of ageing (ESR) can be modeled according to different laws chosen according to their running mode. It appears that the prediction of failure of these components other than that due to wear can be only statistical taking into account the many causes of failure involving various modes of failure. In order to be able to evaluate influence of the ageing of the electrolytic capacitors on a system, simple models taking into account this parameters as well as the effective temperature of the component are proposed. An acceptable precision taking into account the simplicity of the models is obtained. The study of the thyristors has shown that these components have little drift of parameters in static ageing, on the other hand of many failures by short-circuit were observed. These failures always have a local origin, and are due to defects of the components. The breakdown voltage strongly depends on the quality of the thyristor as well as the technology employed. (author)

  4. A Model-Based Prognostics Methodology For Electrolytic Capacitors Based On Electrical Overstress Accelerated Aging

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical...

  5. Physics Based Electrolytic Capacitor Degradation Models for Prognostic Studies under Thermal Overstress

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrolytic capacitors are used in several applications rang- ing from power supplies on safety critical avionics equipment to power drivers for electro-mechanical...

  6. Effect of cerium addition on microstructure and texture of aluminum foil for electrolytic capacitors

    Institute of Scientific and Technical Information of China (English)

    王海燕; 李文学; 任慧平; 黄丽颖; 王向阳

    2010-01-01

    Anode foil of aluminum electrolytic capacitor,which requires large surface area for high capacitance,were prepared by rolling,annealing and electrochemical etching.Effects of cerium addition on the capacitance of aluminum electrolytic capacitors were investigated.Microstructure of the aluminum foil surface was observed by optical microscopy(OM) and scanning electron microscopy(SEM).Electron back scattered diffraction(EBSD) was also employed to reveal texture evolvement of cold-rolled aluminum foil after ann...

  7. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte

    Science.gov (United States)

    Pino, M.; Herranz, D.; Chacón, J.; Fatás, E.; Ocón, P.

    2016-09-01

    An easy treatment based in carbon layer deposition into aluminium alloys is presented to enhance the performance of Al-air primary batteries with neutral pH electrolyte. The jellification of aluminate in the anode surface is described and avoided by the carbon covering. Treated commercial Al alloys namely Al1085 and Al7475 are tested as anodes achieving specific capacities above 1.2 Ah g-1vs 0.5 Ah g-1 without carbon covering. The influence of the binder proportion in the treatment as well as different carbonaceous materials, Carbon Black, Graphene and Pyrolytic Graphite are evaluated as candidates for the covering. Current densities of 1-10 mA cm-2 are measured and the influence of the alloy explored. A final battery design of 4 cells in series is presented for discharges with a voltage plateau of 2 V and 1 Wh g-1 energy density.

  8. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries

    Science.gov (United States)

    Pino, M.; Chacón, J.; Fatás, E.; Ocón, P.

    2015-12-01

    The evaluation of commercial aluminium alloys, namely, Al2024, Al7475 and Al1085, for Al-air batteries is performed. Pure Al cladded Al2024 and Al7475 are also evaluated. Current rates from 0.8 mA cm-2 to 8.6 mA cm-2 are measured in a gel Al-air cell composed of the commercial alloy sample, a commercial air-cathode and an easily synthesizable gelled alkaline electrolyte. The influence of the alloying elements and the addition to the electrolyte of ZnO and ZnCl2, as corrosion inhibitors is studied and analysed via EDX/SEM. Specific capacities of up to 426 mAh/g are obtained with notably flat potential discharges of 1.3-1.4 V. The competition between self-corrosion and oxidation reactions is also discussed, as well as the influence of the current applied on that process. Al7475 is determined to have the best behaviour as anode in Al-air primary batteries, and cladding process is found to be an extra protection against corrosion at low current discharges. Conversely, Al1085 provided worse results because of an unfavourable metallic composition.

  9. A study of the anodic behaviour of aluminium alloys in alkaline electrolytes

    OpenAIRE

    Walters, B N

    1988-01-01

    Recent studies an the discharge performance of aluminium alloys in alkaline media have led to improved alloys with significantly lower corrosion rates and more anodic potentials. Performance, of various alkaline electrolytes have also been examined and considerable progress has been made in this area. A review of the available literature reveals a list of several elements which are suitable for alloying with aluminium as regards reducing corrosion and overpotential. Previous work at the Chemi...

  10. Preparation and Application of Nano-composite Poly(vinyl alcohol) Gel Electrolyte in Electrochemical Capacitor

    Institute of Scientific and Technical Information of China (English)

    陈赟; 谭强强; 徐宇兴

    2012-01-01

    A nano-composite polymer gel electrolyte was prepared using titanium oxide nanowire,poly(vinyl alcohol) (PVA),lithium salt and organic solvent N-methyl-2-pyrrolidone (NMP).The obtained electrolyte has the potential for application in electrochemical capacitor,the PVA in it is in an amorphous state.The ionic conductivities of electrolytes increased after addition of the nanowire,and the electrolyte with 3%(ω) of nanowire exhibited the highest ionic conductivity of 3.2 mS/cm at 20 ℃,as measured by electrochemical impedance spectroscopy.The temperature dependence of the conductivity was found to be in agreement with the Arrhenius equation.Functioning as separator and electrolyte,this nano-composite PVA gel electrolyte was used to assemble the electrochemical capacitor with active carbon film as electrodes.The compositing of nanowire may extend the life of electrochemical capacitors as they keep more than 90% of their capacitance after 5 000 cycles of charging and discharging.

  11. Developments in electrode materials and electrolytes for aluminium-air batteries

    OpenAIRE

    Egan, D; Ponce De Leon, Carlos; R.J.K. Wood; Jones, R. L.; Stokes, K.R.; Walsh, F. C.

    2013-01-01

    Aluminium-air cells are high-energy density (< 400 W h kg-1), primary batteries first developed in the 1960s. The review shows how the performance of the battery is influenced by the choice of materials, including the type of aluminium alloy, oxygen reduction catalyst and electrolyte type. Two continuing issues with these batteries are (a) the parasitic corrosion of the aluminium, at open-circuit and under discharge, due to the reduction of water on the anode surface and (b) the passive hydro...

  12. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    Science.gov (United States)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  13. Physics Based Electrolytic Capacitor Degradation Models for Prognostic Studies under Thermal Overstress

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. This makes them good candidates for prognostics and health management research. Prognostics provides a way to assess remaining useful life of components or systems based on their current state of health and their anticipated future use and operational conditions. Past experiences show that capacitors tend to degrade and fail faster under high electrical and thermal stress conditions that they are often subjected to during operations. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  14. Development of fractional order capacitors based on electrolyte processes

    OpenAIRE

    Jesus, Isabel S.; Machado, J. A. Tenreiro

    2009-01-01

    In recent years, significant research in the field of electrochemistry was developed. The performance of electrical devices, depending on the processes of the electrolytes, was described and the physical origin of each parameter was established. However, the influence of the irregularity of the electrodes was not a subject of study and only recently this problem became relevant in the viewpoint of fractional calculus. This paper describes an electrolytic process in the perspective of fraction...

  15. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    Science.gov (United States)

    Celaya, Jose; Kulkarni, Chetan; Biswas, Gautam; Saha, Sankalita; Goebel, Kai

    2011-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  16. Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuang-Tsin; Wu, Nae-Lih [Department of Chemical Engineering, National Taiwan University, Taipei 106 (China)

    2008-04-15

    An aqueous gel electrolyte has for the first time been successfully applied to the MnO{sub 2}.nH{sub 2}O-based pseudocapacitive electrochemical capacitors (ECs). The gel electrolyte is made of potassium poly(acrylate) (PAAK) polymer and aqueous solution of KCl. With the selected composition, PAAK:KCl:H{sub 2}O = 9.0%:6.7%:84.3% by weight, the gel shows no fluidity, possessing an ionic conductivity in the order of 10{sup -1} S cm{sup -1}. The gel electrolyte has been found to give substantially higher specific capacitances than those in the liquid electrolyte with the same salt (KCl) composition (1 M) and high power capability (>10 kW/kg). (author)

  17. Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte

    Science.gov (United States)

    Lee, Kuang-Tsin; Wu, Nae-Lih

    An aqueous gel electrolyte has for the first time been successfully applied to the MnO 2· nH 2O-based pseudocapacitive electrochemical capacitors (ECs). The gel electrolyte is made of potassium poly(acrylate) (PAAK) polymer and aqueous solution of KCl. With the selected composition, PAAK:KCl:H 2O = 9.0%:6.7%:84.3% by weight, the gel shows no fluidity, possessing an ionic conductivity in the order of 10 -1 S cm -1. The gel electrolyte has been found to give substantially higher specific capacitances than those in the liquid electrolyte with the same salt (KCl) composition (1 M) and high power capability (>10 kW/kg).

  18. Electrolytes for high voltage electrochemical double layer capacitors: A perspective article

    Science.gov (United States)

    Balducci, A.

    2016-09-01

    The development of innovative electrolyte components is nowadays considered one of the most important aspects for the realization of high energy electrochemical double capacitors (EDLCs). Consequently, in the last years many investigations have been dedicated towards new solvents, new salts and ionic liquids able to replace the current electrolytes. This perspective article aims to supply a critical analysis about the results obtained so far on the development of new electrolytes for high energy EDLCs and to outline the advantages as well as the limits related to the use of these innovative components. Furthermore, this article aims to give indications about the strategies could be used in the future for a further development of advanced electrolytes.

  19. Towards A Model-Based Prognostics Methodology For Electrolytic Capacitors: A Case Study Based On Electrical Overstress Accelerated Aging

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a model-driven methodology for predict- ing the remaining useful life of electrolytic capacitors. This methodology adopts a Kalman filter...

  20. Bayesian Framework Approach for Prognostic Studies in Electrolytic Capacitor under Thermal Overstress Conditions

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies for safety critical avionics equipment to power drivers for electro-mechanical actuator. Past experiences show that capacitors tend to degrade and fail faster when subjected to high electrical or thermal stress conditions during operations. This makes them good candidates for prognostics and health management. Model-based prognostics captures system knowledge in the form of physics-based models of components in order to obtain accurate predictions of end of life based on their current state of heal th and their anticipated future use and operational conditions. The focus of this paper is on deriving first principles degradation models for thermal stress conditions and implementing Bayesian framework for making remaining useful life predictions. Data collected from simultaneous experiments are used to validate the models. Our overall goal is to derive accurate models of capacitor degradation, and use them to remaining useful life in DC-DC converters.

  1. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    Science.gov (United States)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  2. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    Science.gov (United States)

    Yuan, Wei; Han, Gaoyi; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-01

    In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H3PO4/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH2PO4·2H2O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  3. The Performance of 600F Power Super Capacitor Using Carbon Nanotubes Electrodes and Nonaqueous Electrolyte

    Institute of Scientific and Technical Information of China (English)

    WANGXiaofeng

    2005-01-01

    Many applications for supercapacitors have been proposed in recent years. The popularity of these devices is derived from their high energy density compared with conventional capacitors and their long cycle life and high power density relative to batteries. Supercapacitors based on charge storage at the interface between a high surface area carbon nanotubes electrode and LiClO4/PC electrolyte is assembled in this paper. The carbon nanotubes prepared catalytically exhibited double layer capacitance of 12F.g-1 in LiClO4/PC electrolyte. The performance of the capacitor depends not only on the materials used in the cells but also on the construction of the cells. Evaluation of capacitor performance by different techniques is also discussed. The performance of carbon nanotubes based capacitors for high power sources used in electronic equipment or hybrid vehicle application are described. From a constant charge-discharge test, the capacitance of 600 F and impedance of 2.5mΩ are obtained for this device. Values for the specific energy and specific power of 0.SWh-kg-1 and lkW-kg-1, respectively, are demonstrated for a cell with 2.5V maximum operating voltage.

  4. Sustainable AC/AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems

    Science.gov (United States)

    Abbas, Qamar; Babuchowska, Paulina; Frąckowiak, Elżbieta; Béguin, François

    2016-09-01

    A high energy hybrid AC/AC electrochemical capacitor has been realized in aqueous Li2SO4+KI electrolyte mixture. Owing to the redox processes associated with the 2I-/I2 system, the positive electrode operates in narrow potential range and displays high capacity. During prolonged potentiostatic floating at 1.6 V, the hybrid cell demonstrates remarkably stable capacitance and resistance. Analyses by temperature programmed desorption after floating at 1.6 V proved that oxidation of the positive AC electrode is prevented by the use of Li2SO4+KI, which enables the maximum potential of this electrode to be shifted below the water oxidation potential. When charged at 0.2 A g-1 up to U = 1.6 V, the hybrid cell displays a high capacitance of 75 F g-1 (300 F g-1 per mass of one electrode) compared to 47 F g-1 (188 F g-1 per mass of one electrode) for a symmetric cell in Li2SO4. At 0.2 A g-1 up to 1.6 V, the hybrid capacitor in Li2SO4+KI displays an energy density of 26 Wh kg-1 which approaches the energy density of 30.9 Wh kg-1 measured when the same carbon is implemented in a capacitor using TEABF4/ACN electrolyte and charged up to 2.5 V.

  5. KPF{sub 6} dissolved in propylene carbonate as an electrolyte for activated carbon/graphite capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-02-15

    KPF{sub 6} dissolved in propylene carbonate (PC) has been proposed as an electrolyte for activated carbon (AC)/graphite capacitors. The electrochemical performance of AC/graphite capacitor has been tested in XPF{sub 6}-PC or XBF{sub 4}-PC electrolytes (X stands for alkali or quaternary alkyl ammonium cations). The AC/graphite capacitor using KPF{sub 6}-PC electrolyte shows an excellent cycle-ability compared with other electrolytes containing alkali ions. The big decomposition of the PC solvent at the AC negative electrode is considerably suppressed in the case of KPF{sub 6}-PC, which fact has been correlated with the mild solvation of K{sup +} by PC solvent. The relationship between the ionic radius of cation and the corresponding specific capacitance of AC negative electrode also proves that PC-solvated K{sup +} ions are adsorbed on AC electrode instead of naked K{sup +} ions. (author)

  6. Liquid electrolyte-free cylindrical Al polymer capacitor review: Materials and characteristics

    Science.gov (United States)

    Yoo, Jeeyoung; Kim, Jaegun; Kim, Youn Sang

    2015-06-01

    The manufacturing methods for liquid electrolyte-free Al polymer capacitors are introduced by using new materials like novel oxidants, separators and negative current collectors. The Al polymer capacitor is constructed by an Al foil as an anode, Al2O3 as a dielectric, and poly(3, 4-ethylenedioxythiophene) (PEDOT) as a cathode. There are also various synthetic methods of 3, 4-ethylenedioxythiophene (EDOT) and the chemical polymerization of PEDOT from EDOT using iron benzenesulfonate as a new oxidant and dopant. Furthermore, various cathodic current collectors such as conventional Al foils, carbon and titanium dioxide deposited on Al foils or substrates, as well as various separators with manila-esparto paper and synthetic fibers (series of acryl, PET, etc.) are studied. The Al polymer capacitors with the newly introduced oxidant (iron benzenesulfonate), separator (aramid based synthetic fibers) and current collector (TiO2) exhibit considerably enhanced capacitance values and the extremely low resistance (7 mΩ), so there is low power consumption and high reliability. Additionally, the newly developed Al polymer capacitor is guaranteed for 5,000 h at 125 °C, which means there is a long life time operation over ∼ 5 × 106 h at 65 °C.

  7. Rational design of new electrolyte materials for electrochemical double layer capacitors

    Science.gov (United States)

    Schütter, Christoph; Husch, Tamara; Viswanathan, Venkatasubramanian; Passerini, Stefano; Balducci, Andrea; Korth, Martin

    2016-09-01

    The development of new electrolytes is a centerpiece of many strategies to improve electrochemical double layer capacitor (EDLC) devices. We present here a computational screening-based rational design approach to find new electrolyte materials. As an example application, the known chemical space of almost 70 million compounds is investigated in search of electrochemically more stable solvents. Cyano esters are identified as especially promising new compound class. Theoretical predictions are validated with subsequent experimental studies on a selected case. These studies show that based on theoretical predictions only, a previously untested, but very well performing compound class was identified. We thus find that our rational design strategy is indeed able to successfully identify completely new materials with substantially improved properties.

  8. High voltage electric double layer capacitor using a novel solid-state polymer electrolyte

    Science.gov (United States)

    Sato, Takaya; Marukane, Shoko; Morinaga, Takashi; Kamijo, Toshio; Arafune, Hiroyuki; Tsujii, Yoshinobu

    2015-11-01

    We designed and fabricated a bipolar-type electric double layer capacitor (EDLC) with a maximum 7.5 V operating voltage using a new concept in solid electrolytes. A cell having a high operating voltage, that is free from liquid leakage and is non-flammable is achieved by a bipolar design utilizing a solid polymer electrolyte made up of particles in a three-dimensional array, such as crystals composed of 75 wt% of hybrid particles decorated with a concentrated ionic liquid polymer brush (PSiP) and 25wt% of an ionic liquid (IL). The resulting solid film had sufficient physical strength and a high enough ionic conductivity to function as an electrolyte. Solidification as well as ionic conduction is due to the regular array of PSiPs, thereby producing a high ion-conductivity from a networked path between cores containing an appropriate amount of IL as a plasticizer. The demonstration cell shows a relatively good cycle durability and rate properties up to a 10C discharge process. It also has a very small leakage current in continuous charging and better self-discharge properties, even at 60 °C, compared with conventional cells. This paper demonstrates the first successful fabrication of a bipolar EDLC in a simple structure using this novel polymer solid electrolyte.

  9. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    Science.gov (United States)

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3

  10. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    Science.gov (United States)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  11. Electrochemical Properties of PANI as Single Electrode of Electrochemical Capacitors in Acid Electrolytes

    Directory of Open Access Journals (Sweden)

    Haihua Zhu

    2013-01-01

    Full Text Available The polyaniline (PANI powder with globular sponge-like morphology was prepared by chemical solution polymerization, and its morphology and chemical structure were characterized by scanning electron microscope (SEM and Fourier transform infrared spectroscopy (FTIR, respectively. The single electrode of electrochemical capacitor was made using the prepared PANI powder as active material and carbon paper as current collector. Electrochemical properties of PANI as a single electrode in 1 M HCl and 1 M H2SO4 electrolyte solution were tested by galvanostatic charge/discharge (GCD and cyclic voltammetry (CV techniques. It has been found that PANI has higher specific capacitance of 302.43 Fg−1, higher specific energy of 54.44 Wh·kg−1 at 0.5 Ag−1, and higher working potential in 1 M HCl than those in 1 M H2SO4.

  12. The effects of hyperbranched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Nogami, Katsunori [Graduate School of Tokyo Institute Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Nippon Chemi-Con Co., 185-1, Marunouchi, Yabuki-machi, Nishi-Shirakawa-gun, Fukushima 969-0235 (Japan); Sakamoto, Kiyoshi [Nippon Chemi-Con Co., 185-1, Marunouchi, Yabuki-machi, Nishi-Shirakawa-gun, Fukushima 969-0235 (Japan); Hayakawa, Teruaki; Kakimoto, Masa-aki [Graduate School of Tokyo Institute Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2007-04-15

    An aluminum solid electrolytic capacitor, using poly-(3,4-ethylenedioxythiophene) (PEDOT) as a counter electrode, was prepared with hyperbranched poly(siloxysilane)s (HBPSi) that has a large number of vinyl groups to improve the interfacial properties between aluminum oxide and PEDOT. Capacitance and equivalent series resistance (Rs) were significantly improved compared to untreated oxide film and vinyl terminated polydimethylsiloxane coated interfaces. From electrochemical measurement of the withstand voltage, damage to the oxide film from chemical polymerization of PEDOT was less with the HBPSi treatment. Frequency characteristics and electrical conductivity measurements of the polymer indicated that the resistance inside the etched porous layer was greatly reduced. These results show that the HBPSi pre-coating layer inhibited degradation of the oxide film by chemical polymerization of PEDOT and the conductivity of PEDOT in the etched porous oxide layer, and also enlarges the contact area by improving interfacial adhesion. (author)

  13. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    Science.gov (United States)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  14. Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol composite gel electrolyte

    Indian Academy of Sciences (India)

    Navin Chand; Neelesh Rai; S L Agrawal; S K Patel

    2011-12-01

    In the present work, an attempt has been made to develop nano aluminium oxide (Al2O3)-filled polyvinyl alcohol (PVA) composite gel electrolytes. Surface morphological studies, thermal behaviour, electrochemical stability and electrical characterization of these composite gel electrolytes have been performed. An increase in the concentration of Al2O3 in composite gel electrolytes increases the amorphous characteristics of pure PVA. Bulk conductivity of composite gel electrolytes increases by an order of magnitude on addition of a nano filler. Maximum conductivity of 5.81 × 10-2 S/cm is observed for 6 wt% Al2O3-filled polymer gel composite electrolytes. Temperature dependence of electrical conductivity shows a combination of Arrhenius and Vogel–Tamman–Fulcher (VTF) nature. Maximum current stability during oxidation and reduction cycle is noticed for 6 wt% Al2O3-filled PVA composite electrolyte, viz. ±1.65 V.

  15. Towards A Model-Based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    Science.gov (United States)

    Celaya, Jose R.; Kulkarni, Chetan S.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  16. Growth of L-Valinium Aluminium Chloride single crystal for OLED and super-capacitor applications

    Science.gov (United States)

    Kalaivani, D.; Vijayalakshmi, S.; Theras, J. Elberin Mary; Jayaraman, D.; Joseph, V.

    2015-12-01

    L-Valinium Aluminium Chloride (LVAC), a novel semi-organic material, was grown using slow evaporation under isothermal condition. The single crystal data reveal that the grown crystal belongs to monoclinic system. The SEM micrographs give clear picture about the surface morphology. Further, they confirm the inclusion of aluminium chloride into atomic sites of L-Valine. The compositional elements present in the crystal were identified through EDAX analysis. The mass spectral analysis was carried out to determine the molecular weight of the grown crystal. The optical transparency of the grown crystal was investigated by UV-vis-NIR spectrum. FTIR spectral study was used to identify the functional groups present in the grown material. The luminescence characteristics of grown material were analysed to confirm the effect of metal ion on the ligand. This property makes the material suitable for OLED application. The supercapacitive performance of the grown crystal was finally studied using cyclic voltammetry.

  17. Anodic-spark layers on aluminium and titanium alloys in electrolytes with sodium tungstophosphate

    International Nuclear Information System (INIS)

    Influence of pH value of Na2H[PW12O40] aqueous 0.0083 M solution on the composition and morphology of anodic coatings on aluminium and titanium alloys formed galvanostatically under sparkling and breakdown voltage was studied using data of electron microscopy, elementary and X-ray phase analyses. It was ascertained that in low-acid, neutral and low-alkaline electrolytes multilayer coatings are formed, which contain in their outer layer oxides of elements making up the ligand sphere of heteropolyanions. In solutions featuring higher acidity and alkalinity the content of heteropolyanion components in the coatings decreases. By and large, the coating composition reflects the dependence of heteropolyanions composition in aqueous solution on pH value

  18. Studies on electrical double layer capacitor with a low-viscosity ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate as electrolyte

    Indian Academy of Sciences (India)

    G P Pandey; S A Hashmi

    2013-08-01

    The performance of an electrical double layer capacitor (EDLC) composed of high surface area activated carbon electrodes and a new ionic liquid, 1-ethyl-3-methylimidazolium tetracyanoborate, [EMIm]TCB, as the electrolyte has been investigated by impedance spectroscopy, cyclic voltammetry and galvanostatic charge–discharge studies. The high ionic conductivity (∼1.3 × 10-2 S cm-1 at 20 °C) and low viscosity (∼22 cP) of the ionic liquid, [EMIm]TCB, make it attractive as electrolyte for its use in EDLCs. The optimum capacitance value of 195.5 F g-1 of activated carbon has been achieved with stable cyclic performance.

  19. Spectroscopic study of plasma during electrolytic oxidation of magnesium-aluminium alloys

    Science.gov (United States)

    Jovović, J.

    2014-12-01

    Plasma during Electrolytic Oxidation (PEO) of magnesium-aluminium alloys is studied in this work by means of Optical Emission Spectroscopy (OES). Spectral line shapes of the Hβ, Al II 704.21 nm and Mg II 448.11 nm line are analyzed to measure plasma electron number density Ne. From the Hβ line profile, two PEO processes characterized by relatively low electron number densities Ne ≈ 1015 cm-3 and Ne ≈ 2 × 1016 cm-3 were discovered while the shape and shift of Al II and Mg II lines revealed the third process characterized by large electron density Ne = (1-2) × 1017 cm-3. Low Ne processes, related with breakdown in gas bubbles and on oxide surface, are not influenced by anode material or electrolyte composition. The ejection of evaporated anode material through oxide layer is designated here as third PEO process. Using the Boltzmann plot technique, electron temperature of 4000 K and 33000 K is determined from relative intensities of Mg I and O II lines, respectively. Several difficulties in the analysis of spectral line shapes are met during this study and the ways to overcome some of the obstacles are demonstrated.

  20. Synthesis and Characterization of Nanostructured Manganese Dioxide Used as Positive Electrode Material for Electrochemical Capacitor with Lithium Hydroxide Electrolyte

    Institute of Scientific and Technical Information of China (English)

    YUAN,An-Bao; ZHOU,Min; WANG,Xiu-Ling; SUN,Zi-Hong; WANG,Yu-Qin

    2008-01-01

    A nanostructured manganese dioxide electrode material was prepared using a solid-reaction route starting with MnCl2·4H2O and NH4HCO3, and its electrochemical performance as a positive electrode for MnO2/activated carbon hybrid supercapacitor with 1 mol·L-1 LiOH electrolyte was reported. The material was proved to be a mixture of nanostructured γ-MnO2 and α-MnO2 containing some bound water in the structure, which was characterized by X-ray diffraction analysis, infrared spectrum analysis, and transmission electron microscope observation. Electrochemical properties of the MnO2 electrode and the MnO2/AC capacitor were investigated by cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. Experimental results showed that the MnO2 electrode exhibited faradaic pseudocapacitance behavior and higher specific capacitance in 1 mol·L-1 LiOH electrolyte. The MnO2/AC hybrid capacitor with 1 mol·L-1 LiOH electrolyte presented excellent rate charge/discharge ability and cyclic stability.

  1. High energy density capacitor using coal tar pitch derived nanoporous carbon/MnO{sub 2} electrodes in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Tomko, Timothy [Energy and Mineral Engineering, University Park, PA 16802 (United States); Rajagopalan, Ramakrishnan; Lanagan, Michael [Materials Research Institute, University Park, PA 16802 (United States); Foley, Henry C. [Department of Chemical Engineering, University Park, PA 16802 (United States)

    2011-02-15

    Asymmetric aqueous electrochemical capacitors with energy densities as high as 22 Wh kg{sup -1}, power densities of 11 kW kg{sup -1} and a cell voltage of 2 V were fabricated using cost effective, high surface carbon derived from coal tar pitch and manganese dioxide. The narrow pore size distribution of the activated carbon (mean pore size {proportional_to}0.8 nm) resulted in strong electroadsorption of protons making them suitable for use as negative electrodes. Amorphous manganese dioxide anodes were synthesized by chemical precipitation method with high specific capacitance (300 F g{sup -1}) in aqueous electrolytes containing bivalent cations. The fabricated capacitors demonstrated excellent cyclability with no signs of capacitance fading even after 1000 cycles. (author)

  2. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?

    Science.gov (United States)

    Lian, Cheng; Liu, Honglai; Henderson, Douglas; Wu, Jianzhong

    2016-10-19

    The ionophobicity effect of nanoporous electrodes on the capacitance and the energy storage capacity of nonaqueous-electrolyte supercapacitors is studied by means of the classical density functional theory (DFT). It has been hypothesized that ionophobic nanopores may create obstacles in charging, but they store energy much more efficiently than ionophilic pores. In this study, we find that, for both ionic liquids and organic electrolytes, an ionophobic pore exhibits a charging behavior different from that of an ionophilic pore, and that the capacitance-voltage curve changes from a bell shape to a two-hump camel shape when the pore ionophobicity increases. For electric-double-layer capacitors containing organic electrolytes, an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage. Without taking into account the effects of background screening, the DFT predicts that an ionophobic pore containing an ionic liquid does not enhance the supercapacitor performance within the practical voltage ranges. However, by using an effective dielectric constant to account for ion polarizability, the DFT predicts that, like an organic electrolyte, an ionophobic pore with an ionic liquid is also able to increase the energy stored when the electrode voltage is beyond a certain value. We find that the critical voltage for an enhanced capacitance in an ionic liquid is larger than that in an organic electrolyte. Our theoretical predictions provide further understanding of how chemical modification of porous electrodes affects the performance of supercapacitors. PMID:27546561

  3. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction methodology for elec- trolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical...

  4. Recent Developments in Fault Detection and Power Loss Estimation of Electrolytic Capacitors

    OpenAIRE

    Braham, Ahmed; Lahyani, Amine; VENET, Pascal; Rejeb, Nejla

    2010-01-01

    International audience This paper proposes a comparative study of current-controlled hysteresis and pulsewidth modulation (PWM) techniques, and their influence upon power loss dissipation in a power-factor controller (PFC) output filtering capacitors. First, theoretical calculation of low-frequency and high-frequency components of the capacitor current is presented in the two cases, as well as the total harmonic distortion of the source current. Second, we prove that the methods already us...

  5. Fluoroethylene Carbonate Addition Effect on Electrochemical Properties of Mixed Carbonate-based Organic Electrolyte Solution for a Capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mingyeong; Kim, Seok [Pusan National Univ., Busan (Korea, Republic of); Kim, Ickjun; Yang, Sunhye [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2014-02-15

    In this paper, organic solvent electrolytes were prepared by a mixture of propylene carbonate (PC), dimethyl carbonate (DMC), tetraethylammonium tetrafluoroborate (TEABF{sub 4}) as a salt, and by containing a different content of fluoroethylene carbonate (FEC) as an additive agenT{sup -} The aim of this paper is to evaluate the ionic properties of propylene carbonate (PC)/dimethyl carbonate (DMC) mixtures as solvents for a capacitor application, in view of improving the electrochemical performances. The bulk resistance and interfacial resistance of the mixture electrolytes were investigated using an AC impedance method. The morphology of carbon-based electrodes which were contained in different electrolytes was analyzed by scanning electron microscopy (SEM) method. From the experimental results, by increasing the FEC content, capacitance of electrodes was increased, and the interfacial resistance was decreased. In particular, by a content of 2 vol % FEC in 0.2 M TEABF{sub 4} PC/DMC solvent, the electrolyte showed the superior capacitance. However, when FEC content exceeds 2 vol %, the capacitance was decreased and the interfacial resistance was increased.

  6. All-solid-state electrochemical capacitors using MnO2 electrode/SiO2-Nafion electrolyte composite prepared by the sol-gel process

    Science.gov (United States)

    Shimamoto, Kazushi; Tadanaga, Kiyoharu; Tatsumisago, Masahiro

    2014-02-01

    Electrode-electrolyte composites of MnO2 active material, acetylene black (AB), and SiO2-Nafion solid electrolyte were prepared using the sol-gel process to form good solid-solid interfaces. The composites were obtained by the addition of MnO2 and AB into a sol of hydrolyzed tetraethoxysilane with Nafion, and successive solidification of the precursor sol. Scanning electron microscope and energy dispersive X-ray spectroscopy measurements show that good solid-solid interface is formed between electrodes and solid electrolytes in the composites. All-solid-state hybrid capacitors were fabricated using the composites or the hand-grinding mixture of MnO2, AB and SiO2-Nafion powder as positive electrodes, activated carbon powder as a negative electrode, and phosphosilicate gel as a solid electrolyte. The all-solid-state hybrid capacitors using the composites exhibit larger capacitances and better rate performance than the capacitors using the electrode prepared by hand-mixing of powders. Specific discharge capacitances of the capacitor with the composite are 85 F g-1 for the one with the composite electrode and 48 F g-1 for the one with the hand-mixed electrode, at 1 mA cm-2. Moreover, the all-solid-state capacitors using the composite electrode can be operated at temperatures between -30 °C and 60 °C.

  7. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M.A., E-mail: asyadi@utem.edu.my [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A. [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Kudin, T.I.T. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); Yahya, M.Z.A. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.

  8. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF6 electrolyte

    International Nuclear Information System (INIS)

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF6 non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g−1. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g−1 at a scan rate of 1 mV s−1

  9. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    Energy Technology Data Exchange (ETDEWEB)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A., E-mail: sahashmi@physics.du.ac.in

    2015-08-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m{sup 2} g{sup −1}) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10{sup −3} S cm{sup −1} at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g{sup −1}, ∼39 Wh kg{sup −1} and ∼19 kW kg{sup −1}, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10{sup 4} charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better

  10. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    International Nuclear Information System (INIS)

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m2 g−1) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10−3 S cm−1 at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g−1, ∼39 Wh kg−1 and ∼19 kW kg−1, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼104 charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better performance over LiTFSI-based gel. • Highest

  11. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    Science.gov (United States)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  12. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?

    Science.gov (United States)

    Lian, Cheng; Liu, Honglai; Henderson, Douglas; Wu, Jianzhong

    2016-10-01

    The ionophobicity effect of nanoporous electrodes on the capacitance and the energy storage capacity of nonaqueous-electrolyte supercapacitors is studied by means of the classical density functional theory (DFT). It has been hypothesized that ionophobic nanopores may create obstacles in charging, but they store energy much more efficiently than ionophilic pores. In this study, we find that, for both ionic liquids and organic electrolytes, an ionophobic pore exhibits a charging behavior different from that of an ionophilic pore, and that the capacitance-voltage curve changes from a bell shape to a two-hump camel shape when the pore ionophobicity increases. For electric-double-layer capacitors containing organic electrolytes, an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage. Without taking into account the effects of background screening, the DFT predicts that an ionophobic pore containing an ionic liquid does not enhance the supercapacitor performance within the practical voltage ranges. However, by using an effective dielectric constant to account for ion polarizability, the DFT predicts that, like an organic electrolyte, an ionophobic pore with an ionic liquid is also able to increase the energy stored when the electrode voltage is beyond a certain value. We find that the critical voltage for an enhanced capacitance in an ionic liquid is larger than that in an organic electrolyte. Our theoretical predictions provide further understanding of how chemical modification of porous electrodes affects the performance of supercapacitors. The authors are saddened by the passing of George Stell but are pleased to contribute this article in his memory. Some years ago, DH gave a talk at a Gordon Conference that contained an approximation that George had demonstrated previously to be in error in one of his publications. Rather than making this point loudly in the discussion, George politely, quietly, and privately pointed this out

  13. Recycling and Utilization of the Electrolytic Aluminium Ash and Slag%电解铝灰铝渣的回收利用现状

    Institute of Scientific and Technical Information of China (English)

    郭菁

    2013-01-01

    在电解铝的生产工艺中产生的熔渣经冷却后成为铝灰铝渣,铝灰铝渣中因具有10%~30%的铝及30%左右的Al2O3等有价成分而使得铝灰铝渣的回收利用越来越受到人们的关注.分析总结了国内外电解铝灰铝渣的回收利用情况及不同回收工艺的方法及优缺点,为铝灰铝渣的回收实现低成本产业化,尤其是利用途径和回收技术提供了重要依据.%Aluminium ash and slag are produced from molten slag cooling in the electrolytic aluminium production process,the recycling and utilization of the electrolytic aluminium ash and slag is attracting more and more attention.at home and abroad for their valuable components such as 10%-30% aluminium and 30% Al2O3.The recovery utilization and technology of advantages and disadvantages of the electrolytic aluminium ash have been elaborated in order to realize low cost industrialization recovery,especially provide important basis for utilization approach and recovery technology.

  14. Electrochemical Properties of PANI as Single Electrode of Electrochemical Capacitors in Acid Electrolytes

    OpenAIRE

    Haihua Zhu; Shunjin Peng; Weijie Jiang

    2013-01-01

    The polyaniline (PANI) powder with globular sponge-like morphology was prepared by chemical solution polymerization, and its morphology and chemical structure were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The single electrode of electrochemical capacitor was made using the prepared PANI powder as active material and carbon paper as current collector. Electrochemical properties of PANI as a single electrode in 1 M HCl...

  15. Nano-pit corrosion of the tabs in aluminum electrolytic capacitor: Polarization characteristics of the tabs in ethyleneglycol-borate solution with chloride ions

    Energy Technology Data Exchange (ETDEWEB)

    Xue Rong; Qian Yuanyuan; Liu Keke; Jiang Xiaoxing; Zhu Junjie [Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Zhang Jianrong [Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)], E-mail: jrzhang@nju.edu.cn

    2008-10-15

    To evaluate the corrosion behavior of the anode tab in aluminum electrolytic capacitor, we performed some electrochemical and morphology analysis using the polarization curves in conjunction with atomic force microscope (AFM), scanning electronic microscope (SEM) and optical microscope (OM). The results suggest that the current oscillation was found to be associated with nano-pit, which is defined as the rectangular pit ({beta}) with a depth less than 55 nm and a width no more than 100 nm. Furthermore, elevation of Cl{sup -} concentration widened the crevices caused by electrolytic tension, enlarged the nano-pit area, and accelerated the electrochemical reaction rate of the anode tab in ethyleneglycol-borate solution. These findings may have implications for the failure of aluminum electrolytic capacitor.

  16. The study of aluminium anodes for high power density AL-air batteries with brine electrolytes

    OpenAIRE

    Nestoridi, Maria

    2009-01-01

    In this thesis aluminium alloys containing small additions of both tin (~ 0.1 wt %) and gallium (~ 0.05 wt %) dissolve anodically at high rates in brine media; at room temperature, current densities > 0.2 A cm-2 can be obtained at potentials close to the open circuit potential, ~ -1.5 V vs SCE. Alloys without both tin and gallium do not dissolve at such a negative potential. The tin exists in the alloys as a second phase, typically as ~ 1 ?m inclusions throughout the aluminium structure. Anod...

  17. Poly(Acrylic acid–Based Hybrid Inorganic–Organic Electrolytes Membrane for Electrical Double Layer Capacitors Application

    Directory of Open Access Journals (Sweden)

    Chiam-Wen Liew

    2016-05-01

    Full Text Available Nanocomposite polymer electrolyte membranes (NCPEMs based on poly(acrylic acid(PAA and titania (TiO2 are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO2.The highest ionic conductivity of (8.36 ± 0.01 × 10−4 S·cm−1 is obtained with addition of 6 wt % of TiO2 at ambient temperature. The complexation between PAA, LiTFSI and TiO2 is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR studies. Electrical double layer capacitors (EDLCs are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F·g−1 (or equivalent to 29.54 mF·cm−2 with excellent electrochemical stability.

  18. High energy density sodium-ion capacitors through co-intercalation mechanism in diglyme-based electrolyte system

    Science.gov (United States)

    Han, Pengxian; Han, Xiaoqi; Yao, Jianhua; Zhang, Lixue; Cao, Xiaoyan; Huang, Changshui; Cui, Gunglei

    2015-11-01

    A novel sodium-ion capacitor (NIC) was assembled using graphitic mesocarbon microbead anode and activated carbon cathode in diglyme-based electrolyte. Charge/discharge tests indicate that sodium ions can reversibly co-intercalated with diglyme solvent into graphite anode and show good rate performance. The energy densities of the NICs are as high as 93.5 and 86.5 Wh kg-1 at 573 and 2832 W kg-1 (equal to 4 C and 50 C) in the voltage window at 1-4 V, respectively. By optimizing the voltage ranges, the capacity retention of the NIC at 20 C is 98.3% even after 3000 cycles. Such superior electrochemical performance should be attributed to the reversible intercalated/deintercalated reaction of sodium ions and the formation of ternary graphite intercalation compounds in diglyme-based electrolyte. The present work pioneers new realms of hybrid energy storage system with high energy density, high power density and long cycle life.

  19. An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors

    Science.gov (United States)

    Neale, Alex R.; Murphy, Sinead; Goodrich, Peter; Schütter, Christoph; Hardacre, Christopher; Passerini, Stefano; Balducci, Andrea; Jacquemin, Johan

    2016-09-01

    A novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent-free, IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention.

  20. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    Science.gov (United States)

    Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.

    2016-08-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).

  1. Study of ageing mechanisms of organic electrolyte super-capacitors based on activated carbons; Recherche des causes du vieillissement de supercondensateurs a electrolyte organique a base de carbones actives

    Energy Technology Data Exchange (ETDEWEB)

    Azais, Ph.

    2003-11-15

    The energy which is stored in electrochemical capacitors is proportional to the square of voltage. Consequently, the most attractive super-capacitors are those which operate in organic electrolyte medium, with an electrolyte potential window which theoretically can easily reach more than 3 V. However, even using lower values of voltage, there is a remarkable fading of the electrochemical characteristics with operating time, that is mainly characterized by capacitance loss and resistance increase. On a commercial point of view, these capacitors must be improved in order to reach the expected criterion of long operating life. In the presented work, we will determine some reasons of super-capacitors ageing in organic electrolyte (1 M solution of Et{sub 4}N{sup +} BF{sub 4}{sup -} in acetonitrile) and we will propose a treatment of activated carbon which noticeably improves the performance. A prolonged charging of electrochemical capacitors at 2.5 V, so called floating, results in gases formation and to a noticeable mass uptake of the electrodes. XPS and NMR analysis performed on carefully washed electrodes demonstrated the existence of decomposition products from the electrolyte, which are trapped in the pores of the activated carbon. These products block the pores, limiting the ions access to the active surface that causes the decay of electrochemical performances. Electrolyte decomposition is especially very high when the electrodes are constituted of carbons with a rich surface functionality, i.e. surface oxygenated groups and free radicals. Therefore, activated carbons have been submitted to thermal treatment, both in nitrogen and hydrogen atmosphere, allowing the oxygenated surface functionality to be noticeably depressed. Super-capacitors built with the treated materials have been submitted to floating during more than 2000 hours. Extremely good electrochemical performance are preserved with the electrodes obtained from activated carbons treated under hydrogen

  2. Effect of acid dopants in biodegradable gel polymer electrolyte and the performance in an electrochemical double layer capacitor

    Science.gov (United States)

    Sudhakar, Y. N.; Selvakumar, M.; Krishna Bhat, D.

    2015-09-01

    Proton-conducting biodegradable gellan gum gel polymer electrolytes (GPEs) have been prepared using three different dopants, namely ortho-phosphoric (o-H3PO4), sulfuric (H2SO4) and hydrochloric acids (HCl). The GPEs were cross-linked using borax. The polymeric gels were characterized by spectroscopic, thermal, ionic conductivities and dielectric measurements. Proton conductivity was in the range of 5.1 × 10-3 to 3.7 × 10-4 s cm-1 and activation energies were between 0.14 meV and 0.19 meV, at different temperatures. Among the doped acids, the H3PO4 doped GPE exhibited thermal stability at varying temperature. Electrochemical double layer capacitors (EDLCs) were fabricated using activated carbon as electrode material and GPEs. The EDLCs were tested using cyclic voltammetry, ac impedance spectroscopic and galvanostatic charge-discharge techniques. The maximum specific capacitance value was 146 F g-1 at a scan rate of 2 mV s-1. Quite stable values were obtained at a constant current density up to 1000 cycles.

  3. Surface Morphology and Microstructure of Zinc Deposit From Imidazole with Zinc Chloride Low Temperature Molten Salt Electrolyte in The Presence of Aluminium Chloride

    Directory of Open Access Journals (Sweden)

    Shanmugasigamani Srinivasan, M. Selvam

    2013-07-01

    Full Text Available Low temperature molten salts have variety of applications in organic synthesis, catalytic processing, batteries and electrode position due to their air and water stability. They have wide potential window for their applications in voltage and temperature and hence there is a possibility to deposit metals which could not be deposited from aqueous electrolytes. Our aim and scope of our research was to deposit zinc from low temperature molten salt electrolyte (LTMS containing zinc salt in the presence of aluminium chloride at different current densities and to qualify the nature of deposits. We could identify the effect of current density on the deposit at low temperature molten salt electrolyte by analysing the nature of deposits using different instrumental techniques. Compact, adherent, dense fine grained deposits of zinc with average grain size of 40-150 nm could be obtained from low temperature molten salt electrolyte. (LTMS

  4. Effect of electrolyte temperature on the thickness of anodic aluminium oxide (AAO layer

    Directory of Open Access Journals (Sweden)

    P. Michal

    2016-07-01

    Full Text Available Effect of electrolyte temperature on the thickness of resulting oxide layer has been studied. Unlike previous published studies this article was aimed to monitor the relationship between electrolyte temperature and resulting AAO layer thickness in interaction with other input factors affecting during anodizing process under special process condition, i.e. lower concentration of sulphuric acid, oxalic acid, boric acid and sodium chloride. According to Design of Experiments (DOE 80 individual test runs of experiment were carried out. Using statistical analysis and artificial intelligence for evaluation, the computational model predicting the thickness of oxide layer in the range from 5 / μm to 15 / μm with tolerance ± 0,5 / μm was developed.

  5. Electrolytic surface hardening of steel,cast iron and aluminium-bronze

    Institute of Scientific and Technical Information of China (English)

    Suhas Keshav Paknikar

    2006-01-01

    Electrolytic hardening process was developed in USSR in the 1950s. The process was developed but was not commercially exploited. There is no evidence of work done on this process in India. The author has done this original work applied to different materials like steel,cast iron and aluminum-bronze. This paper gives details of microstructural transformations along with hardness value achieved. There is vital scope for this process to become viable for surface hardening and selective hardening of small components.

  6. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers

    Science.gov (United States)

    Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo

    2016-02-01

    We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180o.

  7. Electrolytic surface hardening of steel,castiron and aluminium-bronze

    Directory of Open Access Journals (Sweden)

    Suhas Keshav Paknik a r

    2006-08-01

    Full Text Available Electrolytic hardening process w as developed in USSR in the 1950s. The process w as developed but w as not com m ercially exploited. There is no evidence of w ork done on this process in India. The author has done this originalw ork applied to different m aterials like steel, castiron and alum inum -bronze.This paper gives details ofm icrostructuraltransform ations along w ith hardness value achieved. There is vitalscope for this process to becom e viable for surfacehardening and selective hardening ofsm allcom ponents.

  8. Spectroscopic study of plasma during electrolytic oxidation of magnesium- and aluminium-alloy

    Science.gov (United States)

    Jovović, J.; Stojadinović, S.; Šišović, N. M.; Konjević, N.

    2012-10-01

    We present the results of an optical emission spectroscopy study of Plasma during Electrolytic Oxidation (PEO) of magnesium- and aluminum-alloy. Plasma electron number density Ne diagnostics is performed either from the Hβ line shape or from the width or shift of non-hydrogenic ion lines of aluminum and magnesium. The line profile analysis of the Hβ suggests presence of two PEO processes characterized by relatively low electron number densities Ne≈1.2×1015 cm-3 and Ne≈2.3×1016 cm-3. Apart from these two low Ne processes, there is the third one related to the ejection of evaporated anode material through micro-discharge channels. This process is characterized by larger electron density Ne=(1.2-1.6)1017 cm-3, which is detected from the shape and shift of aluminum and magnesium singly charged ion lines. Two low Ne values detected from the Hβ and large Ne measured from the widths and shift of ion lines suggest presence of three types of discharges during PEO with aluminum- and magnesium-alloy anode. On the basis of present and earlier results one can conclude that low Ne processes do not depend upon anode material or electrolyte composition.The electron temperature of 4000 K and 33,000 K are determined from relative intensities of Mg I and O II lines, respectively. The attention is drawn to the possibility of Ne application for Te evaluation using Saha equation what is of importance for PEO metal plasma characterization. During the course of this study, difficulties in the analysis of spectral line shapes are encountered and the ways to overcome some of the obstacles are demonstrated.

  9. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu

    2014-06-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  10. Study on frequency characteristic of Al electrolytic capacitor%铝电解电容器频率特性研究

    Institute of Scientific and Technical Information of China (English)

    韦春才; 董海青

    2000-01-01

    This paper studied the change law of the isotonic series-wound capacitor,the isotonic series-wound resistance,impedance and the ullage tgδ of the Al electrolytic capacitor as frequencies of AC power.It was proved that there was a superior diversity on the value of above factors between practical Al electrolytic capacitor and the ideal one at different frequencies.The main factor affecting the frequency characteristic were given as the following:the coefficient of corrosion of the Al foil surfaces the figure of the hole of scorrosion,and the character of the oxide film on the surface of the anode and cathode;the fabric of the unimpregnated liner in the capacitor,as well as the resistance and steeping of the working electrolyte and the construction of the capacitor.%研究了铝电解电容器在不同频率的交流电压下工作时,其等效串联电容上述各、等效串联电阻、阻实验表明,抗和损耗tgδ值随频率的变化情况。实验证明,实际的铝电解电容器在不同工作频率下的值与理想的铝电解电容器相比有较大差异。影响频率特性的主要因素有:阴极和阳极铝箔表面腐蚀系数的大小及腐蚀坑洞的形状;阴极和阳极铝箔表面氧化膜的性质;电容器中衬垫纸的构造;工作电解液的电阻和浸渍情况以及电容器的内外结构尺寸等。

  11. Towards A Model-based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction methodology for elec- trolytic capacitors is presented. This methodology adopts a Kalman filter approach in conjunction with an...

  12. Factors influencing high voltage performance of coconut char derived carbon based electrical double layer capacitor made using acetonitrile and propylene carbonate based electrolytes

    Science.gov (United States)

    Hu, Changzheng; Qu, Weiguo; Rajagopalan, Ramakrishnan; Randall, Clive

    2014-12-01

    Symmetric EDLCs made using high purity carbon electrodes derived from coconut char were tested using 1 M Tetraethylammonium hexafluorophosphate dissolved in two different solvents namely acetonitrile and propylene carbonate. The cell voltage of the capacitor made using propylene carbonate can be extended to 3.5 V and it exhibited good cycling and thermal stability upto 70 °C while the voltage was limited to below 3.0 V in acetonitrile. XPS analysis of the positive and negative electrodes of EDLCs post cycling showed that the primary degradation products were related to ring opening reactions in propylene carbonate based electrolytes while water played a key role in degradation of acetonitrile based EDLCs.

  13. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...... by replacement of the nitride ions with oxide ions in the molten carbonate electrolyte....

  14. 电解-电化学混合电容器的制备与性能%Fabrication and Performance of Electrolytic-Electrochemical Hybrid Capacitors

    Institute of Scientific and Technical Information of China (English)

    杨斌; 吴慧; 胡颂伟; 吕惠玲; 宋晔; 朱绪飞

    2013-01-01

      为解决电化学电容器工作电压过低的问题,本文以钽电解电容器的烧结型钽块为阳极,聚苯胺(PANI)/TiO2电化学电容器复合电极为阴极,成功制备了高能量密度、高工作电压的电解-电化学混合电容器. PANI/TiO2复合电极是通过在多孔阳极氧化钛纳米管阵列中电化学聚合PANI制得.该阴极具有优良的倍率特性,当平均功率密度为0.55 mW·cm-2时,对应的比容量仍达到10.0 mF·cm-2.由于与电解电容器复合,该混合电容器的单元工作电压可高达100 V.而且电化学电容器阴极的比容量远大于阳极,故阴极所需尺寸远小于阳极,节省的空间可用于增大阳极尺寸,从而使混合电容器的比容量极大提高.所制备的混合电容器体积能量密度和质量能量密度分别是钽电解电容器的4倍和3倍.将该混合电容器在100 V下进行短路充放电实验,循环10000次后发现容量未衰减,等效串联电阻未增加,显示出极好的循环稳定性和功率特性.计算表明其最大功率密度高达847.5 W·g-1.电化学阻抗谱显示其具有优良的阻抗特性和频率特性.%To solve the issue of comparatively low operation voltage of electrochemical capacitors, a hybrid capacitor consisting of the anode electrode of tantalum electrolytic capacitor and the cathode electrode of polyaniline (PANI)/TiO2 with high energy density and high working voltage was developed. The PANI/TiO2 composite electrode for use as the capacitor cathode was prepared by in situ electrochemical polymerization of aniline in porous anodic titania nanotube arrays on titanium foil substrates. The composite electrode showed good rate capability with a specific capacitance of 10.0 mF·cm-2 and a high power density of 0.55 mW·cm-2. Using a dielectric coated anode electrode, the single-cell hybrid capacitor could withstand working voltages as high as 100 V. As the PANI/TiO2 composite cathode only requires a

  15. Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors

    Science.gov (United States)

    Gambou-Bosca, Axel; Bélanger, Daniel

    2016-09-01

    The effect of the electrolyte on the electrochemical utilization of manganese dioxide as active material for electrochemical capacitor was studied by cyclic voltammetry and electrochemical impedance spectroscopy. MnO2-based composite electrodes were characterized in salt-in-water (0.65 M K2SO4, 5 M LiNO3, 0.5 M LiNO3 and 0.5 M Ca(NO3)2) and water-in-salt (5 M LiTFSI (lithium bis-trifluoromethanesulfonimide)) electrolytes. Firstly, no effect of the cation valence on the specific capacitance was observed as similar values were measured in 0.5 M LiNO3 and 0.5 M Ca(NO3)2 aqueous solutions at both low and high scan rate, when a MnO2-based composite electrode was cycled in the pseudocapacitive potential region. Secondly, it was found that in 5 M LiTFSI, a MnO2 electrode is characterized by an extended potential stability window of about 1.4 V and exhibits a high specific capacitance of 239 F g-1 per active material mass at a scan rate of 2 mV s-1. However due to the low ionic conductivity of this solution, the rate capability is limited at high scan rate.

  16. Electrochemical flow capacitors

    Science.gov (United States)

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  17. Fabrication of a micro-porous Ti–Zr alloy by electroless reduction with a calcium reductant for electrolytic capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tatsuya, E-mail: kiku@eng.hokudai.ac.jp [Faculty of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Yoshida, Masumi [Faculty of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Taguchi, Yoshiaki [Graduate School of Chemical Science and Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Habazaki, Hiroki; Suzuki, Ryosuke O. [Faculty of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2014-02-15

    Highlights: • A metallic Ti–Zr alloy was obtained by electroless reduction for capacitor applications. • The reduction mechanisms were studied by SEM, XRD, EPMA, and an oxygen analyzer. • The alloy was obtained by electroless reduction in the presence of excess calcium reductant. • A micro-porous Ti–Zr alloy was successfully obtained. • The alloy has a low oxygen content and a large surface area. -- Abstract: A metallic titanium and zirconium micro-porous alloy for electrolytic capacitor applications was produced by electroless reduction with a calcium reductant in calcium chloride molten salt at 1173 K. Mixed TiO{sub 2}–70 at%ZrO{sub 2} oxides, metallic calcium, and calcium chloride were placed in a titanium crucible and heated under argon atmosphere to reduce the oxides with the calcium reductant. A metallic Ti–Zr alloy was obtained by electroless reduction in the presence of excess calcium reductant and showed a micro-porous morphology due to the sintering of each of the reduced particles during the reduction. The residual oxygen content and surface area of the reduced Ti–Zr alloy decreased over time during the electroless reduction. The element distributions were slightly different at the positions of the alloy and were in the composition range of Ti-69.3 at% to 74.3 at%Zr. A micro-porous Ti–Zr alloy with low oxygen content (0.20 wt%) and large surface area (0.55 m{sup 2} g{sup −1}) was successfully fabricated by electroless reduction under optimal conditions. The reduction mechanisms of the mixed and pure oxides by the calcium reductant are also discussed.

  18. 电解电容加速寿命试验的研究与应用探讨%Experimental Research and Application on the Accelerated Life Test of the Electrolytic Capacitors

    Institute of Scientific and Technical Information of China (English)

    黄兆军; 范凌云

    2013-01-01

    简介:本文通过试验方法来探讨电解电容在不同温度条件下其容量、漏电流、损耗角正切值等参数的变化情况,通过试验验证和对其寿命衰减曲线的研究分析,得到一种加速电解电容寿命试验的有效方法,大大缩短了电解电容寿命试验的检验周期,极大地提高了检验效率,节省了试验成本。%In the paper, the test method to explore the electrolytic capacitors in different temperature conditions under capacity, leakage current, loss tangent value changes of the pa-rameters has been verified by experiments and analysis of the decay curve of their life. An effective accelerated life test method of the electrolytic capacitors, greatly reducing the electrolytic capacitor life test inspection cycle, greatly improves test efficiency and saves the cost of the trial.

  19. An Approach to Solid-State Electrical Double Layer Capacitors Fabricated with Graphene Oxide-Doped, Ionic Liquid-Based Solid Copolymer Electrolytes

    Directory of Open Access Journals (Sweden)

    N. F. A. Fattah

    2016-06-01

    Full Text Available Solid polymer electrolyte (SPE composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene [P(VdF-HFP] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl imide [EMI-BTI] and graphene oxide (GO was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC. The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD and thermogravimetric analysis (TGA studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge–discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g−1, which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.

  20. Physical properties of a new Deep Eutectic Solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors

    International Nuclear Information System (INIS)

    Highlights: • Preparation of new Deep Eutectic Solvent (DES) based on N-methylacetamide and TFSI. • Characterization of conductivity, viscosity and thermal properties of DES. • DES presents a superionic character in Walden classification. • DES is suitable electrolyte for lithium ion batteries and electric double layer capacitors. -- Abstract: Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from −60 °C to 280 °C, low vapor pressure, and high ionic conductivity up to 28.4 mS cm−1 at 150 °C and at xLiTFSI = 1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius’ Law and Vogel–Tamman–Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO4) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO4) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability

  1. Pitting Mechanism for Aluminum Electrolytic Capacitor High Voltage Foil%铝电解电容器高压电子箔点蚀机理的研究

    Institute of Scientific and Technical Information of China (English)

    王志申; 何业东; 孙志华; 刘明; 张晓云; 陆峰

    2012-01-01

    采用极化曲线和场发射扫描电镜等方法,研究了铝电解电容器高压电子箔在高温强酸性溶液中的点蚀机理.结果表明:在开路状态下铝光箔在硫酸盐酸发孔溶液中可以产生点蚀,测到自腐蚀电位就是点蚀电位;形成隧道孔后,阳极极化曲线出现点蚀电位,且点蚀过电位与隧道孔长度之间存在线性关系.根据点蚀的微电池模型及其在阳极极化下微电池的腐蚀极化图,提出产生上述现象的原因是阳极极化时带孔铝箔的表面由阴极向阳极转变,其转变的临界点即所测到的点蚀电位.%Pitting mechanism for aluminum electrolytic capacitor high voltage foil in strong acidic solution was investigated by means of polarization curve and scanning electron microscopy(SEM). The results indicate that pitting can generate on the surface of Al foil under open circuit, and its corrosion potential measured is pitting potential. Pitting potential appears on the polarization curves of Al foil with tunnel pits, and there is linear relationship between the pitting over-potential and the tunnel length. According to micro-cell model of pitting and the corrosion polarization diagrams of micro-cell, it is thought that the surface of Al foil with tunnel pits transforms from cathode to anode during anodic polarization, and the critical point of the transformation is the measured pitting potential.

  2. Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors

    International Nuclear Information System (INIS)

    This study reports on the fabrication and comparative performance characteristics of a symmetrical electrical double-layer capacitor (EDLC) employed gel polymer electrolyte (GPE) assembled between carbon based electrodes. Three cells, A, B and C were fabricated using different composition of active materials (activated or porous carbon), binder (PVdF-HFP) and conductivity enhancer (super-P). The configuration of cell A: 0.9 porous carbon/0.1 PVdF-HFP, cell B: 0.45 activated carbon/0.45 porous carbon/0.1 PVdF-HFP and cell C: 0.8 activated carbon/0.1 super-P/0.1 PVdF-HFP. The GPE, comprising a poly(vinyl pyrrolidone) (PVP)/poly(vinylidene fluoride co-hexafluoroproplyne) (PVdF-HFP) blend complexed with magnesium triflate, Mg(CF3SO3)2, was prepared by the solution casting technique at 60 °C. The physico-chemical properties of the GPEs were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), linear sweep voltammetry (LSV) and cyclic voltammetry (CV). The ionic conductivity at the ambient temperature of the GPE is 2.16 × 10−4 S cm−1 at 7.5 wt.% of Mg(CF3SO3)2 with a ∼2.6 V electro-chemical stability window. At the 1000th cycle, the specific capacitance, Cs of cell A is 89 F g−1 while cell B and C are 63 and 49 F g−1. Cell A shows excellent long-term cyclic stability (less than a 5% decrease in specific capacitance after 1000 cycles). The best operating voltage for cell A is 1.6 V with the specific capacitance 106 F g−1 after 500 cycles

  3. Integrated Diagnostic/Prognostic Experimental Setup for Capacitor Degradation and Health Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes the experiments and setups for studying diagnosis and prognosis of electrolytic capacitors in DC-DC power converters. Electrolytic capacitors...

  4. Dissolution kinetics for alumina in cryolite melts. Distribution of alumina in the electrolyte of industrial aluminium cells

    Energy Technology Data Exchange (ETDEWEB)

    Kobbeltvedt, Ove

    1997-12-31

    This thesis contributes to the understanding of which factors determine the rate of dissolution of alumina added to the bath in alumina reduction cells. Knowing this may help reduce the occurrences of operation interruptions and thus make it possible to produce aluminium using less energy. When alumina powder was added to a stirred cryolite melt, the alumina dissolved in two distinct main stages. In the first stage, the dissolution rate was very high, which reflects dissolution of single alumina grains that are being dispersed in the bath upon addition. In the second stage, lumps of alumina infiltrated with bath dissolved at a rate considerably slower than that of the first stage. The formation of these alumina agglomerates is the most important contributor to slow dissolution. The parameters varied in the experiments were convection, batch size, and temperature of the bath and of the added alumina. Increased gas stirring of the bath speeded up dissolution in both stages but the size of the batch was of little significance. Increasing the bath temperature had no effect in the first stage but speeded up dissolution considerably in the second stage. Compared to adding alumina at room temperature, preheating it to a high temperature (600 {sup o}C) increased the dissolution rate in the first stage while preheating to lower temperatures (100-300 {sup o}C) decreased the dissolution rate. In the second stage, preheating slowed the dissolution. The two latter phenomena of reduced dissolution rates are ascribed to the removal of moisture from the alumina upon preheating. The bath flow and the distribution of alumina in the bath were measured in four different types of cells. It was found that if a certain asymmetry of the magnetic field traverse to the cell was present, due to the presence of risers, then loops of high velocity bath flow occurred near the short ends of the cell. Thus, alumina added near the short ends is effectively transferred away from the feeding

  5. Fractal capacitors

    OpenAIRE

    Samavati, Hirad; Hajimiri, Ali; Shahani, Arvin R.; Nasserbakht, Gitty N.; Lee, Thomas H.

    1998-01-01

    A linear capacitor structure using fractal geometries is described. This capacitor exploits both lateral and vertical electric fields to increase the capacitance per unit area. Compared to standard parallel-plate capacitors, the parasitic bottom-plate capacitance is reduced. Unlike conventional metal-to-metal capacitors, the capacitance density increases with technology scaling. A classic fractal structure is implemented with 0.6-μm metal spacing, and a factor of 2.3 increase in the capacitan...

  6. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions....

  7. Application study of boric acid glycerin polyester in electrolytic capacitors%硼酸丙三醇聚酯在铝电解电容器工作电解液中的应用研究

    Institute of Scientific and Technical Information of China (English)

    周攀登; 刘仁其; 龙立平

    2013-01-01

    采用正交实验法配制了一种耐高压电容器工作电解液配方,在该配方中添加自己合成的硼酸丙三醇聚酯.研究表明,随着硼酸丙三醇聚酯的添加,电解液的电导率较未加的高,而闪火电压没有明显的变化.即硼酸丙三醇聚酯能提高该工作电解液的电导率,而对闪火电压的影响较小.%Use the orthogonal experiment method to the preparation of a high voltage capacitor work electrolyte formula, Boric acid glycerin polyester have been added to this work electrolyte. The studies showed that the conductivity of the electrolyte had improved greatly, with the addition of boric acid glycerol polyester, while no significant change in the voltage of the flash fire. It means that, boric acid glycerol polyester can improve the conductivity of the electrolyte of the working, and less impact on the voltage of the flash fire.

  8. Electrically tuned super-capacitors

    CERN Document Server

    Chowdhury, Tazima S

    2015-01-01

    Fast charging and discharging of large amounts of electrical energy make super-capacitors ideal for short-term energy storage [1-5]. In its simplest form, the super-capacitor is an electrolytic capacitor made of an anode and a cathode immersed in an electrolyte. As for an ordinary capacitor, minimizing the charge separation distance and increasing the electrode area increase capacitance. In super-capacitors, charge separation is of nano-meter scale at each of the electrode interface (the Helmholtz double layer). Making the electrodes porous increases their effective surface area [6-8]. A separating layer between the anode and the cathode electrodes is used to minimize unintentional electrical discharge (Figure 1). Here we show how to increase the capacitance of super-capacitors by more than 45 percent when modifying the otherwise passive separator layer into an active diode-like structure. Active control of super-capacitors may increase their efficiency during charge and discharge cycles. Controlling ion flow...

  9. Preparation and Electrochemical Characterization of Aluminium Liquid Battery Cells With Two Different Electrolytes (NaCl-BaCl2-AlF3-NaF and LiF-AlF3-BaF2).

    Science.gov (United States)

    Napast, Viktor; Moškon, Jože; Homšak, Marko; Petek, Aljana; Gaberšček, Miran

    2015-01-01

    The possibility of preparation of operating rechargeable liquid battery cells based on aluminium and its alloys is systematically checked. In all cases we started from aluminium as the negative electrode whereas as the positive electrode three different metals were tested: Pb, Bi and Sn. Two types of electrolytes were selected: Na(3)AlF(6) -AlF(3) - BaCl(2) - NaCl and Li(3)AlF(3) - BaF(2). We show that some of these combinations allowed efficient separation of individual liquid layers. The cells exhibited expected voltages, relatively high current densities and could be charged and discharged several times. The capacities were relatively low (120 mAh in the case of Al-Pb system), mostly due to unoptimised cell construction. Improvements in various directions are possible, especially by hermetically sealing the cells thus preventing salt evaporation. Similarly, solubility of aluminium in alloys can be increased by optimising the composition of positive electrode. PMID:26680707

  10. New Niobium Capacitors with Stable Electrical Parameters

    OpenAIRE

    Lohwasser, W.; M. Stenzel; Zillgen, H.

    2002-01-01

    The replacement of the anode material in tantalum capacitors by a new generation of high CV niobium powders offers the possibility to get an economical alternative to tantalum for a wide range of applications. Due to the high CV potential of niobium powder there is also an alternative to low voltage aluminum electrolytic capacitors. We developed a new niobium capacitor which shows stable electrical values. By optimizing the structure of the dielectric and the cathodic layers as well as the pr...

  11. Pyrrole-Based Conductive Polymers For Capacitors

    Science.gov (United States)

    Nagasubramanian, Ganesan; Di Stefano, Salvador

    1994-01-01

    Polypyrrole films containing various dopant anions exhibit superior capacitance characteristics. Used with nonaqueous electrolytes. Candidate for use in advanced electrochemical double-layer capacitors capable of storing electrical energy at high densities. Capacitors made of these films used in automobiles and pulsed power supplies.

  12. Effects of different electrolytes on the electrochemical and dynamic behavior of electric double layer capacitors based on a porous silicon carbide electrode.

    Science.gov (United States)

    Kim, Myeongjin; Oh, Ilgeun; Kim, Jooheon

    2015-07-01

    Controlling the structure and morphology of porous electrode materials is an effective strategy for realizing a high surface area and efficient paths for ion diffusion. Moreover, excellent electrical conductivity can significantly decrease the internal resistance of an electrode by the formation of a conductive network and facilitate the application of electrostatic charges, which favors the accumulation of an electrical double layer. In light of these facts, we demonstrate the fabrication of β-polytype porous silicon carbide spheres (PSiCS) with a hierarchical pore structure in which micro- and mesopores are interconnected with a mesoporous network. Further, to investigate the effects of the electrolyte on the electrochemical and dynamic behavior, two-electrode symmetrical supercapacitors based on the PSiCS electrode with an aqueous electrolyte (1 M potassium chloride, KCl) or an organic electrolyte (1 M tetraethylammonium tetrafluoroborate in acetonitrile, TEABF4/AN) were assembled. The symmetrical supercapacitor based on the PSiCS electrode with the aqueous electrolyte exhibited a high charge-storage capacity with a specific capacitance of 82.9 F g(-1) at a scan rate of 5 mV s(-1), which is much higher than that obtained using the organic electrolyte (60.3 F g(-1) at a scan rate of 5 mV s(-1)). However, the energy density of the organic electrolyte system was 102.59 W h kg(-1) at a scan rate of 5 mV s(-1), which is greatly superior to that of the aqueous electrolyte system (energy density: 29.47 W h kg(-1)) owing to the wide cell operating voltage range. PMID:26051533

  13. 无电解电容的填谷式SEPIC-derived LED照明驱动%Electrolytic capacitor-less SEPIC-derived LED driver with valley fill cell

    Institute of Scientific and Technical Information of China (English)

    马红波; 郑聪; 余文松; 冯全源

    2012-01-01

    The typical power supply for lighting-emitting diode (LED) lighting employs an electrolytic capacitor as the storage capacitor, which increases the size of LED drivers, reduces the power density, and shortens the lifespan, thus hampering the development of the entire LED lighting system. Additionally, the conventional single-ended primary inductance converter (SEPIC) has to employ electrolytic capacitors to meet the low output ripple requirement. Therefore, a SEPIC type ac/dc topology is proposed by introducing the operation mode of special discontinuous current mode (DCM) and inserting the valley fill cell in SEPIC. Furthermore, a prototype with 50 W power level was built to verify the feasibility of the presented converter-based LED lamp driver. The experimental results show that the measured efficiency is exceeding 90% and power factor is higher than 0. 96 under the 120 V input and full load condition.%针对传统LED照明驱动中普遍采用大电容量电解电容,造成LED驱动寿命较短、体积庞大、功率密度较低的问题,在分析传统AC/DC LED驱动拓扑的基础上,通过引入电流断续模式(DCM)和插入填谷电路单元,提出一种SEPIC型AC/DC变换拓扑,解决传统SEPIC AC/DC LED照明驱动无法消除电解电容的问题.并以此电路为基础,在实验室开发一款50 W LED照明驱动样机.测试结果表明,该样机在消除电解电容的同时,实现了高功率因数和高效率.在120 V输入下,满载功率因数和效率分别大于0.96和90%.

  14. Influence of the iodide/iodine redox system on the self-discharge of AC/AC electrochemical capacitors in salt aqueous electrolyte

    Directory of Open Access Journals (Sweden)

    Qamar Abbas

    2015-12-01

    Full Text Available Self-discharge (SD of AC/AC (AC=activated carbon electrochemical capacitors in aqueous solutions of lithium sulfate (Li2SO4 and lithium sulfate+iodide salts (Li2SO4+KI or Li2SO4+LiI was investigated at 24 °C and −40 °C after cell potential hold at values from 1 V to 1.6 V. At 24 °C, the cells exhibit lower SD in Li2SO4+KI than in Li2SO4, owing to the redox activity of the 2I−/I2 system which drives the positive AC electrode to operate in narrow potential range and display lower potential drop than in Li2SO4. At −40°C, the capacitors exhibit comparable and reduced SD both in Li2SO4+LiI and Li2SO4, whatever the holding cell potential. Three-electrode cell experiments demonstrate that, at −40 °C, hydrogen chemisorption is thermodynamically unfavored under negative polarization, while the activity of the 2I−/I2 redox system under positive polarization is only slightly reduced. As a consequence, the AC/AC cells in Li2SO4 exhibit a typical electrical double-layer performance at −40°C, whereas they still behave as hybrid ones in Li2SO4+LiI, with twice higher capacitance than in Li2SO4. The (Ui-Ut vs t1/2 plots demonstrate that SD is essentially controlled by diffusion at −40°C, suggesting that it originates from bulkier hydrated ions. Overall, in the investigated temperature range, the AC/AC capacitors in Li2SO4+LiI demonstrate low self-discharge and high capacitance, while being able to operate up to 1.6 V.

  15. Preparation and Molten Salt as Performances of Room Electrolyte carbon Capacitor Based on Trifluoroacetamide n CarbonLiPF6 and

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A novel room moRen salt with an eutectic temperature of about -62℃ is prepared using LiPF6 and trifluoroacetamide as precursors. And then its performance is evaluated in carbon-carbon electrochemical double layerdifferent molar ratios are characterized and then the liquid-solid phase diagram is presented. The electrochemical performance tests show that the as-prepared LiPF6/trifluoroacetamide molten salt is a promising electrolyte candidate for carboncarbon EDLCs.

  16. Rotary capacitor

    CERN Multimedia

    1971-01-01

    The rotating wheel of the rotary capacitor representing the most critical part of the new radio-frequency system of the synchro-cyclotron. The three rows of teeth on the circumference of the wheel pass between four rows of stator blades with a minimum clearance of 1 mm at a velocity of 1700 rev/min.

  17. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  18. Na3AlF6-K3AlF6-AlF3电解质体系铝溶解度的研究%Solubility of Aluminium in Na3AlF6-K3AlF6-AlF3 Electrolyte System

    Institute of Scientific and Technical Information of China (English)

    袁敏娟; 阚素荣; 孟庆勇; 张向军; 丁海洋; 卢世刚

    2011-01-01

    The dissolubility of aluminium in Na3AIF6-K3AIF6-AIF3 electmlyte system was studied by mass difference methods.The dissoluble amount of aluminium in different times was measured, and found that aluminium was saturated 3 h later.Influence factors,such as liquidus temperature, superheat degree, electrolyte components, and the depth of molten salt were focused.The results showed that the solubility of aluminium ranged from 0.05% to 0.50% for electrolyte system with liquidus temperature of 670 ~ 900 ℃. For electrolyte system with lower liquidus temperatures, the solubility of aluminium was lower too, vice versa.For a single system, the increase of superheat degree would increase the solubility of aluminum.The effect of electrolyte composition on the solubility of aluminum as follows; Increasing KR value would reduce the solubility of aluminium.However, as to the system KR = 30, AlF3 = 26% ( mass fraction) , did not meet above regulations.Besides, reduced electrolyte amount, lowered the depth of molten salt, and led to the volatilization loss of aluminium.In short, the factors aHecting the dissolubility of aluminium were various.To change electrolyte components,reduce liquidus temperature and volatilization of aluminum would resitrain aluminium loss.%采用质量差法研究了不通电时Na3AlF6-K3AlF6-AlF3体系中铝的溶解度.实验首先测定了不同时间内铝溶解的情况,并确定铝饱和溶解的时间为3h.主要研究了初晶温度、过热度、电解质组成,以及电解质融化之后的熔盐深度对铝溶解度的影响.实验选用刚玉坩埚盛装电解质.测试结果表明,初晶温度为670-900℃的电解质,铝的溶解度为0.05%-0.50%(质量分数).在初晶温度较低的电解质中,铝的溶解度较低,反之较高.对于某个特定体系来说,提高过热度会增加铝的溶解度.电解质的组成对铝溶解度的影响是:增大KR,可以降低铝的溶解度;AlF3含量增加,铝溶解度降低;对于KR=30,AlF3

  19. Prognostic Techniques for Capacitor Degradation and Health Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper discusses our initial efforts in constructing physics of failure models for electrolytic capacitors subjected to electrical stressors in DC-DC power...

  20. Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte.

    Science.gov (United States)

    Sundaram, Manickam Minakshi; Watcharatharapong, Teeraphat; Chakraborty, Sudip; Ahuja, Rajeev; Duraisamy, Shanmughasundaram; Rao, Penki Tirupathi; Munichandraiah, Nookala

    2015-12-14

    Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn(1/3)Co(1/3)Ni(1/3)PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a non-aqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.

  1. New Investment Rush Brings up Concern for China’s Aluminium Industry

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> Although the blind construction of the electro-lytic aluminium industry has been restricted inChina this year,an investment rush in aluminaand aluminium processing has started,whichhas brought up new concern for the industry.Whether this will follow the route of the much-heated electrolytic aluminium industry remainsa question to be answered.According to someindustry analysts,under the pressure of themacro control measures of the State on theelectrolytic aluminium industry expansion,some producers of aluminium have shiftedtheir interests to the upper and lower fields soas to raise their competitiveness over the mar-

  2. Protection of MOS capacitors during anodic bonding

    Science.gov (United States)

    Schjølberg-Henriksen, K.; Plaza, J. A.; Rafí, J. M.; Esteve, J.; Campabadal, F.; Santander, J.; Jensen, G. U.; Hanneborg, A.

    2002-07-01

    We have investigated the electrical damage by anodic bonding on CMOS-quality gate oxide and methods to prevent this damage. n-type and p-type MOS capacitors were characterized by quasi-static and high-frequency CV-curves before and after anodic bonding. Capacitors that were bonded to a Pyrex wafer with 10 μm deep cavities enclosing the capacitors exhibited increased leakage current and interface trap density after bonding. Two different methods were successful in protecting the capacitors from such damage. Our first approach was to increase the cavity depth from 10 μm to 50 μm, thus reducing the electric field across the gate oxide during bonding from approximately 2 × 105 V cm-1 to 4 × 104 V cm-1. The second protection method was to coat the inside of a 10 μm deep Pyrex glass cavity with aluminium, forming a Faraday cage that removed the electric field across the cavity during anodic bonding. Both methods resulted in capacitors with decreased interface trap density and unchanged leakage current after bonding. No change in effective oxide charge or mobile ion contamination was observed on any of the capacitors in the study.

  3. Analysis and Study of New Type Cradle Frame of Aluminium Electrolytic Cell%新型铝电解槽摇篮架的分析与研究

    Institute of Scientific and Technical Information of China (English)

    陶力

    2015-01-01

    This article introduces the structure of a new type of aluminum electrolytic cell cradle frame, and analyzes the new structure by finite element software, then compares the results in detail, finds the advantage of new type cradle frame, provides the reference for the development of cradle frame technolo-gy.%文章引入了一种新型铝电解槽摇篮架的结构形式,通过运用有限元软件对该种新型摇篮架结构和传统摇篮架结构同时进行应力分析,并且将分析结果进行详细的比较,从而找出新型摇篮架结构所具有的优点,为今后电解槽摇篮架技术的发展提供了参考.

  4. Electrolytic dissolution of aluminium alloys (chip form) and mullet-element determination by inductively coupled plasma optical emission spectrometry (ICP-OES)

    International Nuclear Information System (INIS)

    Several aluminum alloys with different chip's size were dissolved using aqua regia (HCl:HN03,3:1). The residues of the dissolution procedure were either rejected or used in silicon volatilization with hydrofluoric acid before determination of Fe, Cu, Mn, Mg, Cr, Ni, Zn, Pb, Sn, Ti and Zr by ICP-OES. The influence caused by crescent amounts of aluminum in the determination of other elements and the probable spectral interference by Cu in determination of Zn (with or without electrolytic separation of Cu) was evaluated. The electrolytic dissolution of aluminum alloys was performed by pressing chips against a platinum electrode for the electrolysis to occur, so that way the chips behaved as the anode. A tube (body of syringe of 2.5 mL) with perforations around the open base was used to contain the sample and Pt electrode. The alloy was placed on synthetic wool (perlon) in this tube. An acrylic dowel with a platinum wire across its interior was fixed in the superior part a tube with Teflon film, with an orifice through which the electrolytic solution flowed (HNO3 1 mol L-1; 4.5 mL min-1). A platinum dish was fixed at the inferior extremity of the platinum wire to press the sample. The solution came out through the inferior orifices of the tube to a flask, from where it was again captured (with a peristaltic pump) to go into the superior part of the tube. In this flask, a Pt wire cathode was also placed. A current of 0.6 A and ten minutes of electrolysis provided good results. Due to the partial dissolution, the knowledge of percentages of previous elements analyzed after total dissolution, or using certified reference material are necessary. The results were normalized by knowledge percentages. The calculations were made by the ratio between the concentration of the element determined, with the determined concentration of aluminum; the ratio between concentration of the element and the sum of the concentrations of the elements determined, including Al; the ratio

  5. Advanced Wet Tantalum Capacitors: Design, Specifications and Performance

    Science.gov (United States)

    Teverovsky, Alexander

    2016-01-01

    Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  6. Room-Temperature Ionic Liquids for Electrochemical Capacitors

    Science.gov (United States)

    Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.; Kim, K.

    2009-01-01

    A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

  7. Automotive Aluminium Recycling

    Energy Technology Data Exchange (ETDEWEB)

    Gelas, B. des

    2000-07-01

    This paper aims at providing an overview on the contribution of aluminium recycling in the supply of new aluminium for automotive applications. Based on a presentation on how the global European automotive aluminium supply requirements are met, an analysis of the present and future contribution of automotive aluminium recycling is first presented. Current situation and future developments for automotive aluminium recycling practices are then commented, together with an outline on design principles for easier aluminium recycling. (orig.)

  8. Research on Interactive Control of Electrolytic Aluminum Load and Wind Power Output

    Directory of Open Access Journals (Sweden)

    Ge Simin

    2016-01-01

    Full Text Available With the large-scale wind power generation connected to Gansu power grid, electrolytic aluminium load has reached a certain scale at the same time, the vast majority of electrolytic aluminium load directly connects to power grid using 330kV transmission line. According to the physical characteristics and historical data, the continuous adjustment characteristic of electrolytic aluminium load is analysed. Based on this characteristic, a mathematical model for the electrolytic aluminium load is established. Aiming at reducing power network loss and wind power consumption, an optimization model based on the load regulation characteristics of electrolytic aluminium is constructed, which is optimized by particle swarm optimization algorithm. Based on the case data of Gansu power grid, the optimal method based on the load regulation characteristics of electrolytic aluminium is analysed and its feasibility is verified.

  9. Accelerated Aging in Electrolytic Capacitors for Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this work is the analysis of different degradation phenomena based on thermal overstress and electrical overstress accelerated aging systems and the...

  10. Aluminium in human sweat.

    Science.gov (United States)

    Minshall, Clare; Nadal, Jodie; Exley, Christopher

    2014-01-01

    It is of burgeoning importance that the human body burden of aluminium is understood and is measured. There are surprisingly few data to describe human excretion of systemic aluminium and almost no reliable data which relate to aluminium in sweat. We have measured the aluminium content of sweat in 20 healthy volunteers following mild exercise. The concentration of aluminium ranged from 329 to 5329μg/L. These data equate to a daily excretion of between 234 and 7192μg aluminium and they strongly suggest that perspiration is the major route of excretion of systemic aluminium in humans.

  11. Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products

    Energy Technology Data Exchange (ETDEWEB)

    Kurzweil, P.; Chwistek, M. [University of Applied Sciences, Kaiser-Wilhelm-Ring 23, D-92224 Amberg (Germany)

    2008-02-01

    The fundamental aging mechanisms in double-layer capacitors based on alkylammonium electrolytes in acetonitrile were clarified for the first time. After abusive testing at cell voltages above 4 V, ultracapacitors cast out a crystalline mass of residual electrolyte, organic acids, acetamide, aromatics, and polymer compounds. The mixture could be reproduced by electrolysis. The decomposition products of active carbon electrodes and electrolyte solution after a heat treatment at 70 C were identified by infrared and ultraviolet spectroscopy, liquid and headspace GC-MS, thermogravimetric analysis, and X-ray diffraction. The alkylammonium cation is destroyed by the elimination of ethene. The fluoroborate anion works as source of fluoride and hydrogenfluoride, and boric acid derivates. Acetonitrile forms acetamide, acetic and fluoroacetic acid, and derivates thereof. Due to the catalytic activity of the electrode, heterocyclic compounds are generated in the liquid phase. The etched aluminium support under the active carbon layer is locally destroyed by fluorination. Exploring novel electrolytes, ionic liquids were characterized by impedance spectroscopy. (author)

  12. Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products

    Science.gov (United States)

    Kurzweil, P.; Chwistek, M.

    The fundamental aging mechanisms in double-layer capacitors based on alkylammonium electrolytes in acetonitrile were clarified for the first time. After abusive testing at cell voltages above 4 V, ultracapacitors cast out a crystalline mass of residual electrolyte, organic acids, acetamide, aromatics, and polymer compounds. The mixture could be reproduced by electrolysis. The decomposition products of active carbon electrodes and electrolyte solution after a heat treatment at 70 °C were identified by infrared and ultraviolet spectroscopy, liquid and headspace GC-MS, thermogravimetric analysis, and X-ray diffraction. The alkylammonium cation is destroyed by the elimination of ethene. The fluoroborate anion works as source of fluoride and hydrogenfluoride, and boric acid derivates. Acetonitrile forms acetamide, acetic and fluoroacetic acid, and derivates thereof. Due to the catalytic activity of the electrode, heterocyclic compounds are generated in the liquid phase. The etched aluminium support under the active carbon layer is locally destroyed by fluorination. Exploring novel electrolytes, ionic liquids were characterized by impedance spectroscopy.

  13. Aluminium structural elements

    OpenAIRE

    Švent, Nejc

    2016-01-01

    This thesis focuses on the structural analysis of aluminium structural members in accordance with the SIST EN 1999-1-1 standard. In the introduction, historical development of aluminium is summarized, as well as the processes of structural aluminium production and manufacture. Predominantly, resistance control checks of aluminium structural members are covered, with special attention to the major contrasts between aluminium and steel structural analyses. Finally, fundamental examples of resis...

  14. Étude par RMN à Haute Température de liquides fluorés dans le système cryolithe/aluminium

    OpenAIRE

    Nuta, I.

    2005-01-01

    Aluminium is produced by the Hall Heroult process, by reducing electrolytically the alumina (Al2O3) at metal aluminium and gaseous oxygen into an electrolyte consisting mainly of cryolithe (Na3AlF6) at ≈1000°C. As liquid aluminium is formed, being heavier than the bath, it is deposed on the bottom of the cell (the cathode) and, can induce secondary reactions negative for the process efficiency as aluminium dissolution at the Al/electrolyte interface and its transfer into electrolyte. Because ...

  15. Carbon-Based Fibrous EDLC Capacitors and Supercapacitors

    OpenAIRE

    Lekakou, C.; O. Moudam; Markoulidis, F; Andrews, T.; J. F. Watts; Reed, G.T.

    2011-01-01

    This paper investigates electrochemical double-layer capacitors (EDLCs) including two alternative types of carbon-based fibrous electrodes, a carbon fibre woven fabric (CWF) and a multiwall carbon nanotube (CNT) electrode, as well as hybrid CWF-CNT electrodes. Two types of separator membranes were also considered. An organic gel electrolyte PEO-LiCIO4-EC-THF was used to maintain a high working voltage. The capacitor cells were tested in cyclic voltammetry, charge-discharge, and impedance test...

  16. Qimingxing Aluminium of Jinma Group Ceases Production

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>Jinma Group announced on December 23 that its subsidiary Meishan Qimingxing Aluminium decided to cease production starting from De- cember 23,and that the company will keep a close eye to the market and will resume pro- duction once the market bounces back.In 2007, Jinma Group took over Meishan Qimingxing’s 40% share by 112 million yuan to enter the aluminium industry.Meishan Qimingxing’s assets include a 125,000-ton production line of aluminium and 168 300KA electrolytic baths. Affected by the state’s macro-regulation policy in early years,the company’s profit fell short of estimates.Net profit of Meishan Qimingxing in 2007 was 10.65 million yuan.

  17. Carbons, ionic liquids and quinones for electrochemical capacitors

    Science.gov (United States)

    Diaz, Raul; Doherty, Andrew

    2016-04-01

    Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL) capacitance and energy density. The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  18. Carbons, ionic liquids and quinones for electrochemical capacitors

    Directory of Open Access Journals (Sweden)

    Raul eDiaz

    2016-04-01

    Full Text Available Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL capacitance and energy density.The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  19. Physics of Failure Models for Capacitor Degradation in DC-DC Converters

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a combined energy-based model with an empirical physics of failure model for degradation analysis and prognosis of electrolytic capacitors in...

  20. An Adjustable-speed System With Single-phase AC Input Based on Electrolytic Capacitor-less Tapped-inductor Single-stage Boost Inverters%单相交流输入的无电解电容抽头电感单级升压逆变器在交流调速系统中的应用

    Institute of Scientific and Technical Information of China (English)

    周玉斐; 黄文新; 赵健伍

    2014-01-01

    研究将无电解电容的单级升压逆变技术应用于变频调速系统。采用的抽头电感单级升压逆变器(tapped- inductor single-stage boost inverter,TISSBI)包含由1个抽头电感和2个二极管构成的无源网络,通过调节直通占空比和电感抽头的位置,能够实现单级升降压功能。将无电解电容的TISSBI应用于单相输入的变频调速系统,实现抗电网电压跌落、母线脉动抑制和提高输入功率因数的功能。用实验验证了理论分析方法的可行性。%This paper presented an adjustable-speed system with single-phase AC input based on the electrolytic capacitor-less single-stage boost inverter with tapped-inductor. The tapped-inductor single-stage boost inverter (TISSBI) includes an impedance network with one tapped inductor and two diodes, and it can realize buck or boost performance. In order to resist the grid voltage sags, output low frequency ripple decreasing, and input power factor improvement, this paper applied the electrolytic capacitor-less TISSBI to adjustable-speed system with single-phase AC input. Experimental results were carried out to verify the theoretical analysis.

  1. 片式钽电解电容器阴极石墨涂层材料的被覆条件对其电性参数的影响%Chip tantalum electrolytic capacitors Cathode Graphite coating material Coating conditions Electrical parameters Affect

    Institute of Scientific and Technical Information of China (English)

    李福成

    2012-01-01

    In this paper is Graphite material Tantalum electrolytic capacitors The manganese dioxide cathode layer Coating use as background Respectively discuss Different graphite solid content of the sample data capacity contrast Curing temperature, etc. Under the experimental conditions Graphite material Tantalum electrolytic capacitors Electrical parameters of the contrast between the impact The test results show that: Graphite solids content 5.0 ± X% 、 Curing temperature 为 165 ±y℃/45min is Graphite as the cathode material used in the top coating process conditions Sample electrical parameters improved significantly And the use of the process as a cathode material The graphite solution PH value size is very important and Affect Tremendous PH value of about 11 to 13 use the ideal parameters%本文主要以石墨材料在钽电解电容器二氧化锰阴极层上的被覆使用为背景,分别讨论了在不同石墨材料的固体含量、固化温度等实验条件下对钽电解电容器样品电性参数之间的对比影响,试验结果表明:石墨固体含量为5.0±X%、固化温度为165±y℃/45 min时为石墨作为阴极材料使用的最佳被覆工艺条件,样品电性参数明显改善.而作为阴极材料使用的过程中,发现石墨溶液的PH值大小非常重要,对样品电性的影响很大,当PH值为11 ~13左右时为理想使用参数.

  2. Single Capacitor Paradox

    CERN Document Server

    Pankovic, Vladan

    2009-01-01

    In this work single capacitor paradox (a variation of the remarkable two capacitor paradox) is considered. Simply speaking in an ideal (without any electrical resistance and inductivity) electrical circuit with single charged capacitor and switch, by transition from initial, open state (switch in OFF position) in the final, closed state (switch in ON position), there is a total loss of the initial energy of the electrical field in condenser. Given energy loss can be simply explained without any dissipative effects (Joule heating or electromagnetic waves emission) by work of the electrical field by movement of the charge from one in the other plate of the capacitor. (Two capacitors paradox can be, obviously, explained in the analogous way.)

  3. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  4. Sustainable Aluminium Systems

    Directory of Open Access Journals (Sweden)

    Sergio R. Ermolli

    2010-09-01

    Full Text Available In the present paper, an analytical presentation of some popular aluminium systems that contribute to sustainability of structures is presented. Special emphasis has been given to the properties of aluminium, while the influence of these systems in the overall performance of the structure regarding environment and economy is described. In particular, characteristics of aluminium elements such as high reflectivity and recyclability and their role in life cycle analysis (LCA are analyzed. The connections between energy efficiency and conservation of buildings and aluminium application are also discussed. Building applications such as curtain walls, window frames and facade sheets are presented and thoroughly investigated, considering their environmental and economic aspects. Furthermore, many innovative techniques that use aluminium elements in collaboration with other systems in order to produce renewable energy, such as solar panels and photovoltaics, are introduced. Finally, environmental innovations such as optimized ventilation mechanisms and light and shade management systems based on aluminium members are presented.

  5. Capacitor discharge engineering

    CERN Document Server

    Früngel, Frank B A

    1976-01-01

    High Speed Pulse Technology, Volume III: Capacitor Discharge Engineering covers the production and practical application of capacitor dischargers for the generation and utilization of high speed pulsed of energy in different forms. This nine-chapter volume discusses the principles of electric current, voltage, X-rays, gamma rays, heat, beams of electrons, neutrons and ions, magnetic fields, sound, and shock waves in gases and liquids. Considerable chapters consider the applications of capacitor discharges, such as impulse hardening of steel, ultrapulse welding of precision parts, X-ray flash t

  6. Nanocurrent oscillator indefinitely powered by a capacitor battery

    CERN Document Server

    Ragni, Luigi

    2012-01-01

    Some electrolytic capacitors show dielectric behaviour that can not be entirely explained by the well known long lasting relaxation. Extra charges able to generate a useful conduction current can be detected for an indefinite time. A squarewave oscillator based on MOSFET CMOS technology and requiring less than 2 nW was powered for 80 days at 25 {\\deg}C by a 58.2 mF capacitor battery, without voltage decrease during the last 53 days of observation. The battery consisted of three series of 16 parallel, 15 years aged, capacitors with DC capacitance of 10.9 mF. Capacitors so old, stored without voltage application, were affected by degradation and thinning of the alumina layer that could promote tunnelling of the charge. The main purpose of the present study is to stimulate further investigations aimed at confirming or disputing the observed phenomenon and, if necessary, at shedding light on its physical mechanisms.

  7. Electric Double-layer Capacitor Based on Activated Carbon Material

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this study electric double-layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant-current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate ofI=0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω.cm2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.

  8. Soft capacitor fibers for electronic textiles

    Science.gov (United States)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-09-01

    A highly flexible, conductive polymer-based fiber with high electric capacitance is reported. The fiber is fabricated using fiber drawing method, where a multimaterial macroscopic preform is drawn into a submillimeter capacitor microstructured fiber. A typical measured capacitance per unit length of our fibers is 60-100 nF/m which is about 3 orders magnitude higher than that of a coaxial cable of a comparable diameter. The fiber has a transverse resistivity of 5 kΩ m. Softness, lightweight, absence of liquid electrolyte, and ease of scalability to large production volumes make the fibers interesting for various smart textile applications.

  9. Preparation and Performances of Room Molten Salt as Electrolyte in Carbon-carbon Capacitor Based on LiPFe and Trifluoroacetamide%LiPF6/三氟乙酰胺室温熔盐的制备及在碳-碳电容器中的性能

    Institute of Scientific and Technical Information of China (English)

    左晓希; 李奇; 刘建生; 肖信; 范成杰; 南俊民

    2012-01-01

    利用LiPF6和三氟乙酰胺为前驱物,制备了低共熔温度约为-62℃的室温熔盐,并测试了该熔盐作为碳-碳电化学电容器(EDLCs)电解液时的性能。其中,使用差示扫描量热法(DSC)和红外光谱法(FTIR)分析了不同LiPF6和三氟乙酰胺配比熔盐的热稳定性,拟制了该二元组分的共熔相图,认为LiPF6和三氟乙酰胺极性基团间的氢键作用促成了室温熔盐的形成。循环伏安(CV)、交流阻抗(EIS)和电导等测定结果表明,所制备的LiPF6/三氟乙酰胺电解液的室温电导率为1.30mS/cm,电化学窗口大于5.6V,大于60℃的使用温度,作为电解液可满足碳-碳EDLCs的使用要求。%A novel room molten salt with an eutectic temperature of about -62℃ is prepared using LiPF6 and trifluoroacetamide as precursors. And then its performances are evaluated in carbon-carbon electrochemical double layer capacitor (EDLC) as electrolyte. The thermal properties of the complex electrolyte with different molar ratios are characterized and then the liquid-solid phase diagram is presented by using differential scanning calorimeter (DSC) and Fourier transform infrared spectroscopy (FTIR). The hydrogen bonding interaction between LiPF6 and trifluoroacetamide molecules is attributed to the formation of the as-prepared molten salt. In addition, the results of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and conductance tests show that the as-prepared LiPF6/trifluoroacetamide electrolyte has a maximum conductance at room temperature, i.e. 1.30 mS/cm, a stable electrochemical window of ca. 5.6 V, an applicable temperature of more than 60℃, suggesting it is a promising electrolyte candidate for carbon-carbon EDLCs.

  10. Rows of Dislocation Loops in Aluminium Irradiated by Aluminium Ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.;

    1967-01-01

    Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along <110 > directions. ©1967 The American Institute of Physics......Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along directions. ©1967 The American Institute of Physics...

  11. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  12. A Humidity-Dependent Lifetime Derating Factor for DC Film Capacitors

    DEFF Research Database (Denmark)

    Wang, Huai; Reigosa, Paula Diaz; Blaabjerg, Frede

    2015-01-01

    accelerated testing of film capacitors under different humidity conditions, enabling a more justified lifetime prediction of film capacitors for DC-link applications under specific climatic environments. The analysis of the testing results and the detailed discussion on the derating factor with different......Film capacitors are widely assumed to have superior reliability performance than Aluminum electrolytic capacitors in DC-link design of power electronic converters. However, the assumption needs to be critically judged especially for applications under high humidity environments. This paper proposes...... a humidity-dependent lifetime derating factor for a type of plastic-boxed metallized DC film capacitors. It overcomes the limitation that the humidity impact is not considered in the state-of-the-art DC film capacitor lifetime models. The lifetime derating factor is obtained based on a total of 8,700 hours...

  13. Charge fluctuations in nano-scale capacitors

    CERN Document Server

    Limmer, David T; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-01-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers an efficient and accurate route to the differential capacitance and is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes, and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  14. Buffering effects on electrograining of aluminium in nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Koroleva, E.V. [Corrosion and Protection Centre, UMIST, P.O. Box 88, Manchester M60 1QD (United Kingdom)]. E-mail: e.koroleva@umist.ac.uk; Thompson, G.E. [Corrosion and Protection Centre, UMIST, P.O. Box 88, Manchester M60 1QD (United Kingdom); Skeldon, P. [Corrosion and Protection Centre, UMIST, P.O. Box 88, Manchester M60 1QD (United Kingdom); Hollrigl, G. [Alcan Technology and Management Ltd., Bad. Bahnhofstrasse 16, CH-8212 Neuhausen (Switzerland); Lockwood, S. [Bridgnorth Aluminium Limited, Stourbridge Road, Bridgnorth WV15 6AU (United Kingdom); Smith, G. [Bridgnorth Aluminium Limited, Stourbridge Road, Bridgnorth WV15 6AU (United Kingdom)

    2005-09-01

    Electrograining of a binary Al-Si alloy has been undertaken in nitric acid based electrolytes, with the resultant surfaces examined by scanning and transmission electron microscopies. Depending on electrograining conditions, the pit appearance varies from hemispherical to large lateral pits, with the latter favoured in relatively acidic electrolytes. The conditions prevailing in the pit have been explored through use of aluminium ion additions to the nitric acid electrolyte as well as additions of species which influence the precipitation and dissolution of aluminium hydroxide. These confirm that control of the pit solution pH, through hydroxide generation, as a result of the selected electrograining conditions and consequent anodic and cathodic polarisation, enables tailoring of the resultant electrograined surface appearance.

  15. The comparison of possibilities at using of different electrolytes in the process of anodizing aluminum

    Directory of Open Access Journals (Sweden)

    M. Gombar

    2014-01-01

    Full Text Available The contribution researches and solves the suitability of utilize of electrolyte, consisting of the oxalic acid, boric acid, sodium chloride and aluminium cations in the process of anodizing aluminium in operating conditions of electrolyte T = 22 °C, t = time of oxidation and the size of at least 210 an applied voltage U = 12 V. The appropriate use of the electrolyte is judged by the thickness of the anodic aluminium oxide layer (AAO formed on the basis of the monitoring and the resulting quality of the sample surface.

  16. Capacitor discharge pulse analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  17. Recovery in aluminium

    DEFF Research Database (Denmark)

    Gundlach, Carsten

    2006-01-01

    In the present thesis the development of a unique experimental method for volume characterisation of individual embedded crystallites down to a radius of 150 nm is presented. This method is applied to in-situ studies of recovery in aluminium. The method is an extension of 3DXRD microscopy, an X...... are represented as strings. To identify the strings a combination of a 5D connected component type algorithm and multi-peak fitting was found to be superior. The first use of the method was a study of recovery of a deformed aluminium alloy (AA1050). The aluminium alloy was deformed by cold rolling to a thickness...

  18. Promethium-147 capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskiy, A.; Yakubova, G.; Lin, Q.; Chan, D.; Yousaf, S.M. [TRACE Photonics Inc., 1680 West Polk Avenue, Charleston, Illinois 61920 (United States); Bower, K. [TRACE Photonics Inc., 1680 West Polk Avenue, Charleston, Illinois 61920 (United States)], E-mail: kbower@tracephotonics.com; Robertson, J.D.; Garnov, A.; Meier, D. [Department of Chemistry and University of Missouri Research Reactor, 1513 Reactor Park Drive, Columbia, Missouri 65211 (United States)

    2009-06-15

    Beta particle surface fluxes for tritium, Ni-63, Pm-147, and Sr-90 sources were calculated in this work. High current density was experimentally achieved from Pm-147 oxide in silica-titana glass. A 96 GBq (2.6 Ci) Pm-147 4{pi}-source with flux efficiency greater than 50% was used for constructing a direct charge capacitor with a polyimide coated collector and vacuum as electrical insulation. The capacitor connected to high resistance (T{omega}) loads produced up to 35 kV. Overall conversion efficiency was over 10% (on optimal load)

  19. Engineering electrochemical capacitor applications

    Science.gov (United States)

    Miller, John R.

    2016-09-01

    Electrochemical capacitor (EC) applications have broadened tremendously since EC energy storage devices were introduced in 1978. Then typical applications operated below 10 V at power levels below 1 W. Today many EC applications operate at voltages approaching 1000 V at power levels above 100 kW. This paper briefly reviews EC energy storage technology, shows representative applications using EC storage, and describes engineering approaches to design EC storage systems. Comparisons are made among storage systems designed to meet the same application power requirement but using different commercial electrochemical capacitor products.

  20. The buffer effect in neutral electrolyte supercapacitors

    DEFF Research Database (Denmark)

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading...... to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact...

  1. Limiting factors for carbon based chemical double layer capacitors

    Science.gov (United States)

    Rose, M. Frank; Johnson, C.; Owens, T.; Stevens, B.

    1993-01-01

    The Chemical Double Layer (CDL) capacitor improves energy storage density dramatically when compared with conventional electrolytic capacitors. When compared to batteries, the CDL Capacitor is much less energy dense; however, the power density is orders of magnitude better. As a result, CDL-battery combinations present an interesting pulse power system with many potential applications. Due to the nature of the CDL it is inherently a low voltage device. The applications of the CDL can be tailored to auxiliary energy and burst mode storages which require fast charge/discharge cycles. Typical of the applications envisioned are power system backup, directed energy weapons concepts, electric automobiles, and electric actuators. In this paper, we will discuss some of the general characteristics of carbon-based CDL technology describing the structure, performance parameters, and methods of construction. Further, analytical and experimental results which define the state of the art are presented and described in terms of impact on applications.

  2. Carbons, ionic liquids and quinones for electrochemical capacitors

    OpenAIRE

    Raul eDiaz; Doherty, Andrew P.

    2016-01-01

    Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alterna...

  3. A review of molecular modelling of electric double layer capacitors.

    Science.gov (United States)

    Burt, Ryan; Birkett, Greg; Zhao, X S

    2014-04-14

    Electric double-layer capacitors are a family of electrochemical energy storage devices that offer a number of advantages, such as high power density and long cyclability. In recent years, research and development of electric double-layer capacitor technology has been growing rapidly, in response to the increasing demand for energy storage devices from emerging industries, such as hybrid and electric vehicles, renewable energy, and smart grid management. The past few years have witnessed a number of significant research breakthroughs in terms of novel electrodes, new electrolytes, and fabrication of devices, thanks to the discovery of innovative materials (e.g. graphene, carbide-derived carbon, and templated carbon) and the availability of advanced experimental and computational tools. However, some experimental observations could not be clearly understood and interpreted due to limitations of traditional theories, some of which were developed more than one hundred years ago. This has led to significant research efforts in computational simulation and modelling, aimed at developing new theories, or improving the existing ones to help interpret experimental results. This review article provides a summary of research progress in molecular modelling of the physical phenomena taking place in electric double-layer capacitors. An introduction to electric double-layer capacitors and their applications, alongside a brief description of electric double layer theories, is presented first. Second, molecular modelling of ion behaviours of various electrolytes interacting with electrodes under different conditions is reviewed. Finally, key conclusions and outlooks are given. Simulations on comparing electric double-layer structure at planar and porous electrode surfaces under equilibrium conditions have revealed significant structural differences between the two electrode types, and porous electrodes have been shown to store charge more efficiently. Accurate electrolyte and

  4. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    OpenAIRE

    Cassayre, Laurent; Soucek, Pavel; Mendes, Eric; Malmbeck, Rikard; Nourry, Christophe; Eloirdi, Rachel; Glatz, Jean-Paul

    2011-01-01

    Pyrochemical processes in molten LiCl–KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide–aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorina...

  5. Electrochemical Characterization of Al2 O3 -Ni Thin Film Selective Surface on Aluminium

    OpenAIRE

    KADIRGAN, Figen

    1999-01-01

    Solar thermal collectors represent a widely used type of system for the conversion of solar energy. In order to produce selective coatings on aluminium substrates to be used as absorber plates in high efficiency solar collectors, nickel pigmentation was applied to anodically oxidised surfaces. Electrochemical dc methods are used to study the oxidation of aluminium as functions of the following electrolysis conditions: applied current, pH, temperature and concentration of electrolyte....

  6. Proton Conducting Polymer Electrolytes and Its Applications

    Institute of Scientific and Technical Information of China (English)

    S. Selvasekarapandian; G. Hirankumar; R. Baskaran; M.S. Bhuvaneswari

    2005-01-01

    @@ 1Introduction Proton conducting solid polymer electrolytes have been extensively studied due to their potential applications in electrochemical devices such as batteries, super capacitors, electrochromic windows, sensors etc[1,2]Many researchers have studied the behaviour of inorganic based polymer electrolytes as proton conductors and their applications in solid state devices at room temperature[3]. But, inorganic acid doped electrolytes have some serious disadvantages like corrosion towards the electrode and hazardous. Hence, there is need for searching new electrolyte which is stable towards the electrode. It has been reported that the ammonium salts which behaves like alkali metal salt are good dopant to the polymer matrix[4, 5] for the development of proton conducting polymer electrolyte. The proton conductors based on poly (ethylene oxide)[6], poly (ethylene succinate)[7], poly (ethylene glycol)[8], as host matrix doped with ammonium salt have already been reported.

  7. Low-temperature Electrodeposition of Aluminium from Lewis Acidic 1-Allyl-3-methylimidazolium Chloroaluminate Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    郑勇; 张锁江; 吕兴梅; 王倩; 左勇; 刘恋

    2012-01-01

    Lewis acidic 1-allyl-3-methylimidazolium chloroaluminate ionic liquids were used as promising electrolytes in the low-temperature electrodeposition of aluminium. Systematic studies on deposition process have been performed by cYClic voltammetry and chronoamperometry. The surface morphology and X-ray diffraction (XRD) patterns of deposits prepared at different experimental conditions were also investigated. It was shown that the nucleation density and growth rate of crystallites had a great effect on the structure of aluminium deposited. The crys- tallographic orientation of deposits was mainly influenced by temperature and current density. Smooth, dense and well adherent aluminium coatings were obtained on copper substrates at 10-25 mA.cm^-2 and 313.2-353.2 K. More- over, the current efficiency of deposition and purity of aluminium have been significantly improved, demonstrating that the ionic liquids tested have a prospectful potential in electroplating and electrorefining of aluminium.

  8. Development of electrostatic supercapacitors by atomic layer deposition on nanoporous anodic aluminium oxides for energy harvesting applications

    Directory of Open Access Journals (Sweden)

    Lucia eIglesias

    2015-03-01

    Full Text Available Nanomaterials can provide innovative solutions for solving the usual energy harvesting and storage drawbacks that take place in conventional energy storage devices based on batteries or electrolytic capacitors, because they are not fully capable for attending the fast energy demands and high power densities required in many of present applications. Here, we report on the development and characterization of novel electrostatic supercapacitors made by conformal Atomic Layer Deposition on the high open surface of nanoporous anodic alumina membranes employed as templates. The structure of the designed electrostatic supercapacitor prototype consists of successive layers of Aluminium doped Zinc Oxide, as the bottom and top electrodes, together Al2O3 as the intermediate dielectric layer. The conformality of the deposited conductive and dielectric layers, together with their composition and crystalline structure have been checked by XRD and electron microscopy techniques. Impedance measurements performed for the optimized electrostatic supercapacitor device give a high capacitance value of 200 µF/cm2 at the frequency of 40 Hz, which confirms the theoretical estimations for such kind of prototypes, and the leakage current reaches values around of 1.8 mA/cm2 at 1 V. The high capacitance value achieved by the supercapacitor prototype together its small size turns these devices in outstanding candidates for using in energy harvesting and storage applications.

  9. Synthesis of Cerium Dioxide High-k Thin Films as a Gate Dielectric in MOS Capacitor

    OpenAIRE

    Anil G. Khairnar; Y.S. Mhaisagar; A.M. Mahajan

    2013-01-01

    In the present study, the Al/CeO2 / p-Si MOS capacitor was fabricated by depositing the Aluminium (Al) metal layer by thermal evaporation technique on sol-gel derived CeO2 high-k thin films on p-Si substrate. The deposited CeO2 films were characterized by Ellipsometer to study the refractive index that is determined to be 3.62. The FTIR analysis was carried out to obtain chemical bonding characteristics. Capacitance-voltage measurements of Al/CeO2 /p-Si MOS capacitor were carried out to deter...

  10. Fatal aluminium phosphide poisoning

    Directory of Open Access Journals (Sweden)

    Meena Mahesh Chand

    2015-06-01

    Full Text Available Aluminium phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. AlP has currently aroused interest with a rising number of cases in the past four decades due to increased use for agricultural and non-agricultural purposes. Its easy availability in the markets has increased also its misuse for committing suicide. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. Poisoning with AlP has often occurred in attempts to commit suicide, and that more often in adults than in teenagers. This is a case of suicidal consumption of aluminium phosphide by a 32-year-old young medical anesthetist. Toxicological analyses detected aluminium phosphide. We believe that free access of celphos tablets in grain markets should be prohibited by law.

  11. Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors

    Science.gov (United States)

    Brandon, Erik J.; Smart, Marshall C.; West, William C.

    2011-01-01

    Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent

  12. The moving plate capacitor paradox

    Science.gov (United States)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2000-03-01

    For the first time we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. A demon restores the plates of the capacitor to their original position, only when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the question is how? We explore the concept of a moving plate capacitor, driven by noise, a step further by examining the case where the restoring force on the capacitor plates is provided by a simple spring, rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.

  13. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  14. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  15. The elastic capacitor and its unusual properties

    CERN Document Server

    Partensky, M B

    2002-01-01

    The 'elastic capacitor' (EC) model was first introduced in studies of lipid bilayers (the major components of biological membranes). This electro-elastic model accounted for the compression of a membrane under applied voltage and allowed obtaining information about the membrane's elastic properties from the measurements of its capacitance. Later on, ECs were used to analyze the electrical breakdown of biological membranes. The EC model was also helpful in studies of electric double layers in various electrified interfaces (of which the electrode/ electrolyte interface is the most common example). This comparatively simple model, which analysis requires only high-school physics, has a close relationship to some real-life problems in physics, chemistry and biology. I hope that both teachers and students will find its discussion interesting, challenging and instructive.

  16. Fire exposed aluminium structures

    NARCIS (Netherlands)

    Maljaars, J.; Fellinger, J.H.H.; Soetens, F.

    2006-01-01

    Material properties and mechanical response models for fire design of steel structures are based on extensive research and experience. Contrarily, the behaviour of aluminium load bearing structures exposed to fire is relatively unexplored. This article gives an overview of physical and mechanical pr

  17. Bioaccumulation of Aluminium in Hydromacrophytes in Polish Coastal Lakes

    Directory of Open Access Journals (Sweden)

    Senze Magdalena

    2015-03-01

    Full Text Available The research on aluminium content was conducted in water and on aquatic flora of Polish lakes in the central part of the coast. The study included the lakes Sarbsko, Choczewskie, Bia.e, K.odno, D.brze and Salino investigated in the summer of 2013. The examined lakes belong mainly to the direct basin of the Baltic Sea. Samples of aquatic plants and lake waters were collected. In the water samples pH and electrolytic conductivity were measured. The aluminium content was determined both in water and aquatic plants. Submerged hydromacrophyte studies included Myriophyllum alterniflorum L., Potamogeton perfoliatus L. and Ceratophyllum demersum L. Emergent hydromacrophyte studies included Phragmites australis (Cav. Trin. ex Steud., Juncus bulbosus L., Iris pseudacorus L., Eleocharis palustris (L. Roem. % Schult., Phalaris arundinacea L., Carex riparia Curt., Mentha aquatic L., Stratiotes aloides L., Alisma plantago-aquatica L., Glyceria maxima (Hartman Holmb., Sagittaria sagittifolia L., Scirpus lacustris L. and Typha angustifolia L. The purpose of this investigation was the determination of the aluminium content in submerged and emergent hydromacrophytes and also the definition of their bioaccumulative abilities. The average concentration of aluminium in water was 2.68 fęg Al dm.3. The average content of aluminium in plants was 2.8015 mg Al kg.1. The bioaccumulation factor ranged from BCF=19.74 to BCF=16619. On the basis of the analysis of the aluminium content in water and aquatic plants results show that both water and plants were characterized by a moderate level of aluminium. The recorded concentrations indicate a mid-range value and are much lower than those which are quoted for a variety of surface waters in various parts of the world.

  18. Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors

    OpenAIRE

    Ovín Ania, María Concepción; Pernak, J.; Stefaniak, F.; Raymundo-Piñero, Encarnación; Béguin, F.

    2009-01-01

    This paper reports the effect of confining ionic species of the electrolyte inside the porosity of carbon electrodes during the performance of electrochemical capacitors. Solvent-free ionic liquids and a conventional organic medium were used as electrolytes, while two series of carbons with controlled pore sizes – one of them obtained from nanocasting procedure – were used as electrode materials. Our results demonstrate that under the effect of the electric field applied during the polarizati...

  19. Phenolic carbon cloth-based electric double-layer capacitors with conductive interlayers and graphene coating

    OpenAIRE

    Lei, C.; F. Markoulidis; Wilson, P; Lekakou, C.

    2015-01-01

    Phenolic resin-derived activated carbon (AC) cloths are used as electrodes for large-scale electric double-layer capacitors or supercapacitors. To increase the energy and power density of the supercapacitor, the contact resistance between the carbon cloth and the aluminium foil current collector is reduced by modifying the Al current collectors. Different modified Al current collectors, including Toyal-Carbo®(surface-modified Al), DAG® (deflocculated Acheson™ graphite) coating and poly(3,4-et...

  20. Debye length dependence of the anomalous dynamics of ionic double layers in a parallel plate capacitor

    NARCIS (Netherlands)

    Kortschot, R. J.; Philipse, A. P.; Erné, B. H.

    2014-01-01

    The electrical impedance spectrum of simple ionic solutions is measured in a parallel plate capacitor at small applied ac voltage. The influence of the ionic strength is investigated using several electrolytes at different concentrations in solvents of different dielectric constants. The electric do

  1. Recovery in aluminium

    OpenAIRE

    Gundlach, Carsten

    2006-01-01

    In the present thesis the development of a unique experimental method for volume characterisation of individual embedded crystallites down to a radius of 150 nm is presented. This method is applied to in-situ studies of recovery in aluminium. The method is an extension of 3DXRD microscopy, an X-ray diffraction technique for studies of the evolution of grains within polycrystalline materials. The much smaller volume of the crystallites of interest here in comparison to grains implies that the ...

  2. Aluminium and human breast diseases.

    Science.gov (United States)

    Darbre, P D; Pugazhendhi, D; Mannello, F

    2011-11-01

    The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268 ± 28 μg/l) compared with control healthy subjects (mean 131 ± 10 μg/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150 μg/l) compared with human serum (median 6 μg/l) or human milk (median 25 μg/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate. PMID:22099158

  3. Laser welding of aluminium alloys

    OpenAIRE

    Forsman, Tomas

    2000-01-01

    This thesis treats laser welding of aluminium alloys from a practical perspective with elements of mathematical analysis. The theoretical work has in all cases been verified experimentally. The aluminium alloys studied are from the 5xxx and 6xxx groups which are common for example in the automotive industry. Aluminium has many unique physical properties. The properties which more than others have been shown to influence the welding process is its high reflection, high thermal conductivity, lo...

  4. Method of aluminium fluoride manufacture

    International Nuclear Information System (INIS)

    The manufacture of aluminium fluoride is based on waste processing in uranium hexafluoride conversion to uranium oxides within the fuel cycle. The conversion is the stoichiometric conversion of uranium hexafluoride with aluminium nitrate to uranyl nitrate. This is extracted from the water phase by phosphoric acid trialkyl ester to an organic solvent and further processed. The discharge water phase is solidified by evaporation to solid aluminium fluoride and nitric acid. (M.S.)

  5. Moisture in multilayer ceramic capacitors

    Science.gov (United States)

    Donahoe, Daniel Noel

    When both precious metal electrode and base metal electrode (BME) capacitors were subjected to autoclave (120°C/100% RH) testing, it was found that the precious metal capacitors aged according to a well known aging mechanism (less than 3% from their starting values), but the BME capacitors degraded to below the -30% criterion at 500 hours of exposure. The reasons for this new failure mechanism are complex, and there were two theories that were hypothesized. The first was that there could be oxidation or corrosion of the nickel plates. The other hypothesis was that the loss of capacitance was due to molecular changes in the barium titanate. This thesis presents the evaluation of these hypotheses and the physics of the degradation mechanism. It is concluded by proof by elimination that there are molecular changes in the barium titanate. Furthermore, the continuous reduction in capacitor size makes the newer base metal electrode capacitors more vulnerable to moisture degradation than the older generation precious metal capacitors. In addition, standard humidity life testing, such as JESD-22 THB and HAST, will likely not uncover this problem. Therefore, poor reliability due to degradation of base metal electrode multilayer ceramic capacitors may catch manufacturers and consumers by surprise.

  6. Anti-perovskite solid electrolyte compositions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  7. Degradation testing and failure analysis of DC film capacitors under high humidity conditions

    DEFF Research Database (Denmark)

    Wang, Huai; Nielsen, Dennis Achton; Blaabjerg, Frede

    2015-01-01

    Metallized polypropylene film capacitors are widely used for high-voltage DC-link applications in power electronic converters. They generally have better reliability performance compared to aluminum electrolytic capacitors under electro-thermal stresses within specifications. However......, the degradation of the film capacitors is a concern in applications exposed to high humidity environments. This paper investigates the degradation of a type of plastic-boxed metallized DC film capacitors under different humidity conditions based on a total of 8700 h of accelerated testing and also post failure...... analysis. The test results are given by the measured data of capacitance and the equivalent series resistance. The degradation curves in terms of capacitance reduction are obtained under the conditions of 85% Relative Humidity (RH), 70% RH, and 55% RH. The post failure analysis of the degraded samples...

  8. Graphene double-layer capacitor with ac line-filtering performance.

    Science.gov (United States)

    Miller, John R; Outlaw, R A; Holloway, B C

    2010-09-24

    Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices. PMID:20929845

  9. Fractal Structures For Mems Variable Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    In accordance with the present disclosure, one embodiment of a fractal variable capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure, wherein the capacitor body has an upper first metal plate with a fractal shape separated by a vertical distance from a lower first metal plate with a complementary fractal shape; and a substrate above which the capacitor body is suspended.

  10. Determination and optimization of the ζ potential in boron electrophoretic deposition on aluminium substrates

    International Nuclear Information System (INIS)

    In this work we present an introduction of the electrophoretic process followed by a detailed experimental treatment of the technique used in the determination and optimization of the ζ-potential, mainly as a function of the electrolyte concentration, in a high purity boron electrophoretics deposition on aluminium substrates used as electrodes in neutron detectors. (author)

  11. Carbon-Based Fibrous EDLC Capacitors and Supercapacitors

    Directory of Open Access Journals (Sweden)

    C. Lekakou

    2011-01-01

    Full Text Available This paper investigates electrochemical double-layer capacitors (EDLCs including two alternative types of carbon-based fibrous electrodes, a carbon fibre woven fabric (CWF and a multiwall carbon nanotube (CNT electrode, as well as hybrid CWF-CNT electrodes. Two types of separator membranes were also considered. An organic gel electrolyte PEO-LiCIO4-EC-THF was used to maintain a high working voltage. The capacitor cells were tested in cyclic voltammetry, charge-discharge, and impedance tests. The best separator was a glass fibre-fine pore filter. The carbon woven fabric electrode and the corresponding supercapacitor exhibited superior performance per unit area, whereas the multiwall carbon nanotube electrode and corresponding supercapacitor demonstrated excellent specific properties. The hybrid CWF-CNT electrodes did not show a combined improved performance due to the lack of carbon nanotube penetration into the carbon fibre fabric.

  12. The Role of Key Impurity Elements on the Performance of Aluminium Electrolysis - Current Efficiency and Metal Quality

    OpenAIRE

    Al-Mejali, Jassim Ali

    2015-01-01

    Impurities such as phosphorus and silicon mainly enter the aluminium electrolysis process with alumina. These impurities dissolve in the electrolyte and affect the performance of the electrolysis, the emissions from the cells and the quality of the metal produced. In the present work, the behavior of phosphorus and silicon species in the industrial Hall-Héroult cells was investigated. The study was based on the deleterious effect of phosphorus and silicon on the aluminium production process. ...

  13. Ferroelectric capacitor with reduced imprint

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Jr., Joseph T. (13609 Verbena Pl., NE., Albuquerque, NM 87112); Warren, William L. (7716 Wm. Moyers Ave., NE., Albuquerque, NM 87122); Tuttle, Bruce A. (12808 Lillian Pl., NE., Albuquerque, NM 87122); Dimos, Duane B. (6105 Innsbrook Ct., NE., Albuquerque, NM 87111); Pike, Gordon E. (1609 Cedar Ridge, NE., Albuquerque, NM 87112)

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  14. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  15. First Principles Study of Aluminium Vacancy in Wurtzite Aluminium Nitride

    Institute of Scientific and Technical Information of China (English)

    GAO Ting-Ge; YI Jue-Min; ZHOU Zi-Yao; HU Xiao-Dong

    2008-01-01

    @@ We report that the aluminium vacancy in wurtzite AIN brings about two impurity levels e and a2 in the band gap, not just one single t2 level The aluminium vacancy carries a magnetic moment of 1 μB in the ground state. The molecule orbit of the aluminium vacancy becomes e↑↑ a2↑ rather than e↑↑ a2↑. The calculation is carried out by using the CASTEP code. The intrinsic symmetry of wurtzite A1N is the driving force for this spin splitting. Finally the symmetry of wurtzite AlN results in an anti-ferromagnetic coupling between the aluminium vacancies, as is predicted. Our findings are helpful to gain a more through understanding of the structural and spin property of aluminium vacancy in wurtzite AIN.

  16. Fractal Structures For Fixed Mems Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    An embodiment of a fractal fixed capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure. The capacitor body has a first plate with a fractal shape separated by a horizontal distance from a second plate with a fractal shape. The first plate and the second plate are within the same plane. Such a fractal fixed capacitor further comprises a substrate above which the capacitor body is positioned.

  17. Electrochemical characterization of MnO2 as the cathode material for a high voltage hybrid capacitor

    Institute of Scientific and Technical Information of China (English)

    Jian-ling Li; Fei Gao; Yan Jing; Rui-ying Miao; Ke-zhong Wu; Xin-dong Wang

    2009-01-01

    Manganese dioxide (MnO_2) was prepared using the ultrasonic method. Its electrochemical performance was evaluated as the cathode material for a high voltage hybrid capacitor. And the specific capacitance of the MnO_2 electrode reached 240 F-g-1. The new hybrid capacitor was constructed, combining Al/Al_2O_3 as the anode and MnO_2 as the cathode with electrolyte for the aluminum electrolytic capacitor to solve the problem of low working voltage of a supercapacitor unit. The results showed that the hybrid ca-pacitor had a high energy density and the ability of quick charging and discharging according to the electrochemical performance test. The capacitance was 84.4 μF, and the volume and mass energy densities were greatly improved compared to those of the traditional aluminum electrolytic capacitor of 47 μF. The analysis of electrochemical impedance spectroscopy (EIS) showed that the hybrid ca-pacitor had good impedance characteristics.

  18. PLZT capacitor on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, Manuel Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine Wk; Ma, Beihai; Balachandran, Uthamalingam

    2016-03-29

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  19. Efficiency Improvement of Capacitor Operation

    Directory of Open Access Journals (Sweden)

    V. P. Kashcheev

    2010-01-01

    Full Text Available A system of modernized capacitor ball-cleaning that prevents formation of depositions on internal capacitor tube surface has been developed in the paper.The system has been introduced at the Minsk TPP-4 (Power Block No.5. The paper presupposes that the economic effect will be nearly 0.43 million US dollars per year at one poer block with turbine Т-250/300-240.

  20. Technology of Pulse Power Capacitors

    Science.gov (United States)

    Qin, Shanshan

    Polymer film of pulse discharge capacitors operated at high repetition rate dissipates substantial power. The thermal conductivity of biaxially oriented polypropylene (BOPP) is measured as a function of metallization resistivity. The thermal conductivity in the plane of the film is about twice that of bulk polypropylene. Thermal design is optimized based on the measurement for large capacitors with multiple windings in a container. High discharge speed results in high current density at the wire arc sprayed end connections which tend to deteriorate gradually, resulting in capacitor failure during operation. To assure the end connection quality before assembly, a test procedure and apparatus for end connection integrity was developed based on monitoring the partial discharge pattern from end connection during discharge. The mechanism of clearing is analyzed which shows arc extinguishes due to the increased arc length and reduced energy so that capacitor can function normally after breakdown. In the case of a clearing discharge, the power dissipation appears to increase with time, although this is not a feature of previous models. Submicrosecond discharge requires minimizing inductance which can be achieved by optimizing the winding structure so that submicrosecond discharge becomes practical. An analysis of the inductance of multisection, very high voltage capacitors is carried out, which identifies low inductance structures for this type of capacitor.

  1. Fatigue tests on aluminium bridges

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Straalen, IJ.J. van

    2005-01-01

    Traffic bridges are subjected to variable loads and should therefore be checked on fatigue. Especially low weight materials, like aluminium, are sensitive to fatigue, because the variable load is a substantial part of the total load. This paper shows the structural design of an aluminium bridge load

  2. Fatigue tests on aluminium bridges

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Straalen, IJ.J. van

    2004-01-01

    Traffic bridges are subjected to variable loads and should therefore be checked on fatigue. Especially low weight materials, like aluminium, are sensitive to fatigue, because the variable load is a substantial part of the total load. This paper shows the structural design of an aluminium bridge load

  3. Carbon additives for electrical double layer capacitor electrodes

    Science.gov (United States)

    Weingarth, D.; Cericola, D.; Mornaghini, F. C. F.; Hucke, T.; Kötz, R.

    2014-11-01

    Electrochemical double layer capacitors (EDLCs) are inherently high power devices when compared to rechargeable batteries. While capacitance and energy storage ability are mainly increased by optimizing the electrode active material or the electrolyte, the power capability could be improved by including conductive additives in the electrode formulations. This publication deals with the use of four different carbon additives - two carbon blacks and two graphites - in standard activated carbon based EDLC electrodes. The investigations include: (i) physical characterization of carbon powder mixtures such as surface area, press density, and electrical resistivity measurements, and (ii), electrochemical characterization via impedance spectroscopy and cyclic voltammetry of full cells made with electrodes containing 5 wt.% of carbon additive and compared to cells made with pure activated carbon electrodes in organic electrolyte. Improved cell performance was observed in both impedance and cyclic voltammetry responses. The results are discussed considering the main characteristics of the different carbon additives, and important considerations about electrode structure and processability are drawn.

  4. High-Energy-Density Capacitors

    Science.gov (United States)

    Slenes, Kirk

    2003-01-01

    Capacitors capable of storing energy at high densities are being developed for use in pulse-power circuits in such diverse systems as defibrillators, particle- beam accelerators, microwave sources, and weapons. Like typical previously developed energy-storage capacitors, these capacitors are made from pairs of metal/solid-dielectric laminated sheets that are wound and pressed into compact shapes to fit into cans, which are then filled with dielectric fluids. Indeed, these capacitors can be fabricated largely by conventional fabrication techniques. The main features that distinguish these capacitors from previously developed ones are improvements in (1) the selection of laminate materials, (2) the fabrication of the laminated sheets from these materials, and (3) the selection of dielectric fluids. In simplest terms, a high-performance laminated sheet of the type used in these capacitors is made by casting a dielectric polymer onto a sheet of aluminized kraft paper. The dielectric polymer is a siloxane polymer that has been modified with polar pendant groups to increase its permittivity and dielectric strength. Potentially, this polymer is capable of withstanding an energy density of 7.5 J/cm3, which is four times that of the previous state-of-the-art-capacitor dielectric film material. However, the full potential of this polymer cannot be realized at present because (1) at thicknesses needed for optimum performance (.8.0 m), the mechanical strength of a film of this polymer is insufficient for incorporation into a wound capacitor and (2) at greater thickness, the achievable energy density decreases because of a logarithmic decrease in dielectric strength with increasing thickness. The aluminized kraft paper provides the mechanical strength needed for processing of the laminate and fabrication of the capacitor, and the aluminum film serves as an electrode layer. Because part of the thickness of the dielectric is not occupied by the modified siloxane polymer, the

  5. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right circumsta......This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... circumstances both materials show good bonding, but the high purity material is excluded because of recrystallisation and the resulting loss of mechanical properties. The effect of cross stacking and roll bonding pre-strained sheets of the commercial purity material is investigated and some dependence...... of the cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  6. Electromechanical capacitor for energy transfer

    International Nuclear Information System (INIS)

    Inductive energy transfer between two magnets can be achieved with almost 100% efficiency with a transfer capacitor. However, the bulk and cost will be high, and reliability low if conventional capacitors are used. A homopolar machine, used as a capacitor, will be compact and economical. A homopolar machine was designed with counter-rotating copper disks completely immersed in a liquid metal (NaK-78) to work as a pulse capacitor. Absence of solid-brush collectors minimized wear and frictional losses. Wetting of the copper disks throughout the periphery by the liquid metal minimized the resistive losses at the collector interface. A liquid-metal collector would, however, introduce hydrodynamic and magnetohydrodynamic losses. The selected liquid metal, e.g., NaK-78 will produce the lowest of such losses among the available liquid metals. An electromechanical capacitor of this design was tested at various dc magnetic fields. Its measured capacitance was about 100 farads at a dc magnetic field of 1.15 tesla

  7. Force on an Asymmetric Capacitor

    CERN Document Server

    Bahder, T B; Bahder, Thomas B.; Fazi, Chris

    2002-01-01

    When a high voltage (~30 kV) is applied to a capacitor whose electrodes have different physical dimensions, the capacitor experiences a net force toward the smaller electrode (Biefeld-Brown effect). We have verified this effect by building four capacitors of different shapes. The effect may have applications to vehicle propulsion and dielectric pumps. We review the history of this effect briefly through the history of patents by Thomas Townsend Brown. At present, the physical basis for the Biefeld-Brown effect is not understood. The order of magnitude of the net force on the asymmetric capacitor is estimated assuming two different mechanisms of charge conduction between its electrodes: ballistic ionic wind and ionic drift. The calculations indicate that ionic wind is at least three orders of magnitude too small to explain the magnitude of the observed force on the capacitor. The ionic drift transport assumption leads to the correct order of magnitude for the force, however, it is difficult to see how ionic dr...

  8. Aluminium, antiperspirants and breast cancer.

    Science.gov (United States)

    Darbre, P D

    2005-09-01

    Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metalloestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer. PMID:16045991

  9. The toxicity of aluminium in humans.

    Science.gov (United States)

    Exley, C

    2016-06-01

    We are living in the 'aluminium age'. Human exposure to aluminium is inevitable and, perhaps, inestimable. Aluminium's free metal cation, Alaq(3+), is highly biologically reactive and biologically available aluminium is non-essential and essentially toxic. Biologically reactive aluminium is present throughout the human body and while, rarely, it can be acutely toxic, much less is understood about chronic aluminium intoxication. Herein the question is asked as to how to diagnose aluminium toxicity in an individual. While there are as yet, no unequivocal answers to this problem, there are procedures to follow to ascertain the nature of human exposure to aluminium. It is also important to recognise critical factors in exposure regimes and specifically that not all forms of aluminium are toxicologically equivalent and not all routes of exposure are equivalent in their delivery of aluminium to target sites. To ascertain if Alzheimer's disease is a symptom of chronic aluminium intoxication over decades or breast cancer is aggravated by the topical application of an aluminium salt or if autism could result from an immune cascade initiated by an aluminium adjuvant requires that each of these is considered independently and in the light of the most up to date scientific evidence. The aluminium age has taught us that there are no inevitabilities where chronic aluminium toxicity is concerned though there are clear possibilities and these require proving or discounting but not simply ignored. PMID:26922890

  10. High-energy power capacitors, their applied technology and the trends

    International Nuclear Information System (INIS)

    High-voltage and high-energy-density power capacitors called high-power ones such as film or electrolytic capacitors, have been used in large quantities for the pulse power technology such as an impulse current or voltage generator and a laser power supply, and for the power electronics one with progress of the power semiconductor device and the inverter technology. Recently, electric double layer capacitors (EDLC) with remarkable technical progress have been applied for the equipments of electric power and industrial field for the purpose of energy saving or electric power quality improvement, which have come to link to the electric power system. Thus, using a lot of high-power capacitors near our life would require to know the structure, the principle and the characteristic of capacitors, and also to consider suitable directions for use, maintenance and safety and so on, when carrying out a system and a facility design. In the technical report, while describing the dielectric and the feature of some high-power capacitors, and introducing the application examples to the laser-fusion power supply and some systems with EDLC, the trend of standardization of EDLC and the directivity of the examination about installation and maintenance of the applied equipments are described. (author)

  11. The Optimization of Salt Additions during Processing of Aluminium-Magnesium Alloys

    OpenAIRE

    Solberg, Egil

    2013-01-01

    Sodium is well known to be a cause for edge cracking during rolling of aluminium-magnesium alloys (AA5xxx). Due to this, requirements for the sodium contents in Al-Mg alloys are often less than 1,0 ppm. The electrolytic produced aluminium have a sodium content in the range of 30 to 200 ppm, where the highest levels are present in the most modern pot lines.To reduce sodium and other impurities like oxides and carbides several techniques are available for casthouses today. Furnace fluxing and d...

  12. Wave Detection and Characterization from Current and Voltage Signals of an Aluminium Smelting Cell

    Directory of Open Access Journals (Sweden)

    Ingar Solberg

    2003-01-01

    Full Text Available In aluminium electrolysis cell there is a layer of 10-20 cm of liquid aluminium. On top of this there is a layer of a melted salt electrolyte with a number of carbon anode blocks partially submerged. The density difference of the two liquids is small and low frequency waves can occur in the interface. The waves cause variation in the current distribution between the individual anode carbon blocks. These variations are in this article analysed and visualised with MATLAB to show information of the temporal variations, frequencies and spatial modes of the waves.

  13. Friction surfacing of aluminium alloys

    OpenAIRE

    Pereira, Diogo Jorge O. A.

    2012-01-01

    Friction surfacing is a solid state joining process that has attracted much interest in the past decades. This technology allows joining dissimilar metallic materials while avoiding the brittle intermetallic formations, involving temperatures bellow melting point and producing like forged metal structures. Much research using different steels has been made but the same does not happen with aluminium alloys, specially using different aluminium alloys. Friction surface coatings using cons...

  14. Capattery double layer capacitor life performance

    Science.gov (United States)

    Evans, David A.; Clark, Nancy H.; Baca, W. E.; Miller, John R.; Barker, Thomas B.

    Double layer capacitors (DLCs) have received increased use in computer memory backup applications for consumer products during the past ten years. Their extraordinarily high capacitance density along with their maintenance-free operation makes them particularly suited for these products. These same features also make DLCs very attractive in military type applications. Unfortunately, lifetime performance data has not been reported in the literature for any DLC component. Our objective in this study was to investigate the effects that voltage and temperature have on the properties and performance of single and series-connected DLCs as a function of time. Evans model RE110474, 0.47-farad, 11.0-volt Capatteries were evaluated. These components have a tantalum package, use welded construction, and contain a glass-to-metal seal, all incorporated to circumvent the typical DLC failure modes of electrolyte loss and container corrosion. A five-level, two-factor Central Composite Design was used in the study. Single and series-connected Capatteries rated at 85 C, 11.0-volts operation were subjected to test temperatures between 25 and 95 C, and voltages between 0 and 12.9 volts (9 test conditions). Measured responses included capacitance, equivalent series resistance, and discharge time. Data were analyzed using a regression analysis to obtain response functions relating DLC properties to their voltage, temperature, and test time history. These results are described and should aid system and component engineers in using DLCs in critical applications.

  15. Electrical characterization of thin film ferroelectric capacitors

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D.; Keur, W.; Schmitz, J.; Hueting, R.J.E.

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon offe

  16. Tunable circuit for tunable capacitor devices

    Science.gov (United States)

    Rivkina, Tatiana; Ginley, David S.

    2006-09-19

    A tunable circuit (10) for a capacitively tunable capacitor device (12) is provided. The tunable circuit (10) comprises a tunable circuit element (14) and a non-tunable dielectric element (16) coupled to the tunable circuit element (16). A tunable capacitor device (12) and a method for increasing the figure of merit in a tunable capacitor device (12) are also provided.

  17. Materials Science Constraints on the Development of Aluminium Reduction Cells

    Science.gov (United States)

    Metson, James; McIntosh, Grant; Etzion, Ronny

    The Hall-Heroult process for the production of Aluminium metal is some 125 years old. The process is energy constrained by the need to shed around half of the (electrical) energy supplied to the cell as waste heat. The molten cryolite electrolyte is sufficiently aggressive that the only reliable method of protecting the side wall of the cell is to maintain a frozen layer of electrolyte at the hot face of the sidewall. Thus the lack of a cryolite resistant sidewall is but one of several materials science constraints which still limit the energy efficiency of the process. An inert anode and non-consumable cathode are also significant challenges which limit cell life and energy efficiency. Thus there are major challenges in both materials development and new conceptual cell designs to improve the efficiency of this process.

  18. Electrolytic fixer.

    Science.gov (United States)

    Stevens

    1982-12-01

    Interest in the recovery of silver from radiographic film generates a need to understand the operating procedures of recovery units utilizing the electrolytic fixer principle. Tailing or terminal units and recirculation units using electrolysis are evaluated. Difficulties encountered in the number of Coulombs applied to a specific amount of fixer are discussed. Reduction of sulfiding as a result of electrolysis and variations in film volumes are noted. The quantity and quality of silver collected can be improved by being aware of alterations in chemical activity used in a silver recovery program.

  19. Heat generation in double layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, Julia; Linzen, Dirk; Sauer, Dirk Uwe [Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Jaegerstrasse 17-19, D-52066 Aachen (Germany)

    2006-09-29

    Thermal management is a key issue concerning lifetime and performance of double layer capacitors and battery technologies. Double layer capacitor modules for hybrid vehicles are subject to heavy duty cycling conditions and therefore significant heat generation occurs. High temperature causes accelerated aging of the double layer capacitors and hence reduced lifetime. To investigate the thermal behavior of double layer capacitors, thermal measurements during charge/discharge cycles were performed. These measurements show that heat generation in double layer capacitors is the superposition of an irreversible Joule heat generation and a reversible heat generation caused by a change in entropy. A mathematical representation of both parts is provided. (author)

  20. Charging circuit for a reference capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, C.R.

    1987-04-14

    In a circuit adapted for use with a capacitor for storing a reference voltage supplied by a reference source, the improvement is described comprising: comparison means for comparing the voltage across the capacitor and the voltage of the reference source, and providing an output when the difference in the capacitor voltage and the voltage of the reference source exceeds a predetermined maximum; charge means responsive to the comparison means, for charging the capacitor when the difference in the capacitor voltage and the voltage of the reference source exceeds the predetermined maximum so as to reduce the difference, and switch means responsive to the comparison means output, for coupling the reference source to the capacitor to enable the reference source to directly charge the capacitor to a voltage equal to the reference voltage. The switch means is also for uncoupling the reference source from the capacitor while the capacitor comparison means compares the reference source and capacitor voltages and while the charge means is charging the capacitor.

  1. Development and fabrication of a 1.5 F - 5 V solid state super capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Staiti, P.; Lufrano, F. [CNR-ITAE, Istituto di Tecnologie Avanzate Per l' Energia Inicola Giordanoi, Messina (Italy)

    2004-07-01

    A five cells super-capacitor prototype with special electrolyte is designed and fabricated at the Institute CNR-ITAE of Messina. It has a nominal capacitance of 1.5 F and a maximum voltage of 5 V. The electrodes of prototype are formed of high surface area carbon material and Nafion ionomer. Nafion is used as an electrolyte membrane separator between the electrodes of each single cell and as a binder/ion conductor in the electrodes. The fabricated prototype achieves specific capacitance of 114 F/g (referred to the weight of active carbon materials for single electrode), that is comparable to the specific capacitance previously obtained from a smaller scale single cell of same type of super-capacitor. A power density of 1.4 kW/l and a RC-time constant of 0.3 s have been calculated for the device. (authors)

  2. Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes

    Science.gov (United States)

    Cao, W. J.; Zheng, J. P.

    2012-09-01

    A lithium-ion capacitor was developed using a mixture of stabilized lithium metal powder and hard carbon as the anode electrode, while activated carbon was used as the cathode. A specific energy of approximately 82 Wh kg-1 was obtained based on the weight of electrode materials; however, when the electrolyte, separator, and current collectors were included, the specific energy of an assembled Li-ion capacitor was about 25 Wh kg-1. The capacitor was able to deliver over 60% of the maximum energy at a discharge C-rate of 44C. Through continuous galvanostatic charge/discharge cycling, the capacitance of the Li-ion capacitor degraded less than 3% over 600 cycles.

  3. The buffer effect in neutral electrolyte supercapacitors

    Science.gov (United States)

    Vindt, Steffen T.; Skou, Eivind M.

    2016-02-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous potassium nitrate as the electrolyte and potassium phosphates as the buffer system.

  4. Dispersion strengthening of aluminium-aluminium-oxide products

    DEFF Research Database (Denmark)

    Hansen, Niels

    1970-01-01

    temperature and at 400°C is in agreement with Orowan's theory. The increase in flow stress at room temperature for strain values below 3 per cent was related to the plastic strain by the equation σ-σoy=k1ε 1/2, where σoy is the initial flow stress and where k1 increases for increasing volume fraction......The true stress-true strain curves at room temperature and at 400°C were determined for various types of aluminium-aluminium-oxide products containing from 0.2 to 4.7 weight per cent of aluminium oxide. The effect of particles on the initial flow stress and the flow stress for 0.2% offset at room...

  5. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.

    Science.gov (United States)

    Yao, Fei; Pham, Duy Tho; Lee, Young Hee

    2015-07-20

    A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed. PMID:26140707

  6. Preparation of aluminium lakes by electrocoagulation

    OpenAIRE

    Prapai Pradabkham

    2008-01-01

    Aluminium lakes have been prepared by electrocoagulation employing aluminium as electrodes. The electrocoagulation is conducted in an aqueous alcoholic solution and is completed within one hour. The dye content in the lake ranges approximately between 4-32%.

  7. EELS investigations of stoichiometric niobium oxides and niobium-based capacitors

    OpenAIRE

    Bach, David

    2009-01-01

    A comprehensive electron energy-loss spectroscopy (EELS) study of stoichiometric niobium oxides and niobium was performed in a transmission electron microscope. Numerous EELS features were identified allowing the distinction of different Nb-oxidation states. Optimized sensitivity factors were determined for accurate quantification of the Nb-O system which were applied to nanoscale analysis of solid-electrolyte capacitors with Nb anodes and anodically grown niobium-oxide layers as dielectric.

  8. Evaluation of Constant Potential Method in Simulating Electric Double-Layer Capacitors

    OpenAIRE

    Wang, Zhenxing; Yang, Yang; Olmsted, David L.; Asta, Mark; Laird, Brian B.

    2014-01-01

    A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations induced by charge fluctuations in the electrolyte. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potent...

  9. Electrochemical Properties of Modified Carbon Electrodes for Electric Double Layer Capacitors

    OpenAIRE

    Tashima, D.; Sakamoto, A.; Taniguchi, M.; Sakoda, T; Otsubo, M.

    2008-01-01

    To improve capacitance and energy density of electric double layer capacitors (EDLCs), plasma surface treatments were carried out on surface of activated carbon sheets, and optimal conditions for the treatment were discuused. Operating gas pressure of argon was 20 Pa, and activated carbon sheets were set up so that they were covered with the dc glow discharge at 70 W. Electrochemical properties, including cyclic voltammetry (CV) and cole-cole plot of EDLCs in organic electrolyte, were examine...

  10. Energy conversion from aluminium and phosphate rich solution via ZnO activation of aluminium

    International Nuclear Information System (INIS)

    Electrochemical power sources have motivated intense research efforts in the development of alternative ‘green’ power sources for ultra-low powered bioelectronic devices. Biofuel cells employ immobilized enzymes to convert the available chemical energy of organic fuels directly into electricity. However, biofuel cells are limited by short lifetime due to enzyme inactivation and frequent need to incorporate mediators to shuttle electrons to the final electron acceptor. In this context, other electrochemical power sources are necessary in energy conversion and storage device applications. Here we report on the fabrication and characterization of a membrane-free aluminium/phosphate cell based on the activation of aluminium (Al) using ZnO nanocrystal in an Al/phosphate cell as a ‘green’ alternative to the traditional enzymatic biofuel cells. The hybrid cell operates in neutral phosphate buffer solution and physiological saline buffer. The ZnO modifier in the phosphate rich electrolyte activated the pitting of Al resulting in the production of hydrogen, as the reducing agent for the reduction of H2PO4− ions to HPO32− ions at a formal potential of −0.250 V vs. Ag/AgCl. Specifically, the fabricated cell operating in phosphate buffer and physiological saline buffer exhibit an open-circuit voltage of 0.810 V and 0.751 V and delivered a maximum power density of 0.225 mW cm−2 and 1.77 mW cm−2, respectively. Our results demonstrate the feasibility of generating electricity by activating Al as anodic material in a hybrid cell supplied with phosphate rich electrolyte. Our approach simplifies the construction and operation of the electrochemical power source as a novel “green” alternative to the current anodic substrates used in enzymatic biofuel cells for low power bioelectronics applications. - Graphical abstract: Display Omitted - Highlights: • ZnO activation of metallic Al for generating electricity for bioelectronic applications. • Selective

  11. Energy conversion from aluminium and phosphate rich solution via ZnO activation of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, Gymama, E-mail: gslaught@umbc.edu; Sunday, Joshua; Stevens, Brian

    2015-08-01

    Electrochemical power sources have motivated intense research efforts in the development of alternative ‘green’ power sources for ultra-low powered bioelectronic devices. Biofuel cells employ immobilized enzymes to convert the available chemical energy of organic fuels directly into electricity. However, biofuel cells are limited by short lifetime due to enzyme inactivation and frequent need to incorporate mediators to shuttle electrons to the final electron acceptor. In this context, other electrochemical power sources are necessary in energy conversion and storage device applications. Here we report on the fabrication and characterization of a membrane-free aluminium/phosphate cell based on the activation of aluminium (Al) using ZnO nanocrystal in an Al/phosphate cell as a ‘green’ alternative to the traditional enzymatic biofuel cells. The hybrid cell operates in neutral phosphate buffer solution and physiological saline buffer. The ZnO modifier in the phosphate rich electrolyte activated the pitting of Al resulting in the production of hydrogen, as the reducing agent for the reduction of H{sub 2}PO{sub 4}{sup −} ions to HPO{sub 3}{sup 2−} ions at a formal potential of −0.250 V vs. Ag/AgCl. Specifically, the fabricated cell operating in phosphate buffer and physiological saline buffer exhibit an open-circuit voltage of 0.810 V and 0.751 V and delivered a maximum power density of 0.225 mW cm{sup −2} and 1.77 mW cm{sup −2}, respectively. Our results demonstrate the feasibility of generating electricity by activating Al as anodic material in a hybrid cell supplied with phosphate rich electrolyte. Our approach simplifies the construction and operation of the electrochemical power source as a novel “green” alternative to the current anodic substrates used in enzymatic biofuel cells for low power bioelectronics applications. - Graphical abstract: Display Omitted - Highlights: • ZnO activation of metallic Al for generating electricity for

  12. Effect of hydrogen on aluminium and aluminium alloys: A review

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1996-01-01

    Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen...... in aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between...

  13. Processing of patterned ferroelectric capacitors

    Science.gov (United States)

    Rod, Bernard J.

    1992-09-01

    Processing steps are described in detail for a procedure to fabricate sol-gel-derived lead-zirconate-titanate (PZT) ferroelectric thin-film capacitors in a manner compatible with processed complementary metal-oxide-semiconductor (CMOS) integrated-circuit wafers. The intended purpose of this work is to fabricate nonvolatile-element memory test structures for electrical and radiation characterization studies. A number of critical processing issues dealing with the etching of the PZT films and the deposition and definition of the top and bottom platinum electrodes were addressed and suitable solutions found during the course of this work. Using the procedures described herein, we fabricated working PZT capacitors and evaluated them electrically.

  14. Buckwheat stomatal traits under aluminium toxicity

    Directory of Open Access Journals (Sweden)

    Oleksandr E. Smirnov

    2014-04-01

    Full Text Available Aluminium influence on some stomatal parameters of common buckwheat (Fagopyrum esculentum Moench. was studied. Significant changes in stomatal density, stomatal index and stomatal shape coefficient under aluminium treatment were revealed. Stomatal closure and no difference in total stomatal potential conductance index of treatment plants were suggested as aluminium resistance characteristics.

  15. Capacitor ageing in electronic devices

    OpenAIRE

    Richard B. N. Vital; Tatiane M. Vital

    2015-01-01

    The moment when an electronic component doesn’t work like requirements, previously established is a task that need to be considered since began of a system design. However, the use of different technologies, operating under several environmental conditions, makes a component choice a complex step in system design. This paper analyzes the effects that ageing phenomenon of capacitors may introduce in electronic devices operation. For this reason, reliability concepts, processes and ...

  16. Characterization of Tantalum Polymer Capacitors

    Science.gov (United States)

    Spence, Penelope

    2012-01-01

    Overview Reviewed data Caution must be taken when accelerating test conditions Data not useful to establish an acceleration model Introduction of new failure mechanism skewing results Evidence of Anti-Wear-Out De-doping of polymer Decreased capacitance Increased ESR Not dielectric breakdown Needs further investigation Further investigation into tantalum polymer capacitor technology Promising acceleration model for Manufacturer A Possibility for use in high-reliability space applications with suitable voltage derating.

  17. YANG-MILLS FIELD CAPACITOR

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-10-01

    Full Text Available The article presents a project of the capacitor in the Yang-Mills theory. Model capacitor represents the equipotential surfaces separated by a space. To describe the mechanism of condensation chromodynamics field used numerical models developed based on an average of the Yang-Mills theory. In the present study, we used eight-scalar component model that in the linear case is divided into two groups containing three or five fields respectively. In contrast to classical electrodynamics, a static model of the Yang-Mills is not divided into independent equations because of the nonlinearity of the model itself. However, in the case of a linear theory separation is possible. It is shown that in this particular case, the Yang-Mills theory is reduced to Poisson theory, which describes the electrostatic and magnetostatic phenomena. In the present work it is shown that in a certain region of the parameters of the capacitor of the Yang-Mills theory on the functional properties of the charge accumulation and retention of the field is similar to the capacitor of the electrostatic field or a magnet in magnetostatics. This means that in nature there are two types of charges, which are sources of macroscopic Yang-Mills field, which are similar to the properties of electric and magnetic charges in the Poisson theory. It is shown that in Yang-Mills only one type of charge may be associated with the distribution density of the substance, while another type of charge depends on the charge distribution of the first type. This allows us to provide an explanation for the lack of symmetry between electric and magnetic charges

  18. Does Aluminium Trigger Breast Cancer?

    Directory of Open Access Journals (Sweden)

    Peter Jennrich

    2016-08-01

    Full Text Available Summary. Breast cancer is by far the most common cancer in women in the western world. In 90% of breast cancers, environmental factors are among the causes. The frequency with which the tumour occurs in the outer upper part of the breast has risen with above average rates in recent decades. Aluminium salts as ingredients in deodorants and antiperspirants are being absorbed by the body to a greater extent than hitherto assumed. Their toxicity for healthy and diseased breast tissue cells includes various well-documented pathomechanisms. In the sense of primary and secondary prevention, the cancer-triggering potential of aluminium and its use in anti-perspirant deodorants must be re-evaluated. For the same reason the access to a targeted diagnosis and treatment of aluminium loading must be facilitated.

  19. Performance of a combined capacitor based on ultrafine nickel oxide/carbon nanotubes composite electrodes

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Wang; Yanqiu Cao; Yiqiang Lu; Qiqian Sha; Ji Liang

    2004-01-01

    A new sol-gel process for the preparation of ultrafine nickel hydroxide electrode materials was developed. The composite electrodes consisting of carbon nanotubes and Ni(OH)2 were developed by mixing the hydroxide and carbon nanotubes together in different mass ratios. In order to enhance energy density, a combined type pseudocapacitor/electric double layer capacitor was considered and its electrochemical properties were characterized by cyclic voltammetry and dc charge/discharge test. The combined capacitor shows excellent capacitor behavior with an operating voltage up to 1.6 V in KOH aqueous electrolyte. Stable charge/discharge behaviors were observed with much higher specific capacitance values of 24 F/g compared with that of EDLC (12F/g) by introducing 60% Ni(OH)2 in the anode material. By using the modified anode of a Ni(OH)2/carbon nanotubes composite electrode, the specific capacitance of the cell was less sensitive to discharge current density compared with that of the capacitor employing pure nickel hydroxide as anode. The combined capacitor in this study exhibits high energy density and stable power characteristics.

  20. Electrical behaviour, characteristics and properties of anodic aluminium oxide films coloured by nickel electrodeposition

    OpenAIRE

    Arurault, Laurent; Zamora, Gaël; Vilar, Virginie; Winterton, Peter; Bes, René

    2010-01-01

    Porous anodic films on 1050 aluminium substrate were coloured by AC electrodeposition of nickel. Several experiments were performed at different deposition voltages and nickel concentrations in the electrolyte in order to correlate the applied electrical power to the electrical behaviour, as well as the characteristics and properties of the coatings. The content of nickel inside the coatings reached 1.67 g/m2, depending on the experimental conditions. According to the applied AC voltage in...

  1. A review of electrolyte materials and compositions for electrochemical supercapacitors.

    Science.gov (United States)

    Zhong, Cheng; Deng, Yida; Hu, Wenbin; Qiao, Jinli; Zhang, Lei; Zhang, Jiujun

    2015-11-01

    Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references). PMID:26050756

  2. Quantum, Photo-Electric Single Capacitor Paradox

    CERN Document Server

    Kapor, Darko

    2009-01-01

    In this work single capacitor paradox (a variation of the remarkable two capacitor paradox) is considered in a new, quantum discrete form. Simply speaking we consider well-known usual, photoelectric effect experimental device, i.e. photo electric cell, where cathode and anode are equivalently charged but non-connected. It, obviously, represents a capacitor that initially, i.e. before action of the photons with individual energy equivalent to work function, holds corresponding energy of the electrical fields between cathode and anode. Further, we direct quantum discretely photons, one by one, toward cathode where according to photo-electrical effect electrons discretely, one by one, will be emitted and directed toward anode. It causes discrete discharge of the cell, i.e. capacitor and discrete decrease of the electrical field. Finally, total discharge of the cell, i.e. capacitor, and total disappearance of the electrical field and its energy will occur. Given, seemingly paradoxical, capacitor total energy loss...

  3. Mechanism of Nickel-Aluminium Alloy Electroplating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effect of operating conditions on the aluminium content of Ni-Al alloy deposit and the catalytic function of NaF on electrodeposition in the nonaqueous solution containing aluminium are investigated.The results indicate that the plated aluminuim content will be increased with the rise of current density in a given range.When the current density is 2.5A/dm2,nickle-aluminium alloy containing 13.1 wt% aluminium will be deposited.The plated aluminium content will be increased by 2wt% as 0.1mol/L NaF is added to the bath.

  4. Charging/Safety-Interlock Connection For Capacitor Bank

    Science.gov (United States)

    Rippel, Wally E.

    1990-01-01

    Electrically controlled mechanical interlock apparatus prevents connection of bank of capacitors to battery or other dc power supply until capacitors precharged to nearly full supply voltage. Precharge eliminates excessive inrush current, which damages capacitors, wires, or connectors. Circuit in apparatus also discharges capacitors after power turned off or capacitors disconnected from power supply.

  5. Electrochemical Properties of Nanoporous Carbon Material in Aqueous Electrolytes.

    Science.gov (United States)

    Rachiy, Bogdan I; Budzulyak, Ivan M; Vashchynsky, Vitalii M; Ivanichok, Nataliia Ya; Nykoliuk, Marian O

    2016-12-01

    The paper is devoted to the study of the behavior of capacitor type electrochemical system in the К(+)-containing aqueous electrolytes. Nanoporous carbon material (NCM) was used as the electrode material, obtained by carbonization of plant raw materials with the following chemical activation. Optimization of pore size distribution was carried out by chemical-thermal method using potassium hydroxide as activator. It is shown that obtained materials have high values of capacitance which is realized by charge storage on the electrical double layer and by pseudocapacitive ion storage on the surface of the material. It is established that based on NCM, electrochemical capacitors are stable in all range of current density and material capacity essentially depends on appropriate choice of electrolyte. PMID:26759354

  6. Low-Inductance Capacitor For Low Temperatures

    Science.gov (United States)

    Rhodes, David B.; Jones, Stephen B.; Franke, John M.

    1989-01-01

    Planar capacitor made on epoxy/fiberglass printed-circuit board. Planar design and flat copper plates ensure low inductance and low series resistance. Planar construction minimized effects of thermal contraction, and epoxy/fiberglass substrate ensured high breakdown voltage. Design is simple, and this type of capacitor easy for any printed-circuit-board facility to fabricate. Design suitable for any small-capacitance, high-voltage capacitor, whether operating at low or high temperature.

  7. The tantalum-cased tantalum capacitor

    Science.gov (United States)

    Moynihan, J. D.

    1977-01-01

    Tantalum-cased tantalum capacitors were tested with regard to temperature stability, capacitance ratio, surge current capabilities, shock, vibration, and thermal shock. They were found to be superior to the conventional wet slug tantalum capacitor cased in silver, since they are more resistant to sulfuric acid. The tantalum-cased tantalum capacitors are widely accepted for use in critical electronic equipment because of their excellent performance and reliability.

  8. Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w

  9. Charging Capacitors According to Maxwell's Equations: Impossible

    OpenAIRE

    Funaro, Daniele

    2014-01-01

    The charge of an ideal parallel capacitor leads to the resolution of the wave equation for the electric field with prescribed initial conditions and boundary constraints. Independently of the capacitor's shape and the applied voltage, none of the corresponding solutions is compatible with the full set of Maxwell's equations. The paradoxical situation persists even by weakening boundary conditions, resulting in the impossibility to describe a trivial phenomenon such as the capacitor's charging...

  10. Electrical characterization of thin film ferroelectric capacitors

    OpenAIRE

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D; Keur, W.; J. Schmitz; Hueting, R.J.E.

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon offer a re-use of electronic circuitry, low tuning voltages, a high capacitance density, a low cost, a presence of bulk acoustic wave resonance(s) and decoupling functionality. The basic operation and ...

  11. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    OpenAIRE

    Hojin Choi; Hyeonseok Yoon

    2015-01-01

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, t...

  12. Capacitors with low equivalent series resistance

    Science.gov (United States)

    Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor); Fuge, Mark (Inventor)

    2011-01-01

    An electric double layer capacitor (EDLC) in a coin or button cell configuration having low equivalent series resistance (ESR). The capacitor comprises mesh or other porous metal that is attached via conducting adhesive to one or both the current collectors. The mesh is embedded into the surface of the adjacent electrode, thereby reducing the interfacial resistance between the electrode and the current collector, thus reducing the ESR of the capacitor.

  13. Charging Capacitors According to Maxwell's Equations: Impossible

    CERN Document Server

    Funaro, Daniele

    2014-01-01

    The charge of an ideal parallel capacitor leads to the resolution of the wave equation for the electric field with prescribed initial conditions and boundary constraints. Independently of the capacitor's shape and the applied voltage, none of the corresponding solutions is compatible with the full set of Maxwell's equations. The paradoxical situation persists even by weakening boundary conditions, resulting in the impossibility to describe a trivial phenomenon such as the capacitor's charging process, by means of the standard Maxwellian theory.

  14. The prophylactic reduction of aluminium intake.

    Science.gov (United States)

    Lione, A

    1983-02-01

    The use of modern analytical methods has demonstrated that aluminium salts can be absorbed from the gut and concentrated in various human tissues, including bone, the parathyroids and brain. The neurotoxicity of aluminium has been extensively characterized in rabbits and cats, and high concentrations of aluminium have been detected in the brain tissue of patients with Alzheimer's disease. Various reports have suggested that high aluminium intakes may be harmful to some patients with bone disease or renal impairment. Fatal aluminium-induced neuropathies have been reported in patients on renal dialysis. Since there are no demonstrable consequences of aluminium deprivation, the prophylactic reduction of aluminium intake by many patients would appear prudent. In this report, the major sources of aluminium in foods and non-prescription drugs are summarized and alternative products are described. The most common foods that contain substantial amounts of aluminium-containing additives include some processed cheeses, baking powders, cake mixes, frozen doughs, pancake mixes, self-raising flours and pickled vegetables. The aluminium-containing non-prescription drugs include some antacids, buffered aspirins, antidiarrhoeal products, douches and haemorrhoidal medications. The advisability of recommending a low aluminium diet for geriatric patients is discussed in detail. PMID:6337934

  15. Electrochemical properties and thermal stability of epoxy coatings electrodeposited on aluminium and modified aluminium surfaces

    Directory of Open Access Journals (Sweden)

    ZORICA M. KACAREVIC-POPOVIC

    2001-12-01

    Full Text Available The corrosion behaviour of epoxy coatings electrodeposited on aluminium, as well as on electrochemically and chemically modified aluminium were investigated during exposure to 3 % NaCl. Electrochemical impedance spectroscopy (EIS and thermogravimetric analysis (TGA were used for the determination of the protective properties of epoxy coatings on aluminium, anodized aluminium, phosphatized and chromatized-phosphatized aluminium. The protective properties of epoxy coatings on anodized and chromatized-phosphatized aluminium are significantly improved with respect to the same epoxy coatings on aluminium and phosphatized aluminium: higher values of the pore resitance and charge-transfer resistance, lower values of the coating capacitance, double-layer capacitance and relative permittivity (from EIS smaller amount of absorbed water inside the coating (From TGA. On the other hand, the lower values of the ipdt temperature indicate a lower thermal stability of the epoxy coatings on anodized and chromatized-phosphatized aluminium.

  16. Evaluation of Polymer Hermetically Sealed Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Polymer cathode tantalum capacitors have lower ESR (equivalent series resistance) compared to other types of tantalum capacitors and for this reason have gained popularity in the electronics design community. Their use allows improved performance of power supply systems along with substantial reduction of size and weight of the components used. However, these parts have poor thermal stability and can degrade in humid environments. Polymer hermetically sealed (PHS) capacitors avoid problems related to environmental degradation of molded case parts and can potentially replace current wet and solid hermetically sealed capacitors. In this work, PHS capacitors manufactured per DLA LAM DWG#13030 are evaluated for space applications. Several lots of capacitors manufactured over period from 2010 to 2014 were tested for the consistency of performance, electrical and thermal characteristics, highly accelerated life testing, and robustness under reverse bias and random vibration conditions. Special attention was given to analysis of leakage currents and the effect of long-term high temperature storage on capacitors in as is condition and after hermeticity loss. The results show that PHS capacitors might be especially effective for low-temperature applications or for system requiring a cold start-up. Additional screening and qualification testing have been recommended to assure the necessary quality of capacitors for space projects.

  17. Recovery mechanisms in nanostructured aluminium

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels; Huang, Xiaoxu

    2012-01-01

    Commercial purity aluminium (99.5%) has been cold rolled to a true strain of 5.5 (99.6% reduction in thickness). The material is very strong but low temperature recovery may be a limiting factor. This has been investigated by isothermal annealing treatments in the temperature range 5–100C. Hardness...

  18. Constitutive modelling of aluminium foams

    NARCIS (Netherlands)

    Wang, W.M.; Lemmen, P.P.M.

    2001-01-01

    In this paper an aluminium foam model is proposed for a vehicle crash analysis. The model assumes that there is no coupling between stresses and strains in different principal directions. The stress in each principle direction is then interpolated from an experimental recorded uniaxial stress strain

  19. Microchemistry in aluminium sheet production

    NARCIS (Netherlands)

    Lok, Z.J.

    2005-01-01

    The production of aluminium sheet alloys from as-cast ingots is a complex process, involving several rolling operations in combination with various thermal heat treatments. Through their influence on the alloy microchemistry and microstructure, these thermomechanical treatments are all aimed at cont

  20. Fluoro-Compounds in Electrolytes for Energy Storage Devices

    Institute of Scientific and Technical Information of China (English)

    Makoto; Ue

    2007-01-01

    1 Results Electrochemical energy storage devices such as lithium-ion batteries[1-2] and double-layer capacitors[3-4] have attracted a great deal of attention because of their potential application to electric hybrid vehicles. They utilize nonaqueous electrolyte solutions comprising from organic solvents and lithium or quaternary ammonium salts with fluorine-containing anions. This is because the relatively large anions with electron-withdrawing atoms enable ionic dissociation in dipolar aprotic solvents...

  1. The Capacitive Behaviors of Manganese Dioxide Thin-Film Electrochemical Capacitor Prototypes

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2011-01-01

    Full Text Available We have documented the fabrication of manganese dioxide (MnO2 thin-film electrochemical capacitor (EC prototypes with dual-planar electrode configuration. These EC prototypes exhibited good capacitive behaviors in mild Na2SO4 aqueous electrolyte. Enhanced capacitive behaviors of EC prototypes were observed upon prolonged voltammetric cycling which could be associated with microstructural transformation of MnO2 thin-film electrodes from densely packed plate-like to irregular petal-like surface morphology. Effects of voltammetric scan rates, prolonged voltammetric cycling, electrolyte composition, and electrolyte concentration on the surface morphology of MnO2 thin-film electrodes, and associated capacitive behaviors of MnO2 thin-film EC prototypes were investigated by cyclic voltammetry (CV, electrochemical impedance spectroscopy (EIS, and galvanostatic charge/discharge (GCD techniques. Results of both CV and EIS indicated that thin-film MnO2 EC prototypes exhibited the highest specific capacitance of 327 F/g in 0.2 M Na2SO4 aqueous electrolyte. Being environmentally benign and cheap, MnO2 thin-film electrochemical capacitors have high potential utility as pulsed power sources, as well as load-leveling functions in various consumer electronic devices.

  2. Hybrid carbon nanostructure assemblage for high performance pseudo-capacitors

    Directory of Open Access Journals (Sweden)

    A. K. Mishra

    2012-06-01

    Full Text Available Investigation of novel nanocomposites for pseudo-capacitors with high capacitance and energy density is the spotlight of current energy research. In the present work, hybrid carbon nanostructure assemblage of graphene and multiwalled carbon nanotubes has been used as carbon support to nanostructured RuO2 and polyaniline for high energy supercapacitors. Maximum specific capacitances of 110, 235 and 440 F g−1 at the voltage sweep rate of 10 mV s−1 and maximum energy densities of 7, 12.5 and 20.5 Wh kg−1 were observed for carbon assemblage and its RuO2 and polyanilne decorated nanocomposites, respectively, with 1M H2SO4 as electrolyte.

  3. Capacitor ageing in electronic devices

    Directory of Open Access Journals (Sweden)

    Richard B. N. Vital

    2015-10-01

    Full Text Available The moment when an electronic component doesn’t work like requirements, previously established is a task that need to be considered since began of a system design. However, the use of different technologies, operating under several environmental conditions, makes a component choice a complex step in system design. This paper analyzes the effects that ageing phenomenon of capacitors may introduce in electronic devices operation. For this reason, reliability concepts, processes and mechanism of degradation are presented. Additionally, some mathematical models are presented to assist maintenance activities or component replacement. The presented approach compares the operability of intact and aged components.

  4. Capacitor film surface assessment studies

    Science.gov (United States)

    Galperin, I.; White, W.

    1985-02-01

    In the present investigation of the optical surface of the three widely used, biaxially oriented capacitor films, polypropylene, polyvinylidene fluoride, and polyester, with attention to film surface defects and thickness variation, the defects and their rate of occurrence proved traceable in terms of polymer structure, chemical grouping, and fabrication processing. Film thickness variation was small, yet differed for each film type. Film breakdown voltages have been determined, and alternative causes for the voltage values obtained are proposed. A reciprocal relation is noted between the film breakdown voltage and the dielectric constant.

  5. Soft capacitor fibers using conductive polymers for electronic textiles

    Science.gov (United States)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-11-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60-100 nF m-1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L-1, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage.

  6. Bumblebee pupae contain high levels of aluminium.

    Science.gov (United States)

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer's disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline.

  7. Friction Welding of Aluminium and Aluminium Alloys with Steel

    Directory of Open Access Journals (Sweden)

    Andrzej Ambroziak

    2014-01-01

    Full Text Available The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i microhardness measurements, (ii tensile tests, (iii bending tests, and (iv shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i changing the geometry of bonding surface, (ii using the interlayer, or (iii heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated.

  8. Ultra-thin multilayer capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy Jerome; Monson, Todd C.

    2009-06-01

    The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report details some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.

  9. Microscopic Insights into the Electrochemical Behavior of Non-aqueous Electrolytes in Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Deen [ORNL; Wu, Jianzhong [ORNL

    2013-01-01

    Electric double-layer capacitors (EDLC) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLC with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLC hinges on the judicious selection of the electrode pore size and the electrolyte composition that requires a comprehension of the charging behavior from a microscopic view. In this perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic-liquid and organic-electrolyte EDLC. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

  10. High frequency, high power capacitor development

    Science.gov (United States)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  11. Switched-capacitor isolated LED driver

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Seth R.; Kline, Mitchell

    2016-03-22

    A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.

  12. Modular thyristor controlled series capacitor control system

    Energy Technology Data Exchange (ETDEWEB)

    Clark, K.; Larsen, E.V.; Wegner, C.A.; Piwko, R.J.

    1995-06-13

    A modular thyristor controlled series capacitor (TCSC) system, including a method and apparatus, uses phase controlled firing based on monitored capacitor voltage and line current. For vernier operation, the TCSC system predicts an upcoming firing angle for switching a thyristor controlled commutating circuit to bypass line current around a series capacitor. Each bypass current pulse changes the capacitor voltage proportionally to the integrated value of the current pulse. The TCSC system promptly responds to an offset command from a higher-level controller to control bypass thyristor duty to minimize thyristor damage, and to prevent capacitor voltage drift during line current disturbances. In a multi-module TCSC system, the higher level controller accommodates competing objectives of various system demands, including minimizing losses in scheduling control, stabilizing transients, damping subsynchronous resonance (SSR) oscillations, damping direct current (DC) offset, and damping power-swings. 67 figs.

  13. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hojin Choi

    2015-06-01

    Full Text Available The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013. Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  14. Aluminium and nickel in human albumin solutions

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Sandberg, E

    1989-01-01

    Five different brands of commercially available human albumin solutions for infusion were analysed for their aluminium and nickel contents by atomic absorption spectrometry. The aluminium concentrations ranged from 12 micrograms/l to 1109 micrograms/l and the nickel concentrations ranged from 17...... micrograms/l to 77 micrograms/l. Examination of the aluminium and nickel contents of the constituents for the production of one brand showed too low levels to explain the final contamination of the product. By following the aluminium and nickel concentrations of the same brand during the production...... of a batch of albumin solution, filtration was shown to contribute to contamination, although the largest increase in aluminium as well as nickel concentrations appeared during the bulk concentrating process. To avoid health risks to certain patients, regulations should be established requiring aluminium...

  15. Aluminium in Allergies and Allergen immunotherapy.

    Science.gov (United States)

    Jensen-Jarolim, Erika

    2015-01-01

    Aluminium is a hot topic in the current debate. Exposure occurs due to environmental, dietary and intentional exposure to aluminium, such as in vaccines where it was introduced in 1926. In spite of the fact that it is a typical Th2 adjuvant, aluminium redirects the immune response in systemic allergen immunotherapy (SIT) upon prolonged immunization. SIT in the US, and SLIT in general, are at present non-adjuvanted therapies, but in Europe aluminium is used as adjuvant in most SIT preparations. It enhances the safety of SIT by local deposition of the allergen. Undesired properties of aluminium adjuvants comprise acute and chronic inflammation at the injection site, its Th2 immune stimulatory capacity, its accumulation besides biodistribution in the body. The adjuvant and safety profile of aluminium adjuvants in allergy vaccines are discussed, as well as the need for putting modern delivery systems and adjuvants on the fast track.

  16. Molten salt electrolyte separator

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  17. Dietary aluminium Intake Level for Rent Animals in a Primary and Secondary Aluminium Industry Surrounding Area

    OpenAIRE

    Mărioara Drugă; Alexandru Trif; Mihai Drugă; Ducu Ştef; Ştefan Munteanu

    2010-01-01

    The study was carried out in an aluminium industry surrounding area on purpose to evaluate dietary aluminium intake level for rent animals originated from fodder and water consumed by them. There were taken feed and water samples in different periods and from increasing distances from industrial platform, determined the aluminium level by atomic spectroscopy and calculated the rations for cattle and poultry. Conclusions: aluminium dietary intake level by ration depends by forage period for st...

  18. Does Aluminium Trigger Breast Cancer?

    OpenAIRE

    Peter Jennrich; Claus Schulte-Uebbing

    2016-01-01

    Summary. Breast cancer is by far the most common cancer in women in the western world. In 90% of breast cancers, environmental factors are among the causes. The frequency with which the tumour occurs in the outer upper part of the breast has risen with above average rates in recent decades. Aluminium salts as ingredients in deodorants and antiperspirants are being absorbed by the body to a greater extent than hitherto assumed. Their toxicity for healthy and diseased breast tissue cells includ...

  19. A biogeochemical cycle for aluminium?

    Science.gov (United States)

    Exley, Christopher

    2003-09-15

    The elaboration of biogeochemical cycles for elements which are known to be essential for life has enabled a broad appreciation of the homeostatic mechanisms which underlie element essentiality. In particular they can be used effectively to identify any part played by human activities in element cycling and to predict how such activities might impact upon the lithospheric and biospheric availability of an element in the future. The same criteria were the driving force behind the construction of a biogeochemical cycle for aluminium, a non-essential element which is a known ecotoxicant and a suspected health risk in humans. The purpose of this exercise was to examine the concept of a biogeochemical cycle for aluminium and not to review the biogeochemistry of this element. The cycle as presented is rudimentary and qualitative though, even in this nascent form, it is informative and predictive and, for these reasons alone, it is deserving of future quantification. A fully fledged biogeochemical cycle for aluminium should explain the biospheric abundance of this element and whether we should expect its (continued) active involvement in biochemical evolution.

  20. A bakable aluminium vacuum chamber with an aluminium flange and metal seal for ultrahigh vacuum

    International Nuclear Information System (INIS)

    A bakable (2000C) aluminium alloy vacuum chamber (6063-T6) with an aluminium alloy (2219-T87) flange and metal seal (Helicoflex-HN: aluminium O-ring) has been constructed. Such components may be used in the construction of the vacuum chamber in proton synchrotrons and electron storage rings. (author)

  1. Toxicity of aluminium on five aquatic invertebrates; Aluminiums toksisitet paa 5 akvatiske invertebrater

    Energy Technology Data Exchange (ETDEWEB)

    Moe, J. [Oslo Univ. (Norway)

    1996-01-01

    The conference paper deals with the experiments done by investigating the effects from the toxicity of aluminium on aquatic invertebrates. The aim of the experiments was to compare the toxicity of unstable aluminium compounds with stable forms of aluminium. 8 refs., 2 figs., 2 tabs.

  2. Aluminium in foodstuffs and diets in Sweden.

    Science.gov (United States)

    Jorhem, L; Haegglund, G

    1992-01-01

    The levels of aluminium have been determined in a number of individual foodstuffs on the Swedish market and in 24 h duplicate diets collected by women living in the Stockholm area. The results show that the levels in most foods are very low and that the level in vegetables can vary by a factor 10. Beverages from aluminium cans were found to have aluminium levels not markedly different from those in glass bottles. Based on the results of the analysis of individual foods, the average Swedish daily diet was calculated to contain about 0.6 mg aluminium, whereas the mean content of the collected duplicate diets was 13 mg. A cake made from a mix containing aluminium phosphate in the baking soda was identified as the most important contributor of aluminium to the duplicate diets. Tea and aluminium utensils were estimated to increase the aluminium content of the diets by approximately 4 and 2 mg/day, respectively. The results also indicate that a considerable amount of aluminium must be introduced from other sources. PMID:1542992

  3. Natural gas anodes for aluminium electrolysis in molten fluorides.

    Science.gov (United States)

    Haarberg, Geir Martin; Khalaghi, Babak; Mokkelbost, Tommy

    2016-08-15

    Industrial primary production of aluminium has been developed and improved over more than 100 years. The molten salt electrolysis process is still suffering from low energy efficiency and considerable emissions of greenhouse gases (CO2 and PFC). A new concept has been suggested where methane is supplied through the anode so that the CO2 emissions may be reduced significantly, the PFC emissions may be eliminated and the energy consumption may decrease significantly. Porous carbon anodes made from different graphite grades were studied in controlled laboratory experiments. The anode potential, the anode carbon consumption and the level of HF gas above the electrolyte were measured during electrolysis. In some cases it was found that the methane oxidation was effectively participating in the anode process. PMID:27210046

  4. Polyvinyl alcohol-polystyrene sulphonic acid blend electrolyte for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Selva Kumar, M. [Department of Chemistry, National Institute of Technology Karnataka Surathkal, Srinivasnagar 575025 (India); Bhat, D. Krishna, E-mail: denthaje@gmail.co [Department of Chemistry, National Institute of Technology Karnataka Surathkal, Srinivasnagar 575025 (India)

    2009-05-01

    A new polymer blend electrolyte based on poly vinyl alcohol and poly styrene sulphonic acid has been studied as an electrolyte for supercapcitors. A carbon-carbon supercapacitor has been fabricated using this electrolyte and its electrochemical characteristics and performance have been studied. The conductivity has been calculated using the bulk impedance obtained through impedance spectroscopy. The real and imaginary parts of the electrical modulus of samples show a long tail feature, which can be attributed to high capacitance of the material. The super capacitor showed a fairly good specific capacitance of 40Fg{sup -1} and a time constant of 5 s.

  5. Mechanical and frictional behaviour of nano-porous anodised aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Tsyntsaru, N., E-mail: tintaru@phys.asm.md [Institute of Applied Physics of ASM, 5 Academy str., Chisinau, MD 2028 (Moldova, Republic of); Kavas, B., E-mail: bkavas@ford.com.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469 Maslak (Turkey); Ford Otomotiv San A.S., Istanbul (Turkey); Sort, J., E-mail: jordi.sort@uab.cat [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Urgen, M., E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469 Maslak (Turkey); Celis, J.-P., E-mail: jean-pierre.celis@mtm.kuleuven.be [KU Leuven, Dept. MTM, Kasteelpark Arenberg 44, B-3001 (Belgium)

    2014-12-15

    The porous structure of anodic aluminium oxide (AAO) can be used in versatile applications such as a lubricant reservoir in self-lubricating systems. Such systems are subjected to biaxial loading, which can induce crack formation and propagation, ultimately leading to catastrophic mechanical failure. In this study, the mechanical and tribological behaviour of AAO, prepared from two different types of electrolytes (sulphuric and oxalic acids), are studied in detail. The electrolytic conditions are adjusted to render highly tuneable average pore diameters (between 16 and 75 nm), with porosity levels ranging from 9% to 65%. Well-ordered porous AAO are produced by two-step anodization at rather low temperatures. Mechanical properties, mainly hardness and Young's modulus, are investigated using nanoindentation. Both the porosity degree and the composition of the electrolytic baths used to prepare the AAO have an influence on the mechanical properties. Ball-on-flat configuration was used to estimate the tribological behaviour under dry conditions. No major cracks were observed by scanning electron microscopy, neither after indentation or fretting tests. In the running-in period of tribology experiments the pores were filled with debris. This was followed by the formation of a highly adherent tribolayer – a third body consisting of fine worn particles originated from both the sample and the counterbody. Pore diameter and porosity percentage are found to strongly affect hardness and Young's modulus, but they do not have a major effect on the frictional behaviour. - Highlights: • Well-ordered porous AAO with pore diameters between 16 and 75 nm were produced. • Porosity and composition of electrolytic baths influence the mechanical properties. • Ball-on-flat configuration was used in tribological testing under dry conditions. • Adherent tribolayer consisting of fine worn particles prevents AAO from cracking. • Testing parameters are moreover essential

  6. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  7. Electrochemical characteristics of a carbon fibre composite and the associated galvanic effects with aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z., E-mail: zuojia.liu@gmail.com; Curioni, M.; Jamshidi, P.; Walker, A.; Prengnell, P.; Thompson, G.E.; Skeldon, P.

    2014-09-30

    Highlights: • Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation in NaCl electrolyte. • The exposed carbon fibres on the side and front regions are responsible for a high cathodic current density. • The NaCl + CuSO{sub 4} electrolyte was used to investigate the cathodic polarization behaviour of the exposed carbon fibres. • Galvanic coupling behaviour between the composite and aluminium alloys (AA7075-T6 and AA1050) was measured in NaCl electrolyte. • The higher galvanic current density measured on AA1050 alloy introduced a higher dissolution rate than the AA7075-T6 alloy. - Abstract: The electrochemical behaviour of a carbon fibre reinforced epoxy matrix composite in 3.5% NaCl and 3.5% NaCl + 0.5 M CuSO{sub 4} electrolytes was examined by potentiodynamic polarisation, potentiostatic polarisation and scanning electron microscopy. Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation. The large size of the exposed carbon fibres on the side region is responsible for a higher cathodic current density than the front region in the NaCl electrolyte. The deposition of copper on the front surface of composite confirmed that the significantly higher cathodic current resulted from the exposure of the fibres to the NaCl electrolyte. Galvanic coupling between the composite and individual aluminium alloys (AA7075-T6 and AA1050) was used to measure galvanic potentials and galvanic current densities. The highly alloyed AA7075-T6 alloy and its high population density of cathodic sites compared to the AA1050 acted to reduce the galvanic effect when coupled to the composite front or side regions.

  8. Ferroelectric Memory Capacitors For Neural Networks

    Science.gov (United States)

    Thakoor, Sarita; Moopenn, Alexander W.; Stadler, Henry L.

    1991-01-01

    Thin-film ferroelectric capacitors proposed as nonvolatile analog memory devices. Intended primarily for use as synaptic connections in electronic neural networks. Connection strengths (synaptic weights) stored as nonlinear remanent polarizations of ferroelectric films. Ferroelectric memory and interrogation capacitors combined into memory devices in vertical or lateral configurations. Photoconductive layer modulated by light provides variable resistance to alter bias signal applied to memory capacitor. Features include nondestructive readout, simplicity, and resistance to ionizing radiation. Interrogated without destroying stored analog data. Also amenable to very-large-scale integration. Allows use of ac coupling, eliminating errors caused by dc offsets in amplifier circuits of neural networks.

  9. Aluminium exclusion and aluminium tolerance in woody plants

    OpenAIRE

    Ivano eBrunner; Christoph eSperisen

    2013-01-01

    The aluminium (Al) cation Al3+ is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3+ conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion...

  10. Preparation of aluminium lakes by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Prapai Pradabkham

    2008-07-01

    Full Text Available Aluminium lakes have been prepared by electrocoagulation employing aluminium as electrodes. The electrocoagulation is conducted in an aqueous alcoholic solution and is completed within one hour. The dye content in the lake ranges approximately between 4-32%.

  11. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    Science.gov (United States)

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  12. Acoustic properties of aluminium foams

    Directory of Open Access Journals (Sweden)

    García, L. E.

    2008-09-01

    Full Text Available The article discusses normal incidence sound absorption by aluminium foam manufactured with powder metallurgy technology. Aluminium foams with different surface morphologies were obtained by varying the type of precursor and adding filler materials during the foaming process. The sound absorption coefficients found for these aluminium foams were compared to the coefficient for commercial foams marketed under the name ALPORAS. The effect of foam thickness on the absorption coefficient was studied for each sample prepared. The combination of good acoustic and mechanical properties makes aluminium foams particularly attractive products. The study included an analysis of the effect of 2-, 5- and 10-cm air gaps on the sound absorption coefficient. The results showed that such gaps, which are routinely used in construction to reduce the reverberation period in indoor premises, raised the low frequency absorption coefficient significantly. This increase was found to depend on aluminium foam density and thickness and the depth of the air gap. In this same line, we have investigated the absorption coefficient of the aluminium foams combined with a mineral fiber panel.Se presenta un estudio del coeficiente de absorción acústica a incidencia normal de espumas de aluminio fabricadas mediante la técnica pulvimetalúrgica. Se fabricaron espumas de aluminio de distinta morfología superficial variando el tipo de precursor y usando materiales de relleno durante el proceso de espumación. Se muestra un estudio comparativo del coeficiente de absorción acústica de las espumas de aluminio fabricadas y las espumas comerciales conocidas como ALPORAS. Para cada muestra fabricada se estudió la influencia del espesor sobre el valor del coeficiente de absorción.El atractivo de las espumas de aluminio radica en que en ellas se combinan interesantes propiedades acústicas y mecánicas. Se analizó el efecto de una cámara de aire de 2, 5 y 10 cm de anchura sobre el

  13. Ultra fine tantalum powder for advanced capacitors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Ultra fine tantalum and niobium powders are applicable in many areas of engineering. Of particular significance are high purity powders that are usable in production of high capacitance capacitors and superconductors.

  14. Ultra fine tantalum powder for advanced capacitors

    Institute of Scientific and Technical Information of China (English)

    Nebera; A.; Markusbkin; Yu.; Azarov; V.; Ermolaev; N.

    2005-01-01

    Ultra fine tantalum and niobium powders are applicable in many areas of engineering. Of particular significance are high purity powders that are usable in production of high capacitance capacitors and superconductors.……

  15. Recent series capacitor applications in North America

    Energy Technology Data Exchange (ETDEWEB)

    Miske, S.A.; Lang, R.J.; Rowe, S.D. [Canadian General Electric Co. Ltd., Toronto, ON (Canada); Bilodeau, P.; Granger, M. [Hydro-Quebec, Montreal, PQ (Canada)

    1995-12-31

    Equipment used in three recent installations of series capacitors were reported on. Each set of equipment was designed to serve markedly different objectives. The first design discussed was that of the twelve series capacitor banks installed on the Hydro-Quebec 735 kV transmission system as part of a program to increase the system reliability of the power flow from James Bay to Montreal. The second was the unique series capacitors installed on the Hydro-Quebec 735 kV and 315 kV transmission systems solely for the purpose of blocking direct current. The third design discussed was the world`s first and only EHV three-phase multi-module thyristor-controlled series capacitor (TCSC) installed at the 500 kV Slatt Substation of the Bonneville Power Administration. This project has demonstrated the impressive power system swing and subsynchronous resonance damping capabilities of this technology. 3 refs., 15 figs.

  16. Automated Test Stand for HEV Capacitor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Seiber, Larry Eugene [ORNL; Armstrong, Gary [Maverick Systems

    2007-01-01

    As capacitor manufacturers race to meet the needs of the hybrid-electric vehicle (HEV) of the future, many trade-offs at the system level as well as the component level must be considered. Even though the ultra-capacitor has the spot light for recent research and development (R&D) for HEVs, the electrostatic capacitor is also the subject of R&D (for HEVs as well as wireless communications). The Department of Energy has funded the Oak Ridge National Laboratory's Power Electronic and Electric Machinery Research Center to develop an automated test to aid in the independent testing of prototype electrostatic capacitors. This paper describes the design and development of such a stand.

  17. Thermal simulation for geometric optimization of metallized polypropylene film capacitors

    OpenAIRE

    El-Husseini, M.,; VENET, Pascal; Rojat, Gérard; Joubert, Charles

    2002-01-01

    In this paper, we use an analytic model to calculate the losses in the metallized polypropylene film capacitors. The model is validated experimentally for capacitors having the same capacitance but different geometry. For each group of capacitors a temperature distribution in the roll is assumed with the aim of optimizing its thermal performance. It appears that the heating of a long capacitor is higher than that of an equivalent flat capacitor subjected to the same electric stresses.

  18. Study on the treatment of photovoltaic wastewater using electrocoagulation: fluoride removal with aluminium electrodes--characteristics of products.

    Science.gov (United States)

    Drouiche, N; Aoudj, S; Hecini, M; Ghaffour, N; Lounici, H; Mameri, N

    2009-09-30

    In this work, treatment of synthetic fluoride-containing solutions by electrocoagulation method using aluminium electrodes has been studied. Electrocoagulation was investigated for applied potential (10-30 V), electrolysis time and supporting electrolyte (NaCl) concentration (0-100mg/L). The results showed that with increasing applied potential and electrolysis time, the Al(3+) dosage increases, and thereby favouring the fluoride ions removal. It was also observed that defluoridation is dependant on the concentration of supporting electrolyte. Finally, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy of X-rays and Fourier transform infrared spectroscopy were used to characterize the solid products formed by aluminium electrodes during the EC process.

  19. Study on the treatment of photovoltaic wastewater using electrocoagulation: Fluoride removal with aluminium electrodes-Characteristics of products

    Energy Technology Data Exchange (ETDEWEB)

    Drouiche, N., E-mail: nadjibdrouiche@yahoo.fr [Silicon Technology Development Unit (UDTS), 2, Bd Frantz Fanon BP140, Alger-7-merveilles, 16200 (Algeria); Laboratory of Environmental Biotechnologies, Ecole Polytechnique d' Alger - 10, Avenue Pasteur El-Harrach (Algeria); Aoudj, S.; Hecini, M. [Silicon Technology Development Unit (UDTS), 2, Bd Frantz Fanon BP140, Alger-7-merveilles, 16200 (Algeria); Ghaffour, N. [Middle East Desalination Research Center, P.O. Box 21, P.C.133, Muscat (Oman); Lounici, H.; Mameri, N. [Laboratory of Environmental Biotechnologies, Ecole Polytechnique d' Alger - 10, Avenue Pasteur El-Harrach (Algeria)

    2009-09-30

    In this work, treatment of synthetic fluoride-containing solutions by electrocoagulation method using aluminium electrodes has been studied. Electrocoagulation was investigated for applied potential (10-30 V), electrolysis time and supporting electrolyte (NaCl) concentration (0-100 mg/L). The results showed that with increasing applied potential and electrolysis time, the Al{sup 3+} dosage increases, and thereby favouring the fluoride ions removal. It was also observed that defluoridation is dependant on the concentration of supporting electrolyte. Finally, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy of X-rays and Fourier transform infrared spectroscopy were used to characterize the solid products formed by aluminium electrodes during the EC process.

  20. Analytical study, by modelling methods, of the alkali and alkaline earth cations influence on the stability and the reactivity of aluminium (III) oxides or halides complexes; Etude analytique, par des techniques de modelisation, de l`influence de cations alcalins ou alcalino-terreux sur la stabilite et la reactivite de complexes de l`aluminium(III) avec des ions halogenures ou oxydes

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F.

    1995-10-05

    The electric power consumption in aluminium production and electrorefining processes is high. A study of the electrochemical processes can be very useful for a better understanding of phenomena in electrolytic baths and then for reducing the production costs. A structural and vibrational analysis of species which exist in ionic solutions has been carried out with software based on the functional density theory. Concerning the electrolyte used for the aluminium refining, the anions study has shown that the aluminium chloro-fluoride complexes are preferentially tetrahedral. Moreover, the aluminium oxyfluoride complexes structures (which come from the alumina dissolution in cryolitic media) have been analyzed in the same way and the preferential coordination numbers for aluminium and oxygen have been shown clearly. The anionic model (which is limited to the nearest aluminium neighbours) does not allow to account for the thermodynamics of the cryolitic media. A more elaborated model has then been found to obtain the cryolite structure. The reactions enthalpies have been estimated and have lead to the calculus of species concentration gradients in liquid phase. The counterions effects as for instance sodium and calcium have been investigated. A model for the gaseous phase allowing to know the preferential species has been given. At last, a statistic thermochemistry program has been conceived and developed. It gives the thermodynamical functions at all temperature for the different complexes and allows to reckon the reactions coefficients in gaseous phase as well as the partial pressures profiles with those of calcium and sodium fluorides. (O.M.) 204 refs.

  1. Definite Solution of the Two Capacitors Paradox

    CERN Document Server

    Pankovic, Vladan

    2009-01-01

    In this work we suggest very simple solution of the two capacitors paradox in the completely ideal (without any electrical resistance or inductivity) electrical circuit. Namely, it is shown that electrical field energy loss corresponds to works done by electrical fields of both capacitors by movement of the electrical charge. It is all and nothing more (some dissipative processes, e.g. Joule heating and electromagnetic wave emission effects) is necessary.

  2. Anisotropic magnetocapacitance in ferromagnetic-plate capacitors

    Science.gov (United States)

    Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.

    2015-04-01

    The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.

  3. Transmission Line Resonator Segmented with Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2016-01-01

    Transmission line resonators are often used as coils in high field MRI. Due to distributed nature of such resonators, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the resonator. The equations for optimal...... values of evenly distributed capacitors are presented. The performances of the segmented resonator and a regular transmission line resonator are compared....

  4. Effect of Reverse Bias Stress on Leakage Currents and Breakdown Voltages of Solid Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2011-01-01

    The majority of solid tantalum capacitors are produced by high-temperature sintering of a fine tantalum powder around a tantalum wire followed by electrolytic anodization that forms a thin amorphous Ta2O5 dielectric layer and pyrolysis of manganese nitrite on the oxide to create a conductive manganese dioxide electrode. A contact to tantalum wire is used as anode terminal and to the manganese layer as a cathode terminal of the device. This process results in formation of an asymmetric Ta -- Ta2O5 -- MnO2 capacitor that has different characteristics at forward (positive bias applied to tantalum) and reverse (positive bias applied to manganese cathode) voltages. Reverse bias currents might be several orders of magnitude larger than forward leakage currents so I-V characteristics of tantalum capacitors resemble characteristics of semiconductor rectifiers. Asymmetric I-V characteristics of Ta -- anodic Ta2O5 systems have been observed at different top electrode materials including metals, electrolytes, conductive polymers, and manganese oxide thus indicating that this phenomenon is likely related to the specifics of the Ta -- Ta2O5 interface. There have been multiple attempts to explain rectifying characteristics of capacitors employing anodic tantalum pentoxide dielectrics. A brief review of works related to reverse bias (RB) behavior of tantalum capacitors shows that the mechanism of conduction in Ta -- Ta2O5 systems is still not clear and more testing and analysis is necessary to understand the processes involved. If tantalum capacitors behave just as rectifiers, then the assessment of the safe reverse bias operating conditions would be a relatively simple task. Unfortunately, these parts can degrade with time under reverse bias significantly, and this further complicates analysis of the I-V characteristics and establishing safe operating areas of the parts. On other hand, time dependence of reverse currents might provide additional information for investigation of

  5. Studies on Recast-layer in EDM using Aluminium Powder Mixed Distilled Water Dielectric Fluid

    Directory of Open Access Journals (Sweden)

    Khalid Hussain Syed

    2013-04-01

    Full Text Available In this paper, an attempt has been made to study the effect of aluminium powder when mixed in the distilled water dielectric fluid. The work and tool electrode materials used are W300 diesteel and electrolytic copper respectively. Pulse peak current, pulse on-time and concentration of aluminium powder are taken as the process parameters. The output response considered is white layer thickness (WLT. The experiments are planned using face centered central composite design procedure. Empirical model is developed for WLT using response surface methodology (RSM to study the effect ofprocess parameters. Optical microscopy results show that low thickness of white-layer 17.14 μm is obtained at high concentration of powder of 4 g/l and low peak current of 6 A.

  6. A Reaction Coating on Aluminium Alloys by Laser Processing

    NARCIS (Netherlands)

    Zhou, X.B.; Hosson, J.Th.M. De

    1993-01-01

    An aluminium oxide layer of 100 µm in thickness has been successfully coated on aluminium alloy 6061 and pure aluminium using a powder mixture of silicon oxide and aluminium by laser processing. A strong Al/Al2O3 interface was formed. The exothermic chemical reaction between SiO2 and Al may promote

  7. Shot peening of aluminium alloys

    International Nuclear Information System (INIS)

    Shot peening is a process of cold-hammering where a metallic surface is pelted with spherical grains. Each grain bumping into the surface acts as a hammer head and creates a small crater. The overlapping of these craters produces a residual compression layer just underneath the surface. It is well known that cracks cannot spread in a compression zone. In most cases of fatigue rupture and stress corrosion cracks propagate from the surface towards the inside so shot peening allows a longer lifetime of castings. Moreover most materials present a better resistance due to the cold-hammering effect of shot peening. Metallic surfaces can be treated in workshops or directly on site. Typical pieces that undergo shot peening on site are storing tanks, gas and steam turbines, tubes of steam generators and piping in oil or nuclear or chemical industries. This article describes shot peening from a theoretical and general point of view and presents the application to aluminium-lithium alloys. In the case of aluminium alloys shot peening can be used to shape the piece (peen-forming). (A.C.)

  8. Investigation of the charging characteristics of micrometer sized droplets based on parallel plate capacitor model.

    Science.gov (United States)

    Zhang, Yanzhen; Liu, Yonghong; Wang, Xiaolong; Shen, Yang; Ji, Renjie; Cai, Baoping

    2013-02-01

    The charging characteristics of micrometer sized aqueous droplets have attracted more and more attentions due to the development of the microfluidics technology since the electrophoretic motion of a charged droplet can be used as the droplet actuation method. This work proposed a novel method of investigating the charging characteristics of micrometer sized aqueous droplets based on parallel plate capacitor model. With this method, the effects of the electric field strength, electrolyte concentration, and ion species on the charging characteristics of the aqueous droplets was investigated. Experimental results showed that the charging characteristics of micrometer sized droplets can be investigated by this method.

  9. Determining water content in activated carbon for double-layer capacitor electrodes

    Science.gov (United States)

    Egashira, Minato; Izumi, Takuma; Yoshimoto, Nobuko; Morita, Masayuki

    2016-09-01

    Karl-Fisher titration is used to estimate water contents in activated carbon and the distribution of impurity-level water in an activated carbon-solvent system. Normalization of the water content of activated carbon is attempted using vacuum drying after immersion in water was controlled. Although vacuum drying at 473 K and 24 h can remove large amounts of water, a substantial amount of water remains in the activated carbon. The water release to propylene carbonate is less than that to acetonitrile. The degradation of capacitor cell capacitance for activated carbon with some amount of water differs according to the electrolyte solvent type: acetonitrile promotes greater degradation than propylene carbonate does.

  10. Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors

    Directory of Open Access Journals (Sweden)

    Tsubasa Funabashi

    2013-09-01

    Full Text Available A novel thin, wood-based carbon material with heterogeneous pores, film of lignocellulosic carbon material (FLCM, was successfully fabricated by carbonizing softwood samples of Picea jezoensis (Jezo spruce. Simultaneous increase in the specific surface area of FLCM and its affinity for electrolyte solvents in an electric double-layer capacitor (EDLC were achieved by the vacuum ultraviolet/ozone (VUV/O3 treatment. This treatment increased the specific surface area of FLCM by 50% over that of original FLCM. The results obtained in this study confirmed that FLCM is an appropriate self-supporting EDLC electrode material without any warps and cracks.

  11. Effect of acid oxidization of carbon nanotube electrode on the capacitances of double layer capacitors

    Institute of Scientific and Technical Information of China (English)

    LI; Chensha; WANG; Dazhi; LIANG; Tongxiang; WANG; Xiaofen

    2004-01-01

    Polarizable electrode of electric double layer capacitor was made from carbon nanotubes. The effect of acid oxidation of electrode on the specific capacitance was studied. Oxidation removed the redundant carbon, expanded the pore size and introduced some kinds of functional groups on the surface of CNTs. The specific capacit ance of the electrodes with organic electrolyte was increased from 21.4 to 49.6 F/gafter being oxidized at a volume ratio of H2SO4 to HNO3 of 3:1.

  12. Superconcentrated electrolytes for a high-voltage lithium-ion battery.

    Science.gov (United States)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-01-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li(+) ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety. PMID:27354162

  13. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    Science.gov (United States)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-01-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety. PMID:27354162

  14. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    Science.gov (United States)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-06-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety.

  15. Epoxy coatings electrodeposited on aluminium and modified aluminium surfaces

    Directory of Open Access Journals (Sweden)

    Lazarević Zorica Ž.

    2002-01-01

    Full Text Available The corrosion behaviour and thermal stability of epoxy coatings electrodeposited on modified aluminum surfaces (anodized, phosphatized and chromatized-phosphatized aluminium were monitored during exposure to 3% NaCl solution, using electrochemical impedance spectroscopy (EIS and thermogravimetric analysis (TGA. Better protective properties of the epoxy coatings on anodized and chromatized-phosphatized aluminum with respect to the same epoxy coatings on aluminum and phosphatized aluminum were obtained: higher values of Rp and Rct and smaller values of Cc and Cd, from EIS, and a smaller amount of absorbed water inside the coating, from TGA. On the other hand, a somewhat lower thermal stability of these coatings was obtained (smaller values of the ipdt temperature. This behavior can be explained by the less porous structure of epoxy coatings on anodized and chromatized-phosphatized aluminum, caused by a lower rate of H2 evolution and better wet ability.

  16. Laser welding of copper and aluminium battery interconnections

    Science.gov (United States)

    De Bono, Paola; Blackburn, Jon

    2015-07-01

    The adoption of lithium-ion and/or super-capacitor battery technologies is a current hot topic in the automotive industry. For both battery types, the terminals and busbars are manufactured from copper (Cu) and/or aluminium-based (Al-based) alloys, as a result of their high electrical and thermal conductivities. Laser welding is considered an attractive process to industry due to its easy automotability, high processing speed and highly repeatable cost-effective processing. However, laser welding of Cu-Cu and Al-Al joints presents several difficulties due to the high surface reflectivity at infrared (IR) wavelengths. This behaviour becomes even more critical when processing thin sheets and foils.This paper summarises recent work performed to develop laser welding techniques suitable for monometallic joining of Cu-Cu and Al-Al electrical interconnections. Laser welding of multiple overlapped foils (with thickness in the range of 17μm-100μm) were investigated.

  17. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    Science.gov (United States)

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-10-01

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  18. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  19. Refractory oxides containing aluminium and barium

    OpenAIRE

    Davies T.J.; Biedermann M.; Q-G. Chen; Emblem H. G.; Al-Douri W. A.

    1998-01-01

    Oxides containing aluminium and barium, optionally with chromium, are refractory with several possible industrial uses. A gel precursor of an oxide having the formula BaO.n(Al2xCr2yO3), where 1aluminium salt or a solution of an aluminium salt and a chromium III salt, then forming a gel which was fired to obtain the desired oxide. Filaments may be drawn as the gel is forming or extr...

  20. Fabrication of Poly (methyl methacrylate) and Poly(vinyl alcohol) Thin Film Capacitors on Flexible Substrates

    Science.gov (United States)

    Salim, Bindu; Meenaa Pria KNJ, Jaisree; Alagappan, M.; Kandaswamy, A.

    2015-11-01

    Flexible electronics is becoming more popular with introduction of more and more organic conducting materials and processes for making thin films. The use of polymers as gate dielectric has over ruled the usage of conventional inorganic oxides in Organic Thin Film Transistors (OTFTs) on account of its solution process ability and ease of making highly insulating thin film. In this work Capacitance is fabricated with polymeric dielectrics namely poly (methyl methacrylate) - PMMA and poly (vinyl alcohol) - PVA. The electrodes used for these capacitors are Indium Tin Oxide (ITO) and Aluminium. Capacitance value of 9.5nF/cm2 and 33.12nF/cm2 is achieved for thickness of 510 nm of PMMA and 80 nm of PVA respectively. This study on capacitance can be used for assessing the suitability of these polymers as gate insulators in OTFTs.

  1. High-Temperature Capacitor Polymer Films

    Science.gov (United States)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  2. Comparative studies of thin film growth on aluminium by AFM, TEM and GDOES characterization

    Science.gov (United States)

    Qi, Jiantao; Thompson, George E.

    2016-07-01

    In this present study, comparative studies of trivalent chromium conversion coating formation, associated with aluminium dissolution process, have been investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and glow-discharge optical emission spectroscopy (GDOES). High-resolution electron micrographs revealed the evident and uniform coating initiation on the whole surface after conversion treatment for only 30 s, although a network of metal ridges was created by HF etching pre-treatment. In terms of conversion treatment process on electropolished aluminium, constant kinetics of coating growth, ∼0.30 ± 0.2 nm/s, were found after the prolonged conversion treatment for 600 s. The availability of electrolyte anions for coating deposition determined the growth process. Simultaneously, a proceeding process of aluminium dissolution during conversion treatment, of ∼0.11 ± 0.02 nm/s, was found for the first time, indicating constant kinetics of anodic reactions. The distinct process of aluminium consumption was assigned with loss of corrosion protection of the deposited coating material as evidenced in the electrochemical impedance spectroscopy. Based on the present data, a new mechanism of coating growth on aluminium was proposed, and it consisted of an activation period (0-30 s), a linear growth period (0.30 nm/s, up for 600 s) and limited growth period (0.17 nm/s, 600-1200 s). In addition, the air-drying post-treatment and a high-vacuum environment in the microscope revealed a coating shrinkage, especially in the coatings after conversion treatments for longer time.

  3. Dietary aluminium Intake Level for Rent Animals in a Primary and Secondary Aluminium Industry Surrounding Area

    Directory of Open Access Journals (Sweden)

    Mărioara Drugă

    2010-05-01

    Full Text Available The study was carried out in an aluminium industry surrounding area on purpose to evaluate dietary aluminium intake level for rent animals originated from fodder and water consumed by them. There were taken feed and water samples in different periods and from increasing distances from industrial platform, determined the aluminium level by atomic spectroscopy and calculated the rations for cattle and poultry. Conclusions: aluminium dietary intake level by ration depends by forage period for studied species, rations structure and distance from industrial platform and didn’t reach toxic level in any case.

  4. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.

    Science.gov (United States)

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2008-01-01

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbon materials and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (50 nm) at which pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, which show the significant effects of pore curvature on the supercapacitor properties of nanoporous carbon materials. It is shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials, including activated carbon materials, template carbon materials, and novel carbide-derived carbon materials, and with diverse electrolytes, including organic electrolytes, such as tetraethylammonium tetrafluoroborate (TEABF(4)) and tetraethylammonium methylsulfonate (TEAMS) in acetonitrile, aqueous H(2)SO(4) and KOH electrolytes, and even an ionic liquid electrolyte, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size It may lend support for the systematic optimization of the properties of carbon supercapacitors through experiments. On the basis of the insight

  5. BioCapacitor--a novel category of biosensor.

    Science.gov (United States)

    Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ferri, Stefano; Nakayama, Daisuke; Tomiyama, Masamitsu; Ikebukuro, Kazunori; Sode, Koji

    2009-03-15

    This research reports on the development of an innovative biosensor, known as BioCapacitor, in which biological recognition elements are combined with a capacitor functioning as the transducer. The analytical procedure of the BioCapacitor is based on the following principle: a biocatalyst, acting as a biological recognition element, oxidizes or reduces the analyte to generate electric power, which is then charged into a capacitor via a charge pump circuit (switched capacitor regulator) until the capacitors attains full capacity. Since the charging rate of the capacitor depends on the biocatalytic reaction of the analyte, the analyte concentration can be determined by monitoring the time/frequency required for the charge/discharge cycle of the BioCapacitor via a charge pump circuit. As a representative model, we constructed a BioCapacitor composed of FAD-dependent glucose dehydrogenase (FADGDH) as the anodic catalyst, and attempted a glucose measurement. Charge/discharge frequency of the BioCapacitor increased with the increasing glucose concentration, exhibiting good correlation with glucose concentration. We have also constructed a wireless sensing system using the BioCapacitor combined with an infrared light emitting diode (IRLED), an IR phototransistor system. In the presence of glucose, the IRLED signal was observed due to the discharge of the BioCapacitor and detected by an IR phototransistor in a wireless receiver. Therefore, a BioCapacitor employing FADGDH as its anodic catalyst can be operated as a self-powered enzyme sensor. PMID:19013784

  6. Aluminium Process Fault Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Nazatul Aini Abd Majid

    2015-01-01

    Full Text Available The challenges in developing a fault detection and diagnosis system for industrial applications are not inconsiderable, particularly complex materials processing operations such as aluminium smelting. However, the organizing into groups of the various fault detection and diagnostic systems of the aluminium smelting process can assist in the identification of the key elements of an effective monitoring system. This paper reviews aluminium process fault detection and diagnosis systems and proposes a taxonomy that includes four key elements: knowledge, techniques, usage frequency, and results presentation. Each element is explained together with examples of existing systems. A fault detection and diagnosis system developed based on the proposed taxonomy is demonstrated using aluminium smelting data. A potential new strategy for improving fault diagnosis is discussed based on the ability of the new technology, augmented reality, to augment operators’ view of an industrial plant, so that it permits a situation-oriented action in real working environments.

  7. Deformation features of aluminium in tensile tests

    International Nuclear Information System (INIS)

    It is presented a method to analyse stress-strain curves. Plastic and elastic strains were studied. The strains were done by tensile tests in four types of materials: highly pure aluminium, pure aluminium, commercially pure aluminium and aluminium - uranium. The chemical compositions were obtained by spectroscopy analysis and neutron activation analysis. Tensile tests were carried out at three strain rates, at room temperature, 100,200, 300 and 4000C, with knives extensometer and strain-gages to studied the elastic strain region. A multiple spring model based on two springs model to analyse elastic strain caused by tests without extensometers, taking in account moduli of elasticity and, an interactive analysis system with graphic capability were developed. It was suggested a qualitative model to explain the quantized multielasticity of Bell. (M.C.K.)

  8. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    , crystalline nano-particles, role of steam-based treatment on adhesion of industrially applied powder coating, and investigations of a failed painted aluminium window profile due to defects in the extruded profile. Chapters 13 and 14 describe the overall discussion, conclusions and future work based......The extensive demand of aluminium alloys in various industries such as in transportationis mainly due to the high strength to weight ratio, which could be translated into fuel economy and efficiency. Corrosion protection of aluminium alloys is an important aspect for all applications which includes...... the use of aluminium alloys in the painted form requiring a conversion coating to improve the adhesion. Chromate based conversion coating processes are extremely good for these purposes, however the carcinogenic and toxic nature of hexavalent chromium led to the search for more benign and eco...

  9. Steam generated conversion coating on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    and growth of oxide film on different intermetallic particles and corrosion behaviour of such alloys.Surface morphology was observed by using FEG-SEM, EDX and FIB-SEM. Metal oxide surface characterization and compositional depth profiling were investigated by using XPS and GD-OES respectively......Aluminium and its alloys are widely used in aerospace industry owing to their high strength to weight ratio. The surface of aluminium under normal conditions has a thin oxide film (2.5-10 nm) responsible for its inherent corrosion resistance. This oxide film can further be converted or transformed......) depending on the preparation parameters/conditions. Moreover, with the knowledge of factors controlling film growth, composition and morphology, such oxide layers carry huge potential for practical applications. Pure aluminium (AA1090, 99.94 wt. %) and other aluminium alloy surfaces were exposed to high...

  10. Shear Viscosity of Aluminium under Shock Compression

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-Sheng; YANG Mei-Xia; LIU Qi-Wen; CHEN Jun-Xiang; JING Fu-Qian

    2005-01-01

    @@ Based on the Newtonian viscous fluid model and the analytic perturbation theory of Miller and Ahrens for the oscillatory damping of a sinusoidal shock front, a flyer-impact technique is developed to investigate the effecti veviscosity of shocked aluminium.

  11. Bone marrow aluminium storage in renal failure.

    OpenAIRE

    Kaye, M.

    1983-01-01

    Using the staining method for aluminium with the ammonium salt of aurine tricarboxylic acid, aluminon, 18 patients with end stage renal disease gave positive reactions in iliac crest bone biopsies and 11 of these had positive staining in the bone marrow. In one the marrow was positive and the bone negative. The marrow reaction is putatively regarded as caused by aluminium storage in unidentified cells, possibly of the macrophage system which are strongly fluorescent when examined after prior ...

  12. DETERMINATION OF IMPURITY ELEMENTS IN ALUMINIUM

    Institute of Scientific and Technical Information of China (English)

    侯小琳; 张永保

    1994-01-01

    Twenty five impurity elements in aluminium applied as reactor material are determined.Titanium and nickel are determined with epithermal neutron activation analysis(NAA),magnesium and silicon by inductance coupling plasma emission spectra(ICP),other elements by thermal NAA.The fission coefficient of uranium is given by an experiment,the interferences of uranium to Ce,Nd,Mo,Zr,La,Sm are subtracted.The detection limits of these methods to all of impurity elements in aluminium are calculated.

  13. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...... of structures which would otherwise be difficult to mold. The resistance of the coated aluminium mold is significantly improved by applying a silane-based coating layer....

  14. Electrical Conductivity of Aluminium Alloy Foams

    Institute of Scientific and Technical Information of China (English)

    凤仪; 郑海务; 朱震刚; 祖方遒

    2002-01-01

    Closed-cell aluminium alloy foams were produced using the powder metallurgical technique. The effect of porosityand cell diameter on the electrical conductivity of foams was investigated and the results were compared with anumber of models. It was found that the percolation theory can be successfully applied to describe the dependenceof the electrical conductivity of aluminium alloy foams on the relative density. The cell diameter has a negligibleeffect on the electrical conductivity of foams.

  15. The Paradox of Two Charged Capacitors

    CERN Document Server

    Singal, Ashok K

    2013-01-01

    It is shown that the famous paradox of two charged capacitors is successfully resolved if one properly considers all the energy changes in the system when some of the charges are transferred from one capacitor to the other. It happens so even when the connecting wire has an identically zero resistance, giving rise to no Ohmic losses in the wire. It is shown that in such a case the "missing energy" goes into the kinetic energy of conducting charges. It is shown that radiation plays no significant role in resolving the paradox. The problem can also be formulated and successfully resolved in an alternate form, without involving connecting wires in a circuit.

  16. Printed Barium Strontium Titanate capacitors on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sette, Daniele [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg); Kovacova, Veronika [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, Emmanuel, E-mail: emmanuel.defay@list.lu [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg)

    2015-08-31

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography.

  17. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  18. Electric field mapping inside metallized film capacitors

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    Failure mode and effect analysis (FMEA) is an important step in the reliability assessment process of electric components. It provides knowledge of the physics of failure of a component that has been subjected to a given stress profile. This knowledge enables improvement of the component robustness...... of the metallization stripes had lost contact to the end-spray. Thus, it is shown that the surface electric potential distributions on micro-sectioned film capacitors can be obtained through KPFM analysis. We have, from KPFM measurements, shown that the degraded capacitors under investigation had suffered from...

  19. Wide Temperature DC Link Capacitors for Aerospace Power Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop advanced DC link capacitors using flexible ultrathin glass dielectric materials. The glass capacitor will be able to be operated in a...

  20. Ongoing characterization of passivated aluminium nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Q.S.M.; Fouchard, R.C.; Turcotte, A-M.; Abdel-Qader, Z.; Jones, D.E.G. [Natural Resources Canada, CANMET, Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2002-04-01

    For characterization, the thermal behaviour of two aluminium nanopowders - Alss and Alssef - in air was determined using differential scanning calorimetry (DSC), simultaneous thermogravimetry-DTA (TG-DTA) and accelerating rate calorimetry (ARC). Alss and Alssef were found to be less reactive to air than previously determined for Als And Alex, possibly due to their thicker and different type of passivating layer. Stability determination for Alss and Alssef in a wet oxidizing environment was carried out using ARC, whereas outgassing behaviour of mixtures of ammonium dinitramide (ADN) and the various aluminium powders was investigated using TG-DTA-FTIR-MS (Fourier Transform Infrared Spectrometry-Mass Spectrometry). The addition of various aluminium powders resulted in only minimal effect on the thermal stability of ADN. Electrostatic discharge, friction sensitivities of ADN and its mixtures with various aluminium powders, and thermal stability and sensitivity of mixtures of nano-sized molybdenum trioxide with aluminium nanopowders were also studied. The electrostatic discharge sensitivity of molybdenum trioxide was shown to increase by the addition of aluminium nanopowders. 23 refs., 5 tabs., 7 figs.

  1. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Eun; Bae, Ga Yeong; Yang, Jeong Min; Lee, Jong Dae [Chungbuk National Univ., Chungju (Korea, Republic of)

    2013-06-15

    Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m{sup 2}/g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn{sub 2}O{sub 4}, LiCoO{sub 2} as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF{sub 6}, TEABF{sub 4}) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn{sub 2}O{sub 4}/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

  2. Synthesis of boron/nitrogen substituted carbons for aqueous asymmetric capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Tomko, Timothy [Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Rajagopalan, Ramakrishnan, E-mail: rur12@psu.edu [Materials Research Institute, Pennsylvania State University, 270 MRL Bldg., University Park, PA 16802 (United States); Aksoy, Parvana [Energy Institute, Pennsylvania State University, University Park, PA 16802 (United States); Foley, Henry C. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-06-01

    Highlights: > Synthesis of highly substituted boron and nitrogen containing carbons (BCN) for ultracapacitor applications. > Evidence for strong electroadsorption of protons on BCN. > Increased specific capacitance per unit area and improved cell voltage in aqueous asymmetric capacitors. - Abstract: Boron/nitrogen substituted carbons were synthesized by co-pyrolysis of polyborazylene/coal tar pitch blends to yield a carbon with a boron and nitrogen content of 14 at% and 10 at%, respectively. The presence of heteroatoms in these carbons shifted the hydrogen evolution overpotential to -1.4 V vs Ag/AgCl in aqueous electrolytes, providing a large electrochemical potential window ({approx}2.4 V) as well as a specific capacitance of 0.6 F/m{sup 2}. An asymmetric capacitor was fabricated using the as-prepared low surface area carbon as the negative electrode along with a redox active manganese dioxide as the positive electrode. The energy density of the capacitor exceeded 10 Wh/kg at a power density of 1 kW/kg and had a cycle life greater than 1000 cycles.

  3. Low Temperature Double-layer Capacitors with Improved Energy Density: An Overview of Recent Development Efforts

    Science.gov (United States)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Yushin, Gleb; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek

    2012-01-01

    Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.

  4. Influence of Electrolyte on the Properties of Hard Anodic Oxide Coating on 2 A12 Aluminium Alloy%电解液对2A12铝合金硬质阳极氧化膜层性能的影响

    Institute of Scientific and Technical Information of China (English)

    钱建才; 邹洪庆; 许斌; 吴厚昌; 吕基成; 方敏

    2015-01-01

    目的 对硫酸、混合酸电解液体系中制备的2 A12铝合金硬质阳极氧化膜层性能进行研究,找出混合酸电解液体系对2 A12铝合金硬质阳极氧化过程的影响机理,为改善膜层的耐蚀性能提供一种思路.方法 通过对膜层厚度、显微硬度、微观形貌、极化曲线、交流阻抗试验结果进行分析,研究不同电解液对2 A12硬质阳极氧化膜层性能的影响. 结果 在有机酸的活性吸附作用下,混和酸电解液解决了硫酸电解液制备2A12铝合金硬质阳极氧化膜存在的厚度、硬度不均匀及烧蚀现象,制备的膜层厚度范围为35~38μm,硬度范围为386~407HV0. 05,具有厚度和硬度分布均匀、离散性小的特点. 极化曲线及电化学交流阻抗分析表明,混合酸电解液体系中制备的2 A12铝合金硬质阳极氧化膜层未进行封孔处理时,膜层的自腐蚀电位为-619. 93 mV,阻挡层电阻为1. 4 ×105 Ω·cm2;封孔处理后,膜层的自腐蚀电位为-74. 69 mV,阻挡层电阻为2. 376×106Ω·cm2. 这说明封孔处理能够改善阻挡层的质量,显著提高膜层的耐腐蚀性能. 结论 采用混合酸电解液体系能够稳定制备出2 A12铝合金硬质阳极氧化膜层,制备的膜层应进行封孔处理.%Objective To study the properties of hard anodic oxidation coatings on 2A12 aluminum alloy prepared in the electro-lyte of sulphuric acids and hybrid acids separately,in order to find out the influencing mechanism of hybrid acids on hard anodic ox-idation process of 2A12 aluminum alloy, and provide method to enhance the coating corrosion resistance. Methods The properties of hard anodic oxide coatings prepared in different electrolytes were analyzed and characterized by thickness, micro-hardness, SEM morphology, polarization curve and AC impedance spectroscopic to investigate the influence of different electrolytes on the perform-ance of hard anodic oxidation coatings on 2A12 aluminum alloy. Results The phenomenon

  5. Tracer studies of anodic films formed on aluminium in malonic and oxalic acids

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Vergara, S.J. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)], E-mail: s.garcia-vergara@manchester.ac.uk; Skeldon, P.; Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Habakaki, H. [Graduate School of Engineering, Hokkaido University, N13-W8, Sapporo 060-8628 (Japan)

    2007-12-30

    Using a tungsten-containing layer, incorporated into sputtering-deposited aluminium, as a tracer, the growth of porous anodic films in malonic and oxalic acid electrolytes has been investigated using transmission electron microscopy, Rutherford backscattering spectroscopy and nuclear reaction analysis. Comparisons were also made with films formed in phosphoric acid electrolyte, which have been studied previously. The findings reveal a distortion of the tracer layer within the barrier region of the porous films, evident as a lagging of the tracer beneath the pores relative to that in the adjacent cell wall region. Further, the films are significantly thicker than the layer of metal consumed during anodizing and display smooth-sided pores. The anodizing behaviours are consistent with a major role for field-assisted flow of film material within the barrier layer in the development of the pores.

  6. Design and Characterization of Vertical Mesh Capacitors in Standard CMOS

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais

    2001-01-01

    This paper shows how good RF capacitors can be made in a standard digital CMOS process. The capacitors which are also well suited for binary weighted switched capacitor banks show very good RF performance: Q-values of 57 at 4.0 GHz, a density of 0.27 fF/μ2, 2.2 μm wide shielded unit capacitors, 6...

  7. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor

    Science.gov (United States)

    Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa

    2015-11-01

    Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g-1 at the scan rate of 5 mV s-1. In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.

  8. Relation between the ion size and pore size for an electric double-layer capacitor.

    Science.gov (United States)

    Largeot, Celine; Portet, Cristelle; Chmiola, John; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2008-03-01

    The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.

  9. Synthesis of Cerium Dioxide High-k Thin Films as a Gate Dielectric in MOS Capacitor

    Directory of Open Access Journals (Sweden)

    Anil G. Khairnar

    2013-07-01

    Full Text Available In the present study, the Al/CeO2 / p-Si MOS capacitor was fabricated by depositing the Aluminium (Al metal layer by thermal evaporation technique on sol-gel derived CeO2 high-k thin films on p-Si substrate. The deposited CeO2 films were characterized by Ellipsometer to study the refractive index that is determined to be 3.62. The FTIR analysis was carried out to obtain chemical bonding characteristics. Capacitance-voltage measurements of Al/CeO2 /p-Si MOS capacitor were carried out to determine the dielectric constant, equivalent oxide thickness (EOT and flat band shift (VFB for the deposited CeO2 film of 16.22, 1.62 nm and 0.7 V respectively. The conductance voltage curve was used to determine the interface trap density (Dit at the CeO2 / p-Si interface that is calculated to be 1.29 × 1013 cm – 2 eV – 1 for measurement frequency of 500 kHz.

  10. Carbons and electrolytes for advanced supercapacitors.

    Science.gov (United States)

    Béguin, François; Presser, Volker; Balducci, Andrea; Frackowiak, Elzbieta

    2014-04-01

    Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors. PMID:24497347

  11. Electrolytic cell stack with molten electrolyte migration control

    Science.gov (United States)

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  12. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Pech, David; Brunet, Magali; Fabre, Norbert; Mesnilgrente, Fabien; Conedera, Veronique; Durou, Hugo [LAAS-CNRS, Universite de Toulouse, 7 av. du Colonel Roche, F-31077 Toulouse (France); Taberna, Pierre-Louis; Simon, Patrice [CIRIMAT-CNRS, Universite de Toulouse, 118 route de Narbonne, F-31062 Toulouse (France)

    2010-02-15

    Carbon-based micro-supercapacitors dedicated to energy storage in self-powered modules were fabricated with inkjet printing technology on silicon substrate. An ink was first prepared by mixing an activated carbon powder with a PTFE polymer binder in ethylene glycol stabilized with a surfactant then deposited by inkjet on patterned gold current collectors with the substrate heated at 140 C in order to assure a good homogeneity. Electrochemical micro-capacitors with electrodes in an interdigital configuration were fabricated, and characterized using electrochemical techniques in 1 M Et{sub 4}NBF{sub 4} propylene carbonate electrolyte. These micro-devices show an excellent capacitive behavior over a wide potential range of 2.5 V for a cell capacitance of 2.1 mF cm{sup -2}. The newly developed technology will allow the integration of the storage device as close as possible to the MEMS-based energy harvesting device, minimizing power losses through connections. (author)

  13. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  14. Heat treatment of aluminium strip coils; Gluehbehandlung von Aluminium-Bandbunden

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Dominik; Dambauer, Georg [LOI Thermprocess GmbH, Essen (Germany)

    2012-08-15

    Nowadays, aluminium strip coils are increasingly heat-treated in single-coil lifting hearth furnaces SCL. Flexible, individual heat treatment allows fast reactions to short term requirements for the production of aluminium strip and offers energy saving possibilities. The following report describes the advantages of single-coil hearth furnaces in terms of flexibility, energy consumption and possible configurations. (orig.)

  15. A preliminary study of the dermal absorption of aluminium from antiperspirants using aluminium-26.

    Science.gov (United States)

    Flarend, R; Bin, T; Elmore, D; Hem, S L

    2001-02-01

    Aluminium chlorohydrate (ACH), the active ingredient in many antiperspirants, was labeled with the radioisotope 26Al. The labeled ACH was then fractionated into about 100 samples using gel filtration chromatography. Each fraction was analyzed for 26Al and total aluminium content. Aluminium-26 was only detected in the fractions that also contained aluminium, which verified that the ACH was uniformly labeled. 84 mg of the labeled ACH was then applied to a single underarm of two adult subjects with blood and urine samples being collected over 7 weeks. Tape-stripping and mild washings of the skin were also collected for the first 6 days. Results indicate that only 0.012% of the applied aluminium was absorbed through the skin. At this rate, about 4 microg of aluminium is absorbed from a single use of ACH on both underarms. This is about 2.5% of the aluminium typically absorbed by the gut from food over the same time period. Therefore, a one-time use of ACH applied to the skin is not a significant contribution to the body burden of aluminium.

  16. Design of welded aluminium connections (Entwurf und Berechnung von Aluminium Schweissverbindungen)

    NARCIS (Netherlands)

    Soetens, F.

    1998-01-01

    In the past two decades considerable research effort has been put into welded aluminium connections in order to better understand their structural behaviour and to up-date the design rules in the existing standards at the time [1]. Since weids in aluminium are more critical compared to steel, the ab

  17. Aluminium exclusion and aluminium tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    Ivano eBrunner

    2013-06-01

    Full Text Available The aluminium (Al cation Al3+ is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3+ conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al3+ from root cells (exclusion mechanisms and those that enable plants to tolerate Al3+ once it has entered the root and shoot symplast (internal tolerance mechanisms. The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al3+ exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al3+ adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.

  18. Iodine encapsulation in CNTs and its application for electrochemical capacitor

    Science.gov (United States)

    Taniguchi, Y.; Ishii, Y.; Rashid, M.; Syakirin, A.; Al-zubaidi, A.; Kawasaki, S.

    2016-07-01

    We report the experimental results for new type electrochemical capacitor using iodine redox reaction in single-walled carbon nanotubes (SWCNTs). It was found that the energy density of the present redox capacitor using SWCNTs is almost three times larger than that of the normal electric double layer capacitor.

  19. Circular plate capacitor with different disks

    CERN Document Server

    Paffuti, Giampiero; Di Lieto, Alberto; Maccarrone, Francesco

    2016-01-01

    In this paper we write a system of integral equations for a capacitor composed by two disks of different radii, generalizing Love's equation for equal disks. We compute the complete asymptotic form of the capacitance matrix both for large and small distances obtaining a generalization of Kirchhoff's formula for the latter case.

  20. Scintillation Breakdowns in Chip Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  1. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.;

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  2. Single Switched Capacitor Battery Balancing System Enhancements

    Directory of Open Access Journals (Sweden)

    Joeri van Mierlo

    2013-04-01

    Full Text Available Battery management systems (BMS are a key element in electric vehicle energy storage systems. The BMS performs several functions concerning to the battery system, its key task being balancing the battery cells. Battery cell unbalancing hampers electric vehicles’ performance, with differing individual cell voltages decreasing the battery pack capacity and cell lifetime, leading to the eventual failure of the total battery system. Quite a lot of cell balancing topologies have been proposed, such as shunt resistor, shuttling capacitor, inductor/transformer based and DC energy converters. The shuttling capacitor balancing systems in particular have not been subject to much research efforts however, due to their perceived low balancing speed and high cost. This paper tries to fill this gap by briefly discussing the shuttling capacitor cell balancing topologies, focusing on the single switched capacitor (SSC cell balancing and proposing a novel procedure to improve the SSC balancing system performance. This leads to a new control strategy for the SSC system that can decrease the balancing system size, cost, balancing time and that can improve the SSC balancing system efficiency.

  3. Special Section: Electrochemical capacitors: Guest Editor's note

    Science.gov (United States)

    Balducci, Andrea

    2016-09-01

    Electrochemical capacitors (i.e., supercapacitors) are nowadays considered as one of the most important electrochemical storage devices. Thanks to their high power, extraordinary cycle life and high reliability these devices are currently used in a large number of applications, rendering them indispensible for our daily life.

  4. Electrostatic spray deposition based lithium ion capacitor

    Science.gov (United States)

    Agrawal, Richa; Chen, Chunhui; Wang, Chunlei

    2016-05-01

    Conventional Electrochemical double-layer capacitors (EDLCs) are well suited as power devices that can provide large bursts of energy in short time periods. However, their relatively inferior energy densities as compared to their secondary battery counterparts limit their application in devices that require simultaneous supply of both high energy and high power. In the wake of addressing this shortcoming of EDLCs, the concept of hybridization of lithium-ion batteries (LIBs) and EDLCs has attracted significant scientific interest in recent years. Such a device, generally referred to as the "lithium-ion capacitor" typically utilizes a lithium intercalating electrode along with a fast charging capacitor electrode. Herein we have constructed a lithium hybrid electrochemical capacitor comprising a Li4Ti5O12-TiO2 (LTO-TiO2) anode and a reduced graphene oxide and carbon nanotube (rGO-CNT) composite cathode using electrostatic spray deposition (ESD). The electrodes were characterized using scanning electron microscopy and X-ray diffraction studies. Cyclic voltammetry and galvanostatic charge-discharge measurements were carried out to evaluate the electrochemical performance of the individual electrodes and the full hybrid cells.

  5. Capacitors and Resistance-Capacitance Networks.

    Science.gov (United States)

    Balabanian, Norman; Root, Augustin A.

    This programed textbook was developed under a contract with the United States Office of Education as Number 5 in a series of materials for use in an electrical engineering sequence. It is divided into three parts--(1) capacitors, (2) voltage-current relationships, and (3) simple resistance-capacitance networks. (DH)

  6. Equal Plate Charges on Series Capacitors?

    Science.gov (United States)

    Illman, B. L.; Carlson, G. T.

    1994-01-01

    Provides a line of reasoning in support of the contention that the equal charge proposition is at best an approximation. Shows how the assumption of equal plate charge on capacitors in series contradicts the conservative nature of the electric field. (ZWH)

  7. Preparation of etched tantalum semimicro capacitor stimulation electrodes.

    Science.gov (United States)

    Robblee, L S; Kelliher, E M; Langmuir, M E; Vartanian, H; McHardy, J

    1983-03-01

    The ideal electrode for stimulation of the nervous system is one that will inject charge by purely capacitive processes. One approach is to exploit the type of metal-oxide combination used in electrolytic capacitors, e.g., Ta/Ta2O5. For this purpose, fine tantalum wire (0.25 mm diam) was etched electrolytically at constant current in a methanol solution of NH4Br containing 1.5 wt % H2O. Electrolytic etching produced a conical tip with a length of ca. 0.5 mm and shaft diameters ranging from 0.10 to 0.16 mm. The etched electrodes were anodized to 10 V (vs. SCE) in 0.1 vol % H3PO4. The capacitance values normalized to geometric area of etched electrodes ranged from 0.13 to 0.33 micro F mm-2. Comparison of these values to the capacitance of "smooth" tantalum anodized to 10 V (0.011 micro F mm-2) indicated that the degree of surface enhancement, or etch ratio, was 12-30. The surface roughness was confirmed by scanning electron microscopy studies which revealed an intricate array of irregularly shaped surface projections about 1-2 micrometers wide. The etched electrodes were capable of delivering 0.06-0.1 micro C of charge with 0.1 ms pulses at a pulse repetition rate of 400 Hz when operated at 50% of the anodization voltage. This quantity of charge corresponded to volumetric charge densities of 20-30 micro C mm-3 and area charge densities of 0.55-0.88 micro C mm-2. Charge storage was proportionately higher at higher fractional values of the formation voltage. Leakage currents at 5 V were ca. 2 nA. Neither long-term passive storage (1500 h) nor extended pulsing time (18 h) had a deleterious effect on electrode performance. The trend in electrical stimulation work is toward smaller electrodes. The procedures developed in this study should be particularly well-suited to the fabrication of even smaller electrodes because of the favorable electrical and geometric characteristics of the etched surface. PMID:6841372

  8. Solid electrolytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Masayasu; Yamauchi, Yasuhiro; Kamisaka, Mitsuo; Notomi, Kei.

    1989-04-21

    Concerning a solid electrolytic fuel cell with a gas permeable substrate pipe, a fuel electrode installed on this substrate pipe and an air electrode which is laminated on this fuel electrode with the electrolyte in between, the existing fuel cell of this kind uses crystals of CaMnO3, etc. for the material of the air electrode, but its electric resistance is big and in order to avert this, it is necessary to make the film thickness of the air electrode big. However, in such a case, the entry of the air into its inside worsens and the cell performance cannot develop satisfactorily. In view of the above, in order to obtain a high performance solid electrolytic fuel cell which can improve electric conductivity without damaging diffusion rate of the air, this invention proposes with regard to the aforementioned solid electrolytic fuel cell to install a heat resistant and conductive member inside the above air electrode. 6 figs.

  9. Electrolytic refining of gold

    OpenAIRE

    Wohlwill, Emil

    2008-01-01

    At the request of the editor of ELECTROCHEMICAL INDUSTRY, I herewith give some notes on the electrolytic method of gold refining, to supplement the article of Dr. Tuttle (Vol. I, page 157, January, 1903).

  10. Electrolytic oxidation of anthracite

    Science.gov (United States)

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  11. Aluminium as heating fuel. Tests with aluminium powder prove suitability in principle. Aluminium als Heizungs-Brennstoff. Versuche mit Aluminiumpulver beweisen prinzipielle Eignung

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.

    1990-12-01

    Tests prove that aluminium powder is perfectly suited as fuel and storage material for solar energy. The combustion product itself is again the base material for aluminium production, i.e. aluminium can be recycled. There are three problematic areas: 1. flame stability, 2. combustion duration and 3. environmental compatibility. Further development projects will aim at the construction of practice-orientated plants in which combustion, heat extraction and recovery of aluminium oxide is combined. A further aim is the melting burner to which aluminium is supplied in form of wires, cuttings or rods. (BWI).

  12. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    Science.gov (United States)

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as aluminium exposure varied between diatom species. C. closterium was the most sensitive species (10% inhibition of growth rate (72-h IC10) of 80 (55-100)μg Al/L (95% confidence limits)) while M. polymorphus (540 (460-600)μg Al/L) and P. tricornutum (2100 (2000-2200)μg Al/L) were less sensitive (based on measured total aluminium). Dissolved aluminium was the primary contributor to toxicity in C. closterium, while a combination of dissolved and precipitated aluminium forms contributed to toxicity in M. polymorphus. In contrast, aluminium toxicity to the most tolerant diatom P. tricornutum was due predominantly to precipitated aluminium. Preliminary investigations revealed the sensitivity of C. closterium and M. polymorphus to aluminium was influenced by initial cell density with aluminium toxicity significantly (paluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated aluminium.

  13. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  14. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hybridization of lithium-ion batteries and electrochemical capacitors: fabrication and challenges

    Science.gov (United States)

    Agrawal, Richa; Hao, Yong; Song, Yin; Chen, Chunhui; Wang, Chunlei

    2015-05-01

    Conventional electrochemical double-layer capacitors (EDLCs) are well suited as power sources for devices that require large bursts of energy in short time periods. However, when compared to their battery counterparts, EDLCs suffer from low energy densities. The low energy density of EDLCs hinders their applications in devices that require a simultaneous supply of high power and high energy. In order to improve the energy density of EDLCs, the concept of hybridization of lithium-ion batteries (LIBs) and EDLCs has gathered much attention in past years. Such a hybrid is typically referred to as "lithium-ion capacitor" (LIC) or "lithium capacitor" and essentially utilizes a lithium intercalating anode (such as graphite or Li4Ti5O12) and a fast charging-discharging EDLC electrode (such as activated carbon, carbon nanostructures) in a lithium-salt based electrolyte. Although such a system sounds quite ideal in theory, there are major challenges that need to be addressed in order to fully realize the benefits of LIB and EDLC electrodes in conjunction. Most of these challenges stem from the mismatch in capacity of the electrodes and also the charging-discharging times of the electrodes. For instance, the EDLC electrode acts as the limiting factor for the capacity of the system while the LIB electrode limits the power of the system. Here we have fabricated a hybrid capacitor that utilizes a Li4Ti5O12 (LTO) based anode and an activated carbon (AC) composite based cathode. Half-cell testing for both LTO and AC have been shown along with full cell evaluation.

  16. Lithium tin phosphate anode partially reduced through prelithiation for hybrid capacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Chien-Ju [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei 10607, Taiwan (China); Tsai, Dah-Shyang, E-mail: dstsai@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei 10607, Taiwan (China); Chang, Chuan-hua [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei 10607, Taiwan (China); Le, Minh-Vien [Chemical Engineering Department, Ho Chi Minh City University of Technology, Ho Chi Minh City (Viet Nam)

    2015-04-05

    Highlights: • LiSn{sub 2}(PO{sub 4}){sub 3} LSP is prelithiated to yield tin and made steady its electrode capacity. • Several hybrid capacitors are made with negative LSP and positive activated carbon AC. • The effects of LSP prelithiation level and LSP:AC mass ratio are studied. • The plus of metallic tin on capacity is realized only at low current densities. • The LSP-I:AC ratio of 1:1 in mass is superior under most operation conditions. - Abstract: Incorporated as the negative electrode, the LiSn{sub 2}(PO{sub 4}){sub 3} (LSP) crystals requires a prelithiation step to decompose LSP partially and yield tin metal for a relatively steadied capacity in cycling the hybrid capacitor of LiPF{sub 6} electrolyte. The charge transfer reactions of lithium alloying tin at low potentials offer a substantial amount of electrical capacity. Hence, several capacitors of LSP negative and activated carbon (AC) positive are prepared to understand the effects of prelithiation and LSP:AC mass ratio on how to exploit this electrochemical capacity. Among two prelithiation levels and three mass ratios, the combination of LSP-I (10% tin) and 1:1 (LSP:AC) mass ratio stands out as the best choice over a wide range of specific current. On the other hand, the selection of a specific current low enough to match the charge-transfer reaction kinetics enables the LSP electrode of high prelithiation level, LSP-II (45% tin), to utilize its battery-like capacity thoroughly. The maximum energy of hybrid capacitor LSP-II/AC is measured 28.7 W h kg{sup −1} at a minimum specific current 0.03 A g{sup −1}.

  17. Capacitor performance limitations in high power converter applications

    DEFF Research Database (Denmark)

    El-Khatib, Walid Ziad; Holbøll, Joachim; Rasmussen, Tonny Wederberg

    2013-01-01

    series inductances include the risk of transient overvoltages, with a negative effect on life time and reliability of the capacitors. These allowable limits of such current and voltage peaks are decided by the ability of the converter components, including the capacitors, to withstand them over...... the expected life time. In this paper results are described from investigations on the electrical environment of these capacitors, including all the conditions they would be exposed to, thereby trying to find the tradeoffs needed to find a suitable capacitor. Different types of capacitors with the same voltage...

  18. Effect of aluminium phosphate as admixture on oxychloride cement

    Indian Academy of Sciences (India)

    M P S Chandrawat; R N Yadav

    2000-02-01

    The effect of admixing of aluminium phosphate on oxychloride cement in the matrix has been investigated. It is shown that aluminium phosphate retards the setting process of the cement and improves water-tightness.

  19. Structural colours and applications to anodised aluminium surfaces

    DEFF Research Database (Denmark)

    Johansen, Villads Egede

    This thesis investigates possible ways of creating aluminium with a milky white, metallic appearance for decorative purposes. Since white cannot be obtained through traditional absorption based dyeing of aluminium, optical mechanisms based on scattering by nanostructures are studied in order...

  20. Solidification of spent TBP solvent with aluminium chloride compounds

    International Nuclear Information System (INIS)

    The new techniques for processing spent TBP was investigated. It was proved that treatment of TBP containing DBP with aluminium chloride resulted in the formation of aluminium phosphate suitable for long term storage and final disposal

  1. Molecular Insights into Aqueous NaCl Electrolytes Confined within Vertically-oriented Graphenes

    OpenAIRE

    Zheng Bo; Huachao Yang; Shuo Zhang; Jinyuan Yang; Jianhua Yan; Kefa Cen

    2015-01-01

    Vertically-oriented graphenes (VGs) are promising active materials for electric double layer capacitors (EDLCs) due to their unique morphological and structural features. This study, for the first time, reports the molecular dynamics (MD) simulations on aqueous NaCl electrolytes confined within VG channels with different surface charge densities and channel widths. Simulation results show that the accessibility of ions and the structure of EDLCs are determined by the ion type/size, surface ch...

  2. From Science to Industry: The Sites of Aluminium in France from the Nineteenth to the Twentieth Century.

    Science.gov (United States)

    Le Roux, Muriel

    2015-05-01

    This paper explores the history of the isolation and industrial production of aluminium in France, from the work of Henri Sainte-Claire Deville in the 1850s to the latter part of the twentieth century, focusing on the relationships between academic research and industrial exploitation. In particular, it identifies a culture and organisation of research and development, "learning-by-doing," that emerged in the French aluminium industry following the establishment of the first electrolytic production facilities in the late 1880s by Paul Héroult, who, along with the American Charles Hall, patented the electrolytic method of producing the metal. This French method of R&D was a product both of a scientific culture that saw a continuity between scientific research and industrial application, and of a state policy that, unlike in Germany or the United States, was late to recognise the importance of fostering, on a large scale, the relations between academic chemistry and industry. It was only after World War II that the French state came fully to recognise the importance of underpinning industry with scientific research. And it was only from the 1960s, in the face of intensifying global competition, the risks of pollution, and the cost of energy, that the major aluminium firm Pechiney et Cie was able to replace a culture of "learning-by-doing" by one that integrated fundamental science with the production process.

  3. Advances in development and application of aluminium batteries

    DEFF Research Database (Denmark)

    Qingfeng, Li; Zhuxian, Qiu

    2001-01-01

    Aluminium has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer at aluminium surface is however detrimental to its performance to achieve its reversible potential, and also causing the delayed activation o...... aluminium batteres, especially aluminium-air batteries, and a wide range of their applications from emergency power supplies, reserve batteries field portable batteries, to batteries for electric vehicles and underwater propulsion....

  4. Friction stir welding (FSW) of aluminium foam sandwich panels

    OpenAIRE

    M. Bušić; Kožuh, Z.; D. Klobčar; Samardžić, I.

    2016-01-01

    The article focuses on the influence of welding speed and tool tilt angle upon the mechanical properties at the friction stir welding of aluminium foam sandwich panels. Double side welding was used for producing butt welds of aluminium sandwich panels applying insertion of extruded aluminium profile. Such insertion provided lower pressure of the tool upon the aluminium panels, providing also sufficient volume of the material required for the weldment formation. Ultimate tensile strength and f...

  5. High energy density capacitors using nano-structure multilayer technology

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1992-08-01

    Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

  6. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors.

    Science.gov (United States)

    Du, Si-Hong; Wang, Li-Qun; Fu, Xiao-Ting; Chen, Ming-Ming; Wang, Cheng-Yang

    2013-07-01

    Porous starch was used as a precursor for hierarchical porous carbon microspheres. The preparation consisted of stabilisation, carbonisation and KOH activation, and the resultant hierarchical porous carbon microspheres had a large BET surface area of 3251 m(2)g(-1). Due to the large surface area and the hierarchical pore structure, electrodes made of the hierarchical porous carbon microsphere materials had high specific capacitances of 304 Fg(-1) at a current density of 0.05 Ag(-1) and 197 Fg(-1) at a current density of 180 Ag(-1) when used in a symmetric capacitor with 6M KOH as the electrolyte. After 10,000 cycles, the capacitor still exhibited a stable performance with a capacitance retention of 98%. These results indicate that porous starch is an excellent precursor to prepare high performance electrode materials for EDLCs.

  7. Non-ideal effects of MOS capacitor in a switched capacitor waveform recorder ASIC

    Science.gov (United States)

    Zhang, Hong-Yan; Deng, Zhi; Liu, Yi-Nong

    2016-07-01

    SCAs (Switched Capacitor Arrays) have a wide range of uses, especially in high energy physics, nuclear science and astrophysics experiments. This paper presents a method of using a MOS capacitor as a sampling capacitor to gain larger capacitance with small capacitor area in SCA design. It studies the non-ideal effects of the MOS capacitor and comes up with ways to reduce these adverse effects. A prototype SCA ASIC which uses a MOS capacitor to store the samples has been designed and tested to verify this method. The SCA integrates 32 channels and each has 64 cells and a readout amplifier. The stored voltage is converted to a pair of differential currents (±4 mA max) and multiplexed to the output. All the functionalities have been verified. The power consumption is less than 2 mW/ch. The INL of all the cells in one channel are better than 0.39%. The equivalent input noise of the SCA has been tested to be 2.2 mV with 625 kHz full-scale sine wave as input, sampling at 40 MSPS (Mega-samples per Second) and reading out at 5 MHz. The effective resolution is 8.8 bits considering 1 V dynamic range. The maximum sampling rate reaches up to 50 MSPS and readout rate of 15 MHz to keep noise smaller than 2.5 mV. The test results validate the feasibility of the MOS capacitor. Supported by National Natural Science Foundation of China (11375100), Strategic Pioneer Program on Space Sciences, Chinese Academy of Sciences (XDA04060606-06) and State Key Laboratory of Particle Detection and Electronics

  8. Aluminium allergy and granulomas induced by vaccinations for children

    DEFF Research Database (Denmark)

    Andersen, Rosa Marie O; Zachariae, Claus; Johansen, Jeanne Duus

    2014-01-01

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site - vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we...... examine the incidence, the symptoms and the prognosis for the vaccination granulomas and the allergy. Finally we discuss the status in Denmark....

  9. Stability of aluminium beams in case of fire

    NARCIS (Netherlands)

    Meulen, O.R. van der; Soetens, F.; Maljaars, J.

    2014-01-01

    Fire is often the dominant design criterion for aluminium structures. Present design rules for aluminium constructions in fire neglect both the decrease in susceptibility to local buckling and the effects of creep, that are intrinsic to aluminium. They may therefore either overestimate or underestim

  10. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  11. Diamond grooving of rapidly solidified optical aluminium

    Science.gov (United States)

    Abou-El-Hossein, Khaled; Hsu, Wei-Yao; Ghobashy, Sameh; Cheng, Yuan-Chieh; Mkoko, Zwelinzima

    2015-10-01

    Traditional optical aluminium grades such as Al 6061 are intensively used for making optical components for applications ranging from mould insert fabrication to laser machine making. However, because of their irregular microstructure and relative inhomogeneity of material properties at micro scale, traditional optical aluminium may exhibit some difficulties when ultra-high precision diamond turned. Inhomogeneity and micro-variation in the material properties combined with uneven and coarse microstructure may cause unacceptable surface finish and accelerated tool wear, especially in grooving operation when the diamond tool edge is fully immersed in the material surface. Recently, new grades of optical aluminium that are featured by their ultra-fine microstructure and improved material properties have been developed to overcome the problem of high tool wear rates. The new aluminium grades have been developed using rapid solidification process which results in extremely small grain sizes combined with improved mechanical properties. The current study is concerned with investigating the performance of single-point diamond turning when grooving two grades of rapidly solidified aluminium (RSA) grades: RSA905 which is a high-alloyed aluminium grade and RSA443 which has a high silicon content. In this study, two series of experiments employed to create radial microgrooves on the two RSA grades. The surface roughness obtained on the groove surface is measured when different combinations of cutting parameters are used. Cutting speed is varied while feed rate and depth of cut were kept constant. The results show that groove surface roughness produced on RSA443 is higher than that obtained on RSA905. Also, the paper reports on the effect of cutting speed on surface roughness for each RSA grade.

  12. Anodization of Aluminium using a fast two-step process

    Indian Academy of Sciences (India)

    Murugaiya Sridar Ilango; Amruta Mutalikdesai; Sheela K Ramasesha

    2016-01-01

    Ultra-fast two-step anodization method is developed for obtaining ordered nano-pores on aluminium (Al) foil. First anodization was carried out for 10 min, followed by 3 min of second anodization at high voltage (150 V) compared to previous reports of anodization times of 12 h (40-60 V). The pore dimensions on anodized alumina are 180 nm for pore diameter and 130 nm for inter-pore distance. It was evident that by increasing the anodization voltage to 150 V, the diameter of the pores formed was above 150 nm. The electrolyte and its temperature affect the shape and size of the pore formation. At lower anodization temperature, controlled pore formation was observed. The anodized samples were characterized using the field emission scanning electron microscope (FE-SEM) to determine the pore diameter and inter-pore distance. Using UVVisible spectroscopy, the reflectance spectra of anodized samples were measured. The alumina (Al2O3) peaks were identified by x-ray diffraction (XRD) technique. The x-ray photo electron spectroscopy (XPS) analysis confirmed the Al 2p peak at 73.1 eV along with the oxygen O 1s at 530.9 eV and carbon traces C 1s at 283.6 eV.

  13. Repassivation Investigations on Aluminium: Physical Chemistry of the Passive State

    Science.gov (United States)

    Nagy, Tristan Oliver; Weimerskirch, Morris Jhängi Joseph; Pacher, Ulrich; Kautek, Wolfgang

    2016-09-01

    We show the temporal change in repassivation mechanism as a time-dependent linear combination of a high-field model of oxide growth (HFM) and the point defect model (PDM). The observed switch in transient repassivation current-decrease under potentiostatic control occurs independently of the active electrode size and effective repassivation time for all applied overpotentials. For that, in situ depassivation of plasma electrolytically oxidized (PEO) coatings on aluminium was performed with nanosecond laser pulses at 266 nm and the repassivation current transients were recorded as a function of pulse number. A mathematical model combines the well established theories of oxide-film formation and growth kinetics, giving insight in the non linear transient behaviour of micro-defect passivation. According to our findings, the repassivation process can be described as a charge consumption via two concurrent channels. While the major current-decay at the very beginning of the fast healing oxide follows a point-defect type exponential damping, the HFM mechanism supersedes gradually, the longer the repassivation evolves. Furthermore, the material seems to reminisce former laser treatments via defects built-in during depassivation, leading to a higher charge contribution of the PDM mechanism at higher pulse numbers.

  14. New aluminium alloys with high lithium content

    Energy Technology Data Exchange (ETDEWEB)

    Schemme, K.; Velten, B.

    1989-06-01

    Since the early 80's there have been made great efforts to replace the high strength aluminium alloys for the aircraft and space industry by a new generation of aluminium-lithium alloys. The attractivity of this kind of alloys could be increased by a further reduction of their density, caused by an increasing lithium content (/ge/ 5 wt.% Li). Therefore binary high-lithium containing alloys with low density are produced and metallografically investigated. A survey of their strength and wear behavior is given by using tensile tests and pin abrasing tests. (orig.).

  15. Evaluation and Characterization of Magnets and Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Seiber, L.E.; Cunningham, J.P.; Golik, S.S. (ORISE); Armstrong, G. (Maverick Systems)

    2006-10-15

    Advanced vehicle, fuel cell, hybrid electric vehicle (HEV), and plug in hybrid research and development is conducted by the U.S. Department of Energy (DOE) through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of this program is to develop more energy efficient and environmentally safe highway transportation technologies. Program activities include research, development, testing, technology validation, and technology transfer. These activities are done at the system and component levels. This report will discuss component level testing of prototype capacitors and magnets. As capacitor and magnet technologies mature, it is important to ascertain the limitations of these new technologies by subjecting the components to standardized tests to evaluate their capabilities. Test results will assist in the determination of their ability to provide improvements in power electronics and motor designs to meet the FCVT goals.

  16. Hidden Momentum in a moving Capacitor

    CERN Document Server

    Asti, Giovanni

    2015-01-01

    A very simple system like a parallel-plate capacitor reveals striking features when we examine the peculiar phenomena appearing when it is moving at low speed in different directions. Both hidden momentum and hidden energy appear and their addition, with their sign, to the corresponding electromagnetic component results in the expected ordinary kinetic momentum or energy of the electrostatic mass equivalent. What's happening is that passing from one inertial reference frame to another, part of the energy or momentum is transferred from the electromagnetic component to the material part of the system or the other way around. A paradoxical self-accelerating behavior is evidenced if one admits that the capacitor is discharging through an electrical resistance during its motion. It is shown that one must take into account the mass of the produced heat.

  17. The elastic capacitor and its unusual properties

    OpenAIRE

    Partensky, Michael B.

    2002-01-01

    The 'elastic capacitor' (EC) model was first introduced in studies of lipid bilayers (the major components of biological membranes). This electro-elastic model accounted for the compression of a membrane under applied voltage and allowed obtaining information about the membrane's elastic properties from the measurements of its capacitance. Later on, ECs were used to analyze the electrical breakdown of biological membranes. The EC model was also helpful in studies of electric double layers in ...

  18. Tunable microstrip resonators with ferroelectric capacitors

    OpenAIRE

    Zakharov, A. V.; Ilchenko, Mikhail Ye.; Karnauh, V. Ya.; Pinchuk, L. S.

    2010-01-01

    The question of increasing the tuning band of microstrip resonators that use ferroelectric capacitors for tuning in the region of increased electric lengths is considered which allows using them in the upper part of the centimeter band (Ku-band, K-band). Band properties of regular and step-irregular resonators operating at the lowest resonant frequency are analyzed.It is determined that step-irregular resonators possess a wider tuning band than regular ones. Their use allows widening the tuni...

  19. Matching Properties of Femtofarad and Sub-Femtofarad MOM Capacitors

    KAUST Repository

    Omran, Hesham

    2016-04-21

    Small metal-oxide-metal (MOM) capacitors are essential to energy-efficient mixed-signal integrated circuit design. However, only few reports discuss their matching properties based on large sets of measured data. In this paper, we report matching properties of femtofarad and sub-femtofarad MOM vertical-field parallel-plate capacitors and lateral-field fringing capacitors. We study the effect of both the finger-length and finger-spacing on the mismatch of lateral-field capacitors. In addition, we compare the matching properties and the area efficiency of vertical-field and lateral-field capacitors. We use direct mismatch measurement technique, and we illustrate its feasibility using experimental measurements and Monte Carlo simulations. The test-chips are fabricated in a 0.18 \\\\mutext{m} CMOS process. A large number of test structures is characterized (4800 test structures), which improves the statistical reliability of the extracted mismatch information. Despite conventional wisdom, extensive measurements show that vertical-field and lateral-field MOM capacitors have the same matching properties when the actual capacitor area is considered. Measurements show that the mismatch depends on the capacitor area but not on the spacing; thus, for a given mismatch specification, the lateral-field MOM capacitor can have arbitrarily small capacitance by increasing the spacing between the capacitor fingers, at the expense of increased chip area.

  20. China’s Aluminium Consumption and the Related Policies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>China is a major aluminium consumer country in the world. In 2005, China produced 7.81 million tons aluminium and imported 640,000 tons. Meanwhile, China also exported 1.32 million tons aluminium in 2005. China’s apparent consumption of aluminium in 2005 was about 7.1 million tons, which was 9.3 times over that in 1990. China’s aluminium consumption growth has kept at an annual average of 16.1 per cent since 1990, which makes China the

  1. China’s Production and Market of Aluminium Extruded Profiles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Chinese aluminium extrusion industry came into existence at the early 1950s with most products used in military industry and national defence.At the beginning of 1980s,the produc- tion of construction aluminium profiles started simultaneously in North and South China.In the following thirty years,the aluminium extru- sion industry entered into a quickly developing stage with a focus on construction aluminium profiles.With the blooming real estate industry, the demand for construction aluminium profiles from the domestic market has a tendency of yearly increase.From 2000,the quick devel- opments of China’s auto and railway vehicle

  2. Irradiation damage in aluminium single crystals produced by 50-keV aluminium and copper ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.;

    1968-01-01

    Aluminium single crystals, thin enough to be examined by electron microscopy, have been irradiated with 50-keV aluminium and copper ions. The irradiation fluxes were in the range 1011–1014 cm−2 s−1 and the doses were from 6 × 1012 to 6 × 1014 cm−2. Irradiation along either a or a direction produces...... rows of dislocation loops all lying parallel to one particular direction. If the aluminium target is quenched from 600 °C and annealed at room temperature prior to irradiation with aluminium ions, the rows of loops are suppressed. The amount of damage observed is considerably less than would...

  3. Electrolytic hydrogen production

    Science.gov (United States)

    Ramani, M. P. S.

    In the role of a secondary energy carrier complementary to electricity in a postfossil-fuel era, hydrogen produced by the elecrolytic splitting of water may be obtained by a variety of methods whose technology development status is presently assessed. Nuclear heat can be converted into hydrogen either directly, via thermal splitting of water, or by means of water electrolysis, which can be of the unipolar tank type or the bipolar filter-press type. An evaluation is made of advanced electrolytic techniques involving exotic materials, as well as solid polymer electrolyte electrolysis and high-temperature water-vapor electrolysis.

  4. 双电层电容器仿真电路的研究与实践%Exploration and practice of electric double layer capacitor simulator

    Institute of Scientific and Technical Information of China (English)

    关静

    2011-01-01

    An electric double layer capacitor simulator composed of the electrolytic capacitors and a three-phase converter circuit was presented. In the circuit, a small capacity capacitor could perform a large capacity electric double layer capacitor. The principle of the circuit was described and analyzed. Then the circuit simulation was finished in the PSIM6.0 software environment. At last, a prototype experimental model was constructed and tested. The experimental results demonstrate the validity and excellent practicability of the proposed electric double layer capacitor simulator.%提出了一种用电解电容和三相变换电路构成的双电层电容器仿真电路,它能够用小容量的电解电容模拟大容量的双电层电容器,描述分析了仿真电路的工作原理,并在PSIM6.0环境下对电路进行了计算机仿真,最后通过实验验证了所提出的仿真电路能够有效地模拟双电层电容器.

  5. Aluminium composite casting dispersion reinforced with iron-aluminium and silicon carbide phases

    OpenAIRE

    B. Formanek; J. Piątkowski; J. Szymszal

    2010-01-01

    Aluminium matrix composite with dispersion-reinforced, made by similar to stircasting process was characterised. The mixture of powders was produced by the process of mechanical agglomeration of powdered FexAly and SiC with aluminium. The chemical composition ofagglomerates was selected in a way such as to obtain 25 wt.% reinforcement of the AlSi9Cu4 silumin matrix. Applying thermal analysis ATD, the alloy solidification process was determined, reading out the typical solidification parameter...

  6. Molecular breeding of cereals for aluminium resistance

    Science.gov (United States)

    Aluminium (Al3+) toxicity is the primary factor limiting crop production on acidic soils worldwide. In addition to an application of lime for soil amelioration, Al3+ resistant plant varieties have been deployed to raise productivity on such hostile soils. This has been possible due to the exploita...

  7. Experimental analysis of cut welding in aluminium

    DEFF Research Database (Denmark)

    Dorph, Pernille; De Chiffre, Leonardo; Bay, Niels

    1993-01-01

    Cut welding is a newly developed cold pressure welding process. In the present work, an experimental investigation was carried out analyzing the mechanisms involved in cut welding of a block to a strip. Experiments were carried out in technically pure aluminium. The investigation has involved...

  8. Aluminium hydroxide-induced granulomas in pigs

    DEFF Research Database (Denmark)

    Valtulini, S; Macchi, C; Ballanti, P;

    2005-01-01

    in the muscles of the neck (group slaughtered). The pigs had been injected with a vaccine containing 40 mg/2 ml dose of aluminium hydroxide as adjuvant. Research consisted of two phases: first, an epidemiological study was carried out, aimed at determining the risk factors for the granulomas. The results...

  9. Indentation of aluminium foam at low velocity

    Directory of Open Access Journals (Sweden)

    Shi Xiaopeng

    2015-01-01

    Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.

  10. Microstructure Development during Solidification of Aluminium Alloys

    NARCIS (Netherlands)

    Ruvalcaba Jimenez, D.G.

    2009-01-01

    This Thesis demonstrates studies on microstructure development during the solidification of aluminium alloys. New insights of structure development are presented here. Experimental techniques such as quenching and in-situ High-brilliance X-ray microscopy were utilized to study the microstructure evo

  11. Thermodynamic energy exchange in a moving plate capacitor.

    Science.gov (United States)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2001-09-01

    In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small-hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other. (c) 2001 American Institute of Physics.

  12. Thermodynamic energy exchange in a moving plate capacitor

    Science.gov (United States)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2001-09-01

    In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.

  13. Method of manufacturing a shapeable short-resistant capacitor

    Science.gov (United States)

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2013-04-02

    A method that employs a novel combination of conventional fabrication techniques provides a ceramic short-resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The method allows thinner and more flexible ceramic capacitors to be made. The method includes forming a first thin metal layer on a substrate; depositing a thin, ceramic dielectric layer over the metal layer; depositing a second thin metal layer over the dielectric layer to form a capacitor exhibiting a benign failure mode; and separating the capacitor from the substrate. The method may also include bending the resulting capacitor into a serpentine arrangement with gaps between the layers that allow venting of evaporated electrode material in the event of a benign failure.

  14. Practical Results of a Five-level Flying Capacitor Inverter

    Directory of Open Access Journals (Sweden)

    O. Sivkov

    2010-01-01

    Full Text Available This paper investigates the realization of a five-level Flying Capacitor Inverter. After a brief description of general Power Electronic Converters and an introduction to the advantages of Multilevel Inverters over conventional two-level Inverters the main focus is on the five-level Flying Capacitor Inverter. The Flying Capacitor Multilevel Inverter (FCMI is a Multilevel Inverter (MI where the capacitor voltage can be balanced using only a control strategy for any number of levels. After a general description of five-level FCMI topology, the simulation and experimental results are presented. The capacitor voltage is stabilized here with various output voltage amplitude values. The simulation and experimental results of five-level FCMI show that the voltage is stabilized on capacitors using the control strategy. A single-phase five-level FCMI model is currently being developed and constructed in the laboratory. Some of the experimental results are available.

  15. Capacitors can radiate - some consequences of the two-capacitor problem with radiation

    OpenAIRE

    Choy, T. C.

    2003-01-01

    We fill a gap in the arguments of Boykin et al [American Journal of Physics, Vol 70 No. 4, pp 415-420 (2002)] by not invoking an electric current loop (i.e. magnetic dipole model) to account for the radiation energy loss, since an obvious corollary of their results is that the capacitors should radiate directly even if the connecting wires are shrunk to zero length. That this is so is shown here by a direct derivation of capacitor radiation using an oscillating electric dipole radiator model ...

  16. Study of electric capacitors using Finite Element Method

    OpenAIRE

    Alina Neamț; Anca Bărcuteanu

    2012-01-01

    A capacitor is made of two armatures and a dielectric between the two armatures. In this paper, we are going to study the plane capacitor , which is made of two equal metal armatures, plane and parallel, having the S surface, situated at a distance d much shorter than the armatures dimensions, between which there is a liniar, homogenous and isotropic dielectric having a constant electrical permittivity.The purpose of studying the plane capacitor, through MEF, presented in this...

  17. MOSFET and MOS capacitor responses to ionizing radiation

    Science.gov (United States)

    Benedetto, J. M.; Boesch, H. E., Jr.

    1984-01-01

    The ionizing radiation responses of metal oxide semiconductor (MOS) field-effect transistors (FETs) and MOS capacitors are compared. It is shown that the radiation-induced threshold voltage shift correlates closely with the shift in the MOS capacitor inversion voltage. The radiation-induced interface-state density of the MOSFETs and MOS capacitors was determined by several techniques. It is shown that the presence of 'slow' states can interfere with the interface-state measurements.

  18. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte

    KAUST Repository

    Rakhi, R.B.

    2016-10-16

    VO2 is a low band-gap semiconductor with relatively high conductivity among transition metal oxides, which makes it an interesting material for supercapacitor electrode applications. The performance of VO2 as supercapacitor electrode in organic electrolytes has never been reported before. Herein, two-dimensional nanosheets of VO2 are prepared by the simultaneous solution reduction and exfoliation from bulk V2O5 powder by hydrothermal method. A specific capacitance of 405 Fg−1 is achieved for VO2 based supercapacitor in an organic electrolyte, in three electrode configuration. The symmetric capacitor based on VO2 nanosheet electrodes and the liquid organic electrolyte exhibits an energy density of 46 Wh kg−1 at a power density of 1.4 kW kg−1 at a constant current density of 1 Ag−1. Furthermore, flexible solid-state supercapacitors are fabricated using same electrode material and Alumina-silica based gel electrolyte. The solid-state device delivers a specific capacitance of 145 Fg−1 and a device capacitance of 36 Fg−1 at a discharge current density of 1 Ag−1. Series combination of three solid state capacitors is capable of lighting up a red LED for more than 1 minute.

  19. Cryogenic Capacitors for Low-Temperature Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop low-temperature multilayer ceramic capacitors (MLCCs) capable of operating at cyrogenic temperatures (<77K). These...

  20. Experimental analysis of an MIM capacitor with a concave shield

    Institute of Scientific and Technical Information of China (English)

    Liu Lintao; Yu Mingyan; Wang Jinxiang

    2009-01-01

    A novel shielding scheme is developed by inserting a concave shield between a metal-insulator-metal (MIM) capacitor and the silicon substrate. Chip measurements reveal that the concave shield improves the quality factor by 11 % at 11.8 GHz and 14% at 18.8 GHz compared with an unshielded MIM capacitor. It also alleviates the effect on shunt capacitance between the bottom plate of the MIM capacitor and the shield layer. Moreover, because the concave shields simplify substrate modeling, a simple circuit model of the MIM capacitor with concave shield is presented for radio frequency applications.

  1. Interactions of alkali metals and electrolyte with cathode carbons

    Energy Technology Data Exchange (ETDEWEB)

    Naas, Tyke

    1997-12-31

    The Hall-Heroult process for electrolytic reduction of alumina has been the only commercial process for production of primary aluminium. The process runs at high temperature and it is important to minimize the energy consumption. To save energy it is desirable to reduce the operating temperature. This can be achieved by adding suitable additives such as LiF or KF to the cryolitic electrolyte. This may conflict with the objective of extending the lifetime of the cathode linings of the cell as much as possible. The thesis investigates this possibility and the nature of the interactions involved. It supports the hypothesis that LiF-additions to the Hall-Heroult cell electrolyte is beneficial to the carbon cathode performance because the diminished sodium activity reduces the sodium induced stresses during the initial period of electrolysis. The use of KF as an additive is more dangerous, but the results indicate that additions up to 5% KF may be tolerated in acidic melts with semigraphitic or graphitic cathodes with little risk of cathode problems. 153 refs., 94 figs., 30 tabs.

  2. Secondary Activation of Commercial Activated Carbon and its Application in Electric Double Layer Capacitor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer capacitors (EDLCs) with organic electrolyte was studied. The re-activation of AC results in the increases in both specific capacitance and high rate capability of EDLCs. For AC treated under optimized conditions, its discharge specific capacitance increases up to 55.65 F/g, an increase of about 33% as compared to the original AC, and the high rate capability was increased significantly. The good performances of EDLC with improved AC were correlated to the increasing mesoporous ratio.

  3. Characterization of Microporous Activated Carbon Electrodes for Electric Double-layer Capacitors

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-han; LIU Ling; SONG Huai-he

    2004-01-01

    Activated carbons (ACs) with a wide range of surface areas were made from petroleum coke by means of KOH activation. The electrochemical characterization was carried out for several activated carbons used as polariz able electrodes of electric double-layer capacitors (EDLCs) in an aqueous electrolytic solution. The porous structures and electrochemical double-layer capacitance of the activated carbons were investigated by virtue of nitrogen gas adsorption and constant current cycling(CCC) methods. The relationship among the surface area, pore volume of the activated carbons and specific double-layer capacitance was discussed. It was found that the specific capacitance of ACs increased linearly with the increase of surface area. The presence of mesopores in the activated carbons with very high surface area(>2000 m2/g) was not very effective for them to be used as EDLCs. The influence of chemical characteristics of the activated carbons on the double layer formation could be considered to be negligible.

  4. A micro-structured Si-based electrodes for high capacity electrical double layer capacitors

    Science.gov (United States)

    Krikscikas, Valdas; Oguchi, Hiroyuki; Yanazawa, Hiroshi; Hara, Motoaki; Kuwano, Hiroki

    2014-11-01

    We challenged to make basis for Si electrodes of electric double layer capacitors (EDLC) used as a power source of micro-sensor nodes. Mcroelectromechanical systems (MEMS) processes were successfully introduced to fabricate micro-structured Si-based electrodes to obtain high surface area which leads to high capacity of EDLCs. Study of fundamental properties revealed that the microstructured electrodes benefit from good wettability to electrolytes, but suffer from electric resistance. We found that this problem can be solved by metal-coating of the electrode surface. Finally we build an EDLC consisting of Au-coated micro-structured Si electrodes. This EDLC showed capacity of 14.3 mF/cm2, which is about 530 times larger than that of an EDLC consisting of flat Au electrodes.

  5. Characterization of internal boundary layer capacitors

    International Nuclear Information System (INIS)

    Internal boundary layer capacitors were characterized by scanning transmission electron microscopy and by microscale electrical measurements. Data are given for the chemical and physical characteristics of the individual grains and boundaries, and their associated electric and dielectric properties. Segregated internal boundary layers were identified with resistivities of 1012-1013 Ω-cm. Bulk apparent dielectric constants were 10,000-60,000. A model is proposed to explain the dielectric behavior in terms of an equivalent n-c-i-c-n representation of ceramic microstructure, which is substantiated by capacitance-voltage analysis

  6. Nanosized Ni-Mn Oxides Prepared by the Citrate Gel Process and Performances for Electrochemical Capacitors

    Institute of Scientific and Technical Information of China (English)

    Jianxin ZHOU; Xiangqian SHEN; Maoxiang JING

    2006-01-01

    Nanosized Ni-Mn oxide powders have been successfully prepared by thermal decomposition of the Ni-Mn citrate gel precursors. The powder materials derived from calcination of the gel precursors with various molar ratios of nickel and manganese at different temperatures and time were characterized using thermal analysis (TG-DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmet-Teller (BET).The optimized processing conditions of calcination at 400℃ for 1 h with Ni/Mn molar ratio 6 were proved to produce the nanosized Ni-Mn oxide powders with a high specific surface area of 109.62 m2/g and nanometer particle sizes of 15~30 nm. The capacitance characteristics of the nanosized Ni-Mn oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) and exhibited both a doublelayer capacitance and a Faradaic capacitance which could be attributed to the electrode consisting of Ni-Mn oxides and residual carbons from the organic gel thermal decomposition. A specific capacitance of 194.8 F/g was obtained for the electrode at the sweep rate of 10 mV/s in 4 mol/L KOH electrolyte and the capacitor showed quite high cyclic stability and is promising for advanced electrochemical capacitors.

  7. Synthesis and Electrochemical Analyses of Manganese Oxides for Super-Capacitors.

    Science.gov (United States)

    Kim, Taewoo; Hwang, Hyein; Jang, Jaeyong; Park, Inyeong; Shim, Sang Eun; Baeck, Sung-Hyeon

    2015-11-01

    δ-Phase and α-phase manganese oxides were prepared using a hydrothermal method and their electrochemical properties were characterized. The influence of calcination temperature on the properties of manganese oxides was studied. Crystallinities were studied by X-ray diffraction, and scanning and transmission electron microscopy were utilized to examine morphologies. Average pore sizes and specific surface areas of samples were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. After calcination in the range 300 degrees C to 600 degrees C, changes in morphology and crystallinity were observed. The flower-like shape of as synthesized samples became nanorod-like and the δ-phase changed to the α-phase. These changes may have been due to the removal of water during calcination. Furthermore, a transition stage in which the two phases coexisted was observed. Synthesized manganese oxides were mixed with carbon by sonification, to increase electric conductivity and to induce a synergistic effect between pseudo-capacitor and electric double layer capacitor (EDLC). Specific capacitances and rate durability of each composite were investigated by cyclic voltammetry in 1 M Na2SO4 electrolyte at different scan rates. MnO2 calcined at 400 degrees C exhibited the highest capacitance, probably due to its high surface area and more porous structure. PMID:26726613

  8. Advanced Polymer Electrolytes for High-energy-density Power Sources

    Institute of Scientific and Technical Information of China (English)

    D. Golodnitsky; E. Livshits; R. Kovarsky; E. Peled

    2005-01-01

    @@ 1Introduction The preparation of highly controlled thin films of lithium ion conducting organic materials is becoming a challenging but rewarding goal in view of obtaining high-performance technological devices like solid-state polymer batteries and capacitors. The classical polymer electrolyte consists of organic macromolecules (usually polyether polymer) that are doped with inorganic (typically lithium) salts. Poly(ethylene oxide) (PEO) is the most commonly employed polymer in PEs because of the peculiar array in the (-CH2-CH2-O-)n chain providing the ability to solvate low-lattice-energy lithium salts. For three decades the major research attention was focused on amorphous polymer electrolytes in the belief that ionic conductivity occurs in a manner somewhat analogous to gas diffusion through polymer membranes. Segmental motion of the polymer chains continuously creates free volume, into which the ions migrate, and this process allows ions to progress across the electrolyte. Such a view was established by a number of experiments, and denied the possibility of ionic conductivity in crystalline polymer phases. This concept has been recently overturned by our group, demonstrating that conductivity comes about as a result of permanent conducting pathways for the movement of ions.

  9. Effect of activated carbon and electrolyte on properties of supercapacitor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effect of activated carbon and electrolyte on electrochemical properties of organic supercapacitor was investigated. The results show that specific surface area and mesoporosity of activated carbon influence specific capacitance. If specific surface area is larger and mesoporosity is higher, the specific capacitance will become bigger. Specific surface area influences resistance of carbon electrode and consequently influences power property and pore size distribution. If specific surface area is smaller and mesoporosity is higher, the power property will become better. Ash influences leakage current and electrochemical cycling stability. If ash content is lower, the performance will become better. The properties of supercapacitor highly depend on the electrolyte. The compatibility of electrolyte and activated carbon is a determining factor of supercapacitor's working voltage. LiPF6/(EC+EMC+DMC) is inappropriate for double layer capacitor. MeEt3NPF4/PC has higher specific capacitance than EtnNPFn/PC because methyl's electronegativity value is lower than ethyl and MeEt3N+ has more positive charges and stronger polarizability than Et4N+ when an ethyl is substituted by methyl.

  10. Nanoporous hybrid electrolytes

    KAUST Repository

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  11. Electrolyte Concentrates Treat Dehydration

    Science.gov (United States)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  12. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  13. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  14. Capacitors Would Help Protect Against Hypervelocity Impacts

    Science.gov (United States)

    Edwards, David; Hubbs, Whitney; Hovater, Mary

    2007-01-01

    A proposal investigates alternatives to the present bumper method of protecting spacecraft against impacts of meteoroids and orbital debris. The proposed method is based on a British high-voltage-capacitance technique for protecting armored vehicles against shaped-charge warheads. A shield, according to the proposal, would include a bare metal outer layer separated by a gap from an inner metal layer covered with an electrically insulating material. The metal layers would constitute electrodes of a capacitor. A bias potential would be applied between the metal layers. A particle impinging at hypervelocity on the outer metal layer would break apart into a debris cloud that would penetrate the electrical insulation on the inner metal layer. The cloud would form a path along which electric current could flow between the metal layers, thereby causing the capacitor to discharge. With proper design, the discharge current would be large enough to vaporize the particles in the debris cloud to prevent penetration of the spacecraft. The shield design can be mass optimized to be competitive with existing bumper designs. Parametric studies were proposed to determine optimum correction between bias voltage, impacting particle velocity, gap space, and insulating material required to prevent spacecraft penetration.

  15. SWITCHED-CAPACITOR BASED STEP-DOWN RESONANT CONVERTERS

    Institute of Scientific and Technical Information of China (English)

    Y.P.B.Yeung; K.W.E.Cheng; K.K.Law

    2001-01-01

    A family of switched-capacitor based resonant converters is present.All converters are in step-downmode.By adding different number of switched-capacitor cells,different output voltage conversion ratio can beobtained.All switching devices in the converters operate under zero-current switching.Both high frequencyoperations and high efficiency are possible.

  16. Metallized Film Capacitor Lifetime Evaluation and Failure Mode Analysis

    CERN Document Server

    Gallay, R

    2015-01-01

    One of the main concerns for power electronic engineers regarding capacitors is to predict their remaining lifetime in order to anticipate costly failures or system unavailability. This may be achieved using a Weibull statistical law combined with acceleration factors for the temperature, the voltage, and the humidity. This paper discusses the different capacitor failure modes and their effects and consequences.

  17. A Switched Capacitor Harmonic Compensation Part for Switching Supplies

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    A new approach based on switched capacitor network to harmonic compensation for switching supplies is presented in the paper,The basic principle is discussed.SPICE simulation is applied to analyze the behaviour of the switched capacitor harmonic compensation part.

  18. Direct Mismatch Characterization of femto-Farad Capacitors

    KAUST Repository

    Omran, Hesham

    2015-08-17

    Reducing the capacitance of programmable capacitor arrays, commonly used in analog integrated circuits, is necessary for low-energy applications. However, limited mismatch data is available for small capacitors. We report mismatch measurement for a 2fF poly-insulator-poly (PIP) capacitor, which is the smallest reported PIP capacitor to the best of the authors’ knowledge. Instead of using complicated custom onchip circuitry, direct mismatch measurement is demonstrated and verified using Monte Carlo Simulations and experimental measurements. Capacitive test structures composed of 9 bit programmable capacitor arrays (PCAs) are implemented in a low-cost 0:35m CMOS process. Measured data is compared to mismatch of large PIP capacitors, theoretical models, and recently published data. Measurement results indicate an estimated average relative standard deviation of 0.43% for the 2fF unit capacitor, which is better than the reported mismatch of metal-oxide-metal (MOM) fringing capacitors implemented in an advanced 32nm CMOS process.

  19. First wall design of aluminium alloy R-tokamak

    International Nuclear Information System (INIS)

    A design study of a low-activation D-T tokamak Reacting Plasma Project In Nagoya has been finished. The study emphasizes the vacuum vessel and the bumper limiter. Our choice of materials (aluminium vacuum vessel, copper conductors, aluminium TF coil case and lead shield) results in a radiation level of about 1 x 10-3 times that of a TFTR type design, and 1 x 10-4 times that of JET type design, at 2 weeks after one D-T shot. Thick graphite tiles will be fixed directly on the aluminium vacuum vessel using aluminium spring washers and bolts. With this simplified structure of the bumper limiter, the inner surface temperature of the thick aluminium vacuum vessel will be less than 1200C which is required to reduce the overaging effect of the aluminium alloy. (orig.)

  20. What is the risk of aluminium as a neurotoxin?

    Science.gov (United States)

    Exley, Christopher

    2014-06-01

    Aluminium is neurotoxic. Its free ion, Al(3+) (aq), is highly biologically reactive and uniquely equipped to do damage to essential cellular (neuronal) biochemistry. This unequivocal fact must be the starting point in examining the risk posed by aluminium as a neurotoxin in humans. Aluminium is present in the human brain and it accumulates with age. The most recent research demonstrates that a significant proportion of individuals older than 70 years of age have a potentially pathological accumulation of aluminium somewhere in their brain. What are the symptoms of chronic aluminium intoxication in humans? What if neurodegenerative diseases such as Alzheimer's disease are the manifestation of the risk of aluminium as a neurotoxin? How might such an (outrageous) hypothesis be tested?

  1. Feet sunk in molten aluminium: The burn and its prevention.

    Science.gov (United States)

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention.

  2. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    Science.gov (United States)

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as permeability were observed for any of the three diatoms suggesting that mechanisms of aluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated aluminium. PMID:26921729

  3. Feet sunk in molten aluminium: The burn and its prevention.

    Science.gov (United States)

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. PMID:25687835

  4. Straggling of heavy ions in aluminium

    International Nuclear Information System (INIS)

    An effort has been made to determine the straggling in aluminium of 4He, 16O and 35Cl ions of different energies produced by the tandem Van de Graaff at Harwell. The technique consists of scattering the accelerated and collimated ions in a scattering chamber from a 0.100 mg/cm2 gold foil, allowing the scattered ions to pass through a two aperture collimator, using different aluminium foils over one of the apertures and stopping the two emergent beams in a good quality silicon surface barrier detector the output of which is connected to a 4096 channel analyser. The energy widths obtained in the case of helium ions are in fair agreement with both the Bloch and the recent Tschalar (1968) theory. The measured widths in the case of heavy ions are very large and can be explained only if account is taken of their charge distributions in foils. This study should be useful in ion implantation work. (author)

  5. Noncovalent Pi-Pi Stacking at the Carbon-Electrolyte Interface: Controlling the Voltage Window of Electrochemical Supercapacitors.

    Science.gov (United States)

    Li, Mengya; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Muralidharan, Nitin; Boire, Timothy C; Sung, Hak-Joon; Pint, Cary L

    2016-08-01

    A key parameter in the operation of an electrochemical double-layer capacitor is the voltage window, which dictates the device energy density and power density. Here we demonstrate experimental evidence that π-π stacking at a carbon-ionic liquid interface can modify the operation voltage of a supercapacitor device by up to 30%, and this can be recovered by steric hindrance at the electrode-electrolyte interface introduced by poly(ethylene oxide) polymer electrolyte additives. This observation is supported by Raman spectroscopy, electrochemical impedance spectroscopy, and differential scanning calorimetry that each independently elucidates the signature of π-π stacking between imidazole groups in the ionic liquid and the carbon surface and the role this plays to lower the energy barrier for charge transfer at the electrode-electrolyte interface. This effect is further observed universally across two separate ionic liquid electrolyte systems and is validated by control experiments showing an invariant electrochemical window in the absence of a carbon-ionic liquid electrode-electrolyte interface. As interfacial or noncovalent interactions are usually neglected in the mechanistic picture of double-layer capacitors, this work highlights the importance of understanding chemical properties at supercapacitor interfaces to engineer voltage and energy capability. PMID:27380273

  6. Ionogel Electrolytes through Sol-Gel Processing

    Science.gov (United States)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica

  7. Al current collector surface treatment and carbon nano tubes influences on Carbon / Carbon super-capacitors performances

    Energy Technology Data Exchange (ETDEWEB)

    Portet, C.; Taberna, P.L.; Simon, P. [Universite Paul Sabatier, CIRIMAT-LCMIE, 31 - Toulouse (France)

    2004-07-01

    Performances of 4 cm{sup 2} carbon/carbon super-capacitors cells using Al current collectors foils in organic electrolyte are presented; the improvement of electrode material has been investigated. In a first part, a surface treatment of the Al current collector is proposed in order to improve contact surface between the current collector and the active material leading to an internal resistance decrease. The process consists in an etching of the Al foil and is followed by a carbonaceous sol-gel deposit. Galvano-static cycling and Electrochemical Impedance Spectroscopy measurements of super-capacitors all assembled with treated Al foil were tested over 10,000 cycles: an ESR of 0.5 {omega} cm{sup 2} and a capacitance of 95 F g{sup -1} of activated carbon are obtained and performances remain stable during cycling. The second part is devoted to the study of Carbon Nano Tubes (CNTs) adding into the active material on the performances of super-capacitors. A content of 15% of CNTs appears to be the best composition; the ESR is 0.4 {omega} cm{sup 2} (20% lowered as compared to a cell using activated carbon based electrode) and the capacitance remain high 93 F g{sup -1} of carbonaceous active material. (authors)

  8. Electrolyte materials - Issues and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Balbuena, Perla B. [Department of Chemical Engineering, and Department of Materials Science and Engineering, Texas A and M University, College Station, Texas, 77843 (United States)

    2014-06-16

    Electrolytes are vital components of an electrochemical energy storage device. They are usually composed of a solvent or mixture of solvents and a salt or a mixture of salts which provide the appropriate environment for ionic conduction. One of the main issues associated with the selection of a proper electrolyte is that its electronic properties have to be such that allow a wide electrochemical window - defined as the voltage range in which the electrolyte is not oxidized or reduced - suitable to the battery operating voltage. In addition, electrolytes must have high ionic conductivity and negligible electronic conductivity, be chemically stable with respect to the other battery components, have low flammability, and low cost. Weak stability of the electrolyte against oxidation or reduction leads to the formation of a solid-electrolyte interphase (SEI) layer at the surface of the cathode and anode respectively. Depending on the materials of the electrolyte and those of the electrode, the SEI layer may be composed by combinations of organic and inorganic species, and it may exert a passivating role. In this paper we discuss the current status of knowledge about electrolyte materials, including non-aqueous liquids, ionic liquids, solid ceramic and polymer electrolytes. We also review the basic knowledge about the SEI layer formation, and challenges for a rational design of stable electrolytes.

  9. China will Reduce Aluminium Export in 2005

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>Starting from January 1, 2005, China eliminated the 8 per cent export tax rebate for aluminium, and further more, the exporters will have to pay 5 per cent export tax. This is beyond the expectations of the producers, for most of them thought only the 8 per cent export tax rebate would be eliminated and it was still too early to add the export tax.

  10. FSW characterization of 6082 aluminium alloys sheets

    OpenAIRE

    K. Mroczka; A. Pietras

    2009-01-01

    Purpose: The purpose of the investigations was to elaborate a set of FSW parameters for connecting 6082 aluminium alloy sheets allowing to produce welds of highest strength.Design/methodology/approach: The FSW was tried at different speeds and at additional cooling. The welds microstructure was studied using optical and scanning electron microscopes. The mechanical properties of produced connections are discussed regarding their tensile test and microhardness measurements.Findings: The FSW we...

  11. Methods of inoculation of pure aluminium structure

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-03-01

    Full Text Available Purpose: The main aim of investigations was the reduction of grain size and unification of structure for pure Al casting by introduction of small amount of inoculant (less than obligatory standart PN-EN 573-3, which concerning about aluminium purity, with electromagnetic field and variable casting parameters.Design/methodology/approach: To investigations it was used light microscopy and TEM. Surfaces of samples which were prepared for macro- and microstructure analysis were etched with use of solution of: 50g Cu, 400ml HCl, 300ml HNO3 and 300ml H2O. Thin foils for TEM investigations were electropolished with use of 20 ml HClO4 and 80ml CH3OH.Findings: The results of investigations and their analysis show possibility of effective inoculation of pure aluminium structure by use of some factors such as: different materials of the mould, influencing of stirring electromagnetic field into metal during solidification, inoculation by introducing AlTi5B1 inoculant into liquid aluminium and changing the pouring temperature.Research limitations/implications: I further research, authors of this paper are going to application of introduced method of inoculation in industrial tests.Practical implications: The work presents refinement of structure method which are particularly important in continuous and semi – continuous casting where products are used for plastic forming. Large columnar crystals zone result in forces extrusion rate reduction and during the ingot rolling delamination of external layers can occur. Thus, in some cases ingot skinning is needed, which rises the production costs.Originality/value: Contributes to research on size reduction in pure aluminium structure.

  12. Aluminium matrix composites fabricated by infiltration method

    OpenAIRE

    L.A. Dobrzański; M. Kremzer; A. J. Nowak; Nagel, A.

    2009-01-01

    Purpose: The aim of this work is to examine the structure and properties of metal matrix composites obtained by infiltration method of porous ceramic preforms by liquid aluminium alloy.Design/methodology/approach: Ceramic preforms were manufactured by the sintering method of ceramic powder. The preform material consists of powder Condea Al2O3 CL 2500, however, as the pore forming the carbon fibers Sigrafil C10 M250 UNS were used. Then ceramic preforms were infiltrated with liquid eutectic EN ...

  13. Evaluation of Commercial Automotive-Grade BME Capacitors

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    Three Ni-BaTiO3 ceramic capacitor lots with the same specification (chip size, capacitance, and rated voltage) and the same reliability level, made by three different manufacturers, were degraded using highly accelerated life stress testing (HALST) with the same temperature and applied voltage conditions. The reliability, as characterized by mean time to failure (MTTF), differed by more than one order of magnitude among the capacitor lots. A theoretical model based on the existence of depletion layers at grain boundaries and the entrapment of oxygen vacancies has been proposed to explain the MTTF difference among these BME capacitors. It is the conclusion of this model that reliability will not be improved simply by increasing the insulation resistance of a BME capacitor. Indeed, Ni-BaTiO3 ceramic capacitors with a smaller degradation rate constant K will always give rise to a longer reliability life.

  14. Softening Behaviour of Selected Commercially Pure Aluminium Model Alloys

    OpenAIRE

    Sande, Gunnar

    2012-01-01

    A characterization of the softening behaviour of four different commercially pure aluminium alloys has been carried out. The work is related to the MOREAL project (Modelling towards value-added recycling friendly aluminium alloys), where the main goal is to quantify the effect of the elements in recyclable aluminium alloys on microstructure and mechanical properties during thermo-mechanical processing. Typical elements are iron (Fe), silicon (Si) and manganese (Mn), and the alloys studied in ...

  15. Un-optimistic Prospects for the Westward Movement of Aluminium

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>The westward movement of aluminium is essential for the industrial development.Up till now,the northwestern area has planned to construct more than 40 aluminium projects with a total production capacity of over 20 million tons.The future rate of progress of newly constructed projects are directly related to the supplies of the aluminium market,having critical guiding meaning for the trends of

  16. Friction factor of CP aluminium and aluminium–zinc alloys

    Indian Academy of Sciences (India)

    N Vidhya Sagar; K S Anand; A C Mithun; K Srinivasan

    2006-12-01

    Friction factor has been determined for CP aluminium and aluminium–zinc alloys using ring compression test at different temperatures from 303 K to 773 K. It is found that CP aluminium exhibits sticking whereas Al–Zn alloys do not exhibit sticking at elevated temperatures. Hot working of Al–Zn alloy is easier than that of CP aluminium at 773 K. As zinc content increases up to 10 wt% the friction factor decreases up to 0.02.

  17. Aluminium supplier selection for the automotive parts manufacturer

    OpenAIRE

    M. Cieśla

    2016-01-01

    This paper presents a methodology for selection of the optimal sources of supply, which is also known as the problem of supplier selection. Theoretical considerations are expanded with research related to aluminium supplier selection for a hypothetical manufacturer of aluminium parts for transportation equipment located in Poland. Evaluation of five suppliers of aluminium from Poland, Germany and Slovenia has been conducted using a weighted scoring method, a strengths and weaknesses method an...

  18. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  19. Tribological characteristics of coatings on aluminium and its alloys

    OpenAIRE

    Abdul-Mahdi, Fadhil S

    1987-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Hard anodising on aluminium and its alloys has been widely practised for many years in order to improve the resistance of the otherwise poor wear characteristics of aluminium. In recent years there has been an increasing interest in other treatments and coatings, on both aluminium and other base metals. The aim of this investigation is to explain the tribological performance and wear mechanis...

  20. Wearing tests on aluminium coated with diamond by triboadhesion

    Institute of Scientific and Technical Information of China (English)

    J.M.RodríguezLelis; B.D.Angulo; J.O.Colín; J.PorcayoCalderón

    2001-01-01

    In this work the results obtained from subjecting aluminium coated with diamond by tri-boadhesion to a wearing process with a plane rider. Here it is shown the ratio of the normal toshearing forces, called friction factor, as an indication of the resistance of the surface. It was foundthat the film of the aluminium coated with diamond resisted three times compared with the oxida-tion film of commercial aluminium, which for the purpose of this work was considered withoutcoating.

  1. Behaviour and design of aluminium alloy structural elements

    OpenAIRE

    Su, Meini; 蘇玫妮

    2014-01-01

    Aluminium alloys are nonlinear metallic materials with continuous stress-strain curves that are not well represented by the simplified elastic, perfectly plastic material model used in most existing design specifications. The aims of this study are to develop a more efficient design method for aluminium alloy structures by rationally exploiting strain hardening. The key components of this study include laboratory testing, numerical modelling and development of design guidance for aluminium al...

  2. Multiply-negatively charged aluminium clusters and fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  3. Aluminium in the rail transportation market

    Energy Technology Data Exchange (ETDEWEB)

    Zehnder, J. [Alcan Alesa Engineering Ltd., Zurich (Switzerland). Alcan Mass Transportation Systems

    2002-07-01

    Rail-transportation is not, as one might expect, a homogeneous market but extremely fragmented and even with huge differences from continent to continent, i.e. in North America freight transport is dominating whereas in Europe passenger transport prevails. A first segmentation splits infrastructure from vehicles. In a second layer of segmentation we distinguish between light rail vehicles, heavy metros, regional trains, intercity trains, high speed trains with and without tilting, maglev trains, freight vehicles and locomotives. Finally, we find aluminium applications in wheels, suspension parts, brake equipment, traction equipment, body structure, hang on parts and interior trim. On the infrastructure side best use of aluminium is in the field of power supply. In order to have the best solution for each application, all forms of products such as castings, forgings, flat rolled products and extrusions are needed and the engineers are using a broad choice or different alloys for all the requirements such as structural strength, decorative aspect, electrical conductivity, wear resistance, weldability, corrosion resistance etc. Innovation cycles in rail transportation are very slow, mainly because the expected life of vehicles is over 30 years and so no fleet owner will run the risk of getting vehicles with non-proven components, i.e. where a safe life of over 30 years cannot be shown. In the following the most important aluminium applications are shown and discussed. (orig.)

  4. Plasmonic enhancement of photoluminescence from aluminium nitride

    Science.gov (United States)

    Flynn, Chris; Stewart, Matthew

    2016-03-01

    Aluminium nitride (AlN) films were grown on c-plane sapphire wafers by molecular beam epitaxy (MBE) under aluminium-rich conditions. The excess aluminium (Al) accumulated on the surface of the films as micro-scale droplets 1-10 μm in size, and as Al nanoparticles with diameters in the range 10-110 nm. Photoluminescence (PL) measurements were performed on the AlN samples using a 193 nm Excimer laser as the excitation source. Prior to PL measurements the wafers were cleaved in half. One half of each wafer was submitted to a 10 min treatment in H3PO4 heated to 70 °C to remove the excess Al from the film surface. The remaining half was left in the as-deposited condition. The mean intensities of the near-band-edge PL peaks of the as-deposited samples were 2.0-3.4 times higher compared to the samples subjected to the H3PO4 Al-removal treatment. This observation motivated calculations to determine the optimal Al surface nanosphere size for plasmonic enhancement of PL from AlN. The PL enhancement was found to peak for an Al nanosphere radius of 15 nm, which is within the range of the experimentally-observed Al nanoparticle sizes.

  5. Aluminium composite casting dispersion reinforced with iron-aluminium and silicon carbide phases

    Directory of Open Access Journals (Sweden)

    B. Formanek

    2010-10-01

    Full Text Available Aluminium matrix composite with dispersion-reinforced, made by similar to stircasting process was characterised. The mixture of powders was produced by the process of mechanical agglomeration of powdered FexAly and SiC with aluminium. The chemical composition ofagglomerates was selected in a way such as to obtain 25 wt.% reinforcement of the AlSi9Cu4 silumin matrix. Applying thermal analysis ATD, the alloy solidification process was determined, reading out the typical solidification parameters. The methods of light and scanning microscopy were used to reveal the structure of composite casting. Changes in chemical composition and phase composition of particles of the FeAl intermetallic phase in aluminium matrix were confirmed. The structure of silumin casting with matrix containing microregions of ceramic and intermetallic phases, typical of hybrid reinforcements, was obtained.

  6. Thermal formation of corundum from aluminium hydroxides prepared from various aluminium salts

    Indian Academy of Sciences (India)

    J Temuujin; Ts JADAMBAA; K J D Mackenzie; P Angerer; F Porte; F Riley

    2000-08-01

    Aluminium hydroxides have been precipitated from various aluminium salts and the differences in their thermal behaviour have been investigated. Pseudoboehmite derived from the nitrate, sulfate and chloride all form -Al2O3 at ∼ 400°C but the formation of -Al2O3 at 1200°C occurs more readily in the material derived from the sulfate. This contains a higher concentration of anionic impurities related to differences in the solubility of the original aluminium salts. The sulfate is retained in the gel to higher temperatures at which its eventual decomposition may lead to the formation of a reactive pore structure which facilitates the nucleation of -Al2O3.

  7. Synthesis of aluminium nanoparticles by arc evaporation of an aluminium cathode surface

    Indian Academy of Sciences (India)

    M Gazanfari; M Karimzadeh; S Ghorbani; M R Sadeghi; G Azizi; H Karimi; N Fattahi; Z Karimzadeh

    2014-06-01

    Aluminium nanoparticles (Al Nps) are synthesized using arc discharge method by applying direct current between aluminium electrodes in liquid environment without any use of vacuum equipment, heat exchangers, high temperatures furnaces and inert gases. After synthesis of Al Nps, in situ coating process on the nanoparticles was performed immediately. The effects of media on the yield and morphology of aluminium nanoparticles were investigated. Analysis result of the samples indicated that particle size was less than 30 nm, when 120 A/cm2 arc current was used. In addition, coating agent can affect arc velocity, arc stability, morphology and composition of the nanoparticles. Resultant nanoparticles were identified using X-ray powder diffraction (XRD), also their surface morphology was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and finally the accuracy of coating was assessed with infrared (IR) spectroscopy.

  8. Cold-impregnated aluminium. A new source of nickel exposure.

    Science.gov (United States)

    Lidén, C

    1994-07-01

    A new technique for finishing anodized aluminium was introduced during the 1980s--cold impregnation with nickel. Nickel is available on the surface of cold-impregnated aluminium, as shown by the dimethylglyoxime test. Chemical analysis with EDXA showed that nickel was in the form of NiSO4. A case of work-related allergic contact dermatitis in an engraver with nickel allergy is reported. It transpired that the patient was exposed to nickel in connection with aluminium. It is concluded that cold-impregnated aluminium is a new source of nickel exposure, probably previously unknown to dermatologists. PMID:7924288

  9. Effects of aluminium surface morphology and chemical modification on wettability

    Science.gov (United States)

    Rahimi, M.; Fojan, P.; Gurevich, L.; Afshari, A.

    2014-03-01

    Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie-Baxter to Wenzel regime upon changing the surface roughness was also observed.

  10. Friction stir welding (FSW of aluminium foam sandwich panels

    Directory of Open Access Journals (Sweden)

    M. Bušić

    2016-07-01

    Full Text Available The article focuses on the influence of welding speed and tool tilt angle upon the mechanical properties at the friction stir welding of aluminium foam sandwich panels. Double side welding was used for producing butt welds of aluminium sandwich panels applying insertion of extruded aluminium profile. Such insertion provided lower pressure of the tool upon the aluminium panels, providing also sufficient volume of the material required for the weldment formation. Ultimate tensile strength and flexural strength for three-point bending test have been determined for samples taken from the welded joints. Results have confirmed anticipated effects of independent variables.

  11. Aluminium anode for biogalvanic metal--oxygen -cells

    Energy Technology Data Exchange (ETDEWEB)

    Weidlich, E.

    1975-02-20

    The invention deals with an aluminium anode for biogalvanic metal--oxygen cells. The object of the invention is to improve further an aluminium anode for biogalvanic metal--oxygen cells. In particular, the lifetime is to be increased and the Faraday degree of efficiency is to be improved by suppressing an excessive hydrogen development. The anode is thus constructed so as to have a metal net on both sides with aluminium layers, and the surfaces of the aluminium layers not facing the metal net are lapped or sand-blasted and have an anodized layer on their boundary regions.

  12. Negative aluminium electrode for biogalvanic metal-oxygen cells

    Energy Technology Data Exchange (ETDEWEB)

    Weidlich, E.

    1977-03-24

    The invention deals with an aluminium anode for biogalvanic metal-oxygen cells. The object of the invention is to further improve an aluminium anode for biogalvanic metal-oxygen cells. In particular, the service life is to be increased and the Faraday degree of efficiency is to be improved, by suppressing an excessive hydrogen development. The anode is thus constructed so as to have a metal net on both sides with aluminium layers and the surfaces of the aluminium layers not facing the metal net are lapped or sand-blasted and have an eloxal layer on their boundary regions.

  13. Anodic oxides on InAlP formed in sodium tungstate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Suleiman, A. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Skeldon, P. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)], E-mail: p.skeldon@manchester.ac.uk; Thompson, G.E. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Echeverria, F. [Corrosion and Protection Group, University of Antioquia, Medellin (Colombia); Graham, M.J.; Sproule, G.I.; Moisa, S.; Quance, T. [Institute for Microstructural Sciences, National Research Council of Canada, Montreal Road, Ottawa K1A 0R6 (Canada); Habazaki, H. [Graduate Engineering School, Hokkaido University, N13 W8, Kita-ku, Sapporo 060-8628 (Japan)

    2010-02-15

    Amorphous anodic oxide films on InAlP have been grown at high efficiency in sodium tungstate electrolyte. The films are shown to comprise an outer layer containing indium species, an intermediate layer containing indium and aluminium species and an inner layer containing indium, aluminium and phosphorus species{sub .} The layering correlates with the influence on cation migration rates of the energies of In{sup 3+}-O, Al{sup 3+}-O and P{sup 5+}-O bonds, which increase in this order. The film surface becomes increasingly rough with increase of the anodizing voltage as pores develop in the film, which appear to be associated with generation of oxygen gas.

  14. Formation and Characterization of Ceramic Nanocomposite Crystalline Coatings on Aluminium by Anodization

    Institute of Scientific and Technical Information of China (English)

    M.Mubarak Ali; V.Raj

    2013-01-01

    Ceramic nanocomposite coatings have been synthesized on aluminium by using lithium sulphate electrolyte with zirconium silicate additive by anodization.The effects of current density (CD) on microhardness,structure,composition and surface topography of the oxide layer formed at various CDs (0.1-0.25 A/cm2) have been studied.Crystalline coatings formed at 0.25 A/cm2 have been (width 95 nm) observed with a relatively uniform distribution confirmed by scanning electron microscopy.Additionally,the average microhardness value of ceramic nanocomposite coatings fabricated from lithium sulphate-zirconium silicate bath is approximately 8.5 times higher than that of the as-received aluminium.The surface statistics of the coatings is discussed in detail to explain the roughness and related parameters for better understanding.These observations demonstrate the importance of surface statistics in controlling the morphology of the coatings and its properties.From the X-ray diffraction investigations,it can be concluded that the formed nanocomposite coatings are crystalline in nature and that the crystallinity of the coatings decreases with increasing applied current density.

  15. Mechanical and Abrasive Wear Properties of Anodic Oxide Layers Formed on Aluminium

    Institute of Scientific and Technical Information of China (English)

    W.Bensalah; K.Elleuch; M.Feki; M.Wery; H.F.Ayedi

    2009-01-01

    Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825 specifications. The Vickers microhardness, D (HV0.2). and the abrasion weight loss, Wa (mg) were measured. Influence of oxalic acid concentration (Cox), bath temperature (T) and anodic current density (J) on D and Wa has been examined, and the sulphuric acid concentration (Caul) was maintained at 160 g.L-1. It was found that high microhardness and abrasive wear resistance of oxide layers were produced under low temperatures and high current densities with the addition of oxalic acid. The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), optical microscopy and glow-discharge optical emission spectroscopy (GDOES). It was found that the chemistry of the anodizing electrolyte, temperature, and current density are the controlling factors of the mechanical properties of the anodic oxide layer.

  16. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle

    Science.gov (United States)

    Hasvold, Øistein; Johansen, Kjell Håvard; Mollestad, Ole; Forseth, Sissel; Størkersen, Nils

    In 1993, The Norwegian Defence Research Establishment (FFI) demonstrated AUV-Demo, an unmanned (untethered) underwater vehicle (UUV), powered by a magnesium/dissolved oxygen seawater battery (SWB). This technology showed that an underwater range of at least 1000 nautical miles at a speed of 4 knots was possible, but also that the maximum hotel load this battery system could support was very limited. Most applications for UUV technology need more power over a shorter period of time. Seabed mapping using a multibeam echo sounder mounted on an UUV was identified as a viable application and the Hugin project was started in 1995 in cooperation with Norwegian industry. For this application, an endurance of 36 h at 4 knots was required. Development of the UUV hull and electronics system resulted in the UUV Hugin I. It carries a Ni/Cd battery of 3 kW h, allowing up to 6 h under-water endurance. In parallel, we developed a battery based on a combination of alkaline Al/air and SWB technology, using a circulating alkaline electrolyte, aluminium anodes and maintaining the oxidant concentration in the electrolyte by continuously adding hydrogen peroxide (HP) to the electrolyte. This concept resulted in a safe battery, working at ambient pressure (balanced) and with sufficient power and energy density to allow the UUV Hugin II to make a number of successive dives, each of up to 36 h duration and with only 1 h deck time between dives for HP refill and electrolyte exchange. After 100 h, an exchange of anodes takes place. The power source consists of a four-cell Al/HP battery, a DC/DC converter delivering 600 W at 30 V, circulation and dosing pumps and a battery control unit. Hugin II is now in routine use by the Norwegian Underwater Intervention AS (NUI) which operates the UUV for high-precision seabed mapping down to a water depth of 600 m.

  17. Ceramic electrolyte coating and methods

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  18. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  19. Chemical sensitivity of Mo gate Mos capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, R.M.; Aragon, R. [Laboratorio de Peliculas delgadas, Facultad de Ingenieria, Paseo Colon 850, 1063, Buenos Aires (Argentina)

    2006-07-01

    Mo gate Mos capacitors exhibit a negative shift of their C-V characteristic by up to 240 mV, at 125 C, in response to 1000 ppm hydrogen, in controlled nitrogen atmospheres. The experimental methods for obtaining capacitance and conductance, as a function of polarisation voltage, as well as the relevant equivalent circuits are reviewed. The single-state interface state density, at the semiconductor-dielectric interface, decreases from 2.66 x 10{sup 11} cm{sup -2} e-v{sup -1}, in pure nitrogen, to 2.5 x 10{sup 11} cm{sup -2} e-v{sup -1} in 1000 ppm hydrogen in nitrogen mixtures, at this temperature. (Author)

  20. Evaluation of the constant potential method in simulating electric double-layer capacitors.

    Science.gov (United States)

    Wang, Zhenxing; Yang, Yang; Olmsted, David L; Asta, Mark; Laird, Brian B

    2014-11-14

    A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations in the electrolyte solution. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potential Method (CPM), [S. K. Reed et al., J. Chem. Phys. 126, 084704 (2007)], in which the electrode charges fluctuate in order to maintain constant electric potential in each electrode. For this comparison, we utilize a simplified LiClO4-acetonitrile/graphite EDLC. At low potential difference (ΔΨ ⩽ 2 V), the two methods yield essentially identical results for ion and solvent density profiles; however, significant differences appear at higher ΔΨ. At ΔΨ ⩾ 4 V, the CPM ion density profiles show significant enhancement (over FCM) of "inner-sphere adsorbed" Li(+) ions very close to the electrode surface. The ability of the CPM electrode to respond to local charge fluctuations in the electrolyte is seen to significantly lower the energy (and barrier) for the approach of Li(+) ions to the electrode surface. PMID:25399127

  1. A study on the recycling of aluminium alloy 7075 scrap

    Energy Technology Data Exchange (ETDEWEB)

    Oezer, Goekhan [Yildiz Technical Univ., Yildiz (TR). Balkan Centre of Advanced Casting Technologies (BACAT); Marsoglu, Muezeyyen [Yildiz Technical Univ., Yildiz (Turkey). Dept. for Metal and Materials Science Engineering; Burgucu, Sarp

    2012-07-01

    Aluminium and its alloys have recently become an important metal whose area and amount of usage increase more and more, due to their mechanical properties, recycling ability, and penetrability. If it is considered that the bauxite, which is the raw material of aluminium is rare on earth, and also the area and amount of aluminium usage increases over time, the importance of aluminium recycling goes up. aluminium recycling has become crucial by means of both, the potential of the scrap's dependant increase on usage and the primary aluminium production, as it is providing energy and cost savings. 7xxx grades of scrap are collected with other scrap of aluminium alloys in one turn and recycled all together. As the regain of these alloys is not done by isolation of the various grades, the finally recycled ingots result in lower grades. High value aluminium scrap is regrettably not recovered, as it was anticipated. This study is dealing with 7075 aluminium alloys originated from discharged blow molding tools and the rest piece cuttings of blocks and plates. The material has been subjected to an induction furnace, and has been remelted into small ingots and hardened according to 7075 aluminium alloy parameters (hardening aluminium tooling). [German] Aluminium und seine Legierungen sind in den letzten Jahren aufgrund ihrer mechanischen Eigenschaften, ihrer Recyclingfaehigkeit und ihrer Durchlaessigkeit immer bedeutendere metallische Werkstoffe geworden. Unter Beruecksichtigung, dass Bauxit als Rohmaterial selten auf der Erde vorkommt und der Verbrauch mit der Zeit steigt, waechst die Bedeutung des Recyclings von Aluminium. Aluminiumrecycling, zumal es Energieund Kosteneinsparungen ermoeglicht, ist sowohl fuer die schrottabhaengigen Verwendungspotentiale und die PrimaerAluminiumproduktion gleichermassen bedeutend geworden. Die 7xxxx Schrottlegierungen werden in einem Arbeitsgang mit dem Schrott aus anderen Aluminiumlegierungen gesammelt und recycled. Da die

  2. Effects of aluminium surface morphology and chemical modification on wettability

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M., E-mail: mar@sbi.aau.dk [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Fojan, P.; Gurevich, L. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4, DK-9220 Aalborg East (Denmark); Afshari, A. [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2014-03-01

    Highlights: • Successful surface modification procedures on aluminium samples were performed involving formation of the layer of hydrophilic hyperbranched polyethyleneglycol (PEG) via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. • The groups of surfaces with hydrophobic behavior were found to follow the Wenzel model. • A transition from Cassie–Baxter's to Wenzel's regime was observed due to changing of the surface roughness upon mechanical polishing in aluminium samples. - Abstract: Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie–Baxter to Wenzel regime upon changing the surface

  3. There is (still too much aluminium in infant formulas

    Directory of Open Access Journals (Sweden)

    Burrell Shelle-Ann M

    2010-08-01

    Full Text Available Abstract Background Infant formulas are sophisticated milk-based feeds for infants which are used as a substitute for breast milk. Historically they are known to be contaminated by aluminium and in the past this has raised health concerns for exposed infants. We have measured the aluminium content of a number of widely used infant formulas to determine if their contamination by aluminium and consequent issues of child health persists. Methods Samples of ready-made milks and powders used to make milks were prepared by microwave digestion of acid/peroxide mixtures and their aluminium content determined by THGA. Results The concentration of aluminium in ready-made milks varied from ca 176 to 700 μg/L. The latter concentration was for a milk for preterm infants. The aluminium content of powders used to make milks varied from ca 2.4 to 4.3 μg/g. The latter content was for a soya-based formula and equated to a ready-to-drink milk concentration of 629 μg/L. Using the manufacturer's own guidelines of formula consumption the average daily ingestion of aluminium from infant formulas for a child of 6 months varied from ca 200 to 600 μg of aluminium. Generally ingestion was higher from powdered as compared to ready-made formulas. Conclusions The aluminium content of a range of well known brands of infant formulas remains high and particularly so for a product designed for preterm infants and a soya-based product designed for infants with cow's milk intolerances and allergies. Recent research demonstrating the vulnerability of infants to early exposure to aluminium serves to highlight an urgent need to reduce the aluminium content of infant formulas to as low a level as is practically possible.

  4. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    Science.gov (United States)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was

  5. Cooperative redox-active additives of anthraquinone-2,7-disulphonate and K4Fe(CN)6 for enhanced performance of active carbon-based capacitors

    Science.gov (United States)

    Tian, Ying; Liu, Ming; Che, Ruxing; Xue, Rong; Huang, Liping

    2016-08-01

    Two redox additives of anthraquinone-2,7-disulphonate (AQDS) and K4Fe(CN)6 are introduced into the neutral medium of KNO3 for enhanced performance of active carbon-based (AC) capacitor. The Faradaic redox reactions of AQ/H2AQ and Fe(CN)63-/Fe(CN)64- are diffusion-controlled and occurred on the negative electrode and the positive electrode respectively and simultaneously, resulting in the enhancement of specific capacitance, power density and energy density of 240 F g-1, 527 W kg-1 and 26.3 Wh kg-1, respectively at a current density of 1.0 A g-1 for a symmetric AC capacitor in the electrolyte of 1 M KNO3-0.017 M K4Fe(CN)6-0.017 M AQDS. These values are much higher than those in the controls of either 1 M KNO3-0.017 M K4Fe(CN)6 or 1 M KNO3-0.017 M AQDS with only one pair of redox additives. These results demonstrate the cooperative K4Fe(CN)6 and AQDS for enhanced performance of AC capacitor, and thus provide an alternative approach for efficient capacitors.

  6. PSIM-based Exploration of Electric Double Layer Capacitor Simulator%基于PSIM的双电层电容器仿真器的研究

    Institute of Scientific and Technical Information of China (English)

    关静

    2011-01-01

    This paper presents an electric double layer capacitor simulator composed of the electrolytic capacitors and a three-phase converter circuit, and the circuit principle is discribled and analyzed. Then the circuit simulation is f'mished in the PSIM6.0 software environment, whose results demonstrate the validity and correctness of the proposed electric double layer capacitor simulator. In such circuit a small capacity capacitors can perform a large capacity electric double layer caoacitor.%文章提出了一种用电解电容和三相变换电路构成的双电层电容器仿真器模型,阐述和分析了该仿真器模型的工作原理,并在PSIM6.0环境下对仿真器模型进行了计算机仿真,仿真结果验证了所提出的仿真器模型的正确性,它能够用小容量的电解电容有效地模拟大容量的双电层电容器。

  7. Development of High Temperature Capacitor Technology and Manufacturing Capability

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  8. Defibrillation thresholds are lower with smaller storage capacitors.

    Science.gov (United States)

    Leonelli, F M; Kroll, M W; Brewer, J E

    1995-09-01

    Present implantable cardioverter defibrillators use a wide range of capacitance values for the storage capacitor. However, the optimal capacitance value is unknown. We hypothesized that a smaller capacitor, by delivering its charge in a time closer to the heart chronaxie, should lower the defibrillation threshold (DFT). We compared the energy required to defibrillate 10 open-chest dogs, after 15 seconds of ventricular fibrillation, with a monophasic, time-truncated waveform delivered from either a 85-microF or a 140-microF capacitor. Shocks were delivered through a pair of 14-cm2 epicardial patch electrodes: The two capacitors were randomly tested twice with each dog using a modified 3-reversal method for each DFT determination. The average stored and delivered DFT energies for the 85-microF capacitor were 6.0 +/- 1.7 joules and 5.2 +/- 1.5 joules, respectively, compared to 6.7 +/- 1.7 joules and 6.0 +/- 1.5 joules for the 140-microF capacitor (P = 0.01 and P = 0.004, respectively). The mean leading edge voltages were higher, the pulse duration shorter, and the mean impedance lower for the 85-microF capacitor. The impedance was inversely related to the pulse duration and the voltage decay suggesting that, at least in part, the mechanism of improved defibrillation could be accounted for by the waveform electrical characteristics. There was an equal number of episodes of postshock bradyarrhythmias and tachyarrhythmias following discharges from each capacitor. Moreover, there was no relationship between the likelihood of these arrhythmias and either the initial voltage or the delivered current nor there was a higher number of episodes of postshock hypotension following the smaller capacitor discharges.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7491309

  9. Corrosion behaviour of ion implanted aluminium alloy in 0.1 M NaCl electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J.W.; Evans, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Aluminum and its alloys are widely used in industry because of their light weight, high strength and good corrosion resistance which is due to the formation of a protective oxide layer. However, under saline conditions such as those encountered in marine environments, this group of metals are vulnerable to localised degradation in the form of pitting corrosion. This type of corrosion involves the adsorption of an anion, such as chlorine, at the oxide solution interface. Ion implantation of metal ions has been shown to improve the corrosion resistance of a variety of materials. This effect occurs : when the implanted species reduces anion adsorption thereby decreasing the corrosion rate. In this paper we report on the pitting behavior of Ti implanted 2011 Al alloy in dilute sodium chloride solution. The Ti implanted surfaces exhibited an increased pitting potential and a reduced oxygen uptake. 5 refs., 3 figs.

  10. Effects of Anode Wettability and Slots on Anodic Bubble Behavior Using Transparent Aluminium Electrolytic Cells

    Science.gov (United States)

    Zhao, Zhibin; Gao, Bingliang; Feng, Yuqing; Huang, Yipeng; Wang, Zhaowen; Shi, Zhongning; Hu, Xianwei

    2016-07-01

    This paper investigated the non-isothermal crystallization kinetics of the spinel crystals in vanadium slags containing high CaO content. Experiments were performed in combination with theoretical calculation to address this issue, and statistical analyses based on the Crystal Size Distribution theory. The results indicate that low cooling rate and high CaO content benefit the growth of spinel crystals. The growth mechanism is revealed to be controlled by interface reactions and diffusion at the cooling rates of 5 K/min and 15 K/min, respectively. However, at higher temperatures (>1673 K), the growth of spinel crystals is controlled by nucleation. While the temperature is decreased to 1523 K at the cooling rate of 5 K/min, the mean diameter of spinel crystals could reach 36.44 μm. Experimental results combining with theoretical reveal that low cooling rate benefits spinels growth, especially for the interval of 1523 K-1200 K.

  11. Electrolyte creepage barrier for liquid electrolyte fuel cells

    Science.gov (United States)

    Li, Jian; Farooque, Mohammad; Yuh, Chao-Yi

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  12. Capacitive Energy Storage from - 50o to 100o Using an Ionic Liquid Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Rongying [Universite Paul Sabatier, Toulouse Cedex, France.; Taberna, Pierre-Louis [Universite Paul Sabatier, Toulouse Cedex, France.; Santini, Sebastien [SOLVIONIC Company, Toulouse, France; Presser, Volker [ORNL; Perez, Carlos R. [Drexel University; Malbosc, Francois [SOLVIONIC Company, Toulouse, France; Rupesinghe, Nalin L. [AIXTRON, Cambridge, UK; Teo, Kenneth B. K. [AIXTRON, Cambridge, UK; Gogotsi, Yury G. [Drexel University; Simon, Patrice [Universite Paul Sabatier, Toulouse Cedex, France.

    2011-01-01

    Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from 50 to 100 C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s.

  13. The Electrochemical Flow Capacitor: Capacitive Energy Storage in Flowable Media

    Science.gov (United States)

    Dennison, Christopher R.

    Electrical energy storage (EES) has emerged as a necessary aspect of grid infrastructure to address the increasing problem of grid instability imposed by the large scale implementation of renewable energy sources (such as wind or solar) on the grid. Rapid energy recovery and storage is critically important to enable immediate and continuous utilization of these resources, and provides other benefits to grid operators and consumers as well. In past decades, there has been significant progress in the development of electrochemical EES technologies which has had an immense impact on the consumer and micro-electronics industries. However, these advances primarily address small-scale storage, and are often not practical at the grid-scale. A new energy storage concept called "the electrochemical flow capacitor (EFC)" has been developed at Drexel which has significant potential to be an attractive technology for grid-scale energy storage. This new concept exploits the characteristics of both supercapacitors and flow batteries, potentially enabling fast response rates with high power density, high efficiency, and long cycle lifetime, while decoupling energy storage from power output (i.e., scalable energy storage capacity). The unique aspect of this concept is the use of flowable carbon-electrolyte slurry ("flowable electrode") as the active material for capacitive energy storage. This dissertation work seeks to lay the scientific groundwork necessary to develop this new concept into a practical technology, and to test the overarching hypothesis that energy can be capacitively stored and recovered from a flowable media. In line with these goals, the objectives of this Ph.D. work are to: i) perform an exploratory investigation of the operating principles and demonstrate the technical viability of this new concept and ii) establish a scientific framework to assess the key linkages between slurry composition, flow cell design, operating conditions and system performance. To

  14. Gas heat treatment plants for the aluminium industry; Gasbeheizte Waermebehandlungsanlagen fuer die Aluminium-Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Olberts, P.; Hanus, A. [LOI Thermprocess GmbH, Essen (Germany)

    2004-09-01

    LOI Thermoprocess has developed new, flexible, innovative furnace designs for heat treatment of aluminium in general (car industry) and particularly for cylinder heads, engine units, chassis components, textured components, wheels, rolled sheet and extrusions. The furnaces are heated by means of radiant tubes (recuperators) and by the more usual open gas heating system (flue gas recirculation). (orig.)

  15. The aluminium body has been promoted in Canada; La carrosserie aluminium promue au Canada

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-02-01

    The aluminium vehicles technology is a technology which allows, with an equivalent structure, to decrease the weight of a car of 40%. Presented by the Alcan firm, this technology is one of the technologies of the year 2003. The Alcan firm has, besides, received the 2003 technology price awarded by the magazine Industry Week. (O.M.)

  16. Electrolytes - Technology review

    Energy Technology Data Exchange (ETDEWEB)

    Meutzner, Falk; Ureña de Vivanco, Mateo [Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg (Germany)

    2014-06-16

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted.

  17. Electrolytes - Technology review

    International Nuclear Information System (INIS)

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted

  18. Floating body cell a novel capacitor-less DRAM cell

    CERN Document Server

    Ohsawa, Takashi

    2011-01-01

    DRAM together with NAND Flash is driving semiconductor technologies with wide spectrum of usage ranging from PC, mobile phone and digital home appliances to solid-state disk (SSD). However, the DRAM cell which consists of a data storage capacitor (1C) and a switching transistor (1T) is facing serious difficulty in shrinking the size of the capacitor whose capacitance needs to be kept almost constant (20~30fF) throughout generations. The availability of a new DRAM cell which does not rely on an explicit capacitor for storing its data is more than ever awaited for further increasing the bit dens

  19. Comb-Line Filter with Coupling Capacitor in Ground Plane

    Directory of Open Access Journals (Sweden)

    Toshiaki Kitamura

    2011-01-01

    Full Text Available A comb-line filter with a coupling capacitor in the ground plane is proposed. The filter consists of two quarter-wavelength microstrip resonators. A coupling capacitor is inserted into the ground plane in order to build strong coupling locally along the resonators. The filtering characteristics are investigated through numerical simulations as well as experiments. Filtering characteristics that have attenuation poles at both sides of the passband are obtained. The input susceptances of even and odd modes and coupling coefficients are discussed. The filters using stepped impedance resonators (SIRs are also discussed, and the effects of the coupling capacitor for an SIR structure are shown.

  20. Combined Corrosion and Wear of Aluminium Alloy 7075-T6

    NARCIS (Netherlands)

    Liu, Y.; Mol, J.M.C.; Janssen, G.C.A.M.

    2016-01-01

    The aluminium alloy 7075-T6 is widely used in engineering. In some applications, like slurry transport, corrosion and abrasion occur simultaneously, resulting in early material failure. In the present work, we investigated the combined effect of corrosion and wear on the aluminium alloy 7075-T6. We