WorldWideScience

Sample records for alumina

  1. Reuse of activated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Hobensack, J.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  2. Alumina Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  3. Bauxite and alumina

    Science.gov (United States)

    Bray, E.L.

    2010-01-01

    The article reports on the global market performance of bauxite and alumina in 2009 and presents an outlook for their 2010 performance. There were only several U.S. states that could produce bauxite and bauxitic clays including Georgia, Arkansas, and Alabama. The prices for imported refractory-grade calcined bauxite ranged between 426 U.S. dollars and 554 dollars per ton.

  4. alumina solid electrolyte

    Indian Academy of Sciences (India)

    -β/β -alumina; solid electrolyte; calcium impurity; specific resistance. 1. Introduction. Since its development in the 1980s, the Na/S battery has been one of the most promising candidates for energy storage applications. The Na/S battery functions based on the elec- trochemical reaction between sodium and sulphur to form.

  5. alumina solid electrolyte

    Indian Academy of Sciences (India)

    alumina was synthesized using a solid-state reaction. The changes in ... sive, because of its abundant lowcost raw materials and is suitable for high-volume mass production. The battery is composed of a sodium anode, a sulphur cathode, and. Na. +.

  6. Preparation of alumina microspheres

    International Nuclear Information System (INIS)

    Santos, W.R. dos; Abrao, A.

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina micro-spheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO 2 , ThO 2 ). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper. (C.L.B.) [pt

  7. Uranyl sorption onto alumina

    International Nuclear Information System (INIS)

    Jacobsson, A.M.M.

    1997-01-01

    The mechanism for the adsorption of uranyl onto alumina from aqueous solution was studied experimentally and the data were modeled using a triple layer surface complexation model. The experiments were carried out at low uranium concentrations (9 x 10 -11 --5 x 10 -8 M) in a CO 2 free environment at varying electrolyte concentrations (0.01--1 M) and pH (4.5--12). The first and second acid dissociation constants, pK a1 and pK a2 , of the alumina surface were determined from potentiometric titrations to be 7.2 ± 0.6 and 11.2 ± 0.4, respectively. The adsorption of uranium was found to be independent of the electrolyte concentration. The authors therefore conclude that the uranium binds as an inner sphere complex. The results were modeled using the code FITEQL. Two reactions of uranium with the surface were needed to fit the data, one forming a uranyl complex with a single surface hydroxyl and the other forming a bridged or bidentate complex reacting with two surface hydroxyls of the alumina. There was no evidence from these experiments of site heterogeneity. The constants used for the reactions were based in part on predictions made utilizing the Hard Soft Acid Base, HSAB, theory, relating the surface complexation constants to the hydrolysis of the sorbing metal ion and the acid dissociation constants of the mineral oxide surface

  8. Bauxite Mining and Alumina Refining

    Science.gov (United States)

    Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. Conclusions: A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures. PMID:24806720

  9. Alumina-Reinforced Zirconia Composites

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  10. Alumina Yield in the Bayer Process

    Science.gov (United States)

    Den Hond, R.

    The alumina industry has historically been able to reduce alumina production costs, by increasing the liquor alumina yield. To know the potential for further yield increases, the phase diagram of the ternary system Na2O-Al2O -H2O at various temperature levels was analysed. It was found that the maximum theorical precipitation alumina yield is 160 g/l, while that for digestion was calculated to be 675 g/l.

  11. Attrition resistant gamma-alumina catalyst support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  12. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    % alumina dissolves in spinel (MgAl2O4) at 1600°C. Solid solubility of alumina in spinel decreases rapidly with decreasing temperature, which causes exsolution of alumina from spinel phase. Previous work of one of the authors revealed that ...

  13. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Study of alumina–magnesia binary phase diagram reveals that around 40–50 wt% alumina dis- solves in spinel (MgAl2O4) at 1600°C. Solid solubility of alumina in spinel decreases rapidly with decreasing temperature, which causes exsolution of alumina from spinel phase. Previous work of one of the authors.

  14. Dynamic tensile response of alumina-Al composites

    International Nuclear Information System (INIS)

    Atisivan, R.; Bandyopadhyay, A.; Gupta, Y. M.

    2002-01-01

    Plate impact experiments were carried out to examine the high strain-rate tensile response of alumina-aluminum (Al) composites with tailored microstructures. A novel processing technique was used to fabricate interpenetrating phase alumina-aluminum composites with controlled microstructures. Fused deposition modeling (FDM), a commercially available rapid prototyping technique, was used to produce the controlled porosity mullite ceramic preforms. Alumina-Al composites were then processed via reactive metal infiltration of porous mullite ceramics. With this approach, both the micro as well as the macro structures can be designed via computer aided design (CAD) to tailor the properties of the composites. Two sets of dynamic tensile experiments were performed. In the first, the metal content was varied between 23 and 39 wt. percent. In the second, the microstructure was varied while holding the metal content nearly constant. Samples with higher metal content, as expected, displayed better spall resistance. For a given metal content, samples with finer metal diameter showed better spall resistance. Relationship of the microstructural parameters on the dynamic tensile response of the structured composites is discussed here

  15. Transport properties of alumina nanofluids

    International Nuclear Information System (INIS)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-01-01

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 deg. C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m -1 K -1 was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 deg. C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various

  16. Transport properties of alumina nanofluids.

    Science.gov (United States)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  17. Gas chromatographic separation of hydrogen isotopes on columns packed with alumina, modified alumina and sol-gel alumina.

    Science.gov (United States)

    Naik, Y P; Gupta, N K; Pillai, K T; Rao, G A Rama; Venugopal, V

    2012-01-06

    The stationary phase of alumina adsorbents, prepared by different chemical processes, was used to study the separation behaviour of hydrogen isotopes. Three types of alumina, obtained by conventional hydroxide route alumina coated with silicon oxide and alumina prepared by internal gelation process (IGP), were used as packing material to study the separation of HT and T(2) in a mixture at various temperatures. The conventional alumina and silicon oxide coated alumina resolved HT and T(2) at 77K temperature with different retention times. The retention times on SiO(2) coated columns were found to be higher than those of other adsorbents. However, the column filled with IGP alumina was found to be ideal for the separation of HT and T(2) at 240 K. The peaks were well resolved in less than 5 min on this column. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Alumina column Rb-82 generator

    International Nuclear Information System (INIS)

    Yano, Y.; Roth, E.P.

    1977-10-01

    The use of an alumina column for the adsorption of radioactive Sr for the generator production of 75-sec 82 Rb was evaluated in both batches and column experiments using 85 Sr and cyclotron-produced 82 Sr. Comparisons of alumina, Bio-Rex 70 and Chelex 100 ion exchangers were made to determine Sr adsorption, 82 Rb elution yield and Sr breakthrough. The adsorption of Sr is similar for alumina and Chelex 100 but different for Bio-Rex 70. Alumina and Chelex 100 exhibit a small fraction of poorly bound Sr which appears as higher breakthrough in the early elution volumes. The remaining Sr activity is strongly bound to these ion exchangers and the breakthrough remains stable at a lower breakthrough value through a large number of elutions. Bio-Rex 70 on the other hand does not exhibit the poorly bound Sr fraction and the breakthrough of Sr remains the lowest of the three ion exchangers through a moderate number of elutions and then the Sr breakthrough gradually increases with each additional elution

  19. Bauxite Mining and Alumina Refining

    OpenAIRE

    Donoghue, A. Michael; Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust,...

  20. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  1. Acetic acid mediated interactions between alumina surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kimiyasu, E-mail: sato.kimiyasu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Y Latin-Small-Letter-Dotless-I lmaz, Hueseyin [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Gebze Institute of Technology, Materials Science and Engineering Department, 41400, Gebze-Kocaeli (Turkey); Ijuin, Atsuko; Hotta, Yuji; Watari, Koji [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan)

    2012-02-01

    Low-molecular-weight organic acids have been known to modify colloidal stability of alumina-based suspensions. We investigated interaction forces between alumina surfaces mediated by acetic acid which is one of the simplest organic acids. Forces between alumina surfaces were measured using the colloid-probe method of atomic force microscope (AFM). Repulsive forces attributed to steric repulsion due to adsorbed molecules and electrostatic repulsion dominated the interaction. Results of rheological characterization of the alumina slurry containing acetic acid supported the finding.

  2. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.

    2009-01-01

    focus our attention to the measurements with the MCP array. The alumina capillaries were prepared by electro-chemical oxidation of aluminium foils. For the present experiments guiding of 3-6 keV Ne ions has been studied in two samples with capillary diameter of about 140 nm and 260 nm and with capillary...... length of about 15 μm. At these energies, the ions have been efficiently guided by the capillaries up to few degrees tilt angle. In this work, we compare the results obtained by the energy dispersive spectrometer to those studied by the MCP array....

  3. Preparation of alumina-β'

    International Nuclear Information System (INIS)

    Casarini, J.R.; Souza, D.P.F.

    1984-01-01

    Alumina - (β + β') in powder, with composition of 8.85% Na 2 0 + 0.75% Li 2 0 + 90.40% Al 2 O 3 is obtained using the zeta process. The phase transformation β→β' can be seen with powder X-ray diffraction. It was observed that the efficiency of the transformation is related to the processing and purity of the raw material. Impurities as Ca and Si difficult the phase transformation β→β'. (E.G.) [pt

  4. Ordering of Octahedral Vacancies in Transition Aluminas

    NARCIS (Netherlands)

    Wang, Yuan Go; Bronsveld, Paul M.; Hosson, Jeff Th.M. De; Djuričić, Boro; McGarry, David; Pickering, Stephen

    1998-01-01

    The microstructure of transition aluminas obtained via the dehydration of boehmite has been characterized by using transmission electron microscopy (TEM). The presence of γ-, δ-, and θ-aluminas was identified by using selected-area electron diffraction. Modifications that resulted from the

  5. alumina phase transformation from thermal decomposition

    African Journals Online (AJOL)

    HOD

    Alumina is one of the major components used as catalyst support, which is especially important with regard to ... alumina, has been a major catalytic support in automotive and petroleum industries, as well as in adsorption ..... Catalyst in Steam Reforming of Dimethyl ether: Cu/γ-Al2O3/Al Catalyst Degradation Behaviors and.

  6. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses.

    Science.gov (United States)

    De Aza, A H; Chevalier, J; Fantozzi, G; Schehl, M; Torrecillas, R

    2002-02-01

    Mono-phase bio-ceramics (alumina and zirconia) are widely used as femoral heads in total hip replacements (THR) as an alternative to metal devices. Unfortunately, the orthopaedic community reports significant in-vivo failures. Material scientists are already familiar with composites like alumina zirconia. Since both are biocompatible, this could prove to be a new approach to implants. This paper deals with a new generation of alumina-zirconia nano-composites having a high resistance to crack propagation, and as a consequence may offer the option to improve lifetime and reliability of ceramic joint prostheses. The reliability of the above mentioned three bio-ceramics (alumina, zirconia and zirconia toughened alumina) for THR components is analysed based on the study of their slow crack-growth behaviour. The influence of the processing conditions on the microstructure development, of the zirconia toughened alumina composites and the effect of these microstructures, on its mechanical properties, are discussed.

  7. Dissolution Kinetics of Alumina Calcine

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas

    2001-09-01

    Dissolution kinetics of alumina type non-radioactive calcine was investigated as part of ongoing research that addresses permanent disposal of Idaho High Level Waste (HLW). Calcine waste was produced from the processing of nuclear fuel at the Idaho Nuclear Technology and Engineering Center (INTEC). Acidic radioactive raffinates were solidified at ~500°C in a fluidized bed reactor to form the dry granular calcine material. Several Waste Management alternatives for the calcine are presented in the Idaho High Level Waste Draft EIS. The Separations Alternative addresses the processing of the calcine so that the HLW is ready for removal to a national geological repository by the year 2035. Calcine dissolution is the key front-end unit operation for the separations alternative.

  8. Control of porosity in alumina for catalytic purposes - a review; Controle de porosidade em aluminas para fins cataliticos - uma revisao

    Energy Technology Data Exchange (ETDEWEB)

    Moure, Gustavo Torres [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Hidrorrefino, Lubrificantes e Parafinas; Morgado Junior, Edisson [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Craqueamento Catalitico; Figueiredo, Cecilia Maria C.

    1999-12-01

    In recent years, the Alumina Group, of the Catalysts Division of CENPES, has dedicated research to develop and characterize alumina for the catalytic processes of interest to PETROBRAS. Control of the texture of the alumina and, consequently, the alumina based catalysts, is crucially important to their adequacy and performance. Knowledge of the porosity formation mechanisms in alumina was fundamental for the development of catalysts to satisfy the demand from PETROBRAS. This comprises the scope of this review. (author)

  9. Processing of Alumina-Toughened Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  10. Effect of hydrothermal process for inorganic alumina sol on crystal structure of alumina gel

    Directory of Open Access Journals (Sweden)

    K. Yamamura

    2016-09-01

    Full Text Available This paper reports the effect of a hydrothermal process for alumina sol on the crystal structure of alumina gel derived from hydrothermally treated alumina sol to help push forward the development of low temperature synthesis of α-Al2O3. White precipitate of aluminum hydroxide was prepared with a homogeneous precipitation method using aluminum nitrate and urea in aqueous solution. The obtained aluminum hydroxide precipitate was peptized by using acetic acid at room temperature, which resulted in the production of a transparent alumina sol. The alumina sol was treated with a hydrothermal process and transformed into an alumina gel film by drying at room temperature. Crystallization of the alumina gel to α-Al2O3 with 900 °C annealing was dominant for a hydrothermal temperature of 100 °C and a hydrothermal time of 60 min, as production of diaspore-like species was promoted with the hydrothermal temperature and time. Excess treatments with hydrothermal processes at higher hydrothermal temperature for longer hydrothermal time prevented the alumina gel from being crystallized to α-Al2O3 because the excess hydrothermal treatments promoted production of boehmite.

  11. The local strength of individual alumina particles

    Science.gov (United States)

    Pejchal, Václav; Fornabaio, Marta; Žagar, Goran; Mortensen, Andreas

    2017-12-01

    We implement the C-shaped sample test method and micro-cantilever beam testing to measure the local strength of microscopic, low-aspect-ratio ceramic particles, namely high-purity vapor grown α-alumina Sumicorundum® particles 15-30 μm in diameter, known to be attractive reinforcing particles for aluminum. Individual particles are shaped by focused ion beam micromachining so as to probe in tension a portion of the particle surface that is left unaffected by ion-milling. Mechanical testing of C-shaped specimens is done ex-situ using a nanoindentation apparatus, and in the SEM using an in-situ nanomechanical testing system for micro-cantilever beams. The strength is evaluated for each individual specimen using bespoke finite element simulation. Results show that, provided the particle surface is free of readily observable defects such as pores, twins or grain boundaries and their associated grooves, the particles can achieve local strength values that approach those of high-perfection single-crystal alumina whiskers, on the order of 10 GPa, outperforming high-strength nanocrystalline alumina fibers and nano-thick alumina platelets used in bio-inspired composites. It is also shown that by far the most harmful defects are grain boundaries, leading to the general conclusion that alumina particles must be single-crystalline or alternatively nanocrystalline to fully develop their potential as a strong reinforcing phase in composite materials.

  12. Alumina-base plasma-sprayed materials part I: Phase stability of alumina and alumina-chromia

    Science.gov (United States)

    Chráska, P.; Dubsky, J.; Neufuss, K.; Písacka, J.

    1997-09-01

    Aluminum oxide is a relatively cheap, abundant material that is widely used for plasma- spray applications. This material, however, exists in many crystallographic modifications with different properties. In addition, most of these modifications are metastable and cannot be used in applications employed at elevated temperatures. Usually γ, δ, or other phases form after spraying, while α phase (corundum) is often the most desirable phase due to high corrosion resistance and hardness. This paper first reviews the method of α stabilization in the as- sprayed materials offered in literature. Then, as an example, it summarizes the results of an extensive study of chromia additions to alumina. Chromia was chosen because of its complete solid solubility in alumina and its crystal lattice type, which is similar to that of alumina. It was demonstrated that the addition of approximately 20 wt% chromia results in the formation of one solid solution of (Al- Cr)2O3 in the α- modification. Finally, this paper discusses the thermal stability of various alumina phases. Phase change routes of heating for different starting alumina modifications are discussed, and a case study of alumina- chromia is presented. Both types of as-sprayed structures, a mixture of α, δ, and γ phases, and 100% (Al- Cr)2O3 were annealed up to 1300 °C and the phase composition checked. At lower temperatures and shorter holding times, the amount of α phase decreases while another metastable θ phase appears, and the fraction of γ + δ, if present, increases. At temperature above 1100 °C, the amount of α phase increases again.

  13. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    Science.gov (United States)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  14. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2012-02-01

    Full Text Available A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1, large pore volumes (0.8 mL g−1 and the ��-Al2O3 phase is obtained at low temperature (500 °C. The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alumina, sol-gel methods and hierarchically macro-/mesoporous alumina monoliths have been analyzed and compared. The most reproducible synthesis of mesoporous alumina are given. Evaporation-Induced Self-Assembly (EISA is the sole method to lead to nanostructured mesoporous alumina by direct templating, but it is a difficult method to scale-up. Alumina featuring macro- and mesoporosity in monolithic shape is a very promising material for in flow applications; an optimized synthesis is described.

  15. Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis

    Science.gov (United States)

    Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.

    2018-04-01

    Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.

  16. Synthesis and characterization of alumina precursor and alumina to be used as nano composite; Sintese e caracterizacao de precursores de alumina e alumina para uso em nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, M.L.P., E-mail: malu@sorocaba.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil); Santos, H. Souza [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Santos, P. Souza [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica

    2009-07-01

    With the evolution of nanomaterials technology, mainly in the 90s, it was possible to observe produced composites with alumina matrix and nanomaterial as reinforcing materials. It results in a significant improvement of mechanical proprieties of these composites. Thenceforth the study of synthesis and characterization of nanostructured materials has attracted great scientific interest. In this perspective, the aim of this work is to present an experimental procedure to obtain nordstrandite (aluminum hydroxide) with nanometric dimensions. Nordstrandite synthesis, obtained by the reaction of slightly amalgamated aluminum foil with aqueous ethylene glycol, which allows the control of the size of crystal produced. This control could be confirmed by X-Ray Diffraction and Electron Microscopy. Thermal transformation study is also presented. This study allowed the identification of transition aluminas that have potential to produce nanometric aluminas. (author)

  17. Electrochemically produced alumina as TL detector

    International Nuclear Information System (INIS)

    Osvay, M.

    1996-01-01

    The goal of this work was to compare the TL properties of various electrochemically produced alumina layers (E-AIO) in order to investigate the effect of the electrolyte and the Mg content on the alloys. It has been found that the TL sensitivity of oxidised layers is more influenced by the type of electrolyte, than by the composition of alloy. Hard oxide layer evolved in reduction electrolyte has rather different character compared to other alumina production investigated. The effect of reducing media seems to be very important during preparation of alumina layer. One of the advantages properties of E-AIO is, that it serve a promising method to increase the measuring range of TL method above 10 kGy as well. (author)

  18. Beta-alumina solid electrolyte separators

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.H.; Stead, R.J.

    1989-06-14

    A method of making a composite beta-alumina artifact such as a separator tube for an electrochemical cell, comprising two beta-alumina portions which are sealed together in a sealing zone, namely an inner portion and an outer portion which extends peripherally around the inner portion and embraces it in the sealing zone, comprises pressing the inner and outer portions from powders which, when finally sintered, shrink and form integral beta-alumina artifacts. The portions are made so that the outer portion undergoes a greater degree of shrinkage during sintering than the inner portion and the portions are pressed so that the spacing between the portions where the outer portion extends around and embraces the inner portion is such that, upon sintering, the outer portion shrinks on to the inner portion to provide a hermetic peripheral seal between the portions. (author).

  19. Hydrogen diffusion in Pb β''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.; Dudney, N.J.; Wang, J.C.

    1985-01-01

    The mobile Na + ions in Na β''-alumina can be completely exchanged with Pb 2+ ions by treatment in molten PbCl 2 . When this exchange was carried out in the presence of air, protons in the form of OH - were introduced into the conduction layers along with lead ions. Although the concentration of OH - was low, on the order of 5 x 10 -3 per formula unit of Pb/sub 0.84/Mg/sub 0.67/Al/sub 10.33/O_1_7, the distribution of OH - after ion exchange indicated that the proton mobility in Pb β''-alumina is high. The potential use of Pb β''-alumina as a fast proton conductor that is stable at 400 0 C motivated further studies of hydrogen diffusion. In this report, the results of tracer diffusion measurements by isotope exchange will be presented

  20. Blocking of grain reorientation in self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Ramirez-Rico, J.; Torrecillas, R.

    2011-01-01

    Alumina nanoparticles 10-20 nm in diameter were nucleated on alumina particles, 150 nm average diameter, by a colloidal route followed by calcination. It is shown that after sintering, the final grain size is up to 20% smaller due to the addition of the alumina nanoparticles. Electron backscattered diffraction analysis shows that whereas a correlation in the relative crystalline orientations between neighbouring grains exists in the pure materials, the addition of alumina nanoparticles results in a random crystalline orientation.

  1. Fabrication of Ceramic Matrix Composite Tubes Using a Porous Mullite/Alumina Matrix and Alumina/Mullite Fiber

    National Research Council Canada - National Science Library

    Radsick, Timothy

    2001-01-01

    ... or from inadequate oxide-based ones. A porous mullite/alumina matrix combined with alumina/mullite fiber reinforcement eliminates the need for an interface coating while producing a strong, tough and oxidation resistant composite...

  2. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    Engr Solomn Gajere

    Gamma-alumina was produced at 850°C with 3 h soaking time, having specific surface area of 166 m2/g. The weight percent of Al2O3 ... conversion and gasoline octane number. (Scherzer, 1993). Among the different alumina ... common method of producing alumina is by the hydrothermal technique and the reaction takes.

  3. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  4. Characterization of alumina using small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Megat Harun Al Rashidn Megat Ahmad; Abdul Aziz Mohamed; Azmi Ibrahim; Che Seman Mahmood; Edy Giri Rachman Putra; Muhammad Rawi Muhammad Zin; Razali Kassim; Rafhayudi Jamro

    2007-01-01

    Alumina powder was synthesized from an aluminium precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was high purity and highly crystalline αphase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder. (Author)

  5. Ionic and molecular transport in beta- and beta''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.

    1984-03-01

    Investigations of rapid transport of cations and water molecules in the β- and β''-alumina family of superionic conductors are reviewed. Particular topics that are discussed include the Haven ratio and mixed-ion effects in β-alumina, and the influence of superlattice ordering on ionic transport in β''-alumina

  6. Tritium compatibility of alumina and Fosterite

    Energy Technology Data Exchange (ETDEWEB)

    Coffin, D.O.

    1979-09-01

    Many pressure measurements are required to control processing of the fuel gases associated with fusion power reactors. Since most pressure transducers respond to changes in pressure sensitive electrical parameters, insulators will be required to withstand chronic exposures to concentrated tritium. For this investigation samples of alumina and Fosterite were exposed to concentrated tritium gas for 11 weeks. Gas phase impurities were then analyzed for clues that would indicate decomposition of the exposed materials. The only gaseous impurity resulting from these tritium exposures was tritio-methane, which is always produced when tritium is stored in stainless steel containers. There was no evidence that either alumina or Fosterite decomposed in the presence of tritium.

  7. Studies of alumina additions in zirconia - magnesia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1987-01-01

    Ionic conductivity measurements have been carried out in the 500 0 C - 1000 0 C temperature range in Mg - PSZ (Partially Stabilized Zirconia) with 0.5 to 10 mol % alumina additions. All specimens were prepared by pressing followed by pre - and sintering at 1000 0 C/2h and1450 0 C/4h, respectively. Thermal histerysis of the ionic conductivity have been detected, probably due to phase changes in the Mg-PSZ samples. The results show that alumina additions up to 2.1% enhances densification with no major variations in electrical resistivity values. (Author) [pt

  8. Study on alumina-alumina brazing for application in vacuum chambers of proton synchrotron

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kaul, R.; Ganesh, P.; Shiroman, Ram; Tiwari, Pragya; Sridhar, R.; Kukreja, L.M.

    2013-01-01

    The paper describes an experimental study to standardize vacuum brazing process to obtain satisfactory high purity alumina brazed joints for application in rapid cycle proton synchrotron machine. Two different brazing routes, adopted for making alumina-alumina brazed joints, included (i) multi-step Mo-Mn metallization and brazing with BVAg-8 alloy and (ii) advanced single-step active brazing with CuSil-ABA alloy. Brazed alumina specimens, prepared by both the routes, yielded ultra high vacuum compatible, helium leak tight and bakeable joints. Active-brazed specimens exhibited satisfactory strength values in tensile and four-point bend tests. Metallized-brazed specimens, although exhibited relatively lower tensile strength than the targeted value, displayed satisfactory flexural strength in four-point bend test. The results of the study demonstrated that active brazing is the simple and cost effective alternative to conventional metallization route for producing satisfactory brazed joints for application in rapid cycle proton synchrotron machine. (author)

  9. Thermal Conductivity of Alumina-Toughened Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2003-01-01

    10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity of the composites, determined at various temperatures using a steady-state laser heat flux technique, increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from simple rule of mixtures.

  10. Stabilization of Self-Assembled Alumina Mesophases

    NARCIS (Netherlands)

    Perez, Lidia Lopez; Perdriau, Sebastien; ten Brink, Gert; Kooi, Bart J.; Heeres, Hero Jan; Melian-Cabrera, Ignacio

    2013-01-01

    An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum

  11. SANS investigation of nanoporous alumina membranes

    Czech Academy of Sciences Publication Activity Database

    Ryukhtin, Vasyl; Šaroun, Jan; Turkevych, I.

    -, č. 6 (2007), s. 35-36 ISSN 0344-9629 R&D Projects: GA ČR(CZ) GP202/06/P198 Institutional research plan: CEZ:AV0Z10480505 Keywords : nanopor * alumina membrane * netron scattering Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Role of Alumina Basicity in CO2Uptake in 3-Aminopropylsilyl-Grafted Alumina Adsorbents.

    Science.gov (United States)

    Potter, Matthew E; Cho, Kyeong Min; Lee, Jason J; Jones, Christopher W

    2017-05-22

    Oxide-supported amine materials are widely known to be effective CO 2 sorbents under simulated flue-gas and direct-air-capture conditions. Most work has focused on amine species loaded onto porous silica supports, though potential stability advantages may be offered through the use of porous alumina supports. Unlike silica materials, which are comparably inert, porous alumina materials can be tuned to have substantial acidity and/or basicity. Owing to their amphoteric nature, alumina supports play a more active role in CO 2 sorption than silica supports, potentially directly participating in the adsorption process. In this work, primary amines associated with 3-aminopropyltriethoxysilane are grafted onto two different mesoporous alumina materials having different levels of basicity. Adsorbent materials with different amine loadings are prepared, and the CO 2 -adsorption behavior of similar amines on the two alumina supports is demonstrated to be different. At low amine loadings, the inherent properties of the support surface play a significant role, whereas at high amine loadings, when the alumina surface is effectively blocked, the sorbents prepared on the two supports behave similarly. At high amine loadings, amine-CO 2 -amine interactions are shown to dominate, leading to adsorbed species that appear similar to the species formed over silica-supported amine materials. The sorbent properties are comprehensively characterized using N 2 physisorption analysis, in situ FTIR spectroscopy, and adsorption microcalorimetry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of alumina-α using aluminium acetate; Sintese de alumina-α utilizando acetato de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Cartaxo, J.M.; Galdino, M.N.; Neves, G.A., E-mail: lulianamelo25@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Menezes, R.R.; Ferreira, H.S. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Engenharia de Materiais

    2011-07-01

    In the face of great technological importance of alumina, this paper aims to synthesize the α-alumina using chemical activation from aluminum acetate. The synthesized powders were characterized by X-ray diffraction and thermal analysis. The results obtained proved the thermal decomposition of the precursor, as well as possible metastable phases of alumina before the phase transformation in α. There was also difficult to obtain α-alumina from aluminum acetate, on the other hand there was, comparatively, that the chemical activation accelerated the synthesis of α-alumina. (author)

  14. Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite

    International Nuclear Information System (INIS)

    Kim, Ki Tae; Dao, Trung Dung; Jeong, Han Mo; Anjanapura, Raghu V.; Aminabhavi, Tejraj M.

    2015-01-01

    Graphene was oxidized with H 2 O 2 to introduce additional anchoring sites for effective alumina coating on graphene by the sol–gel method. The X-ray photoelectron spectroscopy studies showed that the oxygen-containing groups such as hydroxyl group useful for coating were introduced by the oxidation. The transmission electron microscopy images and thermogravimetric analysis data demonstrated that the additional anchoring sites enhanced the efficiency of the alumina coating. A small amount of alumina-coated graphene synergistically improved the thermal conductivity of the alumina sphere/thermoplastic polyurethane (TPU) composite without any increase in the electrical conductivity, because the electrical conductivity of graphene effectively decreased by the alumina coating. Moreover, the synergistic effect of a small amount of graphene was enhanced by the alumina coating, and the stiffening of the alumina sphere/TPU composite due to the added graphene was alleviated by the alumina coating. - Highlights: • Oxidation of graphene with H 2 O 2 introduced anchoring sites for alumina coating. • The anchoring sites improved the efficiency of alumina coating on graphene. • The alumina-coated graphene synergistically enhanced the thermal conductivity

  15. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  16. Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification

    Energy Technology Data Exchange (ETDEWEB)

    Lamouri, S.; Hamidouche, M.; Bouaouadja, N.; Belhouchet, H.; Garnier, V.; Fantozzi, G.; Trelkat, J.F.

    2017-07-01

    In this work, we studied the aptitude to sintering green bodies using γ-Al2O3 transition alumina as raw powder. We focused on the influence of the heating rate on densification and microstructural evolution. Phase transformations from transition alumina γ→δ→θ→α-Al2O3 were studied by in situ X-rays diffraction from the ambient to 1200°C. XRD patterns revealed coexistence of various phase transformations during the heating cycle. DTA and dilatometry results showed that low heating rate leads to a significant reduction of the temperature of the α-Al2O3 alumina formation. Around 1190, 1217 and 1240°C were found when using 5, 10 and 20°C/min of heating rate, respectively. The activation energy for θ-Al2O3→α-Al2O3 transformation calculated by Kissinger and JMA equations using dilatometry method were 464.29 and 488.79kJ/mol, respectively and by DTA method were 450.72 and 475.49kJ/mol, respectively. In addition, the sintering of the green bodies with low heating rate promotes the rearrangement of the grains during θ-Al2O3→α-Al2O3 transformation, enhancing the relative density to 95% and preventing the development of a vermicular structure. (Author)

  17. Influence of alumina characteristics on glaze properties

    Directory of Open Access Journals (Sweden)

    Arrufat, S.

    2010-10-01

    Full Text Available Aluminium oxide is a synthetic raw material manufactured from bauxite by the Bayer process, whose Al2O3 content typically exceeds 99%. Four main types of alumina can be defined, depending on the processing used: hydrargillite Al(OH3, boehmite AlOOH, transition aluminas (calcined at low temperatures, 1000 °C, with an intermediary crystallographic structure between hydrates and alpha alumina, and α-Al2O3 (calcined at high temperatures, >1100 °C. In glaze manufacturing, α-Al2O3 is the main type of alumina used. This raw material acts as a matting agent: the matt effect depends on alumina particle size and content in the glaze. This study examines the effect of the degree of alumina calcination on glaze technical and aesthetic properties. For this purpose, aluminas with different degrees of calcination were added to a glaze formulated with a transparent frit and kaolin, in order to simplify the system to be studied. The results show that, depending on the degree of calcination, alumina particles can react with the glaze components (SiO2, CaO, and ZnO to form new crystalline phases (anorthite and gahnite. Both crystallisations extract CaO and ZnO from the glassy phase, increasing glassy phase viscosity. The variation in crystalline phases and glassy phase viscosity yields glazes with different technical and aesthetic properties.

    El óxido de aluminio es una materia prima sintética fabricada a partir de la bauxita por medio del proceso Bayer, cuyo contenido de Al2O3 supera, por regla general, el 99%. Se pueden definir cuatro tipos de alúmina, en función del tipo de proceso usado: hidrargilita Al(OH3, boehmita AlOOH, alúminas de transición (calcinadas a bajas temperaturas, 1000 °C, con una estructura cristalográfica intermedia entre los hidratos y la alfa alúmina, y la α-Al2O3 (calcinada a

  18. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  19. Silica containing highly porous alumina ceramic

    Science.gov (United States)

    Svinka, R.; Svinka, V.; Zake, I.

    2011-04-01

    Porous alumina ceramic were produced by slip casting of aqueous alumina slurry with added small amount of metallic aluminium powder. Pores form in result of chemical reaction of aluminum with water by hydrogen gas evolution reaction and solidification of suspension. Porosity of such materials sintered at a temperature of 1600 - 1750°C varies from 60 to 90%. Pore size distribution and mechanical strength of these materials depend largely on the grain size of used raw materials. The major part of pores in the materials produced without additive of silica are larger than 10 ±m, but with 5 - 10 wt.% additive of silica in the raw mix pore size decreases considerably. The sintering shrinkage decreases to 2.5%. Coefficient of thermal expansion equally decreases from 8.9-10-6 K-1 to 7.1 10-6 K-1 and classification temperature increases to 1600°C, while deformation at high temperature decreases considerably.

  20. Kaolin as a Source of Silica and Alumina For Synthesis of Zeolite Y and Amorphous Silica Alumina

    Directory of Open Access Journals (Sweden)

    Sri Rahayu Endang

    2018-01-01

    Full Text Available Kaolin is the clay mineral which containing silica (SiO2 and alumina (Al2O3 in a high percentage, that can be used as a nutrient in the synthesis of zeolites and amorphous silica alumina (ASA. The objective of this research is to convert the Belitung kaolin into silica and alumina as nutrients for the synthesis of zeolites and amorphous silica alumina, which are required in the preparation of the catalysts. Silica and alumina contained in the kaolin were separated by leaching the active kaolin called as metakaolin, using HCL solution, giving a solid phase rich silica and a liquid phase rich alumina. The solid phase rich silica was synthesized to zeolite Y by adding seed of the Y Lynde type, through the hydrothermal process with an alkaline condition. While, the liquid phase rich alumina was converted into an amorphous silica alumina through a co precipitation method. Characterization of zeolite and ASA were done using XRD, surface area and pore analyzer and SEM. The higher of alumina in liquid phase as a result of the rising molar of HCL in the leaching process was observed, but it didn’t work for its rising time. Products of ASA and zeolite Y were obtained by using liquid phase rich alumina and solid phase rich silica, respectively, which resulted through leaching metakaolin in 2.5 M HCl at temperature of 100° C for 2 hours.

  1. In-beam dielectric properties of alumina

    International Nuclear Information System (INIS)

    Molla, J.; Ibarra, A.; Hodgson, E.R.

    1995-01-01

    The dielectric properties (permittivity and loss tangent) of a 99.7% purity alumina grade have been measured over a wide frequency range (1 kHz-15 GHz) before and after 2 MeV electron irradiation at different temperatures. The dielectric properties at 15 GHz were measured during irradiation. Both prompt and fluence effects are observed together with permanent changes which continue to evolve following irradiation. The behaviour is complex, consistent with both radiation induced electronic effects and aggregation processes. ((orig.))

  2. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  3. Nitrogen Adsorption Study of Organised Mesoporous Alumina

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Žilková, Naděžda; Rathouský, Jiří; Zukal, Arnošt

    2001-01-01

    Roč. 3, č. 22 (2001), s. 5076-5081 ISSN 1463-9076 R&D Projects: GA AV ČR IAA4040001; GA MŠk ME 404 Grant - others:NATO(XE) SfP 974217 Institutional research plan: CEZ:AV0Z4040901 Keywords : nitrogen adsorption study * organised mesoporous alumina * reference nonporous solid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.787, year: 2001

  4. Preparation and Characterization of Activated Alumina

    Science.gov (United States)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Activated alumina is a high surface area and highly porous form of aluminum oxide that can be employed for contaminant species adsorb from ether gases or liquids without changing its form. The research in getting this material has generated huge interested. Thus, this paper presented preparation of activated alumina from chemical process. Pure aluminum (99.9% pure) reacted at room temperature with an aqueous NaOH in a reactor to produce a solution of sodium aluminate (NaAlO2). This solution was passed through filter paper and the clear filtrate was neutralized with H2SO4, to pH 6, 7 or 8, resulting in the precipitation of a white gel, Al(OH)3·XH2O. The washed gel for sulfate ions were dried at 80 °C for 6 h, a 60 mesh sieve was to separate and sort them into different sizes. The samples were then calcined (burn) for 3h in a muffle furnace, in air, at a heating rate of 2 °C min-1. The prepared activated alumina was further characterized for better understanding of its physical properties in order to predict its chemical mechanism.

  5. Size dependent phase and morphological transformation of alumina nanoparticles

    Science.gov (United States)

    Dommisa, D. B.; Dash, R. K.

    2018-03-01

    The size effect of the alumina nanoparticles on the phase and morphological transition by thermal treatment at various temperatures is investigated by choosing two different sizes alumina nanoparticles. Our experimental results revealed that phase and morphological transformation behavior is significantly different for smaller size alumina nanoparticles than that of larger size. The more stable alpha phase transformation occurs at a higher temperature for smaller size alumina nanoparticles in comparison to that of the larger size alumina nanoparticles. Moreover, the experimental facts also elucidated that the nucleation and growth process at the nanoscale for the phase transition is also size dependent. Our experimental result from the FESEM and TEM analysis also revealed that there is a direct correlation between phase and morphological transition of alumina nanoparticles size which is consistent with the XRD results. Therefore, we believe that our experimental findings can be extended to other complex nanomaterials for understanding the size-dependent phase and morphological transformation at the nanoscale.

  6. Method for preparing Pb-.beta."-alumina ceramic

    Science.gov (United States)

    Hellstrom, Eric E.

    1986-01-01

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.

  7. Tribological and stability investigations of alkylphosphonic acids on alumina surface

    International Nuclear Information System (INIS)

    Cichomski, M.; Kośla, K.; Grobelny, J.; Kozłowski, W.; Szmaja, W.

    2013-01-01

    Alumina substrates are commonly used for various micro-/nanoelectromechanical systems (MEMS/NEMS). For efficient and lifetime longevity of these devices, lubricant films of self-assembled monolayers (SAMs) with nanometer thickness are increasingly being employed. In the present paper, we report preparation, tribological and stability investigations of alkylphosphonic acids on the alumina surface. The alkylphosphonic acids were prepared on the alumina surface using the liquid phase deposition method. The effectiveness of modification of the alumina surface by alkylphosphonic acids was investigated using water contact angle measurements, secondary ion mass spectrometry, X-ray photoelectron and infrared spectroscopy. Frictional behavior in milinewton load range was studied by microtribometry. It is shown that surface modification of the alumina surface by alkylphosphonic acids reduces the coefficient of friction values compared to the unmodified alumina. In comparison to the non-modified alumina surface, all tested alkylphosphonic acids cause a decrease in the friction coefficients in friction tests for counterparts made from different materials, such as steel, zirconia and silicon nitride. It is also found that the alumina surface modified by alkylphosphonic acids with longer chain has a higher degree of hydrophobicity and lower coefficient of friction. The best frictional properties are obtained for the system consisting of the alumina surface modified by n-octadecylphosphonic acid and silicon nitride counterpart. Stability tests in different environmental conditions: laboratory, acidic and alkaline solutions were also monitored.

  8. Shockless spalling damage of alumina ceramic

    Science.gov (United States)

    Erzar, B.; Buzaud, E.

    2012-05-01

    Ceramic materials are commonly used to build multi-layer armour. However reliable test data is needed to identify correctly models and to be able to perform accurate numerical simulation of the dynamic response of armour systems. In this work, isentropic loading waves have been applied to alumina samples to induce spalling damage. The technique employed allows assessing carefully the strain-rate at failure and the dynamic strength. Moreover, specimens have been recovered and analysed using SEM. In a damaged but unbroken specimen, interactions between cracks has been highlighted illustrating the fragmentation process.

  9. Low Temperature MOCVD-Processed Alumina Coatings

    OpenAIRE

    Gleizes, Alain; Sovar, Maria-Magdalena; Samélor, Diane; Vahlas, Constantin

    2006-01-01

    We first present a Review about the preparation of alumina as thin films by the technique of MOCVD at low temperature (550°C and below). Then we present our results about thin films prepared by the low pressure MOCVD technique, using aluminium tri-isopropoxide as a source, and characterized by elemental analysis (EMPA, EDS, ERDA, RBS), FTIR, XRD and TGA. The films were grown in a horizontal, hot-wall reactor, with N2 as a carrier gas either pure or added with water vapour. The deposition t...

  10. Characterization of silane coated hollow sphere alumina-reinforced

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  11. Characterization of silane coated hollow sphere alumina-reinforced ...

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  12. Chemical modification/grafting of mesoporous alumina with polydimethylsiloxane (PDMS)

    NARCIS (Netherlands)

    Pinheiro de Melo, A.F.; Nijmeijer, Arian; Sripathi, V.G.P.; Winnubst, Aloysius J.A.

    2015-01-01

    A method for polydimethylsiloxane grafting of alumina powders is described which involves chemical modification of the surface of mesoporous (5 nm) γ-alumina flakes with a linker (3-aminopropyltriethoxysilane: APTES), either by a solution phase (SPD) or a vapour phase (VPD) reaction, followed by

  13. Severe wear behaviour of alumina balls sliding against diamond ...

    Indian Academy of Sciences (India)

    Alumina balls worn out ( 14.2 × 10 − 1 mm 3 ) very rapidly with zero wear for diamond ceramic coatings. Since the generation of wear particle is the main problem for load-bearing prosthetic joints, it was concluded that the PCD material can potentially replace existing alumina bio-ceramic for their bettertribological properties ...

  14. Micrometer size grains of hot isostatically pressed alumina and its ...

    Indian Academy of Sciences (India)

    Administrator

    The. Vickers hardness in 5⋅5 μm grain microstructure is around 20 GPa in comparison to about 18 GPa in micro- structure with smaller grains of 2⋅2 μm size. Keywords. Alumina ... the technology of alumina ceramics (Munro 1997; Raha- man et al 2007) by purer ... reported interface-reaction-controlled kinetics of HIPing.

  15. Processing and characterization of alumina/LAS bioceramics for ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Alumina allows to recreate the functionality and aesthetics of natural teeth. However, its low frac- ture toughness rises concern regarding use in dental restoration. Structural reliability is addressed here by formulating a material containing alumina and a glass–ceramic from LAS system. The presence of LAS in the.

  16. Processing and characterization of alumina/LAS bioceramics for ...

    Indian Academy of Sciences (India)

    Alumina allows to recreate the functionality and aesthetics of natural teeth. However, its low fracture toughness rises concern regarding use in dental restoration. Structural reliability is addressed here by formulating a material containing alumina and a glass–ceramic from LAS system. The presence of LAS in the mixtures ...

  17. APPLICATION OF VARIOUS TYPES OF ALUMINA AND NANO-γ ...

    African Journals Online (AJOL)

    Preferred Customer

    reported for the synthesis of α-aminonitriles, nucleophilic addition of cyanide ion to imines. (Strecker reaction), is of .... Application of various types of alumina and nano-γ-alumina sulfuric acid. Bull. Chem. Soc. ..... After purification by chromatography on silica gel (ethyl acetate/n-hexane 20:80) α-aminonitriles were obtained.

  18. Investigations on thermoluminescent dosimetry (TLD) with doped alumina ceramics

    International Nuclear Information System (INIS)

    Janas, R.; Huebner, K.

    1976-01-01

    Alumina ceramics doped and burned under various conditions have been investigated with regard to their suitability for thermoluminescent dosimetry. The production of ceramics is described. The properties essential for dosimetric purposes, such as glow curve, energy dose characteristics, fading, recoverability, lower detection limit and energy dependence, are indicated. The advantages and disadvantages of alumina ceramics are compared. (author)

  19. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  20. Characterization and sintering of niobium-ATR alumina

    International Nuclear Information System (INIS)

    Sibuya, N.H.; Iwasaki, H.; Suzuki, C.K.; Pinatti, D.G.

    1987-01-01

    In the niobium aluminothermy a slag is produced, composed mostly of alumina and other compounds such as niobium oxide and silica. The phase composition of this ATR alumina was characterized by X-ray powder diffractometry, and afterwards this alumina was subjected to leaching processes. It was noticed that the original content of 70% α-alumina in slag rose to 95% after the calcination. ATR alumina (leached and calcined, and without any treatment) was used to make pressed bodies which were fired in air at 1200 to 1400 0 C for 1 to 10,5 hours; and in vacuum at 1550 to 1800$0C for 2 hours. Characterization was done by density measurements, X-ray diffractometry and ultrasonic analysis. Ultrasonic analysis of some vacuum fired bodies showed londitudinal velocities close to the value found in literature. Correlation of several techniques measurements disclosed the niobium oxide interference in sintering. (Author) [pt

  1. Temperature-dependent thermal properties of spark plasma sintered alumina

    Directory of Open Access Journals (Sweden)

    Saheb Nouari

    2017-01-01

    Full Text Available In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250ºC using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400°C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250ºC.

  2. The mineralogy of bauxite for producing smelter-grade alumina

    Science.gov (United States)

    Authier-Martin, M.; Forte, G.; Ostap, S.; See, J.

    2001-12-01

    Aluminum-producing companies rely on low-cost, high-purity, smelter-grade alumina (aluminum oxide), and alumina production utilizes the bulk of bauxites mined world-wide. The mineralogy of the bauxites has a significant impact on the operation of the Bayer process for alumina production. Typically, the Bayer process produces smelter-grade alumina of 99.5% Al2O3, starting from bauxite containing 30% to 60% Al2O3. The main objective of the Bayer process is to extract the maximum amount of aluminum from the bauxite at as high an aluminate concentration in solution as possible, while limiting any troublesome side reactions. Only with a better understanding of the chemistry of the mineral species and a strict control of the operating/processing conditions can the Bayer process produce efficiently, a low cost, high-quality alumina with minimum detrimental environmental impact.

  3. Microstructural evaluation of alumina-niobium and alumina- niobium-zircon ceramics for ballistic application

    International Nuclear Information System (INIS)

    Mota, Juliana Machado da; Lopes, Cristina Moniz Araujo; Melo, Francisco Lourenco Cristovao de

    2009-01-01

    This study aimed to evaluate the microstructural of Alumina- Niobium and Alumina- Niobium-Zircon ceramics. Samples with 3.5 x 4.5 x 34 mm dimensions were prepared by uniaxial pressure (50 MPa) followed by isostatic pressure (300 MPa). The samples were sintered at 1500 ° C for 1 hour. The ceramics obtained were characterized by scanning electron microscopy (SEM) and X-ray diffraction, to evaluate the phases and microstructures. In order to analyze the microstructure, by SEM the samples were prepared using two techniques: heat treatment (1350 ° C for 5 minutes) and thermochemical treatment (500 ° C for 8 minutes in a solution of NaOH and KOH) on polished and fractured surfaces. The results showed that despite differences between the two etchings, both were effective to analyze the microstructure. (author)

  4. Dissolution kinetics for alumina in cryolite melts. Distribution of alumina in the electrolyte of industrial aluminium cells

    Energy Technology Data Exchange (ETDEWEB)

    Kobbeltvedt, Ove

    1997-12-31

    This thesis contributes to the understanding of which factors determine the rate of dissolution of alumina added to the bath in alumina reduction cells. Knowing this may help reduce the occurrences of operation interruptions and thus make it possible to produce aluminium using less energy. When alumina powder was added to a stirred cryolite melt, the alumina dissolved in two distinct main stages. In the first stage, the dissolution rate was very high, which reflects dissolution of single alumina grains that are being dispersed in the bath upon addition. In the second stage, lumps of alumina infiltrated with bath dissolved at a rate considerably slower than that of the first stage. The formation of these alumina agglomerates is the most important contributor to slow dissolution. The parameters varied in the experiments were convection, batch size, and temperature of the bath and of the added alumina. Increased gas stirring of the bath speeded up dissolution in both stages but the size of the batch was of little significance. Increasing the bath temperature had no effect in the first stage but speeded up dissolution considerably in the second stage. Compared to adding alumina at room temperature, preheating it to a high temperature (600 {sup o}C) increased the dissolution rate in the first stage while preheating to lower temperatures (100-300 {sup o}C) decreased the dissolution rate. In the second stage, preheating slowed the dissolution. The two latter phenomena of reduced dissolution rates are ascribed to the removal of moisture from the alumina upon preheating. The bath flow and the distribution of alumina in the bath were measured in four different types of cells. It was found that if a certain asymmetry of the magnetic field traverse to the cell was present, due to the presence of risers, then loops of high velocity bath flow occurred near the short ends of the cell. Thus, alumina added near the short ends is effectively transferred away from the feeding

  5. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment

    International Nuclear Information System (INIS)

    Stumpf, Aisha S.G.; Bergmann, Carlos P.; Vicenzi, Juliane; Fetter, Rebecca; Mundstock, Karina S.

    2009-01-01

    This study investigates the mechanical properties of alumina-feldspar based ceramics when exposed to an aggressive environment (acetic acid 4%). Alumina ceramics containing different concentrations of feldspar (0%, 1%, 5%, 10%, or 40%) were sintered at either 1300, 1600, or 1700 o C. Flaws (of width 0%, 30%, or 50%) were introduced into the specimens using a saw. Half of these ceramic bodies were exposed to acetic acid. Their flexural strength, K IC , and porosity were measured and the fractured samples were evaluated using scanning electronic- and optical microscopy. It was found that in the ceramic bodies sintered at 1600 o C, feldspar content up to 10% improved flexural strength and K IC, and reduced porosities. Generally, it was found that acetic acid had a weakening effect on the flexural strength of samples sintered at 1700 o C but a beneficial effect on K IC of ceramics sintered at 1600 o C. It was concluded that alumina-based ceramics with feldspar content up to 10% and sintered at higher temperatures would perform better in an aggressive environment similar to oral cavity.

  6. Special requirements for alumina ceramic of ESG electrode bowl

    Science.gov (United States)

    Zhang, Jun-An; Xue, Kai; Zhang, Jia-Tai; Zhang, Qiang

    2004-06-01

    At present ESG (Electrostatic Suspended Gyro) is the most precise inertia element in the world. The electrode bowl, which has direct effect on the precision of ESG, is a key part to ESG. Through the analysis of the function and characteristic of the electrode bowl in hollow rotor ESG and the present situation of new material development in the world, the alumina ceramic is regarded as the best material for the electrode bowl of hollow rotor ESG. By analyzing the present situation of alumina ceramic in the world, main technique requirements have been put forward for the alumina ceramic of ESG electrode bowl which is also fit for solid rotor ESG.

  7. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  8. Dynamical stability of the alpha and theta phases of alumina

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Parlinski, K.

    2003-01-01

    Using density functional calculations the phonon dispersion relations, phonon density of states, and free energy of theta and alpha phases of alumina are investigated. The temperature dependence of the free energy indicates that entropy contributes to the destabilization of the alpha phase...... cations in alumina, and suggest that some other than entropic mechanism exists, which stabilizes transition aluminas up to 1400 K. The present calculations go beyond the ground state energy calculations [C. Wolverton and K.C. Hass, Phys. Rev. B 63, 24102 (2001)], and give an additional understanding...

  9. Fabrication of Highly Ordered Gold Nanorods Film Using Alumina Nanopores

    Directory of Open Access Journals (Sweden)

    Z. Soltani

    2012-06-01

    Full Text Available A simple method for fabrication of highly ordered gold nanorod film is introduced in this article. The procedure is based on thermal evaporation of gold into a porous anodic alumina film (PAA. The PPA film was fabricated by combining the hard and mild anodization. This combination effectively decreases the processing time of fabrication of highly ordered porous anodic alumina film with controlled pore diameter and length.  It was found that gold nanorods configuration affected by the porous anodic alumina film structure such as pore diameter and length. Furthermore the evaporation process change the rods diameter along the nanopores via the decreasing the pore mouth during the gold deposition.

  10. Crystallography of Alumina-YAG-Eutectic

    Science.gov (United States)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  11. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  12. Alumina strength degradation in the elastic regime

    International Nuclear Information System (INIS)

    Furnish, Michael D.; Chhabildas, Lalit C.

    1998-01-01

    Measurements of Kanel et al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic Limit (HEL) relax over a time span of microseconds after initial loading. 'Failure' (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study we have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime

  13. Optimized alumina coagulants for water treatment

    Science.gov (United States)

    Nyman, May D [Albuquerque, NM; Stewart, Thomas A [Albuquerque, NM

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  14. Glass transition temperature of PMMA/modified alumina nanocomposite: Molecular dynamic study

    OpenAIRE

    Mohammadi, Maryam; Davoodi, Jamal; Javanbakht, Mahdi; Rezaei, Hamidreza

    2017-01-01

    In this study, the effect of alumina and modified alumina nanoparticles in a PMMA/alumina nanocomposite was investigated. To attain this goal, the glass transition behavior of poly methyl methacrylate (PMMA), PMMA/alumina and PMMA/hydroxylated alumina nanocomposites were investigated by molecular dynamic simulations (MD). All the MD simulations were performed using the Materials Studio 6.0 software package of Accelrys. To obtain the glass transition temperature, the variation of density vs. t...

  15. Effects of ball milling and sintering on alumina and alumina-boron compounds

    Science.gov (United States)

    Cross, Thomas

    Alumina has a wide variety of applications, but the processing of alumina based materials can be costly. Mechanically milling alumina has been shown to enhance the sintering properties while decreasing the sintering temperature. Additions of boron have also proven to increase sintering properties of alumina. These two processes, mechanical milling and boron additions, will be combined to test the sintering properties and determine if they are improved upon even further compared to the individual processes. Multiple samples of pure alumina, 0.2 weight percent boron, and 1.0 weight percent boron are batched and processed in a ball mill for different time intervals. These samples are then characterized to observe the structure and properties of the samples after milling but before sintering. Pellets are dry pressed from the milled powders, sintered at 1200°C for one to 10 hours, and characterized to determine the impact of processing. X-ray diffractometry (XRD) was used on each sample to determine crystallite size and lattice parameters at different stages throughout the experiment. XRD was also used to identify any samples with an aluminum borate phase. Scanning electron microscopy (SEM) was used to observe the powder and pellet morphology and to measure bulk chemical composition. Samples were sputter coated with an Au-Pd coating observed in the SEM to characterize the topography as a function of variables such as milling time, boron composition, and sintering time. Additionally, porosity and change in diameter were measured to track the sintering process. Milling sample for longer periods of time would be unnecessary due to the crystallite size leveling off between 10 and 12 hours of milling time. Samples of alumina with 0.2 weight percent boron prove to have very little effect on the sintering properties. At 1.0 weight percent boron, there are changes in diffraction patterns and topography after being sintered for one hour. The porosities of all of the sintered

  16. Characterization of the Uptake of Nitrogen Oxides on Alumina Adsorbents

    National Research Council Canada - National Science Library

    Pocengal, David

    1999-01-01

    ...) to quantify nitrate and nitrite (NOx) in aqueous solutions that contained NOx exposed alumina and to correlate the quantities of these surface NOx species with the quantity of gaseous NOx sorbed...

  17. Synthesis of α-Alumina (Corundum) and its Application

    International Nuclear Information System (INIS)

    Nay Thwe Kyi; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    This paper described the preparation of aluminium isopropoxide from aluminium sheet at different heating times.Aluminium sheet is found to have a reaction with absolute isopropyl alcohol and mercury (II) chloride as a catalyst under nitrogen atmosphere. Aluminium isopropoxide was characterized by NMR, XRD and IR. Aluminium isopropoxide serves as a molecular precursor to derive pure alumina gel by hydrolysis under both homogeneous and heterogeneous conditions. Pyrolysis to this alumina gel transforms it into -aluminia (corundum) at 1200'C. The phase transformation during pyrolysis was characterized by XRD, SEM and TEM. The alumina (corundum) has porous crystalline nature with high surface aera, which may be used as efficient adsorbent packing material in coloumn chromatography for the seperation of vitamin A from the leaves. -alumina can be also used in catalysis

  18. Surface chloride salt formation on Space Shuttle exhaust alumina

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.; Sebacher, D. I.; Wakelyn, N. T.

    1984-01-01

    Aluminum oxide samples from the exhaust of Space Shuttle launches STS-1, STS-4, STS-5, and STS-6 were collected from surfaces on or around the launch pad complex and chemically analyzed. The results indicate that the particulate solid-propellant rocket motor (SRM) alumina was heavily chlorided. Concentrations of water-soluble aluminum (III) ion were large, suggesting that the surface of the SRM alumina particles was rendered soluble by prior reactions with HCl and H2O in the SRM exhaust cloud. These results suggest that Space Shuttle exhaust alumina particles are good sites for nucleation and condensation of atmospheric water. Laboratory experiments conducted at 220 C suggest that partial surface chloriding of alumina may occur in hot Space Shuttle exhaust plumes.

  19. Synthesis of beta alumina from aluminum hydroxide and oxyhydroxide precursors

    CSIR Research Space (South Africa)

    Van Zyl, A

    1993-02-01

    Full Text Available Two aluminium oxyhydroxides, boehmite and pseudoboehmite, and two aluminium hydroxides, bayerite and gibbsite, have been investigated as precursors for the synthesis of the solid electrolyte, beta alumina. Reaction pathways and products have been...

  20. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty.

    Science.gov (United States)

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-02-11

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of this articulation is variable. We reviewed the advantages and disadvantages of ceramicon- polyethylene articulation in THA, hip simulator study and retrieval study for polyethylene wear, in vivo clinical results of THA using alumina ceramic-on-polyethylene bearing surfaces in the literature, and new trial alumina ceramic-onhighly cross linked polyethylene bearing surfaces.

  1. Superhydrophobic alumina surface based on stearic acid modification

    Energy Technology Data Exchange (ETDEWEB)

    Feng Libang, E-mail: lepond@hotmail.com [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China); Zhang Hongxia; Mao Pengzhi; Wang Yanping; Ge Yang [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2011-02-15

    A novel superhydrophobic alumina surface is fabricated by grafting stearic acid layer onto the porous and roughened aluminum film. The chemical and phase structure, morphology, and the chemical state of the atoms at the superhydrophobic surface were investigated by techniques as FTIR, XRD, FE-SEM, and XPS, respectively. Results show that a super water-repellent surface with a contact angle of 154.2{sup o} is generated. The superhydrophobic alumina surface takes on an uneven flowerlike structure with many nanometer-scale hollows distribute in the nipple-shaped protrusions, and which is composed of boehmite crystal and {gamma}-Al{sub 2}O{sub 3}. Furthermore, the roughened and porous alumina surface is coated with a layer of hydrophobic alkyl chains which come from stearic acid molecules. Therefore, both the roughened structure and the hydrophobic layer endue the alumina surface with the superhydrophobic behavior.

  2. Pressure driven water flow through hydrophilic alumina nanomembranes

    Science.gov (United States)

    Beskok, Ali; Koklu, Anil; Sengor, Sevinc

    2017-11-01

    We present an experimental study that focuses on pressure-driven flow of distilled water through alumina membranes with 5, 10 and 20 nm pore radii. The nanopore geometry, pore size and porosity are characterized using scanning electron microscopy images taken pre and post-flow experiments. Comparisons of these images have shown reduction in the pore size, which is attributed to precipitation of hydroxyl groups on alumina surfaces. Measured flowrates compared with the Hagen-Poiseuille flow relations consistently predict 2.2 nm reductions in the pore size for three different membranes. This behavior can be explained by the formation of a thick stick layer of water molecules over hydroxylated alumina surfaces, evidenced by water droplet contact angle measurements that exhibit increased hydrophilicity of alumina surfaces. Other possible effects of the mismatch between theory and experiments such as unaccounted pressure losses in the system or the streaming potential effects were also considered, but shown to be negligible for current experimental conditions.

  3. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Xu, Huifang; Pohl, Phil; Yang, Yi; Brinker, C Jeffrey

    2002-10-01

    This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.

  4. Ceramic joining through reactive wetting of alumina with calcium ...

    Indian Academy of Sciences (India)

    investigations are carried out in non-oxide ceramics such as AlN, Si3N4, SiC etc while ZrO2 and Al2O3 are the usu- ally considered oxide materials for many applications. The literature about alumina joining is very much limited when compared to other ceramics like Si3N4 and SiC. Alumina, both as single crystal and in ...

  5. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-01-01

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of th...

  6. Crack defect formation during manufacture of fused cast alumina refractories

    Science.gov (United States)

    Au, Dominic; Cockcroft, Steve; Maijer, Daan

    2002-07-01

    A sequentially coupled mathematical thermal-stress model, based on the commercial finite-element code ABAQUS, has been developed to rationalize crack defect formation in fused cast αβ-alumina refractories used in the glass industry. The thermal model was validated against thermocouple and pyrometer measurements obtained in an industrial setting. The temperature predictions obtained from the thermal model were employed as input to the elastic strain-rate-independent plastic stress model. The constitutive behavior of αβ-alumina has been determined over a range of temperatures for input to the stress model. The distribution of β-alumina that forms in the center of the casting due to rejection of Na2O during solidifcation was introduced in the stress model through a user-defined subroutine in order to account for the effect of differences in the thermal contraction behavior and elastic modulus of the αβ- and β-alumina phases. The stress analysis indicates that temperature gradients as well as the different dilatational behavior of the αβ- and β-alumina phases are the main drivers of stress and strain evolution during solidification and subsequent cooling. The β-alumina core, in particular, plays an important role in the generation of tensile stresses and likely gives rise to the generation of the internal cracks observed in industrial castings.

  7. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  8. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    Science.gov (United States)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  9. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  10. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.

    Science.gov (United States)

    Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-09-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.

  11. Influence of additives on the stability of the phases of alumina; Influencia de aditivos na estabilidade das fases da alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D.C.C.; Gouvea, D., E-mail: deisedorosario@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Processos Ceramicos

    2011-07-01

    Problems with the stability of gamma alumina in catalytic reactions have been solved with the inclusion of additives during the synthesis of alumina. These additives stabilize the temperature of phase transition allowing the use of metastable alumina at high temperatures, but the mechanisms of action of additives are not well defined. It is known that each family of additive or additives behaves in different ways for this stabilization. This work aimed to study the performance of MgO and ZrO{sub 2}, respectively at different concentrations in alumina synthesized via Pechini. The samples were analyzed by DSC, X-ray diffraction, measurement of specific surface area by BET analysis, and infrared analysis. The results showed an increase in transition temperature for both additives, and a different changes for specific surface area, showing that MgO and ZrO{sub 2} work on improving the stability but with distinct mechanisms. (author)

  12. Coprecipitated nickel-alumina methanation catalysts

    International Nuclear Information System (INIS)

    Kruissink, E.C.

    1981-01-01

    In the last few years there has been a renewed interest in the methanation reaction CO+3H 2 =CH 4 +H 2 O. The investigations described in this thesis were performed in relation to the application of this reaction, within the framework of the so-called 'NFE' project, also called 'ADAM' and 'EVA' project. This project, which has been under investigation in West Germany for some years, aims at the investigation of the feasibility of transporting heat from a nuclear high temperature reactor by means of a chemical cycle. A promising possibility to realize such a cycle exists in applying the combination of the endothermic steam reforming of methane and the exothermic methanation reaction. This thesis describes the investigations into a certain type of methanation catalyst, viz. a coprecipitated nickel-alumina catalyst, with the aim to give more insight into the interrelationship between the preparation conditions on the one hand and catalyst properties such as activity and stability on the other hand. (Auth.)

  13. Alumina-on-alumina total hip replacement for femoral neck fracture in healthy patients

    Directory of Open Access Journals (Sweden)

    Moretti Lorenzo

    2011-02-01

    Full Text Available Abstract Background Total hip replacement is considered the best option for treatment of displaced intracapsular fractures of the femoral neck (FFN. The size of the femoral head is an important factor that influences the outcome of a total hip arthroplasty (THA: implants with a 28 mm femoral head are more prone to dislocate than implants with a 32 mm head. Obviously, a large head coupled to a polyethylene inlay can lead to more wear, osteolysis and failure of the implant. Ceramic induces less friction and minimal wear even with larger heads. Methods A total of 35 THAs were performed for displaced intracapsular FFN, using a 32 mm alumina-alumina coupling. Results At a mean follow-up of 80 months, 33 have been clinically and radiologically reviewed. None of the implants needed revision for any reason, none of the cups were considered to have failed, no dislocations nor breakage of the ceramic components were recorded. One anatomic cementless stem was radiologically loose. Conclusions On the basis of our experience, we suggest that ceramic-on-ceramic coupling offers minimal friction and wear even with large heads.

  14. Efficiency of Nepheline Ore Processing for Alumina Production

    Science.gov (United States)

    Arlyuk, B. I.; Pivnev, A. I.

    The comparative economical analysis and energetic analysis of alumina production from various kinds of raw materials were carried out basing on industrial data. The main process parameters of nepheline raw materials processing through sintering adopted at large industrial scale are given. The said technology allows the wasteless utilization of nepheline to produce alumina, soda, potash, potassium sulphate and chloride, portland cement and gallium without polluting the environment. According to industrial data the production cost of alumina while using the sintering of nepheline raw material is considerably lower than in processing of high grade bauxites by the Bayer way due to complete utilization of wastes, and as for capital investments into the process facilities they are lower than those into alumina production from bauxites, production of soda, potash and cement by traditional methods taken together. Are cited the flowsheets of alumina, soda, potash and portland cement production from nepheline ore, the process interrelationships determining the efficiency of raw material processing, and ways of further improvement of the process.

  15. Zirconia-alumina composites of high mechanical strength

    International Nuclear Information System (INIS)

    Pyda, W.; Pyda, A.

    2004-01-01

    Commercial zirconia (stabilized with 3 mol% yttria) and alumina powders of submicron size were used to produce ceramic matrix composites in the ZrO 2 -Al 2 O 3 system. Homogeneous mixtures of both constituent powders were prepared by means pf physical mixing in water exploiting a heterofloculation effect. The mixtures were consolidated using two methods: (i). Cold isostatic pressing of the samples under 300 MPa followed by pressureless sintering in air, (ii). hot pressing under 25 MPa in argon. The samples were sintered for 2 h at 1500-1650 o C. Detailed characterization was made with respect of the powder properties, packing of the particles in green compacts and microstructure of the consolidated composites. Studied was an influence of alumina content and the consolidation method on mechanical properties of the composites. A bending strength of 17±0.2 GPa was measured for the TZP material which contained 5 vol.% of alumina particles. (author)

  16. Retrospective dosimetry with alumina substrate from electronic components

    International Nuclear Information System (INIS)

    Ekendahl, D.; Judas, L.

    2012-01-01

    Alumina substrate can be found in electronic components used in portable electronic devices. The material is radiation sensitive and can be applied in dosimetry using thermally or optically stimulated luminescence. Electronic portable devices such as mobile phones, USB flash discs, mp3 players, etc., which are worn close to the body, can represent personal dosemeters for members of the general public in situations of large-scale radiation accidents or malevolent acts with radioactive materials. This study investigated dosimetric properties of alumina substrates and aspects of using mobile phones as personal dosemeters. The alumina substrates exhibited favourable dosimetry characteristics. However, anomalous fading had to be properly corrected in order to achieve sufficient precision in dose estimate. Trial dose reconstruction performed by means of two mobile phones proved that mobile phones can be used for reconstruction of personal doses. (authors)

  17. Modifying alumina red mud to support a revegetation cover

    Science.gov (United States)

    Xenidis, A.; Harokopou, A. D.; Mylona, E.; Brofas, G.

    2005-02-01

    Alumina red mud, a fine-textured, iron-rich, alkaline residue, is the major waste product of bauxite digestion with caustic soda to remove alumina. The high alkalinity and salinity as well as the poor nutrient status are considered to be the major constraints of red mud revegetation. This research was conducted to evaluate the ameliorating effect of gypsum, sewage sludge, ferrous sulfate, ammonium sulfate, ammonium nitrate, and calcium phosphate on alumina red mud. The effectiveness of the mixtures was evaluated by applying extraction tests and performing experiments using six plant species. Gypsum amendment significantly reduced the pH, electrical conductivity, and sodium and aluminum content of red mud. Sewage sludge application had an extended effect in improving both the soil structure and the nutrient status of the gypsum-amended red mud. Together with the gypsum and sewage sludge, calcium phosphate application into red mud enhanced plant growth and gave the most promising results.

  18. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  19. Membranes obtained from alumina from separation water/oil

    International Nuclear Information System (INIS)

    Rosas Neto, M.I.; Lira, H.L; Guimaraes, I.O; Franca, K.B.

    2016-01-01

    This study aims to evaluate by flow test emulsion water/oil a membrane obtained from a crude residue of the alumina industry and see if this membrane is able to filter this emulsion within the limits specified by CONAMA. In this work, tubular membranes composed of the alumina and the residue bentonite clay were produced by extrusion and were sintered at 900, 1000 and 1100 ° C. tangential flow tests were conducted with deionized water and subsequently with an emulsion of water / oil, all done with a pressure of 1.5 bar. The results showed that membranes produced from the crude residue the alumina industry were quite efficient the emulsion's oil removal, reducing the concentration of about 100 ppm in the feed, to below 5ppm and flow rates of around 30L/h.m 2 . (author)

  20. Radiation silver paramagnetic centers in a beta-alumina crystal

    International Nuclear Information System (INIS)

    Badalyan, A.G.; Zhitnikov, R.A.

    1985-01-01

    Silver paramagnetic centers in a β-alumina crystal, formed after X-ray radiation at 77 K, are investigated by the EPR method. Silver enters the β-alumina crystal, substituting sodium and potassium ions in a mirror plane. Crystals with substitution from 0.1 to 100% of alkali metal ions by Ag + ions are investigated. Silver atomic centers (Ag 0 -centers), formed by electron capture with the Ag + ion, are firstly detected and investigated in the β-alumina. Hole Ag 2+ -centers are investigated and detected in crystals with high concentration of Ag + . By studying the orientation dependence of a g-factor it is established that hole capture by the Ag + ion is accompanied by Ag 2+ ion displacement from the position, Ag + being primarity taken up (Beavers-Roth or anti- Beavers-Roth) to the position between two oxygen ions in the mirror plane

  1. Synthesis of alumina powders by precipitation method and solvothermal treatment

    International Nuclear Information System (INIS)

    Politchuk, J.O.; Lima, N.B.; Lazar, D.R.R.; Ussui, V.; Yoshito, W.K.

    2012-01-01

    The improvement of alumina powders synthesis processes has been focused on the preparation of ceramic powders with well defined crystalline structure and with high specific surface area and nanometric particle size without formation of hard agglomerates. For this purpose the precipitation step should be studied and and also the temperature of alumina crystallization should be reduced. The aim of this study was to obtain alumina powders by hydroxide precipitation with ammonia in the presence of cationic surfactant, followed by solvothermal treatment and calcination. The powders were characterized by TG/DTA, X-ray diffraction, surface area measurements by gas adsorption (BET) and scanning electron microscopy. The results showed that powders produced by solvothermal treatment without surfactant have higher crystallinity. However the presence of CTAB enhances 240% the specific surface area compared with powders produced without this reagent (author)

  2. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  3. Two steps sintering alumina doped with niobia; Sinterizacao em duas etapas de alumina aditivada com niobia

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P., E-mail: lucas.gomes@ufrgs.br [Universidade Federal do Rio Grande do Sul (LACER/UFRGS) Porto Alegre, RS (Brazil). Laboratorio de Materiais Ceramicos

    2014-07-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  4. Distribution of nickel between copper-nickel and alumina saturated iron silicate slags

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, R.G.; Acholonu, C.C.

    1984-03-01

    The solubility of nickel in slag is determined in this article by equilibrating copper-nickel alloys with alumina-saturated iron silicate slags in an alumina crucible at 1573 K. The results showed that nickel dissolves in slag both as nickel oxide and as nickel metal. The presence of alumina is shown to increase the solubility of nickel in slags.

  5. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  6. Controllable synthesis and characterization of alumina/MWNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Zoltan; Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bela ter 1, 6720 Szeged (Hungary); Marko, Kata; Erdohelyi, Andras [Department of Physical Chemistry and Material Science, University of Szeged, Aradi ter 2, 6720 Szeged (Hungary); Forro, Laszlo [Laboratory of Physics of Complex Matter, IPMC, EPFL, 1026 Ecublens (Switzerland)

    2011-11-15

    The aim of this work is to develop a controllable synthesis pathway which produces a stable alumina layer on the surface of carbon nanotubes by impregnation method. Precursor compounds such as aluminium isopropoxide and aluminium-acetyl-acetonate were used to cover the surface of multiwalled carbon nanotubes (MWNTs) under different solvent conditions. As-prepared alumina coverages were characterized by TEM, SEM, SEM-EDX, TG and X-ray diffraction techniques. Results revealed that homogeneous coverage can be achieved in a controllable way. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Effect of Impurities on O and Al Boundary Diffusion in Alumina: Application Alumina Scale Growth in Alloys

    Science.gov (United States)

    2012-01-24

    500ppm Hafnium doped E 3 25000 01 20000 re 0- • 1250 Q. 15000 • 1400 c 10000 O re •0 ’x 5000 O " K- =1.70*10 15 mVs —• 0 1...jjp, 25000 I s3 20000 15000 10000 5000 Lxperimental data (1300°C 60 h) - Fitting using the quasi steady-state model • Fitting using the...c o I 01 > 3 E 3 Comparison between Yttrium doped and Pur« alumina -•-Yttrium doped -•-Pure alumina 100 110 120 130 140 ISO

  8. High-frequency characteristics of glass/ceramic composite and alumina multilayer structures

    International Nuclear Information System (INIS)

    Niwa, K.; Suzuki, H.; Yokoyama, H.; Kamechara, N.; Tsubone, K.; Tanisawa, H.; Sugiki, H.

    1990-01-01

    This paper reports the transmission characteristics of glass/ceramic composite (borosilicate glass/alumina) and alumina multilayer structures examined. The triplate stripline formed in the glass/ceramic multilayer shows low conductor and dielectric loss. Alumina multilayer, however, has twice the transmission loss at 10 GHz, because the resistivity of W in the alumina multilayer is higher than the Cu in the glass/ceramic multilayer. Crosstalk between striplines in the glass/ceramics is less than -80 dB up to 11 GHz and 9 GHz for alumina

  9. Alumina Extraction from a Pennsylvania Diaspore Clay by an Ammonium Sulfate Process

    Science.gov (United States)

    Fetterman, J. W.; Sun, Shou-Chuan

    A method is proposed for the extraction of alumina from the minerals diaspore, kaolinite and boehmite, the major alumina usinerais in Pennsylvania diaspore clay. The conditions required for optimum alumina extraction and minimum ammonium sulfate loss as determined for the alumina minerals are applied to a naturally occurring diaspore clay. The proposed flowsheet thus obtained is examined in its parts and such variables as particle size, ammonium sulfate to alumina mole ratio, roasting temperature, roasting time, heating rate, leaching cohditions, and purification methods are discussed.

  10. Studying alumina boundary migration using combined microscopy techniques

    International Nuclear Information System (INIS)

    Riesterer, J L; Farrer, J K; Munoz, N E; Gilliss, S R; Ravishankar, N; Carter, C B

    2006-01-01

    Thermal grooving and migration of grain boundaries in alumina have been investigated using a variety of microscopy techniques. Using two different methods, polycrystalline alumina was used to investigate wet (implying the presence of a glassy phase), and dry grain boundaries. In the first, single-crystal Al 2 O 3 was hot-pressed via liquid phase sintering (LPS) to polycrystalline alumina with an anorthite glass film at the interface. Pulsed laser deposition was used to deposit approximately 100-nm thick glass films. Specimens were annealed in air at 1650 deg. C for 20 h to induce boundary migration. Boundary characterization was carried out using visible light (VLM) and scanning electron (SEM) microscopies. Effects on migration due to surface orientation of grains were investigated using electron backscatter diffraction (EBSD). The second method dealt with heat treating dry boundaries in polycrystalline alumina to monitor boundary migration behavior via remnant thermal grooves. Heat treatments were conducted at 1650 deg. C for 30 min. The same region of the sample was mapped using VLM and atomic force microscopy (AFM) and followed over a series of 30 min heat treatments. Boundary migration through a pore trapped inside the grain matrix was of particular interest

  11. Studying alumina boundary migration using combined microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Riesterer, J L [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States); Farrer, J K [Now at Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Munoz, N E [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States); Gilliss, S R [Now at Robins, Kaplan, Miller and Ciresi, L.L.P., Minneapolis, MN 55402 (United States); Ravishankar, N [Now at Materials Research Centre, Indian Institute of Science, Bangalore, 560 012 (India); Carter, C B [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States)

    2006-02-22

    Thermal grooving and migration of grain boundaries in alumina have been investigated using a variety of microscopy techniques. Using two different methods, polycrystalline alumina was used to investigate wet (implying the presence of a glassy phase), and dry grain boundaries. In the first, single-crystal Al{sub 2}O{sub 3} was hot-pressed via liquid phase sintering (LPS) to polycrystalline alumina with an anorthite glass film at the interface. Pulsed laser deposition was used to deposit approximately 100-nm thick glass films. Specimens were annealed in air at 1650 deg. C for 20 h to induce boundary migration. Boundary characterization was carried out using visible light (VLM) and scanning electron (SEM) microscopies. Effects on migration due to surface orientation of grains were investigated using electron backscatter diffraction (EBSD). The second method dealt with heat treating dry boundaries in polycrystalline alumina to monitor boundary migration behavior via remnant thermal grooves. Heat treatments were conducted at 1650 deg. C for 30 min. The same region of the sample was mapped using VLM and atomic force microscopy (AFM) and followed over a series of 30 min heat treatments. Boundary migration through a pore trapped inside the grain matrix was of particular interest.

  12. Exchange of alkanes with deuterium over γ-alumina

    International Nuclear Information System (INIS)

    John, C.S.; Kemball, C.; Pearce, E.A.; Pearman, A.J.

    1979-01-01

    Exchange reactions of hydrocarbons with deuterium over γ-alumina have been extensively studied but less attention has been directed to the effect of catalyst activation temperature. It has been shown that activity for propane/D 2 exchange passes through a sharp maximum at approximately 823 K and similar behaviour has been shown for the various exchange processes of propene. In this work, the first objective was to examine the effect of varying catalyst activation temperature, Tsub(a), on the subsequent activity of γ-alumina for the exchange of cyclopentane with D 2 ; the effect of chloriding the alumina was also studied. The second objective was to study the influence on the activity for cyclopentane/D 2 exchange of pretreating the catalyst with alkene at various temperatures to determine whether poisoning occurred. The literature indicates that for alkene exchange with deuterium on alumina reaction occurs preferentially for the vinyl hydrogen atoms as opposed to the hydrogen atoms attached to saturated carbon atoms. On this evidence one might expect the presence of alkene to interfere with the exchange of alkanes and indeed there is work which reports that alkene poisons both CH 4 /D 2 and H 2 /D 2 exchange. Finally, the effect of chain-length on the relative rates of methylene and methyl exchange in straight-chain hydrocarbons was examined to follow up previous work on propane and butane. The results are presented and discussed. (author)

  13. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Macroporous silica–alumina composites with mesopores have been prepared by employing polymethylmethacrylate beads as templates in the presence of the cationic surfactant, N-cetyl-N,N,N-trimethylammonium bromide. The Si/Al ratio in the composites has been varied between 4.5 and 48 and the occurrence of ...

  14. Grafting of alumina on SBA-15: Effect of surface roughness

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Šiklová, Helena; Čejka, Jiří

    2008-01-01

    Roč. 24, č. 17 (2008), s. 9837-9842 ISSN 0743-7463 R&D Projects: GA AV ČR KAN100400701 Institutional research plan: CEZ:AV0Z40400503 Keywords : alumina-grafted materials * SBA-15 * Nitrogen adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.097, year: 2008

  15. Significance of structure–property relationship in alumina based ...

    Indian Academy of Sciences (India)

    Unknown

    plimented by drastic reduction in failure and quality pro- blems experienced by insulator manufacturers (Lieberman). However, even alumina insulators manufactured (for use in 25 kV railway traction lines) under stringent ..... early showed plastic deformation and large cracks in and around the indents. Figure 7c shows the ...

  16. Controlled growth of single nanowires within a supported alumina template

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Faniel, S.

    2006-01-01

    A simple technique for fabricating single nanowires with well-defined position is presented. The process implies the use of a silicon nitride mask for selective electrochemical growth of the nanowires in a porous alumina template. We show that this method allows the realization of complex nanowire...

  17. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Unknown

    surfactant N-cetyl-N,N,N-trimethylammonium bromide. (CTAB). We describe the macroporous–mesoporous silica– alumina composites with satisfactory/high surface areas. 2. Experimental. Polymethylmethacrylate (PMMA) spheres of diameter. 275 nm were obtained from Soken Chemicals, Japan. These were taken as 1% ...

  18. Encapsulation of proteins into tunable and giant mesocage alumina.

    Science.gov (United States)

    El-Safty, Sherif A; Shenashen, Mohamed A; Ismael, Moahmed; Khairy, Mohamed

    2012-07-07

    Protein bioadsorption has rapidly attracted attention partially because of the promising advances in diagnostic assays, sensors, separations, and gene technology. Tunable and giant mesocage alumina cavities (5 nm to 20 nm) show capability in size-selective encapsulation and diffusivity of large proteins into interior pores.

  19. Severe wear behaviour of alumina balls sliding against diamond ...

    Indian Academy of Sciences (India)

    1CSIR–Central Glass & Ceramic Research Institute, Kolkata 700032, India. 2Department of Chemistry, National ... knee implants, etc.), since the coefficient of friction (COF) of diamond is lower than alumina. In this tribological ... Adhesion, friction and wear are the main factors of tribology of contacting or sliding interfaces.

  20. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 µm and. 25 µm, and a sintered silicon ... the sintered silicon carbide was found out to be linked to its previous thermal history. Keywords. Indentation fatigue .... This presence of a grain size effect in the RIF behaviour of the ...

  1. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    In view of potential applications in neutron-sensitive ion chambers used in reactor control instru- mentation, studies were carried out on alumina 100 μ to 500 μ thick coatings on copper, aluminium and SS components. The electrical insulation varied from 10 ohms to 10. 骄 ohms for coating thick- nesses above 200 μ.

  2. Effect of alumina coating and extrusion deformation on ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... (a) TGA–DSC curves of as-received SCF, SCF preform and alumina-coated SCF preforms and (b) XRD .... In order to determine the presence of the reaction product, the composites were fur- ther examined by XRD with a much lower scan speed of. 0.25. ◦ min .... than being parallel to the observing plane.

  3. Alumina and Zirconia Based Layered Composites:Part 1 Preparation

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Maca, K.; Chlup, Zdeněk

    2009-01-01

    Roč. 412, - (2009), s. 221-226 ISSN 1013-9826 R&D Projects: GA ČR(CZ) GA106/06/0724 Institutional research plan: CEZ:AV0Z20410507 Keywords : electrophoretic deposition * alumina * zirconia Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  4. Effect of chemical composition and alumina content on structure and ...

    Indian Academy of Sciences (India)

    Abstract. In the present work, six electrical porcelain compositions with different amount of alumina and silica have been prepared and fired in an industrial furnace at 1300 ◦C. Density, porosity, bending strength and electrical strength were measured in the samples. In order to find a relationship between properties and ...

  5. Formation of complex anodic films on porous alumina matrices

    Indian Academy of Sciences (India)

    The kinetics of growth of complex anodic alumina films was investigated. These films were formed by filling porous oxide films (matrices) having deep pores. The porous films (matrices) were obtained voltastatically in (COOH)2 aqueous solution under various voltages. The filling was done by re-anodization in an electrolyte ...

  6. Plasma Processes: Plasma sprayed alumina coatings for radiation ...

    Indian Academy of Sciences (India)

    Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our Research ...

  7. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  8. Microwave-assisted brazing of alumina ceramics for electron tube ...

    Indian Academy of Sciences (India)

    2, April 2016, pp. 587–591. c Indian Academy of Sciences. Microwave-assisted brazing of alumina ceramics for electron tube applications. MAYUR SHUKLA1,2 ... 1Academy of Scientific and Innovative Research (AcSIR), CSIR—-Central Glass and Ceramic Research Institute, ... element is the most popular method [2].

  9. Plasmonic properties of gold-coated nanoporous anodic alumina ...

    Indian Academy of Sciences (India)

    Abstract. Anodization of aluminium surfaces containing linearly oriented scratches leads to the formation of nanoporous anodic alumina (NAA) with the nanopores arranged preferentially along the scratch marks. NAA, when coated with a thin gold film, support plasmonic resonances. Dark-field spectroscopy revealed that ...

  10. State of the art: alumina ceramics for energy applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1978-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development

  11. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    Abstract. Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our ...

  12. Optimization of nanocrystalline γ-alumina coating for direct spray ...

    Indian Academy of Sciences (India)

    7, December 2014, pp. 1583–1588. c Indian Academy of Sciences. Optimization of nanocrystalline γ-alumina coating for direct spray water-cooling of optical devices. S N ALAM1,2,∗. , M ANARAKY3, Z SHAFEIZADEH3 and P J PARBROOK1. 1Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, ...

  13. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    In compounded zeolite catalyst it serves as the active matrix which aids the conversion of the bulkiest molecules in the feed owing to its larger pore size than zeolite. Large specific surface area gamma-alumina (γ-Al2O3) was synthesized by hydrothermal method using Kankara kaolin as starting material. Thermal treatment ...

  14. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara

    2014-02-27

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  15. Obtaining alumina-mullite-zirconia composites using alternative raw materials; Avaliacao microestrural de compositos alumina-mulita-zirconia preparados a partir de bauxita como fonte alternativa de alumina

    Energy Technology Data Exchange (ETDEWEB)

    Nakachima, P.M., E-mail: peter.nakachima@curimbaba.com.br [Mineracao Curimbaba Ltda, Pocos de Caldas, MG (Brazil); Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Rodrigues, J.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Traditionally, ceramic composites of alumina-mullite-zirconia are obtained by the sintering of a mixture of alumina and zircon powders at temperatures above 1570°C. Due to the high purity of these raw materials, the cost of this composite is relatively high and sometimes prohibitive for certain applications. This fact motivated the development of a composite using zircon and bauxite (as an alternative source of alumina). The work herein demonstrates the feasibility of using these raw materials to obtain the desired phases, together with other contaminant phases due to the presence of other oxides in the bauxite, in addition to the SiO{sub 2} and Al{sub 2}O{sub 3}. However, the procedure used was not successful on obtaining the desired amount of ZrO{sub 2}, since the dissociation of the zircon was not complete. Composites were chemically and mineralogically characterized using the X-ray fluorescence and the Rietveld method with X-ray diffraction data, respectively, besides the scanning electron microscopy for the microstructure evaluation. (author)

  16. Application of various types of alumina and nano--alumina sulfuric acid in the synthesis of α-aminonitriles derivatives: comparative study

    Directory of Open Access Journals (Sweden)

    A. Teimouri

    2014-09-01

    Full Text Available An efficient and green protocol for the synthesis of α-aminonitrile derivatives by one-pot reaction of different aldehydes with amines and trimethylsilyl cyanide has been developed using natural alumina, alumina sulfuric acid (ASA, nano-g-alumina, nano-g-alumina sulfuric acid (nano-g-ASA under microwave irradiation and solvent-free conditions. The advantages of methods are short reaction times, high yields, milder conditions and easy work up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency. DOI: http://dx.doi.org/10.4314/bcse.v28i3.13

  17. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Akiya, Shunta; Kikuchi, Tatsuya, E-mail: kiku@eng.hokudai.ac.jp; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Highlights: • Anodic porous alumina was formed in an arsenic acid solution. • Potential difference (voltage) anodizing at 340 V was achieved. • The porous alumina was slightly ordered under the appropriate conditions. • Pore sealing behavior was not observed in boiling distilled water. • The porous alumina exhibits a white photoluminescence emission under UV irradiation. - Abstract: Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1–0.5 M arsenic acid solutions at 310–340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  18. Effects of Processing Temperatures of Nickel Plating on Capacitance Density of Alumina Film Capacitor.

    Science.gov (United States)

    Jeong, Myung-Sun; Ju, Byeong-Kwon; Lee, Jeon-Kook

    2015-06-01

    We observed the effects of nickel plating temperatures for controlling the surface morphologies of the deposited nickel layers on the alumina nano-pores. The alumina nano-channels were filled with nickel at various processing temperatures of 60-90 degrees C. The electrical properties of the alumina film capacitors were changed with processing temperatures. The electroless nickel plating (ENP) at 60 degrees C improved the nickel penetration into the alumina nano-channels due to the reduced reaction rate. Nickel layers are uniformly formed on the high aspect ratio alumina pores. Due to the uniform nickel electrode, the capacitance density of the alumina film capacitors is improved by the low leakage current, dissipation factor and equivalent series resistance. Alumina film capacitors made by ENP at 60 degrees C had a high capacitance density of 160 nF/cm2.

  19. Synthesis and structural evaluation of freeze-cast porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Douglas F., E-mail: souzadf@outlook.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Pimenta, Daiana S.; Vasconcelos, Daniela C.L. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nascimento, Jailton F.; Grava, Wilson [Petrobras/CENPES, Avenida Horácio Macedo 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ CEP:21941-915 (Brazil); Houmard, Manuel [Department of Materials Engineering and Civil Construction, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 1, sala 3304 (Brazil); Vasconcelos, Wander L., E-mail: wlv@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil)

    2014-10-15

    In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observed that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.

  20. Study on the bound water of several high specific surface-area oxides (beryllia, alumina, silica-alumina)

    International Nuclear Information System (INIS)

    Rouquerol, J.

    1964-11-01

    This study is concerned with the bound water of several oxides (beryllia, alumina, silica-alumina) at different steps of their dehydration (heating temperatures between 150 and 1100 deg. C). The following techniques have been used simultaneously: Thermal analysis (a new method has been developed), nitrogen adsorption (study of the texture), Diborane hydrolysis (qualitative and quantitative analysis of surface water), Infra-red spectrography (in the absorption range of water), Nuclear magnetic resonance (in the resonance range of protons). Thanks to these different techniques, five kinds of bound water have been observed. Attention is called on the great influence of the thermal treatment conditions on the evolution of the products resulting from the decomposition of alumina α-trihydrate Al(OH) 3 and beryllium α-hydroxide, in the course of the dehydration. Moreover, the author emphasizes the peculiar properties of the two kinds of oxides (alumina and beryllia) prepared through a new method of treatment under low pressure and constant speed of decomposition. Such particular features concern mainly texture, bound water, and consequently, also catalytic activity. (author) [fr

  1. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  2. Characterization of metallized alumina: properties. [Diamonite P-3142-1, Wesgo Al-500 alumina ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Swearengen, J.C.; Burchett, O.L., Gieske, J.H.

    1976-12-01

    The effects of metallizing and brazing on the mechanical properties of Diamonite P-3142-1 and Wesgo A1-500 alumina ceramics were evaluated. The information was required for analytical prediction of the performance of ceramic-to-metal joints formed by the metallize-braze process. Residual stresses and fracture strengths were monitored before and after metallizing treatments; micromechanical modelling and surface acoustic wave experiments were utilized to determine density, thermal expansion and elastic moduli within the metallized region of the ceramics. It was observed that the metallizing elements penetrate the ceramics to a depth of about 005 ..mu..m and measurably modify the properties to a depth of about 300 ..mu..m. The moduli and density are increased approximately five percent within the penetration zone. The thermal expansion coefficients are not modified significantly by metallizing; the warping which occurs during metallizing results from microstructural changes within the ceramics and not differential thermal contraction. Fracture toughness of the Diamonite ceramic is greater than that of the Wesgo, although the metallizing treatments increase the toughness of each. Fracture strength of the Diamonite was degraded on the metallized surface, whereas the strength of the Wesgo was essentially unchanged by metallizing. Macroscopic compressive residual stresses, which exist at the surfaces of the ceramics, do not significantly affect the fracture strengths. The implications of these results for calculations of joint performance are discussed.

  3. Study of preparation and surface morphology of self-ordered nanoporous alumina; Estudo da preparacao e da morfologia de superficie de alumina nanoporosa auto-organizada

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany, E-mail: elisamarch@gmail.com, E-mail: MG.mdm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG. (Brazil); Silva, Ronald Arreguy, E-mail: arregsilva@yahoo.com.br [Centro Universitario de Belo Horizonte (UniBH), Belo Horizonte, MG (Brazil)

    2013-07-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  4. Ultrasonic characterization of zirconia-toughened alumina ceramics

    International Nuclear Information System (INIS)

    Phani, K.K.; Mukherjee, S.; Basu, D.

    1996-01-01

    Ultrasonic pulse-echo technique was used for the characterization of sintered zirconia-toughened alumina (ZTA) ceramics. The variation of the ultrasonic velocity and elastic constants with the volume fraction of zirconia in the alumina matrix was studied. The ultrasonic velocity variation in these materials also was modeled using a mean-value approach. The zirconia grains in ZTA were modeled by oblate spheroids, whose aspect ratio was estimated from the two-dimensional microstructure of the material using stereological relations. The aspect ratio was then used as a parameter to estimate the ultrasonic velocity variation in the material using self-consistent spheroidal inclusion theory, and the model was validated by comparing the estimated data with the measured velocity values, which showed very good agreement

  5. Controlled fabrication of patterned lateral porous alumina membranes

    International Nuclear Information System (INIS)

    Gowtham, M; Eude, L; Cojocaru, C S; Marquardt, B; Jeong, H J; Legagneux, P; Song, K K; Pribat, D

    2008-01-01

    Confined lateral alumina templates are fabricated with different pore sizes by changing the acid electrolyte and the anodization voltage. The control of the number of pore rows down to one dimension is also achieved, by controlling the thickness of the starting aluminum film as well as the anodization voltage. We observe that the mechanism of pore formation in the lateral regime is very similar to that in the classical vertical situation

  6. Glass properties in the yttria-alumina-silica system

    Science.gov (United States)

    Hyatt, M. J.; Day, D. E.

    1987-01-01

    The glass formation region in the yttria-alumina-silica system was investigated. Properties of glasses containing 25 to 55 wt pct yttria were measured and the effect of the composition was determined. The density, refractive index, thermal-expansion coefficient, and microhardness increased with increasing yttria content. The dissolution rate in 1N HCl increased with increasing yttria content and temperature. These glasses were also found to have high electrical resistivity.

  7. Porous Alumina and Zirconia Ceramics With Tailored Thermal Conductivity

    Czech Academy of Sciences Publication Activity Database

    Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, Jiří

    2012-01-01

    Roč. 395, č. 1 (2012), 012022-012022 ISSN 1742-6588. [European Thermal Sciences Conference (Eurotherm)/6./. Poitiers, 04.09.2012-07.09.2012] Institutional support: RVO:61389021 Keywords : Ceramics * alumina * zirconia * porosity * thermal conductivity * pore-forming agent * oxide ceramics * starch * porosity Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://iopscience.iop.org/1742-6596/395/1/012022/pdf/1742-6596_395_1_012022.pdf

  8. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N.T.

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  9. Efective infrared reflectivity and dielectric function of polycrystalline alumina ceramics

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Borodavka, Fedir; Vaněk, Přemysl; Šimek, Daniel; Trunec, D.; Maca, K.

    2017-01-01

    Roč. 254, č. 5 (2017), s. 1-8, č. článku 1600607. ISSN 0370-1972 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : alumina * ceramics * effective dielectric function * effective medium approximation * geometrical resonances * infrared reflectivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.674, year: 2016

  10. Organized Mesoporous Alumina: Synthesis, Structure and Potential in Catalysis

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří

    2003-01-01

    Roč. 254, - (2003), s. 327-338 ISSN 0926-860X R&D Projects: GA AV ČR IAA4040001; GA ČR GA104/02/0571; GA MŠk ME 404 Institutional research plan: CEZ:AV0Z4040901 Keywords : organized mesoporous alumina * mesoporous molecular sieves * synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.825, year: 2003

  11. Results of recent KROTOS FCI tests. Alumina vs. corium melts

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Magallon, D.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    Recent results from KROTOS fuel-coolant interaction experiments are discussed. Five tests with alumina were performed under highly subcooled conditions, all of these tests resulted in spontaneous steam explosions. Additionally, four tests were performed at low subcooling to confirm, on one hand, the suppression of spontaneous steam explosions under such conditions and, on the other hand, that such a system is still triggerable using an external initiator. The other test parameters in these alumina tests included the melt superheat and the initial pressure. All the tests in the investigated superheat range (150 K - 750 K) produced a steam explosion and no evidence of the explosion suppression by the elevated initial pressure (in the limited range of 0.1 - 0.375 MPa) was observed in the alumina tests. The corium test series include a test with 3 kg of melt under both subcooled and near saturated conditions at ambient pressure. Two additional tests were performed with subcooled water; one test was performed at an elevated pressure of 0.2 MPa with 2.4 kg of melt and another test with 5.1 kg of melt at ambient pressure. None of these tests with corium produced a propagating energetic steam explosion. However, propagating low energy (about twice the energy of the trigger pulse) events were observed. All corium tests produced significantly higher water level swells during the mixing phase than the corresponding alumina tests. Present experimental evidence suggests that the water depletion in the mixing zone suppresses energetic steam explosions with corium melts at ambient pressure and in the present pour geometry. Processes that could produce such a difference in void generation are discussed. (author)

  12. Development of Internal Stresses in Alumina-Zirconia Laminates

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Hadraba, Hynek; Drdlík, D.; Maca, K.; Dlouhý, Ivo

    2012-01-01

    Roč. 507, č. 1 (2012), s. 221-226 ISSN 1013-9826. [International Conference on Electrophoretic Deposition: Fundamentals and Applications /4./. Puerto Vallarta, 02.10.2011-27.10.2011] R&D Projects: GA ČR(CZ) GAP108/11/1644 Institutional research plan: CEZ:AV0Z20410507 Keywords : Alumina * Zirconia * Residual stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics http://www.scientific.net/KEM.507

  13. Advances in Zirconia Toughened Alumina Biomaterials for Total Joint Replacement

    Science.gov (United States)

    Kurtz, Steven M.; Kocagöz, Sevi; Arnholt, Christina; Huet, Roland; Ueno, Masaru; Walter, William L.

    2014-01-01

    The objective of this article is to provide an up-to-date overview of zirconia-toughened alumina (ZTA) components used in total hip arthroplasties. The structure, mechanical properties, and available data regarding the clinical performance of ZTA are summarized. The advancements that have been made in understanding the in vivo performance of ZTA are investigated. This article concludes with a discussion of gaps in the literature related to ceramic biomaterials and avenues for future research. PMID:23746930

  14. MeV ion beam polishing of anodically grown alumina

    International Nuclear Information System (INIS)

    Daudin, B.; Martin, P.

    1988-01-01

    When bombarded with 1 MeV N + ions, the surface of anodically grown alumina films is smoothened. This polishing effect was studied as a function of the ion bombardment fluence and of the substrate temperature in the range 80 - 650 K. The techniques used to characterize the surface roughness were Rutherford Backscattering Spectrometry, Scanning Electron Microscopy and small angle X-rays diffusion. It is suggested that atomic and/or electronic sputtering is responsible for the smoothing effect which was observed

  15. Dependence of the Stabilization of -Alumina on the Spray Process

    Czech Academy of Sciences Publication Activity Database

    Stahr, C.Ch.; Saaro, S.; Berger, L.-M.; Herrmann, M.; Dubský, Jiří; Neufuss, Karel

    2007-01-01

    Roč. 16, 5-6 (2007), s. 822-830 ISSN 1059-9630 R&D Projects: GA ČR(CZ) GA106/05/0483 Institutional research plan: CEZ:AV0Z20430508 Keywords : -Al2O3 stabilization * alumina * chromia * solid solution * X-ray diffraction Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.204, year: 2007

  16. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  17. Vitrification of high-level alumina nuclear waste

    International Nuclear Information System (INIS)

    Brotzman, J.R.

    1979-01-01

    Borophosphate glass compositions have been developed for the vitrification of a high-alumina calcined defense waste. The effect of substituting SiO 2 , P 2 O 5 and CuO for B 2 O 3 on the viscosity and leach resistance was measured. The effect of the alkali to borate ratio and the Li 2 O:Na 2 O ratio on the melt viscosity and leach resistance was also measured

  18. Fractography of Alumina Fibre Reinforced Ex-polysiloxane Matrix Composites

    Czech Academy of Sciences Publication Activity Database

    Rudnayová, E.; Glogar, Petr

    2002-01-01

    Roč. 223, - (2002), s. 119-124 ISSN 1013-9826. [Fractography of Advanced Ceramic s 2001. Stará Lesná, 13.05.2001-16.05.2001] R&D Projects: GA ČR GA104/00/1140; GA ČR GA106/99/0096 Institutional research plan: CEZ:AV0Z3046908 Keywords : alumina fibre * fibrous composite * fracture features Subject RIV: JI - Composite Materials Impact factor: 0.497, year: 2002

  19. γ-radiolysis of methane adsorbed on γ-alumina

    International Nuclear Information System (INIS)

    Norfolk, D.J.; Swan, T.

    1978-01-01

    An earlier study showed that γ-alumina surfaces outgassed above 570 K contain sites involving exposed lattice ions at which methane is chemisorbed during γ-irradiation. When the species so formed are heated they decompose yielding C 1 , C 2 and C 3 alkanes and alkanes together with hydrogen. The present study investigates the kinetics of the reactions occurring during irradiation. These reactions are shown to be the activation of surface sites and the dissociative chemisorption of methane, in accord with the mechanism previously suggested. Overall product yields are chiefly determined by the rate at which excited charge carriers reach the surface, the highest rate observed being G(- CH 4 ) = 2.0 but declining when fewer than approximately 3 x 10 15 m -2 chemisorption sites remain unoccupied. A kinetic scheme is proposed to account for the variation in yields with methane coverage, radiation dose and dose rate, and specific surface area of the γ-alumina. It is also shown that the individual products formed when the precursors decompose depend on the configuration of the methane chemisorption sites, and so on the origin of the γ-alumina and the outgassing temperature used. Two subsidiary reactions are identified. The first of these resembles normal radiolysis but occurs at sites less accessible to methane. In the second, however, new surface species are formed when irradiation continues after either the methane or the chemisorption sites have been exhausted. These scavenge part of the adsorbed hydrocarbon material. (author)

  20. Dielectric properties of alumina/zirconia composites at millimeter wavelengths

    International Nuclear Information System (INIS)

    Molla, J.; Heidinger, R.; Ibarra, A.; Link, G.

    1994-01-01

    Alumina-zirconia composites with ZrO 2 contents up to 20% and negligible porosity were investigated at millimeter (mm) wavelengths to determine the changes appearing in the dielectric properties of pure alumina ceramics when unstabilized or partially stabilized ZrO 2 is added to improve the mechanical strength. It is demonstrated that it essential to distinguish between the contributions of the monoclinic and the tetragonal phase of zirconia (m-ZrO 2 , t-ZrO 2 ). Permittivity is raised with increasing content of either phases; the effective permittivity can be assessed by the rule of mixtures (Maxwell-Garnett formulation of the generalized Clasussius-Mossotti relation) using permittivity values of 10 for Al 2 O 3 , 14-21 for m-ZrO 2 and 40-45 for t-ZrO 2 . The permittivity data show only a small variation in the investigated range of 9-145 GHz. For the dielectric loss, there is evidence of a predominant contribution of m-ZrO 2 ; in addition, the marked increase in loss with frequency becomes sharper. The t-ZrO 2 , which is responsible for strengthening, does not show any significant influence on losses. It is therefore concluded, that ZrO 2 strengthening of alumina is feasible without affecting mm-wave losses at room temperature as long as the presence of m-ZrO 2 is avoided

  1. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    Directory of Open Access Journals (Sweden)

    Morteza Aramesh

    2015-08-01

    Full Text Available A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.

  2. Investigation of vapor explosions with alumina droplets in sodium

    International Nuclear Information System (INIS)

    Zimmer, H.J.

    1991-02-01

    Within the analysis of severe hypothetical fast breeder accidents the consequence of a fuel-coolant interaction has to be considered i.e. the thermal interaction between hot molten fuel and sodium. Experiments have been performed to study the thermal fragmentation of a molten alumina droplet in sodium. Alumina temperatures up to 3100 K and sodium temperatures up to 1143 K were used. For the first time film boiling of alumina drops in sodium was achieved. With some droplets undergoing film boiling, the fragmentation was triggered by an externally applied pressure wave. The trigger was followed promptly by a strong reaction pressure wave if and only if a contact temperature threshold of T I =2060±160 K was exceeded. In agreement with similar experiments in which other materials were studied this threshold corresponds to an interfacial temperature close to the homogeneous nucleation temperature of the vaporising liquid. Based on the present and previous experimental results a model concept of thermal fragmentation is developed. (orig.) [de

  3. Physical Properties of Copper Based MMC Strengthened with Alumina

    Directory of Open Access Journals (Sweden)

    Kaczmar J. W.

    2014-06-01

    Full Text Available The aim of this work is the development of Cu-Al2O3 composites of copper Cu-ETP matrix composite materials reinforced by 20 and 30 vol.% Al2O3 particles and study of some chosen physical properties. Squeeze casting technique of porous compacts with liquid copper was applied at the pressure of 110 MPa. Introduction of alumina particles into copper matrix affected on the significant increase of hardness and in the case of Cu-30 vol. % of alumina particles to 128 HBW. Electrical resistivity was strongly affected by the ceramic alumina particles and addition of 20 vol. % of particles caused diminishing of electrical conductivity to 20 S/m (34.5% IACS. Thermal conductivity tests were performed applying two methods and it was ascertained that this parameter strongly depends on the ceramic particles content, diminishing it to 100 Wm-1K-1 for the composite material containing 30 vol.% of ceramic particles comparing to 400 Wm-1K-1 for the unreinforced copper. Microstructural analysis was carried out using SEM microscopy and indicates that Al2O3 particles are homogeneously distributed in the copper matrix. EDS analysis shows remains of silicon on the surface of ceramic particles after binding agent used during preparation of ceramic preforms.

  4. Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor.

    Science.gov (United States)

    Nguyen, Binh Thi Thanh; Peh, Alister En Kai; Chee, Celine Yue Ling; Fink, Katja; Chow, Vincent T K; Ng, Mary M L; Toh, Chee-Seng

    2012-12-01

    The Faradaic electrochemical impedance technique is employed to characterize the impedance change of a nanoporous alumina biosensor in response towards the specific binding of dengue serotype 2 (Denv2) viral particles to its serotype 2-specific immunoglobulin G antibody within the thin alumina layer. The optimal equivalent circuit model that matches the impedimetric responses of the sensor describes three distinct regions: the electrolyte solution (R(s)), the porous alumina channels (including biomaterials) (Q(1), R(1)) and the conductive electrode substrate layer (Q(2), R(2)). Both channel resistance R(1) and capacitance Q(1) change in response to the increase of the Denv2 virus concentration. A linear relationship between R(1) and Denv2 concentration from 1 to 900 plaque forming unit per mL (pfu mL(-1)) can be derived using Langmuir-Freundlich isotherm model. At 1pfu mL(-1) Denv2 concentration, R(1) can be distinguished from that of the cell culture control sample. Moreover, Q(1) doubles when Denv2 is added but remains unchanged in the presence of two other non-specific viruses - West Nile virus and Chikungunya virus indicates biosensor specificity can be quantitatively measured using channel capacitance. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A Study on the Effect of Nano Alumina Particles on Fracture Behavior of PMMA

    Directory of Open Access Journals (Sweden)

    Arezou Sezavar

    2015-04-01

    Full Text Available In the current research, the role of nano-sized alumina on deformation and fracture mechanism of Poly Methyl Methacrylate (PMMA was investigated. For this purpose, PMMA matrix nanocomposite reinforced with different wt% of alumina (i.e., 5, 10 and 15 were fabricated using the compression molding technique. Tensile properties of produced nanocomposites were studied using Zwick Z250 apparatus at cross head speed of about 5 mm/min. In order to specify the role of alumina nanoparticles on deformation and fracture mechanism of PMMA, microscopic evaluation was performed using scanning electron microscope (SEM. The achieved results prove that tensile properties of PMMA depend on alumina wt%. For example, addition of 15 wt% alumina to PMMA causes an increase of about 25% modulus of elasticity. Micrographs taken from the fracture surface of PMMA and its nanocomposites show deformation and fracture mechanism of PMMA changes as alumina is added to it.

  6. Comparative study on sintered alumina for ballistic shielding application; Estudo comparativo entre aluminas sinterizadas visando aplicacao em blindagem balistica

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco

    1997-12-31

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull`s modulii and other mechanical properties are able to improve ballistic penetration resistance. (author) 3 refs.

  7. Heterogeneous burnable poisons. Sinterability study in oxidizing atmosphere of alumina-gadolinia and alumina-boron carbide compounds

    International Nuclear Information System (INIS)

    Agueda, H.C.; Leiva, S.F.; Russo, D.O.

    1990-01-01

    Solid burnable poisons are used in reactors cooled by pressure light water (PLWR) with the purpose of controlling initial reactivity in the first reactor's core. The burnable poisons may be uniformly mixed with the fuel -known as 'homogeneous' poisons-; or constituting separate elements -known as heterogeneous poisons-. The purpose of this work is to present the results of two sinterability studies, performed on Al 2 O 3 -Gd 2 O 3 and Al 2 O 3 -B 4 C, where alumina acts as inert matrix, storing the absorbing elements as Gd 2 O 3 or B 4 C. The elements were sintered at an air atmosphere and additives permitting the obtention of a greater density alumina were tested at lower temperatures than the characteristic for this material, in order to determine its compatibility with the materials dealt with herein. (Author) [es

  8. Produksi Biogasoline Dari Minyak Sawit Melalui Reaksi Perengkahan Katalitik Dengan Katalis γ-Alumina

    OpenAIRE

    Anondho Wijanarko; Dadi Ahmad Mawardi; Mohammad Nasikin

    2006-01-01

    Biogasoline Production from Palm Oil Via Catalytic Hydrocracking over Gamma-Alumina Catalyst. Bio gasolineconversion from palm oil is an alternative energy resources method which can be substituted fossil fuel base energyutilization. Previous research resulted that palm oil can be converted into hydrocarbon by catalytic cracking reactionwith γ-alumina catalyst. In this research, catalytic cracking reaction of palm oil by γ-alumina catalyst is done in a stirrerbatch reactor with th...

  9. Improved alumina sol FCC catalysts meet challenges of the 1990s

    International Nuclear Information System (INIS)

    Alkemade, V.; Cartlidge, S.; Thompson, J.M.

    1990-01-01

    This paper discusses how improved alumina sol, fluid catalytic cracking (FCC) catalysts allow refiners to upgrade heavier feeds containing high amounts of vanadium and nickel to give premium octane gasolines. When an alumina sol binder is used in catalyst preparation, the desired nickel and vanadium-tolerant alumina phase is formed by precise control of the catalyst finishing conditions. New zeolite formulas also increase gasoline motor octane number and lower gasoline octane sensitivity maintaining gasoline yields

  10. Removal of Arsenic from Drinking Water Using Modified Activated Alumina

    Directory of Open Access Journals (Sweden)

    Mohammad Mosaferi

    2005-09-01

    Full Text Available Considering contamination of drinking water to arsenic in some villages ofIran. In order to develop a simple method for household water treatment in rural areas, efficiency of  modified activated alumina with iron compounds- a product of Alcan Company with trade name of AAFS-50- was studied Equilibrium batch experiments were carried out using shaker incubator and arsenic was analyzed with SDDC method. Effects of initial concentration of arsenic, adsorbent dose, oxidation state of arsenic, pH and oxidation with chlorine on adsorption were studied. Correlation coefficient of Freundlich and Laungmuier  isotherms  for As(V and As(III were 0.964 , 0.991 and 0.970, 0.978 respectively . These results show that adsorption of arsenic on modified activated alumina is compatible with both models specially Laungmuier models. Removal efficiency of As(V at 0.5 ,1 and 2 hr increased with doubling the adsorbent dose from 44.8 to 72%, 69.6 to 90.8 and 92.4 to 98% ; respectively. Experiments using different concentrations of arsenic showed that adsorption of arsenic on activated alumina are a first order reaction that is, rate of reaction is dependent on intial; concentration of arsenic. Removal efficiency for concentration of 0.250 mg/L of arsenic, with increasing of reaction time from 15 min to 60 min, increased 1.54 times and reached from 61% to 94%. During 2hrs, removal of As(V and As(III were 96% and 16% respectively. Using 1.5 mg/L Chlorine as oxidant agent, removal of As(III was increased to 94%. In the case of pH effect, rate of adsorption increased for arsenite, with increasing of pH to 8 and decreased with more increasing, so that adsorption at pH 14 was equal to pH 2. For arsenate, the most adsorption was observed at pH between 6 to 8 . These results show that by using the studied activated alumina, there will not be need for adjustment of pH and the activated alumina used in this study could have application as a safe adsorbent for removal of

  11. The Effect of Novel Synthetic Methods and Parameters Control on Morphology of Nano-alumina Particles

    Science.gov (United States)

    Xie, Yadian; Kocaefe, Duygu; Kocaefe, Yasar; Cheng, Johnathan; Liu, Wei

    2016-05-01

    Alumina is an inorganic material, which is widely used in ceramics, catalysts, catalyst supports, ion exchange and other fields. The micromorphology of alumina determines its application in high tech and value-added industry and its development prospects. This paper gives an overview of the liquid phase synthetic method of alumina preparation, combined with the mechanism of its action. The present work focuses on the effects of various factors such as concentration, temperature, pH, additives, reaction system and methods of calcination on the morphology of alumina during its preparation.

  12. The statistical average of optical properties for alumina particle cluster in aircraft plume

    Science.gov (United States)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin

    2018-04-01

    We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.

  13. Determination of calcium and magnesium in nuclear grade alumina by ion chromatography technique

    International Nuclear Information System (INIS)

    Hespanhol, E.C.B.; Pires, M.A.F.; Atalla, L.T.

    1987-07-01

    A simple method for solubilization of alumina and separation of magnesium and calcium from alumina matrix was developed by initial coprecipitation of those elements with iron(III) hydroxide. Calcium and magnesium were later separated from iron chloride anionic complex in a Dowex 1-X 10 anionic exchange resin. The ion chromatography tecnnique was employed for the analysis of calcium and magnesium. One hundred percent recovery for calcium and magnesium was obtained in their separation from alumina. A precision of 6% and 10% for magnesium and calcium, respectively, was obtained in alumina samples analysis which contain less than 0,02% of magnesium and less than 0,08% of calcium. (Author) [pt

  14. Synthesis and characterization of platinum supported on alumina doped with cerium catalyst

    International Nuclear Information System (INIS)

    Yusof Abdullah; Abd Fatah Awang Mat; Mohd Ali Sufi; Sarimah Mahat; Razali Kassim; Nurhaslinda Abdullah.

    1996-03-01

    The synthesis and characterization of gamma-alumina doped with cerium as platinum support for the automobile exhaust catalyst are described. Platinum/alumina/ceria catalyst were prepared by impregnation of hexachloroplatinic acid and sintered at 500 degree Celsius to obtain metal dispersions of 1.0 wt%. Catalyst distribution inside the powder and the effects of the addition of cerium to alumina were analyzed by the scanning electron microscopy (SEM) and x-ray fluorescence spectroscopy (XRF). The results showed that the alumina - supported catalysts contained well dispersion of the noble metal

  15. The effect of alumina nanofillers size and shape on mechanical behavior of PMMA matrix composite

    Directory of Open Access Journals (Sweden)

    Ben Hasan Somaya Ahmed

    2014-01-01

    Full Text Available Composites with the addition of alumina nanofillers show improvement in mechanical properties. The PMMA polymer was used as a matrix and two different types of nanofillers, having extremely different shapes were added in the matrix to form the composite. Reinforcements were based on alumina nanoparticles having either spherical shape or whiskers having the length to diameter ratio of 100. The influence of alumina fillers size, shape and fillers loading on mechanical properties of prepared composite were studied using the nanoindentation measurements and dynamic mechanical analysis. It was observed that both alumina whiskers and alumina spherical nanoparticles added in the PMMA matrix improved the mechanical properties of the composite but the improvement was significantly higher with alumina whisker reinforcement. The concentration of the reinforcing alumina spherical nanoparticles and alumina whiskers in PMMA matrix varied up to 5 wt. %. The best performance was obtained by the addition of 3 wt. % of alumina whiskers in the PMMA matrix with regard to mechanical properties of the obtained composite.

  16. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  17. Method for thermal processing alumina-enriched spinel single crystals

    Science.gov (United States)

    Jantzen, Carol M.

    1995-01-01

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

  18. The Ammonoalunite Process for Production of Alumina from Clay

    Science.gov (United States)

    Bartlett, Robert W.; Wesely, Rolf J.; Bolles, Thomas R.

    The ammonoalunite process begins with two-stage sulfuric acid leaching of calcined kaolinitic clay. The clarified aluminum sulfate liquor is subjected to modest temperature autoclaving in the presence of ammonium ions to precipitate the ammonium analog of alunite, NH4Al3(SO4)2(OH)6, in a hydrolysis reaction regenerating most of the acid needed in the leach. This acid liquor is recycled while the filtered ammonoalunite is thermally decomposed to alumina. Decomposition gases are scrubbed to recover ammonia and the remaining acid needed for leaching. Experimental results on precipitation parameters, thermal decomposition, energy consumption, and impurity control are given.

  19. Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics

    Science.gov (United States)

    Becher, Paul F.; Tiegs, Terry N.

    1987-01-01

    The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.

  20. Processing, nanoindentation and scratch testing of alumina-coated YTZP

    Directory of Open Access Journals (Sweden)

    Jorge Valle

    2015-07-01

    The proposed processing method involves dipping of pre-sintered YTZP specimens in stable alumina suspensions and co-sintering of the dipped specimens. The influence of the processing parameters on the macro and microstructure of the materials has been established. Berkovich indentation has been performed to determine the Young's modulus of the substrates and coatings. The structural integrity of the coatings has been analysed using scratch tests. The Young's modulus. The optimised specimens present high resistance to scratch up to loads of 150 N.

  1. Techniques for detection of transition phases in calcined alumina

    International Nuclear Information System (INIS)

    Pandolfelli, V.C.; Folgueras-Dominguez, S.

    1987-01-01

    Detection of transition phases in alumina, is very important in the receiving control and calcination of aluminium hydroxide. The non alfa or transition phases difficults the processability and causes localized shrinkage on sintering compromising the dimensional and mechanical aspects of the product. In this research using refraction index, absorption of dyes, specific density, X-ray diffraction and scanning electron microscopy, analyses, are done in calcined hydroxides submited to different thermal treatments. The limits and facilities of each technique are discussed and compared. (Author) [pt

  2. Recovery of alumina and some heavy metals from sulfate liquor

    Directory of Open Access Journals (Sweden)

    M.N. El Hazek

    2016-05-01

    Full Text Available The gibbsite bearing shale occurrence in the Paleozoic sedimentary sequence of SW Sinai, Egypt, was found to be associated with several metal values. From sulfate liquor prepared by proper leaching, the recovery of these metal values has been studied. Alumina was first separated in the form of potash alum followed by Cu-selective extraction by hydroxyoxime LIX-973N solvent. Then U recovery using an anionic exchange resin Amberlite IRA-400 was achieved. For the associated heavy metal Zn, it was subsequently extracted using di-2-ethylhexyl phosphoric acid. The relevant factors affecting the extraction process were adequately studied.

  3. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays

    International Nuclear Information System (INIS)

    Biring, Sajal; Tsai, K-T; Sur, Ujjal Kumar; Wang, Y-L

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment

  4. The Assessment of Alumina Production Waste Impact on Natural Water

    Directory of Open Access Journals (Sweden)

    Vladimir Sergeevich Kuznetsov

    2018-03-01

    Full Text Available The paper is dedicated to the issue of assessment of alumina (red mud production waste on natural water. The growth of the number of aluminium-producing facilities leads to the expansion of exclusion areas to store the production waste – sludge dumps. A considerable part of research on red mud utilisation is focused on its use in the iron-and-steel industry. Furthermore, the technologies of red mud usage in the construction industry gain substantial significance for land reclamation, isolation of polluted industrial and agricultural lands as well as the effluent and industrial emissions treatment.

  5. Effects of Variable Aspect-Ratio Inclusions on the Electrical Impedance of an Alumina Zirconia Composite at Intermediate Temperatures

    Science.gov (United States)

    Goldsby, Jon C.

    2010-01-01

    A series of alumina-yttria-stabilized zirconia composites containing either a high aspect ratio (5 and 30 mol%) hexagonal platelet alumina or an alumina low aspect ratio (5 and 30 mol%) spherical particulate was used to determine the effect of the aspect ratio on the temperature-dependent impedance of the composite material. The highest impedance across the temperature range of 373 to 1073 K is attributed to the grain boundary of the hexagonal platelet second phase in this alumina zirconia composite.

  6. Modification of alumina matrices through chemical etching and electroless deposition of nano-Au array for amperometric sensing

    Directory of Open Access Journals (Sweden)

    Valinčius Gintaras

    2007-01-01

    Full Text Available AbstractSimple nanoporous alumina matrix modification procedure, in which the electrically highly insulating alumina barrier layer at the bottom of the pores is replaced with the conductive layer of the gold beds, was described. This modification makes possible the direct electron exchange between the underlying aluminum support and the redox species encapsulated in the alumina pores, thus, providing the generic platform for the nanoporous alumina sensors (biosensors with the direct amperometric signal readout fabrication.

  7. Sulfuric Acid and Ammonium Sulfate Leaching of Alumina from Lampang Clay

    Directory of Open Access Journals (Sweden)

    Paweena Numluk

    2012-01-01

    Full Text Available The rapid development of the global alumina industry has led to a considerable increase in the production alumina and processing of alumina from non-bauxitic sources. Lampang clays comprise various minerals that contain about 22.70 wt% of extractable alumina. Local clay was ground, activated by calcination and treated with sulfuric acid to extract alumina. In the activation step, the effects of temperature and time on the extraction of alumina and iron were investigated. The leaching experiments were performed on clay samples with particle sizes less than 200 mesh. The samples were calcined at different temperatures, ranging from 450°C to 1050°C, and for different periods, ranging from 30 to 150 min. The optimum conditions for the extraction of alumina from Lampang clay include grinding the clay to pass through a 200 mesh sieve, calcining the ground clay at 750°C for 30 min, extracting the alumina from the calcined clay by leaching with 3M sulfuric acid, and using an acid to clay ratio of 80 wt% at 100°C for 120 min. An aluminum dissolution efficiency of 95.1 % was achieved under the conditions that resulted in the maximum dissolution efficiency of iron (26.6 %.

  8. Measurement of Elastic Modulus of Alumina and Barium Strontium Titanate Wafers Produced by Tape Casting Method

    Science.gov (United States)

    2014-02-01

    DATES COVERED (From – To) 4. TITLE AND SUBTITLE MEASUREMENT OF ELASTIC MODULUS OF ALUMINA AND BARIUM STRONTIUM TITANATE WAFERS PRODUCED BY...configuration testing method. Samples of barium strontium titanate (BST) were made using a regular powder pressing, sintering, pelletizing, and...fabricated using thin wafers of barium strontium titanate (BST) and aluminum oxide (alumina) ceramic during launch of a system. Sandia National

  9. Experimental investigation of nano-alumina effect on the filling time ...

    African Journals Online (AJOL)

    In this research, by producing composite samples made of glass fibers and epoxy resin with different percentages of nanoparticles (Nano-alumina), the adding effect of nanoparticles of alumina Alpha and Gamma grade on filling time in the vacuum assistant resin transfer molding process (VARTM) is investigated. The grade ...

  10. All cause mortality and incidence of cancer in workers in bauxite mines and alumina refineries

    NARCIS (Netherlands)

    Fritschi, Lin; Hoving, Jan Lucas; Sim, Malcolm R.; del Monaco, Anthony; Macfarlane, Ewan; McKenzie, Dean; Benke, Geza; de Klerk, Nicholas

    2008-01-01

    Bauxite is a reddish clay that is refined to produce alumina, which is then reduced to aluminium. There have been studies examining the health of workers in aluminium smelters, but not workers in bauxite mining and alumina refining. A cohort of employees of 1 large aluminium company since 1983 was

  11. Study of aluminium oxide from high-alumina refractory ceramics by ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. This work is focused on the study of the thermally stimulated blue emission of aluminium oxide. (Al2O3) that has been removed from twenty different high alumina-rich refractory bricks. The glow curve sensitivity of several alumina grains are defined by (i) a maximum centred at about 165°C that can be decon-.

  12. Scattering properties of alumina particle clusters with different radius of monomers in aerocraft plume

    Science.gov (United States)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin; Gong, Yanjun

    2017-11-01

    In this paper, diffusion limited aggregation (DLA) algorithm is improved to generate the alumina particle cluster with different radius of monomers in the plume. Scattering properties of these alumina clusters are solved by the multiple sphere T matrix method (MSTM). The effect of the number and radius of monomers on the scattering properties of clusters of alumina particles is discussed. The scattering properties of two types of alumina particle clusters are compared, one has different radius of monomers that follows lognormal probability distribution, another has the same radius of monomers that equals the mean of lognormal probability distribution. The result show that the scattering phase functions and linear polarization degrees of these two types of alumina particle clusters are of great differences. For the alumina clusters with different radius of monomers, the forward scatterings are bigger and the linear polarization degree has multiple peaks. Moreover, the vary of their scattering properties do not have strong correlative with the change of number of monomers. For larger booster motors, 25-38% of the plume being condensed alumina. The alumina can scatter radiation from other sources present in the plume and effect on radiation transfer characteristics of plume. In addition, the shape, size distribution and refractive index of the particles in the plume are estimated by linear polarization degree. Therefore, accurate scattering properties calculation is very important to decrease the deviation in the related research.

  13. Microstructure-mechanical behaviour relationship in alumina-calcium exaluminate composites; Relaciones microestructura-comportamiento mecanico en materiales de alumina-hexaluminato calcico

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A. J.; Moreno, R.; Baudin, C.

    2001-07-01

    The grain growth behaviour of dense alumina materials has been modified by the addition of calcium hexaluminate particles. Maximum dispersion has been obtained by colloidal processing routes. The influence of sintering temperature (1500-1600 degree centigree) on the size and shape of the alumina grains has been established. The mechanical behaviour of three composite materials with the same composition ({approx}10 vol% CA{sub 6}) and large microstructural differences has been studied in comparison with that of monophasic alumina of the same grain size. The influence of grain size and shape on toughness has been established. R-curve behaviour has been detected during fracture of the material with the alumina grains presenting the largest shape factor. (Author) 18 refs.

  14. High toughness alumina/aluminate: The role of hetero-interfaces

    International Nuclear Information System (INIS)

    Brito, M.E.; Yasuoka, M.; Kanzaki, S.

    1996-01-01

    Silica doped alumina/aluminate materials present a combination of high strength and high toughness not achieved before in other alumina systems, except for transformation toughened alumina. The authors have associated the increase in toughness to crack bridging by anisotropically grown alumina grains with concurrent interfacial debonding of these grains. A HREM study of grain boundaries and hetero-interface structures in this material shows the absence of amorphous phases at grain boundaries. Local Auger electron analysis of fractured surfaces revealed the coexistence of Si and La at the grain facets exposed by the noticeable intergranular fracture mode of this material. It is concluded that a certain and important degree of boundaries weakness is related to both presence of Si at the interfaces and existence of alumina/aluminate hetero-interfaces

  15. Safety Assessment of Alumina and Aluminum Hydroxide as Used in Cosmetics.

    Science.gov (United States)

    Becker, Lillian C; Boyer, Ivan; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-11-01

    This is a safety assessment of alumina and aluminum hydroxide as used in cosmetics. Alumina functions as an abrasive, absorbent, anticaking agent, bulking agent, and opacifying agent. Aluminum hydroxide functions as a buffering agent, corrosion inhibitor, and pH adjuster. The Food and Drug Administration (FDA) evaluated the safe use of alumina in several medical devices and aluminum hydroxide in over-the-counter drugs, which included a review of human and animal safety data. The Cosmetic Ingredient Review (CIR) Expert Panel considered the FDA evaluations as part of the basis for determining the safety of these ingredients as used in cosmetics. Alumina used in cosmetics is essentially the same as that used in medical devices. This safety assessment does not include metallic or elemental aluminum as a cosmetic ingredient. The CIR Expert Panel concluded that alumina and aluminum hydroxide are safe in the present practices of use and concentration described in this safety assessment. © The Author(s) 2016.

  16. Bauxite mining and alumina refining: process description and occupational health risks.

    Science.gov (United States)

    Donoghue, A Michael; Frisch, Neale; Olney, David

    2014-05-01

    To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Review article. The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures.

  17. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning

    NARCIS (Netherlands)

    Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Della Bona, A.

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia)

  18. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics : The effect of surface conditioning

    NARCIS (Netherlands)

    Felipe Valandro, Luiz; Ozcan, Mutlu; Bottino, Marco Cicero; Bottino, Marco Antonio; Scotti, Roberto; Della Bona, Alvaro

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia)

  19. Joining of alumina via copper/niobium/copper interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.; Glaeser, Andreas M.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized alumina bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.

  20. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    International Nuclear Information System (INIS)

    Orosco, Pablo; Barbosa, Lucía; Ruiz, María del Carmen

    2014-01-01

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl 2 –N 2 flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al 2 O 3 (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl 2 atmosphere of the MgO–Al 2 O 3 mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C

  1. Evaluation of Alumina-Forming Austenitic Foil for Advanced Recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A [ORNL; Brady, Michael P [ORNL; Yamamoto, Yukinori [ORNL; Santella, Michael L [ORNL; Maziasz, Philip J [ORNL; Matthews, Wendy [Capstone Turbines

    2011-01-01

    A corrosion- and creep-resistant austenitic stainless steel has been developed for advanced recuperator applications. By optimizing the Al and Cr contents, the alloy is fully austenitic for creep strength while allowing the formation of a chemically stable external alumina scale at temperatures up to 900 C. An alumina scale eliminates long-term problems with the formation of volatile Cr oxy-hydroxides in the presence of water vapor in exhaust gas. As a first step in producing foil for primary surface recuperators, three commercially cast heats have been rolled to 100 m thick foil in the laboratory to evaluate performance in creep and oxidation testing. Results from initial creep testing are presented at 675 C and 750 C, showing excellent creep strength compared with other candidate foil materials. Laboratory exposures in humid air at 650 800 C have shown acceptable oxidation resistance. A similar oxidation behavior was observed for sheet specimens of these alloys exposed in a modified 65 kW microturbine for 2871 h. One composition that showed superior creep and oxidation resistance has been selected for the preparation of a commercial batch of foil. DOI: 10.1115/1.4002827

  2. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina); Barbosa, Lucía [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Instituto de Ciencias Básicas (ICB), Universidad Nacional de Cuyo Parque General San Martín, Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina)

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.

  3. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  4. Synthesis of Alumina Thin Films Using Reactive Magnetron Sputtering Method

    Science.gov (United States)

    Angarita, G.; Palacio, C.; Trujillo, M.; Arroyave, M.

    2017-06-01

    Alumina (Al2O3) thin films were deposited on Si (100) by Magnetron Sputtering in reactive conditions between an aluminium target and oxygen 99.99% pure. The plasma was formed employing Argon with an R.F power of 100 W, the dwelling time was 3 hours. 4 samples were produced with temperatures between 350 and 400 ºC in the substrate by using an oxygen flow of 2 and 8 sccm, the remaining parameters of the process were fixed. The coatings and substrates were characterized using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) in order to compare their properties before and after deposition. The films thicknesses were between 47 and 70 nm. The results show that at high oxygen flow the alumina structure prevails in the coatings while at lower oxygen flow only aluminum is deposited in the coatings. It was shown that the temperature increases grain size and roughness while decreasing the thicknesses of the coatings.

  5. Stability of amorphous silica-alumina in hot liquid water.

    Science.gov (United States)

    Hahn, Maximilian W; Copeland, John R; van Pelt, Adam H; Sievers, Carsten

    2013-12-01

    Herein, the hydrothermal stability of amorphous silica-alumina (ASA) is investigated under conditions relevant for the catalytic conversion of biomass, namely in liquid water at 200 °C. The hydrothermal stability of ASA is much higher than that of pure silica or alumina. Interestingly, the synthetic procedure used plays a major role in its resultant stability: ASA prepared by cogelation (CG) lost its microporous structure, owing to hydrolysis of the siloxane bonds, but the resulting mesoporous material still had a considerable surface area. ASA prepared by deposition precipitation (DP) contained a silicon-rich core and an aluminum-rich shell. In hot liquid water, the latter structure was transformed into a layer of amorphous boehmite, which protected the particle from further hydrolysis. The surface area showed relatively minor changes during the transformation. Independent of the synthetic method used, the ASAs retained a considerable concentration of acid sites. The concentration of acid sites qualitatively followed the changes in surface area, but the changes were less pronounced. The performance of different ASAs for the hydrolysis of cellobiose into glucose is compared. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Inelastic neutron scattering studies of methyl chloride synthesis over alumina.

    Science.gov (United States)

    Lennon, David; Parker, Stewart F

    2014-04-15

    Not only is alumina the most widely used catalyst support material in the world, it is also an important catalyst in its own right. One major chemical process that uses alumina in this respect is the industrial production of methyl chloride. This is a large scale process (650,000 metric tons in 2010 in the United States), and a key feedstock in the production of silicones that are widely used as household sealants. In this Account, we show how, in partnership with conventional spectroscopic and reaction testing methods, inelastic neutron scattering (INS) spectroscopy can provide additional insight into the active sites present on the catalyst, as well as the intermediates present on the catalyst surface. INS spectroscopy is a form of vibrational spectroscopy, where the spectral features are dominated by modes involving hydrogen. Because of this, most materials including alumina are largely transparent to neutrons. Advantageously, in this technique, the entire "mid-infrared", 0-4000 cm(-1), range is accessible; there is no cut-off at ~1400 cm(-1) as in infrared spectroscopy. It is also straightforward to distinguish fundamental modes from overtones and combinations. A key parameter in the catalyst's activity is the surface acidity. In infrared spectroscopy of adsorbed pyridine, the shifts in the ring stretching modes are dependent on the strength of the acid site. However, there is a very limited spectral range available. We discuss how we can observe the low energy ring deformation modes of adsorbed pyridine by INS spectroscopy. These modes can undergo shifts that are as large as those seen with infrared inspectroscopy, potentially enabling finer discrimination between acid sites. Surface hydroxyls play a key role in alumina catalysis, but in infrared spectroscopy, the presence of electrical anharmonicity complicates the interpretation of the O-H stretch region. In addition, the deformations lie below the infrared cut-off. Both of these limitations are irrelevant

  7. Structure transformations in ion implanted anodic alumina films

    International Nuclear Information System (INIS)

    Cherenda, N.N.; Uglov, V.V.; Litvinovich, G.V.; Daniluyk, A.L.

    2002-01-01

    The effect of ion implantation on aluminium oxide has been widely studied. The change of mechanical, electrical, optical and chemical properties were investigated. Most studies were performed on a single crystal (a- or c-oriented) α-Al 2 O 3 though polycrystalline α-Al 2 O 3 or amorphous aluminium oxide films were the subject of the investigation too. Porous anodic alumina films were the object of the investigation of this work. An unique structure, low cost, controllability and ease of production allow it application in developing of microelectronic devices. Earlier it was shown that implantation of metal ions in anodic alumina films decreases its surface resistance to tens of Ωm. The aim of this work was the investigation of anodic alumina films structure changes after implantation. The implantation of Ti and Cu ions was carried out using a MEVVA source with an impulse duration of 1 ms. The applied acceleration voltage was 80 kV, the ions current density - 53 μA/cm 2 , the doses -1·10 17 ions/cm 2 and 1.5·10 18 ions/cm 2 . Implantation was carried out into two types of crystalline structure: amorphous and γ-Al 2 O 3 . The latter structure was produced by annealing at 830 deg. C. A variety of techniques were used for phase and element composition investigations: X-ray diffraction analysis, Auger electron spectroscopy, Rutherford backscattering analysis and scanning electron microscopy. It was found that implantation into amorphous film results in the formation of γ-AO 2 O 3 while implantation into γ-Al 2 O 3 film - in the formation of an amorphous structure. Implantation both to amorphous and crystalline AA films also led to the formation of θ-Al 2 O 3 phase inclusions in the film structure. The whole structure of AA films with the thickness of 200 μm undergoes these transformations. Implantation also lead to sputtering of the surface barrier layer thus resulting in the shift of the ions depth profile to the surface at higher doses. Diffusion of Ti

  8. Wet chemical synthesis of nickel supported on alumina catalysts; Sintese de catalisadores de niquel suportado em alumina por via umida

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Ranny Rodrigues; Costa, Talita Kenya Oliveira; Morais, Ana Carla da Fonseca Ferreira; Costa, Ana Cristina Figueiredo de Melo; Freitas, Normanda Lino de, E-mail: normanda@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2016-07-01

    Heterogenic catalysts are those found to be in a different phase on the reaction when compared to the reactants and products. Preferred when compared to homogeneous catalysts due to the easiness on which the separation is processed. The objective of this study is to obtain and characterize Alumina based catalysts impregnated with Nickel (Al{sub 2}O{sub 3}), by wet impregnation. The alumina was synthesized by combustion reaction. Before and after the impregnation the catalysts were characterized by X-ray diffraction (XRD), granulometric analysis, the textural analysis will be held by nitrogen adsorption (BET), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results show a presence of a stable crystalline phase of Al2O3 in all the studied samples and after the impregnation the second phase formed was of NiO and NiAl{sub 2}O{sub 4}. The Al{sub 2}O{sub 3} e Ni/Al{sub 2}O{sub 3} catalysts resulted in clusters with a medium diameter of 18.9 and 14.2 μm, respectively. The catalysts show a medium-pore characteristic (medium pore diameter between 2 and 50 nm), the superficial area to Al{sub 2}O{sub 3} and Ni/Al{sub 2}O{sub 3} catalysts were 8.69 m{sup 2}/g and 5.56 m{sup 2}/g, respectively. (author)

  9. Microstructural changes in copper-graphite-alumina nanocomposites produced by mechanical alloying.

    Science.gov (United States)

    Rodrigues, Ivan; Guedes, Mafalda; Ferro, Alberto C

    2015-02-01

    Microstructural features of nanostructured copper-matrix composites produced via high-energy milling were studied. Copper-graphite-alumina batches were planetary ball milled up to 16 h; copper-graphite batches were also prepared under the same conditions to evaluate the effect of contamination from the milling media. The microstructure of the produced materials was characterized by field emission gun scanning electron microscopy/energy-dispersive spectroscopy and related to Raman, X-ray diffraction, and particle size analysis results. Results showed that alumina was present in all milled powders. However, size reduction was effective at shorter times in the copper-graphite-alumina system. In both cases the produced powders were nanostructured, containing graphite and alumina nanoparticles homogeneously distributed in the copper matrix, especially for longer milling times and in the presence of added alumina. Copper crystallite size was significantly affected above 4 h milling; nanographite size decreased and incipient amorphization occurred. A minimum size of 15 nm was obtained for the copper crystallite copper-alumina-graphite composite powders, corresponding to 16 h of milling. Contamination from the media became more significant above 8 h. Results suggest that efficient dispersion and bonding of graphite and alumina nanoparticles in the copper matrix is achieved, envisioning high conductivity, high strength, and thermal stability.

  10. STUDY ON ADSORPTION OF Cd(II BY CHITOSAN-ALUMINA

    Directory of Open Access Journals (Sweden)

    Darjito Darjito

    2010-06-01

    Full Text Available One techniques to reduce the concentration of heavy metal Cd(II in aqueous solution is adsorption by chitosan. To modify the surface textures and expose the active binding sites, composite biosorbent has been prepared by coating chitosan onto alumina. The aims of this research were to identify the functional group of chitosan-alumina, to characterize adsorption of Cd(II by using chitosan-alumina adsorbent including optimum pH, optimum agitation time, and to determine the adsorption capacity of the adsorbent. The functional group of chitosan-alumina was identified by infrared spectrophotometer. Determination of the optimum condition was carried out at 40 ppm Cd(II, 125 rpm and 0,1 g adsorbent. Calculation of adsorpted Cd(II based on its concentration in aqueous phase before and after adsorption process. The concentrations of Cd(II in aqueous phase after adsorption process  were determined by using Atomic Absorption Spectroscopy (AAS. Identified functional groups of chitosan-alumina were -OH (3466.39 cm-1, -NH amine (1625.15 cm-1, C=O (1703.30 cm-1, and Al-O (1302.07 cm-1. The optimum pH was reached at pH 7, optimum agitation time at 15 minutes, and adsorption capacity of chitosan-alumina was 15.35 ± 0.05 mg/g.   Keywords: adsorption, chitosan-alumina, characterization of adsorption

  11. [Characterization of alumina adobe and sintered body of GI-infiltrated ceramic].

    Science.gov (United States)

    Wang, H; Chao, Y; Liao, Y; Liang, X; Zhu, Z; Gao, W

    2001-06-01

    This study was conducted to elucidate the mechanism of formation of porous structure by investigating the porosity of the alumina adobe and sintered body of GI-II Infiltrate Ceramic, and its role in strengthening and toughening this kind of ceramic composite. The alumina powder size-mass distribution was obtained by BI-XDC powder size analysis device; the open pore parameters of alumina adobe and sintered body were analyzed using the mercury pressure method. Their fracture surfaces were observed under scanning electronic microscope. Fine powder had two main size groups of 0.09-0.1 micron and 0.2-0.5 micron, respectively, and coarse powder, with size between 1.5 to 4.5 microns, occupied the majority of powder mass. Alumina adobe's pores became larger after sintering. The median pore radii of adobe and sintered body were 0.2531 micron and 0.3081 micron, respectively; the average pore radii changed from 0.0956 micron to 0.1102 micron. Under scanning electronic microscope, fine alumina powders were fused partially together and their surfaces were blunted, but coarse powders did not show such phenomena. The alumina size distribution contributes to the formation of porous structure of alumina sintered body. This porous structure is not only the shape skeleton but also the mechanical skeleton of GI-II Infiltrated Ceramic. It plays an important role in raising the mechanical properties of this kind of ceramic composite.

  12. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kang [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Wang, Shengping, E-mail: spwang@cug.edu.cn [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Zhang, Hanyu; Wu, Jinping [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China)

    2013-06-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al{sub 2}O{sub 3} can provide surface area for the deposition of Li{sub 2}S and Li{sub 2}S{sub 2}. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g{sup −1}, and the remaining capacity was 585 mAh g{sup −1} after 50 cycles at 0.25 mA cm{sup −2}. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process.

  13. Epoxy/α-alumina nanocomposite with high electrical insulation performance

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2017-10-01

    Full Text Available An experimental study was conducted to improve the electrical insulation of epoxy resin. The effects of boehmite, γ-alumina and α-alumina nanoparticles on the volume resistivity, dielectric strength and glass transition temperature of epoxy nanocomposites were investigated. The results showed that α-alumina nanoparticles displayed obvious advantages in enhancing electrical insulation performance of epoxy nanocomposites, compared to boehmite and γ-alumina nanoparticles. The direct current volume resistivity and breakdown strength of epoxy nanocomposite with 2.0 wt% α-alumina nanoparticles was improved to 2.2 × 1018 Ω cm and 76.1 kV mm−1 respectively. And these improved values of electrical insulation properties are much higher than these of epoxy nanocomposites reported in previous studies. The main reason of these improvements may be that the epoxy/α-alumina interaction zone was enhanced by crosslink. Keywords: Nanocomposite, Epoxy resin, Insulation, α-alumina

  14. Topotactic preparation of textured alumina ceramics from dehydroxylation of gibbsite films

    Energy Technology Data Exchange (ETDEWEB)

    Louaer, Seif-Eddine; Wang, Yao, E-mail: yao@buaa.edu.cn; Guo, Lin, E-mail: guolin@buaa.edu.cn

    2014-11-14

    In this paper, textured alumina ceramics were prepared from dehydroxylation of gibbsite films and the pseudomorphic and topotactic nature of the dehydroxylation of textured gibbsite films has been investigated. First, the precursor film with a (001)-textured structure was obtained via vacuum filtration deposition of diluted aqueous suspensions of gibbsite nanoplatelets. Subsequently, (001)-textured α-alumina ceramics were successfully achieved by sintering of the deposited gibbsite films without addition of α-alumina seeds. The Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) results show that, during the phase transition from gibbsite to α-alumina, both layered morphology and crystal's axis orientation have been retained to a considerable extent. For the first time, a direct XRD evidence of gibbsite topotactic dehydroxylation to the α-alumina phase is presented. It is believed that the method described here exploits gibbsite's pseudomorphic and topotactic dehydroxylation, not on individual particles scale but on a bulk form. The resulting structure can be considered as inorganic scaffolds which can have applications for fabrication of dense, textured alumina-based ceramics and other layered/textured nanocomposites. - Highlights: • Gibbsite nanoplatelets were assembled on their basal plane to form (001)-textured films. • Textured alumina ceramics were prepared by sintering textured gibbsite films without addition of α-alumina seeds. • Both pseudomorphic and topotactic aspects were exploited in bulk form instead of individual nanoparticulate size. • Direct XRD evidence of the topotactic dehydroxylation from gibbsite to α-alumina is presented in this work.

  15. Topotactic preparation of textured alumina ceramics from dehydroxylation of gibbsite films

    International Nuclear Information System (INIS)

    Louaer, Seif-Eddine; Wang, Yao; Guo, Lin

    2014-01-01

    In this paper, textured alumina ceramics were prepared from dehydroxylation of gibbsite films and the pseudomorphic and topotactic nature of the dehydroxylation of textured gibbsite films has been investigated. First, the precursor film with a (001)-textured structure was obtained via vacuum filtration deposition of diluted aqueous suspensions of gibbsite nanoplatelets. Subsequently, (001)-textured α-alumina ceramics were successfully achieved by sintering of the deposited gibbsite films without addition of α-alumina seeds. The Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) results show that, during the phase transition from gibbsite to α-alumina, both layered morphology and crystal's axis orientation have been retained to a considerable extent. For the first time, a direct XRD evidence of gibbsite topotactic dehydroxylation to the α-alumina phase is presented. It is believed that the method described here exploits gibbsite's pseudomorphic and topotactic dehydroxylation, not on individual particles scale but on a bulk form. The resulting structure can be considered as inorganic scaffolds which can have applications for fabrication of dense, textured alumina-based ceramics and other layered/textured nanocomposites. - Highlights: • Gibbsite nanoplatelets were assembled on their basal plane to form (001)-textured films. • Textured alumina ceramics were prepared by sintering textured gibbsite films without addition of α-alumina seeds. • Both pseudomorphic and topotactic aspects were exploited in bulk form instead of individual nanoparticulate size. • Direct XRD evidence of the topotactic dehydroxylation from gibbsite to α-alumina is presented in this work

  16. Rare earth-doped alumina thin films deposited by liquid source CVD processes

    Energy Technology Data Exchange (ETDEWEB)

    Deschanvres, J.L.; Meffre, W.; Joubert, J.C.; Senateur, J.P. [Ecole Nat. Superieure de Phys. de Grenoble, St. Martin d`Heres (France). Lab. des Materiaux et du Genie Phys.; Robaut, F. [Consortium des Moyens Technologiques Communs, Institut National Polytechnique de Grenoble, BP 75, 38402 St Martin d`Heres (France); Broquin, J.E.; Rimet, R. [Laboratoire d`Electromagnetisme, Microondes et Optoelectronique, CNRS-Ecole Nationale Superieure d`Electronique et Radioelectricite de Grenoble, BP 257, 38016 Grenoble, Cedex (France)

    1998-07-24

    Two types of liquid-source CVD processes are proposed for the growth of rare earth-doped alumina thin films suitable as amplifying media for integrated optic applications. Amorphous, transparent, pure and erbium- or neodymium-doped alumina films were deposited between 573 and 833 K by atmospheric pressure aerosol CVD. The rare earth doping concentration increases by decreasing the deposition temperature. The refractive index of the alumina films increases as a function of the deposition temperature from 1.53 at 573 K to 1.61 at 813 K. Neodymium-doped films were also obtained at low pressure by liquid source injection CVD. (orig.) 7 refs.

  17. Remote microwave plasma enhanced chemical vapor deposition (RMPECVD) of silica and alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Desmaison, J.; Hidalgo, H.; Tristant, P.; Naudin, F.; Merle, D. [Limoges Univ. (France). Lab. de Sciences des Procedes Ceramiques et Traitements de Surface

    2002-07-01

    Alumina or silica are attractive as insulation and protective layers for sensitive substrates. Oxides are deposited by remote microwave plasma enhanced chemical vapor deposition (RMPECVD) using an oxygen plasma and a mixture of precursor gas silane or trimethylaluminum (TMA) diluted in argon, respectively for silica and alumina, injected in the afterglow. This technique allows to deposit films of SiO{sub 2} and Al{sub 2}O{sub 3} with satisfactory characteristics (density, etch rate, stoichiometry) and high deposition rate. The comparison of the best deposition conditions reveals that in case of alumina higher temperatures and lower pressures are needed. (orig.)

  18. Radiation degradation in the mechanical properties of Polyetheretherketone–alumina composites

    International Nuclear Information System (INIS)

    Lawrence, Falix; Mallika, C.; Kamachi Mudali, U.; Natarajan, R.; Ponraju, D.; Seshadri, S.K.; Sampath Kumar, T.S.

    2012-01-01

    Polyetheretherketone (PEEK) is extensively employed in corrosive and radiation environments. To improve the radiation tolerance of PEEK in the presence of high energetic radiation, PEEK was reinforced with micron sized alumina powder (5–25% by weight) and PEEK–alumina composite sheets fabricated were irradiated to 10 MGy. Mechanical properties of the irradiated composites revealed significant reduction in the degradation of PEEK with addition of alumina as the polymer reinforced with ceramic additives is expected to increase the interface area of the constituents in the system resulting in an improvement in the performance of the reinforced material.

  19. From alumina nanopores to nanotubes: dependence on the geometry of anodization system.

    Science.gov (United States)

    Feil, Adriano F; da Costa, Marlla V; Migowski, Pedro; Dupont, Jaïrton; Teixeira, Sérgio R; Amaral, Lívio

    2011-03-01

    The Conventional anodization of commercial aluminum sheets with a phosphoric acid electrolyte was employed for the preparation of alumina nanopore and/or nanotube structures. Modifying the system geometry (the ratio of platinum to aluminum electrode areas) controlled the nature of the anodization process (mild to hard). Nanotube formation was observed after low temperature preferential chemical etching of the defective corners of the hexagonal alumina cells using the same solution from the anodization process. Electrode geometry can be used to combine mild and hard anodization with low temperature etching to tune the alumina morphology from 100% nanopores to 100% nanotubos coverage.

  20. Structural analysis of anodic porous alumina used for resistive random access memory

    International Nuclear Information System (INIS)

    Lee, Jeungwoo; Nigo, Seisuke; Kato, Seiichi; Kitazawa, Hideaki; Kido, Giyuu; Nakano, Yoshihiro

    2010-01-01

    Anodic porous alumina with duplex layers exhibits a voltage-induced switching effect and is a promising candidate for resistive random access memory. The nanostructural analysis of porous alumina is important for understanding the switching effect. We investigated the difference between the two layers of an anodic porous alumina film using transmission electron microscopy and electron energy-loss spectroscopy. Diffraction patterns showed that both layers are amorphous, and the electron energy-loss spectroscopy indicated that the inner layer contains less oxygen than the outer layer. We speculate that the conduction paths are mostly located in the oxygen-depleted area.

  1. Crack shielding degradation in alumina during cyclic fatigue

    Energy Technology Data Exchange (ETDEWEB)

    El Attaoui, H.; Saadaoui, M. [LERSIM, Rabat (Morocco); INSA de Lyon, Villeurbanne (France). GEMPPM; Chevalier, J.; Fantozzi, G. [INSA de Lyon, Villeurbanne (France). GEMPPM

    2002-07-01

    R curve measurements before and after cyclic fatigue were performed on SENB specimens of coarse grain alumina to investigate fatigue effect. A significant drop of the crack growth resistance was observed after cyclic loading which could be associated to a decrease of the shielding effect due to bridging degradation. No variation was observed on the amount of degradation as the number of cycles increased for a maximum applied load, K{sub max} of 50% of the K{sub R} value before cyclic loading, K{sub f}, whereas an increase was observed for K{sub max}/K{sub f} = 0.7, when the critical number of cycles corresponding to failure was approached. (orig.)

  2. Crack growth resistance under thermal shock loading of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Saadaoui, M. [Ecole Mohammadia d`Ingenieurs (EMIL), Rabat (Morocco); Fantozzi, G. [GEMPPM-UMR CNRS 5510, INSA Lyon, Villeurbanne (France)

    1998-06-01

    Thermal shock experiments, conducted in an apparatus in which all the parameters can be controlled, are modelled by a two dimensional cooling model, allowing a precise determination of the induced stress intensity factors (SIF). Fracture mechanics analysis in terms of stress intensity factors is applied to determine R-curve behaviour of indentation cracks in alumina materials subjected to thermal shock. The instant of unstable crack growth was obtained by acoustic emission (AE). As in bending tests, the coarse grained material showed a more pronounced R-curve behaviour than the fine grained material. The results are discussed considering the influence of the R-curve behaviour on the retained strength after thermal shock. (orig.) 25 refs.

  3. Zirconia / Alumina Composite Foams with Calcium Phosphate Coating

    Directory of Open Access Journals (Sweden)

    Lenka Novotná

    2016-06-01

    Full Text Available In this study, mechanical properties of calcium phosphate foams were enhanced by zirconia/alumina porous cores prepared by polymer replica technique. This technique was chosen to ensure interconnected pores of optimal size for cell migration and attachment. The porosity of ZA cores (50 – 99% was controlled by multistep impregnation process, the size of pore windows was 300 – 500 μm. Sintered ZA cores were impregnated by hydroxyapatite or β-tricalcium phosphate slurry to improve bioactivity. The bone like apatite layer was formed on coatings when immersed in a simulated body fluid. Neither of tested materials was cytotoxic. Thus, the composite foam can be potentially used as a permanent substitute of cancellous bone.

  4. Electroless Fabrication of Cobalt Alloys Nanowires within Alumina Template

    Directory of Open Access Journals (Sweden)

    Nazila Dadvand

    2007-01-01

    Full Text Available A new method of nanowire fabrication based on electroless deposition process is described. The method is novel compared to the current electroless procedure used in making nanowires as it involves growing nanowires from the bottom up. The length of the nanowires was controlled at will simply by adjusting the deposition time. The nanowires were fabricated within the nanopores of an alumina template. It was accomplished by coating one side of the template by a thin layer of palladium in order to activate the electroless deposition within the nanopores from bottom up. However, prior to electroless deposition process, the template was pretreated with a suitable wetting agent in order to facilitate the penetration of the plating solution through the pores. As well, the electroless deposition process combined with oblique metal evaporation process within a prestructured silicon wafer was used in order to fabricate long nanowires along one side of the grooves within the wafer.

  5. Current Trends in Nanoporous Anodized Alumina Platforms for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Ganesan Sriram

    2016-01-01

    Full Text Available Pristine aluminum (Al has received great deal of attention on fabrication of nanoporous anodized alumina (NAA with arrays of nanosized uniform pores with controllable pore sizes and lengths by the anodization process. There are many applications of NAA in the field of biosensors due to its numerous key factors such as ease of fabrication, high surface area, chemical stability and detection of biomolecules through bioconjugation of active molecules, its rapidness, and real-time monitoring. Herein, we reviewed the recent trends on the fabrication of NAA for high sensitive biosensor platforms like bare sensors, gold coated sensors, multilayer sensors, and microfluidic device supported sensors for the detection of various biomolecules. In addition, we have discussed the future prospectus about the improvement of NAA based biosensors for the detection of biomolecules.

  6. Fatigue strength testing of LTCC and alumina ceramics bonds

    Science.gov (United States)

    Dąbrowski, A.; Matkowski, P.; Golonka, L.

    2012-12-01

    In this paper the results of fatigue strength tests of ceramic joints are presented. These tests have been performed on the samples subjected to thermal and vibration fatigue as well as on the reference samples without any additional loads. The main goal of the investigation was to determine the strength of hybrid ceramics joints using tensile testing machine. The experiment enabled evaluation of fatigue effects in the mentioned joints. Geometry of test samples has been designed according to FEM simulations, performed in ANSYS FEM environment. Thermal stress as well as the stress induced by vibrations have been analyzed in the designed model. In the experiments two types of ceramics have been used — LTCC green tape DP951 (DuPont) and alumina ceramic tape. The samples have been prepared by joining two sintered ceramic beams made of different types of material. The bonds have been realized utilizing low temperature glass or a layer of LTCC green tape.

  7. Microstructural features of alumina refractories with mullite-zirconia aggregates

    Directory of Open Access Journals (Sweden)

    Ferrari, C. R.

    2003-02-01

    Full Text Available Refractory materials are often subjected to high temperatures and loads and their performance depends on their microstructural evolution during use. In this context, microstructural changes were monitored in alumina-based refractories containing mullite-zirconia aggregates and heat-treated at 1400°C and 1500°C for 2, 6, and 18 days. With the purpose of inducing in situ mullite formation, bricks containing microsilica were also prepared and heat-treated at 1500°C for 6 days for the sake of comparison. These heat treatments allowed for an evaluation of the use of refractories from the standpoint of temperature and time. In this work, scanning electron microscopy and X-ray diffraction analyses were made to identify the phases in the materials. The Rietveld method was also used for quantitative phase analyses. Interfacial reactions occurred between alumina and aggregates and between alumina and microsilica, causing the system to become mullitized. The effect of in situ-formed mullite was particularly evident in the results of the modulus of rupture of the materials containing microsilica. Creep tests revealed a reduction in the creep rate of materials treated at 1500°C for 18 days.

    El comportamiento de los materiales refractarios, cuando sometidos a altas temperaturas y a grandes esfuerzos mecánicos, está íntimamente relacionado con la evolución microestuctural, durante su uso. En este contexto, fue realizado un estudio de la evolución microestructural de los materiales refractarios de alumina conteniendo diferentes porcentajes de agregado de mullita–circona, sometidos a tratamientos térmicos por 2, 6 y 18 días, en temperaturas de 1400 y 1500oC. Fueron confeccionados, algunos ladrillos conteniendo microsílice, con la idea de se introducir la formación de mullita en situ. Para la comparación de los ladrillos, fueron realizados tratamientos térmicos por un periodo de 6 días en 1500oC. Estos tratamientos térmicos permitieron

  8. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  9. Ordered Nanomaterials Thin Films via Supported Anodized Alumina Templates

    Directory of Open Access Journals (Sweden)

    Mohammed eES-SOUNI

    2014-10-01

    Full Text Available Supported anodized alumina template films with highly ordered porosity are best suited for fabricating large area ordered nanostructures with tunable dimensions and aspect ratios. In this paper we first discuss important issues for the generation of such templates, including required properties of the Al/Ti/Au/Ti thin film heterostructure on a substrate for high quality templates. We then show examples of anisotropic nanostructure films consisting of noble metals using these templates, discuss briefly their optical properties and their applications to molecular detection using surface enhanced Raman spectroscopy. Finally we briefly address the possibility to make nanocomposite films, exemplary shown on a plasmonic-thermochromic nanocomposite of VO2-capped Au-nanorods.

  10. Quantitative convergent beam electron diffraction measurements of bonding in alumina

    International Nuclear Information System (INIS)

    Johnson, A.W.S.

    2002-01-01

    Full text: The QCBED technique of measuring accurate structure factors has been made practical by advances in energy filtering, computing and in the accurate measurement of intensity. Originally attempted in 1965 by the late Peter Goodman (CSIRO, Melbourne) while working with Gunter Lehmpfuhl (Fritz Haber Institut, Berlin), QCBED has been successfully developed and tested in the last decade on simple structures such as Si and MgO. Our work on Alumina is a step up in complexity and has shown that extinction in X-ray diffraction is not correctable to the precision required. In combination with accurate X-ray diffraction, QCBED promises to revolutionize the accuracy of bonding charge density measurements, experimental results which are of significance in the development of Density Functional Theory used in predictive chemistry. Copyright (2002) Australian Society for Electron Microscopy Inc

  11. Adsorption of chromium onto activated alumina: kinetics and thermodynamics studies.

    Science.gov (United States)

    Marzouk, Ikhlass; Dammak, Lassaad; Hamrouni, Béchir

    2013-02-01

    In this study, the removal of chromium (VI) by adsorption on activated alumina was investigated and the results were fitted to Langmuir, Freundlich, Dubinin-Redushkevich, and Temkin adsorption models at various temperatures. The constants of each model were evaluated depending on temperature. Thermodynamic parameters for the adsorption system were determined at 10, 25 and 40 degrees C. (deltaH degrees = -21.18 kJ x mol(-1); deltaG degrees = -8.75 to -7.43 kJ x mol(-1) and deltaS degrees = -0.043 kJ x K(-1) x mol(-1)). The obtained values showed that chromium (VI) adsorption is a spontaneous and exothermic process. The kinetic process was evaluated by first-order, second-order and Elovich kinetic models.

  12. Recovering metals from red mud generated during alumina production

    Science.gov (United States)

    Piga, Luigi; Pochetti, Fausto; Stoppa, Luisa

    1993-11-01

    There is growing interest in processing and utilizing the red mud by-product of the Bayer process for alumina extraction from bauxite. This interest stems largely from the environmental impacts associated with red mud and the storage costs involved. Furthermore, complete utilization of the raw materials, in this case bauxite, meets an ecological concept while ensuring raw material conservation. To prepare this article, the authors perused approximately 100 patents and articles in order to provide a concise description of the methods of storing red mud and its uses as a flocculant or construction material and in other minor applications. Special attention has been given to the methods developed for recovering metals contained in the red mud.

  13. Characterization of AMC commercial bricks with different alumina qualities

    International Nuclear Information System (INIS)

    Muñoz, V.; Camerucci, Maria A.; Martinez, A.G. Tomba

    2011-01-01

    The study of commercial bricks Al 2 O 3 -MgO-C (AMC) has some advantages over the analysis of materials prepared in the laboratory, but requires a complete characterization. This paper presents the results of the characterization of commercial bricks AMC with different types of alumina aggregates used in ladles floor. The same is done by several complementary techniques: XRD, DTA / TGA, EPR, volume density and apparent porosity, dilatometric analysis, microstructural analysis by low magnification and scanning electron microscopy (SEM) coupled with analysis Energy dispersive X-ray (EDX) and determination of mechanical properties at room temperature (Young's modulus, stress and strain at fracture). The main characteristics and differences in the composition and microstructure, essential data for further analysis of the mechanical behavior and resistance to slag attack of these refractories, are determined. (author)

  14. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  15. A method for the control of alumina concentration in aluminum reduction cells

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1992-01-01

    Full Text Available The paper presents a new method for the control of the concentration of the alumina in electrolysis cells for the production of aluminium. The method is based upon the well known fact that apparent resistivity of the cell is a function of the alumina concentration so that the resistivity has the lowest value around the concentration of three per cent and increases in both directions. The method uses the cross correlation between a perturbation of the feed flow of alumina into the cell and the resulting response in measured voltage across the cell. The cross-correlation is proportional to the slope of the resistivity against concentration curve, making it possible to control the alumina flow, to achieve a desired slope. The method has much in common with other methods presently in use which require a much more complicated computation scheme.

  16. Feasibility study of use alumina waste in compositions containing clay for the mullite synthesis

    International Nuclear Information System (INIS)

    Silva, V.J.; Dias, G.; Goncalves, W.P.; Santana, L.N.L.

    2016-01-01

    The reuse of alumina residue in addition to reducing environmental impacts can be used as raw material in ceramic masses to mullite produce. This study aims to obtain mullite from compositions containing clays and alumina residue used heating in a conventional oven. The raw materials were processed and characterized. Subsequently, these compositions were formulated containing precursors in appropriate proportions based on the stoichiometry of the mullite 3:2. Then, heat treatment was performed at temperatures of 1300 to 1400°C and 5°C rate/min. The products obtained were characterized by XRD, analyzing qualitatively and quantitatively the phases formed. The results showed that is possible, from compositions containing clays and alumina residue to obtain mullite as major phase (>70%) and high crystallinity (> 80%) The percentage of mullite approached the values obtained with the compositions containing alumina and clays. (author)

  17. Promoting effect of tin oxides on alumina-supported gold catalysts used in CO oxidation

    Science.gov (United States)

    Somodi, Ferenc; Borbáth, Irina; Hegedűs, Mihály; Lázár, Károly; Sajó, István E.; Geszti, Olga; Rojas, Sergio; Fierro, Jose Luis Garcia; Margitfalvi, József L.

    2009-11-01

    In this study the influence of SnO x nanoparticles on the catalytic performance of alumina-supported gold catalysts was investigated in CO oxidation. The tin modified supports were prepared by grafting of tetraethyltin onto the surface of alumina via its hydroxyl groups. The decomposition of organometallic surface species in oxygen yielded highly dispersed tin oxide on the surface of alumina. Gold was introduced onto the tin modified alumina support by both deposition-precipitation with urea and direct anionic exchange techniques using HAuCl 4 solution. Based on catalytic and different spectroscopic measurements it is suggested that the presence of "Sn n+ -Au ensemble sites" is responsible for the increased activity of these catalysts.

  18. Synthesis and characterization of alumina application in support of zeolite membrane

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Rodrigues, M.G.F.

    2012-01-01

    Much interest has been aroused in process applications using zeolite membrane. The physicochemical properties of the support have a strong effect on the quality of zeolite membrane. This work is to synthesize and characterize alumina for use as a support for zeolite membrane. In this work was synthesized α-alumina: 40% alumina, 0.2% for PABA, 0.5% oleic acid and 59.3% ethyl alcohol. The mixture was ground in ball mill and placed in an oven for 24 hours at 60 °C, allowed to stand for 24h. The pressing was performed with 4 tons. The pressed material was subjected to sintering at 1400 °C/hour. The samples were characterized by EDX, XRD and SEM. The results for the media by XRD showed that they are crystalline and pure. By EDX was observed that the supports consist essentially of alumina. (author)

  19. Reaction products between Bi-Sr-Ca-Cu-oxide thick films and alumina substrates

    International Nuclear Information System (INIS)

    Alarco, J.A.; Ilushechkin, A.; Yamashita, T.; Bhargava, A.; Barry, J.; Mackinnon, I.D.R.

    1997-01-01

    The structure and composition of reaction products between Bi-Sr-Ca-Cu-oxide (BSCCO) thick films and alumina substrates have been characterized using a combination of electron diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry (EDX). Sr and Ca are found to be the most reactive cations with alumina. Sr 4 Al 6 O 12 SO 4 is formed between the alumina substrates and BSCCO thick films prepared from paste with composition close to Bi-2212 (and Bi-2212+10 wt.% Ag). For paste with composition close to Bi(Pb)-2223 +20 wt.% Ag, a new phase with f.c.c. structure, lattice parameter about a=24.5 A and approximate composition Al 3 Sr 2 CaBi 2 CuO x has been identified in the interface region. Understanding and control of these reactions is essential for growth of high quality BSCCO thick films on alumina. (orig.)

  20. High Activity of Highly Loaded MoS2 Hydrodesulfurization Catalysts Supported on Organised Mesoporous Alumina

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Zdražil, Miroslav; Žilková, Naděžda; Čejka, Jiří

    2002-01-01

    Roč. 3, - (2002), s. 151-157 ISSN 1566-7367 R&D Projects: GA ČR GA104/01/0544 Keywords : hydrodesulfurization * Mo sulfide catalyst * organised mesoporous alumina Subject RIV: CF - Physical ; Theoretical Chemistry

  1. Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes

    Science.gov (United States)

    Leonov, A. A.; Khasanov, A. O.; Danchenko, V. A.; Khasanov, O. L.

    2017-12-01

    Alumina composites reinforced with 3 vol.% multi-walled carbon nanotubes (MWCNTs) were prepared by spark plasma sintering (SPS). The influence of sintering temperature (1400-1600 °C) on the composites microstructure and mechanical properties was investigated. Microstructure observations of the composite shows that some CNTs site along alumina grains boundary, while others embed into the alumina grains and shows that CNTs bonded strongly with the alumina matrix contributing to fracture toughness and microhardness increase. MWCNTs reinforcing mechanisms including CNT pull-out and crack deflection were directly observed by scanning electron microscope (SEM). For Al2O3/CNT composite sintered at 1600 °C, fracture toughness and microhardness are 4.93 MPa·m1/2 and 23.26 GPa respectively.

  2. In situ observation of the role of alumina particles on the crystallization behavior of slags

    Energy Technology Data Exchange (ETDEWEB)

    Orrling, C.

    2000-09-01

    The confocal laser scanning microscope (CLSM) allows crystallization behavior in liquid slags to he observed in situ at high temperatures. Slags in the lime-silica-alumina-magnesia system are easily tinder cooled and it is possible to construct time temperature transformation (TTT) diagrams for this system. The presence of solid alumina particles its these liquid slags was studied to determine if these particles act as heterogeneous nucleation sites that cause she precipitation of solid material within slags. The introduction of alumina particles reduced the incubation time for the onset of crystallization and increased the temperature at which crystallization was observed in the slags to close to the liquidus temperature for the slag. Crystal growth rates are in a good agreement with Ivantsov's solution of the problem of diffusion controlled dendritic growth. Alumina appears to be a potent nucleating agent in the slag systems that were studied. (author)

  3. Synthesis of Fe3O4 core/alumina shell nanospheres for partial hydrogenation of benzene

    Science.gov (United States)

    He, T. T.; Mu, S. L.; Fu, Q. T.; Liu, C. G.

    2018-01-01

    We report a novel synthesis of Fe3O4 core/alumina shell nanosphere composite for partial hydrogenation of benzene. Fe3O4 core/alumina shell (MFeCA) structured nanospheres were obtained by reducing a hematite core/alumina precursor shell (HFeCAP) nanosphere precursor under H2/N2 gas flow. The magnetic alumina nanospheres (MFeCAs) possess not only uniform size (180∼350nm) but also adjusted saturation magnetization value. A novel Ru-based magnetic catalyst was synthesized for the partial hydrogenation of benzene in magnetically stabilized bed (MSB). The performance of magnetic catalyst in MSB demonstrates that it’s an effective and highly selective method for partial hydrogenation of benzene. The chain regime of the MSB reactor’s operation conditions is responsible for the high selectivity of cyclohexene.

  4. Effect of low-dimensional alumina structures on viability of L 929 cells

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, Alla N., E-mail: alserova@ispms.tsc.ru; Korovin, Matvey S., E-mail: msk@ispms.tsc.ru; Bakina, Olga V., E-mail: ovbakina@ispms.tsc.ru; Kazantsev, Sergey O., E-mail: kzso@ispms.tsc.ru; Glazkova, Elena A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, Natalia V., E-mail: nvsv@ispms.tsc.ru; Lozhkomoev, Aleksandr S., E-mail: asl@ispms.tsc.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    In the study, we estimated the cytotoxicity of alumina nanoparticles differing in shape (nanofibers, nanoplates, nanosheets, agglomerates of nanosheets) and close in physicochemical properties (particle size, specific surface area, phase composition, and zeta potential). The alumina structures were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) data, low-temperature nitrogen adsorption, and dynamic light scattering (DLS). The cytotoxicity was estimated on fibroblast cells of the L929 line. It was found that a more adverse effect on the cells was exerted by alumina nanofibers and nanosheets. The action of nanosheets on the cells was inhibitory and was of about the same level, irrespective of the observation period. The effect of alumina nanosheet agglomerates and nanoplates on the cell proliferation was weak even at an exposure time of 72 h.

  5. Impact of concentration and Si doping on the properties and phase transformation behavior of nanocrystalline alumina prepared via solvothermal synthesis

    International Nuclear Information System (INIS)

    Mekasuwandumrong, Okorn; Tantichuwet, Panutin; Chaisuk, Choowong; Praserthdam, Piyasan

    2008-01-01

    Solvothermal reaction of 20 g aluminum isopropoxide (AIP) in mineral oil at 300 deg. C for 2 h gave χ-alumina showing high thermal stability while the reaction with higher amounts of starting AIP (30 and 40 g) contributed contamination of pseudoboehmite. The χ-alumina thus obtained directly transformed into α-alumina completely at approximately 1400 deg. C bypassing the other transition alumina phases whereas some part of the contaminated product transformed to γ-alumina through θ-alumina and finally α-alumina. When silicon was doped in the alumina matrix (5, 10, 20 and 50 at.%) using tetraethylorthosilicate as the silicon (Si) precursor, χ-alumina was still observed without any contaminations at low concentration doping (5-20 at.%). Amorphous structure was obtained by doping 50 at.% Si. The phase transformation temperature was shifted to the high temperature after loading the Si. The α-phase transformation did not go to completion even after calcinations at 1500 deg. C. This could be due to the incorporation of Si atom in alumina lattice forming SiO 2 -Al 2 O 3 solid solution

  6. Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, A., E-mail: akeyvani@ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Saremi, M., E-mail: saremi@ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Sohi, M. Heydarzadeh, E-mail: mhsohi@ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2011-08-18

    Highlights: > This work aims to study the oxidation behavior of plasma sprayed YSZ-alumina composites coatings. > The composites TBC coatings of YSZ-alumina showed better oxidation resistance than normal YSZ. > The durability of composite coating with alumina is a novel method and has not been reported before. - Abstract: In the present work oxidation behavior of plasma sprayed YSZ-alumina composite TBC coatings on Ni-base (IN-738LC) super alloy substrate was studied and compared to normal YSZ. Cyclic oxidation process in 4 h intervals was performed in an air electrical furnace at 1100 deg. C and the specimens were cooled in the furnace during each cycle. Preliminary checking was done with naked eye and further investigation was achieved using scanning electron microscopy. If there were any cracks or spallation in the coating's edge, the tests were stopped, the time was recorded and coating microstructure was studied. YSZ-alumina composites were made by applying alumina layer at the top of YSZ or mixed with YSZ as a TBC layer on the bond coat. Composite coatings of YSZ-alumina having alumina as a top coat and the mixed YSZ-alumina layer, showed better resistance than normal YSZ in oxidation test. It was observed that alumina overlay on YSZ has promoted the oxidation resistance of the coatings for longer times by preventing infiltration of oxygen through YSZ layer.

  7. Membranes obtained from alumina from separation water/oil; Membranas obtidas a partir do residuo de alumina para separacao de agua/oleo

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Neto, M.I.; Lira, H.L; Guimaraes, I.O; Franca, K.B., E-mail: moisesnetu@gmail.com [Universidade Federal de Campina Grande (UFCG), PB, (Brazil)

    2016-07-01

    This study aims to evaluate by flow test emulsion water/oil a membrane obtained from a crude residue of the alumina industry and see if this membrane is able to filter this emulsion within the limits specified by CONAMA. In this work, tubular membranes composed of the alumina and the residue bentonite clay were produced by extrusion and were sintered at 900, 1000 and 1100 ° C. tangential flow tests were conducted with deionized water and subsequently with an emulsion of water / oil, all done with a pressure of 1.5 bar. The results showed that membranes produced from the crude residue the alumina industry were quite efficient the emulsion's oil removal, reducing the concentration of about 100 ppm in the feed, to below 5ppm and flow rates of around 30L/h.m{sup 2}. (author)

  8. A comparative approach to synthesis and sintering of alumina/yttria nanocomposite powders using different precipitants

    Energy Technology Data Exchange (ETDEWEB)

    Kafili, G. [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Movahedi, B., E-mail: b.movahedi@ast.ui.ac.ir [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Milani, M. [Faculty of Advanced Materials and Renewable Energy Research Center, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Alumina/yttria nanocomposite powder as an yttrium aluminum garnet (YAG) precursor was synthesized via partial wet route using urea and ammonium hydrogen carbonate (AHC) as precipitants, respectively. The products were characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and energy dispersive spectroscopy. The use of urea produced very tiny spherical Y-compounds with chemical composition of Y{sub 2}(CO{sub 3}){sub 3}·nH{sub 2}O, which were attracted to the surface of alumina nanoparticles and consequently, a core-shell structure was obtained. The use of ammonium hydrogen carbonate produced sheets of Y-compounds with chemical composition of Y(OH)CO{sub 3} covering the alumina nanoparticles. A fine-grained YAG ceramic (about 500 nm), presenting a non-negligible transparency (45% RIT at IR range) was obtained by the spark plasma sintering (SPS) of alumina-yttria nanocomposite synthesized in the urea system. This amount of transmission was obtained by only the sintering of the powder specimen without any colloidal forming process before sintering or adding any sintering aids or dopant elements. However, by spark plasma sintering of alumina-yttria nanocomposite powder synthesized in AHC system, an opaque YAG ceramic with an average grain size of 1.2 μm was obtained. - Highlights: • Urea proved to be an appropriate precipitant for obtaining a core-shell alumina/yttria nanocomposite. • Alumina/yttria nanocomposite powders with more appropriate morphology and highly sinterability. • A fine-grained YAG ceramic was obtained by SPS of alumina-yttria nanocomposite.

  9. High Temperature Pt/Alumina Co-Fired System for 500 C Electronic Packaging Applications

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2015-01-01

    Gold thick-film metallization and 96 alumina substrate based prototype packaging system developed for 500C SiC electronics and sensors is briefly reviewed, the needs of improvement are discussed. A high temperature co-fired alumina material system based packaging system composed of 32-pin chip-level package and printed circuit board is discussed for packaging 500C SiC electronics and sensors.

  10. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  11. Hydrothermal crystallization of α-alumina monohydrate in the presence of copper ions

    Science.gov (United States)

    Brown, N.

    1989-09-01

    The effect of copper ions on the hydrothermal crystallization of α-alumina monohydrate (A1OOH, mineral name boehmite), following oxidation of the organic carbon compounds in sodium aluminate solution of the Bayer process, has been examined using scanning electron microscopy and particle size analyses. The initial effect of the copper ions on the homogeneously nucleated α-alumina monohydrate is to inhibit crystal growth on the (001) faces and direct the growth process to the prismatic faces of the rhombic or diamond shaped crystals. At low copper levels (up to 0.1 wt% in α-alumina monohydrate), this leads to the formation of plate-like crystals up to 25 μm in size which can intergrow and develop into particles with an average size of up to 100 μm. The size and structure of the μ-alumina monohydrate particles, however, depend on the amount of copper present and increasing copper levels (up to 1.0 wt%) lead progressively to a decrease in average particle size of α-alumina monohydrate to about 10 μm and the formation of more rounded oblong-shaped particles having a compact sheaf-like structure. Copper-containing α-alumina monohydrate particles of this size and form can be readily recovered from the oxidized liquor and recycled in the industrial process.

  12. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    International Nuclear Information System (INIS)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-01-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al 2 O 3 ) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σ AC ) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher’s universal power law of solids. It revealed that σ AC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σ DC ), critical frequency (ω c ), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σ DC ) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  13. Factorial experimental design intended for the optimization of the alumina purification conditions

    Science.gov (United States)

    Brahmi, Mounaouer; Ba, Mohamedou; Hidri, Yassine; Hassen, Abdennaceur

    2018-04-01

    The objective of this study was to determine the optimal conditions by using the experimental design methodology for the removal of some impurities associated with the alumina. So, three alumina qualities of different origins were investigated under the same conditions. The application of full-factorial designs on the samples of different qualities of alumina has followed the removal rates of the sodium oxide. However, a factorial experimental design was developed to describe the elimination of sodium oxide associated with the alumina. The experimental results showed that chemical analyze followed by XRF prior treatment of the samples, provided a primary idea concerning these prevailing impurities. Therefore, it appeared that the sodium oxide constituted the largest amount among all impurities. After the application of experimental design, analysis of the effectors different factors and their interactions showed that to have a better result, we should reduce the alumina quantity investigated and by against increase the stirring time for the first two samples, whereas, it was necessary to increase the alumina quantity in the case of the third sample. To expand and improve this research, we should take into account all existing impurities, since we found during this investigation that the levels of partial impurities increased after the treatment.

  14. Thermal stability and microstructure of catalytic alumina composite support with lanthanum species

    Science.gov (United States)

    Ozawa, Masakuni; Nishio, Yoshitoyo

    2016-09-01

    Lanthanum (La) modified γ-alumina composite was examined for application toward thermostable catalytic support at elevated temperature. La added alumina was prepared through an aqueous process using lanthanum (III) nitrate and then characterized by surface area measurement, X-ray powder diffraction (XRD), differential thermal analysis (DTA), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoemission spectroscopy (XPS) and surface desorption of CO2. It was found that the properties depended on the La content and heat treatment temperatures. The characterization of the surface, structural and chemical properties of La-Al2O3 showed the existence of a strong interaction between the La species and alumina via formation of new phase and modified surface in Al2O3 samples. LaAlO3 nanoparticle formed among alumina particles by the solid phase reaction of Al2O3 and La2O3. The increase of the surface basicity of La modified alumina was demonstrated using CO2 temperature programmed desorption experiments. The controlled surface interaction between La oxide and alumina provide the unique surface and structural properties of the resulting mixed oxides as catalysts and catalytic supports.

  15. Experimental Investigations on Tribological Behaviour of Alumina Added Acrylonitrile Butadiene Styrene (ABS Composites

    Directory of Open Access Journals (Sweden)

    T. Panneerselvam

    2016-09-01

    Full Text Available Composite materials are multifunctional in nature, which can be custom-made based on the nature of the applications. The challenge of composite materials lie on complementing the properties of one another i.e. materials which go in the making of composites strengthen each other by inhibiting their weaknesses. Polymers are one of the widely used materials which serve a wide spectrum of engineering needs. In the present work, the tribological behaviour of a composite containing Acrylonitrile Butadiene Styrene (ABS and traces of Alumina is experimentally investigated. Alumina is added to ABS in various percentages such as 1%, and 3% by weight in order to improve the wear resistance of the polymer. Central Composite Design was used to design the experiments and a standard Pin-On-Disk apparatus was used to conduct the experiments. It is observed from the test results that the addition of alumina significantly enhances the wear behavior of the polymer. However, adding more percentage of alumina has led to adverse effect on wear resistance of polymer materials. Abrasive wear mechanism is found to be predominant in the case of alumina added composite materials. It is also found that 1% alumina added composite exhibits excellent wear properties compared to other materials.

  16. Can zinc aluminate-titania composite be an alternative for alumina as microelectronic substrate?

    Science.gov (United States)

    Roshni, Satheesh Babu; Sebastian, Mailadil Thomas; Surendran, Kuzhichalil Peethambharan

    2017-01-13

    Alumina, thanks to its superior thermal and dielectric properties, has been the leading substrate over several decades, for power and microelectronics circuits. However, alumina lacks thermal stability since its temperature coefficient of resonant frequency (τ f ) is far from zero (-60 ppmK -1 ). The present paper explores the potentiality of a ceramic composite 0.83ZnAl 2 O 4 -0.17TiO 2 (in moles, abbreviated as ZAT) substrates for electronic applications over other commercially-used alumina-based substrates and synthesized using a non-aqueous tape casting method. The present substrate has τ f of + 3.9 ppmK -1 and is a valuable addition to the group of thermo-stable substrates. The ZAT substrate shows a high thermal conductivity of 31.3 Wm -1 K -1 (thermal conductivity of alumina is about 24.5 Wm -1 K -1 ), along with promising mechanical, electrical and microwave dielectric properties comparable to that of alumina-based commercial substrates. Furthermore, the newly-developed substrate material shows exceptionally good thermal stability of dielectric constant, which cannot be met with any of the alumina-based HTCC substrates.

  17. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    Science.gov (United States)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  18. Processing, structure, and mechanical properties of alumina-nanofilled polystyrene composites

    Science.gov (United States)

    Siengchin, S.

    2010-11-01

    Binary composites composed of polystyrene (PS) and a synthetic boehmite alumina were produced by using the water-mediated melt compounding (WMC) and direct melt compounding (DMC) techniques. The alumina particles were dispersed in water at ambient temperature. The aqueous alumina suspension was injected into molten PS in a twin-screw extruder to prepare reinforced polymer composites. The dispersion of the alumina was studied by transmission and scanning electron microcopy techniques (TEM and SEM, respectively). The mechanical and thermomechanical properties of the composites were determined by employing a dynamic-mechanical thermal analysis (DMTA) and short-time creep and uniaxial static tensile tests. It was found that the direct melt compounding of the alumina with PS resulted in microcomposites, whereas the water-mediated melt compounding technique gave rise to nanocomposites. The incorporation of alumina into the PS nanocomposites increased their stiffness, tensile strength, and creep resistance. However, the elongation of the PS nanocomposites at break was smaller than that of the PS microcomposites.

  19. Estimation of the intrinsic stresses in α-alumina in relation with its elaboration mode

    International Nuclear Information System (INIS)

    Boumaza, A.; Djelloul, A.

    2010-01-01

    The specific signatures of α-Al 2 O 3 by Fourier transform infrared (FTIR) spectroscopy were investigated to estimate the intrinsic stress in this compound according to its elaboration mode. Thus, α-alumina was prepared either by calcination of boehmite or gibbsite and also generated by oxidation of a metallic FeCrAl alloy. FTIR results were mainly supported by X-ray diffraction (XRD) patterns that allowed to determine the crystallite size and the strain in the various alpha aluminas. Moreover, the infrared peak at 378.7 cm -1 was used as a reference for stress free α-alumina and the shift of this peak allowed to estimate intrinsic stresses, which were related to the morphology and to the specific surface area of aluminas according to their elaboration mode. These interpretations were confirmed by results obtained by cathodoluminescence experiments. - Graphical abstract: The infrared peak at 378.7 cm -1 was used as a reference for stress free α-alumina and the shift of this peak allowed to estimate intrinsic stresses, which were related to the morphology and to the specific surface area of aluminas according to their elaboration mode.

  20. Effect of the synthetic method on the catalytic activity of alumina: Epoxidation of cyclohexene

    Energy Technology Data Exchange (ETDEWEB)

    Valderruten, N.E., E-mail: nevalderruten@icesi.edu.co [Departamento de Ciencias Químicas, Universidad Icesi, Cali (Colombia); Peña, W.F.; Ramírez, A.E. [Departamento de Química, Universidad del Cauca, Popayán (Colombia); Rodríguez-Páez, J.E. [Departamento de Física, Universidad del Cauca, Popayán (Colombia)

    2015-02-15

    Graphical abstract: Temperature influence on percent conversion and selectivity in the epoxidation of cyclohexene using commercial alumina as a catalyst. - Highlights: • Aluminum oxide was synthesized using Pechini method. • The alumina obtained showed a mix of boehmite and γ-alumina phases. • We research an economically feasible method to obtain alumina for use as a catalyst. • Alumina obtained by Pechini showed high percent conversion and/or selectivity. • The best results were 78% conversion and 78% selectivity to epoxidation reactions. - Abstract: Al{sub 2}O{sub 3} was prepared from different inorganic precursors via the Pechini method and compared with Al{sub 2}O{sub 3} prepared by the sol–gel method. Structural characterization of these materials was carried out by FTIR, X-ray diffraction (XRD), N{sub 2} adsorption at −196 °C and transmission electron microscopy (TEM). The solids were tested in the epoxidation of cyclohexene and a difference in their catalytic activities was observed. The characterization results indicate that the samples prepared by Pechini have a mixture of γ-alumina and boehmite, a condition favoring catalytic activity, whereas the sol–gel sample is less crystalline due to higher boehmite content. These results indicate that both the nature of the precursor and the method of synthesis strongly affect the catalytic activity of Al{sub 2}O{sub 3}.

  1. The characterization of ceramic alumina prepared by using additive glass beads

    Science.gov (United States)

    Suprapedi; Muljadi; Sardjono, Priyo

    2018-01-01

    The ceramic alumina has been made by using additive glass bead (5 and 10 % wt.). There are two kinds of materials, such as : gamma Alumina and glass bead. Synthesis of alumina was done by ball milling for 24 hours, then the mixed powder was dried in drying oven at 100 °C for 6 hours. Furthermore, the dried powder was mixed by using 2 % of PVA and continued with compacted to form a pellet with pressure of 50 MPA. The next step is sintering process with variation temperature of 1150, 1200, 1250, 1300 and 1400 °C and holding time for 2 hours. The characterization conducted are consist of test density, hardness, shrinkage, and microstructure. The results show that ceramic alumina with addition of 10 % wt. glass bead has the higher value of density, hardness and shrinkage than addition of 5% wt. glass bead. The highest characterization of ceramic alumina with addition 10 % glass bead was achieved at sintering temperature of 1400 °C with density 3.68 g/cm3, hardness vickers 780.40 Hv and shrinkage 15.23 %. The XRD results show that it was founds a corrundum (alpha Alumina) as dominant phase and mullite as minor phase.

  2. Dependence of the Stabilization of α-Alumina on the Spray Process

    Science.gov (United States)

    Stahr, Carl Christoph; Saaro, Sabine; Berger, Lutz-Michael; Dubský, Jiri; Neufuss, Karel; Herrmann, Mathias

    2007-12-01

    A phase change from α-alumina (corundum) in the feedstock powder to predominantly other alumina phases, such as γ-alumina in the coating normally takes place, as a result of the spray process. It is expected that the prevention of this phase transformation will significantly improve the mechanical, electrical, and other properties of thermally sprayed alumina coatings. The results regarding the possibility of stabilization of α-alumina through addition of chromia published in the literature are ambiguous. In this work, stabilization using different spray processes (water-stabilized plasma (WSP), gas-stabilized plasma (APS), and high-velocity oxy-fuel spray (HVOF)) was studied. Mechanical mixtures of alumina and chromia were used, as were prealloyed powders consisting of solid solutions. The investigations focused on mechanical mixtures with both APS and WSP and on prealloyed powders with WSP. The coatings were studied by x-ray diffraction, including Rietveld analysis, and analysis of the lattice parameters. Microstructures were investigated by optical microscopy using metallographic cross-sections. It was shown that in the case of the mechanically mixed powders, the stabilization predominantly depends on the applied spray process. The stabilization of the α phase by use of the WSP process starting from mechanical mixtures was confirmed. It appears that stabilization exhibits a complex dependence on the spray process, the process parameters (in particular the thermal history), the nature of the powder (mechanically mixed or prealloyed), and the chromia content.

  3. Discrepancies in marginal and internal fits for different metal and alumina infrastructures cemented on implant abutments.

    Science.gov (United States)

    Faot, Fernanda; Suzuki, Dalton; Senna, Plinio M; da Silva, Wander J; de Mattias Sartori, Ivete A

    2015-06-01

    Cemented crowns are increasingly being used on dental implants instead of on screw-retained prostheses because of the reliability of internal Morse taper implant-abutment connections. However, there is a lack of information on the fit of metal ceramic and premachined alumina infrastructures. Therefore, the aim of this study was to evaluate the marginal and internal fits of different metal and alumina infrastructures cemented on universal post abutments. A total of 45 abutments (6 mm in height and 3.3 mm in diameter) were divided into five groups on the basis of their infrastructure material: cobalt-chromium (CoCr), nickel-chromium (NiCr), nickel-chromium-molybdenum-titanium (NiCrMoTi), gold (Au), and premachined alumina. The alumina group showed marginal overextension, and the Au group showed the highest discrepancy in marginal fit among the metal alloys. The CoCr and alumina groups showed the lowest discrepancies in internal fit. In conclusion, the alumina cylinders exhibited the best internal fit, despite their horizontal overextension. Among the metal alloys, CoCr exhibited the best fit at critical regions, such as the cervical and occlusal areas. © 2015 Eur J Oral Sci.

  4. Radiological assessment for bauxite mining and alumina refining.

    Science.gov (United States)

    O'Connor, Brian H; Donoghue, A Michael; Manning, Timothy J H; Chesson, Barry J

    2013-01-01

    Two international benchmarks assess whether the mining and processing of ores containing Naturally Occurring Radioactive Material (NORM) require management under radiological regulations set by local jurisdictions. First, the 1 Bq/g benchmark for radionuclide head of chain activity concentration determines whether materials may be excluded from radiological regulation. Second, processes may be exempted from radiological regulation where occupational above-background exposures for members of the workforce do not exceed 1 mSv/year. This is also the upper-limit of exposure prescribed for members of the public. Alcoa of Australia Limited (Alcoa) has undertaken radiological evaluations of the mining and processing of bauxite from the Darling Range of Western Australia since the 1980s. Short-term monitoring projects have demonstrated that above-background exposures for workers do not exceed 1 mSv/year. A whole-of-year evaluation of above-background, occupational radiological doses for bauxite mining, alumina refining and residue operations was conducted during 2008/2009 as part of the Alcoa NORM Quality Assurance System (NQAS). The NQAS has been guided by publications from the International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). The NQAS has been developed specifically in response to implementation of the Australian National Directory on Radiation Protection (NDRP). Positional monitoring was undertaken to increase the accuracy of natural background levels required for correction of occupational exposures. This is important in view of the small increments in exposure that occur in bauxite mining, alumina refining and residue operations relative to natural background. Positional monitoring was also undertaken to assess the potential for exposure in operating locations. Personal monitoring was undertaken to characterise exposures in Similar

  5. Nano or micro grained alumina powder? A choose before sintering

    Directory of Open Access Journals (Sweden)

    Román, R.

    2008-12-01

    Full Text Available Two different wet routes have been used to synthesize alumina powders in order to compare the characteristics of the final product and its behaviour during sintering. The Homogeneous Precipitation (HP gives rise to nanoparticulated powders of about 2 nm. However, such particles quickly aggregate and grow with calcination temperature. The Polymerized Organic-Inorganic Synthesis (POI produces homogeneous particle size powders (about 1 micron after resin charring. The characterization of the powder surface is the basis of an efficient process control. Particle characterization parameters (morphology, crystallinity and degree of aggregation are characterized by different techniques, such as DTA/TG, IR, XRD, SEM and TEM, and compared between these synthesis methods. The results show the evolution from the amorphous to the corundum alumina phase for both processes and their ability for sintering, as well discuses the beneficial of nanoparticles obtained by HP during sintering.

    Se han utilizado dos diferentes síntesis por vía húmeda para la preparación de polvos de alúmina con el fin de comparar las características de los productos finales y su comportamiento durante la sinterización. La Precipitación Homogénea (HP da lugar a polvos nanoparticulados de unos 2nm. Se observa sin embargo, como estas partículas se agregan rápidamente y crecen con la temperatura de calcinación. La Síntesis por Polimerización Orgánica-Inorgánica (POI produce polvos de tamaño de partícula homogéneo (en torno a 1 micra después de la descomposión de la resina. La caracterización de la superficie de los polvos es la base de un control eficiente del proceso. Los parámetros de caracterización de las partículas obtenidas (morfología, cristalinidad y grado de agregación se obtienen por diferentes técnicas como DTA/TG, IR, XRD, SEM y TEM, y se comparan entre estos métodos de síntesis. Los resultados muestran la evolución desde el amorfo a la fase

  6. Hydrogenation of ethylene over molybdena-alumina catalysts

    International Nuclear Information System (INIS)

    Lombardo, E.A.; Houalla, M.; Hall, W.K.

    1978-01-01

    The hydrogenation of ethylene was studied at 25 and -76 0 C over a molybdena-γ-alumina (8% Mo) catalyst which had been reduced to different extents (from 0.2 to 1.6 e/Mo). Both a static reactor (with recirculating gas) and a microcatalytic pulse reactor were used in this work. The catalytic activity increased with the extent of reduction of the catalyst. Nearly 100% C 2 H 4 D 2 was obtained from a 1:1 mixture of C 2 H 4 and D 2 as the initial product at low and intermediate extents of reduction (in the circulation system). At the highest extent of reduction, ethane-d 2 was still the chief deuterated species but now accounted for only 60% of the initial products. Similar results were obtained with less reduced catalysts when the D 2 /olefin ratio was greatly increased and with the pulse reactor. In all cases, the unreacted ethylene showed very little exchange. These results are discussed in terms of the current literature. It is suggested that formation of a carbene intermediate is responsible for the multiple exchange pattern. The relationship of the results to polymerization and olefin metathesis is pointed out

  7. Pyrolysis of plastic waste using alumina-pumice as catalyst

    International Nuclear Information System (INIS)

    Warnijati, S.; Agra, I.B.; Wibowo, W.

    2000-01-01

    Efforts to convert plastic waste to liquid fuel have been carried out, but the yield was not so promising yet. Various catalysts have been studied to drive the product more to the liquid fuel. In this study, alumina-pumice produced from cheap local materials, was used as catalyst. Solid polyethylene plastic waste was melted in a feed compartment surrounding the tube reactor, and the vapor flowed downward through the catalyst bed which was supported by small glass marbles. Air and water coolers were used to cool and condense the product. Liquid and uncondensable gas were collected in receivers and bottle filled with brine, respectively. The physical properties of a specific liquid product were tested according to the ASTM methods. Liquid and gas products increased with time and temperature, and the rate of liquid and gas formations followed first order reaction. Using 100 g of plastic waste and 40 g of catalyst, the favorable time and temperature of pyrolysis were 105 minutes and 653-673 K, respectively. Under this condition, 86 - 87 % of liquid, 45 - 53 mL/g of gas, and 1% of solid residue were obtained. The quantity of liquid product was higher than the previous work (which was just 70-75 %) and its physical properties were between those of kerosene and diesel oil. The gross heating value of the liquid was 49 796.03 J/g, and the gas burnt with yellow flame and some soot. (Author)

  8. Tailoring thermal conductivity via three-dimensional porous alumina.

    Science.gov (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol

    2016-12-09

    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m -1 ·K -1 , which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties.

  9. HEAT TRANSFER ENHANCEMENT USING ALUMINA NANOFLUID IN CIRCULAR MICRO CHANNEL

    Directory of Open Access Journals (Sweden)

    K. S. ARJUN

    2017-01-01

    Full Text Available In this study, thermal and flow behavior models for circular microchannel using water and its nanofluids with alumina as a coolant fluid in single phase flow have been developed. A finite volume-based CFD technique is used and models are solved by using Fluent Solver. The 2D axis symmetric geometry with structured mesh and 100 x 18 nodes are used for single phase flow with Al2O3 nanoparticles of 23 nm average diameter. Viscous laminar and standard k-ε models are used to predict the steady temperature in laminar and turbulent zone. The heat transfer enhancement upto 83% in laminar and turbulent zones are obtained with the Re ranging from 5 to 11980 and particle volume concentration from 0 to 5%. Even though the pressure drop increases with increase in Re, it is comparatively less compared to the corresponding decrease in temperature. The increase in temperature depends on Re and Pe; but the temperature distribution is found to be independent of radial position even for very low Pe. Comparison with analytical results both in laminar and turbulent zone is provided to justify the assumptions introduced in the models and very close agreement is observed statistically. Nusselt number can well predict the analytical data.

  10. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Florián-Algarín

    2018-03-01

    Full Text Available This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas welding of aluminum. A206 (Al-4.5Cu-0.25Mg master nanocomposites with 5 wt % γAl2O3 nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl2O3 nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al–γAl2O3 nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires’ electrical conductivity compared with that of pure aluminum and aluminum–copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  11. Two-level tunneling systems in amorphous alumina

    Science.gov (United States)

    Lebedeva, Irina V.; Paz, Alejandro P.; Tokatly, Ilya V.; Rubio, Angel

    2014-03-01

    The decades of research on thermal properties of amorphous solids at temperatures below 1 K suggest that their anomalous behaviour can be related to quantum mechanical tunneling of atoms between two nearly equivalent states that can be described as a two-level system (TLS). This theory is also supported by recent studies on microwave spectroscopy of superconducting qubits. However, the microscopic nature of the TLS remains unknown. To identify structural motifs for TLSs in amorphous alumina we have performed extensive classical molecular dynamics simulations. Several bistable motifs with only one or two atoms jumping by considerable distance ~ 0.5 Å were found at T=25 K. Accounting for the surrounding environment relaxation was shown to be important up to distances ~ 7 Å. The energy asymmetry and barrier for the detected motifs lied in the ranges 0.5 - 2 meV and 4 - 15 meV, respectively, while their density was about 1 motif per 10 000 atoms. Tuning of motif asymmetry by strain was demonstrated with the coupling coefficient below 1 eV. The tunnel splitting for the symmetrized motifs was estimated on the order of 0.1 meV. The discovered motifs are in good agreement with the available experimental data. The financial support from the Marie Curie Fellowship PIIF-GA-2012-326435 (RespSpatDisp) is gratefully acknowledged.

  12. Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming

    Directory of Open Access Journals (Sweden)

    Antonios Tribalis

    2016-01-01

    Full Text Available Nickel catalysts are the most popular for steam reforming, however, they have a number of drawbacks, such as high propensity toward coke formation and intolerance to sulfur. In an effort to improve their behavior, a series of Ni-catalysts supported on pure and La-, Ba-, (La+Ba- and Ce-doped γ-alumina has been prepared. The doped supports and the catalysts have been extensively characterized. The catalysts performance was evaluated for steam reforming of n-hexadecane pure or doped with dibenzothiophene as surrogate for sulphur-free or commercial diesel, respectively. The undoped catalyst lost its activity after 1.5 h on stream. Doping of the support with La improved the initial catalyst activity. However, this catalyst was completely deactivated after 2 h on stream. Doping with Ba or La+Ba improved the stability of the catalysts. This improvement is attributed to the increase of the dispersion of the nickel phase, the decrease of the support acidity and the increase of Ni-phase reducibility. The best catalyst of the series doped with La+Ba proved to be sulphur tolerant and stable for more than 160 h on stream. Doping of the support with Ce also improved the catalytic performance of the corresponding catalyst, but more work is needed to explain this behavior.

  13. Processing of alumina and zirconia nano-powders and compacts

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yujie; Bandyopadhyay, Amit; Bose, Susmita

    2004-08-25

    Magnesia-doped alumina and yttria-doped zirconia nano-powders were synthesized using sucrose as a chelating agent and template material from the aqueous solutions of aluminium nitrate, magnesium nitrate, ytrrium nitrate and zirconyl nitrate, respectively. Synthesis parameters were optimized with varying sucrose to metal ion ratio, calcinations time, and temperature to produce these nano-powders. As-synthesized powders were characterized by room temperature X-ray diffraction, BET surface area analyzer and transmission electron microscopy. Y{sub 2}O{sub 3}-ZrO{sub 2} nano-powders had particle size in the range of 80-200 nm with specific average surface area of 119 m{sup 2}/g and for MgO-Al{sub 2}O{sub 3} powders, particle sizes were 30-200 nm with the specific average surface area of 250 m{sup 2}/g. Our results indicate that this synthesis method is a versatile one and can be applied to a variety of oxide-based materials to form nano-powders. Nano-powders were compacted uniaxially and densified in a muffle furnace. Sintered discs were used for hardness testing and density measurements, as well as for microstructural characterization.

  14. Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores

    Directory of Open Access Journals (Sweden)

    Ding GuQiao

    2010-01-01

    Full Text Available Abstract Anodization of Al foil under low voltages of 1–10 V was conducted to obtain porous anodic aluminas (PAAs with ultrasmall nanopores. Regular nanopore arrays with pore diameter 6–10 nm were realized in four different electrolytes under 0–30°C according to the AFM, FESEM, TEM images and current evolution curves. It is found that the pore diameter and interpore distance, as well as the barrier layer thickness, are not sensitive to the applied potentials and electrolytes, which is totally different from the rules of general PAA fabrication. The brand-new formation mechanism has been revealed by the AFM study on the samples anodized for very short durations of 2–60 s. It is discovered for the first time that the regular nanoparticles come into being under 1–10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultrasmall nanopores. Under higher potentials from 10 to 40 V, the surface nanoparticles will be less and less and nanopores transform into general PAAs.

  15. Optical properties of alumina membranes prepared by anodic oxidation process

    International Nuclear Information System (INIS)

    Li Zhaojian; Huang Kelong

    2007-01-01

    The luminescence property of anodic alumina membranes (AAMs) with ordered nanopore arrays prepared by electrochemically anodizing aluminum in oxalic acid solutions have been investigated. Photoluminescence emission (PL) measurement shows that a blue PL band occurs in the wavelength ranges of 300-600 nm. The PL intensity and peak position of AAMs depend markedly on the excitation wavelength. A new peak located at 518 nm can be observed under a monitoring wavelength at 429 nm in the photoluminescence excitation (PLE) spectra. Convincing evidences have been presented that the PLE would be associated with the residual aluminum ions in the membrane. The PLE and PL of AAMs, as a function of anodizing times, have been discussed. It is found that the oxalic impurities incorporated in the AAMs would have important influences on the optical properties of AAMs in the initial stage of anodization. The PL and PLE spectra obtained show that there are three optical centers, of which the first is originated from the F + centers in AAMs, the second is correlated with the oxalic impurities incorporated in the AAMs, and the third is associated with the excess aluminum ions in the membrane

  16. Tailoring thermal conductivity via three-dimensional porous alumina

    Science.gov (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol

    2016-01-01

    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m−1·K−1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties. PMID:27934930

  17. Oxygen grain-boundary transport in polycrystalline alumina using wedge-geometry bilayer samples: Effect of Y-doping

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H. [Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States)] [Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015 (United States); Caram, H.S.; Schiesser, W.E. [Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Rickman, J.M.; Chan, H.M. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States)] [Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015 (United States); Harmer, M.P., E-mail: mph2@lehigh.edu [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States)] [Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015 (United States)

    2010-04-15

    Novel wedge-geometry, dual-layer alumina samples, both undoped and 500 ppm Y{sup 3+}-doped, were studied in the temperature regime 1250-1400 deg. C to determine the effect of Y{sup 3+} on oxygen grain-boundary transport in alumina. The samples consisted of a wedge-shaped, single-phase alumina top layer, diffusion bonded to an alumina/Ni substrate containing a fine, uniform dispersion of Ni marker particles (0.5 vol.%). The extent of the alumina spinel oxidation layer was measured as a function of the wedge thickness for a series of heat-treatment conditions. Models of the transport behavior were used to derive values for the rate constants (k) in both the alumina top layer and the alumina/Ni substrate. It was found that the presence of yttrium slows oxygen grain-boundary diffusion in alumina by a factor of {approx}5 (at 1300 deg. C), and increases the corresponding activation enthalpy for oxidation from 407 {+-} 20 to 486 {+-} 34 kJ mol{sup -1}. Microstructural observations suggested that yttrium also slows Ni outward diffusion. A comparison of the different k values revealed that, at 1300 deg. C, the presence of Ni alone enhances transport by a factor of {approx}2 relative to undoped alumina.

  18. Combustion chemical vapor deposition (CCVD) of LaPO4 monazite and beta-alumina on alumina fibers for ceramic matrix composites

    International Nuclear Information System (INIS)

    Hwang, T.J.; Hendrick, M.R.; Shao, H.; Hornis, H.G.; Hunt, A.T.

    1998-01-01

    This research used the low cost, open atmosphere combustion chemical vapor deposition (CCVD SM ) method to efficiently deposit protective coatings onto alumina fibers (3M Nextel TM 610) for use in ceramic matrix composites (CMCs). La-monazite (LaPO 4 ) and beta-alumina were the primary candidate debonding coating materials investigated. The coated fibers provide thermochemical stability, as well as desired debonding/sliding interface characteristics to the CMC. Dense and uniform La-phosphate coatings were obtained at deposition temperatures as low as 900-1000 C with minimal degradation of fibers. However, all of the β-alumina phases required high deposition temperatures and, thus, could not be applied onto the Nextel TM 610 alumina fibers. The fibers appeared to have complete and relatively uniform coatings around individual filaments when 420 and 1260 filament tows were coated via the CCVD process. Fibers up to 3 feet long were fed through the deposition flame in the laboratory of MicroCoating Technologies (MCT). TEM analyses performed at Wright-Patterson AFB on the CCVD coated fibers showed a 10-30 nm thick La-rich layer at the fiber/coating interface, and a layer of columnar monazite 0.1-1 μm thick covered with sooty carbon of <50 nm thick on the outside. A single strength test on CCVD coated fibers performed by 3M showed that the strength value fell in the higher end of data from other CVD coated samples. (orig.)

  19. Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies

    Science.gov (United States)

    Chinnakoti, Prathibha; Chunduri, Avinash L. A.; Vankayala, Ranganayakulu K.; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2017-09-01

    Nano materials in particular nano oxides with enhanced surface area and an excellent catalytic surface serve as potential adsorbents for defluoridation of water. In the present study nano γ-alumina was synthesized through a simple and low cost, surfactant assisted solution combustion method. As synthesized material was characterized by XRD and FESEM for its phase, size and morphological characteristics. Surface properties have been investigated by BET method. Nano γ-alumina was further used for a detailed adsorption study to remove fluoride from water. Batches of experiments were performed at various experimental conditions such as solution pH, adsorbent dose, initial fluoride concentration and contact time to test the defluoridation ability of γ-alumina. Fluoride Adsorption by nano sized γ-alumina was rapid and reached equilibrium within two hours. The adsorption worked well at pH 4.0, where ˜96 % of fluoride was found to be adsorbed on adsorbent. It was possible to reduce fluoride levels to as low as 0.3 mg/L (within the safe limit of WHO: ≤1.5 mg/L) from an initial fluoride levels of 10 mg/L. This could be achieved using a very small quantity, 1 g/L of γ-alumina at pH 4 within 1 h of contact time. Defluoridation capacity of nano γ-alumina was further investigated by fitting the equilibrium data to various isotherm as well as kinetic models. The present study revealed that γ-alumina could be an efficient adsorbent for treating fluoride contaminated water.

  20. Effective coating of titania nanoparticles with alumina via atomic layer deposition

    Science.gov (United States)

    Azizpour, H.; Talebi, M.; Tichelaar, F. D.; Sotudeh-Gharebagh, R.; Guo, J.; van Ommen, J. R.; Mostoufi, N.

    2017-12-01

    Alumina films were deposited on titania nanoparticles via atomic layer deposition (ALD) in a fluidized bed reactor at 180 °C and 1 bar. Online mass spectrometry was used for real time monitoring of effluent gases from the reactor during each reaction cycle in order to determine the optimal dosing time of precursors. Different oxygen sources were used to see which oxygen source, in combination with trimethyl aluminium (TMA), provides the highest alumina growth per cycle (GPC). Experiments were carried out in 4, 7 and 10 cycles using the optimal dosing time of precursors. Several characterization methods, such as high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and instrumental neutron activation analysis (INAA), were conducted on the products. Formation of the alumina film was confirmed by EDX mapping and EDX line profiling, FTIR and TEM. When using either water or deuterium oxide as the oxygen source, the thickness of the alumina film was greater than that of ozone. The average GPC measured by TEM for the ALD of TMA with water, deuterium oxide and ozone was about 0.16 nm, 0.15 nm and 0.11 nm, respectively. The average GPC calculated using the mass fraction of aluminum from INAA was close to those measured from TEM images. Excess amounts of precursors lead to a higher average growth of alumina film per cycle due to insufficient purging time. XRD analysis demonstrated that amorphous alumina was coated on titania nanoparticles. This amorphous layer was easily distinguished from the crystalline core in the TEM images. Decrease in the photocatalytic activity of titania nanoparticles after alumina coating was confirmed by measuring degradation of Rhodamine B by ultraviolet irradiation.

  1. Effect of alumina on photocatalytic activity of iron oxides for bisphenol A degradation

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.B. [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environment and Soil Science, Guangzhou 510650 (China)], E-mail: cefbli@soil.gd.cn; Li, X.Z. [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)], E-mail: cexzli@polyu.edu.hk; Liu, C.S.; Liu, T.X. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environment and Soil Science, Guangzhou 510650 (China)

    2007-10-01

    To study the photodegradation of organic pollutants at the interface of minerals and water in natural environment, three series of alumina-coupled iron oxides (Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-300, Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-420, and Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-550) with different alumina fraction were prepared and characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halender (BJH), and Fourier transform infrared spectra (FTIR). The XRD results showed that existence of alumina in iron oxides could hinder the formation of maghemite and hematite, and also the crystal transformation from maghemite to hematite during sintering. It has been confirmed that the BET surface area and micropore surface area of Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} catalysts increased with an increased dosage of alumina and with decreased sintering temperature. The pore size distribution also depended on the fraction of alumina. Furthermore, all Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} catalysts had a mixed pore structure of micropore, mesopore and macropore. FTIR results showed that FTIR peaks attributable to Fe-O vibrations of maghemite or hematite were also affected by alumina content and sintering temperature. It was confirmed that the crystal structure and crystalline, the surface area and pore size distribution of Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} catalysts depend strongly on the content of alumina and also sintering temperature. Bisphenol A (BPA) was selected as a model endocrine disruptor in aquatic environment. The effects of alumina on the photocatalytic activity of iron oxides for BPA degradation were investigated in aqueous suspension. The experimental results showed that the dependence of BPA degradation on the alumina content was attributable to the crystal structure, crystalline and also the properties of their surface structures. It was confirmed that the mixed crystal structure of maghemite and hematite could achieve the

  2. Effects of Starch on Properties of Alumina-based Ceramic Cores

    Directory of Open Access Journals (Sweden)

    LI Fengguang

    2016-12-01

    Full Text Available In order to improve the poor leachability of alumina-based ceramic cores, different amount of starch was added to the specimens as pore former. Alumina-based ceramic cores were prepared by hot injection technology using corundum powder as base material, paraffin wax and beeswax as plasticizer, silica powder and magnesium oxide powder as mineralizing agent, wherein the parameters of the hot injection process were as follows:temperature of the slurry was 90℃, hot injection pressure was 0.5 MPa and holding time was 25 s. The effects of starch content on the properties of alumina-based ceramic cores were studied and discussed. The results indicate that during sintering period, the loss of starch in the specimens makes porosity of the alumina-based ceramic cores increase. When starch content increases, the room-temperature flexural strength of the ceramic cores reduces and the apparent porosity increases; the volatile solvent increases and the bulk density decreases. After being sintered at 1560℃ for 2.5 h, room-temperature flexural strength of the alumina-based ceramic cores with starch content of 8%(mass fraction is 24.8 MPa, apparent porosity is 47.98% when the volatile solvent is 1.92 g/h and bulk density is 1.88 g/cm3, the complex properties are optimal.

  3. Determination of the coefficient of dynamic friction between coatings of alumina and metallic materials

    Science.gov (United States)

    Santos, A.; Córdoba, E.; Ramírez, Z.; Sierra, C.; Ortega, Y.

    2017-12-01

    This project aims to determine the coefficient of dynamic friction between micrometric size coatings of alumina and metallic materials (Steel and aluminium); the methodology used to achieve the proposed objective consisted of 4 phases, in the first one was developed a procedure that allowed, from a Pin on Disk machine built based on the specifications given by the ASTM G99-05 standard (Standard test method for wear tests with a Pin on Disk machine), to determine the coefficient of dynamic friction between two materials in contact; subsequently the methodology was verified through tests between steel-steel and steel-aluminium, due to these values are widely reported in the literature; as a third step, deposits of alumina particles of micrometric size were made on a steel substrate through thermal spraying by flame; finally, the tests were carried out between pins of steel of aluminium and alumina coating to determine the coefficients of dynamic friction between these two surfaces. The results of the project allowed to verify that the developed methodology is valid to obtain coefficients of dynamic friction between surfaces in contact since the percentages of error were of 3.5% and 2.1% for steel-steel and aluminium-steel, respectively; additionally, it was found that the coefficient of friction between steel-alumina coatings is 0.36 and aluminium-alumina coating is 0.25.

  4. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    International Nuclear Information System (INIS)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-01-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25–200 μg/mL) and incubation time (0–72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  5. Fracture Strength of Zirconia and Alumina Ceramic Crowns Supported by Implants.

    Science.gov (United States)

    Traini, Tonino; Sorrentino, Roberto; Gherlone, Enrico; Perfetti, Federico; Bollero, Patrizio; Zarone, Ferdinando

    2015-07-01

    Due to the brittleness and limited tensile strength of the veneering glass-ceramic materials, the methods that combine strong core material (as zirconia or alumina) are still under debate. The present study aims to evaluate the fracture strength and the mechanism of failure through fractographic analysis of single all-ceramic crowns supported by implants. Forty premolar cores were fabricated with CAD/CAM technology using alumina (n = 20) and zirconia (n = 20). The specimens were veneered with glass-ceramic, cemented on titanium abutments, and subjected to loading test until fracture. SEM fractographic analysis was also performed. The fracture load was 1165 (±509) N for alumina and 1638 (±662) N for zirconia with a statistically significant difference between the two groups (P = 0.026). Fractographic analysis of alumina-glass-ceramic crowns, showed the presence of catastrophic cracks through the entire thickness of the alumina core; for the zirconia-glass-ceramic crowns, the cracks involved mainly the thickness of the ceramic veneering layer. The sandblast procedure of the zirconia core influenced crack path deflection. Few samples (n = 3) showed limited microcracks of the zirconia core. Zirconia showed a significantly higher fracture strength value in implant-supported restorations, indicating the role played by the high resistant cores for premolar crowns.

  6. Effect of porosity of alumina and zirconia ceramics towards pre-osteoblast response

    Directory of Open Access Journals (Sweden)

    Chrystalleni eHadjicharalambous

    2015-10-01

    Full Text Available It is acknowledged that cellular responses are highly affected by biomaterial porosity. The investigation of this effect is important for the development of implanted biomaterials that integrate with bone tissue. Zirconia and alumina ceramics exhibit outstanding mechanical properties and are among the most popular implant materials used in orthopedics, but few data exist regarding the effect of porosity on cellular responses to these materials. The present study investigates the effect of porosity on the attachment and proliferation of pre-osteoblastic cells on zirconia and alumina. For each composition, ceramics of three different porosities are fabricated by sintering, and characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray powder diffraction. Cell proliferation is quantified, and microscopy is employed to qualitatively support the proliferation results and evaluate cell morphology. Cell adhesion and metabolic activity are found comparable among low porosity zirconia and alumina. In contrast, higher porosity favors better cell spreading on zirconia and improves growth, but does not significantly affect cell response on alumina. Between the highest porosity materials, cell response on zirconia is found superior to alumina. Results show that an average pore size of ~150 µm and ~50% porosity can be considered beneficial to cellular growth on zirconia ceramics.

  7. Preparation and characterization of ultrafine alumina via sol-gel polymeric route

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, D.M. [Ceramic Department, National Research Centre, Dokki, Cairo (Egypt); Abu-Ayana, Y.M. [Polymers and Pigments Department, National Research Centre, Dokki, Cairo (Egypt)], E-mail: yosreya20@gmail.com

    2008-10-15

    Ultrafine alumina powder was prepared through resin formation between urea and formaldehyde. Aluminium stearate soap was introduced during resin preparation. Ethylene glycol was used to terminate the thermosetting reaction. Calcination of the product was carried out at 700, 1000, 1100, 1300 and 1400 deg. C to obtain aluminium oxide. IR and Raman spectroscopic analysis indicated the occupation of Al{sup 3+} at different sites in the polymer network (C=O, -NH{sub 2}, C-O, -NH, and -CH{sub 2}OH). X-ray diffraction of powder calcined at 1000 deg. C revealed the presence of a mixture of {alpha}- and {theta}-alumina together, while a mixture of {alpha}- and {beta}-alumina phases were obtained on calcination at 1400 deg. C. Transmission electron microscope (TEM) examination of the powder fired at 700 deg. C showed uniform grains in the form of clusters with average size between 22.02 and 30.5 nm. Clusters are multi-particles as evident from the electron diffraction pattern. Crystallite size of alumina powder calcined at 1000 deg. C was found to be {approx}25.67 nm, while that of powder calcined at1400 deg. C was {approx}30.52 nm. The calculated specific surface area of alumina powder calcined at 1000 deg. C was 59.17 m{sup 2} g{sup -1}, while that calcined at 1400 deg. C was 49.77 m{sup 2} g{sup -1}.

  8. Flexural strength of In-Ceram alumina and In-Ceram zirconia core materials.

    Science.gov (United States)

    Chong, Kok-Heng; Chai, John; Takahashi, Yutaka; Wozniak, Wayne

    2002-01-01

    The study compared the flexural strength of In-Ceram alumina and In-Ceram zirconia systems. The probability of failure of the two glass-infiltrated ceramic core materials was analyzed with and without lamination with Vitadur-alpha porcelain. Ten uniform beams of core materials as well as 10 beams of laminated core materials were fabricated for In-Ceram alumina and In-Ceram zirconia. The samples were subjected to three-point bending tests. Flexural strength for both ceramic core materials was determined with and without their porcelain laminations. The strength data were analyzed using the Weibull method. Modes of failure for both systems were determined using scanning electron micrography. The strength of the In-Ceram zirconia system was significantly higher than In-Ceram alumina when comparing their core materials with and without porcelain lamination. The failure mode for both systems was predominantly transgranular fracture of alumina platelets. In-Ceram zirconia demonstrated higher flexural strength than In-Ceram alumina.

  9. Effects of pore structure and distribution on strength of porous Cu-Sn-Ti alumina composites

    Directory of Open Access Journals (Sweden)

    Biao ZHAO

    2017-12-01

    Full Text Available Porous Cu-Sn-Ti alumina composites were fabricated by sintering Cu-Sn-Ti alloy powders, graphite particles, and alumina hollow particles agent. The effects of the pore structure and distribution on the composites strength were evaluated. Different pore distributions were modeled by using finite element analysis to investigate the tensile strength of the composites. Furthermore, a fractal analysis-based box-covering algorithm was used on the Cu-Sn-Ti alumina composites topology graphs to better investigate the pore structure and distribution. Results obtained show that different sizes and concentrations of alumina hollow particles could result in different porosities from 20% to 50%. A larger pore size and a higher pore concentration reduce the strength, but provide more space for chip formation as a bonding material of a grinding wheel. The body-centered pore structure of the composites shows the highest stress under a tension load. The original composites topology graphs have been transformed to ordered distributed pore graphs based on the total pore area conservation. The information dimension magnitude difference between the original topology graphs and the ordered distributed circulars graphs is found to be linear with the Cu-Sn-Ti alumina composites strength. A larger difference renders a lower flexural strength, which indicates that uniform ordered distributed pores could benefit the composites strength. Keywords: Finite element analysis (FEA, Metal-matrix composites (MMCs, Microstructural analysis, Pore structure, Strength

  10. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  11. Chromatographic behavior of carbonate complexes of lanthanides and of thorium in alumina

    International Nuclear Information System (INIS)

    Tomida, E.K.

    1977-01-01

    The chromatographic behavior of some rare earth elements and thorium on alumina is studied in order to evaluate the possibility of separation from concentration of trace rare earths from high-purity thorium compounds. The effect of some factors on complex thorium carbonate formation and the extent of thorium solubility in sodium and potassium carbonate solutions investigated. The sorption of rare earth elements and thoriuum on alumina from alkali carbonate solution is observed, despite the reports that alumina acts as a cation exchanger in alkali media and that thorium and rare earths form stable anionic carbonate complexes. The formation of these elements between alumina and potassium carbonate solutions is studied as a function of pH, carbonate concentration and metal ion concentration. Also the elution of rare earths from alumina is studied and the best results are obtained with mineral acids and EDTA plus alkali carbonate solutions. The effect of some parameters as column aging, mixed solvents, column treatment with organic solvents, temperature, aluant concentration is investigated. Attempting to understand this sorption mechanism, some experiments with strongly basic anion exchanger and cation exchangers of strongly acid and weakly acid type are accomplished. It is observed that there are significant differences, in some conditions, between the behavior of rare earths and of thorium, pointing our the possibility of separation of one lanthanide from others and of these from thorium [pt

  12. Bone formation within alumina tubes: effect of calcium, manganese, and chromium dopants.

    Science.gov (United States)

    Pabbruwe, Moreica B; Standard, Owen C; Sorrell, Charles C; Howlett, C Rolfe

    2004-09-01

    Alumina tubes (1.3mm outer diameter, 0.6mm inner diameter, 15 mm length) doped with Ca, Mn, or Cr at nominal concentrations of 0.5 and 5.0 mol% were implanted into femoral medullary canals of female rats for 16 weeks. Tissue formation within tubes was determined by histology and histomorphometry. Addition of Ca to alumina promoted hypertrophic bone formation at the advancing tissue fronts and tube entrances, and appeared to retard angiogenesis by limiting ongoing cellular migration into the tube. It is speculated that the presence of a secondary phase of calcium hexaluminate, probably having a solubility greater than that of alumina, possibly increased the level of extracellular Ca and, consequently, stimulated osteoclastic activity at the bone-ceramic interface. Addition of Mn significantly enhanced osteogenesis within the tubes. However, it is not possible to determine whether phase composition or microstructure of the ceramic was responsible for this because both were significantly altered by Mn addition. Addition of Cr to the alumina apparently stimulated bone remodelling as indicated by increased cellular activity and bone resorption at the tissue-implant interface. Cr was incorporated into the alumina as a solid solution and the tissue response was speculated to be an effect of surface chemistry rather than microstructure. The work demonstrates that doping a bioinert ceramic with small amounts of specific elements can significantly alter tissue ingrowth, differentiation, and osteogenesis within a porous implant.

  13. Tribological characteristics of sputtered Au/Cr films on alumina substrates at elevated temperatures

    Science.gov (United States)

    Benoy, P. A.; Dellacorte, C.

    1993-01-01

    Research to evaluate the tribological properties of alumina pins sliding against thin sputtered gold films deposited on alumina disk substrates is described. A 250 A thick chromium interlayer was first deposited onto the alumina test disks to enhance adhesion and high temperature wetting of the gold films. The Au/Cr films were tribotested in pure sliding in a pin-on-disk tribometer under a 4.9 N load at 1m/s. The test atmosphere was room air at temperatures of 25, 500, and 800 C and the test duration varied from 60 to 540 min. The use of the Au/Cr films reduced friction by about a factor of two compared to the unlubricated alumina sliding couple. The coatings prevented wear of the alumina substrate disks and reduced pin wear by one to two orders of magnitude. In addition, wear lives in excess of 200,000 sliding passes (9 hr) were observed during sliding at 800 C. The results suggest that these films show promise for the practical lubrication of many high temperature sliding components.

  14. Adsorption Behavior of Vanadium in Presence of alumina with Emphasize on Triple Layer Model Simulation

    International Nuclear Information System (INIS)

    El-Sayed, A.A.

    2006-01-01

    Adsorption behavior of vanadium in alumina colloidal solution as simulation for soil-water and/or sediment - water system was investigated. factors affecting this behavior including Ph, humic acid and alumina concentrations were studied. Three stages of vanadium adsorption on alumina were approved due to Ph changes. The first is increasing adsorption with increasing Ph, in the range 1-3. the second is decreasing adsorption with increasing Ph in the range 6-10. the third is constant adsorption at 100% adsorption in Ph range 3-8 at 10 g/l concentration of alumina. However, at 0.2 g/l, the maximum adsorption of vanadium became less than 100%.The effect of humic acid on the adsorption behavior of vanadium (V) was studied and compared with that of vanadium (IV) . Adsorption behaviors were studied at concentration 4.1 E-4 M for vanadium at 0.1 M ionic strength. Triple layer model was used for simulation of vanadium adsorption behavior in presence of alumina under the same working conditions. the results showed good validation and verification to the data practically found. speciation of vanadium in both homogenous and heterogeneous systems was also studied theoretically so as to verify the most abundant elemental species and its impact on the environment

  15. The ultrasonic machining of silicon carbide / alumina composites

    Science.gov (United States)

    Nicholson, Garth Martyn John

    Silicon carbide fibre reinforced alumina is a ceramic composite which was developed in conjunction with the Rolls-Royce Aerospace Group. The material is intended for use in the latest generation of jet engines, specifically for high temperature applications such as flame holders, combustor barrel segments and turbine blade tip seals. The material in question has properties which have been engineered by optimizing fibre volume fractions, weaves and fibre interface materials to meet the following main requirements : high thermal resistance, high thermal shock resistance and low density.Components intended for manufacture using this material will use the "direct metal oxidation" (DIMOX) method. This process involves manufacturing a near net shape component from the woven fibre matting, and infiltrating the matting with the alumina matrix material. Some of the components outlined require high tolerance features to be included in their design. The combustor barrel segments for example require slots to be formed within them for sealing purposes, the dimensions of these features preclude their formation using DIMOX, and therefore require a secondary process to be performed. Conventional machining techniques such as drilling, turning and milling cannot be used because of the brittle nature of the material. Electrodischarge machining (E.D.M.) cannot be used since the material is an insulator. Electrochemical machining (E.C.M.) cannot be used since the material is chemically inert. One machining method which could be used is ultrasonic machining (U.S.M.).The research programme investigated the feasibility of using ultrasonic machining as a manufacturing method for this new fibre reinforced composite. Two variations of ultrasonic machining were used : ultrasonic drilling and ultrasonic milling. Factors such as dimensional accuracy, surface roughness and delamination effects were examined. Previously performed ultrasonic machining experimental programmes were reviewed, as well

  16. Alkoxide-based precursors for direct electrospinning of alumina fibers

    Science.gov (United States)

    Maneeratana, Vasana

    The vision for space exploration in 2004 reinvigorated excitement that was engendered during the 1960's space race. Looking to assist NASA's agency wide mission to develop new technologies to enhance space travel, it is the ultimate goal of this work to support future missions with a hand-held electrospinning apparatus to instantaneously repair existing crucial ceramic fiber structures, such as spacesuits, insulative foams, and tiles. In this research, a new type of precursor is designed based from aluminum alkoxide-based precursors, since alumina serves as a base material for a majority of high-temperature applications. The structure-processing behavior of these precursors is subsequently studied. New precursors of aluminum alkoxides were prepared by modifying solutions; as a result various types of structures were produced, ranging from continuous hollow fibers, continuous solid fibers, or hollow particles. Direct electrospinning with these alkoxide-based precursors yielded an average of 1.9 g/hr of Al2O3, compared to literature with the highest theoretical yield calculated to be 0.68 g/hr. Further exploration of electrospinning parameters found that flow rate directly related to exposure times; therefore fibers were produced in the atmosphere through hydrolysis/condensation with simultaneous solvent evaporation. Furthermore other processing parameters, including the effect of the microstructure due to processing in an electric field were studied. It was found that electrospinning promotes the reaction of the alkoxide, which thereby reduces trapped solvents. As a result of firing schedules, the fibers' hollow features were preserved, and precursors with volatile species resulted in near net shaped fibers. At low firing temperatures, specific surface areas in the range of 330-345 m 2/g were found electrospun fibers. Additionally modified precursors lowered alpha transitions of fibers down to ˜900°C.

  17. THE SORPTION OF OFLOXACIN BY HYDRATED ALUMINA AND SILICON

    Directory of Open Access Journals (Sweden)

    A. N. Chebotarev

    2016-11-01

    Full Text Available The sorption of ofloxacin (OFL – the antibiotic from class of fluoroquinolones has been studied on alumina (γ-Al2O3 different acid-base modifications – acidic Al2O3(acidic, neutral Al2O3 (Neutral and the basic Al2O3 (core and amorphous silica – silica gel (SG L 5/40 and aerosil A-300. Determination of ofloxacin in solutions has been carried out by spectrophotometry on spectrophotometer SF-46 at λ = 291 nm and acidity 7. To clarify the nature of the sorption surfaces of OFL hydrated on aluminum and silicon oxides were studied according to the degree of extraction (S% from pH, contact time of the phases (min. sample from the sorbent mass (g; sorption isotherms were built and antibiotic desorption was studied. The OFL significant recovery (~ 60% is observed at the pH range of 4 ÷ 8, and reaches its maximum (80-85% at pH 7. The maximum degree of extraction of the antibiotic on aerosil A-300 and L 5/40 silica realized at pH 6 and it was ~ 80%. Comparative analysis of the forms constructed isotherms (L – type indicates a significant affinity investigated hydrated oxides to sorbate. The value of the static exchange capacity and concentration ratios can proof that. Differences in the quantitative characteristics of sorption of aluminum and silicon oxides are associated with nature and the acid-base properties of adsorption sites. In the study of the OFL concentrates desorption in static mode dilute NaOH and HNO3 solutions it was found that growth desorption degree occured with increasing concentration. Desorption was 2-3 times better in the case of aluminum oxide than silicon oxide when there were the same concentrations of acid and alkali. This is another confirmation of the participation in various sorption interactions forces of physical and chemical nature.

  18. Effect of phase transitions on thermoluminescence characteristics of nanocrystalline alumina

    International Nuclear Information System (INIS)

    Rani, Geeta; Sahare, P.D.

    2013-01-01

    Highlights: •Synthesis of Al 2 O 3 nanocrystalline TLD phosphor. •Material characterizations by XRD, TEM and TL. •Change in structure and morphology of the phase transition alumina. •Change in glow curve structures and trapping parameters on phase transitions. -- Abstract: Nanocrystalline boehmite (γ-AlOOH) was synthesized by hydrothermal method using AlCl 3 ·6H 2 O and Urea as precursors. The material gets decomposed to form the γ-Al 2 O 3 phase at around 873 K on annealing in air. On annealing further at higher temperatures it gets converted into different phases, such as, δ, θ and the most stable α-phase. Not only the phase changes but the annealing has also changed the morphology of the nanomaterial, i.e. it has changed from spindle like edges to vermicular structures and also grew bigger in sizes. The formations of different phases were confirmed by the X-ray diffraction (XRD) patterns and the changes in the morphology were seen through the TEM images. Further the effect of different phases on the thermoluminescence (TL) glow curve structures was studied and it is also shown that the TL glow curves structures do change due to phase transformations. To investigate further and to determine trapping parameters, different glow curves have been theoretically deconvoluted using computerized glow curve deconvolution (CGCD method) into simple glow peaks. The values of different trapping parameters also change as the glow curve structures on phase transformations due to reorganization of energy levels and the stress/strain generated by some intermediate phases

  19. Dynamic modulus and damping of boron, silicon carbide, and alumina fibers

    Science.gov (United States)

    Dicarlo, J. A.; Williams, W.

    1980-01-01

    The dynamic modulus and damping capacity for boron, silicon carbide, and silicon carbide-coated boron fibers were measured from -190 to 800 C. The single fiber vibration test also allowed measurement of transverse thermal conductivity for the silicon carbide fibers. Temperature-dependent damping capacity data for alumina fibers were calculated from axial damping results for alumina-aluminum composites. The dynamic fiber data indicate essentially elastic behavior for both the silicon carbide and alumina fibers. In contrast, the boron-based fibers are strongly anelastic, displaying frequency-dependent moduli and very high microstructural damping. The single fiber damping results were compared with composite damping data in order to investigate the practical and basic effects of employing the four fiber types as reinforcement for aluminum and titanium matrices.

  20. Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers

    Science.gov (United States)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan

    2018-04-01

    Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.

  1. Alumina sludge's Influence on the physicochemical characteristics of CPJ55 cement

    Directory of Open Access Journals (Sweden)

    Dahhou M.

    2018-01-01

    Full Text Available Partial replacement of the Portland cement CPJ55 ingredients by various quantities of alumina sludge (AS, produced during drinking water plant sludge, was used in the preparation of mortar mold with dimensions 40×40×160 mm. The characterization of materials is carried out by X-ray fluorescence (XRF, Xray diffraction (XRD, free lime dosing, and the mechanical tests. Analysis of the chemical composition by XRF shows that the studied alumina sludge is mainly composed of aluminum oxide, silica, which is correlated with the principal mineral phases identified in the XRD analysis results. It is demonstrated that adding 5% of the alumina sludge in Portland cement does not affect the mineralogy of final product. Nevertheless, the compression and flexural strength tests (in 28 days conducted on mortar sample comprising 5% sludge elucidate that it belongs to cement mortar class of type 32.5 R.

  2. Determination of intrinsic equilibrium constants at an alumina/electrolyte interface

    Directory of Open Access Journals (Sweden)

    SLOBODAN K. MILONJIC

    2004-12-01

    Full Text Available Intrinsic ionization and complexation constants at an alumina/electrolyte interface were studied by the site binding model, while the sorption of alkali cations from aqueous solutions was interpreted by the triple-layer model. The surface properties of alumina were investigated by the potentiometric acid-base titration method. The point of zero charge (pHpzc of alumina obtained by this method was found to be 7.2. The obtained mean values of the intrinsic protonation and ionization constants of the surface hydroxyl groups and the intrinsic surface complexation constant, in different electrolytes, are pKinta1 = 4.4, pKinta2 = 9.6 and pKintM+ = 9.5, respectively.

  3. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  4. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    Directory of Open Access Journals (Sweden)

    Md. Poostforush

    2014-04-01

    Full Text Available The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO. Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina but their transparency was preserved (Tλ550 nm ~ 72%. Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.

  5. Severe wear and fracture of zirconia heads against alumina inserts in hip simulator studies with microseparation.

    Science.gov (United States)

    Stewart, Todd D; Tipper, Joanne L; Insley, Gerard; Streicher, Robert M; Ingham, Eileen; Fisher, John

    2003-09-01

    The wear of zirconia femoral heads against alumina acetabular inserts with swing-phase microseparation was investigated in a hip joint simulator. Under mild microseparation conditions, the wear was very low, with an average wear rate of 0.05 mm(3)/million cycles reported over 5 million cycles of testing. However, under severe microseparation conditions representative of greater joint laxity, the wear rate of zirconia against alumina increased by 2 orders of magnitude, producing severe wear and, in one case, femoral head fracture. The adverse results of this study indicate that the combination of a zirconia femoral head articulating against an alumina acetabular insert is not recommended for clinical use. The results further raise concerns over the suitability of conventional simulators in evaluating the wear of ceramic hip prostheses.

  6. Ball Milling Treatment of Black Dross for Selective Dissolution of Alumina in Sodium Hydroxide Leaching

    Directory of Open Access Journals (Sweden)

    Thi Thuy Nhi Nguyen

    2018-03-01

    Full Text Available A process consisting of ball milling followed by NaOH leaching was developed to selectively dissolve alumina from black dross. From the ball milling treatment, it was found that milling speed greatly affected the leaching behavior of silica and the oxides of Ca, Fe, Mg, and Ti present in dross. The leaching behavior of the mechanically activated dross was investigated by varying NaOH concentration, leaching temperature and time, and pulp density. In most of the leaching conditions, only alumina and silica were dissolved, while the leaching percentage of other oxides was negligible. The leaching percentage of silica decreased rapidly to nearly zero as pulp density increased to 100 g/L. At the optimum leaching conditions (5 M NaOH, 50 °C, 2 h, pulp density of 100 g/L, the purity of Al in the leaching solution was higher than 98%, but the leaching percentage of alumina was only 35%.

  7. Alumina Matrix Composites with Non-Oxide Nanoparticle Addition and Enhanced Functionalities

    Directory of Open Access Journals (Sweden)

    Dušan Galusek

    2015-01-01

    Full Text Available The addition of SiC or TiC nanoparticles to polycrystalline alumina matrix has long been known as an efficient way of improving the mechanical properties of alumina-based ceramics, especially strength, creep, and wear resistance. Recently, new types of nano-additives, such as carbon nanotubes (CNT, carbon nanofibers (CNF, and graphene sheets have been studied in order not only to improve the mechanical properties, but also to prepare materials with added functionalities, such as thermal and electrical conductivity. This paper provides a concise review of several types of alumina-based nanocomposites, evaluating the efficiency of various preparation methods and additives in terms of their influence on the properties of composites.

  8. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes.

    Science.gov (United States)

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-08-08

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.

  9. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  10. Minimum and Full Fluidization Velocity for Alumina Used in the Aluminum Smelter

    Directory of Open Access Journals (Sweden)

    Paulo Douglas S. de Vasconcelos

    2011-11-01

    Full Text Available Fluidization is an engineering unit operation that occurs when a fluid (liquid or gas ascends through a bed of particles, and these particles get a velocity of minimum fluidization enough to stay in suspension, but without carrying them in the ascending flow. As from this moment the powder behaves as liquid at boiling point, hence the term “fluidization”. This operation is widely used in the aluminum smelter processes, for gas dry scrubbing (mass transfer and in a modern plant for continuous alumina pot feeding (particles’ momentum transfer. The understanding of the alumina fluoride rheology is of vital importance in the design of fluidized beds for gas treatment and fluidized pipelines for pot feeding. This paper shows the results of the experimental and theoretical values of the minimum and full fluidization velocities for the alumina fluoride used to project the state of the art round non‐metallic air‐fluidized conveyor of multiples outlets.

  11. FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Stratis V. Sotirchos

    2001-02-01

    The main objective of this research project was the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Since alumina has excellent resistance to corrosion but coefficient than silicon carbide, the key idea of this project has been to develop graded coatings with composition varying smoothly along their thickness between an inner (base) layer of mullite in contact with the silicon carbide component and an outer layer of pure alumina, which would function as the actual protective coating of the component. (Mullite presents very good adhesion towards silicon carbide and has thermal expansion coefficient very close to that of the latter.)

  12. Using lithium glass infiltration to enhance the properties of alumina bodies

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2008-12-01

    Full Text Available The use of an infiltration process to improve the properties of sintered materials has been widely investigated. This work describes the research carried out in the manufacturing of lithium glass-infiltrated alumina. The infiltration material consisted of a mixture of elements such as Li2O, ZrO2, SiO2 Al2O3, CaO and La2O3. Alumina specimens were sintered in air at 1400 °C for 2 hours. A number of samples were then submitted to the infiltration process at 1400 °C for 15 minutes. Sintered and infiltrated specimens were characterized by X ray diffraction, apparent density, open porosity, flexural strengths and scanning electron microscopy. The results showed that the infiltration process considerably improves the properties of alumina bodies.

  13. Preparation and Sintering Behaviour of Alumina Powder by Ammonia Precipitation Method

    Directory of Open Access Journals (Sweden)

    Wang Liuyan

    2017-01-01

    Full Text Available In this paper, alumina precursor was prepared by the ammonia precipitation method which used Al (NO3 3 9H2O as aluminum source and NH4OH as a precipitator, adding a small amount of PEG4000 as the surface active agent. Finally γ-Al2O3 was obtained at 900° for 2h. The stable alumina crystal form of α-Al2O3 was got at 1100° for 2h. The influence of precipitation agent on the precursor was studied by means of TG / DTA and Tem, XRD etc. The effects of the synthesis temperature and time on the phase composition and morphology of the alumina powder were also analysed.

  14. A simple hydrothermal route to bimodal mesoporous nanorod {gamma}-alumina with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Han, Dezhi; Xue, Hongxia; Liu, Xinmei; Yan, Zifeng [China Univ. of Petroleum, Qingdao (China). State Key Lab. of Heavy Oil Processing

    2011-12-15

    In the presence of polyethylene glycol, bimodal mesoporous nanorod {gamma}-alumina was successfully synthesized via the thermal decomposition of ammonium aluminium carbonate hydroxide precursor which was prepared via hydrothermal processing with inorganic aluminium salt. The alumina exhibits high surface area (494 m{sup 2}g{sup -1}), large porosity (1.1 m{sup 3}g{sup -1}) and a particular double-pore structure after calcination at 500 C. The smaller pore diameter is concentrated on about 3 nm and the larger one is exhibited in the range of 10 - 38 nm. The scaffold-like aggregation of {gamma}-alumina nanorods endows this novel material with excellent thermal stability. A possible formation mechanism of bimodal mesoporous structure is also proposed in this study. (orig.)

  15. Addition of niobia in alumina and its effects at its sintered microstructure

    International Nuclear Information System (INIS)

    Gomes, L.B.; Lima, M.M.O.; Pereira, A.S.; Bergmann, C.P.

    2016-01-01

    In this work, niobia was used as sintering additive of alumina in concentrations of 0.15, 0.5, 2 and 4 wt%. Homogenized powders was uniaxially pressed (200MPa) forming ceramic pellets with 10 mm diameter. The green bodies were sintered at 1400, 1500 and 1600°C for 60 minutes using a heating rate of 2,5°C.min -1 . After sintering, the specimens were polished using diamond paste with different particle sizes. The specimen's microstructure was analyzed by Scanning Electron Microscopy (SEM) and crystalline phases were determined by X-ray Diffraction (XRD). Results indicate that when niobia and alumina react they form AlNbO4 by liquid phase sintering. This phase is located among alumina grain. It was also verified that niobia addition promotes grain growth, acting as sintering agent, and this effect grows as niobia content and sintering temperature increase. (author)

  16. A hybrid approach to the surface biofunctionalization of nanostructured porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Silvan, Miguel Manso; Ruiz, Josefa Predestinacion Garcia [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Unidad Asociada GMNF (ICMM-CSIC), 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Bioingenieria Biomateriales y Nanomedicina (CIBERbbn) (Spain); Gonzalez, Ruy Sanz [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, 28049 Madrid (Spain); Velez, Manuel Hernandez [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Unidad Asociada GMNF (ICMM-CSIC), 28049 Madrid (Spain)

    2010-02-15

    The application of nanostructured porous alumina templates as a solid support in biomedical assays requires a surface biofunctionalization process that has been addressed in this work by an hybrid aminopropyl-triethoxysilane/tetraisopropyl-orthotitanate (APTS/ TIPT) self assembled film. The nanostructured porous alumina templates are activated in a peroxide solution before immersion in the biofunctionalizing APTS/TIPT solution. The biofunctionalization process was followed up by UV-vis spectroscopy, which confirmed the modification of the dielectric structure of the alumina surface. The influence of the biofunctionalization step in an immunological assay was carried out by fluorescence microscopy. Results confirm the gain in activity after the immobilization of an FITC labelled mouse Igg. Specific biological recognition in a bovine serum albumin (BSA)-antiBSA assay is proved afterwards by shifts observed in the reflectance interferograms thus providing a fast biosensing transducer platform. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Positron Annihilation and Complementary Studies of Copper Sandblasted with Alumina Particles at Different Pressures

    Directory of Open Access Journals (Sweden)

    Paweł Horodek

    2017-11-01

    Full Text Available Positron annihilation spectroscopy and complementary methods were used to detect changes induced by sandblasting of alumina particles at different pressures varying from 1 to 6 bar in pure well-annealed copper. The positron lifetime measurements revealed existence of dislocations and vacancy clusters in the adjoined surface layer. The presence of retained alumina particles in the copper at the depth below 50 µm was found in the SEM pictures and also in the annihilation line shape parameter profiles measured in the etching experiment. The profiles show us that the total depth of damaged zones induced by sandblasting of alumina particles ranges from 140 µm up to ca. 800 µm and it depends on the applied pressure. The work-hardening of the adjoined surface layer was found in the microhardness measurements at the cross-section of the sandblasted samples.

  18. Positron Annihilation and Complementary Studies of Copper Sandblasted with Alumina Particles at Different Pressures.

    Science.gov (United States)

    Horodek, Paweł; Siemek, Krzysztof; Dryzek, Jerzy; Wróbel, Mirosław

    2017-11-23

    Positron annihilation spectroscopy and complementary methods were used to detect changes induced by sandblasting of alumina particles at different pressures varying from 1 to 6 bar in pure well-annealed copper. The positron lifetime measurements revealed existence of dislocations and vacancy clusters in the adjoined surface layer. The presence of retained alumina particles in the copper at the depth below 50 µm was found in the SEM pictures and also in the annihilation line shape parameter profiles measured in the etching experiment. The profiles show us that the total depth of damaged zones induced by sandblasting of alumina particles ranges from 140 µm up to ca. 800 µm and it depends on the applied pressure. The work-hardening of the adjoined surface layer was found in the microhardness measurements at the cross-section of the sandblasted samples.

  19. Synthesis of boehmite by hydrothermal treatment used as inorganic binder for alumina powder

    International Nuclear Information System (INIS)

    Lima, M.B.; Tercini, M.B.; Yoshimura, H.N.

    2012-01-01

    Presently, due to the concerns with the environment, it has been developed studies to replace the organic binder by an inorganic binder for forming of ceramic powders, in order to avoiding the generation of polluting gases during sintering (firing). A potential alternative is the use of boehmite, produced by hydrothermal treatment on the surfaces of the alumina powder, previously ground in a ball mill using zirconia milling media to produce hydrated phases on alumina powder which are converted to boehmite. In the treated alumina powders, it was observed the formation of boehmite phase by X-ray diffraction analysis and Fourier transformed infrared (FTIR) spectroscopy, demonstrating the efficiency of boehmite formation during the hydrothermal treatment at 150°C for 3 hours.(author)

  20. Capture of tritium produced by 6Li(n,α)3H reaction in silica and alumina

    International Nuclear Information System (INIS)

    Matsuyama, M.; Takeuchi, T.

    1980-01-01

    Silica, alumina, Ni/silica and Ni/alumina were used for the capture of tritium. Every sample was doped with Li and irradiated with neutrons before use. Very small and no amount of tritium was released from silica and alumina by heating up to 360 0 C, whereas in the presence of ethylene T-ethylene was produced. T-ethane as well as T-ethylene and tritium gas were produced on Ni/silica and Ni/alumina. Besides these products, T-methane was obtained on Ni/silica and Ni/alumina when the samples were treated above 500 0 C before the irradiation. The activation energies of T-ethylene formation on alumina and Ni/alumina were 13 and 9 Kcal, respectively. The capture of tritium can be explained by an exchange reaction between tritium and -OH of the samples. The promotion of the catalytic reactions is attributable to the reversing spillover of tritium from silica and alumina to the Ni

  1. Making coke a more efficient catalyst in the oxidative dehydrogenation of ethylbenzene using wide-pore transitional aluminas

    NARCIS (Netherlands)

    Zarubina, V.; Nederlof, C.; Linden, B. van der; Kapteijn, F.; Heeres, H.J.; Makkee, M.; Melián-Cabrera, I.

    The thermal activation of a silica-stabilized gamma-alumina impacts positively on the oxidative dehydrogenation of ethylbenzene (EB) to styrene (ST). A systematic thermal study reveals that the transition from gamma-alumina into transitional phases at 1050 degrees C leads to an optimal enhancement

  2. Selective sulfur dioxide adsorbents prepared from designed dispersions of groups IA and IIA metal oxides on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rao, S.N.R.; White, M.G. [Georgia Institute of Technology, Atlanta, GA (United States); Waddell, E. [Clark Atlanta Univ., GA (United States)] [and others

    1996-09-15

    Supported M(I)/alumina and M(II)/alumina adsorbents were prepared using M{sup n+}(acac){sub n} as the precursor. These materials may be decomposed by careful heating to create dispersions of M{sup n+}O{sub n/2}/alumina which are SO{sub 2} adsorbents. These adsorbents have been characterized by elemental analyses, diffuse reflectance infrared Fourier transform analysis spectroscopy, SO{sub 2} adsorption capacity, and powder X-ray diffraction. The MgO/alumina prepared from Mg(acac){sub 2}{center_dot}2H{sub 2}O shows high dispersion of Mg species which are stable against sintering even when calcined to 500{degrees}C. The incremental SO{sub 2} sorption capacity of this material shows nearly 1 mol SO{sub 2}/mol Mg{sup 2+} in the sample. The sample prepared from Li(acac) shows more SO{sub 2} adsorption than the MgO/alumina for loadings <150 {mu}mol/g alumina. However, the LiO/alumina samples show low incremental adsorption of SO{sub 2} per mol of Li ion (0.12 mol/mol) at metal loadings greater than 150 {mu}mol/g alumina. These results are discussed in the framework of ensemble theory in the light of the solution chemistry of the metal acetylacetonates. 30 refs., 13 figs.

  3. Preparation and characterization of multilayer mesoporous γ-alumina membrane obtained via sol-gel using new precursors

    Directory of Open Access Journals (Sweden)

    Tafrishi R.

    2015-12-01

    Full Text Available In this paper, a mesoporous γ-alumina membrane coated on a macroporous α-alumina support via sol-gel method has been reported. A crack-free γ-alumina membrane was obtained by adding PVA to the alumina solution and optimum parameters of roughness, temperature and porosity were achieved. The support was dip-coated in different solutions using two new different solvents with different particle size distributions. Using these two solvents led to the uniform distribution of pore size in the final membrane. The alumina sols showed particle size distributions in the range of 20 to 55 nm which was measured by a DLS Zeta Sizer. X-ray diffraction technique, atomic force microscopy and scanning electron microscopy were used to characterize the membrane layer. XRD and DTA data for the γ-alumina membrane showed its thermal stability up to around 600 °C. The thickness of the mesoporous γ-alumina membrane was about 4 μm with 16 nm of surface roughness and 5 nm pore size. The resultant crack-free mesoporous membrane shows that the membrane preparation procedure was optimum. In this work, it has been investigated the performance of γ-alumina membranes for single gas permeation and separation of binary gas mixtures.

  4. New insights into the active surface species of silver alumina catalysts in the selective catalytic reduction of NO

    NARCIS (Netherlands)

    Korhonen, S.T.|info:eu-repo/dai/nl/326090606; Beale, A.M.|info:eu-repo/dai/nl/325802068; Newton, M.A.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    The performance of silver alumina catalysts and silver aluminate was studied in the selective catalytic reduction (SCR) of NO by propene. The use of boehmite during the impregnation step ensured a strong interaction between the silver species and the alumina surface in the final calcined catalyst.

  5. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    Science.gov (United States)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-05-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  6. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Nikam, Pravin N., E-mail: pravinya26@gmail.com; Deshpande, Vineeta D., E-mail: drdeshpandevd@gmail.com [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400019, Maharashtra (India)

    2016-05-06

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al{sub 2}O{sub 3}) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σ{sub AC}) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher’s universal power law of solids. It revealed that σ{sub AC} of PET/alumina nanocomposites can be well characterized by the DC conductivity (σ{sub DC}), critical frequency (ω{sub c}), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σ{sub DC}) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  7. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  8. Relationships Between Smelter Grade Alumina Characteristics and Strength Determined by Nanoindentation and Ultrasound-Mediated Particle Breakage

    Science.gov (United States)

    Wijayaratne, Hasini; McIntosh, Grant; Hyland, Margaret; Perander, Linus; Metson, James

    2017-06-01

    The mechanical strength of smelter grade alumina (SGA) is of considerable practical significance for the aluminum reduction process. Attrition of alumina during transportation and handling generates an increased level of fines. This results in generation of dust, poor flow properties, and silo segregation that interfere with alumina feeding systems. These lead to process instabilities which in turn result in current efficiency losses that are costly. Here we are concerned with developing a fundamental understanding of SGA strength in terms of its microstructure. Nanoindentation and ultrasound-mediated particle breakage tests have been conducted to study the strength. Strength of SGA samples both industry calcined and laboratory prepared, decrease with increasing α-alumina (corundum) content contrary to expectation. The reducing strength of alumina with increasing degree of calcination is attributed to the development of a macroporous and abrasion-prone microstructure resulting from the `pseudomorphic' transformation of precursor gibbsite during the calcination process.

  9. Microstructural stability of zirconia-alumina composite coatings during hot corrosion test at 1050 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, A., E-mail: akeyvani@ut.ac.i [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Saremi, M., E-mail: saremi@ut.ac.i [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Heydarzadeh Sohi, M., E-mail: mhsohi@ut.ac.i [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2010-09-10

    In the present work hot corrosion behavior of plasma sprayed zirconia-alumina coatings on Ni-base, IN-738, super alloy substrate was studied compared with normal zirconia. Hot corrosion resistance of the coatings was measured at 1050 {sup o}C using an atmospheric electrical furnace and a fused mixture of vanadium pentoxide and sodium sulfate salt. The hot corrosion test duration was 4 h in each cycle, while the specimens were cooled in the furnace. The general and peripheral conditions of the specimens were inspected. If there were any cracks or spallation in coating wedge the test was stopped, the time was recorded and coating microstructure was studied. Composite coatings of zirconia-alumina having alumina as a top coat or a mixed zirconia-alumina layer, showed better resistance in hot corrosion tests. It was concluded that alumina overlay on zirconia has promoted the hot corrosion resistance of the coatings.

  10. Evolution of an alumina-magnesia/self-forming spinel castable. Part II: physico-chemical and mechanical properties

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Campos D.

    1999-01-01

    Full Text Available This study was carried out in conjunction with the investigation, reported in Part I, on the microstructural characteristics of an alumina-spinel castable with several percentages of MgO content. Bulk density and cold crushing strength of samples were evaluated dried and at three fired states (1000, 1200, 1400 °C. Results indicate little influence of MgO additions on physico-chemical properties of the alumina-magnesia/self-forming spinel castable. Characteristics compared with those reported for conventional alumina-spinel castables did not show large difference in values. Therefore, the alumina-magnesia/self-forming spinel castable could be a possible material for substitution of the conventional alumina-spinel castable.

  11. Mechanical properties correlation to processing parameters for advanced alumina based refractories

    Directory of Open Access Journals (Sweden)

    Dimitrijević Marija M.

    2012-01-01

    Full Text Available Alumina based refractories are usually used in metallurgical furnaces and their thermal shock resistance is of great importance. In order to improve thermal shock resistance and mechanical properties of alumina based refractories short ceramic fibers were added to the material. SEM technique was used to compare the microstructure of specimens and the observed images gave the porosity and morphological characteristics of pores in the specimens. Standard compression test was used to determine the modulus of elasticity and compression strength. Results obtained from thermal shock testing and mechanical properties measurements were used to establish regression models that correlated specimen properties to process parameters.

  12. Development of hydrophobic clay–alumina based capillary membrane for desalination of brine by membrane distillation

    OpenAIRE

    Rakhi Das; Kartik Sondhi; Swachchha Majumdar; Sandeep Sarkar

    2016-01-01

    Clay–alumina compositions of 0, 20, 40 and 55 weight percent (wt%) clay and rest alumina were maintained in porous support preparation by extrusion followed by sintering at 1300 °C for 2.5 h to obtain 3 mm/2 mm (outer diameter/inner diameter) capillary. 1H,1H,2H,2H-perfluorodecyltriethoxysilane (97%) (C8) was used to modify the capillary surface of all compositions without any intermediate membrane layer to impart hydrophobic characteristics and compared in terms of contact angle produced by ...

  13. Biogasoline Production from Palm Oil Via Catalytic Hydrocracking over Gamma-Alumina Catalyst

    OpenAIRE

    Anondho Wijanarko; Dadi Mawardi; Mohammad Nasikin

    2010-01-01

    Bio gasoline conversion from palm oil is an alternative energy resources method which can be substituted fossil fuel base energy utilization. Previous research resulted that palm oil can be converted into hydrocarbon by catalytic cracking reaction with γ-alumina catalyst. In this research, catalytic cracking reaction of palm oil by γ-alumina catalyst is done in  a stirrer batch reactor with the oil/catalyst weight ratio variation of 100:1, 75:1, and 50:1; at suhue variation of 260 to 340...

  14. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica......We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also...

  15. About a new preparation method for non-stoichiometric colored alumina

    International Nuclear Information System (INIS)

    Arghiropoulos, Basile; Elston, Jean; Juillet, Francois; Teichner, Stanislas

    1960-01-01

    Non-porous, 150 A diameter alumina spherules (δ variety), initially compressed at a pressure of 1 to 5 t/cm 2 , are colored in black after a vacuum treatment (10 -6 mm Hg) at 500 deg. C. Coloration is linked with oxygen loss. The non-stoichiometry of black alumina is demonstrated using a Mc Bain balance and electric conductivity measurements. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 2549-2551, sitting of 9 December 1959 [fr

  16. Peptide bond formation of alanine on silica and alumina surfaces as a catalyst

    Science.gov (United States)

    Sánchez Arenillas, M.; Mateo-Martí, E.

    2012-09-01

    Polymerization of amino acids has been important for the origin of life because the peptides may have been the first self-replicating systems. The amino acid concentrations in the oceans may have been too diluted in the early phases of the Earth. The formation of the biopolymers could have been due to the catalytic action of various minerals (such as silica or alumina). Our work is based on the comparison between alumina and silica minerals with and without prior activation of their silanol groups for the formation of peptide bonds using alanina like amino acid which it is the simplest quiral amino acid.

  17. Lanthanides and actinides sorption on to alumina with simple organic ligands. Thermodynamic and spectroscopic approaches

    International Nuclear Information System (INIS)

    Alliot, C.

    2003-01-01

    This work comes within studies of nuclear waste disposal. The sorption of radionuclide onto mineral is very important to understand their migration. So this work deals with the influence of ligands like oxalic, acetic and carbonic acids on lanthanides and actinides sorption onto alumina. Two complementary approaches were carried out: thermodynamic (determination of chemical reactions and associated constants). So we obtain a thermodynamic database for the ternary systems metal/ligand/alumina which we use to define the experimental conditions to observe by spectroscopy sorbed species. Then the identification of surface complexes was carried out using two spectroscopies, XPS and TRLIFS. (author)

  18. Atomic-scale non-contact AFM studies of alumina supported nanoparticles

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Meinander, Kristoffer; Simonsen, Søren Bredmose

    in the society today, both as the means for environmental protection and as the backbone technology for most of the chemical industries. Among important processes based on heterogeneous catalysis are biomass conversion, steam reforming of methane and the synthesis of synthetic fuel from hydrocarbons, coal...... conducting or non-conducting [2]. We use nc-AFM to study the growth, shape and size of nanoparticles on spinel and alumina surfaces. In addition to this, we have grown a transition alumina thin film on a spinel surface in order to characterize such a film as well as studying the catalytic properties...

  19. Uniform alumina microspheres from temperature induced forming in a microfluidic T-junction

    Science.gov (United States)

    Wilson, James; Wehking, Jonathan D.; Kumar, Ranganathan

    2013-11-01

    This Letter explores a method for the manufacture of solid microspheres of 30 μm, from liquid droplets with nanosuspensions of 20 nm alumina in a microfluidic T-junction. These droplets are heated downstream where solidification takes place due to Temperature Induced Forming (TIF). TIF occurs as temperature sensitive alumina solubility leads to weakening electrostatic double-layer dispersing forces resulting in the formation of a solid structure. Manipulation of the flow characteristics and material properties of the continuous and dispersed fluids provides control of droplet production over a range of conditions and allows for a robust manufacturing facility capable of producing particles of various sizes.

  20. Experimentqal and analytical study on thermocracking of alumina ceramic ring in a mechanical seal

    Science.gov (United States)

    Komiya, M.; Matsuda, K.; Kaneta, M.

    1994-04-01

    A mechanism of thermocracking, which occurs in an alumina ceramic ring of a mechanical face seal, is proposed based on experimental and analytical results. Methods for its prevention are also discussed. The experiments were conducted using an external type mechanical face seal composed of a carbon ring and three kinds of alumina ceramic rings, with distilled water as the liquid to be sealed. By using a layer of gold vacuum deposited onto the surface of the ceramic ring as a part of a DC circuit, the moment of crack initiation was identified. The thermal stresses produced in the ceramic ring by frictional heating were calculated using finite element analysis.

  1. Electron donating and acid-base properties of cerium oxide and its mixed oxides with alumina

    International Nuclear Information System (INIS)

    Sugunan, S.; Jalaja, J.M.

    1994-01-01

    The electron donating properties of cerium oxide activated at 300, 500 and 800 degC and of its mixed oxides with alumina were examined based on the adsorption of electron acceptors exhibiting different electron affinities. The surface acidity/basicity of the oxides was determined by titrimetry; the H 0,max values are given. The limit of electron transfer from the oxide surface lies within the region of 1.77 and 2.40 eV in terms of the electron affinity of the electron acceptor. Cerium oxide promotes the electron donor nature of alumina while leaving the limit of electron transfer unchanged. 2 tabs., 4 figs., 13 refs

  2. Effective adsorption and collection of cesium from aqueous solution using graphene oxide grown on porous alumina

    Science.gov (United States)

    Entani, Shiro; Honda, Mitsunori; Shimoyama, Iwao; Li, Songtian; Naramoto, Hiroshi; Yaita, Tsuyoshi; Sakai, Seiji

    2018-04-01

    Graphene oxide (GO) with a large surface area was synthesized by the direct growth of GO on porous alumina using chemical vapor deposition to study the Cs adsorption mechanism in aqueous solutions. Electronic structure analysis employing in situ near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy measurements clarifies the Cs atoms bond via oxygen functional groups on GO in the aqueous solution. The Cs adsorption capacity was found to be as high as 650-850 mg g-1, which indicates that the GO/porous alumina acts as an effective adsorbent with high adsorption efficiency for radioactive nuclides in aqueous solutions.

  3. Silver nanoparticles supported on alumina-​a highly efficient and selective nanocatalyst for imine reduction

    DEFF Research Database (Denmark)

    Poreddy, Raju; Garcia-Suarez, Eduardo J.; Riisager, Anders

    2014-01-01

    organic synthesis. Due to the mild reaction conditions and high conversion as well as high selectivity, we consider that the utilization of silver nanoparticles supported on alumina represents an attractive and environmentally friendly alternative to the current synthesis of N-alkyl amines.......Silver nanoparticles supported on alumina were prepared and tested in the catalytic reduction of various imines to primary and secondary amines and were shown to be exceptionally active and chemoselective. Furthermore, the catalytic activity of the prepared nanocatalyst was also tested...

  4. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  5. Interface termination and band alignment of epitaxially grown alumina films on Cu-Al alloy

    Science.gov (United States)

    Yoshitake, Michiko; Song, Weijie; Libra, Jiří; Mašek, Karel; Šutara, František; Matolín, Vladimír; Prince, Kevin C.

    2008-02-01

    Epitaxial ultrathin alumina films were grown on a Cu-9 at. % Al(111) substrate by selective oxidation of Al in the alloy in ultrahigh vacuum. The photoelectron spectra of Al 2p and valence band were measured in situ during oxidation. By analyzing multiple peaks of Al 2p, the interface atomic structure was discussed. The energy difference between the Fermi level of the substrate and the valence band maximum of alumina (band offset) was obtained. The relation between the interface atomic structure and the band offset was compared with the reported first-principles calculations. A novel method for controlling the band offset was proposed.

  6. Preparation of alumina - β'. 2. Effects of the impurities in the ionic conductivity

    International Nuclear Information System (INIS)

    Casarini, J.R.; Souza, D.P.F.

    1984-01-01

    Sinterized samples of alumina - β' with 98% of theoretical density are obtained from alumina powder (β + β') with composition of 8.85% Na 2 O + 0.75% Li 2 O + 90.40% Al 2 O 3 . The concentration of this impurities is controled by the carbothermic reduction at 1300 0 C of aluminium hydroxide used as raw material. The final product of the reduction process is aluminium oxide. The conductivity measurement of the sodium beam is done in samples with (2.5 x 1.0 x 0.3) cm using synchronous phase amplificator. (E.G.) [pt

  7. Catalytic isomerization of ethylenic hydrocarbons. XII. Isomerization of 2-butenes selectively deuterated in the allylic and vinylic positions over alumina and silica-alumina

    International Nuclear Information System (INIS)

    Perot, G.; Guisnet, M.; Maurel, R.

    1976-01-01

    The isomerization of 2,3-d 2 - and 1,4-d 6 -cis-butenes was carried out on alumina and silica-alumina catalysts. Over both catalysts, double-bond shift is closely related to exchange between the allylic hydrogens of the reactant and the catalyst. On the other hand, it becomes apparent from the reported data that cis-trans isomerization proceeds through two different paths: a mechanism (I) involving exchange between the catalyst and the vinylic hydrogens of the reactant and an ''intramolecular'' mechanism (II) without any exchange between the reactant and the catalyst. It is shown that both double-bond shift and cis-trans reaction by mechanism I can occur on the two catalysts by a stereospecific carbonium ion mechanism while mechanism II is not fully understood

  8. Intermetallic Strengthened Alumina-Forming Austenitic Steels for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bin [Dartmouth College, Hanover, NH (United States); Baker, Ian [Dartmouth College, Hanover, NH (United States)

    2016-03-31

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, the materials required must be strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and L12 precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. Microstructural and microchemical analyses of the recently developed alumina-forming austenitic (AFA) steels (Fe-14Cr-32Ni-3Nb-3Al-2Ti-based) indicated they are strengthened by Ni3Al(Ti) L12, NiAl B2, Fe2Nb Laves phase and MC carbide precipitates. Different thermomechanical treatments (TMTs) were performed on these stainless steels in an attempt to further improve their mechanical properties. The thermo-mechanical processing produced nanocrystalline grains in AFA alloys and dramatically increased their yield strength at room temperature. Unfortunately, the TMTs didn’t increase the yield strengths of AFA alloys at ≥700ºC. At these temperatures, dislocation climb is the dominant mechanism for deformation of TMT alloys according to strain rate jump tests. After the characterization of aged AFA alloys, we found that the largest strengthening effect from L12 precipitates can be obtained by aging for less than 24 h. The coarsening behavior of the L12 precipitates was not influenced by carbon and boron additions. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these AFA steels after creep tests. Though the Laves and B2-NiAl phase precipitated along the boundaries can improve the creep properties, cracks were

  9. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics; Avaliacao de tratamentos quimicos e recobrimento biomimetico em ceramicas de alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Amanda Abati

    2007-07-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation

  10. Classical Bahavior of Alumina (Al2O3) Nanofluids in Antifrogen N with Experimental Evidence

    NARCIS (Netherlands)

    Saleemi, M.; Vanapalli, Srinivas; Nikkam, N.; Toprak, M.S.; Muhammed, M.

    2015-01-01

    A nanofluid is a suspension containing nanoparticles in conventional heat transfer fluids. This paper reports on an investigation of alumina (Al2O3) nanoparticles in Antifrogen N, also called AFN, which is a popular antifreeze coolant consisting primarily of ethylene glycol and other additives to

  11. Experimentally validated dispersion tailoring in a silicon strip waveguide with alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper Bjerge; Shi, Xiaodong

    2018-01-01

    We propose a silicon strip waveguide structure with alumina thin-film coating in-between the core and the cladding for group-velocity dispersion tailoring. By carefully designing the core dimension and the coating thickness, a spectrally-flattened near-zero anomalous group-velocity dispersion...

  12. Diffuse X-ray scattering and far infrared absorption of barium and lead β" aluminas

    DEFF Research Database (Denmark)

    Hayes, W.; Kjær, Kristian; Pratt, F. L.

    1985-01-01

    The authors have carried out high-momentum-resolution studies in diffuse X-ray scattering of barium and lead B" aluminas in the temperature range 20-700 degrees C. They have also measured the vibrational spectra of these compounds between 2K and 300K in the energy range 10-100 cm-1. The results...

  13. The business of fast ALD equipment for depositing alumina passivation layers on crystalline silicon solar cells

    NARCIS (Netherlands)

    Vermeer, A.J.P.M.; Gortzen, R.M.W.; Poodt, P.W.G.; Roozeboom, F.

    2011-01-01

    Atomic Layer Deposition (ALD) is a gas phase deposition technique for depositing very high quality thin films with an unsurpassed conformality. The main drawback of ALD however is the very low deposition rate (∼ 1 nm/min). Recently, record deposition rates for alumina of up to 1 nm/s were reached

  14. Ultrafast atomic layer deposition of alumina layers for solar cell passivation

    NARCIS (Netherlands)

    Poodt, P.W.G.; Lankhorst, A.M.; Roozeboom, F.; Tiba, V.; Spee, K.; Maas, D.; Vermeer, A.

    2010-01-01

    An ultrafast atomic layer deposition technique is presented, based on the spatial separation of the half-reactions, with which alumina layers can be deposited with deposition rates of more than 1 nm/s. The deposition rate is limited by the water half-reaction, for which a kinetic model has been

  15. The preparation and characterization of Y-TZP/20 wt% alumina

    NARCIS (Netherlands)

    den Exter, P.; den Exter, P.; Winnubst, Aloysius J.A.; Burggraaf, Anthonie; Burggraaf, A.J.

    1993-01-01

    Zirconia (+2-2·5 mol% yttria)/12-20 wt% alumina composite powders have been prepared by several techniques. The preparation methods were discussed in terms of powder characteristics, densification behaviour and microstructure. The densification behaviour of the composites depended on the crystal

  16. Synthesis, extrusion processing and ionic conductivity measurements of sodium β-alumina tubes

    Directory of Open Access Journals (Sweden)

    Karanja Avinash

    2015-09-01

    Full Text Available Pure and Li-doped sodium β-alumina (NaMg0.67Al10.33O17 ceramics were prepared from the stoichiometric mixture of raw powders. Pellets and tubes were formed from the precursor (NBA-1S and preformed sodium β-alumina powder through compaction and extrusion processing, respectively. The obtained specimens were finally sintered to dense ceramics. The ceramics were comparatively evaluated for their density, microstructure, phase formation and electrical properties. Both tubes and pellets processed with the preformed sodium β-alumina powder (NBA-2S showed enhanced densification along with relatively better phase purity and crystallinity. The ceramics prepared from the preformed powder exhibited higher density of 94–95% TD (theoretical densities in comparison to the ceramics processed from the raw mixture (NBA-1S with a density of 85–87% TD, which are complemented well through fractographs and microstructures. The ceramics processed using the preformed sodium β-alumina (NBA-2S also exhibited high room temperature AC conductivity of 1.77×10-4 S/cm (1 MHz with an increasing trend with temperature. The higher ionic conductivity at all temperatures in NBA-2S than in NBA-1S ceramics can be attributed to the relatively high phase purity, crystallinity and higher density values of NBA-2S ceramics.

  17. Biomimetic Coating on Porous Alumina for Tissue Engineering: Characterisation by Cell Culture and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Elizabeth Kolos

    2015-06-01

    Full Text Available In this study porous alumina samples were prepared and then coated using the biomimetic coating technique using a five times Simulated Body Fluid (5.0SBF as the growth solution. A coating was achieved after pre-treatment with concentrated acid. From elemental analysis, the coating contained calcium and phosphorous, but also sodium and chlorine. Halite was identified by XRD, a sodium chloride phase. Sintering was done to remove the halite phase. Once halite was burnt off, the calcium phosphate crystals were not covered with halite and, therefore, the apatite phases can be clearly observed. Cell culturing showed sufficient cell attachment to the less porous alumina, Sample B, that has more calcium phosphate growth, while the porous alumina, Sample A, with minimal calcium phosphate growth attained very little cell attachment. This is likely due to the contribution that calcium phosphate plays in the attachment of bone-like cells to a bioinert ceramic such as alumina. These results were repeated on both SEM and confocal microscopy analysis. Confocal microscopy was a novel characterisation approach which gave useful information and was a visual aid.

  18. [Development and property study of zirconia toughened nano-composite alumina ceramic powder for dental application].

    Science.gov (United States)

    Zhao, Ke; Chao, Yong-lie; Yang, Zheng

    2003-09-01

    To prepare zirconia toughened nano-composite alumina ceramic powder for dental application. Physical and chemical property of the prepared material were tested, and the effect of development technology on composite powder was also studied in this study. Nano-composite alumina powder was prepared by surface-induced precipitation method. The effect of pH value and dispersing agent content on volume of alumina suspension sediment was recorded. The effect of ultrasonic time on agglomeration was measured also. X ray diffraction (XRD) was used to analyze powder phase before and after the stabilizer was added. Scanning electronic microscope (SEM) was applied for characterizing the specimen. The dispersion was better at pH=9 and wt (dispersing agent) = 0.2% approximately 0.3%. Selecting proper ultrasonic time can decrease the agglomeration of powders and lower the average particle size. XRD analysis indicated that the phase composition of the prepared nano-composite ceramic powder was shown as alpha-Al2O3, t-ZrO2 and a small amount of m-ZrO2 after the addition of stabilizer. Through SEM observation, nanometer-sized ZrO2 particles (80 approximately 100 nm) were uniformly located on the surface of submicrometer alumina grains. By choosing appropriate preparation method, weakly agglomerated powders with fine particle size can be obtained. The zirconia part of nano-composite powder was transmitted to partially stabled zirconia after the use of stabilizer.

  19. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    KAUST Repository

    Farhat, Mohamed

    2016-01-28

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm–2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation.

  20. Comparative study between yeasts immobilized on alumina beads and on membranes prepared by two routes

    Directory of Open Access Journals (Sweden)

    Kiyohara Pedro K.

    2003-01-01

    Full Text Available Alumina channeled beads and rough surface membranes prepared from aqueous sols of fibrillar pseudoboehmite are able to immobilize yeasts for ethanol fermentation of sugar solutions. This paper describes comparative results of assays carried out with yeasts immobilized onto alpha-alumina beads and membranes prepared under two different conditions of processing and firing. The fermentation tests evaluated by the decrease of fermentable sugars, referred as Brix degrees per hour, indicated that the yeasts immobilized on beads had similar performance, probably because their surfaces, even being morphologically different, presented the same value of open porosity. One type of membrane (asymmetrical; precursor: pseudoboehmite; firing temperature 1,150ºC; crystal structure; alpha-alumina had better performance than the other type (asymmetrical; precursor: fibrillar pseudoboehmite plus aluminum hydroxiacetate mixture; 1,150ºC; alpha-alumina because the yeast cells entered into their porous interior through the surface slits, were immobilized and their growth was easier than on the external surface.

  1. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    Science.gov (United States)

    Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β″-Al 2O 3 solid electrolyte at elevated temperatures (typically 300-350 °C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement.

  2. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

    2010-01-01

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β''-Al 2 O 3 solid electrolyte at elevated temperatures (typically 300-350 C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement. (author)

  3. Vapor phase versus liquid phase grafting of meso-porous alumina

    NARCIS (Netherlands)

    Sripathi, V.G.P.; Mojet, Barbara; Nijmeijer, Arian; Benes, Nieck Edwin

    2013-01-01

    Functionalization of meso-porous c-alumina has been performed by grafting of 3-Aminopropyltrimethoxysilane (3APTMS) simultaneously from either the liquid phase or from the vapor phase. In both cases, after grafting nitrogen physisorption indicates that the materials remain meso-porous with

  4. Thermogravimetric and nuclear magnetic resonance study of hydrated Na-β''-alumina

    International Nuclear Information System (INIS)

    Donoso, P.; Panepucci, H.; Gobato, Y.G.; Oliveira, L.N.; Souza, D.P.F. de

    1990-01-01

    This paper reports thermogravimetric and proton spin-lattice relaxation times measurement of hydrated Na-β''-alumina, which yield information about the identification of the sites where the loosely bound water molecules are located in the polycrystalline sample. It examines also the influence of impurities on the motion of the protons. (autor) [pt

  5. DC resistivity of alumina and zirconia sintered with TiC

    Indian Academy of Sciences (India)

    Pure alumina and zirconia powders were sintered separately with increasing amount of TiC up to ∼ 65 vol.%, as a conducting second phase with an aim to prepare conducting structural ceramics which can be precisely machined by EDM technique. TiC did not help in sintering the parent phase but it decreased the d.c. ...

  6. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van Corbach, H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying

  7. The mechanical properties of thin alumina film deposited by metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; Gellings, P.J.; van de Vendel, D.; Metselaar, H.S.C.; van Corbach, H.D.; Fransen, T.

    1995-01-01

    Amorphous alumina films were deposited by metal-organic chemical vapour deposition (MOCVD) on stainless steel, type AISI 304. The MOCVD experiments were performed in nitrogen at low and atmospheric pressures. The effects of deposition temperature, growth rate and film thickness on the mechanical

  8. On the drop-weight testing of alumina/aluminum laminated composites

    Indian Academy of Sciences (India)

    In this study, DWT of alumina/aluminum laminated composites was done in order to investigate the effects of lamination type, density with respect to area and mechanical property of backing material on the low velocity ballistic performance of these composites. The experimental results showed that the laminated composite ...

  9. Method for Synthesizing Metal Nanowires in Anodic Alumina Membranes Using Solid State Reduction

    Science.gov (United States)

    Martinez-Inesta, Maria M (Inventor); Feliciano, Jennie (Inventor); Quinones-Fontalvo, Leonel (Inventor)

    2016-01-01

    The invention proposes a novel method for the fabrication of regular arrays of MNWs using solid-state reduction (SSR). Using this method copper (Cu), silver (Ag), and palladium (Pd) nanowire (NWs) arrays were synthesized using anodic alumina membranes (AAMs) as templates. Depending on the metal loading used the NWs reached different diameters.

  10. Effect of Calcination Temperature on Morphological and Topography of Nickel-Alumina Thin Film

    Directory of Open Access Journals (Sweden)

    Sarwani Khairul Ilman

    2016-01-01

    Full Text Available Dip coating process promises good potential of nickel-alumina catalyst deposition on metal substrate for various applications especially in gas conversion reaction. This study was conducted to investigate the effect of different calcination temperature on nickel-alumina catalysts thin film formation. Four different calcination temperature were used, which are 300°C, 400°C, 500°C and 600°C. The calculation process was conducted for a duration of 90 minutes. The deposited thin films were characterized using Atomic Force Microscopy (AFM and X-ray diffraction (XRD equipment. The AFM result showed that the surface roughness of the nickel-alumina increase proportionally from 56 to 275 nm when the calcination temperature increased from 300 to 600°C. From an observation at high calcination temperature, the atom of grains assisted diffusion at the crystallite point causing grain with lower surface energy become larger. As the calcination temperature increase, the surface profile becomes rough and uneven representing high surface roughness. Thus, the effect of calcination temperature greatly influences the surface roughness of the nickel-alumina thin film.

  11. Differential Pair Distribution Function Study of the Structure of Arsenate Adsorbed on Nanocrystalline [gamma]-Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei; Harrington, Richard; Tang, Yuanzhi; Kubicki, James D.; Aryanpour, Masoud; Reeder, Richard J.; Parise, John B.; Phillips, Brian L. (SBU); (Penn)

    2012-03-15

    Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on {gamma}-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on {gamma}-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on {gamma}-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 {angstrom} and 3.09 {angstrom}, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 {+-} 0.01 {angstrom} with a coordination number of 4 and a second shell of As-Al at 3.13 {+-} 0.04 {angstrom} with a coordination number of 2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of {gamma}-alumina as predicted by density functional theory (DFT) calculation.

  12. Differential pair distribution function study of the structure of arsenate adsorbed on nanocrystalline γ-alumina.

    Science.gov (United States)

    Li, Wei; Harrington, Richard; Tang, Yuanzhi; Kubicki, James D; Aryanpour, Masoud; Reeder, Richard J; Parise, John B; Phillips, Brian L

    2011-11-15

    Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on γ-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on γ-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on γ-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 Å and 3.09 Å, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 ± 0.01 Å with a coordination number of ~4 and a second shell of As-Al at ~3.13 ± 0.04 Å with a coordination number of ~2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of γ-alumina as predicted by density functional theory (DFT) calculation.

  13. Thermal conductivity and phase-change properties of aqueous alumina nanofluid

    International Nuclear Information System (INIS)

    Teng, Tun-Ping

    2013-01-01

    Highlights: ► The alumina nanofluid with chitosan was produced by two-step synthesis method. ► The k and phase-change properties of alumina nanofluid were examined. ► Adding Al 2 O 3 nanoparticles into water indeed improves the k. ► Adding the chitosan decreases the thermal conductivity of alumina nanofluid. ► The T cp and h c are 53.4% and 97.8% of those in DW with the optimal combination. - Abstract: This study uses thermal conductivity and differential scanning calorimeter experiments to explore the thermal conductivity and phase-change properties of alumina (Al 2 O 3 )–water nanofluid produced using a two-step synthesis method. Deionized water (DW) is used as a control group, and the Al 2 O 3 –water nanofluid uses chitosan as a dispersant. Nanoparticle morphology and materials were confirmed using transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. The results show that adding Al 2 O 3 nanoparticles to DW improves DW thermal conductivity, but adding chitosan reduces the thermal conductivity of Al 2 O 3 –water nanofluid. Adding the nanoparticles to DW affects the phase-change peak temperature and phase change heat. The optimal combination is 0.1 wt.% chitosan and 0.5 wt.% Al 2 O 3 nanoparticles; the charging phase-change peak temperature and latent heat are 53.4% and 97.8% of those in DW, respectively

  14. Influence of coprecipitation and mechanical mixture methods on the characteristics of nickel oxide-alumina composites

    International Nuclear Information System (INIS)

    Cordeiro, G.L.; Yoshito, W.K.; Ussui, V.; Lima, N.B. de; Lazar, D.R.R.

    2014-01-01

    Alumina-supported nickel catalysts are currently used in the reforming process due to low cost and high activity for hydrogen production from alcohols. In this work, the effect of preparation methods on nickel oxide-alumina based materials has been investigated. Nickel content was fixed at 15 wt%. Ceramic powders were obtained by coprecipitation in ammonia medium and mechanical mixture. Coprecipitated materials were calcined in air at 750 deg C to obtain the corresponding oxides. Materials obtained by mechanical mixture were prepared by wet milling of nickel oxide and alumina powders, both synthesized by precipitation and calcination in air at 450 and 750 deg C, respectively. Powders were characterized by X-ray diffraction, nitrogen gas sorption by applying the BET method, laser diffraction, scanning electron microscopy, electrophoretic mobility measurements for zeta potential determination and infrared spectroscopy. The results showed that coprecipitation method allowed the production of mixed oxides with high surface area (232,7 ± 3,2 m 2 .g -1 ) and normal granulometric distribution while mechanical mixture led to the formation of materials constituted by gamma alumina and nickel oxide phases, with low surface area (136,2 ± 0,5 m 2 .g -1 ) and bimodal granulometric distribution. (author)

  15. Solid state reaction in alumina nanoparticles/LZSA glass-ceramic composites

    International Nuclear Information System (INIS)

    Montedo, O.K.; Oliveira, A.N. de; Raupp-Pereira, F.

    2016-01-01

    Full text: The aim of this work is to present results related to solid state reactions on LZSA glass-ceramic composites containing alumina reinforcement nano-particles. A LZSA (Li2O-ZrO2-SiO2-Al2O3) glass-ceramic has been prepared by sintering of powders and characterized. Composites containing 0 to 77 vol.% of alumina nanoparticles (27-43 nm APS, 35 m2.g-1 SSA) and a 16.9Li2O•5.0ZrO2•65.1SiO2•8.6Al2O3 glass-ceramic matrix have been prepared. X-ray diffractometry studies have been performed in order of investigating the solid state reactions occurring in LZSA-based composites. Results of the XRD patterns have been related to the coefficient of thermal expansion (CTE), Young modulus, and dielectric constant, showing that, in comparison with the glass-ceramic composition, the composites showed a decrease of CTE with the alumina concentration increasing, due to the increasing of beta-spodumeness formation (solid solution of beta-spodumene, Li2O.Al2O3.4-10SiO2). The performance of the glass-ceramic was improved with the alumina nano-particles addition, showing potential of using in the preparation of Low Thermal Co-fired Ceramics (LTCC). (author)

  16. High throughput, low cost deposition of alumina passivation layers by spatial atomic layer deposition

    NARCIS (Netherlands)

    Vermeer, A.; Roozeboom, F.; Poodt, P.W.G.; Gortzen, R.M.W.

    2012-01-01

    Atomic Layer Deposition (ALD) is a gas phase deposition technique for depositing very high quality thin films with an unsurpassed conformality. The main drawback of ALD however is the very low deposition rate (~ 1 nm/min). Recently, record deposition rates for alumina of up to I nm/s were reached

  17. DC resistivity of alumina and zirconia sintered with TiC

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Pure alumina and zirconia powders were sintered separately with increasing amount of TiC up to. ~ 65 vol.%, as a conducting second phase with an aim to prepare conducting structural ceramics which can be precisely machined by EDM technique. TiC did not help in sintering the parent phase but it decreased the ...

  18. Methanol adsorption by amorphous silica alumina in the critical temperature range

    NARCIS (Netherlands)

    Kuczynski, M.; van Ooteghem, A.; Westerterp, K.R.

    1986-01-01

    The methanol adsorption capacity of an amorphous silica-alumina was measured using an equilibrium technique. The experimental temperature range was of 140 to 260°C and the pure methanol pressure range was 0.1 to 1.2 MPa. A multilayer adsorption was found, also for temperatures above the critical

  19. Influence of sintering temperature on the characteristics of a-alumina filtration tubes

    International Nuclear Information System (INIS)

    Zarina Abdul Wahid; Rafindde Ramli; Andanastuti Muchtar; Abd Wahab Mohammad

    2005-01-01

    The emerging technology of ceramic membrane filters has created a lot of impact on the materials development and separation industries. Ceramic membrane filters have been used in many separation industry applications particularly in food, dairy, beverages, biotechnology, pharmaceutical and waste treatment industries. This is due to the fact that ceramics are inert and durable and can withstand high temperatures as well as extreme chemical conditions. They also have favourable mechanical properties and lower fouling rates. In this study, ceramic filtration tubes having dimensions of 10 mm outer diameter, 6 mm inner diameter and 880 mm long were prepared from a-alumina using the extrusion technique. The effects of sintering temperature on the pore size, microstructure and porosity of the alumina tube were investigated. The optimum sintering temperature was determined based on the performance of the tubes with regards to porosity, pore size and microstructure. The alumina tubes were sintered at six different temperatures i.e. 1250 degree C, 1300 degree C, 1350 degree C, 1400 degree C, 1450 degree C and 1500 degree C. The porous structures of the alumina tubes were studied using Scanning Electron Microscope (SEM) whereas a Mercury Porosimeter was used to determine the porosity and pore size distribution. (Author)

  20. Transformation of Vegetable Oils into Hydrocarbons over Mesoporous-Alumina-Supported CoMo Catalysts

    Czech Academy of Sciences Publication Activity Database

    Kubička, D.; Šimáček, P.; Žilková, Naděžda

    2009-01-01

    Roč. 52, 1-2 (2009), s. 161-168 ISSN 1022-5528 Grant - others:GA MPO(CZ) FT-TA3/074 Institutional research plan: CEZ:AV0Z40400503 Keywords : organized mesoporous alumina * CoMo catalysts * hydrodeoxygenation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.379, year: 2009

  1. Support-shape Dependent Catalytic Activity in Pt/alumina Systems Using USANS/SANS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Hoon; Han, Sugyeong; Ha, Heonphil; Byun, Jiyoung; Kim, Man-ho [KIST, Seoul (Korea, Republic of)

    2015-10-15

    Pt nanoparticles dispersed on ceramic powder such as alumina and ceria powder are used as catalyst materials to reduce pollution from automobile exhaust, power plant exhaust, etc. Much effort has been put to investigate the relationship between types of catalyst support materials and reactivity of the supported metallic particles. The surface shape of support materials can also be expected to control the catalysts size with the surface shape of support materials. In this presentation, we show our SANS (small angle neutron scattering) -USANS (ultra small angle neutron scattering) analysis on the structural differences of different shapes of the same γ alumina powder with different loadings of Pt nanoparticles. Then, the reactivity of the prepared catalyst materials are presented and discussed based on the investigation of the structure of the support materials by SANS. The shapes of gamma alumina, rod-like or plate-like shape, were determined from nanometer to micrometer with USANS and SANS analysis. We found that the platelet-like alumina consists of an aggregate of 2 - 3 layers, which further reduce specific surface area and catalytic activity compared to rod-like shape. Rod-like shape shows more than 100% enhancement in the catalytic activities in model three-way-catalyst (TWC) reactions of CO, NO, and C{sub 3}H{sub 6} at low temperature around 200 .deg. C.

  2. Support-shape Dependent Catalytic Activity in Pt/alumina Systems Using USANS/SANS

    International Nuclear Information System (INIS)

    Kim, Sang Hoon; Han, Sugyeong; Ha, Heonphil; Byun, Jiyoung; Kim, Man-ho

    2015-01-01

    Pt nanoparticles dispersed on ceramic powder such as alumina and ceria powder are used as catalyst materials to reduce pollution from automobile exhaust, power plant exhaust, etc. Much effort has been put to investigate the relationship between types of catalyst support materials and reactivity of the supported metallic particles. The surface shape of support materials can also be expected to control the catalysts size with the surface shape of support materials. In this presentation, we show our SANS (small angle neutron scattering) -USANS (ultra small angle neutron scattering) analysis on the structural differences of different shapes of the same γ alumina powder with different loadings of Pt nanoparticles. Then, the reactivity of the prepared catalyst materials are presented and discussed based on the investigation of the structure of the support materials by SANS. The shapes of gamma alumina, rod-like or plate-like shape, were determined from nanometer to micrometer with USANS and SANS analysis. We found that the platelet-like alumina consists of an aggregate of 2 - 3 layers, which further reduce specific surface area and catalytic activity compared to rod-like shape. Rod-like shape shows more than 100% enhancement in the catalytic activities in model three-way-catalyst (TWC) reactions of CO, NO, and C 3 H 6 at low temperature around 200 .deg. C

  3. Condensation-Enhanced Self-Assembly as a Route to High Surface Area alpha-Aluminas

    NARCIS (Netherlands)

    Perez, Lidia Lopez; Zarubina, Valeriya; Heeres, Hero Jan; Melian-Cabrera, Ignacio

    2013-01-01

    High surface area nanosized alpha-alumina has been obtained by thermally treating a sol-gel-derived mesophase at 1200 degrees C; the mesophase was synthesized by a sol-gel route involving evaporation induced self-assembly (EISA) of a hydrolyzed gel from Al-tri-sec-butoxide in s-BuOH in the presence

  4. Repair bond strength of a resin composite to alumina-reinforced feldspathic ceramic

    NARCIS (Netherlands)

    Goia, Tamiye Simone; Pereira Leite, Fabiola Pessoa; Valandro, Luiz Felipe; Oezcan, Mutlu; Bottino, Marco Antonio

    2006-01-01

    This study compared the microtensile bond strength of a repair resin to an alumina-reinforced feldspathic ceramic (Vitadur-alpha, Vita) after 3 surface conditioning methods: Group 1, etching with 9.6% hydrofluoric acid for 1 minute plus rinsing and drying, followed by application of silane for 5

  5. Effect of Iridium Addition on the Reducibility of MoO3/Alumina Catalyst

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk; Cinibulk, Josef

    2001-01-01

    Roč. 72, č. 2 (2001), s. 189-194 ISSN 0304-4122 R&D Projects: GA AV ČR IAA4072802 Institutional research plan: CEZ:AV0Z4072921 Keywords : MoO3/alumina * MoIr catalyst * reducibility Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.514, year: 1999

  6. Rheological properties of concentrated alumina slurries: influence of ph and dispersant agent

    International Nuclear Information System (INIS)

    Ewais, E.M.M.

    2004-01-01

    The relationship between the ph, the electrolyte concentrations and the rheological properties of high concentrated alumina slurries in aqueous medium is of great importance because it is considered to be the key to control the stability of the slurries from flocculation. Zeta potential of alumina slurries with and without Duramax C (dispersant agent) as a function of ph was studied. Two ph around the zero point of charge of alumina slurries were selected for the investigation of rheological properties. The rheological properties of aqueous alumina slurries with respect to different parameters, e.g.: viscosity, elastic modulus (storage modulus G) and viscous modulus (loss modulus G), were investigated. Viscosity measurements of the slurries as a function of Duramax C content at both ph 8.4 and 9.4) were used to determine the state of slurries. Three states of slurries, termed flocculated, partially de flocculated and fully de flocculated, were selected for further investigation. The viscosity of the three slurries at both ph as a function of shear rate was determined. Fully de flocculated slurry shows Newtonian behavior at all shear rates at both tested ph compared by the partial de flocculated and flocculated system. Results of investigation of G and G at ph of 9.4 as a function of applied stress explored the critical stress

  7. Fatigue behaviour of fine-grained alumina hip-joint heads under ...

    Indian Academy of Sciences (India)

    In prosthetic applications, the reliability of implant materials over a period of thirty years is absolutely essential. Calculation of the lifetimes of alumina ceramic heads is generally made on the basis of experimental fatigue and slow crack growth tests using finite element analysis. This investigation is aimed at understanding ...

  8. STUDI RECOVERY ALUMINA DARI TANAH LEMPUNG GAMBUT KAWASAN LANDASAN ULIN KOTA BANJARBARU

    Directory of Open Access Journals (Sweden)

    Sofyan Hadi

    2012-10-01

    Full Text Available Peat clay contains alumina (Al2O3 that has many benefits. The process of recovery of alumina from clay peat can be done by using the method of calcination and elutriasi (stirring. This research aims to recover the alumina from clay peat and study the effect of the addition of CaCl2variations and the effectiveness of stirring speed variations in the process of alumina recovery from clay soils. This research was conducted with several steps. Clay from the peat soil is cleaned and dried by drying. The dry clay that has been done peat milling and sifting to obtain the size of 75 mesh peat clay. A 75 mesh peat clay mixed with a variation ratio of CaCl2 and peat clay is 0,5:1, 1:1, and 1.5:1. Each mixture of CaCl2 and peat clay calcined by heating in a furnace at a temperature of 800°C for 4 hours. Calcined peat clay was performed milling and sifting through a 200 mesh. 80 grams of calcined clay peat size of 200 mesh is added 400 mL of HCl 6 N, then performed solid-liquid separation processes (leaching with stirring for 2 hours with stirring speed of 200 rpm, 300 rpm and 400 rpm. Solution of the leaching process was decanted and filtered. The filtrate of the result of leaching process is heated (evaporated until the remaining 100 mL, then added with 100 mL of aquadest. Heating (evaporating re-mixed filtrate and aquadest until the volume of 100 mL of this process while stirring by using stirer. Liquid contents alumina was tested using volumetric titration method based on SNI 13-6620-2001. Based on the results of the analysis initial sample obtained for the content of alumina in the peat clay is 2.81%. The final result is obtained optimum levels of alumina which can be recover from peat clay soi is 0,622%l using a variation of weight ratio CaCl2 and peat clay 0,5:1 with stirring speed of 400 rpm

  9. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    International Nuclear Information System (INIS)

    Garcia, Rafael Henrique Lazzari

    2007-01-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  10. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

    Science.gov (United States)

    Gómez-Villarraga, Fernando; Radnik, Jörg; Martin, Andreas; Köckritz, Angela

    2016-06-01

    Bimetallic nanoparticles (NPs) containing gold and various second metals ( M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.

  11. Structure change of alumina castable by adding magnesia or spinel; Maguneshia matawa supineru no tenka ni yoru arumina kei kyasutaburu no soshiki henka

    Energy Technology Data Exchange (ETDEWEB)

    Mori, J.; Onoue, M.; Toritani, Y.; Tanaka, S. [Kawasaki Refractories Co. Ltd., Hyogo (Japan)

    1995-01-10

    Alumina-spinel castable is developed as the refractory for lining ladles, and compared with the existing refractory its durability is greatly raised. This material is obtained by adding spinel to alumina base, and besides improvement of the slag penetration resistance it is likely to reduce the structure spoiling. To solve this problem, alumina castable added by magnesia draws much attention recently. Although alumina-spinel and alumina-magnesia are both castables with Al2O3, MgO as their main compositions, and their whole chemical compositions are almost the same, the durability of alumina-magnesia is sometimes much better according to the applying conditions. In this study, the structure change of alumina castable by adding magnesia or spinel was investigated, and the reason of the influence on the durability was studied. 6 refs., 6 figs., 1 tab.

  12. Bioadsorption of proteins on large mesocage-shaped mesoporous alumina monoliths.

    Science.gov (United States)

    El-Safty, Sherif A; Shenashen, M A; Khairy, M

    2013-03-01

    With the remarkable progress in the field of gene technology, proteins have gained an important function in the field of disease diagnosis and treatment. Protein bioadsorption has drawn increasing attention partly because of the promising advances for diagnostic assays, sensors, separations, and gene technology. Mesocage alumina has a cage-type structure with high surface area and pore volume, exhibiting superior capabilities for protein adsorption. In this study, we report the size-selective adsorption/removal of virtual proteins having different shapes, sizes, functions, and properties, including insulin, HopPmaL domain, lysozyme, galectin-3, β-lactoglobulin, α-1-antitrypsin, α-amylase, and myosin in aqueous water using mesocage alumina. The mesoporous alumina monoliths have unique morphology and physical properties and enhanced protein adsorption characteristics in terms of sample loading capacity and quantity, thereby ensuring a higher concentration of proteins, interior pore diffusivity, and encapsulation in a short period. Thermodynamic analysis shows that protein adsorption on mesocage alumina monoliths is favorable and spontaneous. Theoretical models have been studied to investigate the major driving forces to achieve the most optimal performance of protein adsorption. The development of ultra- or micrometer-scale morphology composed of mesocage-shaped mesoporous monoliths or alumina network clusters can be effectively used to encapsulate the macromolecules into the interior cage cavities, which can greatly assist in other potentials for biomedical applications. Furthermore, the adsorption of a single protein from mixtures based on size- and shape-selective separation can open up new ways to produce micro-objects that suit a given protein encapsulation design. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Zirconia dispersion as a toughening agent in alumina - Influence of the cerium oxide

    International Nuclear Information System (INIS)

    Gritti, Olivier

    1987-01-01

    The improvement of mechanical properties of alumina can be obtained by fine dispersion of zirconia particles. The addition of cerium oxide as a stabilizer of the tetragonal phase has been examined. Different powder preparations, based on impregnation of the alumina powder by zirconium and cerium precursor salts, have been studied. Parameters, such as properties of alumina powder and cerium oxide content, for the production of reactive powders have been determined by two laboratory processes. The sintering of these powders in air at 1600 deg. C has resulted in dense materials with homogeneous microstructure. The mechanical properties, in particular the biaxial flexure strength and the toughness, have been determined in the temperature range 20 deg. C-900 deg. C. A reinforcement of about 80 pc in comparison with alumina is achieved. The optimal composition is (Al 2 O 3 ) 0.8 (ZrO 2 ) 0.18 (CeO 2 ) 0.02 . In the other hand, powder preparation by spray drying has been chosen for an approach to a larger scale process. The sintered ceramics made with these powders present a double microstructure which does not affect the mechanical properties. The presence of cerium oxide produces the following improvements: - increased mobility of the intergranular zirconia inclusions which results in a faster densification; - stabilization of a tetragonal phase without prohibiting the stress induced transformation; - increase of the critical sizes of the tetragonal → monoclinic transformation; - a large decrease in the transformation kinetic in water at 300 deg. C in comparison with that observed for alumina-zirconia doped with yttrium oxide. (author) [fr

  14. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia.

    Science.gov (United States)

    Guazzato, Massimiliano; Albakry, Mohammad; Swain, Michael Vincent; Ironside, Jim

    2002-01-01

    This study compared the mechanical properties of In-Ceram Zirconia and In-Ceram Alumina. Ninety-four disks and six bars were prepared with the slip-casting technique. The disks were used to assess biaxial flexural strength (piston on three ball), Weibull modulus, hardness, and fracture toughness with two methods: indentation fracture and indentation strength. The bars were used to measure elastic moduli (Young's modulus and Poisson's ratio). X-ray diffraction analysis of the specimens was carried out upon every step of the specimen preparation and of the fractured surfaces. Mean biaxial flexure strengths of In-Ceram Alumina and In-Ceram Zirconia were 600 MPa (SD 60) and 620 MPa (SD 61), respectively. Mean fracture toughness measured according to indentation strength was 3.2 MPa.m1/2 (SD 0.34) for in-Ceram Alumina and 4.0 MPa.m1/2 (SD 0.43) for In-Ceram Zirconia. Mean fracture toughnesses of In-Ceram Alumina and In-Ceram Zirconia measured according to indentation fracture were 2.7 MPa.m1/2 (SD 0.34) and 3.0 MPa.m1/2 (SD 0.48), respectively. X-ray diffraction analysis showed that little phase transformation from tetragonal to monoclinic occurred when the specimens were fractured, supporting the existence of a modest difference of fracture toughness between the two ceramics. No statistically significant difference was found in strength. In-Ceram Zirconia was tougher (P < .01) than In-Ceram Alumina when tested according to indentation strength. However, no significant difference was found in the fracture toughness when tested with the indentation fracture technique.

  15. Parameters of Alumina Cement and Portland Cement with Addition of Chalcedonite Meal

    Science.gov (United States)

    Kotwa, Anna

    2017-10-01

    Aluminous cement is a quick binder with special properties. It is used primarily to make non-standard monolithic components exposed to high temperatures, + 1300°C. It is also a component of adhesives and mortars. It has a very short setting time. It is characterized by rapid increase in mechanical strength and resistance to aggressive sulphates. It can be used in reinforced concrete structures. Laying of concrete, construction mortar made of alumina cement can be carried out even at temperatures of -10°C. This article discusses a comparison of the parameters of hardened mortar made of alumina cement GÓRKAL 40 and Portland cement CEM I 42.5R. The mortars contain an addition of chalcedonite meal with pozzolanic properties, with particle size of less than 0.063μm. The meal was added in amounts of 5% and 20% of cement weight. Chalcedonite meal used in the laboratory research is waste material, resulting from chalcedonite aggregate mining. It has the same properties as the rock from which it originates. We have compared the parameters of hardened mortar i.e. compressive strength, water absorption and capillarity. The addition of 20% chalcedonite meal to mortars made from aluminous cement will decrease durability by 6.1% relative to aluminous cement mortar without addition of meal. Considering the results obtained during the absorbency tests, it can be stated that the addition of chalcedonite meal reduces weight gains in mortars made with cement CEM I 42.5 R and alumina cement. Use of alumina cement without addition of meal in mortars causes an increase of mass by 248% compared to Portland cement mortars without additions, in the absorption tests. The addition of chalcedonite meal did not cause increased weight gain in the capillary action tests. For the alumina cement mortars, a lesser weight gains of 24.7% was reported, compared to the Portland cement mortar after 28 days of maturing.

  16. The use of image analysis for determination of surface deterioration level of improved alumina based materials subjected to cavitation

    Directory of Open Access Journals (Sweden)

    Dimitrijević M.M.

    2013-01-01

    Full Text Available Alumina based specimens having different content of alumina based fibers were investigated for possible application as cavitation resistant material. Cavitation damages of the alumina based specimens were tested by the modified vibratory cavitation set up. Erosion rates were measured based on the method developed for metallic samples, mass loss was measured during the experiment. Surface erosion was determined during the experiment simultaneously to mass loss measurements. Image Pro Plus Program was applied for surface analysis during testing. Results indicate that investigated material exhibit excellent mechanical properties and very good resistance to cavitation erosion. [Projekat Ministarstva nauke Republike Srbije, br. TR34011, br. TR35002 i br. III 45012

  17. Dynamical response of particulate-loaded materials. I. Pressure-shear loading of alumina particles in an epoxy matrix

    International Nuclear Information System (INIS)

    Chhabildas, L.C.; Swegle, J.W.

    1982-01-01

    Results of a pressure-shear impact experiment conducted on alumina-filled epoxy are presented. In the pressure-shear experiment the coupled longitudinal and transverse motion generated by the normal impact of Y-cut quartz is transmitted into an alumina-filled epoxy sample. This provides data on the response of the sample material to more general loading conditions than those obtained in the uniaxial strain configuration and allows the development of more complete material models. Experimental results are presented in this paper, and a model for alumina-filled epoxy which incorporates the data is presented in the following paper [J. Appl. Phys. 53, xxxx (1982)

  18. Effect of Mn/Ti surface treatment on voltage-holdoff performance of alumina insulators in vaccum

    International Nuclear Information System (INIS)

    Miller, H.C.; Furno, E.J.

    1978-01-01

    The treatment of the surface of an alumina insulator with a Mn/Ti coating significantly increases its voltage-holdoff capability. Insulators treated with this coating had vacuum-holdoff voltages about 25% higher than did untreated insulators. During processing (quasimetallizing) the coating penetrates into the alumina, so it is fairly insensitive to damage by abrasion or electrical breakdown. The quasimetallized coatings is also comparable with subsequent metallizing and brazing of the alumina insulator. We conclude that the coating (1) decreases the surface resistivity of the insulator, (2) decreases the insulator's secondary-electron-emission yield, and (3) makes the surface of the insulator dielectrically more uniform

  19. Feasibility study of use alumina waste in compositions containing clay for the mullite synthesis; Estudo da viabilidade do uso de residuo de alumina em composicoes contendo argilas destinadas a sintese de mulita

    Energy Technology Data Exchange (ETDEWEB)

    Silva, V.J.; Dias, G.; Goncalves, W.P.; Santana, L.N.L., E-mail: valmir_jspb@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2016-07-01

    The reuse of alumina residue in addition to reducing environmental impacts can be used as raw material in ceramic masses to mullite produce. This study aims to obtain mullite from compositions containing clays and alumina residue used heating in a conventional oven. The raw materials were processed and characterized. Subsequently, these compositions were formulated containing precursors in appropriate proportions based on the stoichiometry of the mullite 3:2. Then, heat treatment was performed at temperatures of 1300 to 1400°C and 5°C rate/min. The products obtained were characterized by XRD, analyzing qualitatively and quantitatively the phases formed. The results showed that is possible, from compositions containing clays and alumina residue to obtain mullite as major phase (>70%) and high crystallinity (> 80%) The percentage of mullite approached the values obtained with the compositions containing alumina and clays. (author)

  20. Phosphorus Control in DRI-EAF Steelmaking: Thermodynamics, Effect of Alumina, and Process Modeling

    Science.gov (United States)

    Tayeb, Mohammed A.

    Flexibility in raw materials, the lower natural gas prices, and the increased use of nonconventional Electric Arc Furnace (EAF) steelmaking using up to 100% Direct Reduced Iron (DRI) have prompted a renewed interest in better control of phosphorus. Iron ore and DRI have higher phosphorus and silica compared to scrap. Although significant work has been done on understanding the partitioning of phosphorus between slag and metal for slags with chemistries relevant to those used in the Basic Oxygen Furnace (BOF), there is little reported work on slag chemistries corresponding to that in the EAF when DRI is used (EAF-DRI). In the current research, phosphorus equilibria between molten Fe-P alloys and CaO-SiO2-Al2O3-P 2O5-FeO-MgOsaturated slag system were investigated. An equilibrium correlation for phosphorus partition as a function of slag composition and temperature has been developed and resulted in better predictions compared with those proposed by earlier workers. As well, it is suitable for both BOF and EAF slags and includes coefficients for silica and alumina, unlike previous correlations. Low amounts of Al2O3 are present in EAF and BOF slags, but no appreciable work has been carried out to study the effect of alumina on the phosphorus partition. When DRI is used, the Al2O 3 contents can also be much higher. The data from this work indicates that there is significant reduction in Lp as the alumina fraction in the slag increases. The observed effect of alumina is attributed to its acidity, which contributes to the reduction of the phosphorus capacity of the slag by lowering the activities of iron oxide and calcium oxide. This in turn lowers the activity of oxygen and oxygen ions needed for phosphorus partition to the slag phase. Alumina in such situation is believed to elongate the silicate slag structure by forming [AlO45-]-tetrahedra. However, it is apparent that for higher alumina, lower silica slags the behavior of alumina changes and dephosphorization would

  1. Potassium Hydroxide Impregnated Alumina (KOH-Alumina) as a Recyclable Catalyst for the Solvent-Free Multicomponent Synthesis of Highly Functionalized Substituted Pyridazines and/or Substituted Pyridazin-3(2H)-ones under Microwave Irradiation.

    Science.gov (United States)

    Mecadon, Hormi; Myrboh, Bekington

    2011-01-01

    The work described herein employs potassium hydroxide impregnated alumina (KOH-alumina) as a mild, efficient, and recyclable catalyst for a one-pot solvent-free and environmentally safer synthesis of 3,4,6-triarylpyridazines and some substituted pyridazines from active methylene carbonyl species, 1,2-dicarbonyls, and hydrazine hydrate by microwave (MW) irradiation. The method offers highly convergent, inexpensive, and functionality-tolerable procedure for rapid access to important pyridazine compounds in good yields.

  2. Self-assembled metal clusters on an alumina nanomesh

    International Nuclear Information System (INIS)

    Buchsbaum, A.

    2012-01-01

    Template mediated growth of metals has attracted much interest due to the remarkable magnetic and catalytic properties of clusters in the nanometer range and provides the opportunity to grow clusters with narrow size distributions. When the Ni3Al(111) surface is exposed to oxygen at elevated temperature a thin oxide film with a well-defined structure and uniform thickness grows and covers the alloy surface completely. The structure of the alumina film has been solved mainly by the help of scanning tunneling microscopy (STM) combined with density functional theory (DFT) calculations. The structure of the approx. 0.5 nm thick oxide film has sixfold symmetry and exhibits holes with a diameter of approx. 400 pm reaching down to the metal substrate at the corners of the (Sqrt(67) x Sqrt(67))R12.2° unit cell. The side length of the unit cell is 4.1 nm. The driving force for the formation of the oxide nanomesh is the reduction of the metal/oxide interface energy by the formation of energetically favorable Al-Ni bonds at the interface. Due to better wetting of metal on metal surfaces than on oxide surfaces, metal atoms prefer to bind to the substrate in the hole, not to the oxide. Therefore the oxide forms a template with a hexagonal 4.1 nm lattice for the growth of well-ordered metal clusters. Nevertheless, the growth of most metal clusters on top of the corner holes is not straightforward. Fe and Co atoms cannot jump into the corner holes due to a barrier for diffusion and nucleate at their second favorable adsorption site. However, Pd atoms trapped in these corner holes reduce the barrier for diffusion and create metallic nucleation sites where Fe as well as Co clusters can nucleate and form a well-ordered hexagonal arrangement on the oxide nanomesh. We have studied these Fe and Co clusters and applied different methods like STM and surface x-ray diffraction (SXRD) to determine the morphology and crystallography of the clusters. For Fe we found cluster growth with

  3. Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure

    International Nuclear Information System (INIS)

    Zuzjaková, Š.; Zeman, P.; Kos, Š.

    2013-01-01

    Highlights: • Non-isothermal kinetics of phase transformations in alumina films was investigated. • The structure of alumina films affects kinetics of the transformation processes. • Kinetic triplets of all transformation processes were determined. • The KAS, FWO, FR and IKP methods for determination of E a and A were used. • The Málek method for determination of the kinetic model was used. - Abstract: The paper reports on non-isothermal kinetics of transformation processes in magnetron sputtered alumina thin films with an amorphous and γ-phase structure leading ultimately to the formation of the thermodynamically stable α-Al 2 O 3 phase. Phase transformation sequences in the alumina films were investigated using differential scanning calorimetry (DSC) at four different heating rates (10, 20, 30, 40 °C/min). Three isoconversional methods (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR) method) as well as the invariant kinetic parameters (IKP) method were used to determine the activation energies for transformation processes. Moreover, the pre-exponential factors were determined using the IKP method. The kinetic models of the transformation processes were determined using the Málek method. It was found that the as-deposited structure of alumina films affects kinetics of the transformation processes. The film with the amorphous as-deposited structure heated at 40 °C/min transforms to the crystalline γ phase at a temperature of ∼930 °C (E a,IKP = 463 ± 10 kJ/mol) and subsequently to the crystalline α phase at a temperature of ∼1200 °C (E a,IKP = 589 ± 10 kJ/mol). The film with the crystalline γ-phase structure heated at 40 °C/min is thermally stable up to ∼1100 °C and transforms to the crystalline α phase (E a,IKP = 511 ± 16 kJ/mol) at a temperature of ∼1195 °C. The empirical two-parameter Šesták–Berggren kinetic model was found to be the most adequate one to describe all transformation processes

  4. In situ bend testing of niobium-reinforced alumina nanocomposites with and without single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Thomson, Katherine E.; Jiang Dongtao; Lemberg, Joseph A.; Koester, Kurt J.; Ritchie, Robert O.; Mukherjee, Amiya K.

    2008-01-01

    Alumina-based nanocomposites were fabricated and consolidated via spark plasma sintering. The effect of single-walled carbon nanotube (SWCNT) and niobium additions to nanocrystalline alumina was examined by in situ bend testing. The addition of 10 vol.% niobium to nanocrystalline alumina provided substantial improvement of fracture toughness (6.1 MPa m 1/2 )-almost three times that of nanocrystalline alumina. Observation of cracks emanating from Vickers indents, as well as bend specimen fracture surfaces, reveal the operation of ductile phase toughening in the Nb-Al 2 O 3 nanocomposites. Further addition of 5 vol.% SWCNTs to the 10 vol.%Nb-Al 2 O 3 revealed a more porous structure and less impressive fracture toughness-having an indentation and bend fracture toughness of 2.9 MPa m 1/2 and 3.3 MPa m 1/2 , respectively

  5. Analysis of Material Removal and Surface Characteristics in Machining Multi Walled Carbon Nanotubes Filled Alumina Composites by WEDM Process

    Directory of Open Access Journals (Sweden)

    Annebushan Singh Meinam

    2017-01-01

    Full Text Available The reinforcement of ceramic materials with electrically conductive particles increases the overall conductivity of the ceramic material. This allows the ceramic material to be more readily machined using wire electrical discharge machining process. The current work is an approach to identify the machinability of multi walled carbon nanotubes filled alumina composites in wire electrical discharge machining process. Alumina samples of 5 vol. % and 10 vol. % multi walled carbon nanotubes are machined and analysed for material removal rate and the surface characteristics. An increase in material removal rate is observed with increase in filler concentrations. At the same time, better surface roughness is observed. The surface characteristics of composite alumina are further compared with Monel 400 alloy. It has been observed that spalling action is the dominating material removal mechanism for alumina composites, while melting and evaporation is for the Monel 400 alloy.

  6. The influence of the processing and the alumina synthesized in laboratory on the polypropylene (PP) properties; Influencia do processamento e da alumina sintetizada em laboratorio nas propriedades do polipropileno

    Energy Technology Data Exchange (ETDEWEB)

    Alves, A.M.; Cavalcanti, S.N.; Arimateia, R.R.; Agrawal, P.; Freitas, N.L. de; Melo, T.J.A., E-mail: amanda.polanski@gmail.com [Universidade Federal de Campina Grande (PPG/CEMat/UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2016-07-01

    This work aimed to evaluate the influence of the processing and the alumina synthesized in laboratory alumina on the polypropylene (PP) properties. The injected PP (PPi), the extruded and injected PP (PPei) and the composite (PP / Al-5pcr), were characterized. The XRD results showed that alumina has a crystalline structure of the corundum type and that it did not alter the crystalline structure of the PP, but it reduced the degree of crystallinity, whereas the processing made the PP more crystalline. The thermal transitions, Tm and Tc of the PP were practically unchanged by processing and alumina. In the mechanical properties, the impact strength was altered by the processing. For the composite, there was increase of the elastic modulus and reduction in tensile and impact strength. In the flammability test, the processing accelerated the burning process and the alumina slowed when compared to the PP. In the rheological analysis all the systems presented pseudoplastic behavior. The viscosity of the PP was reduced with the processing and the presence of the alumina, characterizing degradation. (author)

  7. Concretos refratários preparados com alumina hidratável: efeito dos dispersantes Refractory castables prepared with hydratable alumina: the dispersant effect

    Directory of Open Access Journals (Sweden)

    I. R. Oliveira

    2009-03-01

    Full Text Available Uma alumina de transição capaz de formar fases hidratadas em água tem sido utilizada como ligante hidráulico alternativo para concretos refratários. Entretanto, têm-se observado que a secagem de concretos preparados com este ligante é normalmente mais lenta do que no caso de composições contendo cimento. Essa característica pode favorecer a pressurização do vapor de água gerado no interior do concreto durante a secagem, podendo culminar na explosão do revestimento refratário. O presente trabalho teve como objetivo relacionar o tipo de aditivo utilizado no processamento de concretos refratários com seu comportamento de secagem e resistência mecânica, por meio da atuação do aditivo na dispersão da matriz do concreto e no mecanismo de hidratação do ligante. Embora a dispersão das partículas do ligante mostre-se primordial no desenvolvimento das fases hidratadas, o total recobrimento da superfície das partículas pelo aditivo ácido cítrico desfavoreceu a hidratação gerando defeitos nos corpos e comprometendo a sua aplicação. Por outro lado, os aditivos poliméricos foram apontados como os mais efetivos para conciliar dispersão e desenvolvimento de fases hidratadas com conseqüente ganho de resistência mecânica.A reactive alumina able of forming hydrated phases in water has been used as an alternative hydraulic binder in refractory castables. However, it has been observed that the drying of these materials is usually slower comparing to cement containing compositions. Due to reduction of the permeability, this aspect increases the difficult of the vapor migration and can promote water vapor pressurization inside the structure and, eventually, explosion of refractories. Additives usually used in refractory castables, in order to promote matrix dispersion, are shown to affect the hydratable alumina hydration mechanism. The dispersion of binder particles presents a main role in the development of hydratable phases but

  8. Exploring the cell: Sodium (beta-alumina) cupric chloride - Aluminum chloride - Sodium chloride between 136 and 200 C

    Science.gov (United States)

    Miller, R. O.

    1975-01-01

    Experiments were done with a molten-salt catholyte (initially CuCl2 in AlCl3-NaCl) separated from molten Na by beta alumina. The open-circuit reduction potentials were 4.3 and 3 volts for Cu++ and Cu+, respectively. High polarization and nonrechargeability characterized the cell's operation. The cell's ohmic resistance during discharge was higher than what would be expected from only the ionic resistance of the beta-alumina.

  9. Effect of Batch-to-Batch Variability on the Phase Transition of Precipitated Erbium-Doped Alumina Particles

    Science.gov (United States)

    2017-11-01

    materials with high thermal conductivities,2,3 making α- alumina a strong candidate as a gain material for high- energy laser (HEL) applications. High...AUTHOR(S) Nicholas Ku, Victoria L Blair, and Raymond E Brennan 5d. PROJECT NUMBER DSI14-WM014 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...ABSTRACT Alumina (Al2O3, aluminum oxide) is an excellent candidate as an optical material for laser gain media due to its high thermal conductivity

  10. Effect of boehmite alumina nanofiller incorporation on the morphology and thermal properties of functionalized poly(propylene)/polyamide 12 blends

    CSIR Research Space (South Africa)

    Ogunniran, ES

    2011-08-01

    Full Text Available -1 Effect of Boehmite Alumina Nanofiller Incorporation on the Morphology and Thermal Properties of Functionalized Poly(propylene)/Polyamide 12 Blends 1. Elijah Soba Ogunniran1, 2. Rotimi Sadiku1, 3. Suprakas Sinha Ray2,*, 4. Nyambeni Luruli3... the polymer matrices and the filler was confirmed via FTIR. Keywords: ? boehmite alumina; ? morphology; ? polyamide 12; ? poly(propylene); ? polymer blends http://onlinelibrary.wiley.com/doi/10.1002/mame.201100148/abstract ...

  11. Fabrication of a segmented composite stainless steel-alumina discharge tube for a theta-pinch coil

    International Nuclear Information System (INIS)

    Dickinson, J.M.; Stoddard, S.D.; Muller, J.F.

    1975-11-01

    An 80-mm-diam segmented discharge tube that simulated in a simplified way the blanket and first wall of the Reference Theta-Pinch Reactor (RTPR) has been constructed. The segments were fabricated by plasma-arc spraying an alumina coating on tubular stainless steel trapezoids. These were laid up to form a cylinder that was contained in a fully dense alumina vacuum tube. The fabrication processes are discussed in detail

  12. Flexural strength of Cerec 2 machined and jointed InCeram-Alumina and InCeram-Zirconia bars.

    Science.gov (United States)

    Apholt, W; Bindl, A; Lüthy, H; Mörmann, W H

    2001-05-01

    The flexural strength of Cerec 2 InCeram-Alumina and InCeram-Zirconia bars is evaluated. The focus of the in vitro study is to identify a jointing procedure for InCeram which may be used for producing full-ceramic fixed-partial-denture frameworks. Six groups (n=15) of machined and jointed InCeram-Alumina (T1-T5) and InCeram-Zirconia (T6) bars (3x4x13mm(3)), respectively, were examined using a 3-point-bending test. InCeram-Alumina joint-free controls were: machined (C1), slip cast (C2, C3) and cut from the block (C4) bars. Machined joint-free InCeram-Zirconia bars were used as controls (C5). InCeram-Alumina slip was used for jointing T1-T5 and InCeram-Zirconia slip for bars T6. Bars were jointed in groups T1 and T2 using butt joint (S1), in T3 and T4 oblique (S2, S3) and in T5 and T6 rounded (S4) joint shapes. Two-way analysis of variance showed significant differences between materials (pZirconia (T6) bars, respectively but machined/joint-free InCeram-Alumina (511 (59) MPa, C1) and machined/joint-free InCeram-Zirconia (624 (58) MPa, C5) were significantly (p0.05) were found between machined/jointed InCeram-Zirconia (475 (54) MPa, T6), joint-free InCeram-Alumina slip cast (498 (125) MPa, C2) and joint-free InCeram-Alumina machined bars (511 (59) MPa, C1). Compared to conventional slip cast InCeram-Alumina the flexural strength of machined/jointed InCeram-Zirconia appears to be adequate for fixed-partial-denture frameworks.

  13. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Song, Yuanhui; Ju, Yang; Morita, Yasuyuki; Xu, Baiyao; Song, Guanbin

    2014-01-01

    Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering. - Highlights: • BMP2 was immobilized onto nanoporous alumina substrates with different pore sizes. • BMP2-immobilized substrates were able to promote adhesion and spreading of MSCs. • BMP2-immobilized substrates were favorable for cell growth of MSCs. • BMP2-immobilized substrates promoted osteogenic

  14. Studies on the adsorption of plutonium(IV) on alumina from aqueous nitric acid-oxalic acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Subba Rao, M.; Gaikwad, A.M.; Rao, V.K.; Natarajan, P.R. (Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.)

    1983-05-11

    Results of experiments on the adsorption of plutonium(IV) on alumina from solutions containing oxalic acid-nitric acid are reported. Distribution coefficients for Pu adsortion at various oxalic acid and nitric acid concentrations have been determined and optimum conditions for loading and elution of plutonium from columns packed with alumina have been established. Plutonium recoveries better than 99.5% were obtained. The effect of ions like U(VI) and Fe(III) on plutonium loading has also been studied.

  15. Determination of arsenic in water samples by Total Reflection X-Ray Fluorescence using pre-concentration with alumina

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Haydn [Laboratorio de Fisica Nuclear, Dpto. De Fisica, Universidad Simon Bolivar, Sartenejas, Baruta (Venezuela, Bolivarian Republic of); Marco Parra, Lue-Meru, E-mail: luemerumarco@yahoo.e [Universidad Centroccidental Lisandro Alvarado, Dpto. Quimica y Suelos, Decanato de Agronomia, Tarabana, Cabudare, Edo.Lara (Venezuela, Bolivarian Republic of); Bennun, Leonardo [Universidad de Concepcion, Concepcion (Chile); Greaves, Eduardo D. [Laboratorio de Fisica Nuclear, Dpto. De Fisica, Universidad Simon Bolivar, Sartenejas, Baruta (Venezuela, Bolivarian Republic of)

    2010-06-15

    The determination of arsenic in water samples requires techniques of high sensitivity. Total Reflection X-Ray Fluorescence (TXRF) allows the determination but a prior separation and pre-concentration procedure is necessary. Alumina is a suitable substrate for the selective separation of the analytes. A method for separation and pre-concentration in alumina, followed by direct analysis of the alumina is evaluated. Quantification was performed using the Al-K{alpha} and Co-K{alpha} lines as internal standard in samples prepared on an alumina matrix, and compared to a calibration with aqueous standards. Artificial water samples of As (III) and As (V) were analyzed after the treatment. Fifty milliliters of the sample at ppb concentration levels were mixed with 10 mg of alumina. The pH, time and temperature were controlled. The alumina was separated from the slurry by centrifugation, washed with de-ionized water and analyzed directly on the sample holder. A pre-concentration factor of 100 was found, with detection limit of 0.7 {mu}gL{sup -1}. The percentage of recovery was 98% for As (III) and 95% for As (V) demonstrating the suitability of the procedure.

  16. Lysosomes involved in the cellular toxicity of nano-alumina: combined effects of particle size and chemical composition.

    Science.gov (United States)

    Zhang, Q; Xu, L; Wang, J; Sabbioni, E; Piao, L; Di Gioacchino, M; Niu, Q

    2013-01-01

    Nowadays, manufactured nano-particles of aluminum oxide (nano-alumina) have been widely used in many fields with the rapidly developed nano-technology, but their basic toxic data are scarce. It is believed that the smaller nano-particles are able to easily cross the bio-membrane and quickly reach cellular compartments rather than micro-size particles, thus showing more toxic effects. The aim of this study was to compare the toxicity of nano- and micro- particles of alumina for detecting particle size related toxicity, and to compare the toxicity of nano-alumina and nano-carbon with the same particle size for determining chemical composition related toxicity. The present study revealed that nano-particles of alumina were much toxic than micro-alumina particles, indicating a particle size related toxicity; and were much more toxic than nano-carbon particles as well, manifesting a chemical related toxicity. The mechanism might be concerned with the involvement of the lysosomes. In conclusion, toxicity of nano-alumina is a combination of the toxic effects of its particle size and chemical composition.

  17. The determination of the structure of γ-alumina using empirical and first principle calculations and supporting experiment

    International Nuclear Information System (INIS)

    Paglia, G.; Buckely, C.E.; O'Connor, B.H.; Van Riessen, A.; Rohl, A.L.; Gale, J.D.

    2002-01-01

    Full text: Because of its hardness, abrasion resistance, mechanical strength, corrosion resistance, and good electrical insulation, alumina (AI 2 O 3 ) is a material of high technological and industrial significance. Alumina exists in a variety of metastable structures including the γ, η, θ, K, and χ aluminas, as well as its stable α alumina phase. The crystal structure of the γ-phase in alumina has attracted considerable attention over the past 40 years, with various reports attributing either a cubic or tetragonal structure to this phase. Consensus on the definitive structure of γ-alumina (γ-AI 2 O 3 ) has yet to be reached. Rapid advancement has occurred in the field of computational materials science in recent times. Huge advances in computing power during this period have made ft possible to apply the laws of quantum mechanics to the study of macroscopic properties of real materials at the atomic level. Predicting the properties of materials by theoretical means complements the traditional experimental approaches. This research is directed at determining the structure of γ-Al 2 O 3 using theoretical first principles and empirical computational techniques combined with experimental methods. The purpose of this presentation is to discuss the problems associated with determining the structure of γ-AI 2 O 3 and to outline the methodology being applied to solve it. Copyright (2002) Australian X-ray Analytical Association Inc

  18. Probability of failure of veneered glass fiber-reinforced composites and glass-infiltrated alumina with or without zirconia reinforcement.

    Science.gov (United States)

    Chong, Kok-Heng; Chai, John

    2003-01-01

    The probability of failure under flexural load of veneered specimens of a unidirectional glass fiber-reinforced composite (FibreKor/Sculpture), a bidirectional glass fiber-reinforced composite (Vectris/Targis), a glass-infiltrated alumina (In-Ceram Alumina/Vita alpha), and a zirconia-reinforced glass-infiltrated alumina (In-Ceram Zirconia/Vita alpha) was investigated; a metal-ceramic (PG200/Vita omega) system served as a control. Ten uniform beams of the veneered core materials were fabricated for each system and subjected to a three-point bending test. The data were analyzed using the Weibull method. The failure load of specimens at a 10% probability of failure (B10 load) was compared. The mode of failure was analyzed. The B10 load of the systems investigated was not significantly different from that of the metal-ceramic system. FibreKor possessed significantly higher B10 load than Vectris, In-Ceram Alumina, and In-Ceram Zirconia. The B10 strength loads of Vectris, In-Ceram Alumina, and In-Ceram Zirconia were not significantly different from one another. The probability of FibreKor to fracture under a flexural load was significantly lower than that of Vectris, In-Ceram Alumina, or In-Ceram Zirconia.

  19. Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning

    International Nuclear Information System (INIS)

    Azad, Abdul-Majeed

    2006-01-01

    Transparent alumina nanofibers have been fabricated from a suitable inorganic-organic composite solution by spinning in an electric field (strength ∼70-90 kV/m) applied between the tip of a needle and the target plate. Upon firing and sintering under carefully pre-selected time-temperature profiles (heating rate, temperature and soak time), high-purity and crystalline alumina nanofibers retaining the morphological features of the electrospun composite fibers were obtained. Tools such as laser Raman spectroscopy, X-ray diffraction, scanning and transmission electron microscopy together with energy dispersive spectroscopy and selected area electron diffraction were employed to follow the systematic evolution of the ceramic phase and its morphological features in the fired fibers

  20. Cooling process of liquid propellant rocket by means of kerosene-alumina nanofluid

    Directory of Open Access Journals (Sweden)

    Mostafa Mahmoodi

    2016-12-01

    Full Text Available Heat transfer augmentation of kerosene-alumina nanofluid is studied for the possible use in the regenerative cooling channel of semi cryogenic engine. The basic partial differential equations are reduced to ordinary differential equations which are solved using differential transformation method. Velocity and temperature profiles as well as the skin friction coefficient and Nusselt number are determined. The influence of pertinent parameters such as nanofluid volume fraction, viscosity parameter and Eckert number on the flow and heat transfer characteristics is discussed. The results indicate that adding alumina into the fuel of liquid rocket engine (kerosene can be considered as the way of enhancing cooling process of chamber and nozzle walls. Nusselt number is an increasing function of viscosity parameter and nanoparticle volume fraction while it is a decreasing function of Eckert number.

  1. A Multilayer Model for Alumina Inclusion Transformation by Calcium in the Ladle Furnace

    Science.gov (United States)

    Tabatabaei, Yousef; Coley, Kenneth S.; Irons, Gordon A.; Sun, Stanley

    2018-02-01

    Calcium wire injection is widely used for modification of solid alumina inclusions to liquid or partially liquid calcium aluminate. In the present work, a multilayer growth model is proposed for modification of alumina inclusions. Diffusion through a multiphase product layer and mass transfer of solute through the boundary layer to the inclusion are taken into account in this model. It is assumed that the outer surface of the inclusion is thermodynamically in equilibrium with the local steel composition. The results show that the mass transfer of calcium through the boundary layer and within the inclusion is complete in a matter of seconds; furthermore, once the liquid calcium aluminate forms, it quickly consumes the other solid calcium aluminate phases. Because the calcium is so rapidly consumed by the inclusions, the rate of transformation in a calcium treatment process is controlled by the rate that calcium is supplied to the steel by the calcium bubbles.

  2. Numerical Simulation of Hindered Diffusion in γ-Alumina Catalyst Supports

    Directory of Open Access Journals (Sweden)

    Wang Haisheng

    2017-03-01

    Full Text Available By employing multi-scale random models of γ-alumina, we have studied the influence of porosity, grain aspect ratio and aggregation state on the effective diffusion coefficient. Multi-scale Boolean models of platelets were used to produce digital volumes reproducing the alumina porous space. Iterative fast Fourier transform numerical simulation of Fick’s diffusion were performed on the volume to obtain the effective diffusion coefficient. The tortuosity factors of the various simulated models show a simple dependence with pore volume fraction with an exponent guided by the platelet aspect ratio and the aggregation state. Comparisons with proton pulsed-field gradient nuclear magnetic resonance spectrometry show a satisfactory agreement.

  3. Zirconia-TZP and alumina--advanced technologies for the manufacturing of single crowns.

    Science.gov (United States)

    Luthardt, R G; Sandkuhl, O; Reitz, B

    1999-12-01

    All-ceramic crowns based on Zirconia-TZP-frameworks should have advantages in comparison to copings of Alumina (PROCERA-AllCeram) because of their mechanical properties. Zirconia-TZP-frameworks were manufactured after optical digitising using a modified Precident-DCS-System. The mean fracture strength and the vertical marginal discrepancy of Zirconia-TZP-frameworks and Alumina-copings (PROCERA-AllCeram) were determined. Additionally the bonding strength of suitable veneering ceramics on pre-treated Zirconia-TZP surfaces was examined using the scratch test and the shear bonding strength. The results show that the bonding between Zirconia-TZP and the veneering ceramics as well as the precision of fit of the veneered crowns are comparable with established systems.

  4. Poly(Butylene Terephthalate Based Composites Containing Alumina Whiskers: Influence of Filler Functionalization on Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2014-01-01

    Full Text Available Poly(butylene terephthalate (PBT is one of the most widely used semicrystalline thermoplastics polyester because of its superior thermal and mechanical properties, high dimensional stability and excellent processability. In this research PBT-based nanocomposites, including various amounts (up to 10 wt% of commercial alumina whiskers, have been prepared by using a Brabender internal chamber mixer and analysed in terms of morphological features and dielectric properties. Specific attention has been focused on the effect of the filler functionalization considering 3-glycidoxy propylmethoxysilane (GPS or 3-methacryloxypropyltrimethoxysilane (MPS as coupling agents. Tests, performed on compounds filled with neat and functionalized alumina whiskers, show a clear dependence of relative dielectric permittivity εr, invariance of dissipation factor (tgδ, and a sensible increase of volume electrical resistivity (ρv with the filler’s content and are encouraging for a future introduction of such composites in many electrical applications.

  5. Synthesis of alumina/YAG 20 vol% composite by co-precipitation

    Directory of Open Access Journals (Sweden)

    Radosław Lach

    2011-12-01

    Full Text Available Co-precipitation of alumina/YAG precursor from aluminum and yttrium nitrate solution with ammonium carbonate results in dawsonite. Its crystallographic parameters differ from the compound precipitated with no yttrium additive. It suggests that yttrium ions become incorporated into the dawsonite structure. The DSC/TG and X-ray diffraction measurements show decomposition of dawsonite at elevated temperatures resulting in γ-Al2O3 and then δ- and θ-alumina modifications. Full transformation to α-Al2O3 and YAG occurs at temperatures higher than 1230°C. Starting powder for the sintering experiments was prepared using the coprecipitated precursor calcined at 600°C. Seeding of such powder with 5 wt.% α-Al2O3 results in material of 98% density at 1500°C. Much lower densification show compacts of unseeded powder.

  6. Formation and disruption of current paths of anodic porous alumina films by conducting atomic force microscopy

    International Nuclear Information System (INIS)

    Oyoshi, K.; Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G.

    2010-01-01

    Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.

  7. Magnetic properties of mesoporous cobalt-silica-alumina ternary mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Nabanita [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Seikh, Md. Motin [Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal (India); Bhaumik, Asim, E-mail: msab@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

    2013-02-15

    Mesoporous cobalt-silica-alumina mixed oxides with variable cobalt content have been synthesized through slow evaporation method by using Pluronic F127 non-ionic surfactant as template. N{sub 2} sorption analysis of the template-free mixed oxide samples revealed that these mesoporous materials have high BET surface areas together with large mesopores. Powder XRD, TEM, EDS, FT IR and EPR spectroscopic analysis have been employed to understand the nature of the mesophases, bonding and composition of the materials. Low temperature magnetic measurements of these mixed oxide materials show the presence of ferromagnetic correlation at elevated temperature though at low temperature paramagnetic to ferrimagnetic transition is observed. Highlights: Black-Right-Pointing-Pointer Mesoporous cobalt-silica-alumina ternary mixed oxides. Black-Right-Pointing-Pointer High surface area and mesoporosity in magnetic materials. Black-Right-Pointing-Pointer Ferromagnetic correlation at elevated temperature. Black-Right-Pointing-Pointer Low temperature paramagnetic to ferrimagnetic transition.

  8. Properties of Ni and Ni–Fe nanowires electrochemically deposited into a porous alumina template

    Directory of Open Access Journals (Sweden)

    Alla I. Vorobjova

    2016-11-01

    Full Text Available The comparative analysis of the electrochemical deposition of Ni and Ni–Fe nanowires (NWs into ordered porous alumina templates is presented. The method developed allows for obtaining NWs of 50 ± 5 nm in diameter and 25 μm in length, i.e., with an aspect ratio of 500. XRD data demonstrate the polycrystalline nature of Ni and Ni–Fe in a face-centered cubic close-packed lattice. Both fabricated materials, Ni and Ni–Fe, have shown ferromagnetic properties. The specific magnetization value of Ni–Fe NWs in the alumina template is higher than that of the Ni sample and bulk Ni, also the Curie temperature of the Ni–Fe sample (790 K is higher than that of the Ni sample one or bulk Ni.

  9. Aqueous Tape Casting of Alumina using an Emulsion of Urethane Polymer

    International Nuclear Information System (INIS)

    Takaishi, T; Inada, H; Sato, M; Sano, S; Kawakami, S

    2011-01-01

    From the viewpoint of solving environmental problems, changeover from organic solvent-based system to water-based system in tape casting process has been required. The effects of organic additives on the rheological properties of water-based alumina slurries were investigated. The aqueous slurries were prepared from low-soda alumina powder, deionized water, ammonium salt of polycarboxylic acid type dispersant, emulsion type urethane polymer binder and defoamer. By means of the zeta potential measurement, the optimum content of added dispersant was estimated. Furthermore, precipitation test, viscosity measurement and so on were performed. From these measurements, it was decided that optimum amounts of dispersant and binder were 0.8 mass% and 12 mass%, respectively. Well-dispersed and high solid content slurry gave good quality green sheets, and high density sintered bodies were obtained.

  10. Effects of additives in α- and θ-alumina: an ab initio study

    International Nuclear Information System (INIS)

    Wallin, Erik; Andersson, Jon M; Chirita, Valeriu; Helmersson, Ulf

    2004-01-01

    It is of high fundamental and practical importance to be able to control the formation and stability of the different crystalline phases of alumina (Al 2 O 3 ). In this study, we have used density functional theory methods to investigate the changes induced in the thermodynamically stable α phase and the metastable θ phase as one eighth of the Al atoms are substituted for different additives (Sc, W, Mo, Cr, Cu, Si, and B). The calculations predict that the additives strongly affect the relative stability between the two phases. Most tested additives are shown to shift the relative stability towards, and in some cases completely stabilize, the θ phase, while Cu doping is predicted to increase the relative stability of the α phase. The reasons for these effects are discussed, as are possible implications on the growth and use of doped aluminas in practical applications. In addition, the effects of the additives on bulk moduli and densities of states have been investigated

  11. Determination of distribution function of refraction index and anion diffusion depth in porous alumina photonic crystals

    Directory of Open Access Journals (Sweden)

    H. Kaviani

    2007-09-01

    Full Text Available   Band structure of porous alumina photonic crystal in the Γ X direction was calculated using order-N method . In a comparison of calculated results with experimental data of reflective and absorptive index, the variation of refractive index of alumina in the external region of oxide layer, around the pores were studied. A Gaussian distribution function was adopted for phosphate anions in the external oxide layer and the variation of refractive index and diffusion depth were determined. The structure of the first four bands was calculated using the obtained distribution of refractive index in the external oxide layer for both TE and TM mode. This results show a narrow full band gap in the TM mode.

  12. Synthesis and Thermal Conductivity of Exfoliated Hexagonal Boron Nitride/Alumina Ceramic Composite

    Science.gov (United States)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Lizcano, Maricela; Kelly, Marisabel

    2017-01-01

    Exfoliated hexagonal boron nitride (hBN)/alumina composite can be fabricated by following the process of (1) heating a mixture of hBN, AlCl3, and NaF in nitrogen for intercalation; (2) heating the intercalated product in air for exfoliation and at the same time converting the intercalate (AlCl3) into Al2O3, (3) rinsing the oxidized product, (4) coating individual exfoliated hBN platelets that contain Al2O3 with new layers of aluminum oxide, and finally, (5) hot pressing the product into the composite. The composite thus obtained has a composition of approximately 60 percent by weight hBN and 40 percent by weight alumina. Its in-plane and through-plane thermal conductivity were measured to be 86 and 18 watts per meter Kelvin, respectively, at room temperature.

  13. Growth of Hierarchically Structured High-Surface Area Alumina on FeCrAl Alloy Wires

    Directory of Open Access Journals (Sweden)

    Chandni Rallan

    2013-01-01

    Full Text Available The formation of metastable alumina phases due to the oxidation of commercial FeCrAl alloy wires (0.5 mm thickness at various temperatures and time periods has been examined. Samples were isothermally oxidised in air using a thermogravimetric analyzer (TGA. The morphology of the oxidised samples was analyzed using an Electronic Scanning Electron Microscope (ESEM and X-ray on the surface analysis was done using an Energy Dispersive X-Ray (EDX analyzer. The technique of X-Ray Diffraction (XRD was used to characterize the phase of the oxide growth. The entire study showed that it was possible to grow high-surface area gamma alumina on the FeCrAl alloy wire surfaces when isothermally oxidised above 800°C over several hours.

  14. Vapour growth of Cd(Zn)Te columnar nanopixels into porous alumina

    International Nuclear Information System (INIS)

    Sochinskii, N.V.; Abellan, M.; Martin Gonzalez, M.; Saucedo, E.; Dieguez, E.; Briones, F.

    2006-01-01

    The vapour phase growth (VPG) of CdTe and Cd 1- x Zn x Te was performed in order to investigate the formation of Cd(Zn)Te columnar nanostructures, which could serve as a basis for micropixels usable for further development of X- and gamma-ray high-resolution imaging devices. The possibility to form the 'Cd(Zn)Te-in-porous alumina' nanostructures by VPG has been demonstrated. The Cd(Zn)Te crystals integrated into nanoporous alumina have shown to have photoluminescence properties compatible with those of the bulk crystals and planar epitaxial layers. Further investigations are going on to improve the structural quality of Cd(Zn)Te nanocrystals

  15. Studies on Thermal Decomposition of Aluminium Sulfate to Produce Alumina Nano Structure

    Directory of Open Access Journals (Sweden)

    M. Jafar-Tafreshi

    2012-12-01

    Full Text Available Aluminum sulfate nano structures have been prepared by solution combustion synthesis using aluminum nitrate nonahydrate (Al(NO33.9H2O and ammonium sulfate ((NH42SO4. The resultant aluminum sulfate nano structures were calcined at different temperatures to study thermal  decomposition of aluminum sulfate. The crystallinity and phase of  the as-synthesized and calcined samples were characterized by both X- ray diffraction and FTIR measurements. These two analyses determined the temperature at which the aluminum sulfate is converted to γ-alumina nano particles. The specific surface area and pore size distribution for  γ-alumina nano particles were determined by BET measurement. TEM measurement confirmed the size of the particles obtained by XRD and BET analyses.

  16. Alternative Processing Method Leads to Stronger Sapphire-Reinforced Alumina Composites

    Science.gov (United States)

    Jaskowiak, Martha H.

    1997-01-01

    The development of advanced engines for aerospace applications depends on the availability of strong, tough materials that can withstand increasingly higher temperatures under oxidizing conditions. The need for such materials led to the study of an oxide-based composite composed of an alumina matrix reinforced with zirconia-coated sapphire fibers. Because the nonbrittle behavior of this system depends on the interface and its ability to prevent fiber-to-matrix bonding and reduce interfacial shear stress, the microstructure of the zirconia must be carefully controlled during both coating application and composite processing. When it was both porous and unstabilized, zirconia (which does not react easily with alumina) was found to be the most effective material tested in reducing interfacial shear strength between the fiber and matrix.

  17. Synthesis and characterization of aluminium–alumina micro- and nano-composites by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Dash, K., E-mail: khushbudash@gmail.com; Chaira, D.; Ray, B.C.

    2013-07-15

    Graphical abstract: The evolution of microstructure by varying the particle size of reinforcement in the matrix employing spark plasma sintering has been demonstrated here in Al–Al{sub 2}O{sub 3} system. An emphasis has been laid on varying the reinforcement particle size and evaluating the microstructural morphologies and their implications on mechanical performance of the composites. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size < 50 nm) reinforced in aluminium matrix were fabricated by powder metallurgy route using spark plasma sintering technique technique at a temperature of 773 K and pressure of 50 MPa. Another set of specimens having composition 1, 5, 20 vol.% of alumina (average size ∼ 10 μm) had been fabricated to compare the physical as well as mechanical attributes of the microcomposite as well as the nanocomposites. These micro- and nano-composites have been characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy followed by density, microhardness and nanoindentation measurements. The alumina nanoparticles revealed an interface showing appreciable physical intimacy with the aluminium matrix compared to that of the alumina microparticles. The interfacial integrity in case of nanocomposites is better than in the microcomposite which has been studied using microscopic techniques. Spark plasma sintering imparts enhanced densification as well as matrix-reinforcement proximity which has been corroborated with the experimental results. - Highlights: • The Al–Al{sub 2}O{sub 3} micro- and nano-composites fabricated by spark plasma sintering. • Better matrix-reinforcement integrity in nanocomposites than microcomposites. • Spark plasma sintering method results in higher density and hardness values. • High density and hardness values of nanocomposites than microcomposites. • High dislocation density in spark plasma sintered Al–Al{sub 2}O{sub 3} composites. - Abstract: In the

  18. Surface characterization of alumina reinforced with niobium carbide obtained by polymer precursor

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2006-09-01

    Full Text Available Active filler controlled pyrolysis of polymers (AFCOP is a recent method for obtaining near-net shaped ceramic bodies. Alumina based composites have been developed for use as cutting tools, so knowledge of the surface composition is extremely important because it is directly related to the hardness and wear resistance Samples containing a fixed concentration of 60 wt. (% of polysiloxane and a mixture of metallic niobium and alumina powder were homogenized, uniaxially warm pressed at 80 °C and subsequently pyrolyzed in flowing argon at 1200, 1400 and 1500 °C. Analysis of the surface composition was carried out by X ray photoelectron spectroscopy, infrared spectroscopy, X ray diffraction and scanning electron microscopy. The results have indicated that the formation of the phases on the surface depends strongly on the niobium/carbon ratio in the raw materials.

  19. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    Science.gov (United States)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  20. Studies on hydrogen separation membrane for IS process. Membrane preparation with porous α-alumina tube

    International Nuclear Information System (INIS)

    Hwang, Gab-Jin; Onuki, Kaoru; Shimizu, Saburo

    1998-01-01

    It was investigated the preparation technique of hydrogen separation membrane to enhance the decomposition ratio of hydrogen iodide in the thermochemical IS process. Hydrogen separation membranes based on porous α-alumina tubes having pore size of 100 nm and 10 nm were prepared by chemical vapor deposition using tetraethylorthosilicate (TEOS) as the Si source. In the hydrogen separation membrane, its pore was closed by the deposited silica and then the permeation of gas was affected by the hindrance diffusion. At 600degC, the selectivity ratios (H 2 /N 2 ) were 5.2 and 160 for the membranes based on porous α-alumina tube having pore size of 100 nm and 10 nm, respectively. (author)

  1. THE INFLUENCE OF NIOBIUM ON THE ACIDITY AND STRUCTURE OF GAMMA-ALUMINA-SUPPORTED VANADIUM OXIDES

    Directory of Open Access Journals (Sweden)

    Sathler M.N.B.

    1998-01-01

    Full Text Available Gamma-alumina-supported niobium oxide was used as a support for vanadium oxides. The influence of the addition of niobium oxide was studied by looking for changes in the structure and acid-base character of superficial species. Vanadium oxide was deposited using the continuous adsorption method; niobium oxide was impregnated using the incipient wetness method. The catalysts were characterized by XPS, UV-visible and IR spectroscopy. Catalytic tests were performed using propane oxidation reaction at 400oC. For coverage below the monolayer, both vanadium and niobium oxides were observed in slightly condensed superficial species. The presence of vanadium oxide on the support was found to increase the Lewis acidity and create some Bronsted acidity. Higher catalytic activity and selectivity for propene were associated with vanadium oxides. The presence of niobium did not contribute to the modification of the chemical properties of superficial vanadium but did decrease the adsorption of vanadium on the alumina.

  2. Mechanical and tribological performance of coated ceramic tiles with alumina by thermal spraying process

    Directory of Open Access Journals (Sweden)

    Marilse Araque-Pabón

    2015-07-01

    Full Text Available Mechanical and tribological performance of red clay ceramic tiles uncoated and coated by oxy-fuel thermal spraying process from α-Al2O3 powder was evaluated. The ceramic tile substrates were manufactured by uniaxial pressing at 30 bar pressure, and sintered at 1100°C, while alumina Sulzer-Metco 105SPFTM was used as feedstock powder to elaborate coatings with three different thicknesses. Both, the bending and the deep abrasion resistances were evaluated according to ISO 10545-4 e ISO 10545-6 standards respectively. The results obtained indicate that the deep abrasion in the ceramic tiles decreases when the thickness of alumina coating increases. On the other hand, the bending resistance of ceramic tiles coated increased between 5 and 49% regarding to those uncoated. These results contribute to the development of ceramic products with high value added, which can be used in various technological applications.

  3. Options in the HCl Process for the Production of Alumina from Clay

    Science.gov (United States)

    Shanks, D. E.; Thompson, D. C.; Arington, R. M.; Dan, G. L.; Eisele, J. A.

    The Bureau of Mines has conducted in-depth studies on the recovery of aluminum chloride hexa-hydrate and alumina from domestic kaolinitic clay. The original goal of the studies was to provide the technology for alumina production from domestic raw materials. Current research is focused on process modifications that would improve the economics of clay-HCl leaching and improve chances for transfer of the technology to commercial use. Options under investigation include direct leaching of raw clay, changes in leaching acid concentration and stoichi-ometry, decreased leaching duration, improved solid-liquid separations, elimination of solvent extraction for iron removal, and formation of basic aluminum chloride instead of aluminum chloride hexahydrate as an intermediate product. Implementation could decrease energy, equipment, and reagent costs by eliminating the calcination step, substituting filtration for thickening and washing circuits, and combining iron removal with aluminum chloride crystallization.

  4. Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics

    Directory of Open Access Journals (Sweden)

    Bin Qian

    2014-06-01

    Full Text Available Additive manufacturing of alumina by laser is a delicate process and small changes of processing parameters might cause less controlled and understood consequences. The real-time monitoring of temperature profiles, spectrum profiles and surface morphologies were evaluated in off-axial set-up for controlling the laser sintering of alumina ceramics. The real-time spectrometer and pyrometer were used for rapid monitoring of the thermal stability during the laser sintering process. An active illumination imaging system successfully recorded the high temperature melt pool and surrounding area simultaneously. The captured images also showed how the defects form and progress during the laser sintering process. All of these real-time monitoring methods have shown a great potential for on-line quality control during laser sintering of ceramics.

  5. Plasma etching to enhance the surface insulating stability of alumina for fusion applications

    Directory of Open Access Journals (Sweden)

    M. Malo

    2016-12-01

    Full Text Available A significant increase in the surface electrical conductivity of alumina, considered one of the most promising insulating materials for numerous applications in fusion devices, has been observed during ion bombardment in vacuum due to oxygen loss by preferential sputtering. Although this is expected to cause serious limitations to insulating components functionality, recent studies showed it is possible to restore the damaged lattice by oxygen reincorporation during thermal treatments in air. These studies also revealed a correlation between conductivity and ion beam induced luminescence, which is being used to monitor surface electrical conductivity degradation and help qualify the post irradiation recovery. Work now carried out for Wesgo alumina considers oxygen implantation and plasma etching as additional methods to improve recovered layer depth and quality. Both conductivity and luminescence results indicate the potential use of plasma etching not only for damage recovery, but also as a pre-treatment to enhance material stability during irradiation.

  6. Alkali Influence on Synthesis of Solid Electrolyte Based on Alkali Nitrate-Alumina

    International Nuclear Information System (INIS)

    Yustinus Purwamargapratala; Purnama, S.; Purwanto, P.

    2008-01-01

    Research of solid electrolyte based on alumina with addition of alkali materials of barium nitrate, calcium nitrate, sodium nitrate and lithium nitrate has been done. Aluminium hydroxide and alkali nitrate were mixed in mole ratio of 1 : 1 in water media and pyrolyzed at 300 o C for 1 hour Pyrolysis result were then mixed with alumina in mole ratio of 1 : 1, compacted and heated at 600 o C for 3 hours. To characterize the sample, XRD (X-Ray Diffractometers) and LCR meter (impedance, capacitance, and resistance) were used for analysis the phase and conductivity properties. The result showed formation of alkali-aluminate in which Li-base have the highest room temperature conductivity of 3.1290 x 10 -5 S.cm -1 , while Ba-base have the lowest conductivity of 5.7266 x 10 -8 S.cm -1 . (author)

  7. A Reliable Method for the Preparation of Multiporous Alumina Monoliths by Ice-Templating

    Directory of Open Access Journals (Sweden)

    Jérémy Dhainaut

    2016-03-01

    Full Text Available Alumina supports presenting a bimodal porosity are generally advantageous for the conversion of bulky molecules such as found in biomass, refining, and petrochemistry. However, shaping of such materials, while controlling pores size and orientation, proves to be hard. This problem can be tackled by using a simple method involving sol-gel chemistry, surfactant self-assembly, and ice-templating. Herein, a systematic study of the formulation and process parameters’ influence on the final material properties is presented. This protocol results in the repeatable preparation of centimeter-sized alumina monoliths presenting a uni-directional macroporosity and structured mesopores. These monoliths should be of particular interest in high flow rate catalytic applications.

  8. Preparation and Properties of Pt-Mo Sulfide System Supported on Mesoporous Silica-Alumina

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Vít, Zdeněk

    2006-01-01

    Roč. 162, - (2006), s. 489-496 ISSN 0167-2991. [International Symposium Scienctific Bases for Heterogeneous Catalysts /9./. Louvain-la-Neuve, 10.09.2006-14.09.2006] R&D Projects: GA ČR(CZ) GA104/06/0870 Institutional research plan: CEZ:AV0Z40720504 Keywords : silica-alumina * Pt-Mo * hydrotreating Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.307, year: 2005

  9. Vertically aligned nanowires on flexible silicone using a supported alumina template prepared by pulsed anodization

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.

    2009-01-01

    Carpets of vertically aligned nanowires on flexible substrates are successfully realized by a template method. Applying special pulsed anodization conditions, defect-free nanoporous alumina structures supported on polydimethylsiloxane (PDMS), a flexible silicone elastomer, are created. By using...... this template with nanopores ending on a conducting underlayer, a high-density nanowire array can be simply grown by direct DCelectrodeposition on the top of the silicone rubber....

  10. Thermodynamics of proton binding at the alumina-water interface revisited

    International Nuclear Information System (INIS)

    Morel, J.P.; Morel-Desrosiers, N.; Guillaud, A.; Marmier, N.

    2005-01-01

    Full text of publication follows: Since sorption on natural or synthetic materials can attenuate the migration of the radionuclides, sorption reactions have to be taken into account in repository performance assessment models. In order to check these models at different temperatures, experimental data such as the enthalpies of sorption are thus required. Highly sensitive micro-calorimeters can now be used to determine the heat effects accompanying the sorption of radionuclides on oxide-water interfaces, but enthalpies of sorption cannot be extracted from microcalorimetric data without a clear knowledge of the thermodynamics of protonation and deprotonation of the oxide surface. However, the values reported in the literature show large discrepancies and one must conclude that, amazingly, this fundamental problem of proton binding is not yet resolved. We have thus undertaken to measure by titration micro-calorimetry the heat effects accompanying proton exchange at the alumina-water interface at 25 deg. C. Based on (i) the surface sites speciation provided by a surface complexation model (built from acid-base titrations at 25 deg. C), and (ii) results of the microcalorimetric experiments, calculations have been made to extract the enthalpy variations associated respectively to protonation and deprotonation of the alumina surface. In a second step, the protonation and deprotonation enthalpy values have been used to calculate the alumina surface acidity constants at 60 deg. C via the Van't Hoff equation. Then, a theoretical titration curve at 60 deg. C has been calculated and compared to the experimental alumina surface titration curve. A good agreement between the predicted acid-base titration curve and the experimental one was observed. (authors)

  11. Dilatometric study of anisotropic sintering of alumina/zirconia laminates with controlled fracture behaviour

    Czech Academy of Sciences Publication Activity Database

    Maca, K.; Pouchlý, V.; Drdlík, D.; Hadraba, Hynek; Chlup, Zdeněk

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4287-4295 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GA15-06390S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Alumina/zirconia laminate * Crack deflection * Master sintering curve * Sintering shrinkage Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  12. Mechanical, thermal, and fire properties of biodegradable polylactide/boehmite alumina composites

    CSIR Research Space (South Africa)

    Das, K

    2013-05-01

    Full Text Available -Smith‡ †Department of Applied Chemistry, University of Johannesburg, Doornforntein 2028, Johannesburg, South Africa ‡DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa §Polymer... and Composites, Materials Science and Manufacturing, Council for Scientific and Industrial Research, Port Elizabeth 6000, South Africa Abstract Boehmite alumina (BAl) was investigated in terms of its use as an filler to improve the inherent properties...

  13. Optical, mechanical and fractographic response of transparent alumina ceramics on erbium doping

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Drdlíková, K.; Hadraba, Hynek; Máca, K.

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4265-4270 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : Alumina * Erbia * Fractography * Hardness * Transparency Subject RIV: JH - Ceramics , Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  14. Rhenium Oxide Supported on Mesoporous Organized Alumina as a Catalyst for Metathesis of 1-alkenes

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Hamtil, Roman; Žilková, Naděžda; Čejka, Jiří

    2004-01-01

    Roč. 97, 1/2 (2004), s. 25-29 ISSN 1011-372X R&D Projects: GA ČR GA203/02/0976; GA AV ČR IAA4040411 Institutional research plan: CEZ:AV0Z4040901 Keywords : organised mesoporous alumina * rhenium oxide * 1-alkene metathesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.904, year: 2004

  15. On the mechanism of electron-beam induced phenomena in Na β-alumina

    International Nuclear Information System (INIS)

    Livshits, A.; Polak, M.

    1983-01-01

    A detailed mechanism is proposed for the emergence of sodium to the cleavage-face of the superionic conductor Na β-alumina during high dose electron bombardment. It is based on Auger electron spectroscopy measurements and optical microscope observations of the bombarded surface, and it involves both electromigration of the mobile Na + and fault formation at the cleavage-face resulting from induced internal stress. (author)

  16. Characterization of Srβ-alumina prepared by sol-gel and spray pyrolysis methods

    International Nuclear Information System (INIS)

    Kalaignan, G. Paruthimal; Seo, Dae Jong; Park, Seung Bin

    2004-01-01

    Eu 2+ doped β-alumina, Sr 1-x MgAl 10 O 17 Eu x 2+ (x=0.01-0.07) were successfully prepared by sol-gel and spray pyrolysis techniques with the same precursor materials. Srβ-alumina doped with Eu 2+ (SrMgAl 10 O 17 :Eu 2+ ) prepared from sol-gel method showed three photoluminescence (PL) peaks at 390, 418 and 459 nm after excitation wavelength at 254 nm and one PL peak at 461 nm when excitation was at 365 nm. The same powder was prepared from spray pyrolysis technique showed the six PL peaks at 323, 397, 415, 443, 480 and 508 nm after excitation at 254 nm. Also two PL peaks at 440 and 480 nm were observed after the excitation at 365 nm. These PL peaks were dependent on the excitation wavelength. The effect of different annealing temperatures of sol-gel powders, preparation conditions of spray pyrolysis powders and reduction atmospheres of both sol-gel and spray pyrolysis powders of various compositions of Eu 2+ doped Srβ-alumina were also studied. Both the powders were characterized by scanning electron microscopy, X-ray diffraction and PL techniques and comparison between the two preparation methods. Sol-gel prepared powder had eight times higher PL intensity and brightness than the spray pyrolysis prepared powder. The suggested good composition of Srβ-alumina is Sr 0.93 MgAl 10 O 17 :Eu 0.07 for both sol-gel and spay pyrolysis methods

  17. Continuous flow hydrogenation using polysilane-supported palladium/alumina hybrid catalysts

    Directory of Open Access Journals (Sweden)

    Shū Kobayashi

    2011-05-01

    Full Text Available Continuous flow systems for hydrogenation using polysilane-supported palladium/alumina (Pd/(PSi–Al2O3 hybrid catalysts were developed. Our original Pd/(PSi–Al2O3 catalysts were used successfully in these systems and the hydrogenation of unsaturated C–C bonds and a nitro group, deprotection of a carbobenzyloxy (Cbz group, and a dehalogenation reaction proceeded smoothly. The catalyst retained high activity for at least 8 h under neat conditions.

  18. Ball Milling Treatment of Black Dross for Selective Dissolution of Alumina in Sodium Hydroxide Leaching

    OpenAIRE

    Thi Thuy Nhi Nguyen; Man Seung Lee; Thi Hong Nguyen

    2018-01-01

    A process consisting of ball milling followed by NaOH leaching was developed to selectively dissolve alumina from black dross. From the ball milling treatment, it was found that milling speed greatly affected the leaching behavior of silica and the oxides of Ca, Fe, Mg, and Ti present in dross. The leaching behavior of the mechanically activated dross was investigated by varying NaOH concentration, leaching temperature and time, and pulp density. In most of the leaching conditions, only alumi...

  19. Hetero-modulus alumina matrix nanoceramics and CMCs with extreme dynamic strength

    Energy Technology Data Exchange (ETDEWEB)

    Goemze, Laszlo A [University of Miskolc, Department of Ceramics and Silicate Engineering, Miskolc-Egyetemvaros, H-3515 (Hungary); Goemze, Liudmila N, E-mail: femgomze@uni-miskolc.h [IGREX Engineering Service Ltd., Igrici, Rakoczi utca 2., H-3459 (Hungary)

    2011-10-29

    Applying the well-known alumina powders for matrix, different oxide and non-oxide ceramic submicron and nano-particles as additive materials, and investigating the impact of nitrogen atmosphere on sintering; the authors successfully developed new hetero-modulus alumina matrix ceramic composite materials, reinforced with submicron and nanoparticles of {alpha}-Si{sub 3}N{sub 4} {beta}-Si{sub 3}N{sub 4}, Si{sub 2}ON{sub 2}, SiAlON and AlN. Thanks to the new compacting technology with high speed flying punches in vacuumed N{sub 2} atmosphere developed by authors, phase transformation of {alpha}-Si{sub 3}N{sub 4} and {beta}-Si{sub 3}N{sub 4} into cubic c-Si{sub 3}N{sub 4} can be observed, creating so-called Si{sub 3}N{sub 4}-diamond submicron and nanoparticles in alumina matrix. The {alpha}-Si{sub 3}N{sub 4}, {beta}-Si{sub 3}N{sub 4}, Si{sub 2}ON{sub 2}, SiAlON, AlN and c-Si{sub 3}N{sub 4} diamond submicron and nanoparticles reinforced alumina matrix hetero-modulus nanoceramics have excellent mechanical properties and extreme dynamic strength. The dynamic strength was tested through collision with high density metallic flying bodies, with speed higher than 900 m/sec. Analytical methods applied in this research were laser granulometry, scanning electron microscopy, X-ray diffraction and energy dispersive spectrometry. Digital image analysis was applied to microscopy results, to enhance the results of transformation.

  20. Adsorption characteristics of lithium in sea water with coprecipitated alumina-magnesia gel

    International Nuclear Information System (INIS)

    Kaneko, Shoji; Takahashi, Wataru

    1988-01-01

    Alumina-magnesia mixed-oxide gel exhibited adsorptive ability for lithium in sea water attributed to weak acidic sites and micropores of diameter 20-30 A. The adsorption of lithium proceeded predominantly by the mechanism of ion-exchange, on which the facility was shown in the order of Na + > H + > NH 4 + . The elution of lithium adsorbed on the gel was complete with dilute hydrochloric acid. (author)

  1. Standard method for total molybdenum in fresh alumina-base catalysts

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This test method covers the determination of molybdenum in alumina-base catalyst and has been cooperatively tested at molybdenum concentrations from 8 to 18 weight %, expressed as MoO 3 . Any component of the catalyst other than molybdenum such as iron, tungsten, etc., which is capable of being oxidized by either ferric or ceric ions after being passed through a zinc-amalgam reductor column (Jones reductor) will interfere. This standard may involve hazardous, materials, operations, and equipment

  2. Linear Coefficient of Thermal Expansion of Porous Anodic Alumina Thin Films from Atomic Force Microscopy

    OpenAIRE

    Zhang, Richard X; Fisher, Timothy; Raman, Arvind; Sands, Timothy D

    2009-01-01

    In this article, a precise and convenient technique based on the atomic force microscope (AFM) is developed to measure the linear coefficient of thermal expansion of a porous anodic alumina thin film. A stage was used to heat the sample from room temperature up to 450 K. Thermal effects on AFM probes and different operation modes at elevated temperatures were also studied, and a silicon AFM probe in the tapping mode was chosen for the subsequent measurements due to its temperature insensitivi...

  3. Thermal exposure effects on the mechanical properties of a polycrystalline alumina fiber/aluminum matrix composite

    Science.gov (United States)

    Olsen, G. C.

    1979-01-01

    The effects of thermal exposures and elevated test temperature on the mechanical properties of a unidirectional polycrystalline alumina fiber reinforced aluminum matrix composite were investigated. Test temperatures up to 590 K and 2500 hours exposures at 590 K did not significantly affect fiber dominated properties but did severely degrade matrix dominated properties. Fiber strength, degraded by the fabrication process, was restored by post fabrication thermal exposures. Possible degradation mechanisms are discussed.

  4. Growth of Si nanocrystals on alumina and integration in memory devices

    Science.gov (United States)

    Baron, T.; Fernandes, A.; Damlencourt, J. F.; De Salvo, B.; Martin, F.; Mazen, F.; Haukka, S.

    2003-06-01

    We present a detailed study of the growth of Si quantum dots (Si QDs) by low pressure chemical vapor deposition on alumina dielectric deposited by atomic layer deposition. The Si QDs density is very high, 1012 cm-2, for a mean diameter between 5 and 10 nm. Al2O3/Si QD stacks have been integrated in memory devices as granular floating gate. The devices demonstrate good charge storage and data retention characteristics.

  5. Mechanical properties of hybrid composites prepared by ice-templating of alumina

    Czech Academy of Sciences Publication Activity Database

    Roleček, J.; Salamon, D.; Chlup, Zdeněk

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4279-4286 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : fracture-toughness * ceramics * matrix * laminate * behavior * fibers * Ice-templating * Alumina * Epoxide * Hybrid composite s * Strength Subject RIV: JH - Ceramics, Fire-Resistant Material s and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  6. Chromatographic separation of rhenium in alumina-methanol/sulfuric acid system

    International Nuclear Information System (INIS)

    Oguma, Koichi

    1983-01-01

    The adsorption behavior of a number of metals on alumina was surveyed in a methanol-(0.005 -- 0.5) M H 2 SO 4 (3 : 1 v/v) developing solvent by thin-layer chromatography. Over the acid concentration range tested, Re(VII) does not favor the alumina phase to any great extent while the most other metals are strongly adsorbed on alumina. These findings allowed to establish a column chromatographic technique for selective separation of rhenium in a methanol-0.05 M H 2 SO 4 (3 : 1 v/v) eluent. The separation technique thus established was applied to molybdenite analysis for rhenium. About 100-mg powdered sample containing ca. 100 ppm rhenium was decomposed with HNO 3 and then evaporated nearly to dryness. The residue was dissolved in NH 4 OH and the excess NH 4 OH was expelled by evaporation to dryness. The residue was dissolved in 2.5-ml 0.5 M H 2 SO 4 and 10-ml water, the insoluble materials filtered off, and the filtrate diluted to exactly 25 ml with water. A 10-ml aliquot of this solution was mixed with 30-ml methanol and the mixture was passed through a column (diameter 15 mm, bed height 30 mm) containing 5 g of alumina. The column was then washed with 20 ml of a methanol-0.05 M H 2 SO 4 (3 : 1 v/v) mixture. Rhenium was recovered from the loaded solution and the subsequent washings, and was determined spectrophotometrically with Methylene Blue as a chromogenic reagent. The values obtained from four samples of molybdenite are in good agreement with those obtained by neutron activation analysis. The relative standard deviation (n = 4; calculated from the range) was between 2.0 and 5.2 %. (author)

  7. Influence of nano boehmite on solid state reaction of alumina and magnesia

    Energy Technology Data Exchange (ETDEWEB)

    Zargar, H.R., E-mail: hzargar@iust.ac.i [Department of Metals and Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Bayati, M.R. [Schools of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box: 16845-195, Tehran (Iran, Islamic Republic of); Department of Materials Science and Engineering, North Carolina State University, 911 Partner' s Way, Raleigh, NC 27695-7907 (United States); Rezaie, H.R. [Schools of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box: 16845-195, Tehran (Iran, Islamic Republic of); Golestani-Fard, F., E-mail: golestanifard@iust.ac.i [Schools of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box: 16845-195, Tehran (Iran, Islamic Republic of); Molaei, Roya [Schools of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box: 16845-195, Tehran (Iran, Islamic Republic of); Zanganeh, Saeid [Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Way, U-2157 Storrs, CT 06269-2157 (United States); Kajbafvala, Amir [Department of Materials Science and Engineering, North Carolina State University, 911 Partner' s Way, Raleigh, NC 27695-7907 (United States)

    2010-10-08

    Research highlights: {yields} In this research, we introduced nano boehmite as a novel additive in synthesis of magnesia-alumina spinel via solid state reactions. Using this additive, formation temperature decreases to below 700 {sup o}C which is comparable to that of the chemical routs and has not been already reported by other researchers for solid state methods. Moreover, it was revealed that addition of nano boehmite results in formation of a covering spinel layer on the magnesia and alumina particles. This layer suppresses formation of the calcium hexa aluminate phase at high temperatures. - Abstract: Effect of nano boehmite on formation of alumina-magnesia spinel via solid state reaction is reported. Various amounts of nano boehmite were added to Al{sub 2}O{sub 3}-MgO mixtures and the mixtures were heated at different temperatures ranging from 800 to1500 {sup o}C for 2 h. Phase structure and chemical composition of the samples were evaluated by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and differential thermal analysis (DTA) techniques. Scanning electron microscopy (SEM) was also employed to study microstructure of the fabricated samples. It was revealed that the formation temperature of MgAl{sub 2}O{sub 4} spinel decreased significantly in the presence of nano boehmite. The initial spinel layer formed on magnesia particles was believed to play a mineralizing effect, and, therefore, accelerate the solid state reaction between magnesia and alumina. Nano boehmite also discouraged formation of hybonite (CA6) phase. The results are explained with emphasis on the importance of low temperature spinel formation in refractory materials.

  8. Preparation of a Pd-Pt alloy on alumina and its application for a gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minsoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of)]. E-mail: minm@kaeri.re.kr; Paek, Seungwoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Ahn, Do-Hee [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Kwang-Rag [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Yim, Sung-Paal [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Chung, Hongsuk [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2007-08-30

    In this study we attempted to obtain a Pd-Pt alloy on alumina (PPA) by using an impregnation and alcohol reduction method for the purpose of a hydrogen isotopes separation, in which {alpha}-alumina powder was impregnated into an ethanol water (1/1, w/w) solution containing PdCl{sub 2}, PtCl{sub 2}, and polyvinylpyrrolidone (PVP, MW = 10,000). The sample was dried, reduced by hydrogen, and thermally treated at 1073 K. Thus, two kinds of PPA (Pd content 17 and 29 wt%) were achieved. The produced PPA showed a good crystallinity from the XRD analysis and it exhibited an adequate hydrogen desorption isotherm as a packing material for the separation of hydrogen isotopes. GC columns packed with PPA and Cu powder were used for the separation of a 29.2% D{sub 2}-H{sub 2} gas mixture at 303 and 343 K. The experimental result showed a good separation efficiency of the hydrogen isotopes for the GC process. Consequently, the suggested technique for the production of a Pd-Pt alloy on alumina was proven to be successful.

  9. Methanol steam reforming promoted by molten salt-modified platinum on alumina catalysts.

    Science.gov (United States)

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-09-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development of silver impregnated alumina for iodine separation from off-gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Funabashi, Kiyomi; Fukasawa, Tetsuo; Kikuchi, Makoto [Energy Research Laboratory, Hitachi (Japan)] [and others

    1995-02-01

    An inorganic iodine adsorbent, silver impregnated alumina (AgA), has been developed to separate iodine effectively from off-gas streams of nuclear facilities and to decrease the volume of waste (spent adsorbent). Iodine removal efficiency was improved at relatively high humidity by using alumina carrier with two different pore diameters. Waste volume reduction was achieved by impregnating relatively large amounts of silver into the alumina pores. The developed adsorbent was tested first with simulated off-gas streams under various experimental conditions and finally with actual off-gas streams of the Karlsruhe reprocessing plant. The decontamination factor (DF) was about 100 with the AgA bed depth of 2cm at 70% relative humidity, which was a DF one order higher than that when AgA with one pore size was used. Iodine adsorption capacity was checked by passing excess iodine into the AgA bed. Values were about 0.12 and 0.35 g-I/cm`-AgA bed for 10 and 24wt% silver impregnated AgA, respectively. The results obtained in this study demonstrated the applicability of the developed AgA to the off-gas treatment system of nuclear facilities.

  11. Structures and properties of alumina-based ceramic for reconstructive oncology

    Science.gov (United States)

    Grigoriev, M. V.; Kulkov, S. N.

    2016-08-01

    The microstructure of alumina ceramics based on powders with a varying grain size has been investigated. Both commercial alumina powders and those fabricated by denitration of aluminum salts in high-frequency discharge plasma were used. It is shown that the variation of the sintering temperature and morphology of the initial powders of the particles leads to a change of the pore structure of ceramics from pore isolated clusters to a structure consisting of a ceramic skeleton and a large pore space. Changing the type of pore structure occurs at about 50% of porosity. The ceramic pore size distribution is bimodal. Dependencies final density vs initial density are linear; at the same time with increasing temperature, inclination of changes from positive to negative, indicating the change of sealing mechanisms. Extrapolation of these curves showed that they intersect with the values of density of about 2 g/cm3, which indicates the possibility of producing non-shrink ceramics. It is shown that the strength increases with increasing nanocrystalline alumina content in powder mixture. A change in the character the pore structure is accompanied by a sharp decrease in strength, which corresponds to the percolation transition in ceramics. These results showed that it is possible to obtain ceramic materials with the structure and properties similar to natural bone.

  12. Effects of pH and calcination temperature on structural and optical properties of alumina nanoparticles

    Science.gov (United States)

    Amirsalari, A.; Farjami Shayesteh, S.

    2015-06-01

    In this study, we describe the synthesis of alumina nanoparticles using a chemical wet method in at varying pH. The optimized prepared particles with pH equals to 9 were calcined at various temperatures. For characterization of structural and optical properties of nanoparticles had been used X-ray diffraction, Infrared Fourier transform spectroscopy, field effect-scanning electron microscopy, photoluminescence and ultraviolet-visible spectroscopy. The results revealed that the nanoparticles calcined at 500 °C consist of an Al2O3 tetragonal structure and tetragonal distortion decreases with increasing calcination temperature up to 750 °C then increased with increasing temperature. Another phase similar to γ-Al2O3 was formed instead of δ-Al2O3 in the transition sequence from the γ to θ phase. FT-IR analysis; suggests that there are a few different types of functional groups on the surface of the alumina nanoparticles such as hydroxy groups and oxy groups. The transmittance spectra showed that the absorption bands in the UV region strongly depend on the calcination temperature. Moreover, the results showed that alumina has an optical direct band gap and that the energy gap decreases with increasing the calcination temperature and pH of the reaction. Luminescence spectra showed that some luminescent centers such as OH-related radiative centers and oxygen vacancies (F, F22+ and F2 centers) centers exist in the nanoparticles.

  13. Formation of alumina-aluminide coatings on ferritic-martensitic T91 steel

    Directory of Open Access Journals (Sweden)

    Choudhary R.K.

    2014-01-01

    Full Text Available In this work, alumina-aluminide coatings were formed on ferritic-martensitic T91 steel substrate. First, coatings of aluminum were deposited electrochemically on T91 steel in a room temperature AlCl3-1-ethyl-3-methyl imidazolium chloride ionic liquid, then the obtained coating was subjected to a two stage heat treatment procedure consisting of prolonged heat treatment of the sample in vacuum at 300 ○C followed by oxidative heat treatment in air at 650 ○C for 16 hours. X-ray diffraction measurement of the oxidatively heat treated samples indicated formation of Fe-Al and Cr-Al intermetallics and presence of amorphous alumina. Energy dispersive X-ray spectroscopy measurement confirmed 50 wt- % O in the oxidized coating. Microscratch adhesion test conducted on alumina-aluminide coating formed on T91 steel substrate showed no major adhesive detachment up to 20 N loads. However, adhesive failure was observed at a few discrete points on the coating along the scratch track.

  14. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  15. KONVERSI KATALITIK MINYAK SAWIT UNTUK MENGHASILKAN BIOFUEL MENGGUNAKAN SILIKA ALUMINA DAN HZSM-5 SINTESIS

    Directory of Open Access Journals (Sweden)

    Nurjannah Nurjannah

    2012-02-01

    Full Text Available Terbatasnya sumber energi fosil menyebabkan perlunya pengembangan energi terbarukan yang berasal dari alam dan dapat diperbaharui. Penggunaan bahan bakar minyak bumi, baik dari penggunaan berupa alat transportasi maupun dari penggunaan oleh industri sangat mencemari lingkungan karena tingkat polusi yang ditimbulkan sangat tinggi sehingga perlu mencari bahan bakar alternatif pengganti bahan bakar gasoline, solar, dan kerosene dari minyak nabati. Penelitian dilakukan dalam dua tahapan yaitu sintesa katalis dan proses katalitik cracking. Silika alumina disintesa menggunakan metode Latourette dan HZSM-5 disintesa menggunakan metode Plank. Hasil sintesa dikarakterisasi dengan Penyerapan Spektroskopi Atomis (AAS menunjukkan bahwa silika alumina dan HZSM-5 mempunyai Si/Al 198 dan 243. Luas permukaan  silika alumina dan HZSM-5 diperoleh dari analisa Brunauer Emmet Teller (BET yaitu 149,91-213,35 m2.g-1 dan ukuran pori rata-rata adalah 13oA. Perengkahan katalitik dilakukan dalam suatu mikroreaktor fixed bed pada temperatur 350-500°C dan laju alir gas N2 100-160 ml.min-1 selama 120 min. Hasil perengkahan dianalisa dengan metode gas kromatografi. Hasil yang diperoleh untuk katalis HZSM-5 fraksi gasoline dengan yield tertinggi 28,87%, kerosene 16,70%, dan diesel 12,20%  pada suhu reaktor 4500C dan laju gas N2 100 ml/menit.

  16. Study and application of alumina films for the realization of metal-insulator-semiconductor structures

    International Nuclear Information System (INIS)

    Ferrieu, Eric

    1970-01-01

    Alumina used in thin films on silicon substrate (MIS structures) or deposited on silica SiO 2 as second dielectric for MIIS structures is actually investigated. In a theoretical part concerning MIS structure properties all the defects of the C(V) curves have been extensively checked off. After a description of the deposition method used, the experimental results are reviewed. With the deposition method used, we realize amorphous alumina films at low temperatures (T∼150 deg. C). The treatment of the surface before deposition is important for the reproducibility of the films and the properties of the interface. Al 2 O 3 -Si. The films have good electrical characteristics and a heat treatment at 500 deg. C with argon as atmosphere is helpful. Alumina contains negative charges and we establish a surface inversion of the silicon type (V FB >0). The density of surface states N SS is approximately 10 11 e-bar/cm 2 . The deposition method investigated has a direct application for integrated circuits technology; it may be used for multilayers structures, the obtention of reduced MOST threshold voltages and memory elements MIIS. (author) [fr

  17. Fabrication, microstructural characterization and wear characteristics of A380 alloy-alumina composites

    KAUST Repository

    Nurani, Sheikh Jaber

    2016-03-10

    To obtain better mechanical and tribological properties than aluminium alloys aluminium is reinforced with alumina particles making aluminium metal matrix composites. In this work scrap piston A380 alloy was used as the matrix alloy. Alumina particles were added by 5%, 10% and 15% into matrix alloy respectively to form desired composites by stir casting technique. Pin on disc wear testing machine with counter surface as steel disc of hardness HRC 32 and surface roughness of 0.62 μm was used to conduct the wear test. In result composites showed superior wear resistance property over A380 alloy. The effect of load, sliding speed and sliding distance on wear behaviour were also examined in this study. Wear mechanism was identified from the worn surface. Both optical and scanning electron microscope (SEM) of the composites was performed to determine the microstructures. Optical micrograph shows grain size decreases with addition of alumina particles. EDS analysis was performed to confirm the presence of α-Al matrix, primary Si particles and intermetallic. As a general method, phase compositions were analyzed by using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS). Optical microstructures were consistent with the SEM micrographs. © 2015 IEEE.

  18. Phase Transformations of α-Alumina Made from Waste Aluminum via a Precipitation Technique

    Directory of Open Access Journals (Sweden)

    Khamirul Amin Matori

    2012-12-01

    Full Text Available We report on a recycling project in which α-Al2O3 was produced from aluminum cans because no such work has been reported in literature. Heated aluminum cans were mixed with 8.0 M of H2SO4 solution to form an Al2(SO43 solution. The Al2(SO43 salt was contained in a white semi-liquid solution with excess H2SO4; some unreacted aluminum pieces were also present. The solution was filtered and mixed with ethanol in a ratio of 2:3, to form a white solid of Al2(SO43·18H2O. The Al2(SO43·18H2O was calcined in an electrical furnace for 3 h at temperatures of 400–1400 °C. The heating and cooling rates were 10 °C /min. XRD was used to investigate the phase changes at different temperatures and XRF was used to determine the elemental composition in the alumina produced. A series of different alumina compositions, made by repeated dehydration and desulfonation of the Al2(SO43·18H2O, is reported. All transitional alumina phases produced at low temperatures were converted to α-Al2O3 at high temperatures. The X-ray diffraction results indicated that the α-Al2O3 phase was realized when the calcination temperature was at 1200 °C or higher.

  19. Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Jian Zuo

    2016-12-01

    Full Text Available Nature-mimetic hydrophobic membranes with high wetting resistance have been designed for seawater desalination via vacuum membrane distillation (VMD in this study. This is achieved through molecular engineering of metal–organic framework (MOF-functionalized alumina surfaces. A two-step synthetic strategy was invented to design the hydrophobic membranes: (1 to intergrow MOF crystals on the alumina tube substrate and (2 to introduce perfluoro molecules onto the MOF functionalized membrane surface. With the first step, the surface morphology, especially the hierarchical roughness, can be controlled by tuning the MOF crystal structure. After the second step, the perfluoro molecules function as an ultrathin layer of hydrophobic floss, which lowers the surface energy. Therefore, the resultant membranes do not only possess the intrinsic advantages of alumina supports such as high stability and high water permeability, but also have a hydrophobic surface formed by MOF functionalization. The membrane prepared under an optimum condition achieved a good VMD flux of 32.3 L/m2-h at 60 °C. This study may open up a totally new approach for design of next-generation high performance membrane distillation membranes for seawater desalination.

  20. Crystal lattice imaging of the silica and alumina faces of kaolinite using atomic force microscopy.

    Science.gov (United States)

    Gupta, Vishal; Hampton, Marc A; Nguyen, Anh V; Miller, Jan D

    2010-12-01

    The crystal lattice images of the two faces of kaolinite (the silica face and the alumina face) have been obtained using contact-mode atomic force microscopy (AFM) under ambient conditions. Lattice resolution images reveal the hexagonal surface lattice of these two faces of kaolinite. Analysis of the silica face of kaolinite showed that the hexagonal surface lattice ring of oxygen atoms had a periodicity of 0.50±0.04nm between neighboring oxygen atoms, which is in good agreement with the surface lattice structure of the mica basal plane. The center of the hexagonal ring of oxygen atoms is vacant. Analysis of the alumina face of kaolinite showed that the hexagonal surface lattice ring of hydroxyls surround a hydroxyl in the center of the ring. The atomic spacing between neighboring hydroxyls was determined as 0.36±0.04nm. Ordering of the kaolinite particles for examination of the silica and alumina surfaces was accomplished using different substrates, a procedure previously established. Crystal lattice imaging supports previous results and independently confirms that the two faces of kaolinite have been properly identified. Copyright © 2010 Elsevier Inc. All rights reserved.