WorldWideScience

Sample records for aluminium carbides

  1. TEM investigation of aluminium containing precipitates in high aluminium doped silicon carbide

    International Nuclear Information System (INIS)

    Wong-Leung, J.; FitzGerald, J.D.

    2002-01-01

    Full text: Silicon carbide is a promising semiconductor material for applications in high temperature and high power devices. The successful growth of good quality epilayers in this material has enhanced its potential for device applications. As a novel semiconductor material, there is a need for studying its basic physical properties and the role of dopants in this material. In this study, silicon carbide epilayers were grown on 4H-SiC wafers of (0001) orientation with a miscut angle of 8 deg at a temperature of 1550 deg C. The epilayers contained regions of high aluminium doping well above the solubility of aluminium in silicon carbide. High temperature annealing of this material resulted in the precipitation of aluminium in the wafers. The samples were analysed by secondary ion mass spectrometry and transmission electron microscopy. Selected area diffraction studies show the presence of aluminium carbide and aluminium silicon carbide phases. Copyright (2002) Australian Society for Electron Microscopy Inc

  2. Corrosion behaviour of aluminium matrix composites containing silicon carbide particles

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.J. [Nottingham Univ. (United Kingdom). Dept. of Materials Engineering and Materials Design; Noble, B. [Nottingham Univ. (United Kingdom). Dept. of Materials Engineering and Materials Design; Trowsdale, A.J. [Nottingham Univ. (United Kingdom). Dept. of Materials Engineering and Materials Design

    1996-12-31

    An examination of the pitting attack in two aluminium matrix composites (1050 and 2124) each reinforced with varying fractions (0-30 wt.%) of silicon carbide particles (SiC{sub p}) in the size range 3-40 {mu}m has been made in 1 N NaCl solution. It has been demonstrated that the existence of pores and crevices at SiC{sub p}/matrix interfaces strongly influences pit initiation. This is further aided by the cracking of large SiC{sub p}{>=}20 {mu}m, during processing. The presence of {theta}(CuAl{sub 2}) and S(CuMgAl{sub 2}) precipitates in 2124-SiC{sub p} composite also promotes pitting attack at SiC{sub p}-matrix and intermetallic-matrix interfaces. (orig.)

  3. Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites

    International Nuclear Information System (INIS)

    Vijaya Ramnath, B.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Siddique Ahmed Ghias, A.

    2014-01-01

    Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al 2 O 3 ) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)

  4. Dry Sliding Wear behaviour of Aluminium-Red mud- Tungsten Carbide Hybrid metal matrix composites

    Science.gov (United States)

    Devi Chinta, Neelima; Selvaraj, N.; Mahesh, V.

    2016-09-01

    Red mud is an industrial waste obtained during the processing of alumina by Bayer's process. An attempt has been made to utilize the solid waste by using it as the reinforcement material in metal matrix composites. Red mud received from NALCO has been subjected for sieve analysis and milled to 42 nanometers using high energy ball mill. Red mud is used as a reinforcement material in Pure Aluminium matrix composite at 2%, 4%, and 6% weight at 100 microns level as well as 42 nano meters along with 4%Tungsten carbide by weight. Micro and Nano structured red mud powders, Tungsten carbide powder and Aluminium is mixed in a V-Blender, compacted at a pressure of 40 bar and samples are prepared by conventional sintering with vacuum as medium. In this current work, dry sliding wear characteristics at normal and heat treatment conditions are investigated with optimal combination of Aluminium, Tungsten carbide and different weight fractions of micro and nano structured red mud powder.

  5. SOLIDIFICATION CHARACTERISTIC OF TITANIUM CARBIDE PARTICULATE REINFORCED ALUMINIUM ALLOY MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    N. FATCHURROHMAN

    2012-04-01

    Full Text Available In this research solidification characteristic of metal matrix composites consisted of titanium carbide particulate reinforced aluminium-11.8% silicon alloy matrix is performed. Vortex mixing and permanent casting method are used as the manufacturing method to produce the specimens. Temperature measurements during the casting process are captured and solidification graphs are plotted to represent the solidification characteristic. The results show, as volume fraction of particulate reinforcement is increased, solidification time is faster. Particulate reinforcement promotes rapid solidification which will support finer grain size of the casting specimen. Hardness test is performed and confirmed that hardness number increased as more particulate are added to the system.

  6. The mean grain size determination of boron carbide (B4C)-aluminium (Al) and boron carbide (B4C)-nickel (Ni) composites by ultrasonic velocity technique

    International Nuclear Information System (INIS)

    Unal, Ridvan; Sarpuen, Ismail H.; Yalim, H. Ali; Erol, Ayhan; Ozdemir, Tuba; Tuncel, Sabri

    2006-01-01

    In this study, the mean grain size of ceramic-metal composites, made from boron carbide (B 4 C)-aluminium (Al)-nickel (Ni) powders, has been determined with ultrasonic velocity technique by using a 2 MHz transducer. An ultrasonic velocity-grain size master graph was plotted using a 4 MHz ultrasonic transducer. The results were compared to the mean grain size obtained from SEM (Scanning Electron Microscopy) images

  7. Evaluation of the performance of coated and uncoated carbide tools in drilling thick CFRP/aluminium alloy stacks

    OpenAIRE

    MONTOYA , Maxime; CALAMAZ , Madalina; GEHIN , Daniel; GIROT , Franck

    2013-01-01

    This paper aims to establish the wear mechanisms of coated and uncoated tungsten carbide drills when drilling carbon fibre reinforced plastics (CFRP)/aluminium alloy (Al) stacks. During the drilling experiments, thrust forces were measured. A scanning electron microscope (SEM) and a numerical microscope, provided with a scanning device, were periodically used to analyse tool wear mechanisms and to measure wear progression of the tool cutting edges. For both coated and uncoated drills, abrasio...

  8. Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2018-01-01

    Full Text Available The mechanical properties of aluminium hybrid composites reinforced with groundnut shell ash (GSA and silicon carbide was investigated. GSA and silicon carbide with different mix ratios (10:0, 7.5:2.5, 5.0:5.0, 2.5:7.5 and 0:10 constituted 6 and 10 wt.% of the reinforcing phase, while the matrix material was Al–Mg–Si alloy. The hybrid composites were produced via a two-step stir casting technique. Microstructural examination, hardness, tensile and fracture toughness testing were carried out to appraise the mechanical properties of the composites. The results show that with increasing GSA in the reinforcing phase, the hardness, ultimate tensile strength (UTS and specific strength of the composites decreased slightly for both 6 and 10 wt.% reinforced Al–Mg–Si based composites owing to the amount of the oxides of Al, Si, Ca, K2 and Mg present in the composition of GSA. However, the percentage elongation improved marginally and was generally invariant to increasing GSA content while the fracture toughness increased with increasing GSA content. GSA offered a favourable influence on the mechanical properties of Al–Mg–Si hybrid composites comparable to that of rice husk ash and bamboo leaf ash.

  9. Ultraviolet-Diode Pump Solid State Laser Removal of Titanium Aluminium Nitride Coating from Tungsten Carbide Substrate

    Science.gov (United States)

    See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar

    2017-09-01

    This paper presents an investigation on the titanium aluminium nitride (TiAlN) coating removal from tungsten carbide (WC-Co) substrate using a diode pump solid state (DPSS) ultraviolet (UV) laser with maximum average power of 90 W, wavelength of 355 nm and pulse width of 50 ns. The TiAlN coating of 1.5 μm thickness is removed from the WC-Co substrate with laser fluence of 2.71 J/cm2 at 285.6 number of pulses (NOP) and with NOP of 117.6 at 3.38 J/cm2 fluence. Titanium oxide formation was observed on the ablated surface due to the re-deposition of ablated titanium residue and also attributed to the high temperature observed during the laser ablation process. Crack width of around 0.2 μm was observed over both TiAlN coating and WC-Co substrate. The crack depth ranging from 1 to 10 μm was observed and is related to the thickness of the melted carbide. The crack formation is a result of the thermal induced stresses caused by the laser beam interaction with the material as well as the higher thermal conductivity of cobalt compared to WC. Two cleaning regions are observed and is a consequence of the Gaussian distribution of the laser beam energy. The surface roughness of the ablated WC-Co increased with increasing laser fluence and NOP.

  10. Observations on infiltration of silicon carbide compacts with an aluminium alloy

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.

  11. Energy dispersive spectroscopy analysis of aluminium segregation in silicon carbide grain boundaries.

    Science.gov (United States)

    Zhang, X F; Yang, Q; De Jonghe, L C; Zhang, Z

    2002-07-01

    The aluminium distribution in polycrystalline SiC hot-pressed with aluminium, boron and carbon additives was studied using X-ray energy-dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The Al excess in homophase SiC grain boundary films was determined, taking into account dissolved Al in the SiC lattice. In the spot-EDS analysis, an electron beam probe with a calibrated diameter was formed, and the total beam-specimen interaction volume was defined, taking the beam spreading through crystalline TEM foil into consideration. EDS spectra were collected from regions containing intergranular films and adjacent matrix grains, respectively. A theoretical treatment was presented and experimental errors were estimated, with a further discussion about the effects of foil thickness. Experimental examples are given, followed by statistical EDS analyses for grain boundary films in SiC samples hot-pressed with increased amounts of Al additions. The results demonstrated a substantial Al segregation in the nanometer-wide intergranular films in all samples. Al additions higher than 3 wt% saturated the Al concentrations in SiC grains and in grain boundary films. The effect of foil thickness, and the parameters for determining the optimum incident beam diameter in the EDS analysis are discussed.

  12. Studies on Mechanical Behaviour of Aluminium/Nickel Coated Silicon Carbide Reinforced Functionally Graded Composite

    Directory of Open Access Journals (Sweden)

    A. Mohandas

    2017-06-01

    Full Text Available The aim of the work is to fabricate functionally graded aluminium (Al-Si6Cu/ nickel coated SiC metal matrix composite using centrifugal casting route. SiC particles (53-80 µm were coated with nickel using electroless coating technique to enhance the wettability with aluminium matrix. Several attempts were made to coat nickel on SiC by varying the process temperature (65 °C, 75 °C, and 85 °C to obtain a uniform coating. Silicon particles coated with nickel were characterised using EDS enabled Field Emission Scanning Electron Microscope and it was found that the maximum nickel coating on SiC occurred at a process temperature of 75°C. This nickel coated SiC particles were used as the reinforcement for the manufacture of functionally graded metal matrix composite and a cast specimen of dimensions 150×90×15 mm was obtained. To ensure the graded properties in the fabricated composites, microstructure (at a distance of 1, 7 and 14 mm and hardness (at a distance of 1, 3, 7, 10 and 14 mm from outer periphery taken in the radial direction was analysed using Zeiss Axiovert metallurgical microscope and Vickers micro hardness tester respectively. The microstructure reveals presence of more SiC particles at the outer periphery compared to inner periphery and the hardness test shows that the hardness also decreased from outer periphery (90 HV to inner periphery (78 HV.Tensile strength of specimen from outer zone (1-7mm and inner zone (8-14 mm of casting was also tested and found out a value of 153.3 Mpa and 123.3 Mpa for the outer zone and inner zone respectively. An important observation made was that the outer periphery of casting was particle rich and the inner periphery was particle deficient because of centrifugal force and variation in density between aluminium matrix and reinforcement. Functionally graded Al/SiC metal matrix composite could be extensively used in automotive industry especially in the manufacture of liners and brake drums.

  13. The bainite transformation and the carbide precipitation of 4.88% aluminium austempered ductile iron investigated using electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kiani-Rashid, A.R. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of)], E-mail: fkiana@yahoo.com

    2009-04-17

    The transformation to a bainitic microstructure during austempering under different conditions was examined for the most successful of the experimental casts. Austenitising temperature of 920 deg. C and austempering temperature of 350 deg. C for different holding times have been used. Microstructures have been examined by SEM and transmission electron microscopy (TEM). It was found that isothermal transformation at 350 deg. C for different soaking times gave a typical bainitic microstructure that increased with increasing austempering time. Extension of isothermal transformation time leads to precipitation of carbides which also depended on the bainitic phase transformation.

  14. Fabrication and tribological response of aluminium 6061 hybrid composite reinforced with bamboo char and boron carbide micro-fillers

    Science.gov (United States)

    Chethan, K. N.; Pai, Anand; Keni, Laxmikant G.; Singhal, Ashish; Sinha, Shubham

    2018-02-01

    Metal matrix composites (MMCs) have a wide scope of industrial applications and triumph over conventional materials due to their light weight, higher specific strength, good wear resistance and lower coefficient of thermal expansion. The present study aims at establishing the feasibility of using Bamboo charcoal particulate and boron carbide as reinforcements in Al-6061 alloy matrix and to investigate their effect on the wear of composites taking into consideration the interfacial adhesion of the reinforcements in the alloy. Al-6061 alloy was chosen as a base metallic alloy matrix. Sun-dried bamboo canes were used for charcoal preparation with the aid of a muffle furnace. The carbon content in the charcoal samples was determined by EDS (energy dispersive spectroscopy). In present study, stir casting technique was used to prepare the samples with 1%, 2%, and 3% weight of bamboo charcoal and boron carbide with Al-6061. The fabricated composites were homogenised at 570°C for 6 hours and cooled at room temperature. Wear studies were carried out on the specimens with different speed and loads. It was found that wear rate and coefficient of friction decreased with increase in the reinforcement content.

  15. Metal carbides

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    From the viewpoint of general crystal chemistry principles and on the base of modern data the structural chemistry of metal carbides is presented. The classification deviding metal carbides into 4 groups depending on chemical and physical properties is presented. The features of the crystal structure of carbides of alkali alkaline earth, transition, 4 f- and 5f-elements and their effect on physical and chemical properties are considered

  16. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  17. Aluminium bridges, aluminium bridge decks

    NARCIS (Netherlands)

    Soetens, F.; Straalen, IJ.J. van

    2003-01-01

    Applications of aluminium have grown considerably in building and civil engineering the last decade. In building and civil engineering the increase of aluminium applications is due to various aspects like light weight, durability and maintenance, use of extrusions, and esthetics. The paper starts

  18. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  19. Aluminium in human sweat.

    Science.gov (United States)

    Minshall, Clare; Nadal, Jodie; Exley, Christopher

    2014-01-01

    It is of burgeoning importance that the human body burden of aluminium is understood and is measured. There are surprisingly few data to describe human excretion of systemic aluminium and almost no reliable data which relate to aluminium in sweat. We have measured the aluminium content of sweat in 20 healthy volunteers following mild exercise. The concentration of aluminium ranged from 329 to 5329μg/L. These data equate to a daily excretion of between 234 and 7192μg aluminium and they strongly suggest that perspiration is the major route of excretion of systemic aluminium in humans. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Human exposure to aluminium.

    Science.gov (United States)

    Exley, Christopher

    2013-10-01

    Human activities have circumvented the efficient geochemical cycling of aluminium within the lithosphere and therewith opened a door, which was previously only ajar, onto the biotic cycle to instigate and promote the accumulation of aluminium in biota and especially humans. Neither these relatively recent activities nor the entry of aluminium into the living cycle are showing any signs of abating and it is thus now imperative that we understand as fully as possible how humans are exposed to aluminium and the future consequences of a burgeoning exposure and body burden. The aluminium age is upon us and there is now an urgent need to understand how to live safely and effectively with aluminium.

  1. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  2. Rows of Dislocation Loops in Aluminium Irradiated by Aluminium Ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.

    1967-01-01

    Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along <110 > directions. ©1967 The American Institute of Physics......Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along directions. ©1967 The American Institute of Physics...

  3. A low cost, light weight cenosphere–aluminium composite for brake ...

    Indian Academy of Sciences (India)

    Abstract. The commonly used composite material for brake rotor consists of silicon carbide (SiC) or aluminium oxide (Al2O3) particles which are more expensive. The weight of conventionally used composite is more compared to base alloy. The aim of this paper is to develop a light weight material for brake disc applications ...

  4. A low cost, light weight cenosphere–aluminium composite for brake ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The commonly used composite material for brake rotor consists of silicon carbide (SiC) or aluminium oxide (Al2O3) particles which are more expensive. The weight of conventionally used composite is more compared to base alloy. The aim of this paper is to develop a light weight material for brake disc ...

  5. Interface in silicon carbide whisker reinforced aluminium composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Li; Geng, Lin; Yao, Zhongkai; Lei, Tingquan (Harbin Institute of Technology (China))

    1989-09-01

    The interface in SiCw/Al composites was examined. The Auger electron spectroscope analysis of the fracture surface after sputter etching shows that the bonding between SiC whisker and Al matrix is quite good. TEM and X-ray diffraction analysis show that there is no reaction layer at the SiC-Al interface. Si and C cannot diffuse into the matrix, and Al cannot diffuse into the whisker. The experimental results also show that there may be certain orientation relationships between the SiC whisker and the nearby matrix. 7 refs.

  6. Phosphorus enhances aluminium tolerance in both aluminium ...

    African Journals Online (AJOL)

    Seedlings growing in acid soils suffer both phosphorus (P) deficiency and aluminium (Al) toxicity stresses. An experiment was conducted to study the effects of Al and P interaction on Al-tolerant (ET8) and Al-sensitive (ES8) wheat genotypes in an acid soil. This study aimed to determine the interactive effect of Al and P in soil ...

  7. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    Energy Technology Data Exchange (ETDEWEB)

    Silk, Jonathan R. [Aerospace Metal Composites Ltd., RAE Road, Farnborough, GU14 6XE (United Kingdom); Dashwood, Richard J. [WMG, University of Warwick, Coventry, CV4 7AL (United Kingdom); Chater, Richard J., E-mail: r.chater@imperial.ac.u [Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)

    2010-06-15

    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  8. Ion nitriding of aluminium

    International Nuclear Information System (INIS)

    Fitz, T.

    2002-09-01

    The present study is devoted to the investigation of the mechanism of aluminium nitriding by a technique that employs implantation of low-energy nitrogen ions and diffusional transport of atoms. The nitriding of aluminium is investigated, because this is a method for surface modification of aluminium and has a potential for application in a broad spectrum of fields such as automobile, marine, aviation, space technologies, etc. However, at present nitriding of aluminium does not find any large scale industrial application, due to problems in the formation of stoichiometric aluminium nitride layers with a sufficient thickness and good quality. For the purposes of this study, ion nitriding is chosen, as an ion beam method with the advantage of good and independent control over the process parameters, which thus can be related uniquely to the physical properties of the resulting layers. Moreover, ion nitriding has a close similarity to plasma nitriding and plasma immersion ion implantation, which are methods with a potential for industrial application. (orig.)

  9. Aluminium in Fisch und Fischereierzeugnissen

    OpenAIRE

    Ranau, Reiner; Oehlenschläger, Jörg

    1997-01-01

    Recent reports associating aluminium with several skeletal (osteomalacia) and neurological disorders (encephalopathy and Alzheimer’s disease) in humans suggest that exposure to aluminium may pose a hazard to health. This requires the examination of aluminiumcontent in different foodstuffs. Therefore, an analytical method for the determination of aluminium in fish and fishery products, especially in fishery products packaged in aluminium cans, was developed using graphite furnace atomic absorp...

  10. Recovery in aluminium

    DEFF Research Database (Denmark)

    Gundlach, Carsten

    2006-01-01

    In the present thesis the development of a unique experimental method for volume characterisation of individual embedded crystallites down to a radius of 150 nm is presented. This method is applied to in-situ studies of recovery in aluminium. The method is an extension of 3DXRD microscopy, an X...... by the combined use of X-ray micro focusing optics, new scanning algorithms and the use of foils. The ratio of foil thickness to crystallite size should be at least 10 such that the central ones are situated in a bulk environment. To avoid thermal drifts, gold reference markers are deposited onto the sample...... are represented as strings. To identify the strings a combination of a 5D connected component type algorithm and multi-peak fitting was found to be superior. The first use of the method was a study of recovery of a deformed aluminium alloy (AA1050). The aluminium alloy was deformed by cold rolling to a thickness...

  11. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  12. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  13. Multilayered and composite PVD-CVD coatings in cemented carbides manufacture

    International Nuclear Information System (INIS)

    Glushkov, V.N.; Anikeev, A.I.; Anikin, V.N.; Vereshchaka, A.S.

    2001-01-01

    Carbide cutting tools with wear-resistant coatings deposited by CVD process are widely employed in mechanical engineering to ensure a substantially longer service life of tool systems. However, the relatively high temperature and long time of the process make the substrate decarburise and, as a result, the bend strength and performance characteristics of a tool decrease. The present study suggests the problem of deteriorated strength of CVD-coated carbide tools be solved by the development of a technology that combines arc-PVD and CVD processes to deposit multilayered coatings of titanium and aluminium compounds. (author)

  14. Fire exposed aluminium structures

    NARCIS (Netherlands)

    Maljaars, J.; Fellinger, J.; Soetens, F.

    2005-01-01

    Material properties and mechanical response models for fire design of steel structures are based on extensive research and experience. Contrarily, the behaviour of aluminium load bearing structures exposed to fire is relatively unexplored. This article gives an overview of physical and mechanical

  15. Fire exposed aluminium structures

    NARCIS (Netherlands)

    Maljaars, J.; Fellinger, J.H.H.; Soetens, F.

    2006-01-01

    Material properties and mechanical response models for fire design of steel structures are based on extensive research and experience. Contrarily, the behaviour of aluminium load bearing structures exposed to fire is relatively unexplored. This article gives an overview of physical and mechanical

  16. Activation Analysis of Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Brune, Dag

    1961-01-15

    An analysis of pure aluminium alloyed with magnesium was per- formed by means of gamma spectrometry , Chemical separations were not employed. The isotopes to be determined were obtained in conditions of optimum activity by suitably choosing the time of irradiation and decay. The following elements were detected and measured quantitatively: Iron, zinc, copper, gallium, manganese, chromium, scandium and hafnium.

  17. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... of the cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  18. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...

  19. Process for microwave sintering boron carbide

    Science.gov (United States)

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  20. Silicon carbide sewing thread

    Science.gov (United States)

    Sawko, Paul M. (Inventor)

    1995-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems provide lightweight thermal insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  1. Fatigue tests on aluminium bridges

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Straalen, IJ.J. van

    2004-01-01

    Traffic bridges are subjected to variable loads and should therefore be checked on fatigue. Especially low weight materials, like aluminium, are sensitive to fatigue, because the variable load is a substantial part of the total load. This paper shows the structural design of an aluminium bridge

  2. Advanced shipbuilding in aluminium

    International Nuclear Information System (INIS)

    Larsson, H.; Svensson, L.E.; Karlsson, L.

    1997-01-01

    The applicability of two different welding techniques for welding ships in aluminium is discussed. Conventional MIG welding and the recently developed Friction Super Stir Welding (FSSW) are compared concerning weld metal microstructures and mechanical properties. Results from testing of FSSW welds are also presented. It was observed that the grain size was smaller in FSSW welds are also presented. It was observed that the grain size was smaller in FSSW welds than in MIG welds whereas precipitates generally were larger in FSSW welds. The two methods produced welds with comparable mechanical properties. Good fatigue behaviour was obtained for FSSW welds. Advantages of the welding methods are also discussed. (Author) 7 refs

  3. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  4. Methods of producing continuous boron carbide fibers

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  5. Aluminium in Drinkwater: voorkomen, herkomst en gezondheidsaspecten

    NARCIS (Netherlands)

    Versteegh JFM; de Boer JLM; van den Velde-Koerts T

    1992-01-01

    Aluminium can occur in drinking water because of the application of aluminium salts as a coagulant in the treatment of drinking water. In the Netherlands mostly iron salts are used instead of aluminium. Besides this aluminium can be present in the source for drinking water. In shallow groundwater

  6. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-09

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  7. Direct electrodeposition of aluminium nano-rods

    OpenAIRE

    Perre, Emilie; Nyholm, Leif; Gustafsson, Torbjörn; Taberna, Pierre-Louis; Simon, Patrice; Edström, Kristina

    2008-01-01

    Electrodeposition of aluminium within an alumina nano-structured template, for use as high surface area current collectors in Li-ion microbatteries, was investigated. The aluminium electrodeposition was carried out in the ionic liquid 1-ethyl-3-methylimidazolium chloride:aluminium chloride (1:2 ratio). First the aluminium electrodeposition process was confirmed by combined cyclic voltammetry and electrochemical quartz crystal microbalance measurements. Then, aluminium was electrodeposit...

  8. Aluminium in Drinkwater: voorkomen, herkomst en gezondheidsaspecten

    OpenAIRE

    Versteegh JFM; de Boer JLM; van den Velde-Koerts T

    1992-01-01

    Aluminium can occur in drinking water because of the application of aluminium salts as a coagulant in the treatment of drinking water. In the Netherlands mostly iron salts are used instead of aluminium. Besides this aluminium can be present in the source for drinking water. In shallow groundwater high levels have been found probably related to acidification, which is an environmental problem. Aluminium can cause neurological diseases in patients who are on chronic haemodialysis because of ren...

  9. Sliding wear of cemented carbides

    International Nuclear Information System (INIS)

    Engqvist, H.; Ederyd, S.; Uhrenius, B.; Hogmark, S.

    2001-01-01

    Cemented carbides are known to be very hard and wear resistant and are therefor often used in applications involving surface damage and wear. The wear rate of cemented carbides is often measured in abrasion. In such tests it has been shown that the wear rate is inversely dependent on the material hardness. The sliding wear is even more of a surface phenomenon than a abrasion, making it difficult to predict friction and wear from bulk properties. This paper concentrates on the sliding wear of cemented carbides and elucidates some wear mechanisms. It is especially shown that a fragmenting wear mechanism of WC is very important for the description of wear of cemented carbides. (author)

  10. Alloys of uranium and aluminium with low aluminium content

    International Nuclear Information System (INIS)

    Cabane, G.; Englander, M.; Lehmann, J.

    1955-01-01

    Uranium, as obtained after spinning in phase γ, presents an heterogeneous structure with large size grains. The anisotropic structure of the metal leads to an important buckling and surface distortion of the fuel slug which is incompatible with its tubular cladding for nuclear fuel uses. Different treatments have been made to obtain an isotropic structure presenting high thermal stability (laminating, hammering and spinning in phase α) without success. Alloys of uranium and aluminium with low aluminium content present important advantage in respect of non allied uranium. The introduction of aluminium in the form of intermetallic compound (UAl 2 ) gives a better resistance to thermal fatigue. Alloys obtained from raw casting present an improved buckling and surface distortion in respect of pure uranium. This improvement is obtained with uranium containing between 0,15 and 0,5 % of aluminium. An even more improvement in thermal stability is obtained by thermal treatments of these alloys. These new characteristics are explained by the fine dispersion of the UAl 2 particles in uranium. The results after treatments obtained from an alloy slug containing 0,4 % of aluminium show no buckling or surface distortion and no elongation. (M.P.)

  11. Corrosion resistance of AA6063-Type Al-Mg-Si alloy by silicon carbide in sodium chloride solution for marine application

    Science.gov (United States)

    Fayomi, Ojo Sunday Isaac; Abdulwahab, Malik; Popoola, Abimbola Patricia Idowu; Asuke, Ferdinand

    2015-12-01

    The present work focused on corrosion inhibition of AA6063 type (Al-Mg-Si) alloy in sodium chloride (NaCl) solution with a silicon carbide inhibitor, using the potentiodynamic electrochemical method. The aluminium alloy surface morphology was examined, in the as-received and as-corroded in the un-inhibited state, with scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS). The results obtained via linear polarization indicated a high corrosion potential for the unprotected as-received alloy. Equally, inhibition efficiency as high as 98.82% at 10.0 g/v silicon carbide addition was obtained with increased polarization resistance ( R p), while the current density reduced significantly for inhibited samples compared to the un-inhibited aluminium alloy. The adsorption mechanism of the inhibitor aluminium alloy follows the Langmuir adsorption isotherm. This shows that the corrosion rate of aluminium alloy with silicon carbide in NaCl environment decreased significantly with addition of the inhibitor.

  12. Compression and Associated Properties of Boron Carbide

    Science.gov (United States)

    2008-12-01

    Klandadze, G.I., and Eristavi, A.M., 1999: IR- Active Phonons and Structure Elements of Isotope - Enriched Boron Carbide, J. Sol. State Chem. 154, 79- 86...COMPRESSION AND ASSOCIATED PROPERTIES OF BORON CARBIDE D. P. Dandekar*and J. A. Ciezak Army Research Laboratory, APG, MD 21005 M. Somayazulu...of the observed loss of shear strength in boron carbide under plane shock wave compression to amorphization in boron carbide under triaxial stress

  13. Effect of hydrogen on aluminium and aluminium alloys: A review

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1996-01-01

    Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen...... in aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between...... hydrogen embrittlement and stress corrosion cracking are also discussed....

  14. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  15. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  16. Preparation method of tungsten carbide

    International Nuclear Information System (INIS)

    Jenkins, T.R.

    1976-01-01

    A method is described for the preparation of tungsten carbide in powder form from tungsten oxide powder in which the tungsten oxide is heated to 800-1,050 0 C, preferably to 850 0 C, and is reduced by the addition of carbon monoxide. The partial pressure of the CO 2 then formed must be kept below a necessary equilibrium value for the formation of the carbide. The waste gas (with max. 20 Vol% CO 2 ) is hardly reduced and is recycled in the circuit. (UWI) [de

  17. Design and analysis of aluminium brdiges

    NARCIS (Netherlands)

    Soetens, F.; Straalen, IJ.J. van

    2004-01-01

    Applications of aluminium have grown considerably in building and civil engineering the last decade, which is due to various aspects: light weight, durability and maintenance, use of extrusions. The paper starts with a short history of aluminium bridges and then focuses on aluminium bridges in the

  18. Buckwheat stomatal traits under aluminium toxicity

    Directory of Open Access Journals (Sweden)

    Oleksandr E. Smirnov

    2014-04-01

    Full Text Available Aluminium influence on some stomatal parameters of common buckwheat (Fagopyrum esculentum Moench. was studied. Significant changes in stomatal density, stomatal index and stomatal shape coefficient under aluminium treatment were revealed. Stomatal closure and no difference in total stomatal potential conductance index of treatment plants were suggested as aluminium resistance characteristics.

  19. Does Aluminium Trigger Breast Cancer?

    Directory of Open Access Journals (Sweden)

    Peter Jennrich

    2016-08-01

    Full Text Available Summary. Breast cancer is by far the most common cancer in women in the western world. In 90% of breast cancers, environmental factors are among the causes. The frequency with which the tumour occurs in the outer upper part of the breast has risen with above average rates in recent decades. Aluminium salts as ingredients in deodorants and antiperspirants are being absorbed by the body to a greater extent than hitherto assumed. Their toxicity for healthy and diseased breast tissue cells includes various well-documented pathomechanisms. In the sense of primary and secondary prevention, the cancer-triggering potential of aluminium and its use in anti-perspirant deodorants must be re-evaluated. For the same reason the access to a targeted diagnosis and treatment of aluminium loading must be facilitated.

  20. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-01

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  1. Aluminium phosphide-induced leukopenia.

    Science.gov (United States)

    Ntelios, Dimitrios; Mandros, Charalampos; Potolidis, Evangelos; Fanourgiakis, Panagiotis

    2013-10-30

    Acute intoxication from the pesticide aluminium phosphide is a relatively rare, life-threatening condition in which cardiovascular decompensation is the most feared problem. We report the case of a patient exposed to aluminium phosphide-liberated phosphine gas. It resulted in the development of a gastroenteritis-like syndrome accompanied by severe reduction in white blood cell numbers as an early and prominent manifestation. By affecting important physiological processes such as mitochondrial function and reactive oxygen species homeostasis, phosphine could cause severe toxicity. After presenting the characteristics of certain leucocyte subpopulations we provide the current molecular understanding of the observed leukopenia which in part seems paradoxical.

  2. On the Role of Carbides in the Formation of Hydrocarbons from Deep Carbon

    Science.gov (United States)

    Vecht, A.

    2012-12-01

    The origin of hydrocarbons found in rocks has been a matter of dispute for over a century. Scientists of the former Soviet Union favoured an inorganic origin, while in the west an organic origin was thought the most likely. Both hypotheses may be reconciled by considering the origin of carbon compounds from the core upwards or from the Earth surface downwards. Carbides are the key to understanding the development and distribution of global carbon compounds. They are precursors in the formation of hydrocarbons. It has been estimated that the Earth's core is composed of between 2-4% carbon. It is found in metallic form and is substantially denser that the surrounding mantle. Wood has proposed that the inner core is a carbide probably iron carbide(1). This conclusion is consistent with studies of meteorites, shock waves and densities Carbides can be divided into four groups:- (a) Interstitial: -Ti, V, Cr, Zr, Nb, Hf, Ta and W. (b) Covalent:- B and Si (c) Intermediate:- Ti, V, Cr, Mn, Fe, Co and Ni. (d) Salt like:- Groups I, II, and III. Groups (a) (b) and (c) should be included as candidates for carbides found in the inner core. Such carbides are stable at high temperature and will react with water and/or oxygen to form hydrocarbons and CO or CO2 respectively., carbides can be described as examples of a 'reactive minerals' as we suggested in 2007(2). Carbides which are stable at high temperatures react with water to yield hydrocarbons. This points to an abiotic origin for a range of natural hydrocarbons. A detailed review by Cataldo(3) analysed the relevant evidence for biological vs. inorganic origins. He suggests that metal carbides when hydrolysed yield organic 'matter'. Amongst the carbides suggested are (Cr, Fe, Ni, V, Mn and Co}. These carbides are correlated to the relative abundance of these elements in the solar system. We propose similar reactions based on carbides of calcium and aluminium for the formation of methane hydrate. The reactions are expected to

  3. Effect of Bio char on Plant Growth and Aluminium Form of Soil under Aluminium Stress

    Science.gov (United States)

    Qian, Lianwen; Li, Qingbiao; Sun, Jingwei; Feng, Ying

    2018-01-01

    Aluminium-enriched acid red soils in South China easily cause aluminium toxicity to plants, but biochip can improve soils and eliminate soil contaminations. In this project, biochip was used in potted plant control test to study the effect of biochip on plant growth in soil under acid aluminium stress and the migration and conversion of aluminium in plant-soil system. The fin dings show that the application of biochip increases the pH value of soil under aluminium stress significantly, changes the existing form of aluminium ion in soil, reduces the plants’ absorption of aluminium, and alleviates the aluminium toxicity to plants, but too much biochip may inhibit the growth of plants. In this case, further study should be carried out as regards the volume and way of biochip input in practical applications as well as the timeliness of aluminium toxicity removal.

  4. Constitutive modelling of aluminium foams

    NARCIS (Netherlands)

    Wang, W.M.; Lemmen, P.P.M.

    2001-01-01

    In this paper an aluminium foam model is proposed for a vehicle crash analysis. The model assumes that there is no coupling between stresses and strains in different principal directions. The stress in each principle direction is then interpolated from an experimental recorded uniaxial stress strain

  5. Recovery mechanisms in nanostructured aluminium

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels; Huang, Xiaoxu

    2012-01-01

    Commercial purity aluminium (99.5%) has been cold rolled to a true strain of 5.5 (99.6% reduction in thickness). The material is very strong but low temperature recovery may be a limiting factor. This has been investigated by isothermal annealing treatments in the temperature range 5–100C. Hardness...

  6. Testing Boron Carbide and Silicon Carbide under Triaxial Compression

    Science.gov (United States)

    Anderson, Charles; Chocron, Sidney; Nicholls, Arthur

    2011-06-01

    Boron Carbide (B4C) and silicon carbide (SiC-N) are extensively used as armor materials. The strength of these ceramics depends mainly on surface defects, hydrostatic pressure and strain rate. This article focuses on the pressure dependence and summarizes the characterization work conducted on intact and predamaged specimens by using compression under confinement in a pressure vessel and in a thick steel sleeve. The techniques used for the characterization will be described briefly. The failure curves obtained for the two materials will be presented, although the data are limited for SiC. The data will also be compared to experimental data from Wilkins (1969), and Meyer and Faber (1997). Additionally, the results will be compared with plate-impact data.

  7. Bumblebee pupae contain high levels of aluminium.

    Science.gov (United States)

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer's disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline.

  8. Friction Welding of Aluminium and Aluminium Alloys with Steel

    Directory of Open Access Journals (Sweden)

    Andrzej Ambroziak

    2014-01-01

    Full Text Available The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i microhardness measurements, (ii tensile tests, (iii bending tests, and (iv shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i changing the geometry of bonding surface, (ii using the interlayer, or (iii heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated.

  9. Partial molar volumes of aluminium chloride, aluminium sulphate and aluminium nitrate in water-rich binary aqueous mixtures of tetrahydrofuran

    OpenAIRE

    R. C. Thakur; Ravi Sharma; Ashish Kumar; Sanjay Kumar; M. L. Parmar

    2014-01-01

    Partial molar volumes of aluminium chloride, aluminium sulphate and aluminium nitrate have been determined in water rich binary aqueous mixtures of tetrahydrofuran (5, 10, 15, 20% by weight of tetrahydrofuran) with the help of density measurements. The density measurements were made by using Ward and Millero method and results have been analysed by Masson’s equation and interpreted in terms of ion-ion or ion –solvent interactions. The partial molar volumes vary with temperature as a power ser...

  10. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  11. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  12. Abrasive slurry composition for machining boron carbide

    Science.gov (United States)

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  13. PREPARATION AND PROPERTIES OF ALUMINIUM COMPOSITE

    OpenAIRE

    T. Albert*, C. Pravin Tamil Selvan

    2017-01-01

    A composite material is the combination of two or more materials, which are having different phases and the properties superior to the base material. Aluminium matrix composite (AMCs) are emerging as advance engineering materials due to their strength, ductility and toughness. The aluminium matrix can strengthened by reinforcing with hard ceramic particles like SiC, Al2o3 , B4C etc. In this paper, an effort is made to enhance the mechanical properties like strength and hardness of aluminium ...

  14. Surface treatments for aluminium alloys

    Science.gov (United States)

    Ardelean, M.; Lascău, S.; Ardelean, E.; Josan, A.

    2018-01-01

    Typically, in contact with the atmosphere, the aluminium surface is covered with an aluminium oxide layer, with a thickness of less than 1-2μm. Due to its low thickness, high porosity and low mechanical strength, this layer does not protect the metal from corrosion. Anodizing for protective and decorative purposes is the most common method of superficial oxidation processes and is carried out through anodic oxidation. The oxide films, resulted from anodizing, are porous, have a thickness of 20-50μm, and are heat-resistant, stable to water vapour and other corrosion agents. Hard anodizing complies with the same obtains principles as well as decorative and protective anodization. The difference is in that hard anodizing is achieved at low temperatures and high intensity of electric current. In the paper are presented the results of decorative and hard anodization for specimens made from several aluminium alloys in terms of the appearance of the specimens and of the thickness of the anodized.

  15. A biogeochemical cycle for aluminium?

    Science.gov (United States)

    Exley, Christopher

    2003-09-15

    The elaboration of biogeochemical cycles for elements which are known to be essential for life has enabled a broad appreciation of the homeostatic mechanisms which underlie element essentiality. In particular they can be used effectively to identify any part played by human activities in element cycling and to predict how such activities might impact upon the lithospheric and biospheric availability of an element in the future. The same criteria were the driving force behind the construction of a biogeochemical cycle for aluminium, a non-essential element which is a known ecotoxicant and a suspected health risk in humans. The purpose of this exercise was to examine the concept of a biogeochemical cycle for aluminium and not to review the biogeochemistry of this element. The cycle as presented is rudimentary and qualitative though, even in this nascent form, it is informative and predictive and, for these reasons alone, it is deserving of future quantification. A fully fledged biogeochemical cycle for aluminium should explain the biospheric abundance of this element and whether we should expect its (continued) active involvement in biochemical evolution.

  16. Corrosion of immersed ceramic heat exchanger tubes in aluminium foundry baths

    Energy Technology Data Exchange (ETDEWEB)

    Bracho-Troconis, C.B.; Frot, G.; Bienvenu, Y. [Ecole des Mines de Paris, Evry (France). Centre des Materiaux; Frety, N. [Ecole des Mines d`Albi-Carmaux (France); Alliat, I. [CERSTA-Gaz de France, Saint-Denis (France)

    1997-12-31

    The corrosion of three non-oxide ceramics by Al-9Si-3Cu baths and by fluxes (mixtures of chlorides and fluorides of sodium and potassium) at about 750 C was studied in a foundry environment. Comparison of results of the metallurgical examination of A, a silicon-nitride-bonded silicon carbide and of B, a reaction-bonded silicon nitride, surface treated to fill all the external porosity provides some insight into the role of the bonding phase and the porosity. Grade C is a graphite bonded silicon carbide with an external protection by a ceramic glazing. The SiC phase in the tubes is inert to the corrosive liquids (attributed to the silicon content in the metal). A and C ceramics react only in the presence of a flux. Sodium and chlorine were identified in the corrosion products as well as AlN (A) and Al{sub 4}C{sub 3} (C), resulting from reaction of the silicon nitride or of the graphite bonding phase with aluminium. This suggests that the fluxes are responsible for the corrosive process, by causing the formation of gaseous aluminium halides which penetrate the porous bonding phase and react with it to form AlN or Al{sub 4}C{sub 3}. (orig.) 13 refs.

  17. Toxicity of aluminium on five aquatic invertebrates; Aluminiums toksisitet paa 5 akvatiske invertebrater

    Energy Technology Data Exchange (ETDEWEB)

    Moe, J. [Oslo Univ. (Norway)

    1996-01-01

    The conference paper deals with the experiments done by investigating the effects from the toxicity of aluminium on aquatic invertebrates. The aim of the experiments was to compare the toxicity of unstable aluminium compounds with stable forms of aluminium. 8 refs., 2 figs., 2 tabs.

  18. Aluminium and nickel in human albumin solutions

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Sandberg, E

    1989-01-01

    Five different brands of commercially available human albumin solutions for infusion were analysed for their aluminium and nickel contents by atomic absorption spectrometry. The aluminium concentrations ranged from 12 micrograms/l to 1109 micrograms/l and the nickel concentrations ranged from 17...... micrograms/l to 77 micrograms/l. Examination of the aluminium and nickel contents of the constituents for the production of one brand showed too low levels to explain the final contamination of the product. By following the aluminium and nickel concentrations of the same brand during the production...

  19. Aluminium and nickel in human albumin solutions

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Sandberg, E

    1989-01-01

    Five different brands of commercially available human albumin solutions for infusion were analysed for their aluminium and nickel contents by atomic absorption spectrometry. The aluminium concentrations ranged from 12 micrograms/l to 1109 micrograms/l and the nickel concentrations ranged from 17...... of a batch of albumin solution, filtration was shown to contribute to contamination, although the largest increase in aluminium as well as nickel concentrations appeared during the bulk concentrating process. To avoid health risks to certain patients, regulations should be established requiring aluminium...

  20. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Science.gov (United States)

    Gondal, M. A.; Ilyas, A. M.; Baig, Umair

    2016-08-01

    Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO2) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet-visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  1. Aluminium in apple juice - no storing of fruit juice in aluminium tanks

    OpenAIRE

    German Federal Institute for Risk Assessment

    2017-01-01

    Elevated aluminium levels in fruit juice, particularly in apple juice, were measured by the official food control authorities. The cause was the incorrect storage of juice in aluminium containers that were not coated with varnish. As aluminium is dissolved by acid-containing and salt-containing food, the metal was able to migrate to the juice. In the case of short-term dietary intake, aluminium is scarcely harmful at all. In the case of elevated, long-term intake, aluminium can, howe...

  2. Effect of laser pulsed radiation on the properties of implanted layers of silicon carbide

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Voron'ko, O.N.; Nojbert, F.; Potapov, E.N.

    1984-01-01

    Results are presented of investigation into pulsed laser radiation effects on the layers of GH polytype silicon carbide converted to amorphous state by implantation of boron and aluminium ions. The implantation doses were selected to be 5x10 16 for boron and 5x10 15 cm -2 for aluminium, with the ion energies being 60 and 80 keV, respectively. The samples annealed under nanosecond regime are stated to posseys neither photoluminescence (PL) nor cathodoluminescence (CL). At the same time the layers annealed in millisecond regime have a weak PL at 100 K and CL at 300 K. The PL and CL are observed in samples, laser-annealed at radiation energy density above 150-160 J/cm 2 in case of boron ion implantation and 100-120 J/cm 2 in case of aluminium ion implantation. Increasing the radiation energy density under the nanosecond regime of laser annealing results in the surface evaporation due to superheating of amorphous layers. Increasing the energy density above 220-240 J/cm 2 results in destruction of the samples

  3. Doping of silicon carbide by ion implantation; Dopage du carbure de silicium par implantation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Gimbert, J

    1999-03-04

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  4. Aluminium Pneumoconiosis I. In Vitro Comparison of Stamped Aluminium Powders Containing Different Lubricating Agents and a Granular Aluminium Powder

    Science.gov (United States)

    Corrin, B.

    1963-01-01

    The discrepancy in previous reports of the action of aluminium on the lung may be explained by differences between stamped and granular aluminium powders. A stamped powder of the variety causing pulmonary fibrosis showed a brisk reaction with water, but a granular powder was unreactive. This difference is primarily due to the granular particles being covered by inert aluminium oxide, the formation of which is partially prevented in the stamping process by stearine and mineral oil. The reactivity of the flake-like stamped particles is also dependent on their large surface area per unit volume. The appearance of aluminium pneumoconiosis in Britain is explained by the introduction of mineral oil into the stamping industry for, in contrast to stearine, mineral oil permits the powder to react with water. The lung damage is believed to be caused by a soluble form of aluminium. PMID:14072616

  5. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  6. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  7. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    tions ranging from kiln furniture to membrane material. Keywords. Microwave sintering; biaxial flexure; silicon carbide. 1. Introduction. Silicon carbide (SiC) ceramics is a very well known candidate material for a structural application. However, due to (i) poor densification due to highly directional bonding, (ii) susceptibility of ...

  8. Compression and associated properties of boron carbide

    Science.gov (United States)

    Ciezak, Jennifer; Dandekar, Dattatraya

    2009-06-01

    The observed loss of shear strength of boron carbide around 22 GPa has been attributed to presence of amorphous material in the shock recovered, and statically indented and pressurized boron carbide. The present work presents a more direct association of the observed loss of shear strength in boron carbide under plane shock wave compression to amorphization in boron carbide under triaxial stress compression. This evidence is obtained from in-situ measurement of Raman, and infrared vibrational spectra of boron carbide confined in a Diamond Anvil Cell (DAC) under hydrostatic and non-hydrostatic pressures. X-ray-diffraction measurements do show a shift in the compression of boron carbide around 27 GPa. However, X-ray diffraction measurements indicate that the amorphization does not extend to micron scale, as there is no evidence of a loss of crystallinity in the recorded diffraction pattern of boron carbide to 47 GPa. Our work shows that shear plays a very dominant role in the stress-induced amorphization of boron carbide.

  9. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  10. Characteristic evaluation of process parameters of friction stir welding of aluminium 2024 hybrid composites

    Science.gov (United States)

    Sadashiva, M.; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    The Current work is aimed to investigate the effect of process parameters in friction stir welding of Aluminium 2024 base alloy and Aluminium 2024 matrix alloy reinforced with E Glass and Silicon Carbide reinforcements. The process involved a set of synthesis techniques incorporating stir casting methodology resulting in fabrication of the composite material. This composite material that is synthesized is then machined to obtain a plate of dimensions 100 mm * 50 mm * 6 mm. The plate is then friction stir welded at different set of parameters viz. the spindle speed of 600 rpm, 900 rpm and 1200 rpm and feed rate of 40 mm/min, 80 mm/min and 120 mm/min for analyzing the process capability. The study of the given set of parameters is predominantly important to understand the physics of the process that may lead to better properties of the joint, which is very much important in perspective to its use in advanced engineering applications, especially in aerospace domain that uses Aluminium 2024 alloy for wing and fuselage structures under tension.

  11. Rapidly solidified aluminium for optical applications

    NARCIS (Netherlands)

    Gubbels, G.P.H.; Venrooy, B.W.H. van; Bosch, A.J.; Senden, R.

    2008-01-01

    This paper present the results of a diamond turning study of a rapidly solidified aluminium 6061 alloy grade, known as RSA6061. It is shown that this small grain material can be diamond turned to smaller roughness values than standard AA6061 aluminium grades. Also, the results are nearly as good as

  12. Electron Conditioning of Technical Aluminium Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, F

    2004-09-02

    The effect of electron conditioning on commercially aluminium alloys 1100 and 6063 were investigated. Contrary to the assumption that electron conditioning, if performed long enough, can reduce and stabilize the SEY to low values (= 1.3, value of many pure elements [1]), the SEY of aluminium did not go lower than 1.8. In fact, it reincreases with continued electron exposure dose.

  13. Thermal formation of corundum from aluminium hydroxides ...

    Indian Academy of Sciences (India)

    Abstract. Aluminium hydroxides have been precipitated from various aluminium salts and the differences in their thermal behaviour have been investigated. Pseudoboehmite derived from the nitrate, sulfate and chloride all form γ-Al2O3 at ~ 400°C but the formation of α-Al2O3 at 1200°C occurs more readily in the material ...

  14. Thermal formation of corundum from aluminium hydroxides ...

    Indian Academy of Sciences (India)

    Aluminium hydroxides have been precipitated from various aluminium salts and the differences in their thermal behaviour have been investigated. Pseudoboehmite derived from the nitrate, sulfate and chloride all form -Al2O3 at ∼ 400°C but the formation of -Al2O3 at 1200°C occurs more readily in the material derived ...

  15. Characterisation and concentration profile of aluminium during ...

    African Journals Online (AJOL)

    An aluminium(Al) characterisation study was conducted at a surface water treatment plant (Buffalo Pound Water Treatment Plant (BPWTP) in Moose Jaw, Saskatchewan, Canada) to understand better the effect of alum coagulant on various Al fractions. The raw water source for BPWTP is Buffalo Pound Lake water. The Al ...

  16. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    Science.gov (United States)

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  17. Behaviour of millscale reinforced Aluminium Bronze composite ...

    African Journals Online (AJOL)

    Despite the desirable characteristics exhibited by most aluminium bronze, the deficient responses in certain critical applications have necessitated improvement in the mechanical properties. The microstructural and mechanical properties of cast aluminium bronze reinforced with iron millscale particles were investigated in ...

  18. Acoustic properties of aluminium foams

    Directory of Open Access Journals (Sweden)

    García, L. E.

    2008-09-01

    Full Text Available The article discusses normal incidence sound absorption by aluminium foam manufactured with powder metallurgy technology. Aluminium foams with different surface morphologies were obtained by varying the type of precursor and adding filler materials during the foaming process. The sound absorption coefficients found for these aluminium foams were compared to the coefficient for commercial foams marketed under the name ALPORAS. The effect of foam thickness on the absorption coefficient was studied for each sample prepared. The combination of good acoustic and mechanical properties makes aluminium foams particularly attractive products. The study included an analysis of the effect of 2-, 5- and 10-cm air gaps on the sound absorption coefficient. The results showed that such gaps, which are routinely used in construction to reduce the reverberation period in indoor premises, raised the low frequency absorption coefficient significantly. This increase was found to depend on aluminium foam density and thickness and the depth of the air gap. In this same line, we have investigated the absorption coefficient of the aluminium foams combined with a mineral fiber panel.Se presenta un estudio del coeficiente de absorción acústica a incidencia normal de espumas de aluminio fabricadas mediante la técnica pulvimetalúrgica. Se fabricaron espumas de aluminio de distinta morfología superficial variando el tipo de precursor y usando materiales de relleno durante el proceso de espumación. Se muestra un estudio comparativo del coeficiente de absorción acústica de las espumas de aluminio fabricadas y las espumas comerciales conocidas como ALPORAS. Para cada muestra fabricada se estudió la influencia del espesor sobre el valor del coeficiente de absorción.El atractivo de las espumas de aluminio radica en que en ellas se combinan interesantes propiedades acústicas y mecánicas. Se analizó el efecto de una cámara de aire de 2, 5 y 10 cm de anchura sobre el

  19. Aluminium in foodstuff and the influence of aluminium foil used for food preparation or short time storage.

    Science.gov (United States)

    Ertl, Kathrin; Goessler, Walter

    2018-02-28

    Aluminium is an omnipresent part of everyday life. It is widely used in industry and furthermore in products like cosmetics, sun creams or it can be applied for instance as aluminium foil by consumers during food preparation in households. However, over the last decades the toxicity of aluminium for humans has been heavily discussed and is still not completely clarified. Therefore, food aluminium concentrations were investigated in different untreated foodstuff as well as a possible aluminium transfer from aluminium foil to food. The results show that untreated food is not significantly contaminated. Furthermore, short time contact to aluminium foil increases the food aluminium concentration only marginal. Nevertheless, as soon as the food is in contact to aluminium foil and at the same time in contact with metals (alloys) with a higher standard electrode potential than aluminium (-1.66 V) high aluminium contaminations were observed.

  20. Recent developments in advanced aircraft aluminium alloys

    International Nuclear Information System (INIS)

    Dursun, Tolga; Soutis, Costas

    2014-01-01

    Highlights: • To compete with composites, performance of aluminium alloys should be increased. • Al–Li alloys have higher strength, fracture and fatigue/corrosion resistance. • Improvements of aerospace Al alloys are due to optimised solute content and ratios. • In selecting new materials, there should be no reduction in the level of safety. • The use of hybrid materials could provide additional opportunities for Al alloys. - Abstract: Aluminium alloys have been the primary material for the structural parts of aircraft for more than 80 years because of their well known performance, well established design methods, manufacturing and reliable inspection techniques. Nearly for a decade composites have started to be used more widely in large commercial jet airliners for the fuselage, wing as well as other structural components in place of aluminium alloys due their high specific properties, reduced weight, fatigue performance and corrosion resistance. Although the increased use of composite materials reduced the role of aluminium up to some extent, high strength aluminium alloys remain important in airframe construction. Aluminium is a relatively low cost, light weight metal that can be heat treated and loaded to relatively high level of stresses, and it is one of the most easily produced of the high performance materials, which results in lower manufacturing and maintenance costs. There have been important recent advances in aluminium aircraft alloys that can effectively compete with modern composite materials. This study covers latest developments in enhanced mechanical properties of aluminium alloys, and high performance joining techniques. The mechanical properties on newly developed 2000, 7000 series aluminium alloys and new generation Al–Li alloys are compared with the traditional aluminium alloys. The advantages and disadvantages of the joining methods, laser beam welding and friction stir welding, are also discussed

  1. Formation of carbide derived carbon coatings on silicon carbide

    Science.gov (United States)

    Cambaz, Zarife Goknur

    Control over the structure of materials on nanoscale can open numerous opportunities for the development of materials with controlled properties. Carbon, which is one of the most promising materials for nanotechnology, can be produced by many different methods. One of the most versatile, in terms of a variety of structures demonstrated (graphite, porous amorphous carbon, nanotubes, graphene and diamond), is selective etching of SiC and other carbides. Since the Si atoms are extracted layer by layer, atomic level control of the carbon structures can potentially be achieved without changing the size and shape of the sample. Carbon produced by this method is called Carbide-Derived Carbon (CDC). In this work, CDC formation was studied on single crystalline 3C-SiC whiskers and 6H-SIC wafers by chlorination and vacuum decomposition at high temperatures with the goals to better understand the mechanism of carbide-to-carbon transformation and determine conditions for synthesis of desired carbon structures. The reaction kinetics, morphology and shape conservation were investigated at nanoscale. The transformation mechanism of the SIC surface to carbon was discussed in detail accounting to the effects of processing parameters (temperature, and composition of the environment), and material parameters (surface conditions, surface chemistry, crystal face, etc.). The characterization of the carbon structures was performed by using scanning electron microscopy (SEM), Raman spectroscopy and transmission electron microscopy (TEM). We compared chlorination of SiC whiskers with wet etching and showed that chlorination revealed the dislocations, while wet etching resulted in pagoda-like 3-D nanostructures upon selective etching of stacking faults (SFs). The difference in etching mechanisms was discussed. We determined the processing conditions for controlled synthesis of carbon structures like graphene, graphite and carbon nanotubes (CNTs) on the surface of alpha-SiC wafers by

  2. Shot peening of aluminium alloys

    International Nuclear Information System (INIS)

    Le Guernic, Y.

    1998-01-01

    Shot peening is a process of cold-hammering where a metallic surface is pelted with spherical grains. Each grain bumping into the surface acts as a hammer head and creates a small crater. The overlapping of these craters produces a residual compression layer just underneath the surface. It is well known that cracks cannot spread in a compression zone. In most cases of fatigue rupture and stress corrosion cracks propagate from the surface towards the inside so shot peening allows a longer lifetime of castings. Moreover most materials present a better resistance due to the cold-hammering effect of shot peening. Metallic surfaces can be treated in workshops or directly on site. Typical pieces that undergo shot peening on site are storing tanks, gas and steam turbines, tubes of steam generators and piping in oil or nuclear or chemical industries. This article describes shot peening from a theoretical and general point of view and presents the application to aluminium-lithium alloys. In the case of aluminium alloys shot peening can be used to shape the piece (peen-forming). (A.C.)

  3. Method for aluminium dross utilization

    International Nuclear Information System (INIS)

    Lucheva, B.; Petkov, R.; Tzonev, Tz.

    2003-01-01

    A new hydrometallurgical method has been developed for metal aluminum utilization from secondary aluminum dross. Secondary aluminum dross is a powder product with an average of 35% aluminium content (below 1mm). It is waste from primary aluminum dross pyrometallurgical flux less treatment in rotary DC electric arc furnace. This method is based on aluminum leaching in copper chloride water solution. As a result an aluminum oxychloride solution and solids, consisting of copper and oxides are obtained. In order to copper chloride solution regenerate hydrochloric acid is added to the solids. The process is simple, quick, economic and safe. The aluminum oxychloride solution contains 56 g/l Al 2 O 3 . The molar ratios are Al:Cl=0,5; OH:Al=1. The solution has 32 % basicity and 1,1 g/cm 3 density. For increasing the molar ratio of aluminium to chlorine aluminum hydroxide is added to this solution at 80 o C. Aluminum hydroxide is the final product from the secondary aluminum dross alkaline leaching. As a result aluminum oxychloride solution of the following composition is prepared: Al 2 O 3 - 180 g/l; Al:Cl=1,88; OH:Al=4,64; basicity 82%; density 1,22 g/cm 3 , pH=4 -4,5. Aluminum oxychloride solution produced by means of this method can be used in potable and wastewater treatment, paper making, in refractory mixture as a binder etc. (Original)

  4. Analysis tools for the design of aluminium extrusion dies

    NARCIS (Netherlands)

    Koopman, A.J.

    2009-01-01

    The aluminium extrusion process is a forming process where a billet of hot aluminium is pressed through a die to produce long straight aluminium profiles. A large variety of products with different and complex cross-sections can be made. The insight in the mechanics of the aluminium extrusion

  5. Alveolar proteinosis associated with aluminium dust inhalation.

    Science.gov (United States)

    Chew, R; Nigam, S; Sivakumaran, P

    2016-08-01

    Secondary alveolar proteinosis is a rare lung disease which may be triggered by a variety of inhaled particles. The diagnosis is made by detection of anti-granulocyte-macrophage colony-stimulating factor antibodies in bronchoalveolar lavage fluid, which appears milky white and contains lamellar bodies. Aluminium has been suggested as a possible cause, but there is little evidence in the literature to support this assertion. We report the case of a 46-year-old former boilermaker and boat builder who developed secondary alveolar proteinosis following sustained heavy aluminium exposure. The presence of aluminium was confirmed both by histological examination and metallurgical analysis of a mediastinal lymph node. Despite cessation of exposure to aluminium and treatment with whole-lung lavage which normally results in improvements in both symptoms and lung function, the outcome was poor and novel therapies are now being used for this patient. It may be that the natural history in aluminium-related alveolar proteinosis is different, with the metal playing a mediating role in the disease process. Our case further supports the link between aluminium and secondary alveolar proteinosis and highlights the need for measures to prevent excessive aluminium inhalation in relevant industries. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Grain refinement efficiency and mechanism of aluminium carbide in Mg-Al alloys

    International Nuclear Information System (INIS)

    Lu, L.; Dahle, A.K.; StJohn, D.H.

    2005-01-01

    Detailed microscopic examination using optical and electron microscopes suggests that Al 4 C 3 , often observed in the central regions of magnesium grains on polished sections, is a potent substrate for primary Mg. Calculations of the crystallographic relationships between magnesium and Al 4 C 3 further support the experimental observations

  7. On the melt infiltration of copper coated silicon carbide with an aluminium alloy

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    Pressure-assisted infiltration of porous compacts of Cu coated and uncoated single crystals of platelet shaped alpha (hexagonal) SiC was used to study infiltration dynamics and particulate wettability with a 2014 Al alloy. The infiltration lengths were measured for a range of experimental variables which included infiltration pressure, infiltration time, and SiC size. A threshold pressure (P(th)) for flow initiation through compacts was identified from an analysis of infiltration data; P(th) decreased while penetration lengths increased with increasing SiC size (more fundamentally, due to changes in interparticle pore size) and with increasing infiltration times. Cu coated SiC led to lower P(th) and 60-80 percent larger penetration lengths compared to uncoated SiC under identical processing conditions.

  8. Study on plasma sprayed boron carbide coating

    Science.gov (United States)

    Zeng, Yi; Lee, Soo W.; Ding, Chuanxian

    2002-03-01

    The microstructure, phase composition, and mechanical properties of boron carbide coatings formed by atmospheric plasma spraying (APS) are studied in the present work. The boron carbide coating with high microhardness and low porosity could be produced by APS. The decomposition of boron carbide powder during the plasma spray process would result in the formation of the BxC phase and an increase of the carbon phase, which is confirmed by transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction results.

  9. Epoxy coatings electrodeposited on aluminium and modified aluminium surfaces

    Directory of Open Access Journals (Sweden)

    Lazarević Zorica Ž.

    2002-01-01

    Full Text Available The corrosion behaviour and thermal stability of epoxy coatings electrodeposited on modified aluminum surfaces (anodized, phosphatized and chromatized-phosphatized aluminium were monitored during exposure to 3% NaCl solution, using electrochemical impedance spectroscopy (EIS and thermogravimetric analysis (TGA. Better protective properties of the epoxy coatings on anodized and chromatized-phosphatized aluminum with respect to the same epoxy coatings on aluminum and phosphatized aluminum were obtained: higher values of Rp and Rct and smaller values of Cc and Cd, from EIS, and a smaller amount of absorbed water inside the coating, from TGA. On the other hand, a somewhat lower thermal stability of these coatings was obtained (smaller values of the ipdt temperature. This behavior can be explained by the less porous structure of epoxy coatings on anodized and chromatized-phosphatized aluminum, caused by a lower rate of H2 evolution and better wet ability.

  10. Aluminium in Biological Environments: A Computational Approach

    Science.gov (United States)

    Mujika, Jon I; Rezabal, Elixabete; Mercero, Jose M; Ruipérez, Fernando; Costa, Dominique; Ugalde, Jesus M; Lopez, Xabier

    2014-01-01

    The increased availability of aluminium in biological environments, due to human intervention in the last century, raises concerns on the effects that this so far “excluded from biology” metal might have on living organisms. Consequently, the bioinorganic chemistry of aluminium has emerged as a very active field of research. This review will focus on our contributions to this field, based on computational studies that can yield an understanding of the aluminum biochemistry at a molecular level. Aluminium can interact and be stabilized in biological environments by complexing with both low molecular mass chelants and high molecular mass peptides. The speciation of the metal is, nonetheless, dictated by the hydrolytic species dominant in each case and which vary according to the pH condition of the medium. In blood, citrate and serum transferrin are identified as the main low molecular mass and high molecular mass molecules interacting with aluminium. The complexation of aluminium to citrate and the subsequent changes exerted on the deprotonation pathways of its tritable groups will be discussed along with the mechanisms for the intake and release of aluminium in serum transferrin at two pH conditions, physiological neutral and endosomatic acidic. Aluminium can substitute other metals, in particular magnesium, in protein buried sites and trigger conformational disorder and alteration of the protonation states of the protein's sidechains. A detailed account of the interaction of aluminium with proteic sidechains will be given. Finally, it will be described how alumnium can exert oxidative stress by stabilizing superoxide radicals either as mononuclear aluminium or clustered in boehmite. The possibility of promotion of Fenton reaction, and production of hydroxyl radicals will also be discussed. PMID:24757505

  11. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    Science.gov (United States)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  12. Niobium-base grain refiner for aluminium

    International Nuclear Information System (INIS)

    Silva Pontes, P. da; Robert, M.H.; Cupini, N.L.

    1980-01-01

    A new chemical grain refiner for aluminium has been developed, using inoculation of a niobium-base compound. When a bath of molten aluminium is inoculated whith this refiner, an intermetallic aluminium-niobium compound is formed which acts as a powerful nucleant, producing extremely fine structure comparable to those obtained by means of the traditional grain refiner based on titanium and boron. It was found that the refinement of the structure depends upon the weight percentage of the new refiner inoculated as well as the time of holding the bath after inoculation and before pouring, but mainly on the inoculating temperature. (Author) [pt

  13. Aluminium Toxicity Targets in Plants

    Directory of Open Access Journals (Sweden)

    Sónia Silva

    2012-01-01

    Full Text Available Aluminium (Al is the third most abundant metallic element in soil but becomes available to plants only when the soil pH drops below 5.5. At those conditions, plants present several signals of Al toxicity. As reported by literature, major consequences of Al exposure are the decrease of plant production and the inhibition of root growth. The root growth inhibition may be directly/indirectly responsible for the loss of plant production. In this paper the most remarkable symptoms of Al toxicity in plants and the latest findings in this area are addressed. Root growth inhibition, ROS production, alterations on root cell wall and plasma membrane, nutrient unbalances, callose accumulation, and disturbance of cytoplasmic Ca2+ homeostasis, among other signals of Al toxicity are discussed, and, when possible, the behavior of Al-tolerant versus Al-sensitive genotypes under Al is compared.

  14. Breaking the icosahedra in boron carbide.

    Science.gov (United States)

    Xie, Kelvin Y; An, Qi; Sato, Takanori; Breen, Andrew J; Ringer, Simon P; Goddard, William A; Cairney, Julie M; Hemker, Kevin J

    2016-10-25

    Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated. Combined with quantum mechanics simulations, this result provides insight into the structural instability and amorphization of boron carbide. The temporal, spatial, and compositional information provided by atom probe tomography makes it a unique platform for elucidating the relative stability and interactions of primary building blocks in hierarchically crystalline materials.

  15. Silicon Carbide Gate Driver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs efficient, low mass, low volume power electronics for a wide variety of applications and missions. Silicon carbide (SiC) switches provide fast, low loss...

  16. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  17. Carbiding of the electrodes of electrovacuum devices

    Science.gov (United States)

    Pryalukhin, E. D.; Rikov, A. A.; Kostrin, D. K.; Lisenkov, A. A.

    2018-02-01

    Modification of the surface properties of the materials of electrodes or deposition of protective coatings on them are the most effective ways to increase the service life and reliability of electrovacuum devices. Very often for these tasks operations of the carbiding of details are used. In this work results of direct carbiding of W and Mo, carried out in a mixture of the hydrogen stream and the carbon-containing gas on a technological installation of a flow type, are discussed.

  18. Stable carbides in transition metal alloys

    International Nuclear Information System (INIS)

    Piotrkowski, R.

    1991-01-01

    In the present work different techniques were employed for the identification of stable carbides in two sets of transition metal alloys of wide technological application: a set of three high alloy M2 type steels in which W and/or Mo were total or partially replaced by Nb, and a Zr-2.5 Nb alloy. The M2 steel is a high speed steel worldwide used and the Zr-2.5 Nb alloy is the base material for the pressure tubes in the CANDU type nuclear reactors. The stability of carbide was studied in the frame of Goldschmidt's theory of interstitial alloys. The identification of stable carbides in steels was performed by determining their metallic composition with an energy analyzer attached to the scanning electron microscope (SEM). By these means typical carbides of the M2 steel, MC and M 6 C, were found. Moreover, the spatial and size distribution of carbide particles were determined after different heat treatments, and both microstructure and microhardness were correlated with the appearance of the secondary hardening phenomenon. In the Zr-Nb alloy a study of the α and β phases present after different heat treatments was performed with optical and SEM metallographic techniques, with the guide of Abriata and Bolcich phase diagram. The α-β interphase boundaries were characterized as short circuits for diffusion with radiotracer techniques and applying Fisher-Bondy-Martin model. The precipitation of carbides was promoted by heat treatments that produced first the C diffusion into the samples at high temperatures (β phase), and then the precipitation of carbide particles at lower temperature (α phase or (α+β)) two phase field. The precipitated carbides were identified as (Zr, Nb)C 1-x with SEM, electron microprobe and X-ray diffraction techniques. (Author) [es

  19. Irradiation effects in magnesium and aluminium alloys

    International Nuclear Information System (INIS)

    Sturcken, E.F.

    1979-01-01

    Effects of neutron irradiation on microstructure, mechanical properties and swelling of several magnesium and aluminium alloys were studied. The neutron fluences of 2-3 X 10 22 n/cm 2 , >0.2 MeV produced displacement doses of 20 to 45 displacements per atom (dpa). Ductility of the magnesium alloys was severely reduced by irradiation induced recrystallization and precipitation of various forms. Precipitation of transmuted silicon occurred in the aluminium alloys. However, the effect on ductility was much less than for the magnesium alloys. The magnesium and aluminium alloys had excellent resistance to swelling: The best magnesium alloy was Mg/3.0 wt% Al/0.19 wt% Ca; its density decreased by only 0.13%. The best aluminium alloy was 6063, with a density decrease of 0.22%. (Auth.)

  20. Deformation features of aluminium in tensile tests

    International Nuclear Information System (INIS)

    Quadros, N.F. de.

    1984-01-01

    It is presented a method to analyse stress-strain curves. Plastic and elastic strains were studied. The strains were done by tensile tests in four types of materials: highly pure aluminium, pure aluminium, commercially pure aluminium and aluminium - uranium. The chemical compositions were obtained by spectroscopy analysis and neutron activation analysis. Tensile tests were carried out at three strain rates, at room temperature, 100,200, 300 and 400 0 C, with knives extensometer and strain-gages to studied the elastic strain region. A multiple spring model based on two springs model to analyse elastic strain caused by tests without extensometers, taking in account moduli of elasticity and, an interactive analysis system with graphic capability were developed. It was suggested a qualitative model to explain the quantized multielasticity of Bell. (M.C.K.) [pt

  1. Aluminium Process Fault Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Nazatul Aini Abd Majid

    2015-01-01

    Full Text Available The challenges in developing a fault detection and diagnosis system for industrial applications are not inconsiderable, particularly complex materials processing operations such as aluminium smelting. However, the organizing into groups of the various fault detection and diagnostic systems of the aluminium smelting process can assist in the identification of the key elements of an effective monitoring system. This paper reviews aluminium process fault detection and diagnosis systems and proposes a taxonomy that includes four key elements: knowledge, techniques, usage frequency, and results presentation. Each element is explained together with examples of existing systems. A fault detection and diagnosis system developed based on the proposed taxonomy is demonstrated using aluminium smelting data. A potential new strategy for improving fault diagnosis is discussed based on the ability of the new technology, augmented reality, to augment operators’ view of an industrial plant, so that it permits a situation-oriented action in real working environments.

  2. Computer simulation of the aluminium extrusion process

    Directory of Open Access Journals (Sweden)

    A. Śliwa

    2017-01-01

    Full Text Available The purpose of the work is computer simulation of the aluminium extrusion process using the Finite elements method (FEM. The impact of the speed of a punch falling on the material in the aluminium extrusion process was investigated. It was found that high stresses are created, leading to material destruction, if the punch is falling too fast. The design cycle is significantly reduced in multiple industrial applications if the FEM is applied, which enhances productivity and profits.

  3. Characterization of aluminium alloys rapidly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1988-01-01

    This paper discussed the investigation of the microstructural and mechanical properties of the aluminium alloys (3003; 7050; Al-9% Mg) rapidly solidified by melt spinning process (cooling rate 10 4 - 10 6 K/s). The rapidly solidification process of the studied aluminium alloys brought a microcrystallinity, a minimum presence of coarse precipitation and, also, better mechanical properties of them comparing to the same alloys using ingot process. (author) [pt

  4. Aluminium phosphide induced acute kidney injury

    Directory of Open Access Journals (Sweden)

    Quaiser Saif

    2015-01-01

    Full Text Available Aluminium phosphide is one of the most common agricultural poisons being consumed in north India. Consumption of a fresh tablet is lethal as no antidote is available. Acute intoxication primarily presents with cardiovascular collapse due to myocardial toxicity. We report here a case of acute severe poisoning along with cardiovascular collapse and oliguria. The patient developed acute kidney injury during the illness (a rare entity in aluminium phosphide poisoning, which completely resolved following prompt conservative treatment.

  5. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  6. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Sudhakar

    2015-03-01

    Full Text Available Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys, 7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant MoS2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.

  7. High temperature evaporation of titanium, zirconium and hafnium carbides

    International Nuclear Information System (INIS)

    Gusev, A.I.; Rempel', A.A.

    1991-01-01

    Evaporation of cubic nonstoichiometric carbides of titanium, zirconium and hafnium in a comparatively low-temperature interval (1800-2700) with detailed crystallochemical sample certification is studied. Titanium carbide is characterized by the maximum evaporation rate: at T>2300 K it loses 3% of sample mass during an hour and at T>2400 K titanium carbide evaporation becomes extremely rapid. Zirconium and hafnium carbide evaporation rates are several times lower than titanium carbide evaporation rates at similar temperatures. Partial pressures of metals and carbon over the carbides studied are calculated on the base of evaporation rates

  8. Aluminium exclusion and aluminium tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    Ivano eBrunner

    2013-06-01

    Full Text Available The aluminium (Al cation Al3+ is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3+ conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al3+ from root cells (exclusion mechanisms and those that enable plants to tolerate Al3+ once it has entered the root and shoot symplast (internal tolerance mechanisms. The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al3+ exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al3+ adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.

  9. Aluminium toxicity in winter wheat

    Directory of Open Access Journals (Sweden)

    Szabó A.

    2015-01-01

    Full Text Available Aluminium is the most frequent metal of the earth crust; it occurs mainly as biologically inactive, insoluble deposit. Environmental problems, industrial contaminations and acid rains increase the soil acidity, leading to the mobilization of Al. Half of the world’s potential arable lands are acidic; therefore, Al-toxicity decreases crop productivity. Wheat is a staple food for 35% of the world population. The effects of Al-stress (0.1 mM were studied on winter wheat; seedlings were grown hydroponically, at acidic pH. After two weeks, the root weight was decreased; a significant difference was found in the P- and Ca-content. The shoot weight and element content changed slightly; Al-content in the root was one magnitude higher than in the shoot, while Al-translocation was limited. The root plasma membrane H+-ATPase has central role in the uptake processes; Al-stress increased the Mg2+-ATPase activity of the microsomal fraction.

  10. Effect of aluminium phosphate as admixture on oxychloride cement

    Indian Academy of Sciences (India)

    Abstract. The effect of admixing of aluminium phosphate on oxychloride cement in the matrix has been investigated. It is shown that aluminium phosphate retards the setting process of the cement and improves water-tightness.

  11. Aluminium Diphosphamethanides: Hidden Frustrated Lewis Pairs.

    Science.gov (United States)

    Styra, Steffen; Radius, Michael; Moos, Eric; Bihlmeier, Angela; Breher, Frank

    2016-07-04

    The synthesis and characterisation of two aluminium diphosphamethanide complexes, [Al(tBu)2 {κ(2) P,P'-Mes*PCHPMes*}] (3) and [Al(C6 F5 )2 {κ(2) P,P'-Mes*PCHPMes*}] (4), and the silylated analogue, Mes*PCHP(SiMe3 )Mes* (5), are reported. The aluminium complexes feature four-membered PCPAl core structures consisting of diphosphaallyl ligands. The silylated phosphine 5 was found to be a valuable precursor for the synthesis of 4 as it cleanly reacts with the diaryl aluminium chloride [(C6 F5 )2 AlCl]2 . The aluminium complex 3 reacts with molecular dihydrogen at room temperature under formation of the acyclic σ(2) λ(3) ,σ(3) λ(3) -diphosphine Mes*PCHP(H)Mes* and the corresponding dialkyl aluminium hydride [tBu2 AlH]3 . Thus, 3 belongs to the family of so-called hidden frustrated Lewis pairs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  13. Mullite-based coating on silicon carbide refractory obtained from PMSQ [poly(methylsilsesquioxane)

    International Nuclear Information System (INIS)

    Machado, Glauson Aparecido Ferreira

    2017-01-01

    Silicon carbide (SiC) presents low thermal expansion, high strength and thermal conductivity. For this reason it is used as kiln furniture for materials sintering. On the other hand, SiC degrades at high temperature under aggressive atmosphere. The use of protective coatings can avoid the right exposition of SiC surface to the furnace atmosphere. Mullite can be a suitable material as protective coating because of its high corrosion resistance and thermal expansion coefficient matching that of SiC (4,7 x 10 -6 /°C e 5,3 x 10 -6 /°C, respectively). In the present work a mullite coating obtained from ceramic precursor polymer and aluminium powder was studied to be applied over SiC refractories. Compositions were prepared with 10, 20, 30 and 50% (vol.) of aluminium powder added to the polymer. They were used aluminium powders with different distributions sizes These compositions were heat treated at different thermal cycles to determine a suitable condition to obtain a high mullite content. The composition with 20% of the smaller particle size Al powder was selected and used to be applied as a suspension over SiC refractory. The applied suspension, after dried, crosslinked and heat treated, formed a mullite coating over SiC refractory. Cycles of thermal shock were performed in coated and uncoated SiC samples to compare each other. They were carried out 26 cycles of thermal shock, in the following conditions: 600°C/30 min. and air cooling to room temperature. After each thermal shock, samples were analysed by mean of optical and electron microscopy, elastic modulus was also determined. After thermal shock cycles the coating presented good adhesion and no significant damage were observed. (author)

  14. Silicon carbide as platform for energy applications

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Jokubavicius, Valdas; Sun, Jianwu

    and solar cells, and further pursue concepts in materials for thermoelectrics, biofuel cells and supercapacitor research proposals. In fact, there are a number of energy applications which can be based on the SiC materials.- Fluorescent SiC for white LED in general lighting - Cubic SiC for a highly...... efficient solar cell- Cubic SiC for water splitting to generate hydrogen.Further on, we have the following concepts that could be explored- Thermoelectric SiC for electricity generation from heat- Biofuels cells based on carbon electrodes on SiC- Supercapacitors based on sintered SiC and carbon materials......Silicon carbide is emerging as a novel material for a range of energy and environmental technologies. Previously, silicon carbide was considered as a material mainly for transistor applications. We have initiated the use of silicon carbide material towards optoelectronics in general lighting...

  15. Wear behaviour and morphology of stir cast aluminium/SiC nanocomposites

    Science.gov (United States)

    Tanwir Alam, Md; Arif, Sajjad; Husain Ansari, Akhter

    2018-04-01

    Wear and friction play a vital role in the service life of components. Aluminium matrix nanocomposites possess tremendous potential for a number of applications in addition to their present uses. It is valuable to the field of newer materials for better performance in tribological applications. In this work, dry sliding wear, friction coefficient and morphology of aluminium alloy (A356) reinforced with silicon carbide nanoparticles (SiCn) were investigated. A356/SiCn nanocomposites (AMNCs) containing 1–5 weight percentage of SiCn were prepared through two-step stir casting process via mechanical ball milling. The wear test was conducted on pin-on-disc test apparatus. Regression analysis was performed to develop mathematical functions to fit the experimental data points. Morphological studies of Al and SiCn as-received, wear debris and worn surfaces were further analysed by SEM along with EDS. The occurrence of oxide layers was observed on worn surfaces. Iron trace was identified by wear debris. It was found that the wear loss and friction coefficient were strongly influenced by mechanical milling and SiCn content. The results exhibited that the friction coefficient reduces with the addition of SiCn as well as with the increase in load. However, wear resistance increases as the reinforcement content increases because of the embedding and wettability effects.

  16. Steam Assisted Accelerated Growth of Oxide Layer on Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Yuksel, Serkan; Jellesen, Morten Stendahl

    2013-01-01

    Corrosion resistance of aluminium alloys is related to the composition and morphology of the oxide film on the surface of aluminium. In this paper we investigated the use of steam on the surface modification of aluminium to produce boehmite films. The study reveals a detailed investigation...... of the effect of vapour pressure, structure of intermetallic particles and thickness of boehmite films on the corrosion behaviour of aluminium alloys....

  17. Aluminium contents in infant and follow-on formula

    OpenAIRE

    German Federal Institute for Risk Assessment

    2012-01-01

    The presence of aluminium in food can have different causes. Thus, for example, it can be due to natural contents in certain food ingredients or aluminium-containing additives. Another source can be the transfer of aluminium from food packaging, cooking utensils, or kitchen equipment etc. Below, the Federal Institute for Risk Assessment (BfR) assesses aluminium contents in baby food with regard to their potential health effects. The trigger for the BfR opinion was a British study which me...

  18. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  19. Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals

    Science.gov (United States)

    2013-05-01

    occurs in ballistic impact, and accompanies amorphization in diamond anvil cell (DAC) experiments (Yan et al., 2009). Fracture in boron carbide ...Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals by J. D. Clayton ARL-RP-440 May 2013...Ground, MD 21005-5069 ARL-RP-440 May 2013 Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals J. D. Clayton

  20. Analysis of aluminium in rat following administration of allergen immunotherapy using either aluminium or microcrystalline-tyrosine-based adjuvants.

    Science.gov (United States)

    McDougall, Stuart A; Heath, Matthew D; Kramer, Matthias F; Skinner, Murray A

    2016-03-01

    Investigation into the absorption, distribution and elimination of aluminium in rat after subcutaneous aluminium adjuvant formulation administration using ICP-MS is described. Assays were verified under the principles of a tiered approach. There was no evidence of systemic exposure of aluminium, in brain or in kidney. Extensive and persistent retention of aluminium at the dose site was observed for at least 180 days after administration. This is the first published work that has quantified aluminium adjuvant retention based on the quantity of aluminium delivered in a typical allergy immunotherapy course. The results indicate that the repeated administration of aluminium-containing adjuvants will likely contribute directly and significantly to an individual's body burden of aluminium.

  1. Aluminium toxicity tolerance in crop plants: Present status of research

    African Journals Online (AJOL)

    ... tolerance of which genes of the Aluminium-activated malate transporter (ALMT) and multidrug and toxic compound extrusion (MATE) families are prominent. In this review, the progress of research in identifying aluminium toxicity tolerant genes is discussed. Keywords: Aluminium toxicity, soil acidity, hydroponic screening, ...

  2. Aluminium allergy and granulomas induced by vaccinations for children

    DEFF Research Database (Denmark)

    Andersen, Rosa Marie O; Zachariae, Claus; Johansen, Jeanne Duus

    2014-01-01

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site - vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we...... examine the incidence, the symptoms and the prognosis for the vaccination granulomas and the allergy. Finally we discuss the status in Denmark....

  3. Design and Analysis of Butterfly Valve Disc Using Aluminium (1100 ...

    African Journals Online (AJOL)

    Aluminium (1100) is an extensively used material in the application of water line and drainage applications. If the aluminium (1100) surface contacts the water, an oxide layer will be formed and it prevents the corrosion of aluminium (1100) when compared to other metal and also it has less weight. But due to their low ...

  4. [Aluminium allergy and granulomas induced by vaccinations for children].

    Science.gov (United States)

    Andersen, Rosa Marie Ø; Zachariae, Claus; Johansen, Jeanne Duus

    2015-04-27

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site – vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we examine the incidence, the symptoms and the prognosis for the vaccination granulomas and the allergy. Finally we discuss the status in Denmark.

  5. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  6. Aluminium and the human breast.

    Science.gov (United States)

    Darbre, P D

    2016-06-01

    The human population is exposed to aluminium (Al) from diet, antacids and vaccine adjuvants, but frequent application of Al-based salts to the underarm as antiperspirant adds a high additional exposure directly to the local area of the human breast. Coincidentally the upper outer quadrant of the breast is where there is also a disproportionately high incidence of breast cysts and breast cancer. Al has been measured in human breast tissues/fluids at higher levels than in blood, and experimental evidence suggests that at physiologically relevant concentrations, Al can adversely impact on human breast epithelial cell biology. Gross cystic breast disease is the most common benign disorder of the breast and evidence is presented that Al may be a causative factor in formation of breast cysts. Evidence is also reviewed that Al can enable the development of multiple hallmarks associated with cancer in breast cells, in particular that it can cause genomic instability and inappropriate proliferation in human breast epithelial cells, and can increase migration and invasion of human breast cancer cells. In addition, Al is a metalloestrogen and oestrogen is a risk factor for breast cancer known to influence multiple hallmarks. The microenvironment is established as another determinant of breast cancer development and Al has been shown to cause adverse alterations to the breast microenvironment. If current usage patterns of Al-based antiperspirant salts contribute to causation of breast cysts and breast cancer, then reduction in exposure would offer a strategy for prevention, and regulatory review is now justified. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Thermal conductivity behavior of boron carbides

    Science.gov (United States)

    Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.

    1983-01-01

    Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.

  8. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  9. Morphology study of refractory carbide powders

    International Nuclear Information System (INIS)

    Vavrda, J.; Blazhikova, Ya.

    1982-01-01

    Refractory carbides were investigated using JSM-U3 electron microscope of Joelco company at 27 KV accelerating voltage. Some photographs of each powder were taken with different enlargements to characterise the sample upon the whole. It was shown that morphological and especially topographic study of powders enables to learn their past history (way of fabrication and treatment). The presence of steps of compact particle fractures and cracks is accompanied by occurence of fine dispersion of carbides subjected to machining after facrication. On the contrary, the character of crystallographic surfaces and features of surface growth testify to the way of crystallization

  10. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    The extensive demand of aluminium alloys in various industries such as in transportationis mainly due to the high strength to weight ratio, which could be translated into fuel economy and efficiency. Corrosion protection of aluminium alloys is an important aspect for all applications which includes...... to 12 present various experimental results in the form of appended papers. The chapters consist of the experimental results obtained by the use of steam-based process and its effect on microstructureand corrosion resistance of the alloy as a function of steam pressure, use of various chemicals...... the use of aluminium alloys in the painted form requiring a conversion coating to improve the adhesion. Chromate based conversion coating processes are extremely good for these purposes, however the carcinogenic and toxic nature of hexavalent chromium led to the search for more benign and eco...

  11. Steam generated conversion coating on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    Aluminium and its alloys are widely used in aerospace industry owing to their high strength to weight ratio. The surface of aluminium under normal conditions has a thin oxide film (2.5-10 nm) responsible for its inherent corrosion resistance. This oxide film can further be converted or transformed...... into functional conversion coatings in order to enhance corrosion resistance and adhesion to paint systems. Chromium based conversion coatings have been extensively used on aluminium alloys to improve adhesion of subsequent paint layers and corrosion resistance. However, the use of hexavalent chromium is strictly...... and growth of oxide film on different intermetallic particles and corrosion behaviour of such alloys.Surface morphology was observed by using FEG-SEM, EDX and FIB-SEM. Metal oxide surface characterization and compositional depth profiling were investigated by using XPS and GD-OES respectively...

  12. Internal friction in iron-aluminium alloys having a high aluminium content

    International Nuclear Information System (INIS)

    Hillairet, J.; Delaplace, J.; Silvent, A.

    1966-01-01

    By using a torsion pendulum to measure the internal friction of iron-aluminium alloys containing between 25 and 50 atom per cent of aluminium, it has been possible to show the existence of three damping peaks due to interstitial carbon. Their evolution is followed as a function of the carbon content, of the thermal treatment and of the aluminium content. A model based on the preferential occupation of tetrahedral sites is proposed as an interpretation of the results. A study of the Zener peak in these substitution alloys shows also that a part of the short distance disorder existing at high temperatures can be preserved by quenching. (author) [fr

  13. TITANIUM CARBON ALUMINIUM : A NOVEL GRAIN REFINER FOR ALUMINIUM-LITHIUM ALLOYS

    OpenAIRE

    Birch , M.; Cowell , A.

    1987-01-01

    This work explores the possibility of achieving grain size control in aluminium-lithium alloys with the titanium carbon aluminium (TiCAl) master alloys invented at the Technical University of Berlin and developed by London and Scandinavian Metallurgical Co Ltd (LSM). Grain refining tests were conducted on a single batch of 8090 alloy using addition rates of 0.2wt% and 0.4wt% of TiCAl and 3/1 titanium boron aluminium (TiBAl). Other tests using 0.4wt% of binary TiAl gave poor results, showing t...

  14. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  15. Effect of flyash particles with aluminium melt on the wear of aluminium metal matrix composites

    Directory of Open Access Journals (Sweden)

    Vipin K. Sharma

    2017-08-01

    Full Text Available The present work deals with the fabrication and tribological testing of an aluminium flyash composite. The metal matrix selected was aluminium and flyash contents in different percentages were reinforced in it to fabricate the required metal matrix composite (MMC. Stir casting method was used to fabricate the MMC with 2–4–6% weight of flyash contents in aluminium. Tribological analysis of the tribo pairs formed between the smooth surfaces of cast iron disc and smooth MMC pin has been considered and friction force and wear of the MMC were investigated by using a Pin-on-disc setup. It was observed that the MMC with 6% weight of flyash content in aluminium matrix results in less wear (0.32 g and 4% weight of flyash content gives the low coefficient of friction (0.12 between the tribopairs of cast iron surface and MMC surface.

  16. Progress in silicon carbide semiconductor technology

    Science.gov (United States)

    Powell, J. A.; Neudeck, P. G.; Matus, L. G.; Petit, J. B.

    1992-01-01

    Silicon carbide semiconductor technology has been advancing rapidly over the last several years. Advances have been made in boule growth, thin film growth, and device fabrication. This paper wi11 review reasons for the renewed interest in SiC, and will review recent developments in both crystal growth and device fabrication.

  17. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  18. Testing boron carbide under triaxial compression

    Science.gov (United States)

    Anderson, Charles; Chocron, Sidney; Dannemann, Kathryn A.; Nicholls, Arthur E.

    2012-03-01

    This article focuses on the pressure dependence and summarizes the characterization work conducted on intact and predamaged specimens of boron carbide under confinement in a pressure vessel and in a thick steel sleeve. The failure curves obtained are presented, and the data compared to experimental data from the literature.

  19. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  20. Kinetic analysis of boron carbide sintering

    International Nuclear Information System (INIS)

    Borchert, W.; Kerler, A.R.

    1975-01-01

    The kinetics of the sintering of boron carbide were investigated by shrinkage measurements with a high-temperature dilatometer under argon atmosphere in dependence on temperature, grain size, and pressure. The activation energies and the reaction mechanisms of the different stages of sintering were determined. (orig.) [de

  1. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  2. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  3. Method of preparing a porous silicon carbide

    NARCIS (Netherlands)

    Moene, R.; Tazelaar, F.W.; Makkee, M.; Moulijn, J.A.

    1994-01-01

    Abstract of NL 9300816 (A) Described is a method of preparing a porous silicon carbide suitable for use as a catalyst or as a catalyst support. Porous carbon is provided with a catalyst which is suitable for catalysing gasification of carbon with hydrogen, and with a catalyst suitable for catalysing

  4. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  5. Perfomance analysis of boron carbide in LMFBR

    International Nuclear Information System (INIS)

    Pitner, A.L.; Birney, K.R.

    1975-01-01

    Reactivity control in the FFTF and LMFBR's will be maintained by control elements utilizing boron carbide pellets contained in stainless steel pins. Computer performance codes predict irradiation service conditions of absorber pellets and identify required experimental testing. Test results are incorporated in the codes to improve performance prediction capabilities

  6. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Lieber, C.M.; Wong, E.W.; Dai, H.; Maynor, B.W.; Burns, L.D.

    1996-01-01

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe 3 C, and BC x having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  7. Low temperature carbide precipitation in a nickel base superalloy

    Science.gov (United States)

    Garosshen, T. J.; McCarthy, G. P.

    1985-07-01

    A M23C6 carbide phase has been observed to precipitate at relatively low temperatures (732 to 760 °C) in a nickel base superalloy.* Transmission Electron Microscopy shows the low temperature carbide to reside at the grain boundaries in a continuous morphology. The continuous carbide has a typical width of 25 to 40 nm with aspect ratios on the order of 30:1. The structure of the carbide is face-centered cubic with a lattice parameter (α0) of approximately 1.063 nm, which is typical of the M23C6 carbides that form at higher temperatures. STEM analysis indicates the carbide to have a typical M23C6 chemistry, enriched in chromium with lesser amounts of molybdenum, cobalt, and nickel. The formation of the continuous carbide occurs readily around 760 °C; however, at temperatures 55 °C lower the precipitation kinetics are significantly reduced. The extent of the low temperature carbide reaction is observed to be dependent upon the duration of the low temperature exposure and the degree of prior M23C6 stabilization at an intermediate temperature. Alloy modifications, involving hafnium additions and lower carbon levels, were studied with the aim of reducing the extent of this carbide reaction. Despite these chemistry modifications, the low temperature carbide was still observed to form to an appreciable extent. The presence of the continuous carbide is also observed to reduce the stress-rupture life of the alloy.

  8. Boron carbide nanowires: Synthesis and characterization

    Science.gov (United States)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  9. Thermal formation of corundum from aluminium hydroxides ...

    Indian Academy of Sciences (India)

    This contains a higher concentration of anionic impurities related to differences in the solubility of the original aluminium salts. The sulfate is retained in the gel to higher temperatures at which its eventual decomposition may lead to the formation of a reactive pore structure which facilitates the nucleation of -Al2O3.

  10. Indentation of aluminium foam at low velocity

    Directory of Open Access Journals (Sweden)

    Shi Xiaopeng

    2015-01-01

    Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.

  11. Performance evaluation of aluminium test piece against ...

    African Journals Online (AJOL)

    Image processing with Catphan 700 uses the automated Quality Assurance software restricted to only Digital Imaging and Communications in Medicine images. For this reason, an aluminium (Al) test piece device was fabricated for image processing in different image format for spatial resolution measurement.

  12. Warm Deep Drawing of Aluminium Sheet

    NARCIS (Netherlands)

    Bolt, P.J.; Werkhoven, R.J.; van den Boogaard, Antonius H.

    2003-01-01

    Aluminium sheet drawing processes can be improved by manipulating local flow behaviour by means of elevated temperatures and temperature gradients in the tooling. Forming tests showed that a substantial improvement is possible not only for 5xxx but also for 6xxx series alloys. Finite element method

  13. Flexural buckling of fire exposed aluminium columns

    NARCIS (Netherlands)

    Maljaars, J.; Twilt, L.; Soetens, F.

    2009-01-01

    In order to study buckling of fire exposed aluminium columns, a finite element model is developed. The results of this model are verified with experiments. Based on a parametric study with the finite element model, it is concluded that the simple calculation model for flexural buckling of fire

  14. Aluminium hydroxide-induced granulomas in pigs

    DEFF Research Database (Denmark)

    Valtulini, S; Macchi, C; Ballanti, P

    2005-01-01

    The effect of intramuscular injection of 40 mg/2 ml aluminium hydroxide in the neck of pigs was examined in a number of ways. The investigation followed repeated slaughterhouse reports, according to which 64.8% of pigs from one particular farm were found at slaughter to have one or more nodules i...

  15. Generation and characterization of nano aluminium powder ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. In the present study, nano aluminium particles were produced by wire explosion process (WEP) in nitrogen, argon and helium atmospheres. Thus produced nano particles were characterized through certain physico-chemical diagnostic studies using wide angle X-ray diffraction (WAXD) and by energy dispersive.

  16. Impact toughness of laser surface alloyed Aluminium

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-03-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and the impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  17. Shape rheocasting of high purity aluminium

    CSIR Research Space (South Africa)

    Curle, UA

    2011-03-01

    Full Text Available It is demonstrated experimentally that using the Council for Scientific and Industrial Research Rheo Casting System and high pressure die casting it is possible to semi-solid process and cast into a shape high purity aluminium without a...

  18. Generation and characterization of nano aluminium powder ...

    Indian Academy of Sciences (India)

    TECS

    as a combustion product. This could be useful in reduced smoke applications, since the visibility ... combustion instability due to appropriate particulate damping. A low concentration of regular-sized aluminium ... tance and L the contribution by the internal inductance of the capacitor and the lead inductance. The basic circuit.

  19. Dissolution of aluminium-cladded fuel elements

    International Nuclear Information System (INIS)

    Bernhard, G.; Boessert, W.; Hladik, O.; Schwarzbach, R.

    1984-01-01

    In the molybdenum production plant at Rossendorf (AMOR) short-term irradiated aluminium-cladded fuel elements from the Rossendorf research reactor RFR are dissolved for the purpose of molybdenum 99 production. The dissolution behaviour of these fuel elements and the appropriate dissolver are described. (author)

  20. COMBINED ALUMINIUM SULFATE/HYDROXIDE PROCESS FOR ...

    African Journals Online (AJOL)

    process has higher fluoride removal efficiency than the Nalgonda Technique with an additional advantage of minimizing ... disadvantages of this technique include high residual aluminium concentration (2–7 mg/L) in the treated ... thermogravimetric analyzer (Mettler Toledo AG–TGA/SDTA851e, Switzerland) using ceramic.

  1. Molecular breeding of cereals for aluminium resistance

    Science.gov (United States)

    Aluminium (Al3+) toxicity is the primary factor limiting crop production on acidic soils worldwide. In addition to an application of lime for soil amelioration, Al3+ resistant plant varieties have been deployed to raise productivity on such hostile soils. This has been possible due to the exploita...

  2. Improving mechanical properties of aluminium alloy through ...

    African Journals Online (AJOL)

    This paper investigates the microstructure and mechanical properties of aluminum alloy (Al-Si-Fe) reinforced with coconut shell-ash particulate. The aluminium (Al-Si-Fe) alloy composite was produced by a double-stir casting process at a speed of 700 rpm for 10 and 5 minutes at first and second stirring respectively.

  3. Creep properties of aluminium processed by ECAP

    Czech Academy of Sciences Publication Activity Database

    Král, Petr; Dvořák, Jiří; Jäger, Aleš; Kvapilová, Marie; Horita, Z.; Sklenička, Václav

    2016-01-01

    Roč. 54, č. 6 (2016), s. 441-451 ISSN 0023-432X R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 ; RVO:68378271 Keywords : equal channel angular pressing (ECAP) * aluminium * ultrafine-grained microstructure * creep Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) Impact factor: 0.366, year: 2016

  4. Constant structure creep experiments on aluminium

    Czech Academy of Sciences Publication Activity Database

    Milička, Karel

    2011-01-01

    Roč. 49, č. 5 (2011), s. 307-318 ISSN 0023-432X R&D Projects: GA AV ČR IAA2041203 Institutional research plan: CEZ:AV0Z20410507 Keywords : mechanical properties * high temperature deformation * creep * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.451, year: 2011

  5. Aluminium in brain tissue in familial Alzheimer's disease.

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    Science.gov (United States)

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as diatom species. C. closterium was the most sensitive species (10% inhibition of growth rate (72-h IC10) of 80 (55-100)μg Al/L (95% confidence limits)) while M. polymorphus (540 (460-600)μg Al/L) and P. tricornutum (2100 (2000-2200)μg Al/L) were less sensitive (based on measured total aluminium). Dissolved aluminium was the primary contributor to toxicity in C. closterium, while a combination of dissolved and precipitated aluminium forms contributed to toxicity in M. polymorphus. In contrast, aluminium toxicity to the most tolerant diatom P. tricornutum was due predominantly to precipitated aluminium. Preliminary investigations revealed the sensitivity of C. closterium and M. polymorphus to aluminium was influenced by initial cell density with aluminium toxicity significantly (pdiatoms suggesting that mechanisms of aluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated aluminium. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  8. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  9. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  10. Radiation stability of proton irradiated zirconium carbide

    International Nuclear Information System (INIS)

    Yang, Yong; Dickerson, Clayton A.; Allen, Todd R.

    2009-01-01

    The use of zirconium carbide (ZrC) is being considered for the deep burn (DB)-TRISO fuel as a replacement for the silicon carbide coating. The radiation stability of ZrC was studied using 2.6 MeV protons, across the irradiation temperature range from 600 to 900degC and to doses up to 1.75 dpa. The microstructural characterization shows that the irradiated microstructure is comprised of a high density of nanometer-sized dislocation loops, while no irradiation induced amorphization or voids are observed. The lattice expansion induced by point defects is found to increase as the dose increases for the samples irradiated at 600 and 800degC, while for the 900degC irradiation, a slight lattice contraction is observed. The radiation hardening is also quantified using a micro indentation technique for the temperature and doses studies. (author)

  11. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the sma...... by time-resolved photoluminescence. The ultrashort lifetime in the order of ~70ps indicates porous SiC is very promising for the application in the ultrafast visible light communications.......Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...

  12. Structure of Boron Carbide: Where's the Carbon?

    Science.gov (United States)

    Marx, David; Seidler, Gerald; Fister, Timothy; Nagle, Kenneth; Segre, Carlo

    2008-03-01

    Although the structure of the boron carbide series, B12-xCx with 0.06 x x-ray scattering (LERIX) spectrometer on the PNC-CAT beamline at the Advanced Photon Source at Argonne National Lab has enabled differentiation of the boron and carbon absorption edge data for the various crystallographic sites. The structure (R-3m) consists of twelve-atom icosahedra and three-atom chains. Boron carbide may have a maximum of three carbon atoms, which may be located on the two end of chain sites and in one of two inequivalent sites on the icosahedra. At least one carbon atom must be present in the structure for it to be stable. In this presentation, structural results from non-resonant x-ray scattering for seven samples, ranging from B4C to B10.1C will be presented.

  13. Ultrasonic ranking of toughness of tungsten carbide

    Science.gov (United States)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  14. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  15. [Association between serum aluminium level and methylation of amyloid precursor protein gene in workers engaged in aluminium electrolysis].

    Science.gov (United States)

    Yang, X J; Yuan, Y Z; Niu, Q

    2016-04-20

    To investigate the association between serum aluminium level and methylation of the promoter region of amyloid precursor protein (APP)gene in workers engaged in aluminium electrolysis. In 2012, 366 electrolysis workers in an aluminium factory were enrolled as exposure group (working years >10 and age >40 years)and divided into low-exposure group and high-exposure group based on the median serum aluminium level. Meanwhile, 102 workers in a cement plant not exposed to aluminium were enrolled as control group. Graphite furnace atomic absorption spectrometry was used to measure serum aluminium level, methylation specific PCR was used to measure the methylation rate of the promoter region of APP gene, and ELI-SA was used to measure the protein expression of APP in lymphocytes in peripheral blood. The exposure group had a significantly higher serum aluminium level than the control group (45.07 μg/L vs 30.51 μg/L, P0.05). The multivariate logistic regression analysis showed that with reference to the control group, low aluminium exposure (OR=1.86, 95% CI 1.67~3.52)and high aluminium exposure (OR=2.98, 95% CI 1.97~4.15)were risk factors for a reduced methylation rate of the promoter region of APP gene. Reduced methylation of the promoter region of APP gene may be associated with increased serum aluminium level, and downregulated methylation of the promoter region of APP gene may accelerate APP gene transcription.

  16. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  17. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  18. Low blow Charpy impact of silicon carbides

    Science.gov (United States)

    Abe, H.; Chandan, H. C.; Bradt, R. C.

    1978-01-01

    The room-temperature impact resistance of several commercial silicon carbides was examined using an instrumented pendulum-type machine and Charpy-type specimens. Energy balance compliance methods and fracture toughness approaches, both applicable to other ceramics, were used for analysis. The results illustrate the importance of separating the machine and the specimen energy contributions and confirm the equivalence of KIc and KId. The material's impact energy was simply the specimen's stored elastic strain energy at fracture.

  19. Electronic specific heat of transition metal carbides

    International Nuclear Information System (INIS)

    Conte, R.

    1964-07-01

    The experimental results that make it possible to define the band structure of transition metal carbides having an NaCI structure are still very few. We have measured the electronic specific heat of some of these carbides of varying electronic concentration (TiC, either stoichiometric or non-stoichiometric, TaC and mixed (Ti, Ta) - C). We give the main characteristics (metallography, resistivity, X-rays) of our samples and we describe the low temperature specific heat apparatus which has been built. In one of these we use helium as the exchange gas. The other is set up with a mechanical contact. The two use a germanium probe for thermometer. The measurement of the temperature using this probe is described, as well as the various measurement devices. The results are presented in the form of a rigid band model and show that the density of the states at the Fermi level has a minimum in the neighbourhood of the group IV carbides. (author) [fr

  20. Compressive creep of hot pressed silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C.R.M., E-mail: cosmeroberto@gmail.com [Universidade de Brasilia (UnB), Campus Darcy Ribeiro, Brasilia CEP 70736-020, DF (Brazil); Nono, M.C.A. [Instituto de Nacional de Pesquisas Espaciais (INPE-LAS) (Brazil); Reis, D.A.P.; Hwang, M.K. [Instituto de Aeronautica e Espaco (IAE) (Brazil)

    2010-07-15

    Silicon carbide has a good match of chemical, mechanical and thermal properties and therefore is considered an excellent structural ceramic for high temperature applications. The aim of the present work is compressive creep evaluation of liquid phase sintered silicon carbide with aluminum and rare earth oxide as sintering aids. Rare earth oxides are possible additives considering their highly refractory remnant grain-boundary phase and lower synthesis costs compared to high purity rare earth. Samples were prepared with silicon carbide powder (90 wt%) and aluminum oxide (5 wt%) plus rare earth oxide (5 wt%) additions. Powders were mixed, milled and hot pressed at 1800 deg. C in argon atmosphere. Compressive creep tests were carried out under stress from 150 to 300 MPa and temperatures from 1300 to 1400 deg. C. At lower creep test temperatures, the obtained stress exponent values were correlated to mechanisms based on diffusion. At intermediate temperatures, grain-boundary sliding becomes operative, accommodated by diffusion. At higher temperatures cavities are discernible. Oxidation reactions and ionic diffusion result on surface oxidized layer, grain-boundary amorphous and intergranular crystalline Al{sub 6}Si{sub 2}O{sub 13}, {delta}-Y{sub 2}Si{sub 2}O{sub 7} and YAG phases. In this case cavitation and amorphous phases redistribution enhance grain-boundary sliding, not accommodated by diffusion. Coalescence occurs at triple point and multigrain-junctions, with subsequent strain rate acceleration and cavitational creep.

  1. A fundamental study of industrial boron carbide

    International Nuclear Information System (INIS)

    Zuppiroli, L.; Kormann, R.; Lesueur, D.

    1983-09-01

    Some of the physical properties of boron carbide, before and after irradiation are reviewed on the basis of several new experiments performed in our laboratory. The layered aspect of the grains of this ceramic, due to a microtwinning of the rhomboedral structure, is emphasized first. Then, the location of free carbon in samples of composition close to B 4 C is discussed in relation with new sputtering experiments. Coupled studies of the electric conductivities and the electron spin resonance lines have demonstrated the important role of free carbon in the electronic properties of boron carbide and revealed the existence of a homogeneous short range disorder, the origin of which is not very clear (amorphous concept). The elementary processes responsible of the swelling and microcracking of neutron irradiated boron carbide are rather well understood. The role of the point defects in these processes is reported. The displacement threshold energies and formation volumes are discussed in relation with electron irradiation experiments, and displacement rates are calculated in different irradiation situations including neutron irradiations [fr

  2. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  3. Demethylation of Quinine Using Anhydrous Aluminium Trichloride

    Directory of Open Access Journals (Sweden)

    Aiyi Asnawi

    2011-03-01

    Full Text Available Quinine is a natural alkaloid having a methoxy group bound to quinoline ring and an allyl group bound to quinuclidine ring. Demethylation of quinine applying strong acid such as HBr or HI at high temperature was unsuccessful. The aim of this research was to obtain demethylated quinine by means of mild and selective demethylation procedure to prevent the addition reaction of allyl group. Selective demethylation of quinine has been carried out using anhydrous aluminium trichloride as reagent. The demethylation product was achieved in 68.12% yield by mole ratio of quinine to anhydrous aluminium trichloride of 1 to 4 in dried methylene chloride under nitrogen atmosphere. The reaction was firstly carried out at 0°C for 4 h and after the reaction mixture reached room temperature, the reaction was continued up to 24 h.

  4. Diagnostics of ytterbium/aluminium laser plasmas

    International Nuclear Information System (INIS)

    Bailey, J.; Lee, R.W.; Landen, O.L.; Kilkenny, J.D.; Lewis, C.L.; Busquet, M.

    1986-11-01

    Microdot spectroscopy was used to study the x-ray emission from laser-produced plasmas consisting of 10% ytterbium, 90% aluminium. Spectra were recorded with a space-resolving flat crystal (PET) mini-spectrometer in the 4.0-8.0 A range. The Janus research laser at LLNL irradiated the targets with green (0.53 μm) light in a 1 nsec pulse. The power density was varied between 4x10 13 and 3x10 14 W/cm 2 . The plasma electron density and temperature were determined from the aluminium XI, XII and XIII line emission. By examining correlations between changes in the plasma conditions with changes in the ytterbium spectra, we will determine the potential for using ytterbium line emission as a plasma diagnostic

  5. ALUHAB — The Superior Aluminium Foam

    Science.gov (United States)

    Babcsan, N.; Beke, S.; Makk, P.; Soki, P.; Számel, Gy; Degischer, H. P.; Mokso, R.

    A new metal foaming technology has been developed to produce aluminum foams with controlled cell sizes, a wide range of alloy compositions, and attractive mechanical properties. ALUHAB aluminium foams are manufactured from a special foamable aluminium alloy containing ultrafine particles (80-3000 nm). The technology uses high temperature ultrasonication to homogeneously disperse the particles and thus create a stable, foamable aluminum melt. Oscillating gas injector (loud-nozzle) technology permits the injection of optimally sized bubbles into the melt that are independent of the injector orifice diameter. Using this direct gas injection method, bubble size is regulated by the frequency and the power of the ultrasound, producing uniform bubble sizes in the sub-millimeter range. The technology results in extremely stable metal foams which can be cast into complex forms and re-melted without loss of foam integrity. Processing methods and properties of the ALUHAB foams will be discussed.

  6. Melt spun aluminium alloys for moulding optics

    Science.gov (United States)

    Gubbels, G.; Tegelaers, L.; Senden, R.

    2013-09-01

    Melt spinning is a rapid quenching process that makes it possible to create materials with a very fine microstructure. Due to this very fine microstructure the melt spinning process is an enabler for diamond turning optics and moulds without the need of post-polishing. Using diamond turning of melt spun aluminium one can achieve coating concept RSA-905 can be upgraded to a competitive alternative to steel in terms of price, performance and logistics. This paper presents some recent developments for improved mould performance of such concept. Hardness, wear resistance and adhesion are topics of interest and they can be applied by special coatings such as diamond-like carbon (DLC) and chromium nitride (CrN). These coatings make the aluminium alloy suitable for moulding mass production of small as well as larger optics, such as spectacle lenses.

  7. Feet sunk in molten aluminium: The burn and its prevention.

    Science.gov (United States)

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  8. What is the risk of aluminium as a neurotoxin?

    Science.gov (United States)

    Exley, Christopher

    2014-06-01

    Aluminium is neurotoxic. Its free ion, Al(3+) (aq), is highly biologically reactive and uniquely equipped to do damage to essential cellular (neuronal) biochemistry. This unequivocal fact must be the starting point in examining the risk posed by aluminium as a neurotoxin in humans. Aluminium is present in the human brain and it accumulates with age. The most recent research demonstrates that a significant proportion of individuals older than 70 years of age have a potentially pathological accumulation of aluminium somewhere in their brain. What are the symptoms of chronic aluminium intoxication in humans? What if neurodegenerative diseases such as Alzheimer's disease are the manifestation of the risk of aluminium as a neurotoxin? How might such an (outrageous) hypothesis be tested?

  9. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    Science.gov (United States)

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  10. Microhardness and grain size of disordered nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of the disordered nonstoichiometric titanium carbide on its microhardness and grain size is studied. It is established that decrease in defectiveness of carbon sublattice of disordered carbide is accompanied by microhardness growth and decrease in grain size. Possible causes of the TiC y microhardness anomalous behaviour in the area 0.8 ≤ y ≤ 0.9 connected with plastic deformation mechanism conditioned by peculiarities of the electron-energetic spectrum of nonstoichiometric carbide are discussed [ru

  11. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  12. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  13. Impact scenarios in boron carbide: A computational study

    OpenAIRE

    Bell, R. G.; Sugden, I. J.; Plant, D. F.

    2016-01-01

    The effect of radiative impacts on the structure of boron carbide has been studied by both classical and ab initio simulations. As a part of this study, a new forcefield was developed for use in studying boron carbide materials. Impact scenarios in boron carbide were simulated in order to investigate the exceptional resistance of this material, and other icosahedral boron solids, to high-energy impact events. It was observed that interstitial defects created by radiative impacts are likely to...

  14. Effect of Bottom Ash and Fly Ash as a Susceptor Material on The Properties of Aluminium Based Composites Prepared by Microwave Sintering

    Directory of Open Access Journals (Sweden)

    Wan Muhammad Wan Nur Azrina Binti

    2017-01-01

    Full Text Available The use of aluminium as a single material in automotive applications is not suitable without a mixture with reinforcement materials that can support the properties at high temperature. In this study, aluminium based composite were prepared with weight percentage of SiC reinforcement, varying from 5 to 20 wt%. Aluminium powder and reinforcement materials were mixed using ball milling machine with speed of 100 rpm for 2 hours. The powder mixture were then compressed at pressure 4 tonnes with 5 minutes holding time. The compact samples were sintered using microwave sintering technique. Microwave sintering techniques in this study using two different types of susceptor materials that are bottom ash and fly ash. Sintered aluminium based composites using bottom ash susceptor material involving the sintering temperature of 526 °C for 30 minutes whereas for the samples sintered using fly ash susceptor material, involving a temperature of 523 °C for 15 minutes. From the result, the sintered samples using fly ash susceptor material, showed higher density with a value of 2.1933 g/cm3 compared to bottom ash 2.0002 g/cm3 and having the higher hardness value 72.1315 HV compared to bottom ash 50.0511HV. The using of fly ash could affect the heating rate during the sintering process which could influence the properties of aluminium based composites. In conclusion, the type of susceptor could affect the physical and mechanical properties of aluminum-based composite reinforced with silicon carbide.

  15. Simulation of aluminium STIR casting technique

    International Nuclear Information System (INIS)

    Hafizal Yazid; Mohd Harun; Hanani Yazid; Abd Aziz Mohamed; Muhammad Rawi Muhammad Zain; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil; Ismail Mustapha; Razali Kasim

    2006-01-01

    In this paper, the objective is to determine the optimum impeller speed correlated with holding time to achieve homogeneous reinforcement distribution for a particular set of experimental condition. Attempts are made to simulate the flow behaviourof the liquid aluminium using FLUENT software. Stepwise impeller speed ranging from 50 to 300 rpm.with 2 impeller angle blades of 45 and 90 degree with respect to the rotational plane were used

  16. Aluminium phosphide poising: a case report

    International Nuclear Information System (INIS)

    Hirani, S.A.A.; Rahman, A.

    2010-01-01

    This paper reports the case of a family in which three children were presented at Emergency Room (ER) with poisoning after the use of a pesticide at home. Initially, the cases were managed as routine cases of organophosphorus poisoning; however, the death of two children made the health team members realise that the poison's effects were delayed and devastating. Later, the compound was identified as Aluminium Phosphide (ALP), and the life of the last surviving child in the family was saved. (author)

  17. Helium behaviour in aluminium under hydrostatic pressure

    International Nuclear Information System (INIS)

    Sokurskij, Yu.N.; Tebus, V.N.; Zudilin, V.A.; Tumanova, G.M.

    1989-01-01

    Effect of hydrostatic compression on equilibrium helium bubbles in low aluminium-lithium alloy irradiated in reactor at 570 K is investigated. Measurements of hydrostatic density and electron-microscopic investigations have shown, that application of up to 2 GPa pressure reduces equilibrium size of helium bubbles and reduces helium swelling. Kinetics and thermodynamics of the process are considered with application of 'rigid sphere' equation which describes helium state in bubbles

  18. Swedish research on aluminium reactor technology

    International Nuclear Information System (INIS)

    Forsen, Bjoern

    1960-02-01

    A historical survey of the work done in Sweden this subject is given in the first part of the paper. The second part is elevated to a brief outline of the authors view of the present status of corrosion theories for aluminium in high temperature water. A theory where the crystallization of boehemite from the barrier layer is considered as an important control of the corrosion reaction is presented

  19. Multiply-negatively charged aluminium clusters and fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  20. No risk of Alzheimer's disease from aluminium in consumer products

    OpenAIRE

    German Federal Institute for Risk Assessment

    2007-01-01

    Aluminium is the third most frequent element in the earth's crust and occurs naturally in drinking water and other foods, particularly in fruit and vegetables. For consumers the main uptake route is food. There may be additional exposure from aluminium-containing food-contact articles like kitchen utensils, cans, foils or tubes from which the light metal migrates into the food. Furthermore, aluminium may also be contained in medicinal products to neutralise gastric acid, so-called antacids an...

  1. The aluminium content of infant formulas remains too high.

    Science.gov (United States)

    Chuchu, Nancy; Patel, Bhavini; Sebastian, Blaise; Exley, Christopher

    2013-10-08

    Recent research published in this journal highlighted the issue of the high content of aluminium in infant formulas. The expectation was that the findings would serve as a catalyst for manufacturers to address a significant problem of these, often necessary, components of infant nutrition. It is critically important that parents and other users have confidence in the safety of infant formulas and that they have reliable information to use in choosing a product with a lower content of aluminium. Herein, we have significantly extended the scope of the previous research and the aluminium content of 30 of the most widely available and often used infant formulas has been measured. Both ready-to-drink milks and milk powders were subjected to microwave digestion in the presence of 15.8 M HNO3 and 30% w/v H2O2 and the aluminium content of the digests was measured by TH GFAAS. Both ready-to-drink milks and milk powders were contaminated with aluminium. The concentration of aluminium across all milk products ranged from ca 100 to 430 μg/L. The concentration of aluminium in two soya-based milk products was 656 and 756 μg/L. The intake of aluminium from non-soya-based infant formulas varied from ca 100 to 300 μg per day. For soya-based milks it could be as high as 700 μg per day. All 30 infant formulas were contaminated with aluminium. There was no clear evidence that subsequent to the problem of aluminium being highlighted in a previous publication in this journal that contamination had been addressed and reduced. It is the opinion of the authors that regulatory and other non-voluntary methods are now required to reduce the aluminium content of infant formulas and thereby protect infants from chronic exposure to dietary aluminium.

  2. Improving the Crashworthiness of Aluminium Rail Vehicles

    Science.gov (United States)

    Zangani, Donato; Robinson, Mark; Kotsikos, George

    An experimental and modelling programme of work have been undertaken to predict the performance of aluminium welds in rail vehicles under highly dynamic loading conditions and provide design guidelines to reduce the likelihood of the occurrence of weld unzipping. Modelling of weld unzipping in large rail structures is a challenging task since it requires to deal with material instability, to take into account the uncertainties in material parameters and to address the problem of mesh resolution which together pose severe challenges to computability. The proposed methodology to the prediction of weld failure is based on the validation of the numerical models through correlation with laboratory scale tearing tests. The tearing tests were conducted on samples taken from real rail extrusions with the purpose of obtaining the failure parameters under dynamic loading and understanding the effect of weld material composition on joint behaviour. The validated material models were used to construct a FEA simulation of the collision of an aluminium rail car and investigate the effect of both joint geometry and welding techniques on the failure mechanism. Comparisons of the model with the failures observed in an aluminium rail vehicle that was involved in a high speed collision, have shown that it is possible to model the phenomenon of weld unzipping with good accuracy. The numerical models have also been used as a tool for the optimisation of joint design to improve crashworthiness.

  3. Aluminium in the rail transportation market

    Energy Technology Data Exchange (ETDEWEB)

    Zehnder, J. [Alcan Alesa Engineering Ltd., Zurich (Switzerland). Alcan Mass Transportation Systems

    2002-07-01

    Rail-transportation is not, as one might expect, a homogeneous market but extremely fragmented and even with huge differences from continent to continent, i.e. in North America freight transport is dominating whereas in Europe passenger transport prevails. A first segmentation splits infrastructure from vehicles. In a second layer of segmentation we distinguish between light rail vehicles, heavy metros, regional trains, intercity trains, high speed trains with and without tilting, maglev trains, freight vehicles and locomotives. Finally, we find aluminium applications in wheels, suspension parts, brake equipment, traction equipment, body structure, hang on parts and interior trim. On the infrastructure side best use of aluminium is in the field of power supply. In order to have the best solution for each application, all forms of products such as castings, forgings, flat rolled products and extrusions are needed and the engineers are using a broad choice or different alloys for all the requirements such as structural strength, decorative aspect, electrical conductivity, wear resistance, weldability, corrosion resistance etc. Innovation cycles in rail transportation are very slow, mainly because the expected life of vehicles is over 30 years and so no fleet owner will run the risk of getting vehicles with non-proven components, i.e. where a safe life of over 30 years cannot be shown. In the following the most important aluminium applications are shown and discussed. (orig.)

  4. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  5. Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  6. Friction stir welding (FSW of aluminium foam sandwich panels

    Directory of Open Access Journals (Sweden)

    M. Bušić

    2016-07-01

    Full Text Available The article focuses on the influence of welding speed and tool tilt angle upon the mechanical properties at the friction stir welding of aluminium foam sandwich panels. Double side welding was used for producing butt welds of aluminium sandwich panels applying insertion of extruded aluminium profile. Such insertion provided lower pressure of the tool upon the aluminium panels, providing also sufficient volume of the material required for the weldment formation. Ultimate tensile strength and flexural strength for three-point bending test have been determined for samples taken from the welded joints. Results have confirmed anticipated effects of independent variables.

  7. Numerical predicting of recycling friendly wrought aluminium alloy compositions

    Directory of Open Access Journals (Sweden)

    Varužan Kevorkijan

    2013-09-01

    Full Text Available The model presented in this work enables the design of optimal (standard and non-standard “recycling-friendly” compositions and properties of wrought aluminium alloys with significantly increased amounts of post-consumed scrap. The following two routes were modelled in detail: (i the blending of standard and non-standard compositions of wrought aluminium alloys starting from post-consumed aluminium scrap sorted to various degrees simulated by the model; and (ii changing the initial standard composition of wrought aluminium alloys to non-standard “recycling friendly” ones - with broader concentration tolerance limits of alloying elements, without influencing the selected alloy properties, specified in advance.

  8. Investigation process of alcoholysis of hydride aluminium-adobe

    International Nuclear Information System (INIS)

    Numanov, M.I.; Normatov, I.Sh.; Mirsaidov, U.M.

    2001-01-01

    Considering of that process of acid treatment of aluminium-adobe hydride realizes in the ethyl alcohol media it was necessary study the process of alcoholysis of AlH 3 and aluminium additives. In the end of article authors became to conclusion that deficiency of spontaneous alcoholysis of AlH 3 in adobe caused by protective action of fiber; solvate ability of LiCl and alkoxy aluminium hydride of lithium-LiCl·CO 2 H 5 OH, Li Al(OC 2 H 5 ) 4 ·nC 2 H 5 OH decreasing the expectancy of responding of alcohol with aluminium hydride

  9. Serum aluminium levels of workers in the bauxite mines.

    Science.gov (United States)

    de Kom, J F; Dissels, H M; van der Voet, G B; de Wolff, F A

    1997-01-01

    Aluminium is produced from the mineral bauxite. Occupational exposure is reported during the industrial processing of aluminium and is associated with pulmonary and neurotoxicity. However, data on exposure and toxicity of workers in the open bauxite mining industry do not exist. Therefore, a study was performed to explore aluminium exposure in employees involved in this bauxite mining process in a Surinam mine. A group of workers occupationally exposed to aluminium in an open bauxite mine were compared with a group of nonexposed wood processors. Serum aluminium was analyzed using atomic absorption spectrometry Data from the clinical chemistry of the blood and a questionnaire were used to explore determinants for aluminium exposure. No significant difference between serum aluminium in the exposed (4.4 +/- 2.0 micrograms/L, n = 27) and control group (5.1 +/- 1.5 micrograms/L, n = 27) was detected. For the serum concentration of the clinical chemical variables (calcium, citrate, and creatinine), a statistically significant difference was computed (p < or = 0.02) between the exposed and control group. All levels were slightly higher in the exposed group; no statistically significant correlations with serum aluminium were found. In this study, serum aluminium values were in the normal range, no significant difference between the groups could be detected despite long-term occupational exposure.

  10. Trial finds better haemostasis with aluminium chloride during periapical surgery.

    Science.gov (United States)

    Mc Goldrick, Niall; Ross, Carly; Nelson, James

    2017-06-23

    DesignRandomised controlled trial in a university setting.InterventionPatients were randomised to epinephrine impregnated gauze or aluminium chloride for periapical surgery involving a single tooth with a periapical area of aluminium chloride group were analysed. Adequate haemostasis was achieved in 25 (52.1%) of the epinephrine group and 37 (72.5%) of the aluminium chloride group, a statistically significant difference.ConclusionsThe outcome showed better efficacy of haemostasis in the aluminium chloride group than in the gauze impregnated epinephrine group. The analysis of the patients and tooth-dependent variables showed no relationship with the effectiveness of haemostasis.

  11. Determination of Aluminium Content in Aluminium Hydroxide Formulation by FT-NIR Transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Søndergaard, Ib

    2007-01-01

    A method for determining the aluminium content of an aluminium hydroxide suspension using near infrared (NIR) transmittance spectroscopy has been developed. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used as reference method. The factors influencing the NIR analysis......-AES and NIR transmittance spectroscopy exhibit comparable precision and accuracy. The NIR method provides several advantages: no complicated sample preparation; easy to operate; fast and non-destructive. In conclusion, NIR transmittance spectroscopy can be an alternative analytical method for determining...

  12. A new synthesis process for aluminium nitride. Nouveau procede de synthese du nitrure d'aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Haussonne, J.M. (CNET, Centre Lannion B, 22 (France)); Lostec, J. (CNET, Centre Lannion B, 22 (France)); Bertot, J.P. (CNET, Centre Lannion B, 22 (France)); Lostec, L. (CNET, Centre Lannion B, 22 (France)); Sadou, S. (CNET, Centre Lannion B, 22 (France))

    1993-04-01

    Thermodynamic considerations show that, even at room temperature, pure aluminium can react with nitrogen to form the aluminium nitride AlN. However, pure aluminium does not exist: it is always surrounded by an alumina shell that protects the metal from further reactions. Furthermore, in the hypothesis where one has been able to make aluminium react with nitrogen, an aluminium nitride shell will protect as well the metal core from further oxidation. Prompted by the Lanxide process allowing to form Al/Al[sub 2]O[sub 3] composites, we have mixed aluminium powders with lithium salts, and easily synthesized pure aluminium nitride by heating the mixed powders in nitrigen at temperatures ranging from 800 to 1200 C. Starting from aluminium powders with a specific area ranging from 0.3 to 4 m[sup 2]/g, we have been able to produce aluminium nitride with specific are ranging from 1 to 20 m[sup 2]/g. Mixed with Y[sub 2]O[sub 3]-CaO and sintered at 1720 C in N[sub 2], we obtained AlN ceramics owning 92% density and 160 W/m.K thermal conductivity. (orig.).

  13. An Assessment of Mechanical and Tribological Property of Hybrid Aluminium Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    R. Santosh Kumar

    2017-04-01

    Full Text Available Composite materials has huge requirement in the area of automobile, aerospace, and wear resistant applications. This study presents the synthesis of composite reinforced with SiC and Al2O3 using gravity stir casting. Stir casting is the manufacturing process that is incorporated to produce the composite material because of its extreme bonding capacity with base material. The composition of reinforcement with 6061 aluminium matrix is SiC-7.5% and Al2O3 -2.5% respectively. The average size of reinforcement particle is 30-40 microns. The synthesised composite casting is machined using EDM to prepare specimens for various tests. Microstructure study was carried and the microstructure images prove the existence and dispersion of reinforcement particles in the metal matrix. There is no visible porosity is observed. The hardness of the specimen is tested using Vickers hardness tester and found considerable increase when compare with parent alloy Al 6061. Also mechanical and tribological properties of hybrid Aluminium metal matrix composite were employed. The fortifying material, Silicon Carbide is composed of tetrahedral of carbon and silicon atoms with strong bonds in crystal lattice along with its excellent wear resistance property and alumina have high strength and wear resistance. To avoid enormous material wastage and to achieve absolute accuracy, wire-cut EDM process is capitalised to engrave the specimen as per required dimensions. Three Tensile test specimens were prepared, in order to achieve reliability in results as per ASTM- E8 standard, and the values were tabulated. Impact test was carried out and the readings were tabulated. Wear test was carried out using pin on disc wear test apparatus and the results show considerable increase in wear resistant property when compare with parent alloy Al6061.The above work proves the successful fabrication of composite and evaluation of properties.

  14. There is (still too much aluminium in infant formulas

    Directory of Open Access Journals (Sweden)

    Burrell Shelle-Ann M

    2010-08-01

    Full Text Available Abstract Background Infant formulas are sophisticated milk-based feeds for infants which are used as a substitute for breast milk. Historically they are known to be contaminated by aluminium and in the past this has raised health concerns for exposed infants. We have measured the aluminium content of a number of widely used infant formulas to determine if their contamination by aluminium and consequent issues of child health persists. Methods Samples of ready-made milks and powders used to make milks were prepared by microwave digestion of acid/peroxide mixtures and their aluminium content determined by THGA. Results The concentration of aluminium in ready-made milks varied from ca 176 to 700 μg/L. The latter concentration was for a milk for preterm infants. The aluminium content of powders used to make milks varied from ca 2.4 to 4.3 μg/g. The latter content was for a soya-based formula and equated to a ready-to-drink milk concentration of 629 μg/L. Using the manufacturer's own guidelines of formula consumption the average daily ingestion of aluminium from infant formulas for a child of 6 months varied from ca 200 to 600 μg of aluminium. Generally ingestion was higher from powdered as compared to ready-made formulas. Conclusions The aluminium content of a range of well known brands of infant formulas remains high and particularly so for a product designed for preterm infants and a soya-based product designed for infants with cow's milk intolerances and allergies. Recent research demonstrating the vulnerability of infants to early exposure to aluminium serves to highlight an urgent need to reduce the aluminium content of infant formulas to as low a level as is practically possible.

  15. Long-term effects of aluminium dust inhalation.

    Science.gov (United States)

    Peters, Susan; Reid, Alison; Fritschi, Lin; de Klerk, Nicholas; Musk, A W Bill

    2013-12-01

    During the 1950s and 1960s, aluminium dust inhalation was used as a potential prophylaxis against silicosis in underground miners, including in Australia. We investigated the association between aluminium dust inhalation and cardiovascular, cerebrovascular and Alzheimer's diseases in a cohort of Australian male underground gold miners. We additionally looked at pneumoconiosis mortality to estimate the effect of the aluminium therapy. SMRs and 95% CI were calculated to compare mortality of the cohort members with that of the Western Australian male population (1961-2009). Internal comparisons on duration of aluminium dust inhalation were examined using Cox regression. Aluminium dust inhalation was reported for 647 out of 1894 underground gold miners. During 42 780 person-years of follow-up, 1577 deaths were observed. An indication of increased mortality of Alzheimer's disease among miners ever exposed to aluminium dust was found (SMR=1.38), although it was not statistically significant (95% CI 0.69 to 2.75). Rates for cardiovascular and cerebrovascular death were above population levels, but were similar for subjects with or without a history of aluminium dust inhalation. HRs suggested an increasing risk of cardiovascular disease with duration of aluminium dust inhalation (HR=1.02, 95% CI 1.00 to 1.04, per year of exposure). No difference in the association between duration of work underground and pneumoconiosis was observed between the groups with or without aluminium dust exposure. No protective effect against silicosis was observed from aluminium dust inhalation. Conversely, exposure to aluminium dust may possibly increase the risk of cardiovascular disease and dementia of the Alzheimer's type.

  16. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

  17. Dilatometric study on sintering mechanism of the WC-10wt%Co cemented carbide doped with tantalum carbide and niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, J.B. [Universidade Federal Rural de Pernambuco (UFRPE), PE (Brazil); Gomes, U.U.; Karimi, M.M. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2016-07-01

    Full text: Nanocrystalline WC-10wt.%Co powders were prepared by high energy milling and were liquid phase sintered. The powders were milled at 20 hours and characterized by X-ray diffraction, and Scanning electron microscopy. The particle size distribution and mean diameter analysis were characterized by Granulometro Cilas model 920 L and 1180. After sintering the WC-10wt.%Co cemented carbides doped with tantalum carbide and niobium carbide exhibited ultra fine grain sizes. dilatometer study on sintering mechanism detected phase transformations and degassing. (author)

  18. Development of tungsten carbide-cobalt coatings

    Science.gov (United States)

    Fitzsimmons, Mark

    1999-09-01

    The discovery of WC, and the development of cemented carbides (WC-Co and WC-TiC-Co) have spawned advancements in higher speed machining of steel. The development of chemically vapor deposited (CVD) coatings has allowed even greater speeds to be realized. The production of titanium components, well known for their high specific strength, low density, corrosion resistance, and elevated temperature properties, would greatly benefit from a similar development allowing high speed machining processes. Currently, no known tool material exists that can effectively machine titanium at high speeds due to insufficient high temperature strength and/or chemical resistance. To address this problem an investigation into the development of a composite tool material combining toughness, high temperature strength and chemical resistance was pursued. Cemented carbide (WC-Co) is currently the most chemically resistant and commercially used tool material for machining Ti. The concept of applying a WC-Co coating on a high temperature deformation resistant substrate material was investigated. Two approaches, namely (i) laminated and (ii) co-deposited coatings, were chosen to chemically vapor deposit WC-Co. Thermodynamic and kinetic calculations were performed to aid in the development of CVD processes for deposition of WC and Co. The systems investigated were WF6-CH4-H2 and WCl6-CH4-H 2 for WC deposition and CoCl2-H2 for Co deposition. In the case of laminated structures the goal was to deposit nanometer scale alternating layers of WC and Co. However, development of a laminated structure led to the discovery that porosity always occurred in the Co layers at the WC/Co interface. Mass balance calculations, SEM, EDS, XRD, and metallographic analyses aided in determining that the porosity was due to the Kirkendall effect. It was observed that the diffusion of Co was enhanced by higher concentrations of soluble C in the Co layers. Effective diffusion barriers, such as TiC, were found to help

  19. Improved silicon carbide for advanced heat engines

    Science.gov (United States)

    Whalen, T. J.; Winterbottom, W. L.

    1986-01-01

    Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.

  20. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    use as sub-base and base material. The addition of both cement and calcium carbide waste to Ikpayongo laterite improves its consistency indices, as the plasticity index reduced from. 14% to 5% when treated with a combination of 10 % cement plus 10 % calcium carbide waste. Variation of liquid limit, plastic limit and ...

  1. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  2. Stochastic Distribution of Wear of Carbide Tools during Machining ...

    African Journals Online (AJOL)

    The increasing awareness of wear of carbide tools during machining operation has created doubts about the ability of this tool material to withstand stress and strain induced by the machining process. Manufacturers are beginning to question their dependence on carbide tools, seeing that they no longer meet their expected ...

  3. Production of nano structured silicon carbide by high energy ball ...

    African Journals Online (AJOL)

    In this paper, an attempt has been made to modify the micro sized Silicon carbide powder into nano structured Silicon carbide powder using High Energy Ball Mill. Ball milling was carried out for the total duration of 50 hours. The sample was taken out after every 5 hours of milling and it was characterized for its crystallite ...

  4. Process for the preparation of fine grain metal carbide powders

    International Nuclear Information System (INIS)

    Gortsema, F.P.

    1976-01-01

    Fine grain metal carbide powders are conveniently prepared from the corresponding metal oxide by heating in an atmosphere of methane in hydrogen. Sintered articles having a density approaching the theoretical density of the metal carbide itself can be fabricated from the powders by cold pressing, hot pressing or other techniques. 8 claims, no drawings

  5. Production of boron carbide powder by carbothermal synthesis of ...

    Indian Academy of Sciences (India)

    TECS

    Production of boron carbide powder by carbothermal synthesis of gel material. A K KHANRA. Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721 302, India. MS received 21 August 2006; revised 29 January 2007. Abstract. Boron carbide (B4C) powder has been produced ...

  6. properties of cement paste and concrete containing calcium carbide

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... curves are shown in Figure 1. The grain size curve indicates that the sand used was classified as zone 2 based on British Standard classification [20] grading limits for fine aggregates and was well graded. 3.2 Cement and Calcium Carbide Waste. The oxide composition of calcium carbide waste (CCW).

  7. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    the stabilization of soil will ensure economy in road construction, while providing an effective way of disposing calcium carbide waste. KEYWORDS: Cement, Calcium carbide waste, Stabilization, Ikpayongo laterite, Pavement material. INTRODUCTION. Road building in the developing nations has been a major challenge to ...

  8. Processing of boron carbide-aluminum composites

    International Nuclear Information System (INIS)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1989-01-01

    The processing problems associated with boron carbide and the limitations of its mechanical properties can be significantly reduced when a metal phase (e.g., aluminum) is added. Lower densification temperatures and higher fracture toughness will result. Based on fundamental capillarity thermodynamics, reaction thermodynamics, and densification kinetics, we have established reliable criteria for fabricating B 4 C-Al particulate composites. Because chemical reactions cannot be eliminated, it is necessary to process B 4 C-Al by rapidly heating to near 1200 degrees C (to ensure wetting) and subsequently heat-treating below 1200 degrees C (for microstructural development)

  9. White light emission from engineered silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan

    Silicon carbide (SiC) is a wide indirect bandgap semiconductor. The light emission efficiency is low in nature. But this material has very unique physical properties like good thermal conductivity, high break down field etc in addition to its abundance. Therefore it is interesting to engineer its...... light emission property so that to take fully potential applications of this material. In this talk, two methods, i.e. doping SiC heavily by donor-acceptor pairs and making SiC porous are introduced to make light emission from SiC. By co-doping SiC with nitrogen and boron heavily, strong yellow emission...

  10. Boron carbide nanowires with uniform CNx coatings

    Science.gov (United States)

    Zhang, H. Z.; Wang, R. M.; You, L. P.; Yu, J.; Chen, H.; Yu, D. P.; Chen, Y.

    2007-01-01

    Boron carbide nanowires with uniform carbon nitride coating layers were synthesized on a silicon substrate using a simple thermal process. The structure and morphology of the as-synthesized nanowires were characterized using x-ray diffraction, scanning and transmission electron microscopy and electron energy loss spectroscopy. A correlation between the surface smoothness of the nanowire sidewalls and their lateral sizes has been observed and it is a consequence of the anisotropic formation of the coating layers. A growth mechanism is also proposed for these growth phenomena.

  11. Preparation and analysis of uranium carbides

    International Nuclear Information System (INIS)

    Sun Jichang; Song Dianwu; Yang Youqing; Guo Yibai; Cao Yenan

    1988-03-01

    The preparation process of uranium carbides is investigated by using the carbothermic reduction method of uranium dioxide in vacuum. The carbonisation reaction in the mixture of uranium dioxide with graphite begins to take place at the temperature of 1100 deg C. The temperature is measured by a W-Re thermocouple. Then the quantity of carbon, density, porosities and microstructure of the sintered pellets are examined. At the same time, in order to measure the content of uranium monocarbide, those sintered pellets are also indentified by means of X-ray diffraction

  12. Aluminium and iron air pollution near an iron casting and aluminium foundry in Turin district (Italy).

    Science.gov (United States)

    Polizzi, Salvatore; Ferrara, Mauro; Bugiani, Massimiliano; Barbero, Domenico; Baccolo, Tiziana

    2007-09-01

    This work reports the results of an environmental survey carried out in an industrial area in the Province of Turin: its main aim is to assess the levels of iron and aluminium in the outside air during the period from July to September to assess the influence of industrial activity (a cast-iron and aluminium foundry) which is interrupted during the month of August, on the level of metals present in the air. Conducting the analysis during this period of time made it possible to avoid the confounding effect of pollution due to domestic central heating. The measurements were taken from nine areas at different distances from the foundry in the area and according to the direction of the prevailing winds, as deduced from the historical data. The results of this survey show a statistically significant difference in iron and aluminium levels in the outside air in the geographic areas between the two main periods examined: during August (no foundry activity) v/s July-September (foundry activity). The values recorded are: Aluminium 0.4+/-0.45 microg/m(3) v/s 1.12+/-1.29 microg/m(3) (pIron 0.95+/-0.56 microg/m(3) v/s 1.6+/-1.0 microg/m(3) (piron tended to be higher in the areas farther away from the foundry site in the areas located along the path of the prevailing winds.

  13. Mechanical properties of plasma-sprayed layers of aluminium and aluminium alloy on AZ 91

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Ctibor, Pavel; Mušálek, Radek; Janata, Marek

    2017-01-01

    Roč. 51, č. 2 (2017), s. 323-327 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GP14-31538P Institutional support: RVO:61389021 Keywords : plasma spraying of aluminium * adhesion of coating * wear * magnesium alloy AZ91 Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.436, year: 2016

  14. Speciation analysis of aluminium and aluminium fluoride complexes by HPIC-UVVIS.

    Science.gov (United States)

    Frankowski, Marcin; Zioła-Frankowska, Anetta

    2010-10-15

    The study presents a new analytical method for speciation analysis in fractionation of aluminium fluoride complexes and free Al(3+) in soil samples. Aluminium speciation was studied in model solutions and soil extract samples by means of high performance ion chromatography (HPIC) with UV-VIS detection using post-column reaction with tiron for the separation and detection of aluminium fluoride complex and Al(3+) forms during one analysis. The paper presents particular stages of the chromatographic process optimization involving selecting the appropriate eluent strength, type of elution or concentration and quantity of derivatization reagent. HPIC was performed on a bifunctional analytical column Dionex IonPac CS5A. The use of gradient elution and the eluents A: 1M NH(4)Cl and B: water acidified to pH of eluent phase, enabled full separation of fluoride aluminium forms as AlF(2)(+), AlF(3)(0), AlF(4)(-) (first signal), AlF(2+) (second signal) and form Al(3+) in a single analytical procedure. The proposed new method HPIC-UVVIS was applied successfully in the quantitative and qualitative analysis of soil samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Aluminium and Alzheimer's disease: the science that describes the link

    National Research Council Canada - National Science Library

    Exley, Christopher

    2001-01-01

    ... that has been encircled is the gene for the amyloid precursor protein. (Thanks to Walter Lukiw for supplying this information.) Aluminium and Alzheimer's Disease: The Science that Describes the LinkAluminium and Alzheimer's Disease The Science that Describes the Link Edited by Christopher Exley Birchall Centre for Inorganic Chemistry and Materials Scienc...

  16. Enhanced corrosion protection by microstructural control of aluminium brazing sheet

    NARCIS (Netherlands)

    Norouzi Afshar, F.

    2013-01-01

    Aluminium brazing sheet is a sandwich material made out of two aluminium alloys (AA4xxx/AA3xxx) and is widely used in automotive heat exchangers. One of the main performance criteria for heat exchanger units is the lifetime of the product. The lifetime of the heat exchanger units is determined by

  17. An interesting and efficient green corrosion inhibitor for aluminium ...

    African Journals Online (AJOL)

    An interesting and efficient green corrosion inhibitor for aluminium from extracts of Moringa oleifera in acidic solution. ... L.A. Nnanna, I.O. Owate ... using gravimetric and thermometric techniques at 30 and 60oC. Results obtained showed that Moringa oleifera functioned as an excellent corrosion inhibitor for aluminium in the ...

  18. Effects and mechanisms of grain refinement in aluminium alloys

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Grain refinement plays a crucial role in improving characteristics and properties of cast and wrought aluminium alloys. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys to grain refine the solidified product. The mechanism of grain refinement is of considerable controversy in the scientific ...

  19. Three body abrasion of laser surface alloyed aluminium AA1200

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-06-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4 kW Nd:YAG laser to improve the abrasion wear resistance. Aluminium surfaces reinforced with metal matrix composites and intermetallic phases were achieved. The phases present depended...

  20. Comparative study of highly dense aluminium- and gallium-doped ...

    Indian Academy of Sciences (India)

    Administrator

    cause of their optoelectronic properties in addition to low cost, high stability and excellent surface uniformity (low roughness). Doping zinc oxide with some elements like aluminium, gallium, boron, niobium and indium has a great impact for having enhancements of its optical and electrical properties. Aluminium and gallium ...

  1. Laser cladding of aluminium using TiB2

    CSIR Research Space (South Africa)

    Kumar, S

    2010-03-01

    Full Text Available Modification of Aluminium surface by injecting, dispersing and melting TiB2 powder with the help of a laser beam promises to enhance tribological properties of Aluminium. The present work consists of making single lines and various overlapping lines...

  2. The effects of aluminium and selenium supplementation on brain ...

    African Journals Online (AJOL)

    This in vivo study was designed to investigate the potential of aluminium (Al), in the absence of added iron, to participate in either antioxidant or pro-oxidant events. Some markers of oxidative stress were determined in liver and brain of rats exposed to aluminium lactate, either alone or in the presence of dietary supplements ...

  3. Effects and mechanisms of grain refinement in aluminium alloys

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Grain refinement plays a crucial role in improving characteristics and properties of cast and wrought aluminium alloys. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys to grain refine the solidified product. The mechanism of grain refinement is of considerable controversy in the ...

  4. Carbonaceous alumina films deposited by MOCVD from aluminium ...

    Indian Academy of Sciences (India)

    Spectroscopic ellipsometry was used to characterize carbonaceous, crystalline aluminium oxide films grown on Si(100) by low-pressure metal organic chemical vapour deposition, using aluminium acetylacetonate as the precursor. The presence of carbon in the films, attribured to the use of a metalorganic precursor for the ...

  5. Aluminium removal from water after defluoridation with the electrocoagulation process.

    Science.gov (United States)

    Sinha, Richa; Mathur, Sanjay; Brighu, Urmila

    2015-01-01

    Fluoride is the most electronegative element and has a strong affinity for aluminium. Owing to this fact, most of the techniques used for fluoride removal utilized aluminium compounds, which results in high concentrations of aluminium in treated water. In the present paper, a new approach is presented to meet the WHO guideline for residual aluminium concentration as 0.2 mg/L. In the present work, the electrocoagulation (EC) process was used for fluoride removal. It was found that aluminium content in water increases with an increase in the energy input. Therefore, experiments were optimized for a minimum energy input to achieve the target value (0.7 mg/L) of fluoride in resultant water. These optimized sets were used for further investigations of aluminium control. The experimental investigations revealed that use of bentonite clay as coagulant in clariflocculation brings down the aluminium concentration of water below the WHO guideline. Bentonite dose of 2 g/L was found to be the best for efficient removal of aluminium.

  6. Combined Corrosion and Wear of Aluminium Alloy 7075-T6

    NARCIS (Netherlands)

    Liu, Y.; Mol, J.M.C.; Janssen, G.C.A.M.

    2016-01-01

    The aluminium alloy 7075-T6 is widely used in engineering. In some applications, like slurry transport, corrosion and abrasion occur simultaneously, resulting in early material failure. In the present work, we investigated the combined effect of corrosion and wear on the aluminium alloy 7075-T6. We

  7. Aluminium Tolerance of Four Bean ( Phaseolus vulgaris L.) Varieties ...

    African Journals Online (AJOL)

    Root elongation produced superior differential rating in assessing for aluminium toxicity in the beans. On the other hand, Eriochrome cyanine R staining lacked clear differentiation especially where there were marginal differences of Al tolerance. It follows that, screening for aluminium tolerance in common beans can ...

  8. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca

    2013-01-01

    carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide......Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum...

  9. Obtention and evaluation of the fatigue behaviour of aluminium matrix composites subjected to different mechanical surface treatments

    International Nuclear Information System (INIS)

    Jesus Filho, Edson Souza de

    2000-01-01

    The objective of this work was the evaluation of the fatigue behaviour of aluminium metal matrix composites (MMC) obtained by powder metallurgy. The testing variables were the volumetric fraction of reinforcements and the type of mechanical surface treatment used. Initially, the composite materials were obtained from aluminium AA 1100 matrix, reinforced with silicon carbide (SiC) particles in the volumetric fraction of 5, 10 and 15%. An amount of control material (unreinforced) was produced for comparison purposes. The obtained materials were physically, mechanically and microstructurally characterised. The results showed a homogeneous distribution of the reinforcement particles and an improvement of the ultimate tensile strength of the composites with relation to the control material. However, some defects such as porosity and streaks of pure aluminium were detected. In a second stage, the fatigue tests of the composites were accomplished. The types of surface treatments used in the fabrication of the fatigue test specimens were machining and shot peening. For machining the variables were feed rate and tool type. The shot peened materials did not present a significant fatigue life improvement when compared to the control material. The coarse machined materials presented the worst fatigue life and the machining marks worked as strong stress concentrators. The material reinforced with 5% of SiC, differently of those reinforced with 10 and 15% showed inferior fatigue life when compared to the control material, probably because of a lower yielding strength, or lower reinforcement volumetric fraction. The material machined with hard metal (MD) did not present differences of fatigue life with relation to the machined with PCD, probably due to the class of the hard metal used. The material reinforced with 5% of SiC and shot peened, presented fatigue results with the largest standard deviations. The materials reinforced with 5% of SiC presented the smallest fatigue

  10. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Prabhat Tripathy; Laura Wurth; Eric Dufek; Toni Y. Gutknecht; Natalie Gese; Paula Hahn; Steven Frank; Guy Fredrickson; J Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  11. Aluminium/iron reinforced polyfurfuryl alcohol resin as advanced biocomposites

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2016-07-01

    Full Text Available Aluminium and iron are widely used in construction sectors for the preparation of advanced composites with epoxy resins as matrices. In recent times, there are several reports on the polymerization of polyfufuryl alcohol (PFA a thermoset bioresins from furfuryl alcohol (FA. FA is obtained from waste of sugarcane bagasse. In this work, first the possibility of curing PFA from FA in the presence of aluminium or iron has been explored. Absorbance results from colorimeter/spectrophotometerindicated that the curing of FA to PFA in presence of aluminium started easily while in presence of iron the curing of FA to PFA could not start. Based on the above results, aluminium wire reinforced composites were successfully prepared with three different weight fractions (0.13, 0.09 and 0.07 of aluminium wire. The mechanical properties of these composites were determined theoretically and reported.

  12. Calculation of electron transmission through aluminium foil

    International Nuclear Information System (INIS)

    Abroyan, M.A.; Mel'ker, A.I.; Mikhajlin, A.I.; Sirotinkin, V.V.; Tokmakov, I.L.

    1987-01-01

    Calculated by Monte Carlo method energy and angular distributions of electrons transmitted through aluminium foil with 50 μm thickness are presented. 200-500 electron energy ranges and angles of electron incidence on foil from 0 to 40 deg C are considered. That allows to use results for more universal accelerator group, for example, for accelerators with scanning beam used in industry. The received values of angular and energy characteristics allow to increase essentially estimation accuracy of accelerator extraction devices and dose distribution on irradiating item

  13. Deviatoric response of the aluminium alloy, 5083

    Science.gov (United States)

    Appleby-Thomas, Gareth; Hazell, Paul; Millett, Jeremy; Bourne, Neil

    2009-06-01

    Aluminium alloys such as 5083 are established light weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  14. Convenient synthesis of deuterated aluminium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Pawelke, Roland H.; Felderhoff, Michael; Weidenthaler, Claudia [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim an der Ruhr (Germany); Schueth, Ferdi [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim an der Ruhr (Germany)], E-mail: schueth@mpi-muelheim.mpg.de

    2008-09-15

    We describe the ball-milling synthesis of alkali metal deuterides from commercial lithium aluminium deuteride. This reaction principle was exemplified by the mechanochemical synthesis of NaAlD{sub 4} and KAlD{sub 4}. NaAlD{sub 4} was prepared on the multi-gram scale by this procedure and purified by standard wet-chemical separation. Pure NaAlD{sub 4} was obtained and used for the synthesis of Ca(AlD{sub 4}){sub 2}. The formation of all products was verified by X-ray diffraction.

  15. Experimental fatigue curves for aluminium brazed areas

    Science.gov (United States)

    Dimitescu, A.; Babiş, C.; Niţoi, D. F.; Radu, C.

    2017-08-01

    An important factor for the quality of joints is the brazed area. The fatigue check occupies a major position among many test procedures and methods, especially by the joining technologies. The results of processing the fatigue data experiments for aluminium brazed samples are used to find the regression function and the response surface methodology. The fatigue process of mechanical components under service loading is stochastic in nature. The prediction of time-dependent fatigue reliability is critical for the design and maintenance planning of many structural components.

  16. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... to new crystal orientations, producing new grain boundaries in the process. These refined grains develop a {112}. texture closer to the tool. Large conventionally recrystallised grains sometimes form in the outer regions of the refined grain structure, but become ever more deformed as they approach...

  17. Aluminium and the automobile. Aluminium und Automobil. Vortraege eines internationalen Symposiums der Aluminium-Zentrale, Duesseldorf, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The first symposium on 'Aluminium and the Automobile' took place in March 1976. The lectures of the latest symposium report on the time in between; with special regard to the extent and intensity with wich aluminium - whose advantages and desadvantages are known - was a subject of research and development work done by car producers and parts- and accessory producing industry. Producers of engine blocks, wheels brakes, sunroofs, window-glass mechanisms, heat exchangers, air-filters, drive shafts - just to mention a few described their success but also gave and account of so far unsolved problems. Aluminum and car producers from abroad gave valuable contributions as well. Good news is the technical progress which was clearly reflected in all the lectures. The automobile of the future needs to be further developed in order te fulfill the requirements of lower weight and energy saving cost reduction is equally important for the German and European car industry due to the increasingly hard competitive struggle. Contrary to previous predictions a sufficient supply of alluminium with be available in the years to come.

  18. Development of silicon carbide composites for fusion

    International Nuclear Information System (INIS)

    Snead, L.L.

    1993-01-01

    The use of silicon carbide composites for structural materials is of growing interest in the fusion community. However, radiation effects in these materials are virtually unexplored, and the general state of ceramic matrix composites for nonnuclear applications is still in its infancy. Research into the radiation response of the most popular silicon carbide composite, namely, the chemically vapor-deposited (CVD) SiC-carbon-Nicalon fiber system is discussed. Three areas of interest are the stability of the fiber and matrix materials, the stability of the fiber-matrix interface, and the true activation of these open-quotes reduced activityclose quotes materials. Two methods are presented that quantitatively measure the effect of radiation on fiber and matrix elastic modulus as well as the fiber-matrix interfacial strength. The results of these studies show that the factor limiting the radiation performance of the CVD SiC-carbon-Nicalon system is degradation of the Nicalon fiber, which leads to a weakened carbon interface. The activity of these composites is significantly higher than expected and is dominated by impurity isotopes. 52 refs., 12 figs., 3 tabs

  19. High temperature intermetallic binders for HVOF carbides

    International Nuclear Information System (INIS)

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-01-01

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr 3 C 2 -NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr 3 C 2 cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr 3 C 2 -NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders

  20. Gas accumulation at grain boundaries during 800 MeV proton irradiation of aluminium and aluminium-alloys

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Horsewell, Andy; Sommer, W. F.

    1986-01-01

    ) showed a complete absence of voids or bubbles in the grain interiors of the aluminium and the aluminium-alloys. Bubbles were clearly visible by TEM at grain boundaries in pure Al and the AlMg3 alloy; but bubbles were not visible in the Al6061 alloy. The bubble density in the AlMg3 alloy was considerably...

  1. Study of mechanical properties on powdermetalurgy aluminium matrix composites fabricated by stamping or extrusion; Estudio de las propiedades mecanicas en materiales compuestos de matriz aluminio pulvimetalurgicos conformados mediante forja o extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Busquets, D.; Gomez, L.; Amigo, V.; Salvador-Moya, M. D.

    2005-07-01

    We have developed composite materials from AA6061 aluminium alloy powders used as matrix and ceramics powders of boron carbide, silicon carbide and boron nitride, used as reinforcements in 2.5, 5.0, 7.5 and 10% vol. by mechanical mixing and milling in planetary mill at 360 rpm vial velocity for 4 h followed of hot stamping and extrusion process on green compacts. Mechanical properties obtained from tensile tests are influenced by the heat treatment, reinforcement fractions and nature. Moreover, these mechanical characteristic are dependent from the processing route. Optical and Scanning Electron Microscopy analysis revealed the microstructure of materials and let describe the tripartite relation; structure-processing-properties, of the developed materials. (Author) 20 refs.

  2. Influence of Hot Implantation on Residual Radiation Damage in Silicon Carbide

    International Nuclear Information System (INIS)

    Rawski, M.; Zuk, J.; Kulik, M.; Drozdziel, A.; Pyszniak, K.; Turek, M.; Lin, L.; Prucnal, S.

    2011-01-01

    Remarkable thermomechanical and electrical properties of silicon carbide (SiC) make this material very attractive for high-temperature, high-power, and high-frequency applications. Because of very low values of diffusion coefficient of most impurities in SiC, ion implantation is the best method to selectively introduce dopants over well-defined depths in SiC. Aluminium is commonly used for creating p-type regions in SiC. However, post-implantation radiation damage, which strongly deteriorates required electric properties of the implanted layers, is difficult to anneal even at high temperatures because of remaining residual damage. Therefore implantation at elevated target temperatures (hot implantation) is nowadays an accepted method to decrease the level of the residual radiation damage by avoiding ion beam-induced amorphization. The main objective of this study is to compare the results of the Rutherford backscattering spectroscopy with channeling and micro-Raman spectroscopy investigations of room temperature and 500 o C Al + ion implantation-induced damage in 6H-SiC and its removal by high temperature (up to 1600 o C) thermal annealing. (author)

  3. Experimental evaluation of coated carbide insert on alloy of steel materials during high speed turning process

    Directory of Open Access Journals (Sweden)

    S. A. Lawal

    2017-06-01

    Full Text Available The present study investigated the effect of coated carbide turning inserts on the surface roughness of AISI 304L austenitic stainless steel, AISI 316L austenitic stainless steel and AISI 1020 low carbon steel workpiece materials. The three steel grade materials were dry-turned using aluminium oxide (Al2O3 duratomic coated inserts at cutting speeds ranging from 1500 – 2000 rpm (229 – 314 m/min, feed rates of 0.25 – 0.75 mm/rev and depth of cut kept constant at 0.5 mm. Surface roughness values at different cutting conditions were measured and analysed. Chips formed at different cutting parameters were collected, classified according to ISO 3685 standards for chip classification and their surface morphology were analysed using optical microscopy. It was observed that feed rate had the greatest influence on surface roughness for the three workpiece materials. Surface finish deteriorated as feed rate increased. The chips formed were generally of the continuous type with built-up-edges.

  4. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  5. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  6. Preparation and Fatigue Properties of Functionally Graded Cemented Carbides

    International Nuclear Information System (INIS)

    Liu Yong; Liu Fengxiao; Liaw, Peter K.; He Yuehui

    2008-01-01

    Cemented carbides with a functionally graded structure have significantly improved mechanical properties and lifetimes in cutting, drilling and molding. In this work, WC-6 wt.% Co cemented carbides with three-layer graded structure (surface layer rich in WC, mid layer rich in Co and the inner part of the average composition) were prepared by carburizing pre-sintered η-phase-containing cemented carbides. The three-point bending fatigue tests based on the total-life approach were conducted on both WC-6wt%Co functionally graded cemented carbides (FGCC) and conventional WC-6wt%Co cemented carbides. The functionally graded cemented carbide shows a slightly higher fatigue limit (∼100 MPa) than the conventional ones under the present testing conditions. However, the fatigue crack nucleation behavior of FGCC is different from that of the conventional ones. The crack nucleates preferentially along the Co-gradient and perpendicular to the tension surface in FGCC, while parallel to the tension surface in conventional cemented carbides

  7. Development of a new family of cemented carbides for geothermal drilling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliff, D.J.

    1983-10-01

    The contractor fabricated samples of cemented carbides based on tantalum carbide and niobium carbide with cobalt and nickel binders. These materials were evaluated for use as rock-bit inserts in geothermal drilling. Carbon content in the niobium carbide (NbC/sub x/) and the tantalum carbide (TaC/sub x/) was varied (x is 0.83 to 1.0) and the effect of these changes on the carbides' mechanical properties was examined. Hardness, toughness, and abrasive wear resistance of the new materials were measured and compared to properties of tungsten carbide grades used in rock-bit inserts.

  8. Study on the performance of fuel elements with carbide and carbide-nitride fuel

    International Nuclear Information System (INIS)

    Golovchenko, Yu.M.; Davydov, E.F.; Maershin, A.A.

    1985-01-01

    Characteristics, test conditions and basic results of material testing of fuel elements with carbide and carbonitride fuel irradiated in the BOR-60 reactor up to 3-10% burn-up at specific power rate of 55-70 kW/m and temperatures of the cladding up to 720 deg C are described. Increase of cladding diameter is stated mainly to result from pressure of swelling fuel. The influence of initial efficient porosity of the fuel on cladding deformation and fuel stoichiometry on steel carbonization is considered. Utilization of carbide and carbonitride fuel at efficient porosity of 20% at the given test modes is shown to ensure their operability up to 10% burn-up

  9. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  10. Dietary exposure to aluminium of the Hong Kong population.

    Science.gov (United States)

    Wong, Waiky W K; Chung, Stephen W C; Kwong, K P; Yin Ho, Yuk; Xiao, Ying

    2010-04-01

    A total of 256 individual food samples were collected in Hong Kong for aluminium testing. Most of food samples were analysed in ready-to-eat form. High aluminium levels were found in steamed bread/bun/cake (mean: 100-320 mg kg(-1)), some bakery products such as muffin, pancake/waffle, coconut tart and cake (mean: 250, 160, 120 and 91 mg kg(-1), respectively), and jellyfish (ready-to-eat form) (mean: 1200 mg kg(-1)). The results demonstrated that aluminium-containing food additives have been widely used in these food products. The average dietary exposure to aluminium for a 60 kg adult was estimated to be 0.60 mg kg(-1) bw week(-1), which amounted to 60% of the new PTWI established by JECFA. The main dietary source was "steamed bread/bun/cake", which contributed to 60% of the total exposure, followed by "bakery products" and "jellyfish", which contributed to 23 and 10% of the total exposure, respectively. However, the estimation did not include the intake of aluminium from natural food sources, food contact materials or other sources (e.g. drinking water). Although the results indicated that aluminium it is unlikely to cause adverse health effect for the general population, the risk to some populations who regularly consume foods with aluminium-containing food additives cannot be ruled out.

  11. New developments in aluminium titanate ceramics and refractories

    Energy Technology Data Exchange (ETDEWEB)

    Alecu, I.D.; Cilia, R.A.; Dean, G.A.; Reuben, R.; Stead, R.J.; Wing, R.F. [Rojan Advanced Ceramics Pty Ltd., Spearwood, WA (Australia)

    2002-07-01

    During the recent years there has been a world-wide resurgence in the interest for aluminium titanate ceramics. Aluminium titanate (AT) possesses a unique collection of outstanding properties that make it a favourite candidate for applications where thermal shock resistance, thermal and / or phonic insulation, or compatibility with molten metals are key requirements. Particularly promising are the applications of aluminium titanate in the non-ferrous metallurgical industry, primarily in aluminium smelters and foundries. Aluminium titanate is best suitable for manufacturing ceramic components for gravity and low-pressure die casting of non-ferrous metals and alloys. Examples of such components are casting nozzles and spouts, sprue bushes, connecting tubes, riser tubes, etc. As aluminium titanate (AT) is generally known as a ceramic material with a modest mechanical strength, most applications have been so far as components that either are small enough, or are subjected to small enough mechanical loads, so that the risk of failure is acceptably low. Currently there is an increasing demand for larger and / or stronger components, which obviously require significantly stronger aluminium titanate ceramic materials, as well as adequate forming technologies. (orig.)

  12. Does allergen-specific immunotherapy induce contact allergy to aluminium?

    Science.gov (United States)

    Netterlid, Eva; Hindsén, Monica; Siemund, Ingrid; Björk, Jonas; Werner, Sonja; Jacobsson, Helene; Güner, Nuray; Bruze, Magnus

    2013-01-01

    Persistent, itching nodules have been reported to appear at the injection site after allergen-specific immuno-therapy with aluminium-precipitated antigen extract, occasionally in conjunction with contact allergy to aluminium. This study aimed to quantify the development of contact allergy to aluminium during allergen-specific immunotherapy. A randomized, controlled, single-blind multicentre study of children and adults entering allergen-specific immunotherapy was performed using questionnaires and patch-testing. A total of 205 individuals completed the study. In the 3 study groups all subjects tested negative to aluminium before allergen-specific immunotherapy and 4 tested positive after therapy. In the control group 4 participants tested positive to aluminium. Six out of 8 who tested positive also had atopic dermatitis. Positive test results were found in 5/78 children and 3/127 adults. Allergen-specific immunotherapy was not shown to be a risk factor for contact allergy to aluminium. Among those who did develop aluminium allergy, children and those with atopic dermatitis were more highly represented.

  13. Unveiling polytype transformation assisted growth mechanism in boron carbide nanowires

    Science.gov (United States)

    Song, Ningning; Li, Xiaodong

    2018-01-01

    We demonstrate direct evidence that the lattice distortion, induced by boron carbide (BxCy) stoichiometry, assists the growth of boron carbide nanowires. The transformation between different polytypic boron carbide phases lowers the energy barrier for boron diffusion, promoting boron migration in the nanowire growth. An atomistic mass transport model has been established to explain such volume-diffusion-induced nanowire growth which cannot be explained by the conventional surface diffusion model alone. These findings significantly advance our understanding of nanowire growth processes and mass transport mechanisms and provide new guidelines for the design of nanowire-structured devices.

  14. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    Baney, Ronald

    2008-01-01

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  15. Hugoniot equation of state and dynamic strength of boron carbide

    Science.gov (United States)

    Grady, Dennis E.

    2015-04-01

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic

  16. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  17. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO

    International Nuclear Information System (INIS)

    Cancino T, F.; Lopez H, E.

    2013-10-01

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  18. The varied functions of aluminium-activated malate transporters-much more than aluminium resistance.

    Science.gov (United States)

    Palmer, Antony J; Baker, Alison; Muench, Stephen P

    2016-06-15

    The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Ordering effects in nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.; Kottar, A.

    2000-01-01

    The effect of nonstoichiometry and ordering on crystalline structure and specific electric resistance (ρ) of TiC y (0.52≤y≤0.98) is studied within the temperature range of 300-1100 K. It is shown that the titanium carbide ordering in the areas 0.52≤y≤0.55, 0.56≤y≤0.58 and 0.62≤y≤0.68 leads to formation of the Ti 2 C cubic and trigonal ordered phase and the Ti 3 C 2 rhombic ordered phase correspondingly. Availability of hysteresis on the ρ(T) dependences in the area of the disorder-order reversible equilibrium transition points out to the fact that the TiC y ↔Ti 2 C and TiC y ↔Ti 3 C 2 transformations are the first order phase transitions [ru

  20. Development of a silicon carbide sewing thread

    Science.gov (United States)

    Sawko, Paul M.; Vasudev, Anand

    1989-01-01

    A silicon carbide (SiC) sewing thread has been designed which consists of a two-ply yarn in a 122 turns-per-meter-twist construction. Two processing aids in thread construction were evaluated. Prototype blankets were sewn using an SiC thread prepared either with polytetrafluoroethylene sizing or with an overwrap of rayon/dacron service yarn. The rayon/dacron-wrapped SiC thread was stronger, as shown by higher break-strength retention and less damage to the outer-mold-line fabric. This thread enables thermal protection system articles to be sewn or joined, or have perimeter close-out of assembled parts when using SiC fabric for high-temperature applications.

  1. Carbon in palladium catalysts: A metastable carbide

    International Nuclear Information System (INIS)

    Seriani, Nicola; Mittendorfer, Florian; Kresse, Georg

    2010-01-01

    The catalytic activity of palladium towards selective hydrogenation of hydrocarbons depends on the partial pressure of hydrogen. It has been suggested that the reaction proceeds selectively towards partial hydrogenation only when a carbon-rich film is present at the metal surface. On the basis of first-principles simulations, we show that carbon can dissolve into the metal because graphite formation is delayed by the large critical nucleus necessary for graphite nucleation. A bulk carbide Pd 6 C with a hexagonal 6-layer fcc-like supercell forms. The structure is characterized by core level shifts of 0.66-0.70 eV in the core states of Pd, in agreement with experimental x-ray photoemission spectra. Moreover, this phase traps bulk-dissolved hydrogen, suppressing the total hydrogenation reaction channel and fostering partial hydrogenation. (author)

  2. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  3. Texaco, carbide form hydrogen plant venture

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Texaco Inc. and Union Carbide Industrial Gases Inc. (UCIG) have formed a joint venture to develop and operate hydrogen plants. The venture, named HydroGEN Supply Co., is owned by Texaco Hydrogen Inc., a wholly owned subsidiary of Texaco, and UCIG Hydrogen Services Inc., a wholly owned subsidiary of UCIG. Plants built by HydroGEN will combine Texaco's HyTEX technology for hydrogen production with UCIG's position in cryogenic and advanced air separation technology. Texaco the U.S. demand for hydrogen is expected to increase sharply during the next decade, while refinery hydrogen supply is expected to drop. The Clean Air Act amendments of 1990 require U.S. refiners to lower aromatics in gasoline, resulting in less hydrogen recovered by refiners from catalytic reforming units. Meanwhile, requirements to reduce sulfur in diesel fuel will require more hydrogen capacity

  4. Production of titanium carbide from ilmenite

    Directory of Open Access Journals (Sweden)

    Sutham Niyomwas

    2008-03-01

    Full Text Available The production of titanium carbide (TiC powders from ilmenite ore (FeTiO3 powder by means of carbothermal reduction synthesis coupled with hydrochloric acid (HCl leaching process was investigated. A mixture of FeTiO3 and carbon powders was reacted at 1500oC for 1 hr under flowing argon gas. Subsequently, synthesized product of Fe-TiC powders were leached by 10% HCl solutions for 24 hrs to get final product of TiC powders. The powders were characterized using X-ray diffraction, scanning electron and transmission electron microscopy. The product particles were agglomerated in the stage after the leaching process, and the size of this agglomerate was 12.8 μm with a crystallite size of 28.8 nm..

  5. Corrosion issues of powder coated AA6060 aluminium profiles

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Valgarðsson, Smári; Jellesen, Morten Stendahl

    2015-01-01

    In this study detailed microstructural investigation of the reason for unexpected corrosion of powder coated aluminium alloy AA6060 windows profiles has been performed. The results from this study reveals that the failure of the window profiles was originated from the surface defects present...... on the extruded AA6060 aluminium profile after metallurgical process prior to powder coating. Surface defects are produced due to intermetallic particles in the alloy, which disturb the flow during the extrusion process. The corrosion mechanism leading to the failure of the powder coated AA6060 aluminium profiles...

  6. Recurrent sterile abscesses following aluminium adjuvant-containing vaccines.

    Science.gov (United States)

    Klein, Nicola P; Edwards, Kathryn M; Sparks, Robert C; Dekker, Cornelia L

    2009-01-01

    Abscess formation following immunisation is a previously reported complication, generally associated with microbial contamination of the vaccine. Less commonly, such abscesses have been sterile. Here we describe two children evaluated in the Center for Disease Control and Prevention (CDC)-funded Clinical Immunization Safety Assessment (CISA) network who developed recurrent sterile abscesses after administration of vaccines containing aluminium adjuvant, either individually or in combination. Although the abscesses healed without sequelae, these occurrences support an association between receipt of aluminium adjuvant and sterile abscesses in susceptible patients. For patients with similar symptoms, clinicians may wish to choose a vaccine formulation containing the least amount of aluminium adjuvant.

  7. Aluminium determination in U Alx using atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Dantas, E.S.K.; Pires, M.A.F.

    1994-01-01

    Available as short communication only. A method for aluminium determination in uranium-aluminium dispersions (U al x ) using atomic absorption spectrometry is presented. The sample is dissolved in nitric acid, heated, dried, and market up the volume with 0.1 N H NO 3 . The uranium is precipitated with 30% NaOH and the aluminium is determined in the solution after filtration. The determination limit achieved was 5 μg Al/mL. The method is reproducible. (author). 7 refs, 2 tabs

  8. Effect of pressurized steam on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Ambat, Rajan

    2012-01-01

    Purpose - The purpose of this paper is to understand the effect of pressurized steam on surface changes, structures of intermetallic particles and corrosion behavior of AA1050 aluminium. Design/methodology/approach - Industrially pure aluminium (AA1050, 99.5 per cent) surfaces were exposed...... reactivities was observed due to the formation of the compact oxide layer. Originality/value - This paper reveals a detailed investigation of how pressurized steam can affect the corrosion behaviour of AA1050 aluminium and the structure of Fe-containing intermetallic particles....

  9. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  10. Orbital friction stir welding of aluminium pipes

    International Nuclear Information System (INIS)

    Engelhard, G.; Hillers, T.

    2002-01-01

    Friction stir welding (FSW) was originally developed for flat plates. This contribution shows how it can be applied to the welding of aluminium pipes. Pipes made of AlMG 3 (EN5754), AlMg 4.5Mn (EN5083) and AlMgSi 0.5 (EN6106) with dimensions of Da 600 and 520 x 10-8 mm were welded. The FSW orbital system comprises an annular cage with integrated FSW head, a hydraulic system, and a control unit. The welds were tested successfully according to EN 288. The mechanical and technical properties of the welds were somewhat better than with the TIG orbital process, and welding times were about 40 percent shorter [de

  11. Brazing of Titanium with Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Winiowski A.

    2017-06-01

    Full Text Available This study presents results of vacuum diffusion brazing of Grade 2 titanium with 6082 (AlMg1Si0.6Cu0.3 aluminium alloy using B-Ag72Cu-780 (Ag72Cu28 grade silver brazing metal as an interlayer. Brazed joints underwent shear tests, light-microscopy-based metallographic examinations and structural examinations using scanning electron microscopy (SEM and X-ray energy dispersive spectrometry (EDS. The highest quality and shear strength of 20 MPa was characteristic of joints brazed at 530°C with a 30-minute hold. The structural examinations revealed that in diffusion zone near the boundary with titanium the braze contained solid solutions based on hard and brittle Ti-Al type intermetallic phases determining the strength of the joints.

  12. Experimental analysis of cut welding in aluminium

    DEFF Research Database (Denmark)

    Dorph, Pernille; De Chiffre, Leonardo; Bay, Niels

    1993-01-01

    Cut welding is a newly developed cold pressure welding process. In the present work, an experimental investigation was carried out analyzing the mechanisms involved in cut welding of a block to a strip. Experiments were carried out in technically pure aluminium. The investigation has involved...... tensile testing and metallographic investigations of the welds. The results show that this variant of cut welding is a very reproducible process giving a weld strength equal to 30-40% the strength of the parent material. The experiments have shown that the reason for this relatively low strength...... is an uneven pressure distribution along the weld due to a wave formed during sliding. Attempts to alter the material flow during sliding are presented....

  13. Study of hydrogen implanted in aluminium

    International Nuclear Information System (INIS)

    Bugeat, J.P.; Chami, A.C.; Danielou, R.; Ligeon, E.

    1976-01-01

    An aluminium sample was implanted with deuterium and hydrogen at 5keV and 10keV respectively. The 1 H( 11 B,α) 8 Be* and D( 3 He,p) 4 He reactions were used for the analysis of H and D respectively. The implanted deuterium was shown to be as a whole in a tetrahedral site as far as the implantation temperature is lower than 175K, beyond that temperature the deuterium is randomly located. When the implantation temperature increases from 33K up to 275K the tetrahedral siting remains during annealing. The migration temperatures of hydrogen (or temperature of transition from the tetrahedral siting to a random distribution) experimentally observed during annealing (300K) and for increased implantation temperatures, show that the tetrahedral site is associated with a monovacancy migrating at 300K, the diffusion temperature of hydrogen being lower than 180K [fr

  14. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    A method of preparing an aluminum mold for injection molding is provided, the method comprises the steps of providing an aluminum mold having a least one surface, subjecting the at least one surface to a gas or liquid phase silane to thereby form an anti-stiction coating, the anti-stiction coating...... comprising a chemically bonded monolayer of silane compounds on the at least one surface wherein the silane is a halogenated silane. The at least one surface coated with the anti-stiction coating may be configured to withstand an injection molding process at a pressure above 100 MPa. Furthermore, a mold...... having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...

  15. Water state in basic aluminium tungstates

    International Nuclear Information System (INIS)

    Pozharskaya, L.A.; Pitsyuga, V.G.; Mokhosoev, M.V.

    1978-01-01

    Water state in basic aluminium tungstates is investigated using the method of proton magnetic resonance. Existence of various types of water molecules, differing by their geometry and bond energies, is established in the investigated compounds. The obtained results permit to suppose that in Al 6 (OH) 16 WO 4 x10H 2 O, AL 4 (OH) 10 WO 4 x5,5H 2 O and Al 3 (OH) 7 WO 7 x7H 2 O compounds coordinationally non-saturated oxygen atoms in anion are saturated basically at the expense of OH-groups, and water molecules form hydrogen bonds as opposed to Al 2 (OH) 4 WO 4 x7H 2 O and AlOH(WO 4 )x8.5H 2 O in which a considerable part of water molecules is bound directly with anion oxygen atoms

  16. Radial furnace shows promise for growing straight boron carbide whiskers

    Science.gov (United States)

    Feingold, E.

    1967-01-01

    Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.

  17. On surface Raman scattering and luminescence radiation in boron carbide.

    Science.gov (United States)

    Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O

    2010-02-03

    The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications.

  18. Properties of cemented carbides alloyed by metal melt treatment

    International Nuclear Information System (INIS)

    Lisovsky, A.F.

    2001-01-01

    The paper presents the results of investigations into the influence of alloying elements introduced by metal melt treatment (MMT-process) on properties of WC-Co and WC-Ni cemented carbides. Transition metals of the IV - VIll groups (Ti, Zr, Ta, Cr, Re, Ni) and silicon were used as alloying elements. It is shown that the MMT-process allows cemented carbides to be produced whose physico-mechanical properties (bending strength, fracture toughness, total deformation, total work of deformation and fatigue fracture toughness) are superior to those of cemented carbides produced following a traditional powder metallurgy (PM) process. The main mechanism and peculiarities of the influence of alloying elements added by the MMT-process on properties of cemented carbides have been first established. The effect of alloying elements on structure and substructure of phases has been analyzed. (author)

  19. Studies of Hafnium-Carbide Wafers Using a Thermogravimetric Analyzer

    National Research Council Canada - National Science Library

    Castillo, Domingo

    1993-01-01

    ...) over chemical propulsion systems. Solar thermal can accomplish this increased performance by absorbing concentrated solar energy with very high temperature materials which through conduction heat hydrogen (H2). Hafnium carbide (HfC...

  20. Process for preparing fine grain silicon carbide powder

    Science.gov (United States)

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  1. Iron Carbides and Nitrides: Ancient Materials with Novel Prospects.

    Science.gov (United States)

    Ye, Zhantong; Zhang, Peng; Lei, Xiang; Wang, Xiaobai; Zhao, Nan; Yang, Hua

    2018-02-07

    Iron carbides and nitrides have aroused great interest in researchers, due to their excellent magnetic properties, good machinability and the particular catalytic activity. Based on these advantages, iron carbides and nitrides can be applied in various areas such as magnetic materials, biomedical, photo- and electrocatalysis. In contrast to their simple elemental composition, the synthesis of iron carbides and nitrides still has great challenges, particularly at the nanoscale, but it is usually beneficial to improve performance in corresponding applications. In this review, we introduce the investigations about iron carbides and nitrides, concerning their structure, synthesis strategy and various applications from magnetism to the catalysis. Furthermore, the future prospects are also discussed briefly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structure and thermal expansion of NbC complex carbides

    International Nuclear Information System (INIS)

    Khatsinskaya, I.M.; Chaporova, I.N.; Cheburaeva, R.F.; Samojlov, A.I.; Logunov, A.V.; Ignatova, I.A.; Dodonova, L.P.

    1983-01-01

    Alloying dependences of the crystal lattice parameters at indoor temperature and coefficient of thermal linear exspansion within a 373-1273 K range are determined for complex NbC-base carbides by the method of mathematical expemental design. It is shown that temperature changes in the linear expansion coefficient of certain complex carbides as distinct from NbC have an anomaly (minimum) within 773-973 K caused by occurring reversible phase transformations. An increase in the coefficient of thermal linear expansion and a decrease in hardness of NbC-base tungsten-, molybdenum-, vanadium- and hafnium-alloyed carbides show a weakening of a total chemical bond in the complex carbides during alloying

  3. Single-Event Effects in Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  4. Characterization of commercial silicon carbide powders and green bodies

    International Nuclear Information System (INIS)

    Srinivasan, M.; Binnie, W.P.; Friedman, W.D.; Youngman, R.A.; Sherman, W.M.

    1988-01-01

    Several commercially available submicron alpha and beta silicon carbide powders are characterized for their physical and chemical properties. The paper also addresses key areas to consider in the examination of silicon carbide ceramics in the green state during fabrication. Several nondestructive evaluation techniques including x-ray radiography, ultrasonics, and computed x-ray tomography are applied to map variations in density of the green body and to identify variations in homogeneity and potential flaws

  5. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  6. Influence of cryogenic treatment on mechanical properties of cemented carbides

    OpenAIRE

    Senah, Chloe

    2016-01-01

    Cemented carbides, often referred to as hardmetals, are materials composed by two major phases: a carbide ceramic phase and a binder metallic one. The metallic binder maintains the ceramic grains together in an interpenetrated network structure. This heterogeneous microstructure confers to the material good mechanical properties such as high hardness, elevated fracture toughness and high compressive strength and wear resistance. Given their good mechanical properties, the main application of ...

  7. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation; proton ; stopping and range of

  8. Microwave Sintering and Its Application on Cemented Carbides

    OpenAIRE

    Rumman Md Raihanuzzaman; Lee Chang Chuan; Zonghan Xie; Reza Ghomashchi

    2015-01-01

    Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used to prepare a wide range of materials including ceramics. A deep understanding ...

  9. Aluminium alloys in municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  10. Oxygen–induced barrier height changes in aluminium – amorphous ...

    African Journals Online (AJOL)

    Se) films by exposing the samples to oxygen before the aluminium contacts were deposited. Current – voltage (I-V) measurements were carried out on the samples. The results show that the application of voltage causes charge exchange ...

  11. Tailored Aluminium based Coatings for Optical Appearance and Corrosion Resistance

    DEFF Research Database (Denmark)

    Aggerbeck, Martin

    The current project investigated the possibility of designing aluminium based coatings focusing on the effect of composition and surface finish on the optical appearance and on the alkaline corrosion properties using titanium as the main alloying element. The main results and discussions...... of these applications, but the use of recycled aluminium compromises this due to the presence of increased levels of impurity and alloying elements. Knowledge on how different alloying elements affect the optical appearance might therefore increase the applicability of recycled aluminium. It was investigated how...... the optical appearance is affected by the alloy composition, surface morphology, and the microstructure. Four commercial aluminium alloys were studied before and after polishing, etching, anodisation, and hot water sealing, giving an overview on how the alloy composition affects the appearance. It was found...

  12. The management of Frey's syndrome with aluminium chloride hexahydrate antiperspirant.

    OpenAIRE

    Black, M. J.; Gunn, A.

    1990-01-01

    Nine patients suffering from gustatory sweating (Frey's syndrome) following parotidectomy have been treated by topical applications of aluminium chloride hexahydrate. Treatment has successfully controlled gustatory sweating using application intervals varying from 1 to 50 days.

  13. The management of Frey's syndrome with aluminium chloride hexahydrate antiperspirant.

    Science.gov (United States)

    Black, M. J.; Gunn, A.

    1990-01-01

    Nine patients suffering from gustatory sweating (Frey's syndrome) following parotidectomy have been treated by topical applications of aluminium chloride hexahydrate. Treatment has successfully controlled gustatory sweating using application intervals varying from 1 to 50 days. Images Figure 1 PMID:2301903

  14. Deposition of aluminium nanoparticles using dense plasma focus device

    International Nuclear Information System (INIS)

    Devi, Naorem Bilasini; Srivastava, M P; Roy, Savita

    2010-01-01

    Plasma route to nanofabrication has drawn much attention recently. The dense plasma focus (DPF) device is used for depositing aluminium nanoparticles on n-type Si (111) wafer. The plasma chamber is filled with argon gas and evacuated at a pressure of 80 Pa. The substrate is placed at distances 4.0 cm, 5.0 cm and 6.0 cm from the top of the central anode. The aluminium is deposited on Si wafer at room temperature with two focused DPF shots. The deposits on the substrate are examined for their morphological properties using atomic force microscopy (AFM). The AFM images have shown the formation of aluminium nanoparticles. From the AFM images, it is found that the size of aluminium nanoparticles increases with increase in distance between the top of anode and the substrate for same number of DPF shots.

  15. Aluminium leaching from red mud by filamentous fungi.

    Science.gov (United States)

    Urík, Martin; Bujdoš, Marek; Milová-Žiaková, Barbora; Mikušová, Petra; Slovák, Marek; Matúš, Peter

    2015-11-01

    This contribution investigates the efficient and environmentally friendly aluminium leaching from red mud (bauxite residue) by 17 species of filamentous fungi. Bioleaching experiments were examined in batch cultures with the red mud in static, 7-day cultivation. The most efficient fungal strains in aluminium bioleaching were Penicillium crustosum G-140 and Aspergillus niger G-10. The A. niger G-10 strain was capable to extract up to approximately 141 mg·L(-1) of aluminium from 0.2 g dry weight red mud. Chemical leaching with organic acids mixture, prepared according to A. niger G-10 strain's respective fungal excretion during cultivation, proved that organic acids significantly contribute to aluminium solubilization from red mud. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Aluminium Roofing Products Ltd Marketing to the Public Sector, UK

    OpenAIRE

    Hosseini, Sadaf

    2009-01-01

    This management project was undertaken on behalf of Aluminium Roofing Products Ltd ™ (ARP), a young, entrepreneurial company associated predominantly with aluminium products. The project brief was initially untaken by Ian Dunbar - one of the marketing segmentation gurus in the UK. As a result of his investigation, the company aimed to target the public sector in the UK in order to increase their market share. The project was fairly broad and identified several areas of the public sector which...

  17. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  18. Numerical Modelling of Drawbeads for Forming of Aluminium Alloys

    OpenAIRE

    Joshi, Y; Christiansen, Peter; Masters, I; Bay, Niels Oluf; Dashwood, R

    2016-01-01

    The drawbeads in stamping tools are usually designed based on experience from the forming of steel. However, aluminium alloys display different forming behaviour to steels, which is not reflected in the drawbead design for tools used for stamping aluminium. This paper presents experimental results from different semi-circular drawbead geometries commonly encountered in automotive dies and compares them to those obtained from Stoughton’s analytical drawbead model and the 2D plane strain drawbe...

  19. Twenty years of isotope applications in the Hungarian aluminium industry

    International Nuclear Information System (INIS)

    Bujdoso, E.

    1982-01-01

    After a short review of the isotope techniques applied in the Hungarian aluminium industry some special applications and their results are briefly outlined. Industrial and laboratory scale trace constituent determinations, isotope and activation analytical methods and the application of sealed radiation sources are discussed. It has been shown that the related R+D activity followed closely the development trends of the aluminium industry. The references given is a comprehensive bibliography of Hungarian publications in this field. (author)

  20. Physiological Characterization of Kenyan Sorghum Lines for Tolerance To Aluminium

    OpenAIRE

    Cheprot, R. K.; Matonyei, T. K.; Maritim, K. K.; Were, B. A.; Dangasuk, O. G.; Onkware, A. O.; Gudu, S.

    2014-01-01

    Eighty nine Kenyan sorghum lines were screened for tolerance to aluminium toxicity in nutrient solution. Relative net root growth; root tip aluminium content and variation in organic acid exudation were used to determine the tolerance or sensitivity of the sorghum lines at 148 µM Al for six days. The lines showed variable reduction in root growth under the Al stress. On the basis of the relative net root growths, three lines were tolerant, nineteen were moderately tolerant and sixty seven wer...

  1. Influence of Chemical Composition on Porosity in Aluminium Alloys

    OpenAIRE

    Kucharčík L.; Brůna M.; Sládek A.

    2014-01-01

    Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si alu...

  2. Aluminium-rich corner in Al-Cu-La system

    International Nuclear Information System (INIS)

    Yunusov, I.; Ganiev, I.N.

    1990-01-01

    Aluminium corner of Al-Cu-La system are investigated by means of microstructural and differential thermal analysis. Existence of LaCu 2 Al 10 and LaCu 0.5 Al 3.5 ternary compounds in the system is confirmed and it is shown, as well, both compounds are in two-phase equilibrium with aluminium solid solution and form with it and between each other eutectic type state diagrams. State diagrams for quasibinary sections are plotted

  3. Development and Evaluation of Mixed Uranium-Refractory Carbide/Refractory Carbide Cer-Cer Fuels, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal a new carbide-based fuel is introduced with outstanding potential to eliminate the loss of uranium, minimizes the loss of uranium, and retains...

  4. Lake restoration with aluminium, bentonite and Phoslock: the effect on sediment stability and light attenuation

    DEFF Research Database (Denmark)

    Egemose, Sara; Reitzel, Kasper; Flindt, Mogens

    treatments on aluminium mobility, sediment stability or light climate. A laboratory flume experiment including three shallow Danish lakes was conducted. We measured the effects of aluminium, Phoslock (a commercial product), bentonite, and a combination of bentonite/aluminium. Each treatment caused a varying...... consolidation of the sediment. The largest consolidation occurred using Phoslock- and bentonite-addition followed by bentonite/aluminium-addition, whereas aluminium alone had no effect. Sediment stability thresholds were measured before and after addition. Especially Phoslock, but also bentonite and bentonite....../aluminium increased sediment erosion threshold, with respectively 200%, 43% and 57%. Aluminium, bentonite/aluminium, and Phoslock improved the light conditions in the water phase, with respectively 60%, 57% and 50%, whereas bentonite created higher turbidity. Conclusively aluminium improved the light conditions...

  5. The binding, transport and fate of aluminium in biological cells.

    Science.gov (United States)

    Exley, Christopher; Mold, Matthew J

    2015-04-01

    Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the 'silent' pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Effect of iron and silicon in aluminium and its alloys

    International Nuclear Information System (INIS)

    Kovacs, I.

    1990-01-01

    The iron and silicon are the main impurities in aluminium, they are always present in alloys made from commercially pure base material. The solid solubility of iron in aluminium is very low, therefore its largest amount forms intermetallic compounds the kind of which depends strongly on the other impurities of alloying elements. Although the solid solubility of silicon is much larger than that of the iron, it is the constituent of both the primary and the secondary particles, the structure of which depends in general on the iron-silicon concentration ratio. These Fe and Si containing particles can cause various and basic changes in the macroscopic properties of the alloy. Since commercially pure aluminium has extensive consumer and industrial use, it is very important to know, not only from scientific but also from practical point of view, the effect of iron and silicon on the physical and mechanical properties of aluminium and its alloys. The aim of the ''International Workshop on the Effect of Iron and Silicon in Aluminium and its Alloys'' was to clarify the present knowledge on this subject. The thirty papers presented at the Workshop and collected in this Proceedings cover many important fields of the subject. I hope that they will contribute to both the deeper understanding of the related phenomena and the improvement of technologies for producing better aluminium alloys

  7. Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich

    Science.gov (United States)

    Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.

    2018-01-01

    Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.

  8. Surface roughness when diamond turning RSA 905 optical aluminium

    Science.gov (United States)

    Otieno, T.; Abou-El-Hossein, K.; Hsu, W. Y.; Cheng, Y. C.; Mkoko, Z.

    2015-08-01

    Ultra-high precision machining is used intensively in the photonics industry for the production of various optical components. Aluminium alloys have proven to be advantageous and are most commonly used over other materials to make various optical components. Recently, the increasing demand from optical systems for optical aluminium with consistent material properties has led to the development of newly modified grades of aluminium alloys produced by rapid solidification in the foundry process. These new aluminium grades are characterised by their finer microstructures and refined mechanical and physical properties. However the machining database of these new optical aluminium grades is limited and more research is still required to investigate their machinability performance when they are diamond turned in ultrahigh precision manufacturing environment. This work investigates the machinability of rapidly solidified aluminium RSA 905 by varying a number of diamond-turning cutting parameters and measuring the surface roughness over a cutting distance of 4 km. The machining parameters varied in this study were the cutting speed, feed rate and depth of cut. The results showed a common trend of decrease in surface roughness with increasing cutting distance. The lowest surface roughness Ra result obtained after 4 km in this study was 3.2 nm. This roughness values was achieved using a cutting speed of 1750 rpm, feed rate of 5 mm/min and depth of cut equal to 25 μm.

  9. Investigation of different anode materials for aluminium rechargeable batteries

    Science.gov (United States)

    Muñoz-Torrero, David; Leung, Puiki; García-Quismondo, Enrique; Ventosa, Edgar; Anderson, Marc; Palma, Jesús; Marcilla, Rebeca

    2018-01-01

    In order to shed some light into the importance of the anodic reaction in reversible aluminium batteries, we investigate here the electrodeposition of aluminium in an ionic liquid electrolyte (BMImCl-AlCl3) using different substrates. We explore the influence of the type of anodic material (aluminium, stainless steel and carbon) and its 3D geometry on the reversibility of the anodic reaction by cyclic voltammetry (CV) and galvanostatic charge-discharge. The shape of the CVs confirms that electrodeposition of aluminium was feasible in the three materials but the highest peak currents and smallest peak separation in the CV of the aluminium anode suggested that this material was the most promising. Interestingly, carbon-based substrates appeared as an interesting alternative due to the high peak currents in CV, moderate overpotentials and dual role as anode and cathode. 3D substrates such as fiber-based carbon paper and aluminium mesh showed significantly smaller overpotentials and higher efficiencies for Al reaction suggesting that the use of 3D substrates in full batteries might result in enhanced power. This is corroborated by polarization testing of full Al-batteries.

  10. Effects of Aluminium Sulfate on Cadmium Accumulation in Rice

    International Nuclear Information System (INIS)

    Khamvarn, Vararas; Boontanon, Narin; Prapagdee, Benjaphorn; Kumsopa, Acharaporn; Boonsirichai, Kanokporn

    2011-06-01

    Full text: Cadmium accumulation in Pathum Thani 1 and Suphan Buri 60 rice cultivars was investigated upon treatment with aluminium sulfate as a precipitant. Rice was grown hydroponically in a medium containing 4 ppm cadmium nitrate with or without 4 ppm aluminium sulfate. Root, stem with leaves and grain samples were collected and analyzed for cadmium content using atomic absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy. Without the addition of aluminium sulfate, Pathum Thani 1 and Suphan Buri 60 accumulated 24.71∫ 3.14 ppm and 34.43 ∫ 4.51 ppm (dry weight of whole plant) of cadmium, respectively. With aluminium sulfate, cadmium accumulation increased to 40.66 ∫ 2.47 ppm and 62.94 ∫ 10.69 ppm, respectively. The addition of aluminium sulfate to the planting medium did not reduce cadmium accumulation but caused the rice to accumulate more cadmium especially in the shoots and grains. This observation might serve as the basis for future research on the management of agricultural areas that are contaminated with cadmium and aluminium

  11. Understanding the Irradiation Behavior of Zirconium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  12. Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro.

    Science.gov (United States)

    Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meissner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin

    2009-04-01

    Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobalt-doped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendrocyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Chemical-physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect.

  13. Toxicity of Tungsten Carbide and Cobalt-Doped Tungsten Carbide Nanoparticles in Mammalian Cells in Vitro

    Science.gov (United States)

    Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meißner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin

    2009-01-01

    Background Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. Objective We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobaltdoped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. Methods We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendro cyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Results Chemical–physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Conclusions Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect. PMID:19440490

  14. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  15. Automated laser fabrication of cemented carbide components

    Science.gov (United States)

    Paul, C. P.; Khajepour, A.

    2008-07-01

    Automated Laser Fabrication (ALFa) is one of the most rapidly growing rapid-manufacturing technologies. It is similar to laser cladding at process level with different end applications. In general, laser cladding technique is used to deposit materials on the substrate either to improve the surface properties or to refurbish the worn-out parts, while ALFa is capable of near net shaping the components by layer-by-layer deposition of the material directly from CAD model. This manufacturing method is very attractive for low volume manufacturing of hard materials, as near net shaping minimizes machining of hard material and subsequently brings significant savings in time and costly material. To date, many researchers have used this technology to fabricate components using various alloy steels, nickel-based alloys and cobalt-based alloys. In the present study, the work is extended to tungsten carbide cobalt (WC-Co) composites. A set of comprehensive experiments was carried out to study the effect of processing parameters during multi-layer fabrication. The process parameters were optimized for the component-level fabrication. Fabricated components were subjected to dye-penetrant testing, three-point flexural testing, hardness measurement, optical and scanning electron microscopy and X-ray diffraction analysis. The test results revealed that the laser-fabricated material was defect free and more ductile in nature. Thus, ALFa technology, not only produced the quality components, but also minimized machining of hard material and brought significant saving of time and costly WC-Co material.

  16. Auger electron spectroscopy studies of boron carbide

    International Nuclear Information System (INIS)

    Madden, H.H.; Nelson, G.C.; Wallace, W.O.

    1986-01-01

    Auger electron spectroscopy has been used to probe the electronic structure of ion bombardment (IB) cleaned surfaces of B 9 C and B 4 C samples. The shapes of the B-KVV and C-KVV Auger lines were found to be relatively insensitive to the bulk stoichiometry of the samples. This indicates that the local chemical environments surrounding B and C atoms, respectively, on the surfaces of the IB cleaned samples do not change appreciably in going from B 9 C to B 4 C. Fracturing the sample in situ is a way of producing a clean representative internal surface to compare with the IB surfaces. Microbeam techniques have been used to study a fracture surface of the B 9 C material with greater spatial resolution than in our studies of IB surfaces. The B 9 C fracture surface was not homogeneous and contained both C-rich and B-rich regions. The C-KVV line for the C-rich regions was graphitic in shape. Much of the C-rich regions was found by IB to be less than 100 nm in thickness. The C-KVV line from the B-rich regions was carbidic and did not differ appreciably in shape from those recorded for the IB cleaned surfaces

  17. Graphene ribbon growth on structured silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, Alexander; Link, Stefan; Starke, Ulrich [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Baringhaus, Jens; Aprojanz, Johannes; Tegenkamp, Christoph [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover (Germany); Niu, Yuran [MAX IV Laboratory, Lund University (Sweden); present address: School of Physics and Astronomy, Cardiff University (United Kingdom); Zakharov, Alexei A. [MAX IV Laboratory, Lund University (Sweden); Chen, Chaoyu; Avila, Jose; Asensio, Maria C. [Synchrotron SOLEIL and Universite Paris-Saclay, Gif sur Yvette (France)

    2017-11-15

    Structured Silicon Carbide was proposed to be an ideal template for the production of arrays of edge specific graphene nanoribbons (GNRs), which could be used as a base material for graphene transistors. We prepared periodic arrays of nanoscaled stripe-mesas on SiC surfaces using electron beam lithography and reactive ion etching. Subsequent epitaxial graphene growth by annealing is differentiated between the basal-plane mesas and the faceting stripe walls as monitored by means of atomic force microscopy (AFM). Microscopic low energy electron diffraction (μ-LEED) revealed that the graphene ribbons on the facetted mesa side walls grow in epitaxial relation to the basal-plane graphene with an armchair orientation at the facet edges. The π-band system of the ribbons exhibits linear bands with a Dirac like shape corresponding to monolayer graphene as identified by angle-resolved photoemission spectroscopy (ARPES). (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Silicon carbide corrosion in HTGR fuel particles

    International Nuclear Information System (INIS)

    Gruebmeier, H.; Naoumidis, A.; Thiele, B.A.

    1977-01-01

    The silicon carbide layer in TRISO-coated HTR fuel particles occasionally is attacked during irradiation by fission products generated within the kernel material. Investigations to define the cause of the SiC corrosion are described, which included ceramographic, microradiographic and microanalytical studies on irradiated and unirradiated coated particles of various kernel compositions. The results of these studies showed that the presence of chlorine within the particle, in combination with certain metallic fission products or uranium, can lead to corrosion of the SiC layer. These results provided the basis for establishing a model, which relates the transport of fission products as volatile metal chlorides and their chemical reaction with the SiC corrosion. In addition this model is consistent with the fact that under the influence of a thermal gradient corrosive attack of the SiC occurs on the cooler side of the particle. The correlation between the occurrence of SiC corrosion during irradiation and heavy-metal transport observed in thermal gradient annealing studies of unirradiated particles of the same barch constitutes the basis for a new method for quality control. (orig.) [de

  19. A Black Phosphorus Carbide Infrared Phototransistor.

    Science.gov (United States)

    Tan, Wee Chong; Huang, Li; Ng, Rui Jie; Wang, Lin; Hasan, Dihan Md Nuruddin; Duffin, Thorin Jake; Kumar, Karuppannan Senthil; Nijhuis, Christian A; Lee, Chengkuo; Ang, Kah-Wee

    2018-02-01

    Photodetectors with broadband detection capability are desirable for sensing applications in the coming age of the internet-of-things. Although 2D layered materials (2DMs) have been actively pursued due to their unique optical properties, by far only graphene and black arsenic phosphorus have the wide absorption spectrum that covers most molecular vibrational fingerprints. However, their reported responsivity and response time are falling short of the requirements needed for enabling simultaneous weak-signal and high-speed detections. Here, a novel 2DM, black phosphorous carbide (b-PC) with a wide absorption spectrum up to 8000 nm is synthesized and a b-PC phototransistor with a tunable responsivity and response time at an excitation wavelength of 2004 nm is demonstrated. The b-PC phototransistor achieves a peak responsivity of 2163 A W -1 and a shot noise equivalent power of 1.3 fW Hz -1/2 at 2004 nm. In addition, it is shown that a response time of 0.7 ns is tunable by the gating effect, which renders it versatile for high-speed applications. Under the same signal strength (i.e., excitation power), its performance in responsivity and detectivity in room temperature condition is currently ahead of recent top-performing photodetectors based on 2DMs that operate with a small bias voltage of 0.2 V. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Irradiation effects on aluminium and beryllium

    International Nuclear Information System (INIS)

    Bieth, M.

    1992-01-01

    The High Flux Reactor (HFR) in Petten (The Netherlands) is a 45 MW light water cooled and moderated research reactor. The vessel was replaced in 1984 after more than 20 years of operation because doubts had arisen over the condition of the aluminium alloy construction material. Data on the mechanical properties of the aluminium alloy Al 5154 with and without neutron irradiation are necessary for the safety analysis of the new HFR vessel which is constructed from the same material as the old vessel. Fatigue, fracture mechanics (crack growth and fracture toughness) and tensile properties have been obtained from several experimental testing programmes with materials of the new and the old HFR vessel. 1) Low-cycle fatigue testing has been carried out on non-irradiated specimens from stock material of the new HFR vessel. The number of cycles to failure ranges from 90 to more than 50,000 for applied strain from 3.0% to 0.4%; 2) Fatigue crack growth rate testing has been conducted: - with unirradiated specimens from stock material of the new vessel; - with irradiated specimens from the remnants of the old core box. Irradiation has a minor effect on the sub-critical fatigue crack growth rate. The ultimate increase of the mean crack growth rate amounts to a factor of 2. However crack extension is strongly reduced due to the smaller crack length for crack growth instability (reduction of K IC ). - Irradiated material from the core box walls of the old vessel has been used for fracture toughness testing. The conditional fracture toughness values K IQ ranges from 30.3 down to 16.5 MPa√m. The lowermost meaningful 'K IC ' is 17.7 MPa√m corresponding to the thermal fluence of 7.5 10 26 n/m 2 for the End of Life (EOL) of the old vessel. - Testing carried out on irradiated material from the remnants of the old HFR core box shows an ultimate neutron irradiation hardening of 35 points increase of HSR 15N and an ultimate tensile yield stress of 589 MPa corresponding to the

  1. Bioaccumulation of Aluminium in Hydromacrophytes in Polish Coastal Lakes

    Directory of Open Access Journals (Sweden)

    Senze Magdalena

    2015-03-01

    Full Text Available The research on aluminium content was conducted in water and on aquatic flora of Polish lakes in the central part of the coast. The study included the lakes Sarbsko, Choczewskie, Bia.e, K.odno, D.brze and Salino investigated in the summer of 2013. The examined lakes belong mainly to the direct basin of the Baltic Sea. Samples of aquatic plants and lake waters were collected. In the water samples pH and electrolytic conductivity were measured. The aluminium content was determined both in water and aquatic plants. Submerged hydromacrophyte studies included Myriophyllum alterniflorum L., Potamogeton perfoliatus L. and Ceratophyllum demersum L. Emergent hydromacrophyte studies included Phragmites australis (Cav. Trin. ex Steud., Juncus bulbosus L., Iris pseudacorus L., Eleocharis palustris (L. Roem. % Schult., Phalaris arundinacea L., Carex riparia Curt., Mentha aquatic L., Stratiotes aloides L., Alisma plantago-aquatica L., Glyceria maxima (Hartman Holmb., Sagittaria sagittifolia L., Scirpus lacustris L. and Typha angustifolia L. The purpose of this investigation was the determination of the aluminium content in submerged and emergent hydromacrophytes and also the definition of their bioaccumulative abilities. The average concentration of aluminium in water was 2.68 fęg Al dm.3. The average content of aluminium in plants was 2.8015 mg Al kg.1. The bioaccumulation factor ranged from BCF=19.74 to BCF=16619. On the basis of the analysis of the aluminium content in water and aquatic plants results show that both water and plants were characterized by a moderate level of aluminium. The recorded concentrations indicate a mid-range value and are much lower than those which are quoted for a variety of surface waters in various parts of the world.

  2. Accumulation and toxicity of aluminium-contaminated food in the freshwater crayfish, Pacifastacus leniusculus.

    Science.gov (United States)

    Woodburn, Katie; Walton, Rachel; McCrohan, Catherine; White, Keith

    2011-10-01

    The accumulation and toxicity of aluminium in freshwater organisms have primarily been examined following aqueous exposure. This study investigated the uptake, excretion and toxicity of aluminium when presented as aluminium-contaminated food. Adult Pacifastacus leniusculus were fed control (3 μg aluminium/g) or aluminium-spiked pellets (420 μg aluminium/g) over 28 days. Half the crayfish in each group were then killed and the remainder fed control pellets for a further 10 days (clearance period). Concentrations of aluminium plus the essential metals calcium, copper, potassium and sodium were measured in the gill, hepatopancreas, flexor muscle, antennal gland (kidney) and haemolymph. Histopathological analysis of tissue damage and sub-cellular distribution of aluminium were examined in the hepatopancreas. Haemocyte number and protein concentration in the haemolymph were analysed as indicators of toxicity. The hepatopancreas of aluminium-fed crayfish contained significantly more aluminium than controls on days 28 and 38, and this amount was positively correlated with the amount ingested. More than 50% of the aluminium in the hepatopancreas of aluminium-fed crayfish was located in sub-cellular fractions thought to be involved in metal detoxification. Aluminium concentrations were also high in the antennal glands of aluminium-fed crayfish suggesting that some of the aluminium lost from the hepatopancreas is excreted. Aluminium exposure via contaminated food caused inflammation in the hepatopancreas but did not affect the number of circulating haemocytes, haemolymph ion concentrations or protein levels. In conclusion, crayfish accumulate, store and excrete aluminium from contaminated food with only localised toxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. SUPERPLASTIC BEHAVIOUR IN DYNAMICALLY RECRYSTALLISING ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    R AMICHI

    1999-12-01

    Full Text Available Aluminium alloys can be thermomechanically processed to develop the grain fine microstructures required for superplasticity by either static recrystallisation prior to superplastic forming (SPF or by dynamic recrystallisation during the early stages of deformation. The present work has examined and compared the superplastic behaviour and the microstructural evolution in Al-Li alloys (8090 sheet material processed by the second route for a wide range of temperatures and strain-rates.  It was observed that the material showed a high potential for superplastic flow. Although significant superplasticity was observed at temperature of 400°C and below. The reasons for the high resistance of the material to strain localisation are discussed.  It was noted that ductility enhancement could also be achieved by the control of the strain-rate path. A rapid pre-strain improved significantly the subsequent superplastic elongation to failure at optimum strain rate.  Further enhancement has been obtained by pre-straining at constant velocity following by deformation to failure at lower constant velocity. The microstructure changes prior or during deformation were also examined.

  4. Methemoglobinemia in aluminium phosphide poisoning in rats.

    Science.gov (United States)

    Lall, S B; Peshin, S S; Mitra, S

    2000-01-01

    Aluminium phosphide (AlP) a grain fumigant is the leading cause of intentional poisoning in North India. The mechanisms involved in toxicity are not known and there is no antidote till date. The present study was carried out to investigate the oxygen free radical generation, methemoglobinemia and effect of methylene blue treatment on survival time in rat model of AlP poisoning. AlP (50 mg/kg, intragastric) was administered in one group and the other group received AlP + Methylene Blue (MB) (0.1%, 1 mg/kg/5 min, i.v.). Malonyldialdehyde (MDA) and methemoglobin (MeHb) levels were measured at 10 and 30 min intervals. Blood MDA levels increased at 10 and 30 min after AlP exposure with simultaneous rise in MeHb levels suggesting methemoglobinemia could be due to increased oxygen free radical generation. Methylene blue caused a significant fall in both the parameters with prolongation of survival time. It is concluded that AlP causes methemoglobinemia responding to methylene blue treatment.

  5. Acute aluminium phosphide poisoning, what is new?

    Directory of Open Access Journals (Sweden)

    Yatendra Singh

    2014-01-01

    Full Text Available Aluminium phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide that is commonly used for grain preservation. AlP has currently generated interest with increasing number of cases in the past four decades because of its increased use for agricultural and nonagricultural purposes, and also its easy availability in the markets has led to its increased misuse to commit suicide. Ingestion is usually suicidal in intent, uncommonly accidental and rarely homicidal. The poison affects all systems, shock, cardiac arrhythmias with varied ECG changes and gastrointestinal features being the most prominent. Diagnosis is made on the basis of clinical suspicion, a positive silver nitrate paper test to phosphine, and gastric aspirate and viscera biochemistry. Treatment includes early gastric lavage with potassium permanganate or a combination of coconut oil and sodium bicarbonate, administration of charcoal and palliative care. Specific therapy includes intravenous magnesium sulphate and oral coconut oil. Unfortunately, the lack of a specific antidote Results in very high mortality and the key to treatment lies in rapid decontamination and institution of resuscitative measures. This article aims to identify the salient features and mechanism of AlP poisoning along with its management strategies and prognostic variables.

  6. Design of Grain Refiners for Aluminium Alloys

    Science.gov (United States)

    Tronche, A.; Greer, A. L.

    The efficiency of a grain refiner can be quantified as the number of grains per nucleant particle in the solidified product. Even for effective refiners in aluminium, such as Al-5Ti-1B, it is known from experiments that efficiencies are very low, at best 10-3 to 102. It is of interest to explore the reasons for such low values, and to assess the prospects for increased efficiency though design of refiners. Recently it has been shown [1] that a simple recalescence-based model can make quantitative predictions of grain size as a function of refiner addition level, cooling rate and solute content. In the model, the initiation of grains is limited by the free growth from nucleant particles, the size distribution of which is very important. The present work uses this model as the basis for discussing the effect of particle size distribution on grain refiner performance. Larger particles (of TiB2 in the case of present interest) promote greater efficiency, as do narrower size distributions. It is shown that even if the size distribution could be exactly specified, compromises would have to be made to balance efficiency (defined as above) with other desirable characteristics of a refiner.

  7. Fabrication experience of aluminium clad aluminium matrix dispersion fuels at BARC

    International Nuclear Information System (INIS)

    Ganguly, C.; Hedge, P.W.; Prasad, G.J.

    1995-01-01

    Aluminium clad, aluminium matrix plate type dispersion fuels have been fabricated in BARC in recent years as part of fuel development programme for small non-power research reactors. The present paper describes the flowsheet developed for fabrication of Al-UAl x , Al-U 3 Si 2 and Al-U 3 O 8 fuels at BARC. The Al-20% U alloy fuel for KAMINI neutron radiography reactor was prepared by 'melting and casting' route, followed by picture framing and roll-bonding. For higher 'U' density fuels namely, Al-UAl x , Al-U 3 O 8 and Al-U 3 Si 2 the 'powder metallurgy' route was followed for preparation of fuel meat. The novel features in fabrication route were: addition of Zr for stabilizing UAl 3 phase in Al-20% U alloy; x-ray radiography and microdensitometric scanning of radiographs for location of fuel outline inside fuel element and for confirming homogeneous distribution of fissile atoms; immersion ultrasonic testing for confirming good bonding between mating Al surface of the fuel plate. (author)

  8. Aluminium Matrix Composites Reinforced with Co-continuous Interlaced Phases Aluminium-alumina Needles

    Directory of Open Access Journals (Sweden)

    Elvio de Napole Gregolin

    2002-09-01

    Full Text Available An Al-5SiO2 (5 wt% of SiO2 aluminium matrix fiber composite was produced where the reinforcement consists of fossil silica fibers needles. After being heat-treated at 600 °C, the original fiber morphology was retained but its microstructure changed from solid silica to an interconnected (Al-Si/Al2O3 interlaced structure named co-continuous composite. A technique of powder metallurgy, using commercial aluminium powder and the silica fibers as starting materials, followed by hot extrusion, was used to produce the composite. The co-continuous microstructure was obtained partially or totally on the fibers as a result of the reaction, which occurs during the heat treatment, first by solid diffusion and finally by the liquid Al-Si in local equilibrium, formed with the silicon released by reaction. The internal structure of the fibers was characterized using field emission electron microscope (FEG-SEM and optical microscopy on polished and fractured samples.

  9. Microstructure and properties of aluminium-aluminium oxide graded composite materials

    Science.gov (United States)

    Kamaruzaman, F. F.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Iqbal, A. K. M. A.; Azhari, A.

    2018-03-01

    In this research works, four-layered aluminium-aluminium oxide (Al-Al2O3) graded composite materials were fabricated using powder metallurgy (PM) method. In processing, metal-ceramic graded composite materials of 0%, 10%, 20% and 30% weight percentage of ceramic concentration were prepared under 30 ton compaction load using a cylindrical die-punch set made of steel. After that, two-step pressureless sintering was carried out at sintering temperature and time 600°C and 3 hours respectively. It was observed that the sintered cylindrical specimens of 30 mm diameter were prepared successfully. The graded composite specimens were analysed and the properties such as density, microstructure and hardness were measured. It was found that after sintering process, the diameter of the graded cylindrical structure was decreased. Using both Archimedes method and rule of mixture (ROM), he density of structure was measured. The obtained results revealed that the microvickers hardness was increased as the ceramic component increases in the graded layer. Moreover, it was observed that the interface of the graded structure is clearly distinguished within the multilayer stack and the ceramic particles are almost uniformly distributed in the Al matrix.

  10. Aluminium concentration versus the base cation to aluminium ratio as predictors for aluminium toxicity in Pinus sylvestris and Picea abies seedlings

    NARCIS (Netherlands)

    Schöll, van L.; Keltjens, W.G.; Hoffland, E.; Breemen, van N.

    2004-01-01

    Aluminium (Al) toxicity is considered an important factor in forest deterioration caused by soil acidification. A ratio of base cations (BC) to Al in the soil solution lower than 1 is widely used as an indicator for potentially adverse effects on tree health. In our view, the validity of the

  11. Photodynamic effect of aluminium and zinc tetrasulfophthalocyanines on melanoma cancer cells

    CSIR Research Space (South Africa)

    Maduray, K

    2010-06-01

    Full Text Available Aluminium and zinc tetrasulfophthalocyanines were activated with a 672nm wavelength laser to investigate the photodynamic effects on melanoma cancer, dermal fibroblast and epidermal keratinocyte cells. Aluminium tetrasulfophthalocyanine was more...

  12. Optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated carbide cutting tool

    Science.gov (United States)

    Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.

    2018-02-01

    In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.

  13. AE Monitoring of Diamond Turned Rapidly Soldified Aluminium 443

    International Nuclear Information System (INIS)

    Onwuka, G; Abou-El-Hossein, K; Mkoko, Z

    2017-01-01

    The fast replacement of conventional aluminium with rapidly solidified aluminium alloys has become a noticeable trend in the current manufacturing industries involved in the production of optics and optical molding inserts. This is as a result of the improved performance and durability of rapidly solidified aluminium alloys when compared to conventional aluminium. Melt spinning process is vital for manufacturing rapidly solidified aluminium alloys like RSA 905, RSA 6061 and RSA 443 which are common in the industries today. RSA 443 is a newly developed alloy with few research findings and huge research potential. There is no available literature focused on monitoring the machining of RSA 443 alloys. In this research, Acoustic Emission sensing technique was applied to monitor the single point diamond turning of RSA 443 on an ultrahigh precision lathe machine. The machining process was carried out after careful selection of feed, speed and depths of cut. The monitoring process was achieved with a high sampling data acquisition system using different tools while concurrent measurement of the surface roughness and tool wear were initiated after covering a total feed distance of 13km. An increasing trend of raw AE spikes and peak to peak signal were observed with an increase in the surface roughness and tool wear values. Hence, acoustic emission sensing technique proves to be an effective monitoring method for the machining of RSA 443 alloy. (paper)

  14. The structure of high-quality aluminium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available In this study presents the analyse of aluminium iron cast structure (as-cast condition which are used in high temperature. While producing the casts of aluminium iron major influence has been preserve the structure of technological process parameters. The addition to Fe-C-Al alloy V, Ti, Cr leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a aluminium cast iron structure and thus improve the production process. V and Ti additions in aluminium cast iron allows to development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

  15. Aluminium Foams in the Design of Transport Means

    Directory of Open Access Journals (Sweden)

    Krešimir Grilec

    2012-07-01

    Full Text Available The requirements for weight reduction and improvement of performances in the design of transport means are often in contradiction to the requirements for increased safety. One of the possible ways of meeting these requirements is the application of metal foams. Thanks to cellular structure of aluminium foam along with low weight, the capability of noise and vibration damping, they feature also excellent capabilities of absorbing impact energy. Their application in the production of impact-sensitive elements of mobile or stationary transport means has significantly contributed to the reduction of the impact or collision consequences.The focus of this paper is on improving the energy absorption characteristics of aluminium foams considering the significance of their application for the technology of traffic and transport.The paper analyzes the influence of the chemical composition and density on the compression behaviour of aluminium foam. The aluminium foam samples were produced from Alulight precursor. The capability of samples to absorb mechanical energy has been estimated according to the results of compression tests. The tests were performed on a universal test machine. The test results showed that aluminium foams feature good energy absorption and the absorption capability decreases with the foam density. The Alulight AlMgSi 0.6 TiH2 - 0.4 foam can absorb more energy than Alulight AlSi 10 TiH2 – 0.8 foam.

  16. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  17. Cancer risk among workers of a secondary aluminium smelter.

    Science.gov (United States)

    Maltseva, A; Serra, C; Kogevinas, M

    2016-07-01

    Cancer risk in secondary aluminium production is not well described. Workers in this industry are exposed to potentially carcinogenic agents from secondary smelters that reprocess aluminium scrap. To evaluate cancer risk in workers in a secondary aluminium plant in Spain. Retrospective cohort study of male workers employed at an aluminium secondary smelter (1960-92). Exposure histories and vital status through 2011 were obtained through personal interviews and hospital records, respectively. Standardized mortality (SMRs) and incidence ratios (SIRs) were calculated. The study group consisted of 98 workers. We found increased incidence and mortality from bladder cancer [SIR = 2.85, 95% confidence interval (CI) 1.23-5.62; SMR = 5.90, 95% CI 1.58-15.11]. Increased incidence was also observed for prostate cancer and all other cancers but neither were statistically significant. No increased risk was observed for lung cancer. Results of this study suggest that work at secondary aluminium smelters is associated with bladder cancer risk. Identification of occupational carcinogens in this industry is needed. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Optical characterisation of cubic silicon carbide

    International Nuclear Information System (INIS)

    Jackson, S.M.

    1998-09-01

    The varied properties of Silicon Carbide (SiC) are helping to launch the material into many new applications, particularly in the field of novel semiconductor devices. In this work, the cubic form of SiC is of interest as a basis for developing integrated optical components. Here, the formation of a suitable SiO 2 buried cladding layer has been achieved by high dose oxygen ion implantation. This layer is necessary for the optical confinement of propagating light, and hence optical waveguide fabrication. Results have shown that optical propagation losses of the order of 20 dB/cm are obtainable. Much of this loss can be attributed to mode leakage and volume scattering. Mode leakage is a function of the effective oxide thickness, and volume scattering related to the surface layer damage. These parameters have been shown to be controllable and so suggests that further reduction in the waveguide loss is feasible. Analysis of the layer growth mechanism by RBS, XTEM and XPS proves that SiO 2 is formed, and that the extent, of formation depends on implant dose and temperature. The excess carbon generated is believed to exit the oxide layer by a number of varying mechanisms. The result of this appears to be a number of stable Si-C-O intermediaries that, form regions to either depth extreme of the SiO 2 layer. Early furnace tests suggest a need to anneal at, temperatures approaching the melting point of the silicon substrate, and that the quality of the virgin material is crucial in controlling the resulting oxide growth. (author)

  19. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    Gendt, D.

    2001-01-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  20. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Jensen, Jens Oluf; Bjerrum, Niels J.

    2014-01-01

    Alternative catalysts based on carbides of Group 5 (niobium and tantalum) and 6 (chromium, molybdenum and tungsten) metals were prepared as films on the metallic substrates. The electrochemical activities of these carbide electrodes towards the hydrogen evolution reaction (HER) in concentrated......, attributable to the different electronic structures. Tungsten carbide among the studied electrode samples exhibited the highest HER activity. Upon anodic potential scans in the presence of oxygen, chromium, tantalum and tungsten carbides displayed passivation due to the formation of stable surface layers...

  1. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, K. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)], E-mail: codl@sci.muni.cz; Stankova, A. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Haekkaenen, H.; Korppi-Tommola, J. [Department of Chemistry, University of Jyvaeskylae, P.O. BOX 35, FIN-40014 (Finland); Otruba, V.; Kanicky, V. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2007-12-15

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r{sup 2} > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r{sup 2} = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  2. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  3. Pulmonary response, in vivo, to silicon carbide whiskers.

    Science.gov (United States)

    Vaughan, G L; Trently, S A; Wilson, R B

    1993-11-01

    Fischer rats were exposed to silicon carbide whiskers (SiCW), boron carbide whiskers (BCW), silicon carbide platelets (SiCP), or crocidolite asbestos separately administered by intratracheal instillation. SiCW proved to be the most toxic material within the test group. Dramatic increases in alveolar macrophage populations within 1 week of exposure to SiCW persisted for at least 28 days, evidence of the chronic inflammation observed in necropsies during the first months of the study. The most common finding in histological preparations of tissues taken from animals 18 months after exposure to SiCW was a high incidence (frequency > 0.85) of multiple pulmonary granulomas which occasionally occluded airways. Lesions associated with crocidolite were similar to those found with SiCW. Equivalent treatment with BCW and SiCP produced no significant histological changes within 18 months of exposure.

  4. Method of producing high density silicon carbide product

    International Nuclear Information System (INIS)

    1981-01-01

    A method of sintering silicon carbide powders containing boron or boron - containing compounds as densification aids to produce a high-density silicon carbide ceramic material is described. It has been found that higher densification can be obtained by sintering the powders in an atmosphere containing boron. Boron may be introduced in the form of a gas, e.g. boron trichloride, mixed with the inert gas used, i.e. nitrogen, argon or helium, or boron compounds, e.g. boron carbide, may be applied to the interior of the sintering chamber as solutions or slurries. Alternatively a boron compound, per se, in the sintering chamber, or furnace components containing a significant amount of boron may be used. (U.K.)

  5. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  6. Carbides nucleation and growth processes in austenitic stainless steel

    International Nuclear Information System (INIS)

    Calvo, F.A.; Otero, E.; Ballester, A.; Leiro, J.

    1986-01-01

    The nucleation and growth process at some carbides with high chromium content inside an austenitic matrix corresponding to a 304 type inoxidable steel are studied. The precipitate growth seems to be controlled, at least at temperatures above 973 K, by the diffusion of carbon atoms from the matrix phase to the beginning of the second phase which is normally placed in the grain boundaries. A relationship between the percentage of precipitated carbide, as a function of the carbon excess in the saturated austenitic solid solution, and the time employed for each work temperature is established. From these data, some aspects relating to the morphologie, the carbide localization and the influence of these factors in the steel sensibilization to the grain corrosion, are interpreted. (author)

  7. Preparation of hafnium carbide by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hertz, Dominique.

    1974-01-01

    Hard, adhesive coatings of single-phase hafnium carbide were obtained by chemical vapor reaction in an atmosphere containing hafnium tetrachloride, methane and a large excess of hydrogen. By varying the gas phase composition and temperature the zones of formation of the different solid phases were studied and the growth of elementary hafnium and carbon deposits evaluated separately. The results show that the mechanism of hafnium carbide deposition does not hardly involve phenomene of homogeneous-phase methane decomposition or tetrachloride reduction by hydrogen unless the atmosphere is very rich or very poor in methane with respect to tetrachloride. However, hydrogen acting inversely on these two reactions, affects the stoichiometry of the substance deposited. The methane decomposition reaction is fairly slow, the reaction leading to hafnium carbide deposition is faster and that of tetrachloride reduction by hydrogen is quite fast [fr

  8. Ordering of carbon atoms in boron carbide structure

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, V. I., E-mail: i2212@yandex.ru; Kovalev, I. D.; Konovalikhin, S. V.; Vershinnikov, V. I. [Russian Academy of Sciences, Institute of Structural Macrokinetics and Materials Science (Russian Federation)

    2013-05-15

    Boron carbide crystals have been obtained in the entire compositional range according to the phase diagram by self-propagating high-temperature synthesis (SHS). Based on the results of X-ray diffraction investigations, the samples were characterized by the unit-cell metric and reflection half-width in the entire range of carbon concentrations. A significant spread in the boron carbide unit-cell parameters for the same carbon content is found in the data in the literature; this spread contradicts the structural concepts for covalent compounds. The SHS samples have not revealed any significant spread in the unit-cell parameters. Structural analysis suggests that the spread of parameters in the literary data is related to the unique process of ordering of carbon atoms in the boron carbide structure.

  9. Development of Gradient Cemented Carbides Through ICME Strategy

    Science.gov (United States)

    Du, Yong; Peng, Yingbiao; Zhang, Weibin; Chen, Weimin; Zhou, Peng; Xie, Wen; Cheng, Kaiming; Zhang, Lijun; Wen, Guanghua; Wang, Shequan

    An integrated computational materials engineering (ICME) including CALPHAD method is a powerful tool for materials process optimization and alloy design. The quality of CALPHAD-type calculations is strongly dependent on the quality of the thermodynamic and diffusivity databases. The development of a thermodynamic database, CSUTDCC1, and a diffusivity database, CSUDDCC1, for cemented carbides is described. Several gradient cemented carbides sintered under vacuum and various partial pressures of N2 have been studied via experiment and simulation. The microstructure and concentration profile of the gradient zones have been investigated via SEM and EPMA. Examples of ICME applications in design and manufacture for different kinds of cemented carbides are shown using the databases and comparing where possible against experimental data, thereby validating its accuracy.

  10. Microstructure and hydrogen dynamics in hydrogenated amorphous silicon carbides

    Science.gov (United States)

    Shinar, J.; Shinar, R.; Williamson, D. L.; Mitra, S.; Kavak, H.; Dalal, V. L.

    1999-12-01

    Small angle x-ray scattering (SAXS) and deuterium secondary-ion-mass spectrometry (DSIMS) studies of the microstructure and hydrogen dynamics in undoped rf-sputter-deposited (RFS) and undoped and boron-doped electron-cyclotron-resonance-deposited (ECR) hydrogenated amorphous silicon carbides (a-Si1-xCx:H) are described. In the RFS carbides with xcarbides with xBoron doping of the ECR carbides also reduced the bulklike Si-bonded H content, suggesting that it induces nanovoids, consistent with the observed suppression of long-range motion of most of the H and D atoms. However, a small fraction of the H atoms appeared to undergo fast diffusion, reminiscent of the fast diffusion in B-doped a-Si:H.

  11. Synthesis of carbides of refractory metals in salt melts

    International Nuclear Information System (INIS)

    Ilyushchenko, N.G.; Anfinogenov, A.I.; Chebykin, V.V.; Chernov, Ya.B.; Shurov, N.I.; Ryaposov, Yu.A.; Dobrynin, A.I.; Gorshkov, A.V.; Chub, A.V.

    2003-01-01

    The ion-electron melts, obtained through dissolving the alkali and alkali-earth metals in the molten chlorides above the chloride melting temperature, were used for manufacturing the high-melting metal carbides as the transport melt. The lithium, calcium and magnesium chlorides and the mixture of the lithium chloride with the potassium or calcium chloride were used from the alkali or alkali-earth metals. The metallic lithium, calcium, magnesium or the calcium-magnesium mixtures were used as the alkali or alkali-earth metals. The carbon black or sugar was used as carbon. It is shown, that lithium, magnesium or calcium in the molten salts transfer the carbon on the niobium, tantalum, titanium, forming the carbides of the above metals. The high-melting metal carbides are obtained both from the metal pure powders and from the oxides and chlorides [ru

  12. APT analysis of WC-Co based cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Weidow, Jonathan, E-mail: jonathan.weidow@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Andren, Hans-Olof [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2011-05-15

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. -- Research highlights: {yields} We develop a method for producing specimens from WC-Co based cemented carbides. {yields} Measure segregated atoms to an interface between phases with different field evaporation field. {yields} The interface chemistry in cemented carbides. {yields} The transition metal solubility in WC.

  13. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    Science.gov (United States)

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

  14. SYNTHESIS OF FUNCTIONALLY GRADED ALUMINIUM COMPOSITE AND INVESTIGATION ON ITS ABRASION WEAR BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    N. RADHIKA

    2017-05-01

    Full Text Available Functionally graded aluminium (Al-Si5Cu3 metal matrix composite reinforced with 10 wt-percent of boron carbide particles having average size of 33 µm was synthesized through horizontal centrifugal casting method. The specimen of length 150 mm and outer diameter of 154 mm with the thickness of 20 mm was produced under the centrifuging speed of 1000 rpm. Composite specimens were prepared as per ASTM standards from the casting and subjected to microstructural evaluation, hardness testing and three body abrasion wear test. The microstructural observation was done on the surfaces at the distance of 1, 2.5, 10 and 15 mm from the outer periphery of the casting and the result shows that larger amount of particles observed at distance of 2.5 mm and very less particles observed at the distance of 15 mm. The hardness test was conducted on the different surfaces in the radial direction from the outer periphery and found decrease in hardness from 2.5 to 15 mm. The abrasion wear test was conducted using dry abrasion tester for various loads of 28, 40 and 52 N at different distances from the outer periphery of the casting and the results revealed that wear rate gradually increases when moving towards the inner periphery and also with the increasing load. Therefore higher wear resistance was observed at the outer periphery and the lower wear resistance was obtained at the inner periphery. This property makes them suitable for using in wear applications such as in cylinder liners.

  15. IEC 61267: Feasibility of type 1100 aluminium and a copper/aluminium combination for RQA beam qualities.

    Science.gov (United States)

    Leong, David L; Rainford, Louise; Zhao, Wei; Brennan, Patrick C

    2016-01-01

    In the course of performance acceptance testing, benchmarking or quality control of X-ray imaging systems, it is sometimes necessary to harden the X-ray beam spectrum. IEC 61267 specifies materials and methods to accomplish beam hardening and, unfortunately, requires the use of 99.9% pure aluminium (Alloy 1190) for the RQA beam quality, which is expensive and difficult to obtain. Less expensive and more readily available filters, such as Alloy 1100 (99.0% pure) aluminium and copper/aluminium combinations, have been used clinically to produce RQA series without rigorous scientific investigation to support their use. In this paper, simulation and experimental methods are developed to determine the differences in beam quality using Alloy 1190 and Alloy 1100. Additional simulation investigated copper/aluminium combinations to produce RQA5 and outputs from this simulation are verified with laboratory tests using different filter samples. The results of the study demonstrate that although Alloy 1100 produces a harder beam spectrum compared to Alloy 1190, it is a reasonable substitute. A combination filter of 0.5 mm copper and 2 mm aluminium produced a spectrum closer to that of Alloy 1190 than Alloy 1100 with the added benefits of lower exposures and lower batch variability. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  17. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures....

  18. Effect of carbides on erosion resistance of 23-8-N steel

    Indian Academy of Sciences (India)

    Microstructure is one of the most important parameters influencing erosion behaviour of materials. The role of carbides in the matrix is very complicated in controlling the erosion rate of the materials. Conflicting results have been reported in the literature about the effect of carbides on erosion resistance. Carbides are of ...

  19. Recovery of pure slaked lime from carbide sludge: Case study of ...

    African Journals Online (AJOL)

    Adaobi

    Carbide sludge is the by-product of reaction between calcium carbide and water in the production of ... soluble in water. The optimum percentage yield was 78.2% at a ratio of 1:1000(w/v) of sludge to water held for 24 h at room temperature. Key words: Carbide, recovery, ..... calcium carbonate and other calcium products.

  20. Fire design of aluminium structures according to Eurocode 9; Part 1-2

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.

    2007-01-01

    There is a tendency to use aluminium as structural material in heavily loaded structures. In a number of these structures, the resistance to fire should be considered in the structural design. Because of the low melting temperature of aluminium, aluminium structures are sensitive to fire and extra

  1. Light-weight aluminium bridges and bridge decks. An overview of recent applications

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Kluyver, D. de

    2008-01-01

    The last decades have shown a large increase in the application of aluminium alloys for light-weight bridges. For bridge construction, aluminium alloys have some specific advantages, but also some points of attention. This paper deals with some recent projects of aluminium bridges, and for these

  2. Structural perturbation of diphtheria toxoid upon adsorption to aluminium hydroxide adjuvant

    NARCIS (Netherlands)

    Regnier, M.; Metz, B.; Tilstra, W.; Hendriksen, C.; Jiskoot, W.; Norde, W.; Kersten, G.

    2012-01-01

    Aluminium-containing adjuvants are often used to enhance the potency of vaccines. In the present work we studied whether adsorption of diphtheria toxoid to colloidal aluminium hydroxide induces conformational changes of the antigen. Diphtheria toxoid has a high affinity for the aluminium hydroxide

  3. PEMBINAAN PENGERAJIN BOKOR ALUMINIUM DI DESA MENYALI

    Directory of Open Access Journals (Sweden)

    I NYOMAN GDE ANTARA, dkk.

    2014-04-01

    Full Text Available Alluminium bowl craft industrial center is located in Menyali village Sawan district Buleleng regency of Bali province. In this business development, they faced some problems such as increasingly expensive alluminium plate raw materials, decreasing selling product prices due to competition among craftsmen, difficulty in extending the marketing, lack of capital, lack of knowledge in business management, and lack of technical capacity and production innovation. Currently the organization has been formed aluminum bowl craftsmen groups, they are “Sumber Urip” and “Sumur Jaya”. This organization is still limited to tradisional associations such as a community organization, has not led to organize in a micro-enterprise or cooperation. Their organization management should not be arranged. Therefore, they need helps from the government and other institutions to build this bowl craftsmen in developing their businesses through a group of micro-enterprises or cooperations. Wishly, with formal business entity that would facilitate access to a variety of coaching and help governments andother institutions. From the SWOT analysis, it is found some problems and solutions that should be done. Alluminium bowl craftsmen groups, named “Sumber Urip” and “Sumur Jaya” is not in the form of business entity or cooperation yet, so that the results of coaching have agreed to form a cooperation. Venture capital assistance for the development and production are still needed and to be an absolute given, but a way to market more absolute yield is given, through participation in various events exhibition to introduce the product is expected to expandits market share up to overseas or exports. In the production process it has been introduced that is appropriate technology for instant a rolling tool to make a wiring groove on the outside of the bowl, so that it will simplify and speed up the process, especially by aged mothers.Keywords: aluminium bowl, Menyali

  4. Behaviour of painted aluminium in Ibero-American atmosphere

    International Nuclear Information System (INIS)

    Morcillo, M.; Simancas, J.; Corvo, F.; Rosales, B.; Fragata, F.; Pena, J.; Sanchez, M.; Flores, S.; Almeida, E.; Rivero, S.; Rincon, O. T. de

    2003-01-01

    Aluminium generally presents good corrosion resistance to the atmosphere. However, unprotected aluminium and aluminium alloys weather outdoors to an ugly grey colour, which deepens to black in industrial atmospheres, and undergo superficial pitting in marine atmospheres, etc. Finishing technologies are applied for their protection and decoration in a wide range of applications. These technologies basically consist of two protection processes: anodizing and painting: the latter going from conventional solvent base paints to modern water-born, high solids and powder coatings. This paper considers the weathering performance of three paint systems: alkyl, polyurethane and polyester, after more than three years of exposure in a wide spectra of Ibero-American atmospheric conditions. The information reported includes resistance to undercutting corrosion at the scribe, filiform corrosion, fungal attack and change in the physico-chemical properties of the paint surface (loss of gloss, colour changes, chalking, etc.). (Author) 9 refs

  5. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Directory of Open Access Journals (Sweden)

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  6. Optically Designed Anodised Aluminium Surfaces: Microstructural and Electrochemical Aspects

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy

    was studied in-situ in a transmission electron microscope and also ex-situ using grazing incidence X-ray diffraction. The Al-Metal oxide surface composites based on TiO2, Y2O3, and CeO2 prepared by friction stir processing were employed to generate light scattering anodised surfaces by embedding oxide...... industry. Conventional colouring techniques applied to anodised aluminium surfaces cannot generate glossy white appearing surfaces due to the fundamental differences in the interaction with visible light that is required. Surfaces appearing as perfect white are due to the scattering of visible light......This thesis presents the research work aimed at generating anodised aluminium surfaces with bright, white, and glossy decorative appearance. The aluminium surface finishing industry has been on the lookout for such surfaces due to their potential applications in aerospace, architecture, and design...

  7. Comparative performance of aluminium copper and iron solar stills

    International Nuclear Information System (INIS)

    Dioha, I.J.; Nwagbo, E.E.; Gulma, N.A.

    1990-12-01

    Three different metal sheets have been used in the fabrication of three different single sloping solar stills of the same surface geometry. The metals were galvanized iron, aluminium and copper. This paper presents the performance of the different stills operating under the same environmental conditions. The observed distillate yields was greatest for copper, then aluminium and lastly, iron still. The differences in the yields is attributed to the differences in the thermal conductivities of the metals. The equivalent local costs for the fabrication of the copper, aluminium and iron stills are respectively $160, $95 and $60. Taking the long run costs into consideration, the copper still is preferred because of its availability, durability, weldability and relatively higher conductivity of 380Wm -1 K -1 value. (author). 9 refs, 2 figs, 2 tabs

  8. Quantitative electron probe microanalysis of borides in aluminium

    International Nuclear Information System (INIS)

    Karduck, P.; Schuerhoff, H.J.; Burchard, W.G.

    1983-01-01

    A procedure for the quantitative analysis of borides in aluminium was introduced. For this purpose the optimal apparative boundary conditions for the EPMA of boron were worked out. With these conditions a satisfactory peak to background ratio of 57 could be achieved for B-Kα-radiation. By application of this method the following conclusion should be drawn concerning the kind of nuclei during grain refinement of aluminium with titanium and boron: For grain refinement of aluminium with titanium and boron in the hypoperitectic region of the binary system Al-Ti TiB 2 -particles in clusters provide the high efficiency of refinement. This entails that the TiB 2 -particles already present in the master alloy remain inert in the melt. Hence, the good efficiency of refinement in this region cannot be attributed to the presence of particles like Al 3 Ti, AlB 2 or (Al, Ti) B 2 . (Author)

  9. Aluminium supplier selection for the automotive parts manufacturer

    Directory of Open Access Journals (Sweden)

    M. Cieśla

    2016-04-01

    Full Text Available This paper presents a methodology for selection of the optimal sources of supply, which is also known as the problem of supplier selection. Theoretical considerations are expanded with research related to aluminium supplier selection for a hypothetical manufacturer of aluminium parts for transportation equipment located in Poland. Evaluation of five suppliers of aluminium from Poland, Germany and Slovenia has been conducted using a weighted scoring method, a strengths and weaknesses method and a graphical method. Choosing the best offer and prioritizing suppliers allows not only the most rational decision in the field of supply logistics to be taken but also the quality of service in the metallurgical industry to be improved.

  10. Nonmetal effect on ordering structures in titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.; Ehm, V.T.; Savenko, B.M.

    1997-01-01

    The effect of oxygen and nitrogen atoms on formation of intermediate, cubic and trigonal ordering structures in the titanium carbide is studied through the roentgenography and neutron radiography methods. Metal atoms in the TiC 0.545 O 0.08 , TiC 0.545 N 0.09 samples under study are shifted from ideal positions in the direction from vacancies to metalloid atoms. In the intermediate cubic phase the values of the titanium atoms free parameter in both samples are identical, but they differ from analogous values in the titanium carbide

  11. Shock-induced localized amorphization in boron carbide.

    Science.gov (United States)

    Chen, Mingwei; McCauley, James W; Hemker, Kevin J

    2003-03-07

    High-resolution electron microscope observations of shock-loaded boron carbide have revealed the formation of nanoscale intragranular amorphous bands that occur parallel to specific crystallographic planes and contiguously with apparent cleaved fracture surfaces. This damage mechanism explains the measured, but not previously understood, decrease in the ballistic performance of boron carbide at high impact rates and pressures. The formation of these amorphous bands is also an example of how shock loading can result in the synthesis of novel structures and materials with substantially altered properties.

  12. Metallic component with a chromium carbide base protective coating

    International Nuclear Information System (INIS)

    Wolfla, T.A.; Tucker, R.C. Jr.

    1976-01-01

    The invention concerns a coating system to protect metal components in sodium and helium cooled nuclear reactors. It includes a nickel or iron based alloy metal substrate, a first coat formed on the substrate and comprising chromium carbides and a binder selected among the chromium-nickel, chromium-cobalt, chromium-iron alloys and the super-alloys, the first coating being between 25 and 380 microns thick, and a surface coating comprising pure chromium carbides and being between 12.5 and 125 microns thick [fr

  13. Multifractal characterization of epitaxial silicon carbide on silicon

    Directory of Open Access Journals (Sweden)

    Ţălu Ştefan

    2017-10-01

    Full Text Available The purpose of this study was to investigate the topography of silicon carbide films at two steps of growth. The topography was measured by atomic force microscopy. The data were processed for extraction of information about surface condition and changes in topography during the films growth. Multifractal geometry was used to characterize three-dimensional micro- and nano-size features of the surface. X-ray measurements and Raman spectroscopy were performed for analysis of the films composition. Two steps of morphology evolution during the growth were analyzed by multifractal analysis. The results contribute to the fabrication of silicon carbide large area substrates for micro- and nanoelectronic applications.

  14. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  15. PEMBUATAN MMC BERBASIS TEKNOLOGI METALURGI SERBUK DENGAN BAHAN BAKU ALUMINIUM DARI LIMBAH KALENG MINUMAN DAN ADITIF ABU SEKAM PADI

    Directory of Open Access Journals (Sweden)

    M. Akrom

    2016-09-01

    Full Text Available Komposit matriks logam (aluminium yang berasal dari limbah kaleng minuman dengan penguat partikel silikon karbida danpenguat tambahan abu sekam padi telah berhasil difabrikasi dengan metode teknologi metalurgi serbuk. Tujuan dari penelitian iniadalah merekayasa material baru yang murah akan tetapi memiliki mutu dan daya saing yang sangat baik. Penelitian ini terdiri daribeberapa tahap yakni, pembuatan bahan baku, pencampuran, pencetakan sampel, sintering dan pengujian. Dari hasil pengujianfisik diperoleh bahwa komposit matrik logam dengan penambahan abu sekam padi memiliki kerapatan lebih rendah dibandingkandengan komposit Al/SiC tanpa sekam padi, sedangkan sifat kekerasan dan kekuatannya jauh lebih besar dibandingkan Al/SiCtanpa penambahan abu sekam padi. Dari analisis XRD ditemukan bahwa terjadi penyebaran unsur utama Al, Si, senyawa SiC,serta timbul senyawa stabil MgAl O , Al O yang bersifat konstruktif yang dapat memberikan sifat mekanis yang baik bagi komposit,dan senyawa destruktif Al C yang bersifat korosif. Analisis SEM menunjukkan ukuran butiran partikel yang cenderung lebar danmemanjang, ikatan antar partikel penyusun bahan yang terbentuk cukup baik, sehingga memberikan sifat mekanis bahan yangbaik.Tidak tampaknya pori-pori bahan menunjukkan pula bahwa ikatan partikel antar bahan cukup baik. Metal (aluminium matrix composite originated from beverage can waste with carbide silicon particle reinforcement and additionalreinforcement of paddy chaff ash has been fabricated successfully by employing powder metallurgy technology method. Thepurpose of the research is to create a cheap new material, qualified and having high competitive value. This research wasconducted through several stages, those were making raw material, mixing, sample moulding, sintering, and testing. The result ofphysical test shows that metal matrix composite added by paddy chaff ash has lower density, stronger and bigger power comparedto Al/SiC composite without

  16. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    Science.gov (United States)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  17. Simultaneous determination of aluminium and phosphorus by neutron activation analysis

    International Nuclear Information System (INIS)

    Gatschke, W.; Gawlik, D.

    1980-01-01

    With the use of the pneumatic tube system of the BER II reactor, the irradiation position of which is equipped with a movable cadmium shield, the aluminium and phosphorus levels in bone powder and in human bone biopsies were determined. The contribution of aluminium and phosphorus to the 28 Al activity could be separated mathematically after the samples had been irradiated with and without cadmium shielding. The sensitivity and limit of quantitative determination of the analytical procedure were determined using the addition method and the fact that the levels of each element measured was independent of the amount of the other element was proved. (author)

  18. Bioactive type glass-ceramics within incorporated aluminium

    International Nuclear Information System (INIS)

    Volzone, C.; Stabile, F.M.; Ortiga, J.

    2012-01-01

    Bioactive glass-ceramics are used as biomaterials for the reparation of bone tissue. They are prepared, generally, by bioglass of specific composition for each particular use. The aluminium addition in the formulation at very small quantities influences on the structural properties. Two glass-ceramics obtained by P 2 O 5 -Na 2 O-CaO-SiO 2 formulation within aluminium (0.5 % in Al 2 O 3 base) added through a reactive alumina and purified feldspar were analyzed. The results showed structural differences between both glass-ceramics. (author)

  19. Fatigue behaviour of GMAW welded aluminium alloy AA7020

    OpenAIRE

    Bloem, Carlos; Salvador Moya, Mª Dolores; Amigó, Vicente; Vicente-Escuder, Ángel

    2009-01-01

    [EN] The aim of this investigation is to evaluate the influence on fatigue behaviour of the finishing of the bulge in a welded aluminium zinc magnesium alloy AA7020. It was determined that total or partial elimination of the bulge has very little influence on its behaviour, giving a very similar result on both cases, where one is better than the other by only 3%. Bloem, C.; Salvador Moya, MD.; Amigó, V.; Vicente-Escuder, Á. (2009). Fatigue behaviour of GMAW welded aluminium alloy AA7020. W...

  20. Axillary hyperhidrosis treated with alcoholic solution of aluminium chloride hexahydrate.

    Science.gov (United States)

    Scholes, K T; Crow, K D; Ellis, J P; Harman, R R; Saihan, E M

    1978-01-01

    Sixty-five patients with axillary hyperhidrosis took part in a trial of treatment with a solution of 20% aluminium chloride hexahydrate in absolute alcohol, applied topically each night for a week and then whenever the patient thought it necessary. Excellent control of sweating was achieved in 64 patients, and occlusion of the area was found to be unnecessary. No troublesome side effects were reported. The results of this study indicate that 20% aluminium chloride hexahydrate in absolute alcohol is the treatment of first choice for patients with axillary hyperhidrosis. PMID:667571

  1. Transport phenomena of aluminium oxide in metal halide lamps

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S; Markus, T [Institute for Energy Research, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Niemann, U [Philips GmbH, Research Laboratories, PO Box 500145, Aachen, D-52085 (Germany)], E-mail: s.fischer@fz-juelich.de

    2008-07-21

    A better understanding of the transport phenomena observed in metal halide lamps can be achieved using computer-based model calculations. The chemical transport of aluminium oxide in advanced high-pressure discharge vessels was calculated as a function of temperature and composition of the salt mixture relevant to the lamp. Below 1773 K chemical transport is the prevailing process; above this temperature the vaporization and condensation of the envelope material-aluminium oxide-become more important. The results of the calculations show that the amount of transported alumina increases linearly with the number of iteration cycles and exponentially with the temperature gradient.

  2. Determination of cadmium in aluminium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.

    1978-12-01

    A direct method for the determination of cadmium in elemental aluminium is described. Metal samples are dissolved in diluted hydrochloric acid and cadmium is determined by atomic absorption spectrometry in an air-acetylene flame. Interference by non-specific absorption observed at the analytical wavelength incorrected for by means of a non-absorbing line emitted by the hollow-cathode lamp. Relatively large amounts of arsenic do not interfere. The minimun determinable concentration of cadmium for this procedure is 2-3 ppm, expressed on aluminium basis. (author) [es

  3. Towards an understanding of the adjuvant action of aluminium

    Science.gov (United States)

    Marrack, Philippa; McKee, Amy S.; Munks, Michael W.

    2011-01-01

    The efficacy of vaccines depends on the presence of an adjuvant in conjunction with the antigen. Of these adjuvants, the ones that contain aluminium, which were first discovered empirically in 1926, are currently the most widely used. However, a detailed understanding of their mechanism of action has only started to be revealed. In this Timeline article, we briefly describe the initial discovery of aluminium adjuvants and discuss historically important advances. We also summarize recent progress in the field and discuss their implications and the remaining questions on how these adjuvants work. PMID:19247370

  4. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid

    2014-01-01

    of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types...... of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie–Baxter to Wenzel regime upon changing the surface roughness was also observed....

  5. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Jinwei, E-mail: jwchen@scu.edu.cn; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin, E-mail: rl.wang@scu.edu.cn

    2016-12-15

    Graphical abstract: A hybrid catalyst was prepared via a quite green and simple method to achieve an one-pot synthesis of the N-doping carbon, tungsten carbides, and iron/cobalt carbides. It exhibited comparable electrocatalytic activity, higher durability and ability to methanol tolerance compared with commercial Pt/C to ORR. - Highlights: • A novel type of hybrid Fe/Co/WC@NC catalysts have been successfully synthesized. • The hybrid catalyst also exhibited better durability and methanol tolerance. • Multiple effective active sites of Fe{sub 3}C, Co{sub 3}C, WC, and NC help to improve catalytic performance. - Abstract: This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe{sub 3}C and Co{sub 3}C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe{sub 3}C, and Co{sub 3}C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  6. Accumulation of Aluminium and Physiological Status of Tree Foliage in the Vicinity of a Large Aluminium Smelter

    Directory of Open Access Journals (Sweden)

    E. D. Wannaz

    2012-01-01

    Full Text Available A pollution gradient was observed in tree foliage sampled in the vicinity of a large aluminium production facility in Patagonia (Argentina. Leaves of Eucalyptus rostrata, and Populus hybridus and different needle ages of Pinus spec. were collected and concentrations of aluminium (Al and sulphur (S as well as physiological parameters (chlorophyll and lipid oxidation products were analyzed. Al and S concentrations indicate a steep pollution gradient in the study showing a relationship with the physiological parameters in particular membrane lipid oxidation products. The present study confirms that aluminium smelting results in high Al and sulphur deposition in the study area, and therefore further studies should be carried out taking into account potentially adverse effects of these compounds on human and ecosystem health.

  7. Do oral aluminium phosphate binders cause accumulation of aluminium to toxic levels?

    Directory of Open Access Journals (Sweden)

    Roberts Norman B

    2011-10-01

    Full Text Available Abstract Background Aluminium (Al toxicity was frequent in the 1980s in patients ingesting Al containing phosphate binders (Alucaps whilst having HD using water potentially contaminated with Al. The aim of this study was to determine the risk of Al toxicity in HD patients receiving Alucaps but never exposed to contaminated dialysate water. Methods HD patients only treated with Reverse Osmosis(RO treated dialysis water with either current or past exposure to Alucaps were given standardised DFO tests. Post-DFO serum Al level > 3.0 μmol/L was defined to indicate toxic loads based on previous bone biopsy studies. Results 39 patients (34 anuric were studied. Mean dose of Alucap was 3.5 capsules/d over 23.0 months. Pre-DFO Al levels were > 1.0 μmol/L in only 2 patients and none were > 3.0 μmol/L. No patients had a post DFO Al levels > 3.0 μmol/L. There were no correlations between the serum Al concentrations (pre-, post- or the incremental rise after DFO administration and the total amount of Al ingested. No patients had unexplained EPO resistance or biochemical evidence of adynamic bone. Conclusions Although this is a small study, oral aluminium exposure was considerable. Yet no patients undergoing HD with RO treated water had evidence of Al toxicity despite doses equivalent to 3.5 capsules of Alucap for 2 years. The relationship between the DFO-Al results and the total amount of Al ingested was weak (R2 = 0.07 and not statistically significant. In an era of financial prudence, and in view of the recognised risk of excess calcium loading in dialysis patients, perhaps we should re-evaluate the risk of using Al-based phosphate binders in HD patients who remain uric.

  8. A Numerical Analysis of the Resistance and Stiffness of the Aluminium and Concrete Composite Beam

    Directory of Open Access Journals (Sweden)

    Polus Łukasz

    2015-03-01

    Full Text Available In this paper a numerical analysis of the resistance and stiffness of the aluminium and concrete composite beam is presented. Composite aluminium and concrete structures are quite new and they have not been thoroughly tested. Composite structures have a lot of advantages. The composite aluminium and concrete beam is more corrosion-resistant, fire-resistant and stiff than the aluminium beam. The contemporary idea of sustainable buildings relies on new solutions which are more environmentally friendly. Aluminium is lighter and more resistant to corrosion than steel, which is often used in composite structures.

  9. Growth stress in tungsten carbide-diamond-like carbon coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Arnoldbik, W.M.; Sloof, W.G.; Janssen, G.C.A.M.

    2009-01-01

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM)

  10. RICE-HUSK ASH-CARBIDE-WASTE STABILIZATION OF ...

    African Journals Online (AJOL)

    This paper present results of the laboratory evaluation of the characteristics of carbide waste and rice husk ash stabilized reclaimed asphalt pavement waste with a ... of 5.7 % and resistance to loss in strength of 84.1 %, hence the recommendation of the mixture for use as sub-base material in flexible pavement construction.

  11. High-hardness ceramics based on boron carbide fullerite derivatives

    Science.gov (United States)

    Ovsyannikov, D. A.; Popov, M. Yu.; Perfilov, S. A.; Prokhorov, V. M.; Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2017-02-01

    A new type of ceramics based on the phases of fullerite derivatives and boron carbide B4C is obtained. The material is synthesized at a temperature of 1500 K and a relatively low pressure of 4 GPa; it has a high hardness of 45 GPa and fracture toughness of 15 MPa m1/2.

  12. Stabilization of Ikpayongo laterite with cement and calcium carbide ...

    African Journals Online (AJOL)

    Laterite obtained from Ikpayongo was stabilized with 2-10 % cement and 2-10 % Calcium Carbide waste, for use as pavement material. Atterberg's limits test, California bearing ratio (CBR) and unconfined compressive strength (UCS) tests were conducted on the natural laterite and the treated soil specimens. The plasticity ...

  13. Production of a negative 14C beam from tantalum carbides

    International Nuclear Information System (INIS)

    Dumail, M.

    1978-01-01

    In order to obtain several tens nano Amps negative 14 C beam for the Orsay MP Tandem in good conditions of yield and safety, a method for fabrication of polycristalline Ta carbides (Ta 2 C, TaC) has been developped, allowing only one handling [fr

  14. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric ...

  15. Hollow microspheres with a tungsten carbide kernel for PEMFC application.

    Science.gov (United States)

    d'Arbigny, Julien Bernard; Taillades, Gilles; Marrony, Mathieu; Jones, Deborah J; Rozière, Jacques

    2011-07-28

    Tungsten carbide microspheres comprising an outer shell and a compact kernel prepared by a simple hydrothermal method exhibit very high surface area promoting a high dispersion of platinum nanoparticles, and an exceptionally high electrochemically active surface area (EAS) stability compared to the usual Pt/C electrocatalysts used for PEMFC application.

  16. Effect of tempering after cryogenic treatment of tungsten carbide ...

    Indian Academy of Sciences (India)

    Keywords. Cryogenic treatment; tungsten carbide–cobalt; SEM; XRD; microhardness. 1. Introduction. Tungsten carbide tools can machine metals at speeds that cause the cutting edge to become red hot, without losing its hardness or sharpness. It exhibits about 2–3 times the produc- tivity and 10 times the life of high-speed ...

  17. Highly permeable and mechanically robust silicon carbide hollow fiber membranes

    NARCIS (Netherlands)

    de Wit, Patrick; Kappert, Emiel; Lohaus, T.; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck Edwin

    2015-01-01

    Silicon carbide (SiC) membranes have shown large potential for applications in water treatment. Being able to make these membranes in a hollow fiber geometry allows for higher surface-to-volume ratios. In this study, we present a thermal treatment procedure that is tuned to produce porous silicon

  18. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Phenolic resin; nanometric silicon carbide; nanocomposites; friction coefficient. 1. Introduction. Phenolic resin composites have their applications in a wide range of fields ... Curing time and temperature as well as mold materials influence the resulting homogeneity, glass transition temperature and mechanical properties.

  19. Ultrafast nonlinear response of silicon carbide to intense THz fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Kaltenecker, Korbinian J.

    2017-01-01

    We demonstrate ultrafast nonlinear absorption induced by strong, single-cycle THz fields in bulk, lightly doped 4H silicon carbide. A combination of Zener tunneling and intraband transitions makes the effect as at least as fast as the excitation pulse. The sub-picosecond recovery time makes...

  20. Influence of nanometric silicon carbide on phenolic resin composites

    Indian Academy of Sciences (India)

    The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric ...

  1. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 µm and. 25 µm, and a sintered silicon ... the sintered silicon carbide was found out to be linked to its previous thermal history. Keywords. Indentation fatigue .... This presence of a grain size effect in the RIF behaviour of the ...

  2. Protective infrared antireflection coating based on sputtered germanium carbide

    Science.gov (United States)

    Gibson, Des; Waddell, Ewan; Placido, Frank

    2011-09-01

    This paper describes optical, durablility and environmental performance of a germanium carbide based durable antireflection coating. The coating has been demonstrated on germanium and zinc selenide infra-red material however is applicable to other materials such as zinc sulphide. The material is deposited using a novel reactive closed field magnetron sputtering technique, offering significant advantages over conventional evaporation processes for germanium carbide such as plasma enhanced chemical vapour deposition. The sputtering process is "cold", making it suitable for use on a wide range of substrates. Moreover, the drum format provide more efficient loading for high throughput production. The use of the closed field and unbalanced magnetrons creates a magnetic confinement that extends the electron mean free path leading to high ion current densities. The combination of high current densities with ion energies in the range ~30eV creates optimum thin film growth conditions. As a result the films are dense, spectrally stable, supersmooth and low stress. Films incorporate low hydrogen content resulting in minimal C-H absorption bands within critical infra-red passbands such as 3 to 5um and 8 to 12um. Tuning of germanium carbide (Ge(1-x)Cx) film refractive index from pure germanium (refractive index 4) to pure germanium carbide (refractive index 1.8) will be demonstrated. Use of film grading to achieve single and dual band anti-reflection performance will be shown. Environmental and durability levels are shown to be suitable for use in harsh external environments.

  3. PECVD silicon carbide surface micromachining technology and selected MEMS applications

    NARCIS (Netherlands)

    Rajaraman, V.; Pakula, L.S.; Yang, H.; French, P.J.; Sarro, P.M.

    2011-01-01

    Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with

  4. SEM investigation of minor constituents of carbide materials ...

    Indian Academy of Sciences (India)

    1267–1271. c Indian Academy of Sciences. SEM investigation of minor constituents of carbide materials ... distribution of admixture constituents. It is found that the most common minor phase represents Al–Fe–Si–C-based alloys. ... into pellets of 20 mm in diameter and 15 mm in thickness which were heated up to 1700.

  5. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  6. Standard specification for nuclear-Grade boron carbide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This specification applies to boron carbide pellets for use as a control material in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  7. Effect of tempering after cryogenic treatment of tungsten carbide ...

    Indian Academy of Sciences (India)

    Cryogenic treatment is a recent advancement in the field of machining to improve the properties of cutting tool materials. Tungsten carbide is the most commonly used cutting tool material in the industry and the technique can also be extended to it. Although the importance of tempering after cryogenic treatment has been ...

  8. Synthesis of carbon fibre-reinforced, silicon carbide composites by ...

    Indian Academy of Sciences (India)

    Verrilli M J, Opila E J, Calomino A and Kiser J D 2004 Effect of environment on the stress–rupture behavior of a carbon-fibre-reinforced silicon carbide ceramic matrix composite, J. Am. Ceram. Soc. 87(8): 1536–. 1542. Zhang Q and Li G 2009 A review of the application of C/SiC composites in thermal protection system,.

  9. Neuro - Fuzzy Analysis for Silicon Carbide Abrasive Grains ...

    African Journals Online (AJOL)

    The manufacture of abrasives in Nigeria has been severely impeded by the difficulty of identifying suitable local raw materials and the associated local formulation for abrasives with global quality standards. This paper presents a study on application of neuro fuzzy to the formulation of silicon carbide abrasives using locally ...

  10. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  11. Production of boron carbide powder by carbothermal synthesis of ...

    Indian Academy of Sciences (India)

    TECS

    weight armour plates etc (Alizadeh et al 2004). It can also be used as a reinforcing material for ceramic matrix composites. It is an excellent neutron absorption material in nuclear industry due to its high neutron absorption co- efficient (Sinha et al 2002). Boron carbide can be prepared by reaction of elemental boron and ...

  12. Mechanistic Evaluation of the Effect of Calcium Carbide Waste on ...

    African Journals Online (AJOL)

    OLUWASOGO

    assessed using the Marshall method of mix design. ... KEYWORDS: Calcium Carbide Waste, Asphalt, Portland cement, Mineral Filler, Mechanical Properties. ... filling materials. Different researchers have investigated the use of CCW in concrete works (Nattapong et al., 2010, Heni et al., 2014,. Hongfang et al., 2015) and soil ...

  13. Mechanistic evaluation of the effect of calcium carbide waste on ...

    African Journals Online (AJOL)

    Calcium Carbide Waste (CCW) was used as an alternative to traditional Portland cement mineral filler in hot mix asphalt concrete to rid its disposal problem. Its effect on mechanical properties of hot mix asphalt was assessed using the Marshall method of mix design. Using the optimum bitumen content determined from ...

  14. On Measurement and Interpretation of Toughness Behaviour of Carbide Tools

    NARCIS (Netherlands)

    Kals, H.J.J.

    1981-01-01

    The actual significance of any definition of toughness behaviour of carbide tools depends on the existence of an interrelation between the quality as defined and the occurrence of chipping and premature failure in cutting. While at present there is no adequate analysis available and the existing

  15. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...

  16. The synthesis of titanium carbide-reinforced carbon nanofibers

    Science.gov (United States)

    Zhu, Pinwen; Hong, Youliang; Liu, Bingbing; Zou, Guangtian

    2009-06-01

    Tailoring hard materials into nanoscale building blocks can greatly extend the applications of hard materials and, at the same time, also represents a significant challenge in the field of nanoscale science. This work reports a novel process for the preparation of carbon-based one-dimensional hard nanomaterials. The titanium carbide-carbon composite nanofibers with an average diameter of 90 nm are prepared by an electrospinning technique and a high temperature pyrolysis process. A composite solution containing polyacrylonitrile and titanium sources is first electrospun into the composite nanofibers, which are subsequently pyrolyzed to produce the desired products. The x-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The Raman analyses show that the composite nanofibers have low graphite clusters in comparison with the pure carbon nanofibers originating from the electrospun polyacrylonitrile nanofibers. The mechanical property tests demonstrate that the titanium carbide-carbon nanofiber membranes have four times higher tensile strength than the carbon nanofiber membranes, and the Young's modulus of the titanium carbide-carbon nanofiber membranes increases in direct proportion to the titanium quantity.

  17. Friction and wear of stainless steel, titanium and aluminium with various surface treatments, ion implantation and overlay hard coatings

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1979-01-01

    This paper deals with the evaluation of the wear properties of 304 stainless steel, commercial grade titanium and commercial grade aluminium without and with different surface treatments, i.e., ion implantation of boron and nitrogen, and overlay coating of superhard materials, titanium carbide and nitride by the Biased Activated Reactive Evaporation (BARE) process. Wear properties were evaluated in adhesive, erosive and abrasive modes of wear. In the case of adhesive wear, ion implantation resulted in an improved wear behaviour in lubricated conditions but had no beneficial effect in dry wear conditions. Overlay coatings on the other hand resulted in improved wear behaviour for both the dry and lubricating conditions. In the case of erosive wear with SiC particles at high velocities, overlay coatings showed higher erosion rates (typical of brittle materials in normal impingement) whereas ion implanted materials behaved similarly as untreated materials; i.e., a lower wear rate than the specimens with overlay coatings. In the case of abrasive wear, it was again observed that the wear rates of overlay coatings is far lower than the wear rates of untreated or ion implanted materials. (author)

  18. Influence of vegetable based cutting fluids on cutting force and vibration signature during milling of aluminium metal matrix composites

    Directory of Open Access Journals (Sweden)

    S. Shankar

    2017-03-01

    Full Text Available Due to the environmental and health issues, there is an enormous requirement for developing the novel cutting fluids (CFs. The vegetable based cutting fluid (VBCFs doesn’t affect the environment, diminish the harmful effects to the operator and also enhance the machining performances such as surface roughness, tool life, minimum vibration and cutting forces. In this work, the performances of four different VBCFs like palm, coconut, sunflower, soya bean oils, and a commercial type of CFs were considered to analyze the influence of cutting fluids while measuring the cutting force and vibration signatures during milling of 7075–T6 hybrid aluminium metal matrix composite with carbide insert tool. The experiments were conducted in CNC L-MILL 55 vertical machining center, with milling tool dynamometer to measure the cutting force and a tri-axial accelerometer to measure the vibration signals. The flow rate of the VBCFs were maintained at a constant rate and the results were compared with a commercial cutting fluid. The obtained result shows that palm oil suits better than the other vegetable based cutting fluids in terms of minimum cutting force requirement and minimum vibration. Also, the experimental result shows that the cutting fluid was one of the important parameter needs to be considered which influences the cutting force and vibration signals.

  19. Investigation on mechanical behavior and material characteristics of various weight composition of SiCp reinforced aluminium metal matrix composite

    Science.gov (United States)

    Pichumani, Sivachidambaram; Srinivasan, Raghuraman; Ramamoorthi, Venkatraman

    2018-02-01

    Aluminium – silicon carbide (Al - SiC) metal matrix composite is produced with following wt % of SiC reinforcement (4%, 8% & 12%) using stir casting method. Mechanical testing such as micro hardness, tensile testing and bend testing were performed. Characterizations, namely micro structure, X-ray diffraction (XRD) analysis, inductive coupled plasma – optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) analysis, were carried out on Al - SiC composites. The presence of SiC on Al - SiC composite is confirmed through XRD technique and microstructure. The percentage of SiC was confirmed through ICP-OES technique. Increase in weight percentage of SiC tends to increase micro hardness, ultimate strength & yield strength but it reduces the bend strength and elongation (%) of the material. SEM factrography of tensile tested fractured samples of Al - 8% SiC & Al – 12% SiC showed fine dimples on fractured surface & coarse dimples fractured surface respectively. This showed significant fracture differences between Al - 8% SiC & Al - 12% SiC. From the above experiment, Al - 8% SiC had good micro hardness, ultimate strength & yield strength without significant loss in elongation (%) & bend strength.

  20. Synthesis, Characterization, and Enhanced Magnetic Properties of Iron Carbide Nanomaterials

    Science.gov (United States)

    Williams, Brent M.

    Permanent magnets are classified as hard magnetic materials with the main purpose of generating flux for applications such as electric motors, turbines, and hard drives. High coercivity, magnetic remanence, and saturation values with high stability are some of the requirements for permanent magnets. Rare-earth magnets including neodymium and samarium based magnets are known to have superior magnetic properties due to their high magnetocrystalline anisotropy. However, due to the price of rare-earth materials development of alternate permanent magnets composed of inexpensive materials is an ongoing process. Previously cobalt carbide (CoxC) have shown promise as a potential rare-earth free magnet alternative with magnetic properties comparable to that of hexaferrite materials. Unfortunately, CoxC magnets have a low magnetic saturation (50 emu g-1) which drastically lowers its energy product. Alternatively, iron carbide has a rather high bulk magnetization value of 140 emu g-1 and is composed of naturally abundant materials. The sole issue of iron carbide is that it is considered an intermediate magnet with properties between those of a hard and a soft magnetic material. The main focus of this work is the enhancement of the hard magnetic properties of iron carbide through size effect, shape anisotropy, magnetocrystalline anisotropy and exchange anisotropy. First a wet synthesis method was developed which utilized hexadecyltrimethylammonium chloride to control particle size, shape, and crystal structure to manipulate the magnetic properties of iron carbide. With this method a semi-hard 50 nm orthorhombic Fe3C phase and a magnetically soft single crystal hexagonal Fe7C3 structure with texture-induced magnetic properties were developed. The properties for both materials were further enhanced through formation of exchange bias Fe3C/CoO nanoaggregates and spring exchange coupling of the ferromagnetically hard and soft phases of Fe7C3/SrFe 12O19. A 33% increase in coercivity

  1. An Exploration of Neutron Detection in Semiconducting Boron Carbide

    Science.gov (United States)

    Hong, Nina

    The 3He supply problem in the U.S. has necessitated the search for alternatives for neutron detection. The neutron detection efficiency is a function of density, atomic composition, neutron absorption cross section, and thickness of the neutron capture material. The isotope 10B is one of only a handful of isotopes with a high neutron absorption cross section---3840 barns for thermal neutrons. So a boron carbide semiconductor represents a viable alternative to 3He. This dissertation provides an evaluation of the performance of semiconducting boron carbide neutron detectors grown by plasma enhance chemical vapor deposition (PECVD) in order to determine the advantages and drawbacks of these devices for neutron detection. Improved handling of the PECVD system has resulted in an extremely stable plasma, enabling deposition of thick films of semiconducting boron carbide. A variety of material and semiconducting characterization tools have been used to investigate the structure and electronic properties of boron carbide thin films, including X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, infrared/Raman spectroscopy, current-voltage measurements and capacitance-voltage measurements. Elemental concentrations in the boron carbide films have been obtained from Rutherford backscattering and elastic recoil detection analysis. Solid state neutron detection devices have been fabricated in the form of heterostructured p-n diodes, p-type boron carbide/n-type Si. Operating conditions, including applied bias voltage, and time constants, have been optimized for maximum detection efficiency and correlated to the semiconducting properties investigated in separate electronic measurements. Accurate measurements of the neutron detection efficiency and the response of the detector to a wide range of neutron wavelengths have been performed at a well calibrated, tightly collimated, "white" cold neutron beam source using time-of-flight neutron detection technique

  2. Studi Perbandingan Keefektifan Penggunaan Poly Aluminium Chloride (PAC) dan Tawas (Alum) Terhadap Turbiditas dan Kadar Logam Aluminium Pada Air Baku Instalasi Pengolahan Air Di PDAM Tirtanadi Hamparan Perak

    OpenAIRE

    Gea, Deswanti Mariana

    2017-01-01

    The comparative effectiveness study of the usage of the poly aluminium chloride (PAC) and alum towards the turbidity and the aluminium levels at the water treatment installation of PDAM Hamparan Perak has been carried out. The concentration of aluminium chloride and alum usage compared in the raw water has initial turbidity 73,3 NTU and aluminium levels of 0,048 mg/l is respectively 19 ppm; 21 ppm and 23 ppm. And being stirred with agiator found in the Jar Test with a 140 rpm rotation spee...

  3. The valve effect of the carbide interlayer of an electric resistance plug

    International Nuclear Information System (INIS)

    Lakomskii, V.

    1998-01-01

    The welded electric resistance plug (ERP) usually contains a carbide interlayer at the plug-carbon material interface. The interlayer forms during welding the contact metallic alloy with the carbon material when the oxide films of the alloy are reduced on the interface surface by carbon to the formation of carbides and the surface layer of the plug material dissolves carbon to saturation. Subsequently, during solidification of the plug material it forms carbides with the alloy components. The structural composition of the carbide interlayer is determined by the chemical composition of the contact alloy. In alloys developed by the author and his colleagues the carbide forming elements are represented in most cases by silicon and titanium and, less frequently, by chromium and manganese. Therefore, the carbide interlayers in the ERP consisted mainly of silicon and titanium carbides

  4. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2016-01-01

    Full Text Available The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol. depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy of niobium carbide. The most significant factor affecting on the heat-resistant alloys, is porosity: with its increase the parameters decline regardless of the type and content of carbide. The optimum composition of powder heat resisting alloys of titanium carbide with a melting point above 1300 °C were determined for use in the aircraft engine.

  5. Experimental weathering rates of aluminium silicates

    International Nuclear Information System (INIS)

    Gudbrandsson, Snorri

    2013-01-01

    The chemical weathering of primary rocks and minerals in natural systems has a major impact on soil development and its composition. Chemical weathering is driven to a large extent by mineral dissolution. Through mineral dissolution, elements are released into groundwater and can readily react to precipitate secondary minerals such as clays, zeolites, and carbonates. Carbonates form from divalent cations (e.g. Ca, Fe and Mg) and CO 2 , and kaolin clay and gibbsite formation is attributed to the weathering of aluminium-rich minerals, most notably the feldspars. The CarbFix Project in Hellisheidi (SW-Iceland) aims to use natural weathering processes to form carbonate minerals by the re-injection of CO 2 from a geothermal power plant back into surrounding basaltic rocks. This process is driven by the dissolution of basaltic rocks, rich in divalent cations, which can combine with injected CO 2 to form and precipitate carbonates. This thesis focuses on the dissolution behaviour of Stapafell crystalline basalt, which consists of three major phases (plagioclase, pyroxene, and olivine) and is rich in divalent cations. Steady-state element release rates from crystalline basalt at far-from-equilibrium conditions were measured at pH from 2 to 11 and temperatures from 5 to 75 C in mixed-flow reactors. Steady-state Si and Ca release rates exhibit a U-shaped variation with pH, where rates decrease with increasing pH at acid condition but increase with increasing pH at alkaline conditions. Silicon release rates from crystalline basalt are comparable to Si release rates from basaltic glass of the same chemical composition at low pH and temperatures ≥25 C but slower at alkaline pH and temperatures ≥50 C. In contrast, Mg and Fe release rates decrease continuously with increasing pH at all temperatures. This behaviour is interpreted to stem from the contrasting dissolution behaviours of the three major minerals comprising the basalt: plagioclase, pyroxene, and olivine. Element

  6. Antioxidant Activity of Natural Products against Aluminium Fluoride ...

    African Journals Online (AJOL)

    Evaluation of antioxidant potential of natural products against Aluminium fluoride (AlF4) induced oxidative stress in albino mice were represented in the present study. Gossypin, Quercetin dehydrate, (-)-Epicatechin gallate, Gallic acid and Suramin sulphate (G-protein inhibitor) were evaluated for antioxidant activity by ...

  7. System for processing aluminium dross in a reduced oxygen environment

    Energy Technology Data Exchange (ETDEWEB)

    Rezac, K.-H.

    1987-01-01

    The processing of dross is becoming an increasingly important economic and environmental consideration in the production, recycling and foundry use of aluminium. It is important, therefore, to develop processes and equipment for cooling and processing dross in the most economical way possible combined with maximum environmental protection. This paper describes the equipment used for carrying out such processing and its operation.

  8. Aluminium dissolution for spray pulverization with nitric acid

    International Nuclear Information System (INIS)

    Rodrigo Otero, A.; Rodrigo Vilaseca, F.; Morales Calvo, G.

    1977-01-01

    A comparative study of the nitric acid dissolution of aluminium, by immersion and spray pulverization has been carried out in laboratory scale. As a result, the optimum operation conditions to control reaction in the plant are fixed. Operation costs are also evaluated. (author) [es

  9. Diamond turning and polishing tests on new RSP aluminium alloys

    NARCIS (Netherlands)

    Horst, R. ter; Haan, M. de; Gubbels, G.P.H.; Senden, R.; Venrooy, B.W.H. van; Hoogstrate, A.M.

    2012-01-01

    For years now conventional aluminium 6061 T6 has widely been used for mirrors in astronomical instruments, being diamond turned or since a few years also being optically polished. This allows the development of optical systems that can be tested and operated at any temperature, without being

  10. Microstructure and defect chemistry of yttrium aluminium garnet ceramics

    International Nuclear Information System (INIS)

    Schuh, L.H.

    1989-01-01

    This thesis describes basic aspects concerning the defect chemistry and the microstructure of yttrium aluminium garnet ceramics. The work consists of three parts: a literature study, an experimental part and a section giving computer simulation data of defects. (author). 320 refs.; 68 figs.; 72 schemes; 32 tabs

  11. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  12. Optical and morphological investigation of aluminium and nickel ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 2. Optical and morphological investigation of aluminium and nickel oxide composite films deposited by spray pyrolysis method as a basis of solar thermal absorber. A Bagheri Khatibani S M Rozati. Volume 38 Issue 2 April 2015 pp 319-326 ...

  13. Depth profiling of aluminium metal using slow positron beam ...

    African Journals Online (AJOL)

    Slow positron beam Doppler-broadening technique was used to study depth profiling of aluminium metals sample. The variation of the line-shape parameters with incident positron energy was studied. Also, the depth profile of the S parameter was investigated. The positron implantation profile and backscattering fraction for ...

  14. Aluminium structures in building and civil engineering applications

    NARCIS (Netherlands)

    Soetens, F.

    2010-01-01

    Structural applications of aluminium are considered in this paper. Although the discussion is mainly devoted to Europe, the paper also refers, where possible, to developments in other parts of the world. The problems faced by a designer in creating an optimum design are described, followed by a

  15. Effect of strain path on severely deformed aluminium

    Czech Academy of Sciences Publication Activity Database

    Kunčická, L.; Kocich, R.; Král, Petr; Pohludka, M.; Marek, M.

    2016-01-01

    Roč. 180, OCT (2016), s. 280-283 ISSN 0167-577X Institutional support: RVO:68081723 Keywords : Twist channel angular pressing * Aluminium * Texture * Microstructure Electron microscopy * Metal forming and shaping Subject RIV: JG - Metallurgy Impact factor: 2.572, year: 2016

  16. Oxygen–induced barrier height changes in aluminium – amorphous ...

    African Journals Online (AJOL)

    The results show that the application of voltage causes charge exchange between the surface states and the semiconductor leading to a change in the height of the potential barrier for electrons passing from aluminium into the a-Se films. The empirically determined values of barrier height of Al/a-Se diodes with thin and ...

  17. Sensitivity analysis on ultimate strength of aluminium stiffened panels

    DEFF Research Database (Denmark)

    Rigo, P.; Sarghiuta, R.; Estefen, S.

    2003-01-01

    This paper presents the results of an extensive sensitivity analysis carried out by the Committee III.1 "Ultimate Strength" of ISSC?2003 in the framework of a benchmark on the ultimate strength of aluminium stiffened panels. Previously, different benchmarks were presented by ISSC committees on ul...

  18. Natural Aging Behaviour Of AA6111 Aluminium | Quainoo | Ghana ...

    African Journals Online (AJOL)

    In the continuing drive for weight reduction in new automobile designs, the 6000 series aluminium alloys have emerged as the most promising age-hardenable body sheet material in the automotive industry. Currently, one of the body sheet alloys used for its combination of strength and formability in the (T4) temper is ...

  19. Effects of Aluminium in Forest. Results of a pilot experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, J.; Wit, H. de; Nygaard, P.H.

    1996-01-01

    This conference paper deals with an Norwegian pilot project which started in 1995 and finishing early 1999, investigates the solubility and phyto-toxicity of aluminium (Al) in mature forest ecosystems. The project consists of three major parts, including field manipulation study of Norwegian spruce stands, laboratory experiments and modelling Al chemistry in the root zone. 15 refs.

  20. Differential effects of aluminium on the seedling parameters of wheat ...

    African Journals Online (AJOL)

    ... different aluminium (Al) concentrations on the seedling parameters of wheat and the effect of malate and citrate treatments as chelates for reducing the noxious effect of Al in medium culture and seedlings of two wheat cultivars, Darab (Al sensitive) and Maroon (Al tolerant) were grown on hydroponic solution (non modified ...

  1. Pressurized air ionization chamber with aluminium walls for radiometric dosimetry

    International Nuclear Information System (INIS)

    Rodrigues, R.G.S.; Pela, C.A.; Netto, T.G.

    1996-01-01

    A pressurized air ionization chamber with 23 cm 3 and aluminium walls is evaluated concerning its sensitiveness in low exposure rate. Considering conventional ionization chambers, this chamber shows a better performance since the air pressure of 2500 kPa minimizes the energy dependence to less than 5% between 40 and 1.250 keV

  2. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available Aluminium is vastly used in industry due to its low cost, light weight and excellent workability, but lacks in wear resistance and hardness. Laser alloying is used to improve the surface properties such as hardness by modifying the composition...

  3. Cavitation-aided grain refinement in aluminium alloys

    NARCIS (Netherlands)

    Atamanenko, T.V.

    2010-01-01

    This thesis deals with grain refinement under the influence of ultrasonic-driven cavitation in aluminium casting processes. Three major goals of this research were: (1) to identify the mechanism of the cavitation-aided grain refinement at different stages of solidification; (2) to reveal the

  4. Contribution to comprehensive study of aluminium alloy Aa 5083 ...

    African Journals Online (AJOL)

    Corrosion induced by elemental mercury in aqueous media of industrial Aluminium alloys AA5083 used in heat exchanger industries of natural gas liquefaction has been studied by linear sweep voltammétry on rotating amalgamated disk electrode. Corrosion process depends on: • Chemical processes of amalgamation of ...

  5. Local electrochemical behaviour of 7xxx aluminium alloys

    NARCIS (Netherlands)

    Andreatta, F.

    2004-01-01

    Aluminium alloys of the 7xxx series (Al-Zn-Mg-Cu) are susceptible to localized types of corrosion like pitting, intergranular corrosion and exfoliation corrosion. This represents a limitation for the application of these alloys in the aerospace components because localized corrosion might have a

  6. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2011-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...

  7. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2012-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...

  8. Differential effects of aluminium on the seedling parameters of wheat ...

    African Journals Online (AJOL)

    ALADDIN

    2011-04-25

    Apr 25, 2011 ... Key words: Triticum aestivum L., hydroponic, aluminium-tolerant, length of root, regression analysis. ... cat-ions those immediately surrounding the apical root ... A separate model statement is required for linear, quadratic and cubic trends. RESULTS. ANOVA revealed that, for seedling growth parameters.

  9. Combined aluminium sulfate/hydroxide process for fluoride removal ...

    African Journals Online (AJOL)

    Combined aluminium sulfate/hydroxide process for fluoride removal from drinking water. ... The reported removal efficiency of Nalgonda Technique is 70% at alum dose of 150-170 mg alum/mg F. Besides, sludge production is also minimized. Therefore, this process is highly efficient and could be applied in areas where the ...

  10. Aluminium hydride: a reversible material for hydrogen storage.

    Science.gov (United States)

    Zidan, Ragaiy; Garcia-Diaz, Brenda L; Fewox, Christopher S; Stowe, Ashley C; Gray, Joshua R; Harter, Andrew G

    2009-07-07

    Aluminium hydride has been synthesized electrochemically, providing a synthetic route which closes a reversible cycle for regeneration of the material and bypasses expensive thermodynamic costs which have precluded AlH(3) from being considered as a H(2) storage material.

  11. Examples on cold forged aluminium components in automotive industry

    DEFF Research Database (Denmark)

    Bay, Niels; Kolsgaard, A.

    2000-01-01

    The present paper describes the possibilites of applying cold forging for manufacturing of light weight components in aluminium. A short description of the basic cold forming processes forms the basis for describing the great variety in design of cold forged components. Examples are mainly taken ...... from automotive industry but in a few cases also from other industrial sectors to show the possibilities....

  12. Novel package for inhibition of aluminium corrosion in alkaline solutions

    International Nuclear Information System (INIS)

    Abdel-Gaber, A.M.; Khamis, E.; Abo-Eldahab, H.; Adeel, Sh.

    2010-01-01

    Inhibition of aluminium corrosion in 2 M sodium hydroxide solution by a package composed of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and lupine seed extract has been investigated employing different electrochemical techniques and chemical gasometry measurements. Potentiodynamic polarization curve measurements showed that lupine seed extract controls both the anodic dissolution of aluminium and the hydrogen gas evolved at the cathodic sites of aluminium surface. Nyquist plots showed two capacitive semicircles in the high and low frequency regions separated by an inductive loop at intermediate frequencies. The inductive loop may be explained by the occurrence of adsorbed intermediates on the surface. A proposed equivalent circuit was used to analyse the impedance spectra for aluminium in NaOH solutions. The corrosion inhibition data have been analysed using different isotherms. The results showed excellent agreement between the kinetic-thermodynamic model and Flory-Huggins isotherm. Gasometry measurements showed that the Inhibitive effect of the surfactant increases at a composition around its critical micelle concentration (cmc). The presence of both the surfactant and lupine seed extract did not indicate synergistic action between them. The mode of adsorption of the surfactant molecules corresponding to their structure is also discussed.

  13. Elaboration in the area of aluminium containing alloys

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    In the Institute of Chemistry was elaborated the experimental-industrial installation and technology of deep aluminium purification by the methods of zone melting and recrystallization. The developed technology let receive the metal of model A5 N A6 N dependence from number of induction zone passage

  14. Ultraviolet sensing properties of polyvinyl alcohol-coated aluminium ...

    Indian Academy of Sciences (India)

    Electrochemical; aluminium-doped zinc oxide; PVA-coated; UV sensing. 1. Introduction. Metal oxide semiconductors have received considerable attention due to their excellent physical and chemical prop- erties (Johnson et al 2001; Vayssieres et al 2001; Kolmakov and Moskovits 2004). Zinc oxide (ZnO), one of the most.

  15. Cold forming of aluminium - State of the art

    DEFF Research Database (Denmark)

    Bay, Niels

    1997-01-01

    The ongoing development of cold forging technology has been manifested lately by the increasing application of components in cold forged aluminium alloys. Applying precipitation hardening alloys components with great strength/weight ratio can be produced with a strength comparable to that of unal...

  16. Amelioration of behavioural toxicity of aluminium by oligomeric ...

    African Journals Online (AJOL)

    Despite its limited solubility at neutral pH, aluminium is significantly accumulated by the freshwater snail Lymnaea stagnalis, leading to behavioral toxicity. Both organic (humic acid) and non-organic (oligomeric silicic acid) ligands have been shown to reduce Al accumulation probably owing to their binding affinity for Al. This ...

  17. A vector valued Stefan problem from aluminium industry

    NARCIS (Netherlands)

    F.J. Vermolen; C. Vuik

    1998-01-01

    textabstractDissolution of stoichiometric multi-component particles in ternary alloys is an important process occurring during the heat treatment of as-cast aluminium alloys prior to hot-extrusion. A mathematical model is proposed to describe such a process. In this model an equation is given to

  18. Ultraviolet sensing properties of polyvinyl alcohol-coated aluminium ...

    Indian Academy of Sciences (India)

    295–300. c Indian Academy of Sciences. Ultraviolet sensing properties of polyvinyl alcohol-coated aluminium-doped zinc oxide nanorods. KANCHAN SAXENA. ∗. , AMIT KUMAR, NISHANT MALIK, PRAMOD KUMAR and V K JAIN. Amity Institute of Advanced Research and Studies (Materials and Devices), Amity University, ...

  19. Friction factor of CP aluminium and aluminium–zinc alloys

    Indian Academy of Sciences (India)

    zinc alloys using ring compression test at different temperatures from 303 K to 773 K. It is found that CP aluminium exhibits stick- ing whereas Al–Zn alloys do not exhibit sticking at elevated temperatures. Hot working of Al–Zn alloy is easier.

  20. STRUCTURE OF ECAP ALUMINIUM AFTER DIFFERENT NUMBER OF PASSES

    Directory of Open Access Journals (Sweden)

    Lucia Ilucová

    2011-05-01

    Full Text Available The structure of high purity (99.99% aluminium processed by equal channel angular pressing in the as pressed state after different number of passes was examined using various stereological methods. An extreme inhomogeneity and complicated anisotropy was observed along the body of rod-like specimens.